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Abstract— Lithium–sulfur (Li–S) batteries offer potential for
higher gravimetric energy density in comparison to lithium–ion
batteries. Since they behave quite different from lithium–ion
batteries, distinctive approaches to state estimation and battery
management are required to be developed specifically for them.
This article describes an experimental work to model and per-
form real-time estimation of the progression of use-induced aging
in prototype Li–S cells. To do that, state-of-the-art 19-Ah Li–S
pouch cells were subject to cycling tests in order to determine
progressive changes in parameters of a nonlinear equivalent-
circuit-network (ECN) model due to aging. A state-of-health
(SoH) estimation algorithm was then designed to work based
on identifying ECN parameters using forgetting-factor recursive
least squares (FFRLS). Two techniques, nonlinear curve fitting
and support vector machine (SVM) classification, were used to
generate SoH values according to the identified parameters. The
results demonstrate that Li–S cell’s SoH can be estimated with an
acceptable level of accuracy of 96.7% using the proposed method
under realistic driving conditions. Another important outcome
was that the “power fade” in Li–S cells happens at a much
slower rate than the “capacity fade” which is a useful feature
for applications where consistency of power delivery is important.

Index Terms— Experimental test, lithium–sulfur (Li–S)
battery, parameter identification, state-of-health (SoH) estima-
tion, support vector machine (SVM) classifier.

I. INTRODUCTION

BATTERY technology development is central to vehicle
electrification. One near-future technology is lithium–

sulfur (Li–S). Compared to existing battery technologies, Li–S
may offer potential advantages such as higher specific energy,
improved safety, and competitive cost at-scale. However, there
are still challenges that limit present-day commercialization
such as low power capacities and limited cycle life [1].
Although in recent years, there has been progress in the
development of Li–S cells [2], the technology is still not ready
for automotive application by considering its requirements [3].
In addition to the researches which are going on by the mate-
rial scientists and electrochemists to improve each generation
of Li–S cells, engineers are also putting effort to make this
battery technology ready for market applications. As part of
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such efforts, this study is focused on the development of a new
state-of-health (SoH) estimation technique for Li–S battery to
be used in an electric vehicle (EV).

Looking at the literature, novel battery management system
(BMS) algorithms are required for Li–S cell chemistry since
the existing Li–ion BMS does not work for it [4], [5]. One of
these differences is related to the unique shape of Li–S cell’s
voltage curve that is almost flat in a wide range of battery
state-of-charge (SoC). Another difference between Li–ion cells
and Li–S is related to the higher rate of self-discharge in
Li–S cells. These unique features make Li–S SoC estimation
a demanding task as discussed in [6]–[8]. Although Li–S cell
SoC estimation has been addressed in a limited number of
studies during the last five years, there is still more space to
work in that area. In addition to SoC estimation as a main task
of a BMS, SoH estimation is also necessary to be performed
in real-time applications such as in an EV. Whereas SoC
shows the driver how much charge remains in the battery,
SoH includes the information about the health of the battery
in a quantitative way.

Li–S cell degradation mechanism has been studied quite
well in the literature by electrochemists. In [9], electrochemi-
cal impedance spectroscopy (EIS) method is used for degrada-
tion analysis of Li–S batteries. For this purpose, an equivalent
circuit network (ECN) model is used where its elements have
been related to physical and chemical processes occurring
in the anode, cathode, and electrolyte. In [10], different
materials have been investigated to achieve longer life in
Li–S cells. A novel strategy has been proposed to develop
a highly-stable Li–S cell by building a strongly coupled
interface between surface-mediated carbon hosts and various
S-containing guests. In another study [11], the impact of
different cathode binders on the electrochemical performance
of Li–S batteries has been tested and analyzed during cycling.
The work presented in [4] gives an insight into understanding
of the degradation mechanism in Li–S cells by investigating
the surface morphologies and chemical structures of the cath-
ode subject to cycling. Methods such as scanning electron
microscopy (SEM), near-edge X-ray absorption fine structure
(NEXAFS), and X-ray photoelectron spectroscopy (XPS) have
been used in [12].

Although the degradation mechanism in a Li–S cell has
been fully studied by electrochemists, there are few studies in
the literature where Li–S cell SoH estimation is investigated
for BMS application. While electrochemistry-oriented models
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provide valuable insights into degradation mechanisms, they
are not suitable for real-time applications because of their
high level of computational complexity. In a BMS appli-
cation, we need quick models/estimators that are able to
generate results which are “good enough”—not necessarily
accurate enough to describe every electrochemical detail, but
sufficient to obtain near-maximum performance and avoid
damage and other unwanted events. Two of the studies in
the literature, where the Li–S BMS application has been
aimed, are presented in [13] and [14]. In those studies, a lab-
based test methodology is presented for Li–S cell aging
investigation. One of the limitations of those studies is the
constant charge/discharge and pulse current profiles, which are
applied in the aging experiments instead of realistic profiles.
In this study, the cells are subject to a realistic degradation
scenario, which is driving cycle tests for EV application.
In addition, the Li–S cell that had been used in those previous
studies [13], [14] was a small 3.4-Ah Li–S prototype cell,
whereas this study investigates a state-of-the-art high capacity
(i.e., 19 Ah) Li–S pouch cell. In another study presented
in [15], a fresh 3.4-Ah Li–S cell is compared with a similar
type aged cell to investigate the effect of aging on cell’s capac-
ity and internal resistance. Although the results of that study
are promising, they suffer from limited test data. This study
aims at filling this research gap by conducting comprehensive
aging experiments on state-of-the-art Li–S cells based on some
real EV driving cycle scenarios and also designing novel Li–S
battery SoH estimators for that application.

The proposed framework in this study is based on Li–S cell
ECN model’s parameter identification in real-time to be used
for cell SoH estimation. For this purpose, different number
of identified ECN model’s parameters are considered and two
methods are used for SoH estimation: 1) first, a nonlinear curve
fitting technique is used when only one input parameter is
available for SoH estimation and 2) second, combinations of
single parameters are considered in a support vector machine
(SVM) classifier to estimate SoH. In both cases, recursive least
squares (RLS) algorithm is used for cell model identification
[16]–[20]. SVM method has been widely used in the litera-
ture for modeling, prediction, and classification in different
applications since 1998 [21]. SVM technique is particularly
used in a variety of engineering subject areas including SoC
estimation [22]–[25] and SoH estimation [26]–[32] for Li–ion
batteries. In [26] and [27], a method of SoH estimation has
been developed using SVM technique by considering both
capacity and resistance as the indicators of Li–ion battery
degradation for EV application. In [28], relevance vector
machine (RVM) technique, that is a Bayesian version of SVM
method, has been used for state estimation in combination with
the particle filter (PF) method. In [29]–[31], the remaining
useful life of a Li–ion cell has been predicted based on SoH
estimation using a support vector regression (SVR) model.
In another study presented in [32], an optimized combination
of features are extracted from terminal voltage response of a
Li–ion cell to a short-term current pulse. The features were
then used by an SVM model to generate SoH value.

In comparison to the literature, this study has the following
contributions.

TABLE I

SPECIFICATIONS OF THE PROTOTYPE LI–S CELL

1) Experimental degradation test data of a state-of-the-art
19-Ah Li–S pouch cell is presented and analyzed. Real-
world driving cycle current profiles are used rather than
constant charge–discharge profiles.

2) The effect of aging on Li–S cell ECN model’s para-
meters is investigated as an extension of the previously
published works in the literature [6], [40] and a new
SoH estimation technique is developed to be used in
real-time.

Structure of this article is as follows. In Section II, spec-
ifications, characterization test, and the proposed modeling
approach of the Li–S cell are explained. Section III then
contains the results of Li–S cell degradation tests and SoH
estimation using different approaches. The modeling and
estimation results of this study are then validated against
experimental aging data. In Section IV, a sensitivity analysis
is performed and finally, the conclusions are presented in
Section V.

II. LI–S CELL: SPECIFICATIONS,
AGING TEST AND MODELING

A. Li–S Cell Specifications

The Li–S cell that is considered in this study is supplied
by OXIS Energy Ltd., U.K. [33] with the specifications listed
in Table I. It should be noted that the cell is a prototype with
energy density of 290 Wh/kg; however, the final product is
expected to have an energy density more than 400 Wh/kg
[33].

B. Li–S Cell Aging-Characterization Test

Fig. 1(a) illustrates the equipment, which are used for cell
testing. The test rig consists of a power source/sink, which
applies a desirable current profile to the cell and a thermal
chamber to keep the temperature at a certain level during the
tests. The desired current profile (i.e., a driving cycle sce-
nario here) is programmed using a PC, which communicates
with the power source/sink during the tests. The command
(i.e., current) is sent to the device at each time step and cell’s
terminal voltage and the real current signal are measured and
sent back to the PC to be recorded. Data are collected in the
time domain with a sampling rate of 1 Hz including time,
temperature, current, and cell’s terminal voltage. All tests are
started from fully charged state (2.6 V) and are continued
until fully discharged state (based on cutoff voltage of 1.9 V).
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Fig. 1. Li–S cell test and modeling. (a) Test equipment including PC to control the test profile and data collection, power source/sink, and thermal chamber
(from left to right). (b) Cell’s current and voltage measurement in MLTB test. (c) Cell’s constant current charging. (d) Thevenin model to be parameterized
using the test data.
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Accordingly, cell parametrization is performed at various SoC
levels.

In order to generate a realistic cell current profile to simulate
a standard automotive driving cycle, the power demand on
the Millbrook London Transport Bus (MLTB) driving cycle
[34], [35] is scaled down to be applied to a single cell. More
details of the vehicle simulation and power demand calculation
are presented in [36]. The proposed MLTB test results for
a 19-Ah Li–S cell are shown in Fig. 1(b). As mentioned
before, the current profile is repeated until the cell is depleted.
To have a clearer view about this, Fig. 1(b) also presents a
zoomed window including only one MLTB cycle. The test
includes short charging periods in between [negative current
in Fig. 1(b)] as well. This is designed to simulate regenerative
braking in such an application.

Fig. 1(c) demonstrates constant-current charging profile
applied in all the experiments. The charging profile is sug-
gested by the cell manufacturer to be at constant rate of 0.1 C
(i.e., 1.9 A). Investigation of the Li–S cell voltage response
during charging is considered to be out of the scope of this
study.

C. Li–S Cell Modeling Approach

An ECN model is parameterized using the data obtained
from the Li–S cell characterization tests. ECN modeling
approach is chosen because of its effectiveness in both accu-
racy and computational speed [37]–[40]. A review on different
battery modeling approaches is presented in [37]. In this study,
an ECN model, called “Thevenin model” [41], is used as
illustrated in Fig. 1(d). It consists of a voltage source UOC,
representing the open circuit voltage (OCV) of the battery,
and three physical components: 1) ohmic resistance (RO)
that corresponds to the heating losses; 2) polarization resis-
tance (RP); and 3) polarization capacitance (CP). According to
the Thevenin model structure, dynamic behavior of the battery
can be described as follows:

dUp

dt
= − 1

RpCp
Up + 1

Cp
IL (1)

UL = Uoc − Up − R0 IL (2)

where Up is the voltage across the polarization capacitor,
and UL and IL are the terminal voltage and load current,
respectively.

Equation (2) can be written in frequency domain using
Laplace transformation

s · Up(s) = − 1

RpCp
· Up(s) + 1

Cp
IL(s). (3)

Consequently, Up can be expressed as follows:

Up(s) =
1

Cp
IL(s)

s + 1
RpCp

. (4)

Substituting Up from (4) into (2), terminal voltage in
frequency domain is

UL(s) = Uoc −
1

Cp
IL(s)

s + 1
RpCp

− R0 IL(s). (5)

To transfer it from continuous-time domain to discrete-time
domain, the bilinear transform

s = 2

T

z − 1

z + 1
is applied to the above equation, (6), as shown at the bottom
of the page.

As a result, the terminal voltage at moment k can be
obtained from the current signal value at moment k and the
terminal voltage and current signals at previous moment k − 1
as follows:

UL(k)=θ1·UL(k − 1)+θ2 · IL(k)+θ3 · IL(k−1)+θ4 (7)

where the parameters θ1, θ2, θ3, and θ4 are defined as follows:
θ1 = 2RpCp − T

T + 2RpCp
(8)

θ2 = − T Rp + T R0 + 2R0 RpCp

T + 2RpCp
(9)

θ3 = − T Rp + T R0 − 2R0 RpCp

T + 2RpCp
(10)

θ4 = 2T

T + 2RpCp
Uoc. (11)

Equation (7) can be written in a more standard form for the
later use of identification

UL(k) = ϕT·θ (12)

where ϕ = [UL(k − 1);IL(k);IL(k − 1); 1] and θ =
[θ1;θ2;θ3;θ4].
D. Li–S Cell Model Parameterization Using Forgetting
Factor Recursive Least Square Algorithm

Because of the application of this study in EVs, it is
desirable to have a simple and quick algorithm to be applicable
in real-time. Since battery parameters are changing continu-
ously (a time-varying system), forgetting factor recursive least
square (FFRLS) identification algorithm [17] is used in this
study to identify parameters of the discrete model presented
in (12). RLS is an identification algorithm which has been
widely used in the literature [16], [17]. In RLS method,
the model’s error (i.e., a function of the model’s parameters) is
minimized using an iterative procedure [20]. Here the model
has four unknown parameters to be identified: R0, Rp, Cp,
and Uoc, which are formulated in the parameters vector θ .
In FFRLS algorithm, the parameters vector is updated at each
iteration according to the following equation:

θ̂ (k) = θ̂ (k − 1) + K (k) · [UL(k) − ϕT · θ̂ (k − 1)] (13)

UL(z) − Uoc

IL(z)
= −(

T Rp + T R0 + 2R0 RpCp
) − (T Rp + T R0 − 2R0 RpCp)z−1

T + 2RpCp + (T − 2RpCp)z−1
(6)
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where K is the correction gain obtained from

K (k) = P(k − 1)·ϕ·[γ + ϕT · P(k − 1) · ϕ]−1
(14)

P(k) = 1

γ
[I − K (k) · ϕT]·P(k − 1) (15)

where P is the covariance matrix and γ is the forgetting factor,
indicating the effect of historical data on identification.

Once θ1 − θ4 are estimated using the above equations,
the original four physical parameters of the Thevenin model
(R0, Rp, Cp, and Uoc) can be calculated from θ as follows:

R0 = θ3 − θ2

1 + θ1
(16)

Rp = −2
θ1θ2 + θ3

1 − θ2
1

(17)

Cp = T (1 + θ1)
2

−4(θ1θ2 + θ3)
(18)

Uoc = θ4

1 − θ1
. (19)

The FFRLS identification algorithm is applied to the Li–S
cell test data (presented in Section II-B) to parameterize the
Thevenin model, which was illustrated in Fig. 1(d). According
to the results shown in Fig. 2, the cell model’s parameters
are affected by both SoC and SoH. Each parameter has a
unique pattern that is investigated in the following. With regard
to the effect of SoC, all the parameters are showing quite
similar patterns as stated in previous studies in the literature,
for example, in [5]–[7] and [40]. Therefore, they are not
discussed here again, because the focus of this study is on SoH.
In order to investigate the effect of SoH, model identification is
repeated at different age levels (i.e., shown by cycle numbers
in Fig. 2). According to the results, the cell aging has different
effects on each individual parameter. Parameters Uoc and Rp

have been affected less than the other two parameters R0 and
Cp, as the result of cell aging. For example, the OCV has not
changed that much when the cell is cycled. Same conclusion
is valid for the polarization resistance Rp. On the other hand,
for the ohmic resistance, there is a clear distinction between
a fresh cell and an aged cell, where an aged cell has a higher
resistance. Also for the polarization capacitance, we can see
some differences between a fresh cell and an aged cell. These
are new outcomes of this study, which have not been discussed
before in the literature. In Section III, possibility of the use
of these parameters for cell SoH estimation is investigated.
According to the existing identification results, the parameter
R0 looks more promising for that purpose.

After doing the model identification and obtaining all the
four parameters, the model is validated to make sure that it
generates correct outputs. For that purpose, the cell’s terminal
voltage, UL, is compared between the measured value and
the value obtained from the identified model as illustrated
in Fig. 3. The reasons of choosing the terminal voltage for
the validation process are: 1) the true value of terminal
voltage is available from the direct measurements during
the tests and 2) the terminal voltage is considered as the
output of the Thevenin model in response to a given current
profile, and all the four identified parameters directly affect

Fig. 2. Li–S cell Thevenin model’s parameters versus SoC at different age
levels.

the model’s output. The results demonstrate that the proposed
model generates very close values to the experimental mea-
surements that proves the cell model’s accuracy.

To use the results, which are presented in Fig. 2 for SoH
estimation in real-time, cell’s SoC is required. However, there
might be an error in SoC estimation in a real application as
discussed in [7] and [8]. To improve the accuracy of SoH
estimation in practice, the used Ampere-hour (UAH) from
fully charged state can be applied instead of SoC. It should be
noted that UAH is different from coulomb-counting in terms
of their calculations as explained in below. Assuming SoC0 as
the initial SoC at time t0, the cell’s SoC at time t is calculated
as follows using coulomb-counting method:

SoC = SoC0 − 1

Ccell

∫ t

t0

γ ·Iloaddτ (20)

where Iload(t) is the load current (A), which is assumed
positive for discharging and negative for charging, γ is the
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Fig. 3. Li–S cell model validation against experimental measurement.

cell’s coulombic efficiency (dimensionless) and Ccell is cell’s
capacity (As). In this representation, the SoC value is a number
between 0 and 1 where 0 indicates fully depleted state and
1 represents fully charged state. On the other hand, UAH is
defined as follows:

UAH = UAH0 + 1

3600

∫ t

t0

γ ·Iloaddτ (21)

where UAH0 is the initial UAH value at time t0, and other
parameters are defined same as mentioned earlier. The constant
of 3600 is added for unit conversion from (As) to (Ah).
By this definition, UAH can change between 0 and maximum
capacity of the cell. As we can see, in calculation of UAH,
we do not use cell’s capacity value (Ccell), which reduces the
uncertainty of its calculation in real-time. Fig. 4 shows the
same identification results but versus UAH instead of SoC.
In those graphs, UAH is measured from fully charged state
(i.e., UAH0 = 0).

To make sure that the proposed identification method works
under different working conditions, two other driving cycles
are tested as well, which are the Worldwide Harmonized
Light Vehicle Test Procedure (WLTP) [48] and the Urban
Dynamometer Driving Schedule (UDDS) [49]. Fig. 5 shows
Thevenin model’s parameter identification results over three
different driving cycles. According to the results, there is no
remarkable difference between the identified parameters over
various driving cycles, which demonstrates robustness of the
proposed technique under different driving conditions.

III. LI–S CELL SOH ESTIMATION

In this section, a new framework is proposed for Li–S cell
SoH estimation using ECN model parameterization in real-
time. For this purpose, different number of identified parame-
ters are considered and two methods are used to correlate them

Fig. 4. Li–S cell Thevenin model’s parameters versus UAH at different age
levels.

to the cell’s SoH: 1) first, a curve fitting technique is used when
only one input parameter is available for SoH estimation and
2) second, combinations of single parameters are considered
in an SVM classifier to estimate SoH using more than one
parameter.

In both cases, FFRLS algorithm is used for cell model
identification.

Before presenting the SoH estimation methods and their
results, cell’s end-of-life (EoL) is defined and capacity and
power fades are analyzed according to experimental data.

A. EoL Definition, Capacity Fade and Power Fade

In order to define a measure for battery SoH estimation,
first the battery EoL should be defined. For Automotive
application, there are two main definitions of battery EoL
in the literature [42]. In the first definition, battery SoH is
calculated by comparing the battery capacity (Qbatt) to its
initial value when the battery is fresh (Qinit). In this definition,
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Fig. 5. Li–S cell Thevenin model’s parameters identified over different
driving cycles.

battery’s EoL is when the capacity falls to 80% of its initial
value. So, SoH can be formulated as follows:

SoHQ = 1−(Q init − Qbatt)/0.2∗Qinit

0.8Qinit ≤ Qbatt ≤ Qinit (22)

where SoHQ changes between zero and one in which zero
means battery EoL (i.e., Qbatt = 0.8 Qinit).

In another definition of battery SoH, “power fade” is con-
sidered instead of “capacity fade.” This concept is presented
as battery state-of-power (SoP) in the literature too [43], [44].

The power that a battery can deliver directly depends on its
ohmic resistance. The battery aging leads to an increase in
the ohmic resistance in almost all types of battery. So, this
parameter can be used for battery SoH estimation [47]. In one
definition, battery’s EoL is defined when the ohmic resis-
tance becomes twice as its initial value as presented in the
following [42]:

SoHR = 1−(Rbatt−Rinit)/Rinit

Rinit ≤ Rbatt≤2Rinit (23)

where Rinit is the battery’s initial ohmic resistance and Rbatt is
the battery’s resistance at a given time. Here SoHR changes
between zero and one again showing end and beginning of
battery life, respectively.

Fig. 6(a) shows capacity fade (in Ah) of the Li–S cell
subject to cycling. In this study, Li–S cell’s EoL is considered
according to the definition stated in (20). Fig. 6(b) shows the
values of SoHQ for the 19-Ah Li–S cell calculated based on
capacity fade according to (20). Similarly, Fig. 6(c) illustrates
the values of SoHR for the 19-Ah Li–S cell calculated based
on power fade according to (21). As shown in Fig. 6(c),
the minimum value of SoHR does not reach to zero for this
particular type of cell because the rate of power fade (i.e., due
to the increase in ohmic resistance) is slower than the rate of
capacity fade. This is an interesting outcome of this article
particularly for the applications where a consistent power
delivery over the life of the battery is critical.

B. Li–S Cell SoH Estimation Using Nonlinear
Curve Fitting Technique

At a first try to design a Li–S cell SoH estimator, curve
fitting technique is used to find a function that represents the
relationship between SoH and one of the ECN model parame-
ters. Referring back to the identification results presented in
Section II, it was observed that the ECN model parameters
change in response to cell aging. Using this fact, a SoH
estimator is designed to get one of the ECN model parameters
as the input and to return SoH as the output. According to
the identification results, the most promising parameter to be
used for this goal is the ohmic resistance (although the other
parameters are also investigated in the following parts of this
study). Generally, cell’s ohmic resistance is a function of SoC,
temperature (T ), and SoH as follows:

Ro = f (SoC, T, SoH). (24)

Here, the question is: if we know the value of Ro, how can
we estimate the SoH? Assuming that we know the values of
SoC and temperature in real-time, then the ohmic resistance
can be obtained using a function like g∗ that returns the value
of Ro but at certain SoC and temperature values

Ro|SoC∗,T ∗ = g∗(SoH) (25)

where SoC∗ and T ∗ are known values of SoC and temperature
at a given time. If the function g∗ is known from laboratory
experiments, then we can obtain SoH in real-time using the
following formulation:

SoH = g∗−1
( Ro|SoC∗,T ∗). (26)
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Fig. 6. (a) EoL definition based on 20% capacity fade. (b) SoHQ: SoH of
the 19-Ah Li–S cell calculated based on capacity fade. (c) SoHR: SoH of the
19-Ah Li–S cell calculated based on power fade.

In this study, a constant temperature (i.e., 20 ◦C) is consid-
ered in all the analysis for the sake of simplicity. Considering
the effect of temperature needs additional experimental tests
which are time-consuming as part of the SoH design process
however, the implementation phase is simple. In a real-time
application, the whole range of temperature is divided into
limited bands where one tuned estimator is used for each of
them. The temperature can then be measured directly in real-
time and the proper estimator (that is tuned at that particular
temperature T ∗) is used.

On the other hand, in order to consider the effect of SoC,
a reference value (SoC∗) should be agreed. In this study,
various alternatives are investigated to be used as the reference

Fig. 7. Breakpoints for SoH estimation at (a) various SoC levels—there is
more uncertainty in SoC value at low plateau, so, less breakpoints are selected
in that area (red color) and (b) various UAH levels—the higher the UAH is,
the more cumulative measurement error is expected.

SoC value including 100%, 90%, 80%, 70%, and 20%.
Fig. 7(a) demonstrates those reference SoC breakpoints on
the ohmic resistance curves at different cycles. As shown
in Fig. 7(a), the three curves are closer to each other at some
SoC values that means less sensitivity to aging. On the other
hand, the distance between the curves is more at lower SoC
values that means a better reflection of aging. Consequently,
it is expected to see a better result when SoC∗ = 70% or
SoC∗ = 20% is used compared to the other alternatives.
In order to investigate this quantitatively, the curve-fitting
process is repeated five times for SoC∗ = 100%, 90%, 80%,
70%, and 20% separately.

Another important point in Fig. 7(a) is related to the
uncertainty in the value of SoC∗ in real-time. As mentioned
before, unlike the temperature, SoC is not directly measurable
and should be estimated using other techniques which is out
of the framework of this study. According to the literature
[6]–[8], SoC estimation of a Li–S cell is much easier at high
plateau (i.e., SoC more than 75%) because of the gradient of
voltage versus SoC in that plateau. That is the reason why
more breakpoints are selected in that plateau as shown by
green color in Fig. 7(a). In other words, although SoC∗ = 20%
and 70% seem quite promising for SoH estimation accuracy,
they are more difficult to be identified in real-time [red area
in Fig. 7(a)].

Fig. 8 presents the curve fitting process for design of SoHQ

and SoHR estimators using experimental data and identified
values of Ro at different SoC levels. Each point in those graphs
represents a single test (i.e., one cycle). Looking at the first
subplot in Fig. 8, which corresponds to SoC∗ = 100%, it is
not a good fitted curve according to the results. The reason
can be found in Fig. 7(a) where there is no difference between
a fresh cell and an aged cell in terms of ohmic resistance at
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Fig. 8. Curve fitting for SoHQ and SoHR estimators design using training data—Ro at different SoC levels.

100% SoC. We have a very similar condition for SoC∗ = 90%
too, as shown in the second subplot of Fig. 8. However, when
we proceed to lower SoC levels, for example 70%, there is a
clear correlation between the ohmic resistance and the SoH,
and consequently the fitted curve looks better.

Table II contains the root-mean-square error (RMSE) values
of Li–S cell SoHQ and SoHR estimations using curve fitting
technique at different SoC levels. As we expected, the best
accuracy is obtained at SoC∗ = 20% and 70%; however,
an additional error should be added to these numbers because
of the uncertainty in SoC estimation at low plateau [red area
in Fig. 7(a)]. This problem is investigated in Section IV in

a more systematic way by performing a sensitivity analysis
on SoC estimation accuracy and its effect on SoH estimation
accuracy.

Although the estimation of SoC in real-time is possible,
we can simplify the SoH estimation problem by using UAH
instead of SoC. UAH can be measured in real-time by inte-
gration of current over time from a reference point (i.e., fully
charged state in this study). The advantage of using UAH
instead of SoC is that in SoC calculation, we need to know
the cell’s capacity to be used in coulomb-counting method.
However, the cell’s capacity is subject to change due to tem-
perature and aging. Estimation of Li–S cell SoC based on OCV
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Fig. 9. Curve fitting for SoHQ and SoHR estimators design using training data—Ro at different UAH levels.

TABLE II

RMSE OF SoHQ AND SoHR ESTIMATIONS USING CURVE FITTING TECHNIQUE AND Ro AT DIFFERENT SOC LEVELS

is not possible either as discussed in the literature [6]–[8].
The use of UAH instead of SoC provides this opportunity to
get rid of solving the Li–S cell SoC estimation problem and
consequently, SoH can be estimated independently.

Fig. 7(b) shows a number of alternative breakpoints for
SoH estimation at various UAH levels (i.e., Ah∗ = 1, 2, 3,
4, and 14). Any of these potential reference points can be
used for SoH estimation, as long as we can detect them in
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TABLE III

RMSE OF SoHQ AND SoHR ESTIMATIONS USING CURVE FITTING TECHNIQUE AND Ro AT DIFFERENT UAH LEVELS

TABLE IV

RMSE OF LI–S CELL SoHQ ESTIMATION USING CURVE FITTING TECHNIQUE AND DIFFERENT INPUTS AND UAH LEVELS

real-time. Fig. 9 presents the curve fitting process for design
of SoHQ and SoHR estimators using identified values of Ro

at different UAH levels. Again each point in those graphs
represents a single test. In practice, all of the above-mentioned
reference Ah∗ values are achievable; however, the question
is which one is more accessible? A simple answer is the
one which is obtained with the minimum effort, that is,
Ah∗ = 1. On the other hand, Fig. 7(b) tells us that the
three curves are closer/farther to each other at some Ah
values that means less/more sensitivity to aging. Consequently,
it is expected to see the best estimation result at Ah∗ = 14
according to Fig. 7(b) because the parameter Ro changes
more in response to aging. Table III contains the RMSE
values of SoH estimations using curve fitting technique at
different UAH levels. As it was expected, Ah∗ = 14 gives
the best result; however, there is not much difference between
Ah∗ = 4 and 14. Another point that should be considered in
the selection process of the best Ah∗ is the cumulative error
in Ah counting due to measurement noise in real-time. That
means the higher the Ah is, the more cumulative measurement
error is expected. Regarding that, Ah∗ = 4 will be more
effective in real-time. So, a proper tradeoff is needed to choose
between Ah∗ = 4 and 14. Overall, the preference is with
Ah∗ = 4 because it is quicker to be obtained from fully
charged state and with less cumulative error in Ah integration,
which can potentially provide even higher level of accuracy
in real-time.

Table IV contains the RMSE values of Li–S cell SoHQ

estimation using different inputs at different UAH levels.
The results again demonstrate that the input parameter Ro is
the best choice to be used for Li–S cell SoH estimation in
comparison to Rp,Cp, and Uoc.

C. Li–S Cell SoH Estimation Using SVM
Classification Technique

In Section III-B, nonlinear curve fitting method was used
to define the relationship between every single parameter of

the Li–S cell model, such as R0, and its SoH. An important
missing point in previous section is the possibility of use of a
combination of parameters instead of only one of them. It is
obvious that such a solution increases the level of complexity
and computational effort in comparison to the curve fitting
method. However, it might be worth if the additional com-
plexity brings a remarkable improvement in SoH estimation.
In order to investigate this, all possible combinations of the
four Thevenin model’s parameters, R0, Rp,Cp, and Uoc, are
considered here. In order to have a flexible estimator to serve
any number of inputs, SVM classification technique is used in
this section. In this new framework, FFRLS method is used for
identification whereas the SVM technique is used as the SoH
estimator. According to the literature, SVM method is one of
the state-of-the-art techniques that is widely used for Li–ion
battery state estimation in the literature. It is a quick method
that is suitable for real-time applications with an acceptable
level of accuracy. In [45], a good comparison between different
state-of-the-art methods of battery SoH estimation is discussed
which includes the SVM technique as well. The theory of the
SVM as a type of a supervised machine learning method is
explained in [46].

In the proposed framework, the identification results are
served by the SVM classifier to estimate the range of SoH
in form of a label between 1 and 10 (i.e., a cluster number).
The first cluster is defined to cover the range of 0%–10%
SoH, the second cluster for 10%–20% SoH, and so on. Similar
to the training and validation procedure used for nonlinear
curve fitting method in Section III-B, here also the data are
divided into two parts: training data set and testing data set
where the former is used for training the SVM and the latter
is used for validation. Around 30 full tests data are used
for training and another 30 tests data are used for testing.
The two sets of data have been separated from the beginning
to make sure that the classifiers have not seen the test data
(i.e., true labels) before, to achieve a reliable outcome valida-
tion. Having ten clusters in total, around three tests data are
used for each cluster in both training and testing processes.
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TABLE V

RMSE OF SoHQ ESTIMATION BY SVM TECHNIQUE
USING DIFFERENT INPUTS AT Ah∗ = 4 and 14

For labeling the data, the true cluster numbers are deter-
mined according to the whole test results. After a cycling test
is completed, it is split into individual cycles and the ECN
parameters (i.e., the inputs of the classifier) are extracted for
every single cycle. In addition, the true SoH (and consequently
the true cluster label) is calculated for every single cycle
by knowing the value of capacity. For the training data set,
the true cluster numbers are used; however, for the testing
data set, the true labels are kept aside to be used for validation
only. About the other settings in SVM algorithm, it should be
mentioned that the “fitcecoc” function is used in MATLAB,
which fits multiclass models for SVM using the Gaussian
Kernel function.

Again, the RMSE criteria are considered as a measure of
accuracy of SoHQ estimations. In all RMSE calculations,
the true values of SoH (that is obtained based on the true
classification labels) are used after getting the estimator’s
output to calculate the error based on the difference between
the true SoH and the estimated one. In order to calculate SoH
from the SVM classifier, the middle point of each cluster is
used as the output SoH value for that cluster; for example,
5% is considered when the estimated label is 1, 15% when
label is 2, and so on. The estimated values are then compared
with the “true SoH” values in the same way that it was
performed for the curve fitting method. Table V contains the
RMSE values of Li–S cell SoHQ estimation by SVM technique
using different inputs at Ah∗ = 4 and 14. For both cases
of Ah∗ = 4 and 14, the results again demonstrate that the
single input parameter Ro is the best choice to be used for
Li–S cell SoH estimation in comparison to the other sets of
input parameters. This is an interesting outcome, which also
supports the results obtained in the previous section using
nonlinear curve fitting technique. So, using either of those
techniques, ECN model parameters Rp, Cp, and Uoc do not
help much for SoH estimation. For that reason, the nonlinear

curve fitting method is preferred in comparison to SVM
because both have roughly same level of accuracy but the
former is simpler and easier to be implemented.

In addition to Table V, Fig. 10 also demonstrates the classifi-
cation outcomes from SVM technique in the form of confusion
matrices. Since the best results are obtained for the two cases
of: 1) Ro only and 2) all of the four parameters together,
the confusion matrices are plotted for those successful cases
only.

Same kind of tradeoff is valid here to choose between
Ah∗ = 4 and 14 as discussed in previous section. In Table V,
the best results are 4.3% and 4.1% error values, which are
obtained at Ah∗ = 4 and 14, respectively. Overall, the pref-
erence is with Ah∗ = 4 because it is quicker to be obtained
from fully charged state and with less cumulative error in Ah
integration, which can potentially provide even higher level
of accuracy in real-time. That is due to an additional Ah
calculation error that will be added to the estimation error.
This subject is studied quantitatively in Section IV.

As a complementary analysis, the number of clusters is
increased from 10 to 20, 30, and so on, in order to inves-
tigate its effect on the SoH estimation accuracy using SVM.
According to the results, there is an improvement in estimation
accuracy when changing the number of clusters from 10 to 20.
However, this trend does not continue when using more
clusters such as 30 or 50. The reason behind that outcome
is related to the possibility of having empty clusters when
more clusters are used. As mentioned before, around 30 full
tests data are used for training the classifier. That means
roughly three members in each cluster when ten clusters are
considered. However, if we use 30 or more clusters, there
might be some clusters without any member. Those empty
clusters not only prevent any further improvement in accuracy
but also might have negative effect on the training process
of the classifier. Therefore, the best results are obtained when
20 clusters are considered as presented in Table VI. According
to this new result, the accuracy of the estimator is around 3.3%
using the best classifier.

IV. SENSITIVITY ANALYSIS

In this section, a sensitivity analysis is performed to investi-
gate the effect of measurement noise on the proposed SoH esti-
mator’s accuracy. Measurement noise is something inevitable
especially in inexpensive applications like automotive where
cost is vital. The more robust is an estimator against the
noise, the least expensive devices are needed to run it in real-
time. In the present case, that is Li–S cell SoH estimation,
it was concluded that the proposed SoH estimator should be
triggered at a certain UAH level such as Ah∗ = 4 to get
the best estimation result. Now the question is how can we
determine the right time for that trigger? It was assumed
that the Ah integration is calculated from fully charged state
(100% charge which is detected based on maximum voltage).
So, theoretically the current should be integrated over time
until we reach to Ah∗ = 4. In order to run such an algorithm
in real-time, we should also consider a cumulative error that
occurs in Ah integration due to the noise of the current sensor.
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Fig. 10. Confusion matrices of SVM battery SoH classifier using different
inputs. (a) Ro , at 4 Ah. (b) Voc, Ro , Rp , and C p at 4 Ah. (c) Ro at 14 Ah.
(d) Voc, Ro , Rp , and C p , at 14 Ah.

Even a small level of noise in measurement can lead to a
remarkable error over time since it has a cumulative effect.
Considering that effect in our problem, the total RMSE of SoH
estimation in real-time includes two elements: 1) the original

Fig. 11. Sensitivity of SoHQ estimation RMSE to UAH measurement error.

TABLE VI

RMSE OF SoHQ ESTIMATION BY SVM TECHNIQUE USING 20 CLUSTERS

error that comes from the estimator itself (RMSEestimator) and
2) an additional error that comes from the measurement noise
(RMSEnoise)

RMSEreal−time = RMSEestimator + RMSEnoise. (27)

In previous section, the value of RMSEestimator was obtained;
however, the value of RMSEnoise is still unknown. The effect
of measurement noise is considered as an additional error in
detection of the right value of Ah∗. For example, if Ah∗ = 4
is desired, we might trigger the SoH estimator by mistake at
Ah = 3.9 or Ah = 4.1 due to the measurement error in Ah
integration over time. In order to investigate the consequence
of such an error on performance of the estimator quanti-
tatively, a sensitivity analysis is performed. Fig. 11 shows
the variations of SoHQ estimation RMSE in response to
different Ah measurement error values. The point zero in the
horizontal axis corresponds to Ah = 4 that means there is
no error in Ah calculation. In that case, RMSEreal−time is just
due to the estimator’s error (i.e.,RMSEestimator = 3.3% as
stated in Table VI). Moving to the right/left from that point
means to overestimate/underestimate the UAH value which
causes an additional error in RMSEreal−time. According to
Fig. 11, overestimation is safer than underestimation in this
case. In practice, we do not expect very big errors in UAH
calculation; however, an error of 0.1 or 0.2 Ah might happen
in real-time for a total measurement period of 4 Ah. According
to Fig. 11, an error of 0.2 Ah leads to around 1.5% additional
RMSE in SoH estimation. This outcome demonstrates that
the proposed estimation technique is relatively robust against
the measurement noise error in UAH calculation and it can
work under real working condition with RMSE around 5%
(3.3%+1.5% = 4.8%). Although this level of accuracy is not
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perfect, it is comparable with similar studies in the literature
where an estimator is designed for Li–ion batteries [50], [51].

V. CONCLUSION

In this study, two SoH estimators were developed for a new
prototype Li–S cell using: 1) nonlinear curve fitting method
when only one parameter is used and 2) SVM classification
technique when a combination of parameters is used. To design
and validate the estimators, a number of aging experiments
were conducted on a state-of-the-art high-capacity (19 Ah)
Li–S prototype pouch cell under MLTB working condition
for the first time. The experimental data were then analyzed
to define cell’s EoL according to the two definitions in the liter-
ature: capacity fade and power fade. The results demonstrated
that power fade happens in a much slower rate in comparison
to the capacity fade for a Li–S cell. This is an important
outcome particularly for automotive application. After that,
ECN modeling technique was used to parameterize a model
for the Li–S cell using FFRLS identification algorithm. The
proposed idea was to perform parameter identification in real-
time and then use it in a SoH estimator (e.g., a nonlinear
mapping function or SVM). The advantage of the proposed
technique is that it does not need the history of measurement
neither the initial SoH value. According to the results, the pro-
posed Li–S cell SoH estimation technique is quite robust
against the measurement noise error in Ah calculation and
it can work under conditions representative of real driving
cycles with an RMSE of 3.3% when there is no noise and
4.8% in presence of noise. More research on Li–S battery
technology is still going on in different areas from improving
material and manufacturing to state estimation in real-time
applications. Particularly for Li–S SoH estimation problem,
other techniques in the literature are applicable as well, which
can potentially improve the estimation accuracy.
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