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Abstract --- The problem of classifying gas-liquid two-phase 

flow regimes from ultrasonic signals is considered. A new method, 

belt-shaped features (BSF), is proposed for performing feature 

extraction on the pre-processed data.  A convolutional neural 

network (CNN/ConvNet)-based classifier is then applied to 

categorize into one of the four flow regimes: annular, churn, slug, 

or bubbly. The proposed ConvNet classifier includes multiple 

stages of convolution and pooling layers, which both decrease the 

dimension and learns the classification features. Using 

experimental data collected from an industrial-scale multiphase 

flow facility, the proposed ConvNet classifier achieved 97.40%, 

94.57, and 94.94% accuracy, respectively, for the training set, 

testing set, and validation set. These results demonstrate the 

applicability of the BSF features and the ConvNet classifier for 

flow regime classification in industrial applications. 

 
Index Terms— ultrasonic sensor, belt-shaped features (BSF), 

convolutional neural networks (CNNs), S-shaped riser 

I. INTRODUCTION 

WO-phase gas-liquid flows occur in pipelines and risers in 

a wide range of industrial and engineering processes, such 

as in the transport of hydrocarbon in subsea, nuclear power 

plants, petrochemical plants, food processing plants, chemical 

reactors, steam boilers, and their associated process piping and 

condensers. [1] 

Two-phase gas-liquid flows are classified into flow regimes 

according to the phase distribution in pipes. The most 

frequently experienced flow regimes in vertical or S-shaped 

pipeline risers are annular, bubbly, slug, and churn flows. 

Different two-phase flow regimes occur depending on the 

volume fractions, the velocities, the properties of fluids, and the 

pipe geometry [2]. The identification of flow regimes is vital 

for the design of pipelines and equipment, as well as safety 

operations [3]. For example, the detection of slug flow can help 

control the system to mitigate the risk of overflowing the 

separator on the offshore production platform [4]. The flow 
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regime can be predicted using an empirical flow regime map 

[5]; however, flow regime maps are prone to errors, as only a 

few factors are considered in creating them [6]. Moreover, the 

input parameters, such as gas and liquid superficial velocities, 

are often not measured in operations. 

Measurements to identify the flow regime may be made using 

various methods, including nuclear radiation methods, Coriolis 

flowmeters, laser Doppler anemometry (LDA), computer 

tomography (optical, resistive, capacitive, and X-ray), 

impedance sensors, magnetic resonance imaging (MRI), and 

particle image velocimetry (PIV). Non-intrusive and non-

invasive methods are preferred for practical reasons. Radiation 

techniques, especially the gamma-ray absorption-based 

methods, are non-intrusive and reliable [7]–[10] and are 

effective and accurate. However, because ionizing radiation 

requires strict safety compliance, they are not widely accepted 

by oil and gas operators. 

A Doppler ultrasonic sensor that deploys continuous-wave 

ultrasound signals can also achieve non-invasive flow velocity 

measurement [11]. This method deploys a shift in frequency 

constituting the flow velocities to develop a means of making 

flow regime predictions [12]. The applicability of continuous-

wave Doppler ultrasound (CWDU) in two-phase flow velocity 

measurements was investigated by [13]. They suggested the 

deployment of frequency resolution methods to solve the issues 

in velocity profile measurement through colored noise 

presence, but this caused a severe problem for the classical 

frequency estimators. 

Impedance sensors have a raw output signal that is a function 

of the void fraction [14]. This feature, due to its close relation 

to the flow regime, requires less computational effort in 

mapping the signal features to the flow regime. Pressure 

transducers are less expensive, readily available for a wide 

range of operating conditions, well developed, and fulfill most 
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of the operational safety regulations [14]. Electrical impedance 

and pressure transducers are invasive techniques that require 

either direct contact with fluids, making them prone to 

corrosion and blockage, or the insertion of a special dielectric 

pipe for electrical capacitance sensors. Non-invasive and non-

radioactive methods are highly attractive, as they remove the 

need for the immersion of instrumentation in the flow, and are 

less expensive to design, as they do not use radioactive 

elements. Moreover, the operating expenditure (OPEX) is 

lower compared to radioactive instruments due to the excessive 

costs associated with safety, environmental, and health issues 

[15]. The ultrasonic technique is a promising alternative that is 

less complex, hazardous, and costly. 

A significant advance in the objective identification of the 

flow regime was established by the introduction of an artificial 

neural network (ANN) [16]–[19]. A more successful objective 

process was established by classifying the flow regime 

indicators acquired through non-intrusive impedance probes 

and a Kohonen self-organizing neural network (SONN) [20]. 

The classification using SONN was initially carried out using 

the PDF of the void fraction signals as an indicator. This was 

later enhanced when the cumulative probability density 

function (CPDF) of the impedance void meter signals was 

introduced [19]. Flow regime identification using an ANN was 

reviewed with regard to its applications with electrical 

impedance sensors and pressure differential transducers as 

measuring devices. This choice was made due to increasing 

interest in using an ANN with these measurement methods, in 

contrast to the use of a support vector machine (SVM) [14] or 

an image analysis of dynamic neutron radiograph videos [21]. 

In recent research, a flow regime classification method based 

on principal component analysis (PCA) and SVM achieved 

85% accuracy [22]. Eyo et al. [23] developed an online gas-

liquid objective flow regime identifier using conductance 

signals and kernel methods and achieved a performance 

accuracy of 90% against the subjective visual method. 

Furthermore, another method based on the twin-window feature 

extraction (TFE) algorithm and deep neural networks (DNN) 

achieved an outstanding accuracy of 96.28%; the twin-window 

strategy accomplished significant performance in the one-

dimensional signal [24]. Kuang et al. further propose a flow 

regime identification benchmark, which mainly covers fully 

convolutional networks [25]. Since the early 1980s, the 

artificial neural network has been employed extensively for 

applications such as parameter estimation, fault detection, 

model-based control, dynamic modeling, process monitoring, 

and adaptive control [11], [14], [26]–[28]. 

Convolutional neural networks (CNNs/ConvNets) are a class 

of deep learning methods that is a popular and powerful 

approach for applications in computer vision [29], natural 

language processing [30], and medical image processing [31]. 

A convolutional neural network is designed to adaptively and 

automatically learn spatial hierarchies of features through the 

backpropagation algorithm using multiple layers such as 

pooling layers, convolution layers, and fully connected layers. 

The pooling and convolution layers extract features, while the 

fully connected layer maps the extracted features into the output 

layer, which is a typical approach for a classification task [32]. 

Convolutional neural networks’ identification superiority and 

accuracy have been proven in a wide range of applications such 

as face recognition [33], handwritten digits [34], and traffic sign 

recognition [35].  

In this paper, we propose a new approach to the problem using 

a non-invasive ultrasonic sensor for the measurements, a new 

belt-shape features (BSF) extraction algorithm, and a ConvNet 

classifier. The approach is applied to identify two-phase gas-

liquid flow regimes in an S-shaped riser system. The method is 

based on the assumption that the gas-liquid flow patterns will 

have unique signatures on the output signals of the CWUD 

device when subject to the two-phase flows. The main 

contributions of this research are as follows: (i) this research 

appears to be the first implementation of CWDU signals and a 

CNN-based classifier to identify the flow regime in an S-shaped 

riser; (ii) this research proposes a novel BSF feature extraction 

algorithm from the one-dimensional ultrasonic signals, which 

codes the information to a belt-shaped feature – compared to 

Fig. 1 Schematic diagram of the multiphase flow test facility [22], [24]. 
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the state-of-art feature extraction algorithm, the BSF algorithm 

is more flexible, robust, and generalized; and (iii) the proposed 

BSF-based pre-processing could expand the number of samples 

for ConvNet classifier training, which would address the 

common challenge of lack of data in experimental engineering. 

The paper is organized as follows. In the next section, the 

experiment details and data acquisition are described. In 

Section III, the data processing required for the flow regime 

identifier is described including the new BSF algorithm and the 

ConvNet classifier training. In Section IV, the results are 

presented, analyzed, and compared with other methods. Section 

V provides some conclusions. Section VI depicts the future 

works. 

II. EXPERIMENT AND DATA COLLECTION  

A. The multiphase flow test facility 

The Cranfield University Oil and Gas Centre has a nearly 

industrial-scale multiphase test rig and is one of the best in the 

UK. It is fully computerized with the standard modern 

industrial control system. The multiphase flow test rig was 

designed to carry out a systematic investigation of multiphase 

flow measurement, control, and transportation of gas and liquid. 

Off-shore systems are normally made up of oil, water, and gas; 

however, in this experiment, only air and water were passed 

through the test facility. The multiphase flow rig is operated and 

controlled using DeltaV, supervisory control, and data 

acquisition (SCADA) software from Emerson Automation 

Solutions. The test rig schematic diagram is displayed in Fig. 1. 

The air-water flow rate is automatically regulated using the 

DeltaV SCADA to obtain different operating flow conditions 

[22]. The air-water flow is mixed in the mixing section of the 

pipeline before being passed through the horizontal section and 

then through the vertical riser, with an S-shaped riser installed 

as illustrated in Fig. 1. After the topside riser system, the air-

water flow is separated using a two-phase separator. The air is 

released into the atmosphere while the water is returned to the 

water repository tank after cleaning.  

B. Process variables 

The process variables were acquired using the DeltaV 

SCADA system. All the sensors connected to the pipeline-riser 

system were sampled at 1 Hz. Select system process variables 

are presented in TABLE I with their associated units and tags. 

The experimental data used in this paper can be found in 

Cranfield Online Research Data (CORD) [36]. 

C. Ultrasonic sensor data collection 

The ultrasonic sensor and algorithm used in this work were 

those used in [22]. The Doppler ultrasonic sensor consisted of 

two piezoelectric elements. One of the elements continuously 

released an acoustic beam into the flow while the other element 

received the scattered acoustic beam reflected by the moving 

scatters. The velocity of the fluid was estimated with the 

frequency shift based on the Doppler effect [37]. 

A clamp-on non-intrusive CWUD transducer with an 

excitation voltage of ± 10V, operating at a 500 kHz frequency, 

was attached at the topside of the S-shaped riser as shown in 

Fig. 2. The incident angle of the ultrasound beam was 45° with 

respect to the flow direction on the S-shaped riser. The 

ultrasonic sensor was placed on the flow pipe at least 10 times 

the pipe diameter away from tees, valves, and bends to avoid 
TABLE I 

EXPERIMENTAL PROCESS AND INSTRUMENTATION LIST 

Sensor tags DESCRIPTION Unit 

PT312 Air delivery pressure bar 

PT403 Top separator pressure bar 

PT408 Riser top pressure bar 
PT417 Riser base pressure bar 

PT501 Three-phase separator pressure bar 

PIC501 Three-phase separator outlet air valve % 
FT102 Inlet water temperature °C 

FT102 Inlet water density Kg/m3 

FT102/104 Inlet water flow rate Kg/s 
FT305 Inlet air temperature °C 

FT305/302 Inlet air flow rate Sm3/h 

FT404 Top separator gas outlet M3/h 
FT406 Top separator liquid outlet Kg/s 

LI101 Liquid tank level m 

LI502 Three-phase separator water-oil level % 

 

 

Fig. 2 An S-shaped pipeline-riser system with clamped-on ultrasonic sensor [22], [24]. 
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measurement errors due to cavitation, swirls, and turbulent 

eddies. Ultrasonic coupling gel was applied between the pipe 

wall and the Doppler transducer to minimize the loss of 

ultrasound energy. The electronics of the CWUD flow meter 

were adapted to record the voltage signals of the Doppler 

frequency shift. 

A LabVIEW data acquisition system was used to acquire the 

voltage signals of the Doppler frequency shift. The frequency 

shift was estimated to be less than 2 kHz at the highest flow 

velocity. A sampling frequency was set at 10 kHz, which 

satisfied the Nyquist-Shannon sampling theorem [38]. 

D. Data processing platform 

The data processing hardware for this project was a Lenovo 

workstation. The operating system was Linux Ubuntu 18.04, 

the CPU was Inter Core i7-7700, the memory was 32GB, and 

the graphics card was NVIDIA GTX1080. The volume integral 

classifier was built with Tensorflow 2.2 [39], the one-hot 

encoding of the data used the Sklearn library [40], and the 

visualization used Matplotlib [41]. Some experiments and 

visualizations also used MATLAB. 

III. DATA PROCESSING AND THE FLOW REGIME IDENTIFIER 

A. Data explanation and overall process 

The overall process of the proposed flow regime 

identification method is illustrated in Fig. 3. The CWDU signals 

consisted of 125 gas-liquid experiments [36]. Each experiment 

provided 1.3 million data points during the sampling period, 

and all experiments were labeled with the ground-truth flow 

regime. Therefore, the CWDU signals (see Fig. 3) can be 

arranged as a matrix with 125 rows and 1.3 million columns. 

Then, the pre-processing block (in Fig. 3) brought in all CWDU 

signals and conducted the belt-shaped feature (BSF) extraction 

algorithm to produce the belt-shaped features (BSFs). Notably, 

the BSF extraction algorithm correspondingly assigned the 

ground-truth labels to the BSFs. The BSFs were then divided 

into training, testing, and validation set. The ConvNet circle 

denotes the proposed ConvNet-based flow regime classifier, 

which conducted the flow regime classification task using the 

training and testing sets and was verified using the validation 

set. 

B. Pre-processing based on the belt-shape feature (BSF) 

extraction 

1) The BSF pre-processing algorithm 

In this subsection, the new pre-processing, feature-extraction 

algorithm is described. The algorithm is called “belt-shaped 

feature” (BSF) for reasons that are explained later in the 

subsection. The algorithm was inspired by the twin-window 

strategy adopted in [24], [25], which has verified the twin-

window strategy's reliability in augmenting the sample space. 

In particular, the averaging operation among all Window Bs in 

the TFE algorithm brings smoothness to the TFE features. 

Although the smoothness can suppress noise, it can also 

eliminate the distinctions which limit the performance 

achievement [24]. The beauty of the deep learning method, 

however, is its considerable capability for capturing such 

distinctions while overcoming the noise. Moreover, the TFE 

algorithm [23] experienced amplitude loss. The new algorithm 

can eliminate the averaging smoothness and suppress amplitude 

loss. 

Fig. 4 depicts the data pre-processing for the proposed BSF 

algorithm. The upper-left block depicts the original CWDU 

data. The expanded waveform Doppler ultrasonic partial signal 

(Fig. 4) is used to symbolize the CWDU signal. Furthermore, 

the CWDU data refers to the data points in the sampling period 

from Section II-A, which includes significant noise. 

The first step in the BSF algorithm (the orange block) picks 

up one of the experimental records corresponding to a single 

row with 1.3 million recorded data points. The second step (the 

Fig. 3 The overall process of the proposed flow regime classification method. 
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red block) copies a part of the experimental record by 

“Window-A,” which directly relates to the valid feed-in data for 

a single BSF. Notably, the BSF is a projection function, which 

inevitably causes information loss. (1) depicts the numerical 

relationship between the input data (𝜙𝑖𝑛𝑝𝑢𝑡) and the output data 

(𝜙𝑜𝑢𝑡𝑝𝑢𝑡), where 𝛥𝜙 refers to the lost information during the 

projection process. The "Window-A step" is the stride length of 

Window A shifting, which affects the similarity between the 

adjacent BSFs (stride refers to the single moving step-length of 

the convolution kernel). (2) illustrates the numerical 

relationship between the number of BSFs (𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑆𝐹) and the 

length of Window-A (𝑙𝑤𝑎) and the step length of Window-A 

shifting (𝑠𝑤𝑎). The third step (the blue block) further copies the 

Window B region from Window-A. The length of Window B 

("Window-B" in Fig. 4) affects the sampling resolution size. 

This twin-window strategy is used to avoid amplitude loss. The 

step length of Window B (the "Window-B step") directly relates 

to the number of rows in the BSF features. (3) characterizes the 

numerical relationship between the number of rows in a single 

BSF and 𝑙𝑤𝑎  (length of Window-A), 𝑙𝑤𝑏  (length of Window-

B), and 𝑠𝑤𝑏  (step length of Window-B shifting). The step 

length of Window-B ( 𝑠𝑤𝑏 ) must less than 𝑙𝑤𝑏  so that the 

overlaps can suppress the amplitude loss of the window 

boundary.  

The fourth and final step (the green block) uses the fast-

Fourier-transform (FFT) to transform the signal from the time 

domain to the frequency domain, and the results of different 

Window Bs are listed row by row in a two-dimensional (2D) 

array. This research uses the term “belt-shaped feature” (BSF) 

because, like a belt, the number of columns in this 2D array is 

much greater than the number of rows. The BSF algorithm does 

not adopt the average among Window B to maintain the 

detailed distinction. 

𝜙𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜙𝑖𝑛𝑝𝑢𝑡 − 𝛥𝜙 (1) 

𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑆𝐹 =
𝑙𝐶𝑊𝐷𝑈 − 𝑙𝑤𝑎

𝑠𝑤𝑎
 (2) 

𝑁𝑢𝑚𝑏𝑒𝑟𝑟𝑜𝑤𝑠 =
𝑙𝑤𝑎 − 𝑙𝑤𝑏

𝑠𝑤𝑏
 (3) 

Note that each CWDU experimental record has been labeled 

with a corresponding ground-truth flow regime. The BSF 

algorithm directly assigns the ground-truth flow regimes to the 

output BSFs. For example, each experimental record can 

generate 𝑛𝑤𝑎 BSFs; thus, all of these 𝑛𝑤𝑎 BSFs used the same 

flow regime label. This research uses integer values 1, 2, 3, and 

4 to label the slug flow, bubbly flow, churn flow, and annular 

flow, respectively. 

2) The experimental design for the BSF pre-processing 

algorithm 

Two modules enact the BSF extraction algorithm as shown 

in the upper right bracket of Fig. 3. The belt shape features are 

thus the intermediate result passed to the CNN-based classifier 

shown in the lower part of Fig. 2. Standard accuracy metrics are 

used to assess the performance of both the BSF algorithm and 

the CNN-based classifier. Thus, a separate control variable 

strategy is required. The size of the BSF indicates the feature 

size input into the classifier, which can be variant depending on 

the number of Window-Bs and the N value (in FFT) in the BSF 

algorithm. Hence, we fix the size (number of rows (ℎ) and 

number of columns (𝑤)) of the BSF (𝜙𝑜𝑢𝑡𝑝𝑢𝑡) to evaluate the 

BSF algorithm — this constrains the influence on the metrics 

of the first model (the BSF algorithm). (2) and (3) are the 

mathematical definitions. Here the BSF size is fixed to be ℎ =
10 (also equal to 𝑁𝑤𝑏) and 𝑤 = 1024. 

(1) we see that that the BSF algorithm’s information loss is a 

dynamic variable that depends on 𝑙𝑤𝑎, 𝑠𝑤𝑎 , 𝑙𝑤𝑏 , 𝑠𝑤𝑏 , and the 𝑁 

Fig. 4 The pre-processing step based on the belt-shaped feature (BSF) extraction algorithm. The solid arrows refer to the steps of the BSF 

algorithm. The upper-left square refers to the 125 by 1.3 million data matrix mentioned in Section III-A. The solid and dashed frames refer to 

the adjoint Window A or B. “Window A”, “Window A step”, “Window B”, and “Window B step” respectively correspond to the length of 

Window A (𝑙𝑤𝑎), the step of Window A (𝑠𝑤𝑎), the size of Window B (𝑙𝑤𝑏) and the step of Window B (𝑠𝑤𝑏). The “N = 2048” in the bottom 

square (the green region) refers to the N value for the fast-Fourier-transform (FFT) operation. Only half of the symmetrical FFT result has 

remained, such that each BSF is a vector with a single row and 1,024 columns. 
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value in FFT. TABLE II shows the specific experimental 

settings. Five values of 𝑙𝑤𝑎  were used ranging from 8,000 to 

50,000 recorded data points. In line with the pipe scale and 

mixture flow velocity range, the highest frequency of the 

CWDU signals in this project was less than 2 kHz. According 

to the Nyquist theorem [38], the sample size must be at least 

twice (in practices at least four times) that determined by the 

maximum frequency value (this research used 8,000 recorded 

data points as the minimum 𝑙𝑤𝑎). The TFE algorithm in [24] 

used 50,000 recorded data points and obtained a superior result, 

so this research also used 50,000 recorded data points as the 

maximum 𝑙𝑤𝑎. Three values, 1,250, 2,500, and 5,000 recorded 

data points, were selected for 𝑠𝑤𝑎 , which corresponded to 

approximately 15%, 30%, and 60% of the minimum 𝑙𝑤𝑎 , 

respectively, while 𝑙𝑤𝑏  was 3,000, 5,000, and 10,000 recorded 

data points. The 3,000 recorded data points scheme was the 

closest value to 2 kHz, with the smallest amplitude loss, but 

may not have covered a complete cycle. The 5,000 recorded 

data points scheme experienced a slight amplitude loss, but a 

complete cycle was covered. The 10,000 recorded data points 

scheme experienced a larger amplitude loss. 

Note that the experimental designs used the controlled 

variable method. Experiments A1, A2, A3, A4, and A5 

belonged to the first group of experiments, which mainly tested 

the effect of varying 𝑙𝑤𝑎. Experiments A5, B1, and B2 belonged 

to the second group of experiments, which mainly tested the 

influence of the various values of 𝑠𝑤𝑎 . Experiments A5, C1, and 

C2 belonged to the third group of experiments, which mainly 

tested the influence of the various values of 𝑙𝑤𝑏 . 

C. ConvNet classifier 

1) The architecture of the ConvNet classifier 

The 𝜙𝑜𝑢𝑡𝑝𝑢𝑡 for the entire BSF algorithm (the 𝜙𝑖𝑛𝑝𝑢𝑡  is all 

CWDU signals from Section II) is a large matrix with 𝑁𝐵𝑆𝐹  

rows and 1,024 columns, called the BSF data space. Each row 

for the BSF data space corresponds to an input sample for the 

deep learning classifier. The corresponding ground-truth labels 

(mentioned in Section III-B-1)) adopt the one-hot encoding 

format, which can avoid intermediate value confusion (such as 

prediction A5 for labels one and two). The multi-classification 

task essentially transforms into four binary classification tasks. 

Fig. 5 depicts the ConvNet-based classifier’s architecture, 

which was designed in terms of the 2D BSFs with a low height-

width ratio. It is clear that the existing ConvNet-based 

classifications (such as ResNet [42] and InceptionNet [43]) are 

not suitable for the BSFs. This research proposes a new 

ConvNet-based classifier, which interactively cooperates with 

1D ConvNets, 2D ConvNets, and fully connected networks 

(FcNets). The ConvNet classifier adopts the supervised 

learning strategy, which inputs the BSFs (Section III-B-1)) and 

then compares the predictions to the one-hot-formed flow 

regime labels for gradient descent. 

In this paper, the multidimensional data array, or tensor, 

processed inside the ConvNet-based classifier is 4-dimensional 

(order 4), with dimension sizes batch, 𝑏, height, ℎ, width, 𝑤, 

and depth, 𝑑 . Thus, the tensor has dimension 𝑏 × ℎ × 𝑤 ×
𝑑. The input tensor explained as an example in this section has 

dimension 128 × 10 × 1024 × 1 . A batch-based gradient 

descent, which corresponds to the first dimension of the input 

tensor, is used. The batch-based strategy can significantly 

decrease unit-computational consumption and avoid the 

problem of local minima. The batch dimension comes from a 

concatenate operation, which groups multiple BSFs together 

and increases the dimension of the first axis, 𝑏. The second and 

third dimensions, ℎ and 𝑤 correspond to the same orientation 

as the convolutional kernel’s height and width. The tensor 

height value of 10 is chosen as a suitable control variable to 

cope with the signal length and maintain the distinction (Section 

Section III-B-1)). The final depth value depends on the 

corresponding depth (the number of channels) of the 

convolutional kernel within the ConvNets. 

The first part of the ConvNet-based flow regime classifier 

consists of six convolutional blocks and an FcNets block. Each 

convolutional block further consists of a 2D zero-padding layer 

(Zerop2D), a 2D convolutional layer (Conv2D), a “relu” 

activation layer (ReLU), a batch-normalized layer (BN), and a 

Fig. 5 The ConvNet classifier for flow regime classification. The grey cubes refer to the tensors. The blue cubes refer to the filter spaces. 

The red rectangular pyramids refer to the convolution or max-pooling layers, which are distinguished using red and blue texts. “0P(𝑤, ℎ)” 

refers to the zero-padding layer with the 𝑤 × ℎ padding size, “C(𝑐, 𝑤, ℎ)” refers to the 2D convolutional layer with the 𝑤 × ℎ convolutional 

kernel size and c channel, and “BN” refers to the batch normalization layer. “MP(𝑤, ℎ)” refers to the 2D max-pooling layer with 𝑤 × ℎ 

kernel size. “FC(d)” refers to the fully connected dense layer with d nodes, “Flat” refers to the flatten layer, and “Drop(x)” refers to the 

dropout layer with dropout ratio x. 
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2D max-pooling layer (Maxp2D). The parameter-sharing 

property of ConvNets can extract a compacted feature without 

a significant increase in computational consumption, then input 

to the FcNets block. The FcNets block contains two hidden 

layers, and each hidden layer consists of a fully connected layer 

(512 neurons), a ReLU, and a dropout layer. The proposed 

classifier's output layer is the fully connected layer (four 

neurons) with the “softmax” activation. 

Notably, the in/out tensor dimensions of 1D ConvNets, 2D 

ConvNets, and FcNets respectively correspond to three, four, 

and two. Therefore, this research adjusted the kernel height to 

simulate the 1D ConvNets via 2D ConvNets. For example, the 

2D convolutional kernel of 1 × 4  could replace the 1D 

convolution kernel of 4. This replacement could bypass the 

complicated tensor dimension change. Specifically, the kernel 

height and width in this research separately correspond to 

1 × 9, 1 × 9, 1 × 9, 3 × 3, 3 × 3, and 5 × 4, and their kernel 

depth separately corresponds to 16, 16, 32, “32”, 64, and 128 

(the red notations in Fig. 5). The blue values in Fig. 5 depict the 

max-pooling layer, which separately utilizes 1 × 4 , 1 × 4 , 

1 × 4, 2 × 2, and 1 × 4 as the max-pooling strides. It is clear 

that the tensor height and width progressively decrease while 

the tensor depth increases, which can be understood as a process 

by slowly transferring the 2D information into the depth axis. 

The output of the ConvNet-based block then inputs to the 

FcNets after flattening. Notably, the dropout layer uses a ratio 

of 0.2, which deactivates 20% of neurons in the fully connected 

layer. This can be understood to add extra random noises into 

the neural network to improve its general-ability and suppress 

the overfitting risk [44]. 

2) The hyperparameters of the proposed ConvNet classifier 

The loss function used in this research was the categorical 

cross-entropy. The optimizer was the Adam optimizer, the 

learning rate was 0.0001, the exponential decay rate for the first 

and second moment estimates were respectively 0.9 and 0.999, 

the epsilon value was 0.001, and the decay value was 0.0001. 

The training batch size was 128 samples. The division ratio of 

the training set, testing set, and validation set was 6:2:2. 

Three precautions to guarantee the reliability of the results in 

Section II were adopted. Firstly, the BSF algorithm could 

produce more than 30k samples for the ConvNet training so that 

the training, testing, and validation sets respectively assigned 

more than 18k, 6k, and 6k samples. It was a sufficient sample 

size for the proposed classifier, being over 35 times the number 

of neurons in FcNets. Secondly, a random shuffle to the BSF 

sample space was adopted, guaranteeing high robustness to the 

potential data skew. Finally, the loss was weighted by a scalar 

coefficient list to suppress the data skew, which was calculated 

according to the categorical weights. Furthermore, only one 

result is displayed, which is located in the converge range. The 

aim was to achieve the best model for varying BSF schemes 

rather than creating a highly robust ConvNet-based classifier 

structure. Moreover, the statistic records can bring ambiguity to 

the metrics. The only two conditions for the deep learning 

model are converged and non-converged. The non-converged 

model is not fit for the target. For the converged condition, the 

Fig. 6 The training and testing accuracy curves of Experiments E1 and E2 (TABLE III) in (a) and (b) respectively. The light blue curves give 

the real-time training accuracy without local smoothing. The adopted batch gradient descent can cause a highly oscillating curve, so the 

smoothed curves (the dark blue curves) depict the general trend instead of the oscillation. The black dots-curves refer to the testing accuracy. 

The x and y axes respectively refer to iteration epochs and accuracy. 
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model can converge to either a local minimum or the global 

minimum. A local minimum performance is worse than the 

global minimum, so it is not necessary to list these results. 

IV. RESULTS AND DISCUSSION 

A. Test without pre-processing 

This research utilizes the comparative experiments, 

Experiments E1 and E2 (without the BSF pre-processing), to 

justify the BSF pre-process necessity. A CWDU signal with a 

single row and A3 million columns is segmented into 130 

segments according to 10,000 recorded data points. The 130 

segments of data are spliced row by row into a 2D array with 

130 rows and 10,000 columns. The FFT is adopted to each row 

with 𝑁𝑓𝑓𝑡  equaling 2,048 so that the CWDU becomes a 2D 

array with 130 rows and 1,024 (the symmetry of FFT) columns, 

known as the 2D reshaped CWDU data space in this research. 

It is clear that the 2D reshaped CWDU data space has no data 

augmentation, so this research only divides it into two subsets: 

the training set and the testing set. Admittedly, excluding the 

validation set significantly decreases the reliability of deep 

learning training. Fig. 6, Fig. 7, and Fig. 8 respectively depict 

the training and testing accuracy curves, the loss curves, and the 

confusion matrices, where (a) and (b) respectively correspond 

to Experiments E1 and E2. 

Fig. 6 (a) and Fig. 7 (a) illustrate that the testing loss of 

Experiment E1 converged at around 180 epochs, with the 

training accuracy curve and loss curve still under the learning 

track. The training and testing accuracy respectively arrived at 

96% and 91.70%, as illustrated in Fig. 6 (a). Fig. 8 (a) shows 

that Experiment E1 achieved a superior flow regime 

identification performance, while TABLE III illustrates that 

Experiment E1 achieved better performance than [22]. Fig. 6 

(b), Fig. 7 (b), and Fig. 8 (b) depict another result by adopting 

a different training-testing set ratio (Experiment E2). TABLE 

III shows that Experiment E2 respectively achieved 100% and 

88% for training and testing accuracy, which improves on  [22] 

but is worse than Experiment E1. It is interesting that only 

changing the 10% data segmentation ratio causes such a 

significant change between Experiments E1 and E2. 

Technically, the subset strategy must guarantee each subset can 

represent the sample distribution over the whole data space 

[24], [25]. However, Experiments E1 and E2 reveal that the 2D 

reshaped CWDU data space (without pre-processing) cannot 

represent the sample distribution. Further evidence of the low 

representability is that the accuracy curves in Fig. 6 display a 

significant discontinuous form. Hence the notation of accuracy 

resolution (see (4)) is proposed to quantitively evaluate the 

result’s reliability for all the experiments in this research, where 

𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 , and 𝜂𝑡𝑟𝑎𝑖𝑛  respectively refer to the 

accuracy resolution, the number of samples, and the testing set 

ratio over the entire dataset. Experiments E1 and E2 

respectively hold 8% and 4% as 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 . 

𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
100%

𝑁𝑠𝑎𝑚𝑝𝑙𝑒 × 𝜂𝑡𝑟𝑎𝑖𝑛
 (4) 

 

B. Experiments and analysis with the BSF pre-processing data 

TABLE III depicts the experimental results from TABLE II 

along with the comparison results. The first two rows refer to 

the comparative experimental results without pre-processing, 

and the last three rows list the state-of-the-art results from [22], 

[24], [25]. Experiments A1, A2, A3, A4, A5, B1, B2, C1, and 

C2 correspond to the experiments in TABLE II. The highest 

training accuracy was 97.40% (Experiment A5), and the lowest 

training loss was 0.0704 (Experiment A5). The highest testing 

accuracy was 94.57% (Experiment B2) and the lowest testing 

loss 0.1423 (Experiment B2). The highest validation accuracy 

was 94.94% (Experiment B2) and the lowest validation loss 

0.0720 (Experiment A3). 

Fig. 7 The training and testing loss curves of Experiment E1 and Experiment E2 (TABLE III) in (a) and (b) respectively. The light orange curves 

depict the real-time loss without local smoothing. The dark orange curves are the smoothed loss. The black dot curves refer to the testing loss. 

The x and y-axis respectively refer to iteration epochs and categorical cross-entropy loss. 
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The results of Experiments A1, A2, A3, A4, A5, B1, C1, and 

C2 are presented in the Appendix and respectively correspond 

to Fig. 10–Fig. 17. Note that this research conducted training 

three to five times and determined an approximate converge 

range first, then recorded an extra experimental record, located 

in the converged range. Therefore, the results in TABLE III are 

based on statistical analysis. 

Fig. 10 presents the results of Experiment A1. The accuracy 

curves (Fig. 10 [a]) and the loss curves (Fig. 10 [b]) demonstrate 

that the converging of Experiment A1 reached about 45 epochs. 

The curves in Fig. 10 are continuous compared with 

Experiment E1 and E2. The BSF pre-processing algorithm 

augmented the data space to 64,500 samples for Experiment 

A1, which was 512 times larger than Experiments E1 and E2. 

Notably, 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  was 0.0078% for Experiment A1. Fig. 10 

(c) and (d) depict the testing and validation confusion matrix. 

The identification accuracy of flow regimes 1 and 3 was about 

75%. The length of Window A was 10,000 recorded data points 

for Experiment A1, which caused insufficient information feed-

in to the BSF algorithm. Therefore, the experiment group Ax 

tested the influence with various 𝑙𝑤𝑎. Experiments A2, A4, and 

A5 used a wider Window A, and Experiment A3 used a 

narrower Window A. 

Fig. 11 illustrates that the accuracy of Experiment A2 was 

slightly improved, and the loss was slightly reduced. Fig. 11 (a) 

and (b) show that the classifier reached the converged point in 

about 45 epochs. However, compared with the result of 

Experiment A1, the training and testing curves of Experiment 

A2 are smoother, indicating that the increased information feed-

in in Window A made the model more stable. 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  was 

also 0.0078% for Experiment A2. Moreover, Fig. 11 (c) and (d) 

illustrate that the classification accuracy of classes 1 and 3 

improved. This indicates that increasing the information feed-

in into the BSF algorithm improves classification accuracy. 

Fig. 12 depicts the results of Experiment A3. Experiment A3 

used the shortest Window A in TABLE II (8,000 recorded data 

points). However, Fig. 12 (a) and (b) still converge around the 

45th epoch, which suggests that increasing the amount of 

information feed-in to the BSF algorithm did not make the 

model converge faster. However, TABLE III and Fig. 12 (c) 

and (d) demonstrate that reducing the length of Window A 

greatly reduced the classifier’s accuracy, verifying the 

assumption in Section III that Window A’s length was directly 

related to the BSF’s information capacity. Notably, 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  

equaled 0.008% for Experiment A2. 

Fig. 13 depicts the results of Experiment A4. Experiment A4 

used the 𝑙𝑤𝑎 of 50,000 recorded data points, which equals the 

𝑙𝑤𝑎 in the TFE algorithm. Fig. 13 (a) and (b) display significant 

smoothed curves. However, the model still reached the best 

training point at 45 epochs, which demonstrates that increasing 

𝑙𝑤𝑎 did not speed up the convergence speed. The information 

capacity of the BSF feature mainly affected the smoothness of 

the training curve. 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  equaled 0.008% for Experiment 

A4. Fig. 13 (c) and (d) depict that the flow regime's accuracy 

was improved, suggesting that the BSF feature's performance 

increased as more information fed in. 

Fig. 14 depicts the results of Experiment A5. Increasing 𝑙𝑤𝑎 

also increased the challenge of the frequency domain 

transformation by Window B, which led to a higher risk of 

amplitude loss. Therefore, it was necessary to balance 𝑙𝑤𝑎 and 

amplitude loss. Experiment A5 used an 𝑙𝑤𝑎 of 30,000 recorded 

data points, which was between the values in Experiments A2 

and A4. Fig. 14 (a), (b), (c), and (d) illustrate that Experiment 

A5 achieved results similar to Experiment A4 while adopting 

an 𝑙𝑤𝑎 of 30,000 recorded data points. Therefore, this research 

uses Experiment A5 as the reference experiment for 

Experiments Bx and Cx. Notably, 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 was 0.0078% for 

Experiment A5. 

Fig. 15 illustrates the results of Experiment B1. Experiments 

A5, B1, and B2 focused on the influence of different 𝑠𝑤𝑎 on the 

BSF algorithm. Experiment B1 used twice the value of  𝑠𝑤𝑎 of 

Experiment A5. Fig. 15 (a) and (b) illustrate that the best 

training point was reached at the 25th epoch, while Fig. 15 (c) 

and (d) depict that the accuracy of Experiment B1 slightly 

decreased. According to (1), changing 𝑠𝑤𝑎  directly affects the 

number of samples generated by the BSF algorithm, which 

leads to a high risk of overfitting. 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 was 0.0157% for 

Experiment B1. This research further generated more samples 

in Experiment B2 to test the impact of the number of samples 

for training classifiers. 

Fig. 9 displays the results of Experiment B2, which yielded 

the best results in this research. The 𝑙𝑤𝑎 used in Experiment B2 

was 1,250 recorded data points so that the BSF algorithm could 

augment 127,000 samples. Fig. 9 (a) and (b) display the ideal 

training curves, which converge at approximately the 35th 

epoch. Fig. 9 (c) and (d) illustrate that the accuracy of 

TABLE II 

THE HYPER-PARAMETERS SETTINGS OF THE EXPERIMENTS FOR THE BSF ALGORITHM  

index 𝑙𝑤𝑎 𝑠𝑤𝑎 𝑁𝑤𝑎 𝑙𝑤𝑏 𝑠𝑤𝑏 𝑁𝑤𝑏 𝑁𝐵𝑆𝐹  

unit recorded data points n/a recorded data points n/a n/a 

A1 10,000 2,500 516 5,000 500 10 64,500 

A2 20,000 2,500 512 5,000 1,500 10 64,000 

A3 8,000 2,584 500 5,000 300 10 62,500 

A4 50,000 2,500 500 5,000 4,500 10 62,500 

A5 30,000 2,540 500 5,000 2,500 10 62,500 

B1 30,000 5,000 254 5,000 2,500 10 31,750 

B2 30,000 1,250 1,016 5,000 2,500 10 127,000 

C1 30,000 2,540 500 3,000 2,700 10 62,500 

C2 30,000 2,540 500 10,000 2,000 10 62,500 

The number 𝑙𝑤𝑎 refers to the length of Window A, 𝑠𝑤𝑎 refers to the length of the Window A step, 𝑁𝑤𝑎 refers to the number of Window A. Similarly, 𝑙𝑤𝑏 refers 

to the size of Window B, 𝑠𝑤𝑏 refers to the length of the Window B step, 𝑁𝑤𝑏 refers to the amount of Window B. The term 𝑁𝐵𝑆𝐹  refers to the number of the final 

BSF features. The bold values are the control variables for the corresponding experiments 
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Experiment B2 was greatly improved. TABLE III further 

reveals that the testing accuracy, the testing loss, and the 

validation accuracy were the best in Experiment B2. This 

suggests that the BSF algorithm-based augmentation 

considerably improved the performance of the ConvNet 

classifier. Notably, 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  was 0.0157% for Experiment B2. 

Fig. 16 illustrates the results of Experiment C1. Experiment 

C1 reduced the size of Window B to 3,000. The accuracy curves 

of Fig. 16 (a) demonstrate that the control variable of 

Experiment C1 hardly affected the accuracy. However, TABLE 

III and Fig. 16 (b) show that the converged loss of Experiment 

C1 was three times larger than Experiment A5. This suggests 

that the training in Experiment A5 was overfitted. Although 

Experiment A5 had the highest training accuracy, the 

generalization ability of the model was relatively weak. 

Experiment C1 reached convergence with only 14 epochs, 

which indicates that the low amplitude leakage caused by the 

small Window B size increased the model’s learning ability, 

thereby enhancing the robustness and generalizability. 

Fig. 17 illustrates the results of Experiment C2. The length 

of Window B in Experiment C2 was 10,000 recorded data 

points larger than 2 kHz. A single Window B produced 

substantial amplitude loss, leading to a decrease in accuracy and 

an increase in loss. However, TABLE III demonstrates that the 

accuracy and loss of Experiment C2 were still excellent, and 

Fig. 17 (a) and (b) illustrate that Experiment C2 reached the best 

training point in the 25th epoch, which was better than 

Experiments Ax and Bx. Fig. 17 (c) and (d) also depict better 

results than Experiment Ax. This was due to the sliding window 

strategy; the next window captured the amplitude lost in a 

single window. Therefore, the BSF algorithm is a highly 

flexible algorithm, which can flexibly adjust its parameters 

according to the situation and achieve superior results 

compared to existing methods [22], [24], [25] (especially with 

TABLE III 
THE EXPERIMENTAL RESULTS OF THE PROPOSED CONVNET-BASED AND COMPARISON CLASSIFIERS 

index 𝑎𝑐𝑐𝑡𝑟𝑎𝑖𝑛 𝑙𝑜𝑠𝑠𝑡𝑟𝑎𝑖𝑛 𝑎𝑐𝑐𝑡𝑒𝑠𝑡 𝑙𝑜𝑠𝑠𝑡𝑒𝑠𝑡 𝑎𝑐𝑐𝑣𝑎𝑙𝑖𝑑 𝑙𝑜𝑠𝑠𝑣𝑎𝑙𝑖𝑑 

E1 96.00% n/a 91.70% n/a n/a n/a 
E2 100.00% n/a 88.00% n/a n/a n/a 

A1 90.14% 0.2404 85.68% 0.3764 81.17% 0.5663 

A2 91.86% 0.1963 89.66% 0.2458 88.95% 0.2815 

A3 87.08% 0.3155 83.20% 0.4106 80.06% 0.0720 

A4 95.37% 0.1120 91.21% 0.2543 91.65% 0.2389 

A5 97.40% 0.0704 91.78% 0.2491 92.32% 0.2417 

B1 93.70% 0.1572 89.00% 0.2840 90.00% 0.2606 
B2 96.28% 0.0952 94.57% 0.1423 94.94% 0.1287 

C1 91.11% 0.2113 90.14% 0.2213 92.14% 0.1897 

C2 92.68% 0.1865 90.34% 0.2279 91.28% 0.2100 

[22] 85.70% n/a 84.60% n/a n/a n/a 

[24] 99.01% n/a 96.28% n/a 96.35% n/a 

[25] 95.96% 0.1250 96.26% 0.0903 96.42% 0.0887 

“Index” refers to the corresponding experimental index; the first number indicates the experiment group. The bold values refer to the best results among 

all experiments using the BSFs. “𝑎𝑐𝑐𝑡𝑟𝑎𝑖𝑛” refers to the training accuracy. “𝑙𝑜𝑠𝑠𝑡𝑟𝑎𝑖𝑛” refers to the training loss using the categorical cross-entropy. “𝑎𝑐𝑐𝑡𝑒𝑠𝑡” 

refers to the testing accuracy. “𝑙𝑜𝑠𝑠𝑡𝑒𝑠𝑡” refers to the testing loss using the categorical cross-entropy. “𝑎𝑐𝑐𝑣𝑎𝑙𝑖𝑑” refers to the validation accuracy. “𝑙𝑜𝑠𝑠𝑣𝑎𝑙𝑖𝑑” 

refers to validation loss. Rows denoted “[22]” and “[24]” respectively refer to the advanced results of Nnabuife et al. (2019) [22] and Nnabuife et al. (2020) 

[24]. “[25]” refers to the CNN-based result in the flow regime identification benchmark proposed by Kuang et al. (2020) [25]. 

 
 

Fig. 8 The confusion matrix of Experiment E1 and Experiment E2 (TABLE III) in (a) and (b) respectively. The green squares refer to the true-

positive predictions. The red squares refer to the false-positive, true-negative, and false-negative predictions. The grey squares refer to the 

average for each row and column. The green values refer to the average true-negative or false-positive predictions, and red values refer to the 

average false-positive or true-negative predictions. The blue squares refer to the overall average predictions. The green values refer to the average 

true-positive predictions, and the red values refer to the average false-negative predictions. 
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limited computing power). 

Notably, the BSF pre-processed experiments all achieved 

better performance than [22] but worse than [24] and [25]. 

However, the BSF used a smaller size compared to the TEF in 

[24], which simplifies the computational graph of the BSF-

based ConvNet classifier. Furthermore, the best result in this 

research (Experiment B2) was progressively good; the call-

back point was around 33 epochs. Correspondingly, [24] 

conducts more than 1,200 epochs and [25] conducts 300 

epochs. 

V. CONCLUSION 

The BSF algorithm provides a new idea for one-dimensional 

signal feature coding through the belt-shaped configuration. 

Compared with the existing state-of-the-art methods, the results 

of the two-phase flow ultrasonic signal classification 

experiments suggest that BSF features are more flexible, robust, 

and generalized. It not only retains the flexibility of the twin-

window signal processing method but further enhances the 

feature detail coding ability. It provides a more reliable and rich 

training environment for subsequent neural network classifiers. 

The ConvNet implementation demonstrated the ability to 

identify key distinct features via a learning process that extracts 

relevant features from the raw 2D matrix processed through a 

ConvNet that consists of convolution/batch 

normalization/rectification/down-sampling layers. These 

features can then be used to separate data into distinct classes 

(in this case, slug, bubbly, churn, and annular flows) through a 

so-called fully connected neural layer. The confidence level of 

classification may be ascertained from the class probability 

vectors produced by the final SoftMax layer.  

In this work, a method using a Doppler ultrasonic sensor, 

BSF features, and ConvNets was developed for the objective 

classification of gas-liquid two-phase flow regimes. Using a 

convolution neural architecture, the features extracted were 

classified into one of the four flow regime categories: bubbly, 

slug, churn, and annular flow regimes. To improve the 

performance of the neural network flow regime classifier, the 

number of inputs or features and hidden neurons was increased 

with caution to avoid overfitting. In addition, the initial network 

biases and weights of the network were tuned accordingly. This 

approach demonstrates the applicability of ConvNets in flow 

regime classification for industrial applications using a clamp-

on non-intrusive ultrasonic sensor. 

VI. FURTHER WORK 

As a sequel to this present work, we are developing a real-

time identification of gas-liquid flow regime transitions using a 

non-invasive ultrasonic sensor, belt-shape features, and 

convolutional neural network in an s-shaped riser. In this work, 

different flow regime transitions will be dealt with, for example, 

flow transition from bubbly flow to slug flow. 

Moreso, flow regime identification in an S-shaped riser using 

different image processing methods will be unraveled. 

Fig. 9 The training, testing, and validation results of the Experiment B2 hyperparameter of BSF features. (a) refers to the training and testing 

accuracy chart, (b) refers to the training and testing loss chart, (c) refers to the normalized confusion matrix of the testing set, and (d) refers to 

the normalized confusion matrix of the validation set. The red solid lines in (a) and (b) refer to the testing process, while the blue dashed lines 

in (a) and (b) refer to the training process. The color bars in (c) and (d) refer to the number of samples. 
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VII. APPENDIX 

 
Fig. 10 The training, testing, and validation results of the Experiment A1 
hyperparameter of BSF features. (a) refers to the training and testing accuracy 

chart, (b) refers to the training and testing loss chart, (c) refers to the normalized 

confusion matrix of the testing set, and (d) refers to the normalized confusion 
matrix of the validation set. The solid red lines in (a) and (b) refer to the testing 

process, while the blue dashed lines in (a) and (b) refer to the training process. 

The color bars in (c) and (d) refer to the number of samples. 

 
Fig. 11 The training, testing, and validation results of the Experiment A2 

hyperparameter of BSF features. (a) refers to the training and testing accuracy 

chart, (b) refers to the training and testing loss chart, (c) refers to the normalized 
confusion matrix of the testing set, and (d) refers to the normalized confusion 

matrix of the validation set. The solid red lines in (a) and (b) refer to the testing 

process, while the blue dashed lines in (a) and (b) refer to the training process. 
The color bars in (c) and (d) refer to the number of samples. 

 
Fig. 12 The training, testing, and validation results of the Experiment A3 
hyperparameter of BSF features. (a) refers to the training and testing accuracy 

chart, (b) refers to the training and testing loss chart, (c) refers to the normalized 

confusion matrix of the testing set, and (d) refers to the normalized confusion 
matrix of the validation set. The solid red lines in (a) and (b) refer to the testing 

process, while the blue dashed lines in (a) and (b) refer to the training process. 
The color bars in (c) and (d) refer to the number of samples. 

 
Fig. 13 The training, testing, and validation results of the Experiment A4 

hyperparameter of BSF features. (a) refers to the training and testing accuracy 

chart, (b) refers to the training and testing loss chart, (c) refers to the normalized 
confusion matrix of the testing set, and (d) refers to the normalized confusion 

matrix of the validation set. The solid red lines in (a) and (b) refer to the testing 

process, while the blue dashed lines in (a) and (b) refer to the training process. 
The color bars in (c) and (d) refer to the number of samples. 

 
Fig. 14 The training, testing, and validation results of the Experiment A5 

hyperparameter of BSF features. (a) refers to the training and testing accuracy 
chart, (b) refers to the training and testing loss chart, (c) refers to the normalized 

confusion matrix of the testing set, and (d) refers to the normalized confusion 

matrix of the validation set. The solid red lines in (a) and (b) refer to the testing 
process, while the blue dashed lines in (a) and (b) refer to the training process. 

The color bars in (c) and (d) refer to the number of samples. 

 
Fig. 15 The training, testing, and validation results of the Experiment B1 

hyperparameter of BSF features. (a) refers to the training and testing accuracy 
chart, (b) refers to the training and testing loss chart, (c) refers to the normalized 

confusion matrix of the testing set, and (d) refers to the normalized confusion 

matrix of the validation set. The solid red lines in (a) and (b) refer to the testing 
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process, while the blue dashed lines in (a) and (b) refer to the training process. 
The color bars in (c) and (d) refer to the number of samples. 

 
Fig. 16 The training, testing, and validation results of the Experiment C1 

hyperparameter of BSF features. (a) refers to the training and testing accuracy 

chart, (b) refers to the training and testing loss chart, (c) refers to the normalized 
confusion matrix of the testing set, and (d) refers to the normalized confusion 

matrix of the validation set. The solid red lines in (a) and (b) refer to the testing 

process, while the blue dashed lines in (a) and (b) refer to the training process. 
The color bars in (c) and (d) refer to the amount of sample. 

 
Fig. 17 The training, testing, and validation results of the Experiment 

C2 hyperparameter of BSF features. (a) refers to the training and 

testing accuracy chart, (b) refers to the training and testing loss chart, 

(c) refers to the normalized confusion matrix of the testing set, and (d) 

refers to the normalized confusion matrix of the validation set. The 

solid red lines in (a) and (b) refer to the testing process, while the blue 

dashed lines in (a) and (b) refer to the training process. The color bars 

in (c) and (d) refer to the amount of sample. 
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