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Small sample sizes: A big data problem
in high-dimensional data analysis

Frank Konietschke1,2 , Karima Schwab3 and Markus Pauly4

Abstract

In many experiments and especially in translational and preclinical research, sample sizes are (very) small. In addition,

data designs are often high dimensional, i.e. more dependent than independent replications of the trial are observed. The

present paper discusses the applicability of max t-test-type statistics (multiple contrast tests) in high-dimensional designs

(repeated measures or multivariate) with small sample sizes. A randomization-based approach is developed to approx-

imate the distribution of the maximum statistic. Extensive simulation studies confirm that the new method is particularly

suitable for analyzing data sets with small sample sizes. A real data set illustrates the application of the methods.
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1 Introduction

Small sample sizes occur in various research experiments and especially in preclinical (animal) studies due to
ethical, financial, and general feasibility reasons. Such studies are essential and an important part of translational
medicine and other areas (e.g. rare diseases). Often, less than 20 animals per group are involved, and thus making
valid inferences in these studies becomes a challenging part. In addition to the small sample sizes, repeated
measurements as well as multiple endpoints are often observed on the experimental units (animals), naturally
leading to a “large p, small n” situation and thus to a high-dimensional data design. Note that high-dimensional
data do not only occur in animal studies, medical imaging and genomics are other well-known application areas.
The first statistical problem at hand is neither the high dimensionality of the data nor the relatively low statistical
power of the tests when sample sizes are very small—it is the accurate type-1 error rate control of the methods.
Many of the existing statistical methods require moderate or large sample sizes and therefore tend to not control
the type-1 error rate properly when sample sizes are very small; they either behave liberal and over-reject the null
hypothesis or are conservative. Exact techniques (i.e. procedures that rely on the exact distribution of a test
statistic for any finite sample size n) would be a great choice, but they typically rely on strict model assumptions
that can hardly be verified—at least in more complex models. Indeed, making any assumptions about the under-
lying distributions (e.g. based on boxplots), verifying equality of variances, specific covariance structures, etc. is
quasi impossible when sample sizes are so small and thus, methods, which do not rely on strict model assump-
tions, are the methods of choice. All in all, besides the often discussed problem of high dimensionality, small
sample sizes increase the challenge of a robust and especially accurate data analysis in such situations.
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Beyond these challenges and even though the statistical designs themselves are usually complex, the research
questions and study aims are often very specific. These may be tackled by applying global testing procedures,
which have been developed for different high-dimensional repeated measures and multivariate ANOVA models
by several authors.1–8 Furthermore, multivariate tests based on interpoint distances have been proposed.9–12

Testing global null hypotheses and herewith answering the question whether any difference among the repeated
measurements per or across endpoints exists, however, does usually not answer the main question of the practi-
tioners—that is the specific localization of the responsible experimental conditions that lead to the overall sig-
nificance conclusion. A modern data analysis requires the use of multiple comparison procedures that control the
family-wise error rate in the strong sense and that are flexible in the way that they can be used to test arbitrary
global and local null hypotheses and lead to compatible simultaneous confidence intervals (SCIs) for the under-
lying treatment effects. Furthermore, due to the often complex dependency structure across the repeated measure-
ments and contrasts, the multiple comparison method should take the correlations of the different tests statistics
for powerful data analysis into account. Such methods are also known as multiple contrast tests (MCTP) and are
based on the maximum value of a vector of possibly correlated t-test type statistics (max t-test statistic).
Computing its exact distribution without making strict distributional assumptions is impossible in general
designs.13 Therefore, approximations of its asymptotic distribution are needed for making inferences.
Recently, it has been suggested14 to estimate the distribution of the maximum value within a bootstrap
simulation-based framework using the empirical correlation matrix. Simulation studies indicate, however, that
sample sizes ni � 50 are necessary for an accurate type-1 error rate control. When sample sizes are smaller, the
methods tend to be liberal (see Section 5). In the present paper, a modification of the proposed method will be
introduced that does not require the estimation of the correlation matrix. Extensive numerical studies show that
the new approach controls the type-1 error very accurately even when sample sizes are very small and data do not
follow multivariate normal distributions with equal covariance matrices.

The paper is organized as follows. In Section 2, a high-dimensional preclinical study on Azheimer’s disease with
small sample sizes is described. Existing methodology for the statistical evaluation of such designs is explained in
Section 3. Here, its behavior in small sample size situations is also investigated, which motivates the development
of a different approximation of the distribution of the max t-test in Section 4. The qualities of the competing
approximations are compared in extensive simulation studies in Section 5. The paper closes with the evaluation of
the example and a discussion about the results in Sections 6 and 7, respectively. Theoretical properties of the new
approximation and proofs are provided in the supplementary material file. Throughout the paper, Id denotes the
d-dimensional unit matrix, Jd ¼ 1d1

0
d the d� d matrix of 1 s, where 1d ¼ ð1; . . . ; 1Þ0d�1.

2 A motivating example

As a motivating example, we consider a part of a preclinical study on Alzheimer’s disease conducted in the
Institute of Pharmacology at the Charit�e university medical center in Berlin, Germany. The study involves n1 ¼
10 wild-type mice (group 1) and n2 ¼ 9 L1 tau-transgenic type (group 2) mice. As usual, the sample sizes of this
preclinical research trial are pretty small. The abundance of each of the six different proteins Syntaxin,
SNAP25, VAMP2, Synaptophysin, Synapsin-1 and Alpha-synuclein were measured in six different regions of
the brain of every mouse. The regions of interest were pre-defined as hippocampal CA1 region (CA1), visual
cortex (VC), medial septum (MS), vertical limb of the diagonal band of Broca (VDB), primary motor cortex (M1)
and nucleus accumbens (ACB), respectively. Thus, 36 observations were made on every mouse, while the number
of dependent replicates exceeds the number of independent replications of the trial. Therefore, the statistical
design represents a classical “large p, small n” situation with small sample sizes. We note that generating such
data requires very advanced technology. For graphical representation and easy display of the data, the protein
abundances were log-transformed. The results are displayed in confidence interval plots (with chosen local level
95%) in Figure 1. For illustration, additional dotplots and boxplots of the data are displayed in the supplemen-
tary material file.

The dotplots give the impression that the protein abundances are roughly symmetrically distributed. However,
since sample sizes are so small, making any assumption about the underlying distribution would be questionable.
It can also be seen that few “outliers” are present. These values have been kept in the data set, because the range of
protein abundance measurements is usually very wide. Therefore, these values are not outliers in the classical sense
and provide useful information about the protein levels in the respective brain regions. Furthermore, the confi-
dence intervals displayed in Figure 1 show a fairly amount of variance heteroscedasticity. Therefore, the data of
this trial can be modeled by independent and identically distributed random vectors
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Xik ¼ ðXi1k; . . . ;XidkÞ0 �Fi; i ¼ 1; 2; k ¼ 1; . . . ; ni; N ¼ n1 þ n2 (1)

with expectation EðXi1Þ ¼ li ¼ ðli1; . . . ; lidÞ0 and covariance matrix CovðXi1Þ ¼ Ri > 0, i¼ 1, 2. For a convenient
notation, the index s ¼ 1; . . . ; d represents the repeated measures in the regions under each of the different
endpoints. Here, we set

d :

Dimension Protein Region

1 � d � 6 Syntaxin ðCA1; VC; MS; VDB; M1; ACBÞ
7 � d � 12 SNAP25 ðCA1; VC; MS; VDB; M1; ACBÞ
13 � d � 18 VAMP2 ðCA1; VC; MS; VDB; M1; ACBÞ
19 � d � 24 Synaptophysin ðCA1; VC; MS; VDB; M1; ACBÞ
25 � d � 30 Synapsin� 1 ðCA1; VC; MS; VDB; M1; ACBÞ
31 � d � 36 Alpha� synuclein ðCA1; VC; MS; VDB; M1; ACBÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

and arrange all analyses according to this order. In general, data modeled by Equation (1) can either be repeated
measures (measurements on the same scale), multivariate data (measurements on different scales) or combinations
thereof. For a convenient notation of the hypotheses, let l ¼ ðl10; l20Þ0 denote the combined vector of the expect-
ations in both groups. Besides the questions whether abundances of the proteins in the different regions of the
brain differ, the study specifically aims to locate specific group� region interactions for each of the proteins. From
a medical point of view, these would expose the proteins and especially the regions of the brain as biomedical
biomarkers for Alzheimer’s disease. To be more specific, let lðPÞij denote the expected protein abundance in group i
under region j of protein P, where i¼ 1, 2; j 2 fCA1, VC, MS, VDB, M1, ACBg and P 2 P ¼ fSyntaxin,
SNAP25, . . . , Alpha-synucleing, respectively. For each single protein, the major aim is to (i) decide whether
there is a group� region interaction and if so (ii) where. This can be achieved by simultaneously testing whether
the group-wise differences lðPÞ1j � lðPÞ2j are identical for all regions j ¼ 1; . . . ; 6 for each protein P ¼ 1; . . . ; 6. This
leads to testing the family of 72 multiple null hypotheses

X ¼ H
ðj;PÞ
0 : lðPÞij ¼ �lðPÞ

i� þ �lðPÞ
�j � �lðPÞ

�� ; i ¼ 1; 2; j ¼ 1; . . . ; 6;P 2 P
n o

at multiple level a. Here,

�lðPÞ
i� ¼ 1

6

X6
j¼1

lðPÞij ; �lðPÞ
�j ¼ 1

2

X2
i¼1

lðPÞij and �lðPÞ
�� ¼ 1

12

X2
i¼1

X6
j¼1

lðPÞij
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Figure 1. Confidence interval plot (95%) for each protein� region� group combination in the protein abundance trial. Each
confidence interval has been computed by inverting the corresponding one-sample t-test statistic using 97.5%-t-quantiles from a
t-distribution with ni � 1 degrees of freedom.
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denote the corresponding means of expectations as known from linear model theory, where i ¼ 1; 2;
j ¼ 1; . . . ; 6;P 2 P. Thus, the hypotheses are nothing but testing whether the differences of the expectations lðPÞ1j �
lðPÞ2j ; j ¼ 1; . . . ; 6 are identical for each protein. For simplicity, we rewrite the above using matrix notation and
equivalently obtain

X ¼ fHð‘Þ
0 : c‘

0l ¼ 0; ‘ ¼ 1; . . . ; qg

where c‘
0 denotes the ‘th row vector of the contrast matrix as used in

Hl
0 : Cl ¼ 0; with C ¼ �

P2P
P6

� �
I36

..

.� I36

� �
(2)

Here, in Equation (2), we denote with Pm ¼ Im � 1
m 1m1m

0 the m-dimensional centering matrix, while �

describes the direct sum to build a block diagonal matrix.
Note that this summarizing matrix notation enables us to describe the 72 null hypotheses equivalently by only

q¼ 36 which shall be tested using n1 ¼ 10 and n2 ¼ 9 independent replications. Therefore, the above is a high-
dimensional multiple testing problem. An existing statistical method to analyze the data will be discussed in the
next section.

3 Existing methodology

The high dimensionality of the testing problem considered here makes the data analysis complex in the sense that
the computation of the critical values for making statistical inference becomes an issue. Recently, Chang et al.14

propose a simulation-based inference method for high-dimensional data. The procedure is valid for large dimen-
sions and sample sizes. The case of small sample sizes has not been considered and therefore its applicability in
such situations intrigues a detailed investigation. In their original paper, both the cases of studentized and non-
studentized statistics have been considered. For the ease of read, we will concentrate on the studentized statistics
in the following only. By doing so, we follow the guidelines of resampling studentized statistics.15–18 First, we will
rewrite the null hypothesis and introduce the statistics in the same way as they were described by Chang et al.14

who propose to test the equality of expectations of the q-variate random vectors Yik ¼ ðYi1k; . . . ;YiqkÞ0 by
Hh

0 : h1 ¼ h2. These considerations show that the two statistical testing problems are identical. However, we
will propose a different way of estimating the critical values for making reliable inference later in Section 4.

Note that the null hypothesis H0 : Cl ¼ 0 as given in Equation (2) can be equivalently written as the
“standard” multivariate null hypothesis

Hh
0 : h1 ¼ h2

where hi ¼ ðhi1; . . . ; hiqÞ0 ¼ EðYikÞ denotes the expectation of the transformed vectors Yik
0 ¼ Xik

0 �6
s¼1P6

� �
. In

order to test Hh
0 against Hh

1 : h1 6¼ h2, consider the maximum of the q component-wise t-test type statistics

T0 ¼ max jT1j; . . . ; jTqj
� �

; whereT‘ ¼
ffiffiffiffi
N

p ð �Y1‘� � �Y2‘�Þ � ðh1‘ � h2‘Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂1;‘‘=n1 þ v̂2;‘‘=n2

p (3)

denotes the studentized difference of the means �Yi‘� ¼ 1
ni

Xni

k¼1
Yi‘k with the empirical variances

v̂i;‘‘ ¼ Nðni � 1Þ�1
Xni

k¼1
ðYi‘k � �Yi‘�Þ2; i ¼ 1; 2; ‘ ¼ 1; . . . ; q. The use of maximum t-statistics plays an important

role in preclinical research, because local test decisions can be made using adjusted p-values for the comparisons

H
ð‘Þ
0 : h1‘ ¼ h2‘; ‘ ¼ 1; . . . ; q. Second, each t-statistic describes the distance of the observed mean difference to its

respective null hypothesis in units of standard deviations. However, for the computation of the local p-values, the
distribution of T0 must be known, at least approximately. Suppose for a moment that it is known, then the

individual null hypothesis H
ð‘Þ
0 : h1‘ ¼ h2‘ will be rejected at multiple level a, if

jT‘j � z1�aðmaxÞ (4)
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where z1�aðmaxÞ denotes the ð1� aÞ-quantile from the distribution of T0. Compatible SCIs for the effects d‘ ¼
h1‘ � h2‘ are given by

CI‘ ¼ �Y1‘� � �Y2‘�7
z1�aðmaxÞffiffiffiffi

N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂1;‘‘=n1 þ v̂2;‘‘=n2

q� �
(5)

Finally, the global null hypothesis H0 : Cl ¼ 0 will be rejected, if

T0 � z1�aðmaxÞ (6)

In such general models (even under the assumption of multivariate normality), however, the exact distribution
of T0 remains unknown19 and approximate methods are needed for estimating the distribution of T0. In low-
dimensional designs (fixed dimension d and contrasts q), the vector of t-statistics

T ¼ ðT1; . . . ;TqÞ0 (7)

follows, asymptotically, as N ! 1, a multivariate normal distribution with expectation 0 and correlation matrix

R ¼ D�1=2VD�1=2; where (8)

V ¼ Covð
ffiffiffiffi
N

p
ð�Y1���Y2�ÞÞ¼ N €CR1

€C
0
=n1þ€CR2

€C
0
=n2

� �
(9)

with

€C ¼ �
6

s¼1
P6

denotes the covariance matrix of the differences in means and D denotes the diagonal matrix obtained from the
diagonal elements of V. These considerations show that the (asymptotic) joint distribution of the vector of
t-statistics T (and therefore of T0) depends on the unknown correlation matrix and is non-pivotal. This is intu-
itively clear, since the higher the statistics are correlated, the smaller should be the critical value z1�aðmaxÞ.
Indeed, in case of a perfect correlation, the above reduces to a univariate testing problem. Anyway, the correlation
matrix is unknown and the above cannot be used for making inferences in its present form. Chang et al.14 propose
to first estimate the correlation matrix by its empirical counterpart

R̂ ¼ D̂
�1=2

V̂D̂
�1=2

; where

V̂ ¼ N V̂1=n1 þ V̂2=n2
	 


; and

V̂ i ¼ 1

ni � 1

Xni
k¼1

ðYik � �Y i�ÞðYik � �Y i�Þ0; i ¼ 1; 2

denote the empirical covariance matrix of the random vectors Yik. Analogously, D̂ denotes the diagonal matrix
obtained from the diagonal elements of V̂ . Next, they propose to generate M random vectors

Y�
b �Nð0; R̂Þ; b ¼ 1; . . . ;M (10)

from a multivariate normal distribution with expectation 0 and correlation matrix R̂ and to estimate the critical
value z1�aðmaxÞ by computing the ð1� aÞ-quantile y�1�aðmaxÞ of the values Y�

0;1; . . . ;Y
�
0;M, where Y�

0;b ¼
maxfjY�

b1j; . . . ; jY�
bqjg denotes the maximum value of each of the random vectors Y�

b (in absolute value).
Finally, the unknown quantile z1�aðmaxÞ is replaced with the observable estimator y�1�aðmaxÞ in Equations (4)
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to (6), respectively. Note that the quantile y�1�a can also be computed directly using the R-function qmvnorm
implemented in the R-package mvtnorm20 (if the dimension is not “too large”).

However, the present small sample sizes arise the question whether the method accurately controls the type-1
error rate and thus leads to reliable conclusions. Note that, in the data example, a 36� 36 dimensional correlation
matrix is estimated upon n1 ¼ 10 and n2 ¼ 9 independent vectors per group. Roughly speaking, the estimator
might be too inaccurate when sample sizes are so small. In order to answer this question, a motivating simulation
study has been conducted. Data has been generated from (i) multivariate normal and (ii) multivariate T3-distri-
butions with df¼ 3 degrees of freedom each with group specific covariance matrices V̂ i, i.e.

ðiÞXik �Nð0; V̂ iÞ and ðiiÞXik �T3ð0; V̂ iÞ; i ¼ 1; 2; k ¼ 1; . . . ; ni (11)

Here, V̂ i denotes the empirical covariance matrix of group i in the Alzheimer’s disease study. Data have been

transformed to Yik
0 ¼ Xik

0 �6
s¼1P6

� �
as described above. The T3-distribution is heavy tailed and might be a rea-

sonable candidate to mimic the distributional shape of the protein abundance data. Note that V̂ i is singular and

therefore data have been generated using singular value decomposition of V̂ i using the rmvnorm function imple-
mented in the mvtnorm R-package.21 The simulation results for varying sample sizes n1 ¼ n2 ¼ 8; 9; . . . ; 50 at
nominal significance level a ¼ 5% are displayed in Table 1.

It follows that the procedure does not control the type-1 error rate appropriately when sample sizes are very
small. With sample sizes ni¼ 9, the empirical type-1 error rate is about 20% under normality and about 15%
under heavy tailed T3ð0; V̂ iÞ-distribution and hence highly inflated. Only with larger sample sizes (ni � 50), the
method controls the type-1 error rate quite appropriately under normality, while it tends to be slightly conser-
vative under T3ð0; V̂ iÞ, respectively. Digging for the reasons of this behavior, we first find that the procedure does
not take the variations of the variance estimators used in the t-statistics in Equation (3) into account and second,
the resampling algorithm is based on estimating the full correlation matrix of the vector of t-statistics. If a
different resampling algorithm could be defined that overcomes both of these characteristics, a major improve-
ment of the approximation might be available. In the next section, such a solution will be proposed.

4 Approximating the distribution of T0

The arising challenge is finding a good approximation of the joint distribution of T for estimating critical- and
p-values. Resampling methods as above are an innovative way to do so. Roughly speaking, the corresponding test
will work, if both the limiting and the resampling distributions of the statistic coincide—at least asymptotically—
under the null hypothesis of no treatment effect. As explained above, the vector of t-test type statistics follows,
asymptotically, a multivariate normal distribution with expectation 0 and correlation matrix R in low-dimensional
settings (d fixed). This means that a proper resampling algorithm must be designed in such a way that the
resampling distribution of T, say T�, converges to the Nð0;RÞ distribution, respectively, where the correlation
matrix must be identical to the one defined in Equation (8). Moreover, in high-dimensional settings (with d ! 1)
similar observations apply, see the supplementary material, where it is, for example, shown that the distribution of
T converges to a discrete Gaussian process. Detailed assumptions, especially on the covariance matrices, are listed
in the supplementary material document as well. Having these thoughts in mind, not every resampling method is
applicable in high-dimensional designs with an emphasis on small sample sizes. For example, the nonparametric
bootstrap (drawing with replacement) shows poor finite sample performances in a similar setting under stronger
conditions.22 Moreover, the therein proposed permutation method for exchangeable designs is in general not
applicable in our unbalanced heteroscedastic setting.23,24 For more details on permutation tests, we refer to
existing overviews and monographs.25–28 Therefore, the generation of the resampling variables and especially
the algorithmic build-up play an important role for achieving a adequate bootstrap test in high-dimensional
designs. Furthermore, even in low-dimensional settings (d fixed), estimating the approximate null Nð0;RÞ

Table 1. Type-1 error (a ¼ 5%) simulation results of the simulation-based test.14

Distnni 8 9 10 15 20 30 40 50

Nor 0.2134 0.1908 0.1723 0.1216 0.0975 0.0793 0.0720 0.0651

T3 0.1681 0.1483 0.1133 0.0873 0.0781 0.0647 0.0430 0.0420

significance is provided with alpha¼ 5%
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distribution of T using a plug-in estimator R̂ usually requires large sample sizes for an appropriate approximation.
We therefore propose to approximate the limiting distribution of T without estimating the parameter of the
distribution using a Wild-bootstrap randomization approach that is applicable in low- as well as high-
dimensional situations. The method follows the same ideas proposed for matched pairs18,29 and in high-
dimensional linear models,30 and is as follows. Let

Zik ¼ Yik � �Y i�; i ¼ 1; 2; k ¼ 1; . . . ; ni

denote the centered random vectors and let Wik denote N independent and identically distributed random signs
with PðWik ¼ 	1Þ ¼ 1

2. Now, let

Z�
ik ¼ WikZik

denote the resampling variables, �Z
�
i� ¼ 1

ni

Xni

k¼1
Z�
ik ¼ ð �Z�

i1�; . . . ; �Z
�
iq�Þ0 their empirical means and let

v̂�i;‘‘ ¼ N
1

ni � 1

Xni
k¼1

ðZ�
i‘k � �Z

�
i‘�Þ2 ; i ¼ 1; 2 and ‘ ¼ 1; . . . ; q (12)

denote the empirical variance of the variables obtained under the ‘th condition. Now, the resampling version of
the original test statistic T0 is given by

T�
0 ¼ max jT�

1j; . . . ; jT�
qj

n o
; whereT�

‘ ¼
ffiffiffiffi
N

p ð �Z�
1‘� � �Z

�
2‘�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v̂�1;‘‘=n1 þ v̂�2;‘‘=n2
q (13)

In comparison to the existing methodology discussed in Section 3, the statistic T�
0 mimics the computational

process that lead to the original statistic T0. Moreover, it is shown in the supplementary material that for both
low- and high-dimensional settings, the conditional distribution of the vector of statistics (given the data X)

T� ¼ ðT�
1; . . . ;T

�
qÞ0 (14)

mimics the null distribution of T. For making statistical inference, the critical value z1�aðmaxÞ is now estimated by
the following steps:

1. Fix the data X (or Y) and compute the centered variables Zik.
2. Generate random weights Wik, compute the resampling variables Z�

ik, the test statistics T
� and safe the value of

T�
0 in T�

0;b.
3. Repeat the previous step a large number of times (e.g. M¼ 10, 000) and compute the values T�

0;1; . . . ;T
�
0;M.

4. Estimate z1�aðmaxÞ by the empirical ð1� aÞ-quantile z�1�aðmaxÞ of T�
0;1; . . . ;T

�
0;M.

Finally, the unknown quantile z1�aðmaxÞ is replaced with the observable value z�1�aðmaxÞ in Equations (4) to (6),
respectively. One-sided tests and p-values are estimated analogously. The estimation of z1�aðRÞ thus gets by without
estimating the full correlation matrix R and additionally takes the variability of the variance estimators into account.
Note that the set fHð‘Þ

0 ;T‘; ‘ ¼ 1; . . . ; qg consisting of the null hypotheses and corresponding test statistics con-
stitutes a joint testing family in the sense of Gabriel.31 Therefore, the simultaneous test procedure controls the
family-wise error rate in the strong sense asymptotically in case of fixed q. Its accuracy in terms of controlling the
type-1 error rate and power to detect alternatives when sample sizes are small will be investigated in the next section.

Remark: Throughout the manuscript, we consider the maximum statistic T0 as a combination of the q possibly
correlated test statistics only. It originates from finding appropriate real valued c1�a such that

P \q
‘¼1

�c1�a � T‘ � c1�af g
� �

¼ 1� a () P max
q
‘¼1jT‘j � c1�a

	 
 ¼ 1� a
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The right-hand side holds with z1�aðmaxÞ ¼ c1�a. The resulting test further allows inversion of the test statistics

into simultaneous confidence intervals. However, we note that other combining functions than computing the

maximum statistic would be possible, for instance Fisher’s weighted combining function. A general overview of

nonparametric combination terminologies are provided in the monographs of Pesarin and Salmaso32 and Salmaso

et al.27 and the references therein.

5 Simulations

In this section, we investigate the small sample properties of the proposed randomization technique within

extensive simulation studies. The study aims to compare the two different approximations of the distribution

of T0 presented in the paper. As the true distribution of T0 remains unknown, the type-1 error control of the

competing methods will be used as a quality criterion. Later, the all-pairs and the any-pairs powers of the two

methods will be compared. We conducted the extensive simulation studies in R (version 3.6.1). Marozzi12 dis-

cusses different methods to compute the numbers nsim and nboot of simulation and resampling runs in detail.

Using his result and under some assumptions, nsim¼ 10,000 simulations lead to nboot ¼ 8
ffiffiffiffiffiffiffiffiffiffi
nsim

p ¼ 800 resam-

pling runs and a maximal simulation error of 0:006
1%. Since the methods proposed in the manuscript are

computationally feasible, we chose nsim¼ 10,000 and nboot¼ 1000 runs for each setting. Furthermore, setting

a ¼ 5%, we can compute the 95% precision interval ½5%7 1:96ffiffiffiffiffiffiffiffi
1;000

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5% � 95%p � ¼ ½4:6%; 5:4%�. If the empirical

type-1 error of a test is within this interval, the method can be seen as accurate. The simulation code is displayed in

the supplementary material file for reproducibility.

5.1 Type-1 error simulation results

Due to the abundance of possible factorial designs and hypotheses, two-way designs with varying dimension d 2
f2; 4; . . . ; 150g will be simulated and the hypothesis H0 : Pdðl1 � l2Þ ¼ 0 of no interaction effect will be tested at

5% level of significance. Data were generated from model

Xik �Fiðl0;RiÞ þ li; i ¼ 1; 2; k ¼ 1; . . . ; ni; (15)

where Fiðl0;RiÞ represents a multivariate distribution with expectation vector l0, correlation matrix Ri and

location shifts li. As representative marginal data distributions, we selected three differently tailed symmetric

distributions (normal, logistic, T3) and three skewed distributions (ranging from mildly to very skewed) (v27; v
2
15,

exponential) each with sample sizes ni 2 f10; 20g. A major assessment criteria of the quality of the proposed

approximations is the impact of both the chosen contrast as well as the dependency structures of the data—

especially when data has different covariance matrices and thus covering a typical Behrens-Fisher situation. Here,

we used normal copulas in order to generate rather complex dependency structures of the repeated measurements

using the R-package copula.33 The different allocations of the correlation matrices used in the simulation studies

are summarized in Table 2.
In Setting 1, both correlation matrices R1 and R2 are identical and represent an autoregressive structure. In

Settings 2 and 3, the covariance matrices R1 and R2 have different off-diagonal elements models, whereas an

autoregressive structure depending on the dimension d is modeled by R1 in Setting 2, and a linearly decreasing

(symmetric) Toeplitz structure is covered by R1 in Setting 3 (see Table 2), see Pauly et al.7 for similar choices. Note

that Setting 2 models a pretty extreme scenario. For a detailed overview of copulas, we refer to Nelsen34 or

Marozzi.35

All these four settings will be simulated for all four sample sizes (ni 2 f10; 20g), dimensions (d 2 f2; 4; . . . ; 150g)
and distributional configurations as described above. The type-1 error simulation results obtained under Setting 1

are displayed in Figure 2. All others are displayed in the supplementary material file.

Table 2. Different correlation matrices used in the simulation study.

Setting 1: R1 ¼ ðr1;ijÞ ¼ 0:6ji�jj R2 ¼ ðr2;ijÞ ¼ 0:6ji�jj

Setting 2: R1 ¼ ðr1;ijÞ ¼ 0:6ji�jj=ðd�1Þ R2 ¼ ðr2;ijÞ ¼ 0:6ji�jj

Setting 3: R1 ¼ ðr1;ijÞ ¼ 1� ji� jj=d R2 ¼ ðr2;ijÞ ¼ 0:6ji�jj=ðd�1Þ

Setting 4: R1 ¼ Id þ 0:5 � ðJd � IdÞ R2 ¼ Id þ 0:25 � ðJd � IdÞ.
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First, it can be seen that the underlying covariance matrices significantly impact the accuracy of the simulation-
based procedure proposed by Chang et al.14 in small sample size situations. It can also readily be seen that this test
shows an increasing liberal behavior for increasing dimension d. The over-rejection of the hypotheses occurs,
because the test decision is based upon quantiles from the Nð0; R̂Þ distribution, which neither takes the variability
nor the distribution of the variance estimators into account. On the contrary, the randomization-based test T0 in
Equation (13) tends to control the nominal type-1 error rate very well, even in case of very small sample sizes and
large dimensions. The underlying covariance structures seem to impact the results only minor (if even). In case of
mildly skewed distributions, the simulation results indicate that the resampling test controls the type-1 error
accurately. However, in case of skewed data with different covariance matrices, the test might be very liberal
when sample sizes are small. This behavior especially depends on the type of contrast of interest and whether it
induces positive or negative correlations. The simulation results obtained under Setting 2 (see the supplementary
material) indicate that none of the methods should be applied in these (rather extreme) cases in practice. Other
methods, e.g. nonparametric methods rather than mean-based procedures, might be more appropriate for the
analysis of small skewed data in such cases. However, the liberality vanishes with increasing sample sizes.36 In the
three other settings considered here, the randomization procedure controls the type-1 error rate accurately, even
when sample sizes are small and data follow skewed distributions. Pauly et al.24 report similar conclusions for
general linear models with independent observations. Furthermore, in all of the settings considered here, the
randomization-based resampling method is accurate when data is heavy-tailed but symmetric. As many factors
might impact the behavior of the tests, however, the procedure might be sensitive to such distributional shapes in
different scenarios than the ones considered here. For the generation of other copula models, e.g. Elliptical and
Archimedean copulas, we refer to Marozzi.35
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Figure 2. Type-1 error (a ¼ 5%) simulation results of the Wild-bootstrap randomization test T in Equation (14) (Wild) and simu-
lation-based test T in Equation (10) (Chang). Data have covariance matrices as described in Setting 1 in Table 2.

Konietschke et al. 695



Remark: Instead of using copulas for generation of the multivariate distributions, an alternative method is

generating data from model

Xik ¼ li þ R�1=2
i �ik; i ¼ 1; 2; k ¼ 1; . . . ; ni

where the error terms is generated from standardized distributions, respectively. Additional s’’imulation studies

indicate that the empirical behavior of the test procedures is very similar.

5.2 Power simulation results

Next the all-pairs power P (“reject all false null hypotheses”) as well as the any-pairs powers P (“reject any true or

false null hypothesis”) of the competing methods to reject the null hypothesis H0 : Pdðl1 � l2Þ ¼ 0 (a ¼ 5%) will

be simulated for selected alternatives. The aim of the simulation study is investigating the impact of the underlying

distributions, dependency structures of the data, sample size allocations and dimensions on the powers of the tests.

Data have been generated (under the alternative) from model Equation (15) with expectations

l1 ¼ ðd; 2d; d; 0; . . . ; 0Þ0 andl2 ¼ ð2d; d; 2d; 0; . . . ; 0Þ0

and varying d 2 f0; 0:1; . . . ; 2g from the same six distributions as above (normal, logistic, T3, v27; v
2
15 and expo-

nential) having all of the four different dependency structures displayed in Table 2, respectively. The dimension of

the random vectors was set to d¼ 30. Due to the liberality of Chang et al.’s method for small sample sizes, large

sample sizes were simulated (ni¼ 100) in order to be able to compare the powers of the methods on a fair basis, i.e.

in a situation where both of them control the type-1 error rate accurately. For illustration, an additional power

simulation with small sample sizes (ni¼ 10) has been conducted. First, it turns out that the types of covariance

structures affect the powers of the tests. This is not surprising, because the higher the correlation the smaller are

the variances of the effect size estimators. Overall, the simulation results indicate that the competing methods have

comparable powers when sample sizes are large. Chang et al.’s method has slightly larger any-pairs and all-pairs

powers than the randomization test (about 1% higher). However, when sample sizes are small, the randomization

method controls the size and has a reasonable power. The simulations of the all-pairs power furthermore indicate

the strong control of the FWER of both methods. Under the situations considered here, the shapes of the

underlying distributions impact the results. As expected, the power of the methods under v2-distributions appears
to be rather low. The reason is the pretty large variance of the v2-distribution compared with the other distribu-

tions. It should be noted that the above findings only hold for the settings considered here and might be different

under other scenarios. The all-pairs and the any-pairs power curves are displayed in the supplementary

material file.

6 Evaluation

The extensive simulation studies show that the newly proposed randomization test controls the type-1 error rate

very satisfactorily, even when sample sizes are very small and data do not follow a multivariate normal distri-

bution. In a first step, we perform a further type-1 error simulation study and investigate the accuracy of the

method for analyzing this specific data set in the same way as presented in Table 1. As before in Equation (11), we

mimic the data set using multivariate normal Nð0; V̂ iÞ and multivariate T3ð0; V̂ iÞ distributions, respectively. The
type-1 error simulation results are displayed in Table 3. It appears that the method controls the type-1 error

accurately. The high-dimensional preclinical study on Alzheimer’s disease introduced in Section 2 can therefore

now be analyzed with this method. For comparisons, the data set will be analyzed using both of the discussed

approximations.

Table 3. Type-1 error (a ¼ 5%) simulation results of the Wild-bootstrap randomization test.

Distnni 8 9 10 15 20 30 40 50

Nor 0.0530 0.0512 0.0494 0.0496 0.0474 0.0502 0.0501 0.0497

T3 0.0392 0.0411 0.0431 0.0464 0.0458 0.0512 0.0527 0.0502

significance is provided with alpha¼ 5%
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In addition to testing for interactions motivated in Equation (2), multiple comparisons inferring the region as
well as the group effects are of interest. These will be performed using the contrast matrices

Hl
0 : Cl ¼ 0; whereC ¼ �6

s¼1P6

� �
I36

..

.
I36

� �
ðRegionÞ; and

Hl
0 : Cl ¼ 0; whereC ¼ I36

..

.� I36

� �
ðGroupÞ (16)

Note that for testing the impact of the region, the test statistics are given by

T‘ ¼
ffiffiffiffi
N

p �Y1‘� þ �Y2‘� � ðh1‘ þ h2‘Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂1;‘‘=n1 þ v̂2;‘‘=n2

p

where �Yi‘� denotes the mean of the ‘th component of the vector Yik
0 ¼ Xik

0 �6
s¼1P6

� �
. Therefore, the correlation

matrix of the vector of test statistics T ¼ ðT1; . . . ;TqÞ0 is identical to the one using interaction contrasts as
described in Section 3. The randomization approach for approximating the joint null distribution of these sta-
tistics is adapted accordingly. Testing for the group effects is the “standard” multivariate hypothesis. Means and
empirical variances of the protein abundance data under each protein� region� group combination are provided
in the supplementary material file.

As already indicated by the confidence interval plots in Figure 1, data show a fairly amount of variance
heteroscedasticity. Therefore, assuming equal covariance matrices across the groups is doubtful. Next, the mul-
tiple hypotheses will be tested using the two different approaches. The point estimators of the contrasts in means
d̂‘, values of the test statistics T‘ equation (3), the estimated quantile z

95%ðmaxÞ as well as 95%-simultaneous
confidence intervals equation (5) using both the simulation as well as randomization technique will be displayed
for all of the three multiple hypotheses. In total, M¼ 100,000 simulation and randomization runs have been
performed. The results are displayed in Table 4. Different decisions (at 5% level) between the two competing
methods are highlighted in boldface.

First, for all of the three different testing problems, the estimated quantiles of the maximum statistic
z
95%ðmaxÞ are way larger using the randomization approach than with the simulation-based method. This is
not surprising when reflecting the liberal behavior of the test. The simultaneous confidence intervals are therefore
wider using the randomization procedure. In the following, results obtained for each of the three multiple null
hypotheses will be discussed separately. Neither of the two competing methods detects an interaction between
group and region under any of the six investigated proteins. The estimated quantiles differ remarkably, though
(3.10 vs. 3.76). But, since the maximum t-statistic is T0 ¼ 2:63 and thus T0 < z

95%ðmaxÞ, data do not provide the
evidence to reject the null hypothesis at 5% level of significance. Investigating differences in the regions, the
approximation methods provide different local conclusions at 5% level of significance. The simulation-based
method declares the regions ACB under Syntaxin, M1 under VAMP2 as well as M1 under Alpha-synuclein
significantly different from the average of the others, while the randomization method does not. Taking a look
at the boxplots give the impression that these values differ only slightly from the mean of the others. Clearly, given
the amount of regional deviations, those regions differ significantly on a pairwise level. Also, overall, the protein
abundances differ significantly across the regions. Investigating differences between the groups, no significant
differences can be detected using any of the competing methods. It should be noted that the estimated quantile
using the randomization method increases from 3.75 to a value of 3.88, while the simulation-based estimator is
still about 3.10 (3.09).

7 Discussion and outlook

Research experiments in translational medicine and especially in preclinical areas are usually small due to ethical
reasons and animal welfare. Clearly, animal studies should be abandoned, but, roughly speaking, medical research
has not arrived at the point yet to replace and refine every experiment to avoid animals. Often, sample sizes of
such trials are smaller than 20 per experimental group, which might be a reason to argue the quality of the
outcome. However, since animals are kept under homogeneous conditions, heteroscedasticity across the animals is
usually smaller compared to other scenarios in humans, depending on the outcome measures. Anyway, since
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preclinical studies play a significant role in medical sciences in terms of transferring the results towards the next

phase, a major concern is the quality of the used statistical methods. Most of them control the type-1 error rate

accurately with large sample sizes only and, indeed, they show a very liberal or conservative behavior when sample

sizes are small. This observation holds for a variety of statistical procedures designed for different questions and

fields, including analysis of variance methods24,37 as well as multiple contrast test procedures using maximum t-

test type statistics38,39 for repeated measures and multivariate data. When the number of comparisons is “small”

compared to the sample sizes, approximate and exact methods are available.19,40–43 These methods are, however,

limited to the number of comparisons to be made and are not applicable in high-dimensional situations. Note that

the methods are not applicable because of the test statistic itself (maximum t-test) or because of any computa-

tional difficulty, and information about its distribution is only available for low-dimensional designs. Recently,

Chang et al.14 tackled the problem and proposed a simulation-based algorithm to approximate the distribution of

the maximum statistic in high-dimensional designs. Extensive simulations show, however, that large sample sizes

are needed for an accurate type-1 error rate control making their method not applicable for trials with small

sample sizes. In the present paper, we modified their strategy towards a robust randomization technique to

approximate the null distribution of the max t-test. Simulation studies indicate that the method approximates

the null distribution very satisfactorily and greatly improves the applicability of their method.
Furthermore, the power of the method can be considerably improved by adapting it to a two-step screening

procedure. For a given significance level a, define the index set

S1 ¼ f1 � ‘ � q : jT‘j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðqÞ

p
þ f2logðqÞg�1=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logð1=ð1� aÞÞ

p
g (17)

which contains the indices of all test statistics T‘ that—in absolute value—do not exceed the given bound in S1. If

the cardinality of the set is equal to q, the null hypothesisH0 : h1 ¼ h2 is not rejected. Otherwise, if its cardinality is

equal to s (say) and smaller than q (s< q), select all corresponding test statistics in the sub-vector ~T ¼ fTs; s 62 S1g.
The null hypothesis will be rejected, if maxfjTsj; s 62 S1g � y�1�aðS1Þ. Here, y�1�aðS1Þ denotes the ð1� aÞ-quantile
of the values maxs 62S1

jY�
1sj; . . . ;maxs 62S1

jY�
Msj, where the Y�’s are defined in equation (10). Thus, the dimension of

the testing problem is basically reduced to testing the null hypotheses H
ðsÞ
0 : ~h1 ¼ ~h2, where the hypothesis matrix

~C has appropriate dimensions and ~l collects all corresponding li’s being excluded from S1. Moreover, the

dimension reduction implies that the critical value of the screening modification does not exceed the original

one, i.e. y1�a�ðS1Þ � y�1�a. As the value of the test statistic does not change (maxfjTsj; s 62 S1g ¼ T0 by definition),

screening indeed improves the power. For the same reason, however, screening might result in even more liberal

test decisions than the original version without screening. In addition, the interpretation of the screening results

may be challenging in case of arbitrary contrasts or especially interaction effects. For these two reasons, we did

not consider an additional screening stage. Detailed power investigations and dimension reductions will be part of

future research. All of the methods considered in the paper are based on means of data. Nonparametric methods,

for instance based on ranks of the data, or simultaneous methods based on interpoint distances as well as

investigating other combination functions than maximum,12 will be part of further investigations as well.
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