
1

Abrupt Fault Detection and Isolation for Gas

Turbine Components Based on a 1D

Convolutional Neural Network using Time

Series Data

Junjie Zhao1 and Yiguang Li2
School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire, MK43

0AL, UK

The FDI step identifies the presence of a fault, its level, type, and possible location. Gas

turbine gas-path fault detection and isolation can improve the availability and economy of gas

turbine components. Data-driven FDI methods are studied in this paper. Some notable gas

turbine FDI challenges include: insensitivity to operating conditions, robust separation of

faults, noisy sensor readings and missing data, reliable fault detection in time-varying

conditions, and the influence of performance gradual deterioration. For conventional ML

methods, the problem with handling time series data is its volume and the associated

computational complexity; therefore, the available information must be appropriately

compressed via the transformation of high-dimensional data into a low-dimensional feature

space with minimal loss of class separability. In order to improve the detection and isolation

sensitivity, this paper develops a method for FDI based on CNNs. Work in this paper includes:

(1) Defining the problem and assembling a dataset. (2) Preparing data for training, validation

and test: data generation, feature engineering, data pre-processing, data formatting. (3)

Building up the model. (4) Training and validating the model (evaluation protocol). (5)

Optimizing: a. deciding the model size. b. regularizing the model by getting more training data,

reducing the capacity of the network, adding weight regularization or adding dropout. c.

tuning hyperparameters. (6) Evaluation.

I. Nomenclature

ANN = artificial neural network

CNN = convolutional neural network

CS = Computer Science

DBN = deep belief network

D = dimension for tensor (axis or rank), is different for vector. A vector is a 1D tensor

DOD = domestic object damage

GPU = graphics processing unit

GRN = gated relation network

FDI = fault detection and isolation

FOD = foreign object damage

LSTM = long short-term memory

ML = Machine Learning

MLP = multilayer perceptron

1DCNN = one dimensional convolutional neural network

PNN = probabilistic neural network

1 Ph.D. Student, Centre for Propulsion Engineering, junjie.zhao@cranfield.ac.uk.
2 Reader, Centre for Propulsion Engineering, i.y.li@cranfield.ac.uk.

e805814
Text Box
AIAA Propulsion and Energy 2020 Forum, August 24-28, 2020, VIRTUAL EVENT
DOI:10.2514/6.2020-3675

e805814
Text Box
Published by AIAA. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0).
The final published version (version of record) is available online at DOI:10.2514/6.2020-3675. Please refer to any applicable publisher terms of use

e805814
Text Box

2

RBN = radial basis neural network

RNN = recurrent neural network

SOM = self-organizing maps

SVM = support vector machine

II. Introduction

Gas turbine health monitoring is generally divided into three steps, namely, detection and isolation (FDI), diagnosis,

and prognosis. The performance of gas turbines degrades over time because of deterioration mechanisms and fault

events [1]. Gradual performance deterioration is not considered a fault, and it evolves on a much slower timescale

than faults do. Fault diagnostic methods will not be required to diagnose gradual performance deterioration, but they

should be designed to be robust with respect to these effects [2]. The FDI step identifies the presence of a fault, its

level, type, and possible location [3] of abrupt events and failures such as FOD, DOD, bleed leaks & failures, variable

geometry anomalies, actuator & instrumentation faults, and the like. If no abrupt change has been detected, long term

engine module performance degradation because of fouling, erosion, and corrosion of turbomachinery blades and

vanes [2] must be taken into account. Thermodynamic changes in efficiency and flow parameter for each major

module (compressors and turbines) will provide a measure for the performance degradation in order to estimate when

predefined limits of particular parameters are exceeded, which is referred to as prognosis [4].

In general, gas turbine gas path related faults are classified into three major categories, i.e. components faults (e.g.

fan, compressor, and turbines), sensor faults (e.g. random, malfunction, drift, bias) [5, 6] and actuator faults (e.g.

sluggish response and excessive dead band and hysteresis) [7]. Faults that appear instantaneously, but do not grow in

magnitude over time, are considered abrupt faults. Faults that initiate and grow in magnitude over time are considered

rapid faults [2].

The advanced gas turbine health monitoring method is classified into model-based method and data-driven method.

As we all know, the complex and noisy working conditions hinder the construction of physical models, which make

the modelling of complex dynamic systems very difficult. Most of these physics-based models cannot be updated with

data measured on-line, which limits their effectiveness and flexibility. On the other hand, with significant development

of sensors, sensor networks and computing systems, data-driven machine health monitoring models have become

more and more attractive.

To extract useful knowledge and make appropriate decisions from Big Data, ML techniques have been regarded

as a powerful solution. ML is a “data-driven” approach, that is, ML algorithms try to construct a “set of rules” or

“blackbox” model of the “system” under analysis from data, and then use the model to predict the behavior of the

system [8].

ML algorithms, for example, ANNs [9], SVM, KNN, BNN, Ensemble methods (Random Forest, etc.), and ELM

are commonly-used diagnostics methods. Some comparisons haven been conducted for these basic ML algorithms in

[8, 10, 11, 12]. ANNs, such as MLPs, RBN, PNN, AANN, SOM, and DNN are widely used in gas turbine diagnostics

for performance simulation, fault detection, fault isolation, and fault identification.

In this study, a deep learning method is studied. As the most popular subfield of machine learning, deep learning

is able to act as a bridge connecting big machinery data and intelligent machine health monitoring [13]. Originating

from artificial neural networks, deep learning is a branch of machine learning which features multiple non-linear

processing layers and tries to learn hierarchical representations of data. Deep learning methods are widely developed

in machinery health monitoring, some of reviews are [13, 14]. Deep learning models have several variants such as

Auto-encoders [15], DBN [16], Deep Boltzmann Machines, CNN [17], and RNN [18].

One method to enhance data-driven diagnostics is to change data types. Data-driven techniques for health

monitoring of gas turbine engines either use snapshot data at a time instant from selected sensor observations or a

window of time series data from various sensors [3]. The data volume is less when snapshot type data are handled and

as a consequence, the computational expense is low also. However, by using only snapshot data, statistical changes in

the information acquired may not be adequately captured, eventually resulting in missed detection of faults; this

problem can be alleviated by using a window of time series data. For conventional ML methods, the problem with

handling time series data is its volume and the associated computational complexity; therefore, the available

information must be appropriately compressed via transformation of high-dimensional data into a low-dimensional

feature space with minimal loss of class separability [3].

CNNs are successfully used in pattern recognition and image processing [19]. A CNN is good at learning local features,

and it is robust with respect to the feature shift, scale, and distortion. 1DCNN, the one-dimensional version of the 2D

convnets will be developed to deal with time-series data, which can be thought of as a 1D grid taking samples at

regular time intervals. The property of a 1DCNN makes it a viable solution for dealing with the FDI problem. Firstly,

3

the information about a component fault is contained in several related sensors. The abrupt information of an abrupt

fault is contained in several adjacent sensor values rather than all the values in a sliced time-series. By perceiving local

features and sharing weights, a CNN can accurately extract key information from adjacent sensor values. Secondly,

when processing time series data, a CNN produces a sort of timeline that shows when different features appear in the

input. If we move an event later in time in the input, the exact same representation of it will appear in the output, just

later in time [19]. As a result, it can effectively discern the impact of noise and ensure some degree of shift invariance.

In this paper, a 1DCNN is developed for gas turbine FDI. Furthermore, the reason why 1DCNN is suitable for

component fault detection is analyzed and visualized in detail. 1DCNN is evaluated in the context of a model-based

application of a gas turbine component FDI.

III. 1DCNN Methodology

A. 1DCNN Architecture

A CNN consists of an input and an output layer, as well as multiple hidden layers, as is shown in Fig. 1. The hidden

layers of a CNN typically consist of a series of convolutional layers that convolve with a multiplication or other dot

product. The activation function is commonly a RELU layer, and is followed by additional layers such as pooling

layers, fully connected layers and normalization layers, referred to as hidden layers because their inputs and outputs

are masked by the activation function and final convolution. The final convolution, in turn, often involves

backpropagation in order to more accurately weight the end product.

1

2

2

1 1

1

2

PF-1

PF-2

PF-Nn

2

1

Layer 1

Neuron k

Layer 2 Layer l Layer n-1 Layer n

f(.)

1

i

Layer l-1

SS

1

j

Layer l+1

Fig. 1 1DCNN architecture.

An example of convolution (without kernel flipping) applied to a 1-D tensor is shown in Fig. 2.

Fig. 2 An example of convolution operation.

An example of max pooling is shown in Fig. 3.

4

Fig. 3 An example of max pooling.

Each linear activation is run through a nonlinear activation function, such as the rectified linear activation function.

Three activation functions, Sigmoid, tanh, and ReLU, are show in Fig. 4.

𝑆𝑖𝑔𝑚𝑜𝑑(𝑥) =
1

1 + 𝑒−𝑥
 tanh(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 𝑓(𝑥) = max⁡(0, 𝑥)

Fig. 4 Three common activation functions.

B. Training of Convolutional Neural Networks

For the 1DCNN in this research, a typical hidden layer contains one or few functions from the convolution, pooling

and activation functions. Other functions, such as fully connected and normalization functions, can also be included

in a hidden layer. A typical hidden layer is shown in Fig. 5.

The final output of the kth neuron at layer l is⁡𝑠𝑘
𝑙 , therefore, the subsampled version of the intermediate output

is⁡𝑦𝑘
𝑙 . In each CNN-layer, 1D forward propagation (1D-FP) is expressed as follows:

 𝑥𝑘
𝑙 =⁡𝑏𝑘

𝑙 + ∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘
𝑙−1, 𝑠𝑖

𝑙−1)

𝑁𝑙−1

𝑖=1

 (1)

Where conv1D (.,.) is a regular 1-D convolution without zero padding on the boundaries, 𝑥𝑘
𝑙 is the input, 𝑏𝑘

𝑙 is the

bias of the kth neuron at layer l, and 𝑠𝑖
𝑙−1 is the output of the ith neuron at layer l-1. 𝑤𝑖𝑘

𝑙−1⁡is the kernel (weight) from

the ith neuron at layer l–1 to the kth neuron at layer l. To accomplish BP training, there are three more elements that

are stored for each neuron: the delta error𝛥𝑘
𝑙 , downsampled delta error𝛥𝑆𝑘

𝑙 , and, finally, the derivative of the

intermediate output⁡𝑓′(𝑥𝑘
𝑙).

Let l = 1 and l = NL be the input and output layers, respectively. For an input vector p, and its corresponding output

vector, let [t1,…, tNL] be the target class vector. The MSE in the output layer can then be expressed as

5

 E = E(𝑦1
𝐿 , … , 𝑦𝑁𝐿

𝐿) =
1

𝑁𝐿

∑(𝑦𝑖
𝐿 − 𝑡𝑖)

2

𝑁𝐿

𝑖=1

 (2)

1

Neuron k

Layer l

1

i

Layer l-1

1

j

Layer l+1

Fig. 5 A typical hidden layer consists of convolution, pooling and activation function.

Consequently, the iterative flow of the BP for the 1D signals in the training set can be stated as follows:

1) Initialize weights and biases (e.g., randomly, ~U (-0.1, 0.1)) of the network.

2) For each BP iteration do as follows:

i. FP: Forward propagate from the input layer to the output layer to find outputs of each neuron at each layer,

𝑦𝑖
𝑙∀𝑖∈[1,𝑁l],and ∀l∈[1,L].

ii. BP: Compute delta error at the output layer and back-propagate it to first hidden layer to compute the delta

errors, ∆𝑘
𝑙 ∀𝑘∈[1,𝑁l],and ∀l∈[1,L].

iii. PP: Post-process to compute the weight and bias sensitivities.

iv. Update: Update the weights and biases by the (accumulation of) sensitivities scaled with the learning factor

ε.

IV. Data Generation

A. Engine Model

For this project, an engine model which has similar thermodynamic properties of LM2500+ was chosen, as shown

in Fig. 6 and Table 1.

First, the engine is modelled and simulated by the Cranfield University gas turbine performance simulation and

diagnostics software, PYTHIA. Then, design point and off-design point adaptation are conducted to obtain accurate

engine model.

Table 1 Specification of the engine model comparing to LM2500+.

 LM2500+ Model in this study

Power Output 31.9 MW 30 MW

Net Efficiency 38.8 % 39.8 %

Exhaust Temperature 525 °C 569 °C

Exhaust Gas Flow 85.9 kg/s 81.96 kg/s

Pressure Ratio 23.1 21

6

Fig. 6 The engine model configuration.

B. Measurements Selection

The measurements selection method developed in Ref. [20] is used.

Fig. 7 Sensitivity Analysis Bar Chart.

Table 2 Correlations in the measurements.

 P3 T3 P6 T6 P8 T8 PCN FF

P3 1 0.7079 0.2035 -0.4888 0.6594 -0.3798 0.639 -0.0043

T3 0.7079 1 -0.17 0.057 0.407 0.1417 0.3395 0.3413

P6 0.2035 -0.17 1 -0.5072 0.2115 -0.5035 0.2961 -0.396

T6 -0.4888 0.057 -0.5072 1 -0.4134 0.9829 -0.5943 0.7417

P8 0.6594 0.407 0.2115 -0.4134 1 -0.2407 0.6704 0.296

T8 -0.3798 0.1417 -0.5035 0.9829 -0.2407 1 -0.509 0.8525

PCN 0.639 0.3395 0.2961 -0.5943 0.6704 -0.509 1 -0.1706

FF -0.0043 0.3413 -0.396 0.7417 0.296 0.8525 -0.1706 1

The sensitivity analysis revealed the most sensitive sensors to a given health parameter fault as shown in Fig. 7

Sensitivity Analysis Bar Chart. In the correlation matrix in Table 2, a relatively high element value denotes a

correlation between the two corresponding sensors.

In conclusion, the measurement set selected for diagnostics is shown in Table 3.

7

Table 3 Measurements set for diagnostics.

Ambient and Operating Condition Parameters Measurement Setting

Ambient temperature
Compressor outlet total pressure(P3)

Compressor outlet total temperature(T3)

Ambient pressure
Turbine1 outlet total pressure(P6)

Turbine1 outlet total pressure(T6)

Relative Humidity
Turbine2 outlet total pressure(P8)

Turbine2 outlet total temperature(T8)

Shaft power
Compressor relative rotational speed(PCN)

Fuel flow rate(FF)

C. Patterns Generation with Engine Model in PYTIHA

The modules are developed to produce simulated “snap-shot” engine measurements, with relevant noise levels, as

if collected from a gas turbine engine at a constant frequency. Engine operating conditions, component deterioration

profiles and gas path faults should be specified before generating data with the engine model.

Gas turbine operating conditions cannot be constant most of the time because of variations in ambient conditions.

In order to accommodate ambient condition variation, ambient temperature changes between -45 deg. Celsius to +45

deg. Celsius with up to 3% change in ambient pressure were considered.

Table 4 Sensors and accuracy ranges [21].

A gas turbine engine will naturally degrade over its lifetime of use because of fouling, erosion, and corrosion of

turbomachinery blades and vanes. FDI methods will not be required to diagnose gradual performance deterioration,

but they should be designed to be robust with respect to these effects [2]. Gradual performance deterioration evolves

on a much slower timescale than faults do. In this research, faults are assumed to occur under healthy conditions

(without performance deterioration).

Table 5 Selected Fault Patterns.

Fault
description

Fault magnitude (absolute value)

Noise
multiplier

No.
Patterns

Component 1
deviations

Component 2
deviations

Component 3
deviations

Efficiency
(%)

Flow
capacity

(%)

Efficiency
(%)

Flow
capacity

(%)

Efficiency
(%)

Flow
capacity

(%)

No fault / / / / / / 1 620

C fault 0 to 3.5 0 to 7 1 620

CT fault 0 to 3.5 0 to 7 1 620

PT fault 0 to 3.5 0 to 7 1 620

C+CT fault 0 to 3.5 0 to 7 0 to 3.5 0 to 7 1 720

C+PT fault 0 to 3.5 0 to 7 0 to 3.5 0 to 7 1 720

CT+PT
fault

 0 to 3.5 0 to 7 0 to 3.5 0 to 7 1 720

C+CT+PT
fault

0 to 3.5 0 to 7 0 to 3.5 0 to 7 0 to 3.5 0 to 7 1 640

Sensor Unit Required accuracy (%)

P3 bar ± 0.1

T3 K ± 0.4

P6 bar ± 0.1

T6 K ± 0.4

P8 bar ± 0.1

T8 K ± 0.4

PCN r/min ± 0.03

FF kg/s ± 1.0

8

In this research, single and multiple abrupt component faults are studied. The fault type, the fault magnitude, and

sensor noise level should be specified in order to generate a unique fault pattern, as shown in Table 5. The method in

[21] is used to generate the fault patterns. The isentropic efficiency range was divided into several severity segments

and each level was combined with different ratios of flow capacity drops. The gas path parameters and their

corresponding noise values are given in Table 4. After being combined with white noise of Gaussian distribution,

5280 fault patterns (620 NF + 4660 component faults) were generated, as shown in Fig. 8.

Fig. 8 Fault patterns.

In order to generate windows of time series data, the sampling rate, the length of window, the time of fault initiation

and the fault evolution rate should be defined after obtaining the fault patterns. A fault sample is shown in Fig. 9. The

time series data from selected sensor observations are shown in Fig. 10. As a result, 5280 time series samples with the

abrupt fault occurring in the middle will be obtained.

Fig. 9 An example of Compressor Turbine abrupt fault.

9

Fig. 10 The corresponding measurements of Compressor Turbine abrupt fault.

D. Data Preprocessing

1. Data correction

The parameter correction approach in [21] is adapted to calculate correction exponents for individual parameters.

The results obtained for an operating point from the optimization and the associated corrected parameters are presented

in Table 6.

Table 6 Parameter correction exponents and equations for the engine measurements.

Parameter a b Corrected parameter

P3 0 1 P3C = P3/ δ

T3 0.94 0 T3C= T3/ θ0.94

P6 0 1 P6C=P6/δ

T6 0.85 0 T6C= T6/ θ0.85

P8 0 0 P8C = P8/ δ

T8 1 0 T6C= T6/ θ

PCN 0.5 0 PCNC=PCN/ θ0.5

FF 0.63 1 FFC = FF/ (θ0.63 δ)

The corrected parameters are then normalized as shown in the following equation with the delta value introduced

into the network for training or testing or diagnosis. The gas-path measurement deviations (M) are computed from the

established baseline engine parameters (Mb).

∆𝑀(%) =

𝑀 −𝑀𝑏

𝑀𝑏
× 100

(3)

2. Data augmentation

As shown in Fig. 11, a sliding window method is developed for data augmentation. As a result, 5280*40 = 21120

time series samples are obtained.

10

Fig. 11 Data augmentation with sliding windows.

3. Data visualization

Data visualization is conducted to extract features from the data samples and map the features using visual charts.

It is essential to analyze massive amounts of information and make data-driven decisions.

Autoencoders [19] are developed and used for dimensionality reduction or feature learning.

Each fault pattern has 8 measurements. In order to visualize and analyze these fault patterns, a denoising

autoencoder as shown in Fig. 12 is developed to project 8-dimensional vectors representing fault patterns to 2- or 3-

dimensional vectors. The autoencoder is composed of 5 fully connected layers, with the 3rd layer as a bottleneck with

a linear activation function. After trial and error, the structure of 2D autoencoder was found to be 8:15:2:15:8. The 3D

autoencoder is almost identical except it has 3 neurons in the bottleneck layer.

Autoencoders were trained on 5280 fault patterns. These vectors of activation were shuffled. Noise in the

autoencoders was added to the input vectors and it was drawn from a normal distribution with mean 0 and standard

deviation 0.1. The network was trained with the Adam optimizer and the mean-squared error was minimized.

By feeding a fault pattern to the well-trained autoencoder we obtain the activations on the bottleneck. These lower-

dimensional bottleneck activations are presented in Fig. 13.

As we can see from the Fig. 13, the samples are not linearly separable. The furthest points are associated with

maximum severities, whereas the closest points correspond to low-level faults. As the fault magnitude increases, the

overlapping possibilities of the adjacent classes increase. As the number of fault components increases, the

overlapping possibilities of the adjacent classes increase. The conventional nonlinear ML classifiers can be used to

classify the fault types.

There are 21120 time series samples. Each time series sample has 40 time steps and each time step has 8 sensor

measurements. A denoising autoencoder is developed to project 8-dimensional vectors at each time step to 2- or 3-

dimensional vectors. Autoencoders are trained on vectors for all single time steps of each sample.

By feeding a sequence of time series data corresponding to a fault sample to the autoencoder we obtain the

activations on the bottleneck. We refer to this lower-dimensional bottleneck activations sequence as an example path.

In Fig. 14, example paths visualization is presented. Each point in the visualization represents each 2D activation from

the autoencoder for a single time step and for one example. The color scale represents the time step (from 0 to 40) and

black lines are connecting points from a single example path.

Sliding window

11

Fig. 12 A denoising autoencoder for fault pattern visualization.

Fig. 13 Fault pattern 2- dimensional visualization results.

1

2

N1

2

1

N2

ΔP3+noise

ΔT3+noise

ΔPCN+noise

ΔFF+noise

2

1

N3

1

2

N5

ΔP3

ΔT3

ΔPCN

ΔFF

2

1

N4

Input Layer

𝑏𝑘
𝑙

𝑥𝑘
𝑙 𝑦𝑘

𝑙

Neuron K

Mapping Layer Bottleneck Layer Demapping Layer Output Layer

𝑊1𝑘
𝑙=1

𝑊2𝑘
𝑙=1

𝑊𝑁2𝑘
𝑙=1

𝑊𝑘1
𝑙

𝑊𝑘2
𝑙

𝑊𝑘𝑁4
𝑙

F(.)

12

Fig. 14 Visualization result of 8 time series input samples.

V. Experiments

A. Developing Environments

Our experiments were conducted on a PC with intel Core i7 CPU and we employed a NVIDIA on Quadro P600

GPU processor running on Windows 10. A deep learning tool, Keras, was used to develop the ML methods.

B. Conventional ML algorithms

Tensors are used as the data structure for ML systems [22]. The training samples of conventional ML algorithms

can only be 2D tensors (matrices) with shape (samples, features). A single input sample is 1D tensor (vector), which

means there can only be one 0D tensor (scalar) for an input layer neuro.

An initial investigation was undertaken to determine the relative difficulty in detecting and isolating fault types in

the system using available ML tools. More specifically, could a MLP accurately learn to classify the difference

between a healthy system and a faulty system and isolate the faulty components. MLP is a feed-forward neural network

type supervised learning algorithm consisting of input and output layers with one or more hidden layers in between.

1. MLP1 method

The data used for MLP1 is the 5280 fault pattern data, by randomly divided it into three sub-samples (70% for

training and 15% each for validation and testing).

A grid search method is used to select the optimal hyperparameters. The results are shown in Table 7.

A four layer network using all 8 inputs with three nodes in the first hidden layer and two nodes in the second

hidden layer was able to achieve 90.09 % classification accuracy.

This experiment demonstrated that the raw inputs available in the fault pattern data set provide enough information

to indicate the health of the system and that a MLP network is very capable of distinguishing faulty components using

the available data.

The fault pattern data provides enough information to indicate the health state based on the health parameters the

change at a single timestep. However, the fault pattern data cannot provide the required information about a fault. For

a fault event, continuous variables representing the fault initiation, grows and magnitudes are needed.

2. MLP2 method

The training samples of conventional ML algorithms can only be 2D tensors (matrices) with shape (samples,

features). A single input sample is a 1D tensor (vector), which means only one 0D tensor (scalar) can be used for an

input layer neuro. However, time series data are 3D tensors with shape (samples, timesteps, features). A single input

sample is a 2D tensor (matrix).

13

Table 7 MLP1 model optimization.

Hyperparameters Searching ranges Optimal result

Layers number (3, 5, 1) 4

Units per hidden layer (1,1000,1) 8-33-12-8

Optimizer (rmsprop, adam) adam

Learning rate of the optimizer default default

Activations (relu, sigmoid) relu

Last-layer activation softmax softmax

Loss function categorical_crossentropy categorical_crossentropy

Epochs 200 200

Batch size (1, 2000, 1) 166

Evaluation protocols

(hold-out validation, K-fold
cross-validation, iterated K-fold

validation)
hold-out validation

The data that we would like to feed into our network is 2-dimensional (40x8) data. Unfortunately, MLP is not able

to process multi-dimensional input data. Therefore we need to "flatten" the data for the input layer into the neural

network. Instead of feeding a 2D 40x8 matrix we will feed in a list of 320 values. The reshaped 0D tensor has two

different types. The first type is reshaped from time series data with the shape of (40, 8), which means measurements

at a timestep are listed in the 0D tensor and then the next timestep. The first type is reshaped from time series data

with the shape of (8, 40), which means measurements from a sensor are listed into the 0D tensor and then the next

sensor. An example is shown in 15.

The two type samples have the same shape of (211200, 320). Using the same method with the MLP for fault

patterns classification, MLPs are built and optimized. MLPs with the shape of 320-100-10-8 are able to achieve 94.1 %

classification accuracy for both of the two type samples.

Experimentation showed that the two type samples produce exactly same result. Which means the MLP are not

sensitive to the order of time at all. One of the 320 input values is given to a node in the input layer randomly.

C. FDI using 1DCNN

Time series data are 3D tensors with shape (samples, timesteps, features). A single input sample is a 2D tensor

(matrix).

The CNN architecture is shown as Fig. 16. Based on some well-known CNN architectures and cross-validation

results, four convolution layers, one max-pooling layer, one global average pooling layer, and one fully-connected

layer are used in this paper.

Convolutions are usually performed after padding the feature maps. Padding means adding some values to the

edge of the input matrix. On the one hand, it can increase the size of feature maps so that it is a useful way to increase

the model depth. On the other hand, padding in feature maps can better use the border information of feature maps,

which is beneficial for the detection performance. No-padding means there is no padding operation. A typical padding

method in CNNs is zero-padding.

Bayesian Optimization is used for the hyper parameters optimization. As is shown in Fig. 17, all the hyper

parameters are decided after optimization.

14

Fig. 15 Two types of flattened time series samples.

Table 8 1DCNN model optimization.

Hyperparameters Searching ranges Optimal result

Convolutional Layers number (1, 6, 1) 3

Pooling Layers number (1, 6, 1) 1

Dropout layer rate (0.0, 0.9, 0.1) 0.26

Conv1d_1 filter number (50, 200, 1) 58

Conv1d_1 kernel size (2, 10, 1) 7

Conv1d_2 filter number (50, 200, 1) 161

Conv1d_2 kernel size (2, 10, 1) 7

Conv1d_3 filter number (50, 200, 1) 58

Conv1d_3 kernel size (2, 10, 1) 7

Maxpooling1d pool_size (2, 3, 1) 2

Optimizer (rmsprop, adam) adam

Learning rate of the optimizer default default

Activations (relu, sigmoid) relu

Last-layer activation softmax softmax

Loss function categorical_crossentropy categorical_crossentropy

Epochs 1000 1000

Batch size (1, 2000, 1) 166

Padding (no-padding, zero-padding) zero-padding

Evaluation protocols

(hold-out validation, K-fold
cross-validation, iterated K-fold

validation)
hold-out validation

Flattened from
the shape of

(8,40)

Flattened from
the shape of

(40,8)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 51 101 151 201 251 301

P3

T3

P6

T6

P8

T8

N1

Wf

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 51 101 151 201 251 301

P3

T3

P6

T6

P8

T8

N1

Wf

15

Fig. 16 1DCNN architecture.

Fig. 17 Results of Hyper Parameters Optimization.

16

D. Results

1. Evaluation Metrics

The evaluation metrics are presented in Appendix 1. The results are shown in Fig. 18 for easy understanding.

Fig. 18 An example of fault FDI result.

2. Evaluation Results

Table 9 1DCNN-based algorithm metrics.

Abrupt Fault Cases (all)

Confusion Matrix

Predicted State
 Decision Matrix

Predicted State

No

Fault
C T PT CCT CPT CTPT CCTPT Accuracy

Detect
Latency

Classify

Latency Fault
No

Fault
Detect

Latency

T
ru

e
 S

ta
te

No
Fault

0.9997 1E-02 6E-04 3E-04 0 2E-03 4E-03 0 99.97% N/A N/A

T
ru

e

S
ta

te
 Fault

0.9991 9E-04 1.10

C 7E-03 0.9976 2E-02 0 3E-03 3E-03 4E-04 0 99.76% 0.64 0.21
No

Fault
3E-04 0.9997 N/A

CT 1E-02 2E-02 0.9963 2E-02 0 3E-02 0 0 99.63% 0.80 0.36
PT 5E-03 0 6E-03 0.9970 0 9E-04 2E-04 4E-03 99.70% 0.75 0.31 Kappa Coefficient

CCT 0 0 0 0 0.9921 7E-03 6E-04 0 99.21% 1.26 0.22 0.9726
CPT 1E-03 1E-02 1E-02 5E-03 4E-03 0.9908 7E-04 2E-04 99.08% 1.75 0.30

CTPT 0 0 0 0 0 2E-03 0.9752 0 97.52% 2.55 0.56
CCTPT 0 0 0 8E-04 0 0 5E-03 0.9630 96.30% 2.74 0.30

The kappa coefficient is an overall evaluation of the FDI performance. For the case shown in Table 9, Table 11,

and Table 10, the kappa coefficient for 1DCNN algorithm is 0.9726, which is 0.0615 higher than the MLP2 algorithm.

Missed detection, false alarm rate and time latency are three key factors for the FDI system. The missed detection rate

for 1DCNN algorithm is 0.00009. The false alarm rate is 0.00003. The detection latency for 1DCNN is 1.10. All these

three factors are great improvement on the MLP algorithms.

Table 10 Comparisons among the studied algorithms.

Algorithm TPR TNR
Detection

Latency
Kappa

MLP1 90.11±0.23% 89.67±0.37% 2.53 0.9033

MLP2 92.17±0.54% 90.12±0.36% 2.34 0.9111

1DCNN 99.91 ±0.07% 99.97±0.02% 1.10 0.9726

G
as

 T
u

rb
in

e
Fa

u
lt

 C
o

n
d

it
io

n

Time

True Condition

Diagnosed Condition

0

True negative

False positive

False negative
(missed detections)

True positive detections
& Correct clasifications

True positive detectons
& Incorrect

17

Table 11 MLP2-based algorithm metrics.

Abrupt Fault Cases (all)

Confusion Matrix

Predicted State
 Decision Matrix

Predicted State

 No
Fault

C T PT CCT CPT CTPT CCTPT Accuracy
Detect

Latency

Classify

Latency Fault
No

Fault
Detect

Latency

T
ru

e
 S

ta
te

No Fault 0.96
7E-
03

1E-
02

5E-
03

0
1E-
02

3E-03 7E-08 96% N/A N/A

T
ru

e

S
ta

te
 Fault

0.9217 0.0783

C 9E-03 0.88
5E-
02

0
1E-
02

6E-
02

0 0 88% 2.57 1.12
No

Fault
0.0988 0.9012 N/A

CT 5E-03
9E-
02

0.82
3E-
02

0
6E-
02

0 0 82% 2.76 1.23
PT 3E-02 0

4E-
02

0.84 0
6E-
02

0 3E-02 84% 2.12 1.88 Kappa Coefficient
CCT 0

9E-
03

0 0 0.98
1E-
02

0 0 98% 3.11 1.95 0.9111
CPT 6E-03

3E-
02

3E-
02

1E-
02

1E-
02

0.90 0 8E-03 90% 3.57 2.12
CTPT 3E-03 0 0 0 0

3E-
03

0.99 0 99% 1.78 1.43
CCTPT 0 0 0

1E-
02

0
1E-
02

0 0.98 98% 3.21 1.33

VI. Conclusion

Work conducted to date includes: (1) An engine model similar to GE LM2500+ was developed. (2) Data for

training, validation and test were generated under different operating conditions. White noise of Gaussian distribution

was combined in order to simulate the sensor noise. (3) Data preprocessing: to avoid the effects of the ambient

condition variation on the gas-path measurement deviations, all the measurement parameters were corrected to

standard operating conditions SLS conditions. A sliding window method was developed to augment the time series

data. (4) Data visualization was conducted to extract features from the data samples and map the features using a

method based on a denoising autoencoder. It is essential to analyze massive amounts of information and make data-

driven decisions. (5) A 1DCNN based method with four convolution layers, one max-pooling layer, one global average

pooling layer, and one fully-connected layer were developed. It is able to achieve 98.57±0.02 % overall accuracy after

166 seconds of training on Quadro P600 GPU processor running on Windows 10. (6) Comparison: the training samples

of conventional ML algorithms can only be 2D tensors (matrices) with shape (samples, features). Time series data

which are 3D tensors with shape (samples, timesteps, features) should be “flattened” into 2D tensors (matrices) with

shape (samples, timesteps × features). A MLP with the shape of 320-100-10-8 was developed using the flattened data.

It is able to achieve 90.12±0.36 % overall accuracy.

The results of this paper indicate that the fault detection and isolation for gas turbine components based on 1DCNN

is much better than the typical methods. It is proved that the modification of related sensors readings in time series are

the key features which can distinguish between different fault classes appearing in different locations, and the

convolution operation successfully preserves the key features. Then with the pooling operation, the shift and noise of

the key features is eliminated. CNN extracts the information between sensors time series and eliminates the impact of

feature shift and noise.

Appendix

Appendix 1 Evaluation metrics

1. True Positive Rate (number of correct fault detections divided by the number of fault cases)

2. False Negative Rate (number of incorrect no fault detections divided by the number of fault cases)

3. False Positive Rate (number of incorrect fault detections divided by the number of no fault cases)

4. True Negative Rate (number of correct no fault detections divided by the number of no fault cases)

5. Correct Classification Rate (number of correct classifications of a fault divided by the number of cases of

that fault)

6. (Incorrect) Misclassification Rate (number of incorrect classifications of a fault divided by the number cases

of that fault)

7. Detection latency

8. Classification latency

9. Kappa Coefficient: the function cohen_kappa_score computes Cohen’s kappa statistic. This measure is

intended to compare labelings by different human annotators, not a classifier versus a ground truth. The kappa

score is a number between -1 and 1. Scores above 0.8 are generally considered good agreement; zero or lower

means no agreement (practically random labels). The Kappa Coefficient, denoted here as κ, is calculated

from the elements of the un-normalized confusion matrix, C, as shown in the equation below. The two

subscript indices represent the row and column corresponding to individual confusion matrix elements

18

 𝑘 = ⁡
𝑁(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑⁡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑) − 𝑁(𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑⁡𝑏𝑦⁡𝑐ℎ𝑎𝑛𝑐𝑒))

𝑁(𝑡𝑜𝑡𝑎𝑙) − 𝑁(𝑥𝑝𝑒𝑐𝑡𝑒𝑑⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑⁡𝑏𝑦⁡𝑐ℎ𝑎𝑛𝑐𝑒)
 (4)

 Where

 𝑁(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑⁡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑) = ⁡∑𝐶𝑝𝑝

𝑛

𝑝=1

 (5)

 𝑁(𝑡𝑜𝑡𝑎𝑙) = ⁡∑ ⁡

𝑛

𝑝=1

∑𝐶𝑝𝑞

𝑛

𝑞=1

 (6)

 𝑁(𝑥𝑝𝑒𝑐𝑡𝑒𝑑⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑⁡𝑏𝑦⁡𝑐ℎ𝑎𝑛𝑐𝑒) = ⁡∑{⁡

𝑛

𝑝=1

∑
𝐶𝑝𝑞

𝑁(𝑡𝑜𝑡𝑎𝑙)
⁡

𝑛

𝑞=1

.∑𝐶𝑝𝑞

𝑛

𝑞=1

} (7)

References

[1] Lipowsky, H., Staudacher, S., Bauer, M., and Schmidt, K. J. “Application of Bayesian Forecasting to Change Detection and

Prognosis of Gas Turbine Performance.” Proceedings of the ASME Turbo Expo, Vol. 1, No. March 2010, 2009, pp. 587–596.

https://doi.org/10.1115/GT2009-59447.

[2] Simon, D. L. “Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) User’s Guide.” NASA TM-2010–21584, 2010.

[3] Sarkar, S., Jin, X., and Ray, A. “Data-Driven Fault Detection in Aircraft Engines with Noisy Sensor Measurements.” Journal

of Engineering for Gas Turbines and Power, Vol. 133, No. 8, 2011, pp. 1–10. https://doi.org/10.1115/1.4002877.

[4] Volponi, A. J., and Tang, L. “Improved Engine Health Monitoring Using Full Flight Data and Companion Engine Information.”

SAE International Journal of Aerospace, Vol. 9, No. 1, 2016, pp. 91–102. https://doi.org/10.4271/2016-01-2024.

[5] De Bruijn, B., Nguyen, T. A., Bucur, D., and Tei, K. “Benchmark Datasets for Fault Detection and Classification in Sensor

Data.” Proceedings of the 5th International Confererence on Sensor Networks, 2016, pp. 185–195.

https://doi.org/10.5220/0005637901850195.

[6] Jombo, G., Zhang, Y., Griffiths, J. D., and Latimer, T. “Automated Gas Turbine Sensor Fault Diagnostics.” Proceedings of

ASME Turbo Expo 2018 Turbomachinery Technical Conference and Exposition, Oslo, Norway, 2018, p. V006T05A003.

https://doi.org/10.1115/gt2018-75229.

[7] Sarkar, S., Rao, C., and Ray, A. “Estimation of Multiple Faults in Aircraft Gas-Turbine Engines.” Proceedings of the American

Control Conference, Vol. 223, 2009, pp. 216–221. https://doi.org/10.1109/ACC.2009.5159981.

[8] Jaw, L. C., and Lee, Y. “Engine Diagnostics in the Eyes of Machine Learning.” Proceedings of ASME Turbo Expo 2014:

Turbine Technical Conference and Exposition, Düsseldorf, Germany, 2014.

[9] Loboda, I. “Neural Networks for Gas Turbine Diagnosis.” Intech, 2016, pp. 195-220.

https://doi.org/http://dx.doi.org/10.5772/57353.

[10] Loboda, I., and Olivares Robles, M. A. “Gas Turbine Fault Diagnosis Using Probabilistic Neural Networks.” International

Journal of Turbo and Jet Engines, Vol. 32, No. 2, 2015, pp. 175–191. https://doi.org/10.1515/tjj-2014-0019.

[11] Amare, D. F., Aklilu, T. B., and Gilani, S. I. “Gas Path Fault Diagnostics Using a Hybrid Intelligent Method for Industrial Gas

Turbine Engines.” Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 40, No. 12, 2018, pp. 1–17.

https://doi.org/10.1007/s40430-018-1497-6.

[12] Batayev, N. “Gas Turbine Fault Classification Based on Machine Learning Supervised Techniques.” Proceedings of 14th

International Conference on Electronics Computer and Computation, ICECCO 2018, 2019, pp. 206–212.

https://doi.org/10.1109/ICECCO.2018.8634719.

[13] Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., and Gao, R. X. “Deep Learning and Its Applications to Machine Health

Monitoring.” Mechanical Systems and Signal Processing, Vol. 115, 2019, pp. 213–237.

https://doi.org/10.1016/j.ymssp.2018.05.050.

[14] Khan, S., and Yairi, T. “A Review on the Application of Deep Learning in System Health Management.” Mechanical Systems

and Signal Processing, Vol. 107, 2018, pp. 241–265. https://doi.org/10.1016/j.ymssp.2017.11.024.

[15] Luo, H., and Zhong, S. “Gas Turbine Engine Gas Path Anomaly Detection Using Deep Learning with Gaussian Distribution

-Autoencoder.” Proceedings of 2017 Prognostics and System Health Management Conference, Harbin, 2017.

https://doi.org/10.1109/PHM.2017.8079166.

[16] Tamilselvan, P., and Wang, P. “Failure Diagnosis Using Deep Belief Learning Based Health State Classification.” Reliability

Engineering and System Safety, Vol. 115, 2013, pp. 124–135. https://doi.org/10.1016/j.ress.2013.02.022.

[17] Liu, J., Liu, J., Yu, D., Kang, M., Yan, W., Wang, Z., and Pecht, M. G. “Fault Detection for Gas Turbine Hot Components

Based on a Convolutional Neural Network.” Energies, Vol. 11, No. 8, 2018. https://doi.org/10.3390/en11082149.

[18] Heimes, F., Heimes, F. O., and Systems, B. A. E. “Recurrent Neural Networks for Remaining Useful Life Estimation Recurrent

Neural Networks for Remaining Useful Life Estimation.” Proceedings of 2008 International Conference on Prognostics and

Health Management, November 2008, pp. 227–234., 2016. https://doi.org/10.1109/PHM.2008.4711422.

19

[19] Ian Goodfellow, Yoshua Bengio, Courville, A. Deep Learning, Forest Sciences, 2009.

[20] Jasmani, M. S., Li, Y.-G., and Ariffin, Z. “Measurement Selections for Multicomponent Gas Path Diagnostics Using Analytical

Approach and Measurement Subset Concept.” Journal of Engineering for Gas Turbines and Power, Vol. 133, No. 11, 2011, p.

111701. https://doi.org/10.1115/1.4002348.

[21] Ogaji, S. O. T. “Advanced Gas-Path Fault Diagnostics for Stationary Gas Turbines” Ph.D. Dissertation, Cranfield University,

2003.

[22] Ketkar, N. Deep Learning with Python, Manning Publications Co., New York, 2017.

