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Abstract

Isotopes are increasingly used in rainfall-runoff models to constrain conceptualisations

of internal catchment functioning and reduce model uncertainty. However, there is lit-

tle guidance on how much tracer data is required to adequately do this, and different

studies use data from different sampling strategies. Here, we used a 7-year time series

of daily stable water isotope samples of precipitation and streamflow to derive a range

of typical stream sampling regimes and investigate how this impacts calibration of a

semi-distributed tracer-aided model in terms of flow, deuterium and flux age simula-

tions. Over the 7 years weekly sampling facilitated an almost identical model perfor-

mance as daily, and there were only slight deteriorations in performance for fortnightly

sampling. Monthly sampling resulted in poorer deuterium simulations and greater

uncertainty in the derived parameter sets ability to accurately represent catchment

functioning, evidenced by unrealistic reductions in the volumes of water available for

mixing in the saturation area causing simulated water age decreases. Reducing sam-

pling effort and restricting data collection to 3 years caused reductions in the accuracy

of deuterium simulation, though the deterioration did not occur if sampling continued

for 5 years. Analysis was also undertaken to consider the effects of reduced sampling

effort over the driest and wettest hydrological years to evaluate effects of more

extreme conditions. This showed that the model was particularly sensitive to changes

in sampling during dry conditions, when the catchment hydrological response is most

non-linear. Across all dataset durations, sampling in relation to flow conditions, rather

than time, revealed that samples collected at flows >Q50 could provide calibration

results comparable to daily sampling. Targeting only extreme high flows resulted in

poor deuterium and low flow simulations. This study suggests sufficient characteriza-

tion of catchment functioning can be obtained through reduced sampling effort over

longer timescales and the targeting of flows >Q50.
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1 | INTRODUCTION

Stable water isotopes which occur naturally in precipitation can show

strong inter-annual and intra-annual variability, with the damping and

lagging of this variability in catchment discharge able to indicate the

hydrological functioning of a catchment in terms of storage, transit

times and response to changing antecedent conditions (Bowen, 2008;

Bowen et al., 2019; Birkel et al., 2014; Birkel & Soulsby, 2015). There-

fore, their use within hydrological models can help to better represent

internal catchment functioning, improve process realism and reduce

uncertainty (Ala-aho et al., 2017; van Huijgevoort et al., 2016;

Weiler, 2003). Such improvement is achieved through correctly cap-

turing a catchment's storage-flux interactions which determines how

fast a perturbation in the system, for example, precipitation input, is

transferred to the hydrograph (celerity) and the speed (velocity) a

water particle takes to move through the system (McDonnell &

Beven, 2014). Therefore, dual calibration of rainfall-runoff models to

both the flow hydrograph and streamflow tracer composition can

increase confidence that a calibrated model gives “the right answers

for the right reasons” and potentially reduce model uncertainty

(Kirchner, 2006).

However, to integrate tracers into rainfall-runoff models requires

increasing model complexity through conceptualisation of storage

mixing volumes, and associated parameters, needed to dampen and

lag the isotopic input signal (Birkel et al., 2014). This needs to be done

carefully to avoid overparameterization that may make parameter

identification more problematic and actually increase uncertainty

(Kirchner, 2006). Additionally, streamflow simulation performance is

often compromised through dual calibration with isotopes (Wang

et al., 2019). In turn this can, in certain situations, lead to scepticism

about the usefulness of tracers (Seibert et al., 2003). Despite such

concerns, better conceptualisation of flux-storage interactions

(e.g., Birkel et al., 2011) has led to a steady increase in the use of

tracer aided models (Birkel & Soulsby, 2015), and efforts to acquire

datasets with sufficient temporal extent to capture the variability of a

catchment's water travel time and residence time distributions

(McDonnell & Beven, 2014; Remondi et al., 2018; Stadnyk &

Holmes, 2020). Only by acquiring such datasets can researchers

reduce uncertainty around whether models can sufficiently reproduce

the rainfall-runoff response and tracer input–output transformations

in a way that adequately captures a variety of events, antecedent con-

ditions and catchment states.

However, there is surprisingly little guidance on how much tracer

data is needed to calibrate a rainfall-runoff model in terms of the lon-

gevity and frequency of sampling. Long-term isotope time series are

still relatively rare as most datasets are collected during short-term

projects. Furthermore, most studies tend to conduct weekly sampling,

though high frequency sampling through a series of events is becom-

ing more common (e.g., Knapp et al., 2019; Zhang et al., 2019). How-

ever, financial and logistical costs of high frequency data collection

can be restrictive, especially when research is focussed on under-

standing longer-term water balance dynamics rather than short-term

extreme events such as floods. Consequently, Sprenger et al. (2019)

called for more research to better understand how often to take sam-

ples to optimize resource efficiency. Such resource efficiency must be

balanced with collecting sufficient data to ensure model calibration

reduces overall uncertainty in the combined simulation of flows and

tracers. The question of adequate data collection and reduction of

model uncertainty versus resource efficiency is not new to the field of

hydrological modelling. McIntyre and Wheater (2004) showed that

limited collection of phosphorus data caused increased model uncer-

tainty and, hence, was of limited value.

Defining the exact quantity of data needed to calibrate tracer-

aided models is indeed difficult and may well be site specific and

depend on the responsiveness of a catchment in terms of event-

based, seasonal and inter-annual variability (e.g., Hrachowitz

et al., 2011). These factors, in turn, depend on both internal catch-

ment properties and hydroclimatic drivers (Hrachowitz et al., 2010).

Previous studies have touched upon the issue, and though most

have been constrained by relatively limited data availability, they have

drawn informative insights. For example, Birkel, Dunn et al. (2010a)

concluded that weekly sampling during a 13-month period was inade-

quate to characterize the temporal variability of precipitation and

streamflow isotopes of a small agricultural catchment. Birkel

et al. (2012) extended this work showing that even daily sampling

could mask true isotope dynamics during storm events. When investi-

gating the impact to mean transit times, calculated through the use of

lumped models and a ~23-month dataset, Timbe et al. (2015) found

that model parameters were highly sensitive to changes in isotope

sampling resolution. Similarly, using an 18-month dataset, transit time

distributions were considerably altered when the resolution from

weekly isotopic sampling was increased to, for example, daily sampling

(Stockinger et al., 2016).

Conversely, increasing the data resolution has also been shown to

be less valuable in some instances, as found by Tunaley et al. (2017)

who concluded, using a 15-month dataset, that sub-daily sampling did

not reveal new process insights but rather confirmed those derived

from daily sampling. It has further been shown that when considering

event-based model calibration, using both synthetic and observed

data, relatively few isotopic samples can provide sufficient informa-

tion to characterize event dynamics (Wang et al., 2017, 2019). This is

similar to conclusions of earlier work by Seibert and Beven (2009)

who found relatively few flow gauging's were needed to calibrate a

hydrological model, provided that a sufficient range of the flows

across the hydrograph were captured. Pool et al. (2017) also con-

cluded that a small number of strategically selected runoff measure-

ments can be adequate when using a bucket-type model in virtually

ungauged catchments.

Here we build on previous research by utilizing a 7-year time

series of stable isotopes in daily samples of precipitation and

streamflow to investigate how a reduced or targeted sampling

effort for streamflow isotope samples impacts the calibration of a

semi-distributed tracer-aided model. Such datasets are rare (von

Freyberg et al., 2017) and are difficult to obtain but provide a valu-

able opportunity to improve our understanding of the information

content and potential redundancy of high intensity, long term
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isotope datasets. More specifically, we addressed the following

research objectives:

1. To evaluate how sampling streamflow isotopes according to differ-

ing temporal frequencies or flow percentiles impacts the calibra-

tion of a tracer-aided rainfall runoff model.

2. To identify the role of dataset longevity in the findings of Objec-

tive 1 by comparing 3, 5 and 7 year duration time series.

3. To assess if the impacts of a change in streamflow isotope sam-

pling regime on calibration are exacerbated during more hydrologi-

cally extreme years.

2 | STUDY SITE DESCRIPTION

The study was undertaken using data collected in the 3.2 km2 Bru-

ntland Burn (BB) catchment, which has been described in detail previ-

ously (e.g., Birkel et al., 2011; Tetzlaff et al., 2014). Briefly, the BB is a

subcatchment of the 31 km2 Girnock Burn and consists of steep val-

ley sides dominated by freely draining shallow podzol and ranker soils

that facilitate groundwater recharge (Figure 1). The geology is pre-

dominantly metamorphic in the southern part of the catchment and

granite bedrock in the north. During wetter conditions, the hillslopes

can, via lateral flow, become hydrologically connected to the wide val-

ley bottom that is predominated by deposits of glacial till overlain with

poorly draining peats. These soils facilitate saturation overland flow

and remain close to saturation throughout the year. The spatial extent

of this saturated area can range between 4% and 69% of the catch-

ment depending on antecedent wetness and precipitation event char-

acteristics (Birkel et al., 2011). The climate is temperate/ boreal

oceanic and most precipitation events are of low intensity, with 50%

of the mean annual total of ~1000 mm falling in events <10 mm.

Snow accounts for <10% of inputs, with mean annual potential evapo-

transpiration of ~450 mm and mean winter and summer temperatures

ranging from ~0 to ~12�C respectively.

3 | DATA AND METHODS

3.1 | Hydrological and isotopic data

Streamflow samples were collected for stable isotope analysis at the

catchment outlet (Figure 1) daily at 14:00 h between 01/10/2011 and

30/09/2018 using an ISCO 3700 autosampler. The same method was

used to collect precipitation (P) samples for isotopic analysis at the

same location, though samples were cumulated over a 24-hour period

F IGURE 1 Data collection points, stream network and soil types of the Bruntland Burn with geographical reference
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starting at 00:00 h. To prevent fractionation, paraffin was added to

storage bottles prior to collection. All samples were analysed for deu-

terium (δ2H) and oxygen-18 (δ18O) isotopes at the University of Aber-

deen using a Los Gatos DLT-100 laser isotope analyser (precision of

±0.4‰ for δ2H and ±0.1‰ for δ18O). Due to the higher relative preci-

sion, we used δ2H in the study. To infill 603 missing precipitation iso-

tope samples, a spline (a series of polynomial equations which

collectively create a curve that must pass through a set of control

points) was fitted to the un-weighted monthly P isotope averages.

The spline predicted value for missing data was then combined with

noise randomly from a uniform distribution between ±1 standard

deviation of the observed P isotope for the month in question. This

method proved superior, R2 of 0.14 between available observed and

predicted data, to other climate-based multiple linear regression

models that were trialled. Discharge was obtained from stage height

measurements in a rated section at the catchment outlet at 15-minute

intervals and aggregated to an hourly and daily resolution. Precipita-

tion input data was collected within the catchment at 15-minute

intervals and subsequently aggregated to daily values. Daily PET was

calculated using the Penman–Monteith equation from data collected

at an automated weather station in the catchment.

Figure 2 displays the precipitation, streamflow and associated

isotope time series. The close relationship between precipitation

and streamflow is evident. Winters are generally wetter, with higher

streamflow, though rainfall is fairly evenly distributed through the

year, and high flows can occur in summer. The winters of 2013–14

and 2015–16 were noticeably wet, with the summer of 2018 being

notably dry. There was a strong day-to-day variability in the isotopic

composition of precipitation, reflecting different air mass sources,

though seasonality is evident as well with colder winter precipita-

tion generally being more depleted than summer precipitation.

Streamflow isotopes reflect this seasonality more clearly, though

are highly damped in comparison to precipitation as a result of

mixing with the large volume of stored water in the catchment

(Birkel et al., 2011). More direct stream isotope responses to precip-

itation are evident during wetter periods (e.g., winter 2013–14)

whilst variation is more compressed during dry periods (e.g., the

2017–18 hydrological year).

3.2 | Model description

The coupled, semi-distributed, dynamic saturation area flow-tracer

model (D-Sat) used here was developed iteratively and is described in

a series of papers (e.g., Birkel et al., 2011, 2014, 2015; Birkel, Tetzlaff,

Dunn, & Soulsby, 2010b; Soulsby et al., 2015). Figure 3 shows the

basic model structure which conceptualizes the catchment as three

interacting compartments; with hillslope, dynamic saturation area and

groundwater reservoirs. Each has an associated dynamic storage (Sup,

Ssat and Slow respectively), with transfer of water from Sup to Ssat and

Slow controlled by calibrated linear rate parameters a and r, respec-

tively. Streamflow is generated via groundwater using the linear rate

parameter b, and saturation overland flow is controlled by the

rate parameter k and a non-linearity parameter α. Each compartment

is also characterized by a calibrated mixing volume parameter (upSp,

satSp and lowSp) to represent the storage needed to dampen the iso-

tope outputs in relation to precipitation inputs, but these volumes do

not affect the dynamic water storage fluxes.

A key aspect of the model structure is the non-linear expansion

and contraction of the saturation area, which is calculated at each

timestep using an antecedent precipitation index-type algorithm (see

Birkel et al., 2010b). Both the time-varying distribution of precipita-

tion between the hillslope and saturation area and the compartments'

mixing volumes are calculated using this index.

Previous use of the model (e.g., Tunaley et al., 2017) has shown

the need to account for the non-conservative behaviour of isotopes

in the hillslope and saturation areas due to evaporative fractionation

in the catchments peaty soils (Sprenger et al., 2017). In this study, an

adapted version of the equation used by Benettin et al. (2017) was

employed to account for this, though terms relating to the preferential

selection of old or new water were removed given the well-mixed

approach to water storage components employed in D-sat. Benettin

et al. (2017) also used a uniform approach to fractionation across the

catchment, however, exploratory investigations suggested that model

results were improved if fractionation was calculated separately for

the hillslope and saturation area using two calibrated parameters; βUp

and βSat. For the saturation area the isotopic composition was

updated to reflect evaporative fractionation over the course of a

timestep via the following equation:
F IGURE 2 Time series of observed daily precipitation and
discharge rates (top) and respective isotopic signatures (bottom)
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d δ2Hsat
� �

dt
¼ 1�βSatð ÞAETsat tð Þ

STsat tð Þ
δ2Hsat tð Þ þ1000
� �

, ð1Þ

where δ2Hsat is the isotopic composition prior to fractionation, AETsat

is actual evapotranspiration and STsat is total storage (dynamic storage

+ passive mixing volume) in the saturation area prior to the loss of

AETsat at time t. An equivalent equation was used to update the isoto-

pic composition of the hillslope store. The model structure also facili-

tates the tracking of water as it transits from precipitation to storage

and streamflow, with this time-stamping approach used to estimate

the age of water being routed to the stream from the groundwater

reservoir and saturation area at each timestep. The age of water trans-

iting from the saturation area to the stream is hereafter referred to as

Age_Qsat.

3.3 | Modelling experiments

3.3.1 | Subsampling of the δ2H dataset

To investigate how the δ2H sampling frequency in streamflow during

model calibration impacts simulated daily outputs, the 7-year daily

dataset was subsampled (Figure 4 and Table 1) to mimic various tem-

poral and flow percentile-based sampling regimes. Every other day,

every third day, weekly, fortnightly and monthly were selected as

temporally focussed sampling strategies, with weekly and fortnightly

being consistently Monday and the first day of the month chosen for

the monthly resolution. Because high flows are essential to character-

ize the hydrological functioning of a catchment (Seibert &

Beven, 2009), we also used a sampling strategy based on flow percen-

tiles. Flows >Q50, >Q25, >Q10 and >Q05 were selected for flow per-

centile subsampling to ascertain if such sampling provided sufficient

information content for model calibration. Specific targeting of flows

<Q50 is not included as analysis of the discharge rate distribution

showed little variation in isotope values as they were essentially base-

flows derived from groundwater.

To assess the impact of dataset longevity and represent studies uti-

lizing shorter datasets, the full dataset was shortened to 3 and 5 years,

through removal of the most recent data, and subsampled according to

the above protocol. Finally, the driest (01/10/17–30/09/18) and wet-

test (01/10/13–30/09/14) hydrological years, in terms of total precipi-

tation, were also subsampled as above. Repeating experiments during

these individual years would allow us to understand if more hydrologi-

cally extreme periods were more sensitive to a reduction in sampling

effort. Whilst comparison to an “average” 1 year period was considered,

such a time period was elusive – potentially due to recent increases in

climatic variation. Therefore, only the most extreme years were included

in analysis to avoid comparison to an “average” year not truly being so

and causing a bias within result discussions.

3.3.2 | Model calibration

We used a daily time step for the modelling. This is consistent with

the response time of the catchment, where previous research has

shown that even during events, the sub-daily variation in isotopic

composition of stream water is limited (Tunaley et al., 2017). All

required model inputs other than δ2H (Figure 3) were prepared at this

daily resolution to allow results to be directly attributable to changes

in streamflow isotope sampling. These inputs spanned the exact tem-

poral extent as the respective δ2H calibration dataset (e.g., when cali-

brating to 1, 3, 5 or 7 years of isotope data then 1, 3, 5 or 7 years of,

for example, streamflow data would be included respectively). Prior to

each model run, a standard 4 year period (01/10/2011–30/09/2015)

was used for spin-up as preliminary work had shown this period is

optimal for initialising storages. Leaving the period consistent

between sampling resolutions and datasets ensured that changes in

model performance were due to calibration effects of the reduced

δ2H sampling alone, as opposed to a change in the spin-up period.

For the model calibration we used a non-dominated genetic

sorting algorithm (NSGA2 by Deb et al., 2002) which simultaneously

optimized, with equal weighting, the modified Kling-Gupta efficiency

F IGURE 3 Schematic model
structure, with basic equations,
displaying the three dynamic
reservoirs controlling streamflow (Sup,
Ssat and Slow) and associated passive
storages regulating the isotopic
composition of landscape units.
Hillslope and saturation areas are
time-variable, calculated according to

the catchments antecedent wetness.
Isotope fractionation in the hillslope
and saturation area controlled by
calibrated parameters βUp and βSat,
respectively; Equation (1). Other
calibrated parameters are shown
in red
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(Kling et al., 2012), hereafter KGE, for both flow and δ2H within pre-

defined parameter ranges (Table 2). In line with previous use of the

model (e.g., Soulsby et al., 2015), 500 parameter sets were con-

strained over 100 iterations (resulting in 50 000 different parameter

combinations tested) to provide a final optimal parameter population

of 500 which, in absence of formal uncertainty analysis, provided con-

fidence intervals around average simulated values. Performance met-

rics and graphical representations of simulated outputs were

calculated and created using the median simulation from the

500 parameter sets at each timestep.

3.3.3 | Model evaluation

Throughout all modelling experiments, simulated flow, δ2H and Age_Qsat

were evaluated for change as simulated flow and δ2H represent the core

model focus, whilst Age_Qsat is indicative of any change in process real-

ism (i.e., if flow performance remained relatively unchanged between

model runs but Age_Qsat was substantially altered, it would indicate the

same flows were being simulated from differing mechanisms). Age_Qsat

was chosen over the total age of discharge as contributions of water

from the groundwater store result in older water (i.e., >3 years) which

are much less identifiable (Benettin et al., 2017). In contrast, the fluxes

from the saturation area are responsible for contributing younger water

(≤30 days old) to flow, so allowing the percentage of daily discharge

comprised of young water to be calculated. Model evaluation, unless

stated otherwise, was always based upon the daily simulated value ver-

sus the daily observed value, spanning the time period of the δ2H cali-

bration dataset, regardless of the δ2H calibration datasets resolution.

Thus, for example, the model calibrated with 3 years of monthly isotope

data was evaluated based on 3 years of daily isotope data (given that

simulated outputs were at daily resolution, regardless of model input

resolution).

4 | RESULTS

4.1 | Effects of sampling frequency using the full
7-year dataset

Both streamflow and isotopes could, in terms of model performance

metrics and visual appearance, be adequately and almost identically

TABLE 1 Number of δ2H samples within each dataset

Sampling frequency

Daily

Every other

day

Every third

day Weekly Fortnightly Monthly >Q50 >Q25 >Q10 >Q05Dataset duration

01/10/2011–30/09/2018 2557 1279 853 366 183 84 1279 640 256 128

01/10/2011–30/09/2014 1096 548 366 157 79 36 548 274 110 55

01/10/2011–30/09/2016 1827 914 609 261 131 60 914 457 183 92

01/10/2013–30/09/2014 365 183 122 53 27 12 183 92 37 19

01/10/2017–30/09/2018 365 183 122 53 27 12 183 92 37 19

F IGURE 4 Schematic diagram of
modelling experiments. The full
7-year dataset was subsampled
according to various temporal and
flow percentile specifications, as were
four shorter datasets, to assess the
impact of such sampling on the
simulated daily outputs
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simulated, by daily, every 2 days, every 3 days, weekly and fortnightly

sampling (Figure 5 and Table 3). Only when sampling was reduced to

monthly intervals was there a substantial deterioration in the reliabil-

ity of flow simulations, accuracy of isotope simulations and the associ-

ated uncertainty around process representation (Figure 5 and

Table 3). Calibration using monthly samples also resulted in much

younger water ages being simulated (Figure 6), as a result of a sub-

stantially decreased (~2.7 times) mean volume of water being avail-

able for mixing in the saturation area passive store (satSp; Table 4).

Parameter identifiability was also notably poorer as reflected through

the increase in the standard deviation of satSp within the retained

parameter values, with both of these factors again translating into a

higher uncertainty in the accuracy of process representation. Though

simulated ages were much younger, analysis (not shown) of the simu-

lated time series evidenced age dynamics, for example, general pat-

terns of age fluctuations across time, were similarly captured to daily

derived simulations.

The change in mixing volume also contributed to much poorer

δ2H simulations for monthly sampling (Figure 5 and Table 3), with the

dynamics being poorly reproduced. Conversely, monthly sampling did

result in an improvement in the flow performance due to high flows

being better captured, though at the cost of process representation

change in the flow simulation component of the model. Here, the

mean value for the b parameter controlling groundwater flow was

greatly increased (Table 4), causing the groundwater store to empty

faster. The calibration process compensated for this by reducing the

mean recharge rate into the reservoir (r parameter) to ensure that suf-

ficient water was available to capture higher flows sourced from the

hillslope and saturation reservoirs. These changes, coupled with poor

δ2H simulations, indicated increased uncertainty in the ability of the

monthly dataset to represent hydrological processes when used for

model calibration.

Sampling according to flow percentiles demonstrated there was lit-

tle impact on δ2H simulations when targeting flows >Q50 (Figure 5 and

Table 3). Sampling only flows >Q10 led to substantive deteriorations in

δ2H simulations, which was unsurprisingly worsened when using only

flows >Q05 (Figure 5). A substantive under-representation of low flows,

as shown by reductions in logNSE values (Table 3) and graphically

(Figure 5), further reduced certainty in the >Q10 and >Q05 derived

parameter sets providing realistic representations of catchment func-

tion. At such extreme percentile targeting, the simulated Age_Qsat

remained resilient, being comparable to those simulations derived from

daily sampling due to the mean satSp parameter remaining relatively

consistent. In contrast, the mean lowSp parameter was ~17 times

greater, causing the poorer δ2H simulations.

4.2 | Influence of dataset longevity

Comparing modelled outputs for the time period that is common

(01/10/2011–30/09/2014) to the three datasets of varying longevity

(3, 5 and 7 years) evidenced differences in results. Slightly improved

flow efficiency statistics occurred with a reduction in sampling longev-

ity, particularly apparent for low flow simulations with (log NSE's of

0.44, 0.48 and 0.59 for 7, 5 and 3 years of weekly sampling, respec-

tively). Shortening the sampling period to 3 years also resulted in a

slight decrease in the number of days, within the common time period,

where simulated saturated overland flow was ≤30 days old in compar-

ison to 5 or 7 years of weekly data (69%, 77% and 77% of days,

respectively). The slight reduction in the number of days with young

water was caused by a modest increase in the mean satSp parameter

when using the 3-year dataset (Table 4 and Table S1).

KGE values calculated for δ2H simulations during the common

time period only were slightly impacted through a reduction in dataset

duration (0.72, 0.77 and 0.76 for 3, 5 and 7 years of weekly data,

respectively). However, visually, (Figure 7) simulations derived from

3 years of data were substantially poorer than suggested by the KGE,

with overly depleted predictions for summer apparent. Simulations

from 5 years of calibration data were visually more comparable to

those with the 7-year dataset because the mean and standard devia-

tion of upSp and satSp parameter values were similar to those derived

from 7 years of data (Table S2). Thus, the reduction in sampling length

to 5 years did not increase uncertainty around the accuracy of process

representation in comparison to the 7 year dataset. As with the 7 year

dataset (Section 4.1) patterns described for weekly data were compa-

rable to sub-weekly resolutions.

When sampling according to flow percentiles, a reduction in

dataset duration led to an improvement in Q simulations for the com-

mon time period, though 5 years proved better for low flows (log

NSE's of 0.52, 0.57 and 0.50 for 3, 5 and 7 years of >Q50 sampling,

respectively). δ2H simulations (not shown) became poorer through a

reduction in sampling longevity; with >Q50 sampling resulting in KGE's

of 0.68, 0.74 and 0.76 for 3, 5 and 7 years of data, respectively. The

reduction in KGE when sampling for 3 years indicated that

the datasets information content for model calibration was reduced in

comparison to the longer datasets, so meaning relative certainty

in the derived parameter sets ability to accurately represent catch-

ment functioning and associated δ2H was also reduced. Age_Qsat was

little impacted (not shown), with no discernible change to either the

dynamics or simulated ages with a reduced data longevity at >Q50.

This stability resulted from the satSp parameter values remaining simi-

lar, whereas the other parameter (lowSp) strongly influencing δ2H

TABLE 2 Parameter space explored to simultaneously optimize Kling-Gupta efficiency of Q and δ2H

Parameter a b r k α upSp satSp lowSp βUp βSat

Unit per day per day per day per day - mm mm mm - -

Lower Bound 0.2 0.0001 0.2 0.001 0.1 0 0 0 0.95 0.95

Upper Bound 0.8 0.1 0.9 0.1 0.9 500 1000 1000 1 1
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simulations was much more sensitive to reducing the longevity of

sampling to 3 years (Table 4 and Tables S1 and S2), explaining reduc-

tions in δ2H performance but still reasonable Age_Qsat.

When considering model outputs across the full extent of both

the 3 and 5 year datasets (not the common time period) low flow sim-

ulations were worse, as observed in the 7 year time series, by

targeting flows >Q10, though this was less severe for the 3 year

dataset (Table 3). Monthly resolution again caused reductions in the

mean satSp parameter when sampling for both 3 and 5 years, there-

fore decreasing simulated water ages and providing an unrealistic pro-

cess representation. Identifiability of the satSp parameter was also

poorer as evidenced by the standard deviation of retained parameter

sets (Supplementary Material Tables 2 and 3); with these statistics

also being indicative of increased model uncertainty. Regarding δ2H

simulations, the 3 year dataset was less sensitive to both the more

extreme temporal and percentile subsampling, whereas the 5 year

dataset responded similarly to the 7 year dataset with simulations

much worsened by monthly and >Q10 sampling (Table 3).

4.3 | Effects of sampling in more hydrologically
extreme years

Flow simulations during the wet year (01/10/2013–30/09/2014)

were the best of all datasets particularly with regard to simulation of

low flows (log NSE's Table 3). The weekly resolution data however did

F IGURE 5 Time series of
simulated daily streamflow and δ2H
from selected temporal (a,b) and
flow percentile subsampling (c,d)
across the 7-year dataset. Plotted
values calculated using the median
value at each timestep of the
500 retained parameter sets
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cause a volumetric under-estimation of higher flows, something not

encountered in the multi-year datasets. This resulted in a lowered

KGE in comparison to daily resolution data during the same year

(Table 3). This decrease was principally driven by a reduction in the

mean non-linearity α parameter, which was not fully compensated for

by an increase in the mean k parameter (Table S3). Conversely, δ2H

simulations during the wet year were similar to temporal subsampling

as the 7-year dataset, being little impacted until only monthly resolu-

tion data was used (Table 3). Here a substantial increase in the lowSp

and decrease in the satSp mixing volumes caused a more substantive

reductions in performance (Table S3 and Table 3). The alteration in

the satSp parameter again caused a reduction in simulated water ages

and more unrealistic process representation.

Regarding percentile subsampling in the wet year, flow simula-

tions responded similarly to those when subsampling the full dataset

(Section 4.1), apart from targeting flows >Q05, which worsened simu-

lations across the entire hydrograph (KGE, Table 3). In contrast to the

7-year dataset, sampling flows >Q10 in the wet year had a less severe

effect on δ2H simulations despite the notable alteration in the mean

lowSp parameter in both instances. Such a parameter alteration was

less influential during the wet year as flows were less dependent on

groundwater and dominated by saturation area fluxes, with the

parameter important in controlling the isotopic signature of this store

(satSp) remaining consistent when targeting flows >Q10. Again, this

stability in mean satSp values meant that Age_Qsat simulations (not

shown) were little impacted when considering any of the flow percen-

tile sampling strategies.

Model performance for calibration using samples taken in the dry

year (01/10/17–30/09/18) was the worst of all datasets with

streamflow KGE's of only ~0.5 for all sampling strategies, whilst log

NSE values indicated very poor simulations (Table 3) regardless of

data resolution. Such poor simulations suggest reduced confidence in

the accuracy of process representation. As with other datasets, cali-

bration to monthly data again led to a reduction in the mean satSp

parameter causing an increase in the number of days with an Age_Qsat

≤30 days old, whilst a ~4 times increase of the mean k parameter

value (Table S4) facilitated better simulation of high flows. Simulations

of δ2H were also poor in comparison to other datasets, and particu-

larly sensitive to monthly subsampling, with this being especially evi-

dent towards the end of the simulation period (Figure 8).

Sampling according to flow percentiles proved particularly

impactful during the dry year, with targeting of flows >Q25, >Q10, and

>Q05 all causing substantial deteriorations in the δ2H simulations

(Table 3), due to systematic changes in the calibrated satSp and lowSp

parameter values (Table S4). This had a severe impact on Age_Qsat

simulations (Figure 9) with 3% and 2%, respectively, of days having an

Age_Qsat ≤30 days as the volume of water available for mixing (satSp)

was greatly increased, in comparison to 50% of days having an

Age_Qsat value of ≤30 days old with daily sampling during the dry

year. Clearly, the lack of information in data collected during dry years

results in the poorest simulations and largest uncertainties around the

calibration datasets ability to accurately represent hydrological

processes.

5 | DISCUSSION

5.1 | Impact of temporal frequency and longevity
of data on model performance

In this study we took a 7 year time series of daily stable isotopes sam-

ples of precipitation and streamflow to investigate how sampling fre-

quency and longevity impacts the calibration of a semi-distributed

tracer-aided model in terms of the accuracy, process representation

and uncertainty of flow, deuterium and saturation area flux age simu-

lations for a catchment in the Scottish Highlands. To do so we res-

ampled the streamflow isotope dataset to reflect typical streamflow

sampling regimes.

When using 7 years of data for calibration, weekly sampling gave

almost identical simulations to daily sampling and similar uncertainty

bounds for model performance (Table 3). Indeed, only a slight deteriora-

tion was evident when fortnightly samples were used. This goes against

the seemingly logical argument that higher frequency data provides

greater information content for model calibration (an argument dis-

proved at the event scale by Wang et al., 2017, 2019), as well as the

findings of previous studies (e.g., Birkel et al., 2010a; Birkel et al., 2012;

Stockinger et al., 2016; Timbe et al., 2015). However, differences in

findings must be contextualized given that the modelling approaches

used by previous studies were, apart from Birkel et al. (2010a), funda-

mentally different to the D-sat model employed in our study. There-

fore, underlying assumptions and model structures could mean nuances

in each model's sensitivity to data input change, and so results from dif-

ferent studies will not always be directly comparable. Moreover, catch-

ment characteristics will play an integral role in the sensitivity of a

model to reduced sampling. For instance, the study using a broadly

comparable model structure (Birkel et al., 2010a) was based in a catch-

ment subject to intensive agricultural activities (including drainage and

soil compaction) in direct contrast to the BB land-use, and thus hydro-

logical regime. In the BB streamflow δ2H variations is particularly

damped in comparison to the isotopic signature of precipitation. This is

related to the hydrological importance of the valley bottom wetlands

which store large quantities of water that mix with hillslope drainage

and act as “isostats”, largely setting the isotopic composition of the

stream (see Tetzlaff et al., 2014). Consequently, weekly sampling in this

catchment captures a large proportion of the isotopic variation,

whereas in the small agricultural catchment used in Birkel et al. (2010a)

and Birkel et al. (2012) weekly sampling was inadequate in capturing

the distribution tails of the isotopic composition. The authors statisti-

cally demonstrated this by showing how a move from daily sampling to

weekly sampling increased kurtosis (the weight of a distributions tails in

comparison to the distribution centre) by 46%. For our 7-year dataset

this only caused an 11% increase in kurtosis. The catchment character-

istics and statistical properties described here also help to explain why

weekly sampling was further shown to be unimpactful to δ2H simula-

tions in the other datasets of varying temporal longevity and hydrologi-

cal conditions (Table 3).

However, decreasing the longevity of weekly data from 7 to

3 years (Section 4.2 and Figure 7) caused a reduction in δ2H

10 of 17 STEVENSON ET AL.



simulation performance for the common time period. As results from

weekly sampling were directly comparable to results from daily sam-

pling for the 3-year dataset, this would indicate that extending the

sampling period, not the temporal frequency, is more beneficial for

calibration of the D-Sat model in the BB. Such an approach helps

reduce uncertainty around the datasets ability to produce parameter

sets which more accurately represent catchment functioning. This

finding may be attributable to the longer time period having a greater

variation of hydrological conditions, allowing the calibration process

to achieve a more robust parameter set that relates to a wider range

of catchment responses. However, extending sampling beyond the

5-year period provided limited improvement in δ2H simulations. In

extending the sampling period from 5 to 7 years, the most extreme

dry year since 2002–2003 was included in the calibration data, cap-

turing the effects of a fundamental shift in catchment functioning.

Under such conditions, the predictability of streamflow response to

precipitation inputs is lower as a result of more non-linear interactions

between input fluxes and storage dynamics. Previous work has shown

that the semi-distributed approach of the D-sat model has limitations

in representing and simulating the re-wetting of saturation areas

under drier conditions as spatially heterogeneous areas re-wet to sat-

uration and contribute to runoff at varying rates (Soulsby et al., 2015).

Therefore, inclusion of this extra data does not necessarily aid the

characterization of more common, predictable, hydrological patterns

experienced within the timeframe under consideration and a more

spatially distributed approach to fully exploit the additional informa-

tion in calibration (e.g., Kuppel, Tetzlaff, Maneta, & Soulsby, 2018) is

required.

Indeed, when calibrating with daily data during the dry year,

model performance was substantially poorer for both flows and iso-

topes than for any other dataset, with this visually evident for δ2H

simulations in Figure 8. These results are likely due to reasons dis-

cussed above, which may have been further impacted by the spin-up

period not containing data from the dry year. Such poor performance

was in direct contrast to the temporal subsampling of the wet year

which had the best initial performance statistics and was also no more

sensitive to temporal subsampling than the full 7-year dataset. These

findings are likely a product of the catchment exhibiting a more linear,

predictable and immediate response to precipitation inputs when

catchment storage is high due to high antecedent wetness and shal-

low flow paths. This is because the BB has been shown to respond in

a manner consistent with recent theoretical work on tracer-aided

modelling which has shown an “inverse storage” effect with stream

water ages becoming lower when storage is high, as more organized

lateral flow paths occur more frequently and non-linear interactions

with sub-surface storage is reduced (Harman, 2015; Soulsby

et al., 2015).

Temporal subsampling also showed the importance of including

sufficient isotopic data for model calibration to help reduce uncer-

tainty around if good model simulations, indicated by objective func-

tion statistics, were a result of accurate process representation. For

example, flow calibration statistics (KGE) derived from monthly reso-

lution sampling were better, or in one case equal to, those when using

daily data; a finding in line with other studies where inclusion of tracer

data causes the flow simulations to worsen (e.g., Bergström

et al., 2002; McGuire et al., 2007; Stadnyk et al., 2013). However,

there was a fundamental shift in the turnover and age of water in the

model domain using monthly data, as shown by the increase in

the number of days where Age_Qsat was ≤30 days old. This means

that despite good flow simulations, the storage-flux-age interactions

were known to be unrealistic, based on other studies in the catchment

(e.g., Benettin et al., 2017; Kuppel et al., 2018). Assessment of param-

eter changes showed that this change stemmed from a reduction in

the satSp parameter, so reducing the mixing volume available in the

saturation area. Thus, despite reasonable simulations of flow, calibra-

tion with monthly data is insufficient to obtain parameter sets that

represent hydrological processes in models where water age and stor-

age dynamics are important, such as biogeochemical models, limiting

their usefulness for environmental change assessment (e.g., Dick

et al., 2015). Increasing the temporal longevity of monthly resolution

sampling did not resolve this issue as the same problems occurred in

the longer datasets.

F IGURE 6 CDF's of daily
Age_Qsat, derived from simulation
across the full 7-year time period
(01/10/11–30/09/18) with different
sampling resolutions. Plotted values
calculated using the median value at
each timestep of the 500 retained
parameter sets
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5.2 | Impact of targeting specific sections of the
hydrograph on model performance

Sampling only the highest flows, >Q10 and >Q05, caused poor simula-

tion of low flows, as would be expected given that the isotope data

would not contain information pertaining to such conditions. How-

ever, as other parts of the hydrograph were simulated quite well, the

KGE calibration metric did not reflect such poor low flow simulations

and actually improved (Table 3) when sampling only flows >Q10. As

with monthly resolution data, the streamflow KGE belies an increase

in uncertainty around if derived parameter sets are able to accurately

characterize hydrological processes given such extreme flow targeting

caused severe decreases in δ2H simulations. However, as

targeting flows >Q50 had generally little impact on streamflow and

δ2H simulations, apart from the low flows of the hydrologically

extreme years, it appears that the isotopic composition of the lowest

flows did not add substantive additional information for calibration.

The likely explanation is that sampling only higher than median flows

in the BB still captures the range of δ2H variation, including data from

baseflows, allowing the calibration procedure to explore switches

between baseflow dominance to stormflow and changing antecedent

conditions. Furthermore, low flows are dominated by groundwater for

which isotopic composition variability is small as such flows are not

representing the variability of different areas within a catchment that

can contribute to streamflow, as shown in Swiss catchments by

Florianic et al. (2019). Moreover, previous work in the BB has shown

that even when using daily data, the lack of variation in the isotopic

composition of groundwater results in poorer simulations of low flow

TABLE 4 Summary statistics of the 500 parameter sets retained from NSGA2 calibration when subsampling the full dataset (01/10/2011–
30/09/2018)

Parameter and

Resolution Min Max Mean Stan. Dev.

Parameter

and Dilution Min Max Mean Stan. Dev.

a Daily 0.29 0.53 0.45 0.06 b Daily 0.0004 0.0020 0.0008 0.0004

a Weekly 0.30 0.51 0.46 0.04 b Weekly 0.0004 0.0020 0.0008 0.0004

a Monthly 0.24 0.43 0.35 0.06 b Monthly 0.0008 0.0023 0.0015 0.0004

a >Q50 0.36 0.55 0.50 0.04 b >Q50 0.0007 0.0021 0.0012 0.0004

a >Q10 0.32 0.46 0.4 0.04 b >Q10 0.0019 0.0782 0.0312 0.0226

a >Q05 0.32 0.51 0.38 0.06 b >Q05 0.0012 0.0879 0.0532 0.0299

R Daily 0.54 0.80 0.62 0.05 k Daily 0.0113 0.0192 0.0163 0.0021

R Weekly 0.54 0.90 0.72 0.14 k Weekly 0.0127 0.0215 0.0180 0.0022

R Monthly 0.31 0.51 0.41 0.04 k Monthly 0.0230 0.0575 0.0372 0.0123

R >Q50 0.58 0.90 0.79 0.10 k >Q50 0.0200 0.0200 0.0200 <0.100

R >Q10 0.32 0.58 0.45 0.07 k >Q10 0.0250 0.058 0.0499 0.0090

R >Q05 0.30 0.51 0.43 0.05 k >Q05 0.0227 0.0527 0.034 0.0046

α Daily 0.89 0.90 0.90 0.00 upSp Daily 496.95 500.00 499.75 0.37

α Weekly 0.85 0.90 0.90 0.01 upSp Weekly 497.89 500.00 499.67 0.41

α Monthly 0.74 0.9 0.83 0.06 upSp Monthly 451.65 499.99 494.82 7.01

α >Q50 0.87 0.90 0.90 <0.10 upSp >Q50 497.50 500.00 499.72 0.31

α >Q10 0.60 0.88 0.67 0.07 upSp >Q10 489.41 500.00 499.02 1.78

α >Q05 0.56 0.87 0.74 0.05 upSp >Q05 403.30 500.00 452.67 30.21

satSp Daily 70.95 88.94 81.93 3.70 lowSp Daily 0.04 340.59 57.28 75.56

satSp Weekly 64.01 110.50 77.30 4.14 lowSp Weekly 0.01 458.85 55.54 82.44

satSp Monthly 1.290 70.90 29.92 20.23 lowSp Monthly 0.05 283.14 135.05 65.89

satSp >Q50 75.87 175.28 81.12 7.44 lowSp >Q50 11.61 899.52 269.45 141.78

satSp >Q10 94.03 108.41 98.8 2.52 lowSp >Q10 819.73 999.99 992.15 20.93

satSp >Q05 88.68 173.86 95.81 8.41 lowSp >Q05 943.36 999.99 994.73 9.80

βUp Daily 0.98 0.99 0.98 <0.1 βSat Daily 0.96 0.97 0.96 <0.10

βUp Weekly 0.98 0.98 0.98 <0.1 βSat Weekly 0.96 0.97 0.97 <0.10

βUp Monthly 0.97 0.99 0.98 <0.1 βSat Monthly 0.95 0.97 0.96 <0.10

βUp >Q50 0.98 0.99 0.99 <0.1 βSat >Q50 0.95 0.96 0.95 <0.10

βUp >Q10 0.99 1.00 0.99 <0.1 βSat >Q10 0.95 0.95 0.95 <0.10

βUp >Q05 0.99 1.00 1.00 <0.1 βSat >Q10 0.95 0.95 0.95 <0.10
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δ2H variability (Soulsby et al., 2015). The dominance of groundwater

contributions during lower flows also explains why the Age_Qsat simu-

lations were, in all but the dry year, little impacted by flow percentile

subsampling. The retained isotopic samples contain information spe-

cifically from time periods when the saturation area will be most volu-

metrically, and therefore age, variable; meaning the calibration

process is still able to provide a correct representation of the parame-

ter integral for Age_Qsat calculation (satSp), despite reductions in

isotope data.

Such results from flow percentile subsampling link with those

resulting from temporally subsampling the dataset. Therefore, we

conclude that instead of increasing the frequency of collection the

increase in sampling longevity is of greater importance (Section 4.2).

Also consistent with findings from temporal subsampling, the results

based on calibration for the dry year of 2017–18 was extremely sensi-

tive to reductions in data. This was clearly shown in the Age_Qsat sta-

tistics (Figure 9) where much older water ages were simulated as the

calibrated mean satSp value came close to the maximum permitted

value (Table S4). This, coupled with the poorer daily resolution simula-

tions and sensitivity of flow and δ2H simulations to percentile

targeted sampling during this period, means reduced sampling during

drier periods can give misleading insights into catchment functioning.

F IGURE 7 Time series of
simulated daily δ2H for the time
period common to the three datasets
of varying length when sampling at a
weekly resolution. Plotted values
calculated using the median value at
each timestep of the 500 retained
parameter sets

F IGURE 8 The impact on daily δ2H simulations of select temporal subsampling during (a) the wet year and (b) the dry year. Calculated using
the median value at each timestep of the 500 retained parameter sets
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5.3 | How can sampling strategies be designed to
maximize resource use and information content for
model calibration?

Data collection is the primary mechanism by which understanding of a

catchments hydrological processes can be gained, and in tracer

hydrology this invariably involves sample collection. However, there is

often uncertainty regarding a datasets representativeness in term of

sampling the full range of hydrological conditions that characterize

catchment function (Birkel et al., 2010a). Consequently, such uncer-

tainty also affects modelling when such datasets are being used in cal-

ibration. Data collection is invariably limited by time and financial

resources, but the resultant datasets must be sufficiently robust to be

used in model calibration and consequently environmental change

studies. Ideally, researchers should know how much data, and from

which part of the hydrograph, is required to understand and capture

sufficient variations in catchment hydrological behaviour (Sprenger

et al., 2019). Of course, this is very challenging in ungauged catch-

ments (e.g., Tetzlaff et al., 2013). Consequently, knowledge on the

information content of differing sampling strategies at well monitored

long-term sites like the BB can help minimize the resource burden of

data collection in new tracer studies, enabling an ever-wider range

of catchments to be monitored, helping to globally reduce uncertainty

in modelling landscape scale hydrological processes.

Our findings show that for this upland catchment weekly sam-

pling of streamflow isotopes provides comparable information for

tracer-aided model calibration as daily sampling during the same time

period. Therefore, the resources for data collection can be reduced

substantially, whilst levels of uncertainty in the datasets representa-

tion of the hydrological system is not increased. Indeed, our study

shows that for the BB catchment, resources would be better focussed

on extending the sampling period, rather than the sample frequency,

to allow a greater range of hydrological conditions to be experienced,

providing greater information content for calibration. Targeting only

flows >Q50 also provides adequate information content in the BB

whilst halving the sampling effort; however, there are two caveats.

Firstly, a slight decrease in δ2H simulation according to the calibration

target metric became clear (KGE; Table 3) and whilst sampling was

reduced by half, which though beneficial, is of less benefit than reduc-

ing sampling to weekly intervals. Secondly, the practicality of sampling

such flows may be problematic because the flow distribution is inher-

ently unknown. Here, findings should be viewed as demonstrating

how flows <Q50 have less information content for calibration than

those >Q50. Therefore, where sampling effort is not regimented, as

with weekly sampling, targeting medium and higher flows is the best

use of resources. Such flows can be predicted using a researcher's

own judgement and with simpler antecedent precipitation index-type

algorithms (e.g., Birkel et al., 2010b) to identify when a catchment is

likely to experience higher saturation rates and corresponding flow

rates. More realistically, however, if autosamplers were used, only a

sub-set of the collected samples would need to be analysed based on

the measured flows.

If the objective of a sampling regime is to specifically characterize

the Age_Qsat dynamics then our results show that sampling may be

reduced further (e.g., target only flows >Q10) given the relative stabil-

ity of the satSp parameter regardless of the percentile data used for

calibration. However, caution must be employed given that other

parameter values are substantially affected, and thus the uncertainty

around characterization of the hydrological system. Such changes

could feasibly impact the simulated volume and age of water entering

and exiting the saturation area as hydrological conditions change

between years and beyond those conditions tested here. This asser-

tion is highlighted when considering how Age_Qsat simulations were

especially sensitive to flow percentile targeting during the driest year

(Figure 9).

It is important to stress that these findings are derived for a

northern upland catchment and should be viewed in that context.

Nevertheless, similar approaches could be used in the increasingly

large number of catchments where frequent tracer data are being col-

lected for multiple years. It is likely that the nature of hydrological

response times and degree of storage and mixing will be the key

determinant for the required sampling frequency needed for model

F IGURE 9 CDF's of daily
Age_Qsat simulations when sampling
according to flow percentile
thresholds during the dry year
(01/10/17–30/09/18). Calculated
using the median value at each
timestep of the 500 retained
parameter sets
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calibration and to determine travel time distributions. For example, in

urban or humid tropical catchments (e.g., Correa et al., 2020) sub-daily

sampling is likely essential to characterize isotope dynamics during

storm peaks, whilst more seasonal flow regimes in groundwater domi-

nated catchments can be adequately characterized by monthly sam-

pling (Smith et al., 2021).

6 | CONCLUSIONS

We used a tracer-aided conceptual rainfall-runoff model to investigate

how model calibration, process representation uncertainty, and flow,

isotope and flux age simulations were impacted through reduced sam-

pling of streamflow isotopes. Weekly sampling provided simulations

and calibrated parameter value combinations, comparable to those

derived from daily sampling and so uncertainty in the datasets ability

to represent the hydrological processes was not increased. Similarly,

samples taken at flows above the median (>Q50) contained sufficient

information for model calibration. Instead of increasing sampling reso-

lution, sampling longevity should be extended where possible to allow

a greater range of hydroclimatic conditions to be captured. However,

the results did show that benefits plateaued after 5 years, though this

could be due to the inclusion of a more hydrologically extreme year

that the model could not simulate well. Importantly, we also demon-

strated how infrequent sampling (e.g., monthly or only during extreme

high flows) is inadequate to capture hydrological process variability.

During drought conditions reducing sampling has a relatively greater

impact as the calibration could not fully characterize the system

dynamics. In both of these situations, the use of a model calibrated on

this data as a baseline for water quality or environmental change stud-

ies would have an associated uncertainty increase in the quality and

accuracy of that baseline. Furthermore, we also demonstrated how

water ages can be used as an additional metric of process representa-

tion change beyond the simulation of isotopic values.

This research has enhanced understanding of both the amount of

data required to provide sufficient information on a catchments func-

tion and where within the flow hydrograph this information is most

informative. The study also casts doubt, in catchments such as the BB,

on the assertion that higher frequency data is necessarily better.

These conclusions can help inform optimized resource use for hydro-

logically similar catchments, enabling researchers to best target their

sampling. Future work should replicate our study using other types of

hydrological models and in catchments where hydrological processes

are fundamentally different to the montane, wetland influenced

catchment considered here.
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