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Abstract
Partition coefficients quantify a molecule’s distribution between two immiscible liquid phases. While there are many meth-
ods to compute them, there is not yet a method based on the free energy of each system in terms of energy and entropy, 
where entropy depends on the probability distribution of all quantum states of the system. Here we test a method in this 
class called Energy Entropy Multiscale Cell Correlation (EE-MCC) for the calculation of octanol–water logP values for 22 
N-acyl sulfonamides in the SAMPL7 Physical Properties Challenge (Statistical Assessment of the Modelling of Proteins 
and Ligands). EE-MCC logP values have a mean error of 1.8 logP units versus experiment and a standard error of the mean 
of 1.0 logP units for three separate calculations. These errors are primarily due to getting sufficiently converged energies 
to give accurate differences of large numbers, particularly for the large-molecule solvent octanol. However, this is also an 
issue for entropy, and approximations in the force field and MCC theory also contribute to the error. Unique to MCC is that 
it explains the entropy contributions over all the degrees of freedom of all molecules in the system. A gain in orientational 
entropy of water is the main favourable entropic contribution, supported by small gains in solute vibrational and orientational 
entropy but offset by unfavourable changes in the orientational entropy of octanol, the vibrational entropy of both solvents, 
and the positional and conformational entropy of the solute.
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Introduction

The partition coefficient P is a widely-used quantity to 
understand the transport and distribution of chemicals in 
biological, industrial and environmental systems [1, 2]. It 
expresses the relative ability of a solute molecule to dissolve 
in two different solvents, which are immiscible and in con-
tact at an interface. The base-10 quantity logP is directly 

related to the Gibbs free energy of transfer ΔGtransfer
X(B,A)

 from 
solvent A to solvent B using

where ln(10) is a base conversion factor, kB Boltzmann’s 
constant, and T temperature. Equation 1 makes clear that 
logP can also be thought of as a relative solvation free 
energy of solute X in solvent B, ΔGsolvation

X(B)
 , minus that in 

solvent A, ΔGsolvation
X(A)

 . Values of logP are relatively straight-
forward to measure by the “Shake-Flask” method, followed 
by slow-stirring and reverse phase High Performance Liquid 
Chromatography [3, 4], and recently, by more accurate 
methods such as potentiometric titration [5]. Nonetheless, 
they take time and material to measure, often give highly 
variable results [6] and provide little insight into values 
obtained. Thus, there is a valuable role to play for predictive 
methods of logP which can save time, lower costs, and facili-
tate the more rational development of new chemicals, 

(1)
−logP ln(10)kBT =ΔGtransfer

X(B,A)

=ΔGsolvation
X(B)

− ΔGsolvation
X(A)
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especially for the pharmaceutical industry with its long and 
expensive development times.

There are now a wide range of methods to predict logP, 
building off methods to calculate solvation free energy. 
Firstly, there are many knowledge-based [7, 8] and machine-
learning methods [9, 10] which draw on the large amount of 
logP data available in literature. Many continuum solvent 
models have been developed in combination with electronic-
structure methods to calculate solvation free energies, whose 
difference gives ΔGtransfer

X(B,A)
 . The most common are the Polar-

izable Continuum Model (PCM), the series of Solvation 
Models (SMx), Solvation Model based on Density (SMD), 
and Conductor-like Screening Model (COSMO) [11, 12]. 
The most accurate are the COSMO-RS and COSMO-SAC 
methods, which have the further advantage of being appli-
cable to many types of molecules and solvents [12–14], such 
as the variant COSMOmic to micelles and lipid bilayers 
[15]. Molecular-mechanics methods, which are faster than 
electronic-structure methods but more approximate, are bet-
ter suited to calculate logP in explicit solvent. They consider 
ensembles of configurations generated in molecular dynam-
ics (MD) simulations, and require the use of a force-field, 
such as GAFF, GAFF-DC, OPLS-AA or CHARMM, which 
affects the value of logP [16, 17] but mostly have no other 
parameters. They are most commonly applied in the alchem-
ical formulation, yielding ΔGtransfer

X(B,A)
 from the solvation free 

energies for decoupling the solute from each solvent. Meth-
ods such as exponential averaging, Thermodynamic Integra-
tion (TI) and the Bennett Acceptance Ratio (BAR) can all 
yield accurate results [16–20], even with a coarse-grain force 
field [21]. Less commonly implemented are formulations 
that yield the free energy of each system directly, whose 
difference gives ΔGtransfer

X(B,A)
 . Two widely used methods in bio-

molecular studies are the Molecular Mechanics-Poisson 
Boltzmann Surface Area (MM-PBSA) and its Generalized-
Born variant (MM-GBSA) [22, 23], but they have not been 
used to calculate logP and are not as accurate as electronic-
structure methods to reproduce solvation free energies in a 
range of solvents. More successful approaches to calculate 
logP from free-energy directly have been the 3D-Reference 
Interaction Site method (3D-RISM) [24] or grid-based inho-
mogeneous solvation theory (GIST) [25]. These methods 
have the advantage of being general for any kind of solvent 
free energy but still only account for the solvation 
contribution.

We have developed a general method to evaluate free 
energy directly from an MD simulation for all molecules in 
the system, both solvent and solute alike, and over a large 
range of length scales [26–28]. Called Energy-Entropy 
Multiscale Cell Correlation (EE-MCC), it takes the energy 
from the simulation energy and evaluates the entropy over 
a series of units at multiple length scales, either correlated 

if covalently bonded, or in a mean-field cell if otherwise. 
Entropy is combined with energy to give free energy. Nota-
bly, entropy is calculated from the probability distribution 
over all quantum states of the system relating to all degrees 
of freedom of all molecules. MCC has been progressively 
developed for liquids [26, 27, 29], solutions [30–33], chemi-
cal reactions [34], and proteins [28, 35, 36]. As well as being 
general, MCC has the advantage of providing a detailed 
breakdown of entropy over all degrees of freedom of the 
system. Here we test MCC to calculate logP and understand 
the values obtained. We test it on a series of 22 N-acylsul-
fonamide bioisosteric compounds, shown in Fig. 1, in the 
“Statistical Assessment of the Modelling of Proteins and 
Ligands” (SAMPL) Physical Properties Blind Challenge.

As a means to encourage, promote and compare differ-
ent methods to predict quantities relevant to drug design, 
such as logP, SAMPL is a series of blind challenges [13, 
38–42] whereby the experimental data is made publicly 
available at the end of the submission period. In SAMPL5 
which had the first Physical Properties Blind Challenge [38], 
the cyclohexane/water distribution coefficient (logD) was 
challenging to compute for most participants, given that 
logD depends on logP, protonation state and associated 
counter-ions. The following SAMPL6 challenges therefore 
separated the prediction into  pKa and logP, which combine 
to give logD. The top-performing classes of methods were 
quantum-mechanics, empirical and mixed approaches, while 
molecular-mechanics results were more variable, given the 
large differences in simulation protocols. SAMPL7 follows 
a similar protocol to SAMPL6, and here we will only seek 
to calculate logP values.

Methods

LogP calculation

The water-octanol partition coefficient logP of solute X is 
defined in Equation 1 in terms of the transfer Gibbs free 
energy ΔGtransfer

X(oct,wat)
 of X from water to octanol. In the EE 

method, ΔGtransfer
X(oct,wat)

 is evaluated as the difference of the 
Gibbs free energies of each system

where X(oct) and X(aq) denote X in octanol or water, and 
wat and oct denote the respective pure liquid. The Gibbs free 
energy of each system is calculated using G = H − TS where 
H is the enthalpy, S the entropy and T temperature. Energy is 
calculated directly from the potential and kinetic energies in 
a molecular dynamics (MD) simulation, ignoring the small 
pressure-volume term at ambient pressures that in any case 

(2)ΔGtransfer
X(oct,wat)

= (GX(oct) + Gwat) − (Goct + GX(aq))
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almost entirely cancels in the transfer process. Entropy is 
calculated using MCC [26, 28, 43], explained next.

Multiscale cell correlation (MCC)

Entropy is calculated from MD simulations in a multi-
scale fashion in terms of cells of correlated units. The total 
entropy is calculated as a sum of components Scd

ab
 using

In this equation, S is calculated for each kind of molecule 
a, at different length scales b of each molecule, in terms of 
translational or rotational motion c over all units at that level, 
and in terms of vibration or topography d for each type of 
motion.

Molecular entropy

The relevant molecules for a logP calculation are the sol-
utes and the solvents water and octanol. We only consider 
pure solvents here, neglecting the small dissolution of 
water in octanol that occurs in experiment. In the solu-
tions only the molecules in the first solvation shell are 
considered because the entropies of the remaining solvent 
molecules change little upon solute transfer and because 
they are not well converged, being over so many mol-
ecules. Solvation shells are defined using the Relative 
Angular Distance (RAD) algorithm [44, 45] based on the 

(3)S =

molecule∑

a

level∑

b

motion∑

c

minima∑

d

Scd
ab

center-of-mass of each molecule. In each pure liquid, the 
same number of solvent molecules is considered as in the 
solute’s first solvation shell to balance stoichiometry, but 
the averaging of data is done over all molecules in the pure 
liquid to give better statistics.

Entropy for each level

For the solutes and octanol, two levels of hierarchy are used: 
molecule (M) and united atom (UA), where a united atom 
is each non-hydrogen atom with all its bonded hydrogens as 
a single rigid body. Water molecules are treated only at the 
molecule level, which is equivalent to the united-atom level.

Entropy for each type of motion

The axes of a molecule are taken as its principal axes with 
the origin at the molecular center of mass. All molecules 
considered here, being non-linear, have three translational 
and three rotational degrees of freedom. The origin of a 
united atom is taken as the heavy atom and the axes are 
defined with respect to the covalent bonds to other heavy 
atoms [26]. A united atom has three translational degrees 
of freedom and three rotational degrees of freedom if it is 
non-linear ( ≥ 2 hydrogens), 2 if it is linear (one hydrogen), 
and 0 if it is a point (no hydrogens).

Entropy over minima

The potential energy surface is discretised into energy wells, 
leading to two contributions: vibrational, related to the 
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Fig. 1  Structures of the 22 N-acylsulfonamides bioisosters in the SAMPL7 Physical Properties Challenge [37]
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average size of energy wells for that unit, and topographi-
cal, linked to the probability of each energy well for that 
unit. Vibrational entropy of each kind of motion and unit 
is calculated in the harmonic approximation for a quantum 
harmonic oscillator

where h is Planck’s constant, Nvib is the number of vibra-
tions, and vi are the vibrational frequencies, which are 
derived using

where �i are the eigenvalues of the Ntransvib × Ntransvib mass-
weighted force covariance matrix for translational vibration 
or Nrovib × Nrovib moment-of-inertia-weighted torque covari-
ance matrix for rotational vibration. Forces and torques are 
halved in the mean-field approximation except for the UA 
force covariance matrix [26, 27, 43, 46] because UA corre-
lations are directly accounted for in the molecule reference 
frame. The six lowest-frequency vibrations for the UA force 
covariance matrix are removed to avoid double-counting 
entropy at the molecule level.

Topographical entropy at the molecule level manifests 
as positional and orientational entropy for translation and 
rotation. At the united-atom level it is only conformational 
entropy for translation, because rotational topographical 
entropy of united atoms is assumed to be negligible due to 
rigidity, symmetry or strong correlation with the solvent. 
Positional entropy for a dilute solute in a solvent is calcu-
lated by discretising the volume V◦ available to the molecule 
at its concentration by the volume of a solvent molecule 
Vsolvent , giving [30, 31, 47]

Vsolvent is taken as the volume of a simulation box of pure 
solvent divided by the number of solvent molecules, and V◦ 
is taken as the same in both solvents and so cancels for the 
partition coefficient. Orientational entropy is calculated by 
discretising the rotational volume of the molecule about its 
three rotational axes according to the number of molecules 
in the molecule’s first solvation shell Nc [26, 27], weighted 
by the probability p(Nc) of each Nc using

(4)Svib = kB

Nvib∑

i=1

(
hvi∕kBT

ehvi∕kBT − 1
− ln

(
1 − e−hvi∕kBT

)
)

(5)vi =
1

2�

√
�i

kBT

(6)S
transtopo

M
≡ Spos = kB ln

V◦

Vsolvent

(7)
S
rotopo

M
≡ S or

= kB

∑

Nc

p
(
Nc

)
ln
[
max

(
1,
(
N3
c
�
)1∕2

∕�
)]

taking the maximum ensures that the number of orienta-
tions is at least 1, and � is the symmetry number of the 
molecule, taken as 1 for octanol and the 22 solutes and 2 
for water. First-shell molecules are defined using the RAD 
algorithm [44, 45] as used before when defining the solvent 
affected by the solute. For water, an additional factor of 1/4 
is included inside the logarithm of Equation 7 to account for 
correlations arising from hydrogen-bond directionality [26]. 
Conformational entropy is calculated using

where �i are the eigenvalues of a Nconf × Nconf correlation 
matrix of conformations [27]. Nconf is the number of con-
formations over all flexible dihedrals in the molecule involv-
ing united-atoms, whose number ranged from 3 to 6 for the 
solutes. Conformations for each flexible dihedral are defined 
from the maxima in their probability distribution. The cor-
relation matrix accounts for correlations between different 
dihedrals within the same molecule.

Assembling all these terms, Equation 3 written in full for 
total entropy of the water solutions up to the first solvation 
shell of solute X becomes

 and for octanol solutions

 The corresponding equations for the pure liquids are the 
same but omit the solute terms.

Simulation protocol

The pdb files for the 22 solutes were constructed using 
Avogadro [48] from their SMILES string provided in the 
SAMPL7 GitHub repository [37]. They are labelled SM25 to 
SM46. Only the neutral tautomer (micro000) was considered 
for each solute. Four kinds of simulation box were prepared: 
pure water, pure octanol, one solute in water, and one sol-
ute in octanol. Cubic boxes with side ≈34 Å were created 
using Packmol [49] for both pure solvent and solutions, cor-
responding to 150 octanol molecules and 1300 water mol-
ecules, and 1 solute molecule per box in the case of the solu-
tions. Simulations were setup using antechamber [50] and 
LEaP in AMBER Tools 18 [51] with the GAFF force field 

(8)S
transtopo

UA
≡S conf = kB

∑

i

�i ln

(
1

�i

)

(9)
SX(aq) = Stransvib

X,M
+ Srovib

X,M
+ S

pos

X
+ Sor

X
+ Stransvib

X,UA
+ Srovib

X,UA

+ Sconf
X

+ Nc,X

(
Stransvib
wat,M

+ Srovib
wat,M

+ Sor
wat

)

(10)

SX(oct) = Stransvib
X,M

+ Srovib
X,M

+ S
pos

X
+ Sor

X
+ Stransvib

X,UA
+ Srovib

X,UA

+ Sconf
X

+ Nc,X

(
Stransvib
oct,M

+ Srovib
oct,M

+ Sor
oct

+ Stransvib
oct,UA

+Srovib
oct,UA

+ Sconf
oct

)
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with AM1-BCC charges [52] for octanol and the solutes and 
TIP4P-Ew [53] for water. All simulations were equilibrated 
with 5000 steps of steepest-descent minimisation, 200 ps of 
NVT (constant number, volume, temperature) MD simula-
tion at 298 K using a Langevin thermostat with a collision 
frequency 5.0 ps−1 , followed by 25 ns of NPT simulation 
(constant number, pressure and temperature) at pressure of 
1 bar using the Berendsen barostat [54] and relaxation time 
constant 2 ps. Data collection was run for 100 ns, saving data 
every 40 ps, giving 2500 frames for analysis. MD simula-
tions were run using pmemd.cuda in AMBER 18 [55–57], 
a 10 Å cut-off for non-bonded interactions, a time step of 2 
fs and the SHAKE algorithm for covalent bonds involving 
hydrogen. Simulations lasted 5–8 hours on 8 CPU cores or 
1 GPU.

Performance assessment

The performance of the MD-based EE-MCC method to 
obtain logP values for the SAMPL7-logP data set is assessed 
by calculating the mean absolute error (MAE) and the root-
mean-square error (RMSE) defined as

where Δj = logPEE - MCC,j − logPexperiment,j for the j-th value 
and N is the total number of values analysed. Each simula-
tion was done in triplicate to assess the statistical uncertainty 
of the model, yielding a Standard Error of the Mean (SEM) 
calculated as

where s is the standard deviation and n the number of repeti-
tions. The final energies and entropies are averaged over the 
values from all three simulations.

The model uncertainty is 1.3 kcal mol−1 based on the 
root-mean squared error of the energy due to GAFF as 
found in literature [58], which corresponds to an uncer-
tainty in logP of 0.95. This can be used to assess the accu-
racy of the method prior to comparison with experimental 
measurements.

(11)MAE = N−1
∑

j

|||
Δj
|||

(12)RMSE =

√

N−1
∑

j

Δ2
j

(13)SEM =
s

√
n

Results and discussion

LogP values versus experiment

The octanol–water logP values computed by EE-MCC 
using Equations 1, 2 and 3 are presented in Fig. 2 ver-
sus experiment for all 22 SAMPL7 compounds, together 
with error metrics of MAE, RMSE and SEM given by 
Equations 11–13.

The logP values are seen to come out in the right ball-
park of a typical logP value but the correlation with experi-
ment is weak and the range of predicted values from −2 to 5 
exceeds the experimental range of 0.5 to 3. Evidently, there 
are sizeable sources of error. To probe this further, Table 1 
lists the predicted and experimental logP values, together 
with the corresponding ΔH , TΔS , ΔG values (see Tables S4 
and S5 for the actual simulation values).

Table  1 makes clear that the larger contribution to 
ΔGtransfer

X(oct,wat)
 comes from the enthalpy rather than the entropy, 

although there are cases where entropy dominates such as 
SM27, SM29 or SM40. In general, ΔHtransfer

X(oct,wat)
 is mostly 

negative and TΔStransfer
X(oct,wat)

 is mostly positive, consistent with 
the favourable transfer of the solutes to octanol. The large 
size of the fluctuation in enthalpy is made clear in the aver-
age SEM for ΔHtransfer

X(oct,wat)
 over different simulation repetitions 

which is seen to have a larger SEM of 1.47 kcal mol−1 than 
that of TΔStransfer

X(oct,wat)
 at 0.31 kcal mol−1 , demonstrating that 

the energy fluctuations are more responsible for deviations 
from experiment rather than the entropy calculated by MCC. 

Fig. 2  EE-MCC octanol–water logP values versus experiment with 
SEM error bars for the 22 solutes
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Indeed, Table S1 lists the SEMs for the enthalpy and entropy 
changes for the individual solutes and shows that the SEM 
on the total enthalpy for a given solute is 0.4-2.7 kcal mol−1 
for the different solutes. This is the same size as the 
ΔHtransfer

X(oct,wat)
 , even for simulations on the order of 100 ns for 

fairly small system sizes. Even though energies appear well 
converged in time (Figs. S1 and S2), this suggests that even 
longer and/or more simulations or saving output more often 
would be needed in order to drive down errors in energy, 
although lower errors could also be achieved by considering 
the energy only of the solvent molecules in the solute’s sol-
vation shell, a quantity that was not readily available using 
the standard energy output of AMBER. Alternatively, a 
recent method developed by Kofke and co-workers called 
mapped averaging [59–61] when adapted to liquids could 
substantially reduce the noise in these values.

Entropy components

Even though the logP values produced have substantial 
errors, largely because of statistical errors in the energy, the 
MCC components can be used to better understand how the 
entropy and associated molecular flexibility is being affected 
for all molecules, solute and solvent, in the transfer pro-
cess. We first consider changes in the entropy components. 

Figure 3 illustrates the changes in each entropy component 
in the transfer of each solute from water to octanol.

Data in each case is only for one of the three simu-
lations. The most striking trend as each solute moves 
from water to octanol is the entropy gain of water and the 
entropy loss of octanol, with the latter in general being 
slightly smaller in magnitude. The change in water is well-
known, particularly for hydrophobic molecules. The com-
ponent analysis shows that the entropy gain of water is 
primarily orientational but offset partially by decreases in 
transvibrational and rovibrational entropy, consistent with 
earlier studies [30–33]. This is because water surrounded 
by water has more neighbours able to form hydrogen-
bonds and the hydrogen bonds are stronger. The change 
for octanol is less well-known but not unexpected, given 
that the reduction in symmetry for molecules adjacent to 
solutes tends to constrain solvent molecules. A component 
analysis shows that essentially all terms are negative. Most 
of the decrease is orientational, indicating that octanol 
molecules have disrupted structure and fewer neighbours 
in the presence of the solute. There are smaller losses in 
united-atom topographical entropy, which is conforma-
tional, and in molecule vibration, with smaller reduc-
tions in united-atom rovibration but a tiny gain in united-
atom transvibration. The changes for the solute entropy 
are smaller and variable in direction, indicating that the 

Table 1  ΔH , TΔS , ΔG and 
computed and experimental 
octanol–water logP values for 
the 22 solutes (kcal mol−1)

Submission ID = 28 [37]

Solute X ΔHtransfer
X(oct,wat)

TΔStransfer
X(oct,wat)

ΔGtransfer
X(oct,wat)

logPEE-MCC
X(oct,wat)

 (± SEM) logPexperiment

X(oct,wat)
|ΔlogPX(oct,wat)|

SM25 −1.99 0.45 −2.44 1.79 ± 0.67 2.67 0.88
SM26 1.07 −0.10 1.18 −0.86 ± 0.22 1.04 1.90
SM27 0.67 1.19 −0.52 0.38 ± 0.81 1.56 1.18
SM28 2.16 −0.42 2.58 −1.90 ± 0.56 1.18 3.08
SM29 0.37 0.70 −0.33 0.24 ± 1.93 1.61 1.37
SM30 −1.01 0.72 −1.73 1.27 ± 1.05 2.76 1.49
SM31 −1.09 0.68 −1.77 1.30 ± 0.26 1.96 0.66
SM32 1.99 0.60 1.40 −1.02 ± 0.92 2.44 3.46
SM33 −3.25 1.70 −4.94 3.63 ± 0.30 2.96 0.67
SM34 −2.58 0.28 −2.86 2.10 ± 1.64 2.83 0.73
SM35 0.73 −0.01 0.74 −0.55 ± 1.22 0.88 1.43
SM36 −1.87 0.61 −2.48 1.82 ± 1.25 0.76 1.06
SM37 −0.68 0.76 −1.44 1.05 ± 1.61 1.45 0.40
SM38 −2.97 0.68 −3.66 2.68 ± 1.44 1.03 1.65
SM39 −2.75 1.31 −4.06 2.98 ± 1.97 1.89 1.09
SM40 −0.17 0.68 −0.86 0.63 ± 0.95 1.83 1.20
SM41 −4.29 −0.98 −3.31 2.42 ± 1.59 0.58 1.84
SM42 −7.36 −0.19 −7.17 5.26 ± 1.04 1.76 3.50
SM43 −3.27 0.32 −3.59 2.63 ± 1.06 0.85 1.78
SM44 −6.54 −0.72 −5.82 4.27 ± 0.41 1.16 3.11
SM45 −6.76 −0.36 −6.41 4.70 ± 0.38 2.55 2.15
SM46 −2.90 0.11 −3.01 2.21 ± 0.92 1.72 0.49
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solvent is dominating the change in overall entropy. Most 
solutes have a smaller united-atom conformational entropy 
and a gain in molecular entropy, primarily orientational 
but also vibration. Changes for united-atom vibration are 
more variable. One term left out of this plot is the change 
in positional entropy. Only depending for dilute solutions 
on the molecular volumes of the solvents, this has a con-
stant value of −18 J K−1 mol−1 , reflecting that there are 

fewer solute positions in octanol at a given concentration 
because of the larger volume of the octanol molecule.

A greater understanding of the components comes 
from looking at the absolute entropies. Fig. 4 illustrates 
the entropy components for the 22 solutes in octanol and 
in water and Fig. 5 shows the corresponding entropy com-
ponents for all solvent molecules in the first solvation shell 
of each solute for water or octanol as solvent. Data for each 
solute is shown for only one of the three simulations. The 

Fig. 3  Changes in entropy components as given in Eqs. 9 and 10 for 
water (top), octanol (middle) and the solutes (bottom). The molecule-
level changes are blue for water, red for octanol, and green for the 
solutes. The united-atom changes are coloured orange for octanol and 

pink for the solutes. Each of these components is subdivided further 
into transvibrational, rovibrational and topographical components at 
each level, indicated by shading from dark to light, respectively

Fig. 4  Total entropy and entropy components of each solute in octanol (left) and water (right). Components are coloured as for Fig. 3 for the 
molecule and united-atom levels and transvibrational, rovibrational, and topographical components
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corresponding values of the entropy components are given 
in Figs. S6 and S7 and their SEMs are given in Tables S2 
and S3. The most obvious difference between Figs. 4 and 
5 is that the total entropy of the first-shell solvent is much 
larger than that of the solute, being ∼ 5 times larger for 
water and ∼ 14 times larger for octanol. This is one of the 
main reasons why the entropy of the solvent dominates 
the overall entropy change. The next clear trend is that 
the changes in entropy going from water to octanol, given 
explicitly in Fig. 3, are tiny compared to the total entropy 
values. As for energy in EE methods, changes are a small 
difference between large and comparable numbers. None-
theless, the errors in the entropy components are much 
smaller than that in energy as noted earlier. The plots 
show that the vibrational entropy contributes the most to 
the total entropy for all compounds while topographical 
entropy contributes the least, consistent with earlier work 
[26–33, 35]. The molecule-level vibrational entropy is 
near-identical for all solutes but slightly varying for the 
surrounding solvent. The united-atom entropy terms for 
the solutes are larger and more variable for the solutes 
and for octanol.

Concerning the entropy of the different bioisosteric sol-
utes in Fig. 1, there is a general dependence on the size of 
each solute, with SM39 having the largest entropy and SM44 
the smallest. All but the first four solutes can be divided 
into six groups, each of which has three compounds which 
differ by a methyl, phenyl or dimethylamine functional 
group attached to the sulfonyl group. The groups are G1 = 
SM29-SM31, G2 = SM32-SM34, G3 = SM35-SM37, G4 
= SM38-SM40, G5 = SM41-SM43 and G6 = SM44-SM46. 

A recurring trend within each group that is evident in Fig. 4 
is that the entropy of the solute with methyl is smaller than 
the other two solutes because of methyl’s smaller size. 
Another distinctive trend in the solute entropies in Fig. 4 is 
the lower entropies of the G5 and G6 groups of molecules. 
This occurs because these molecules are smaller and less 
flexible, primarily because they have a heteroaryl ring in 
place of the ethyl fragment that connects the common phenyl 
ring. However, these trends for the solutes do not carry over 
to the solvent entropy terms, the changes in entropy or to the 
overall logP values.

Conclusions

The EE-MCC method to calculate the free energy of a sys-
tem directly from MD simulation has been used to calculate 
the octanol–water logP values of 22 N-acyl sulfonamides 
bioisosters in the SAMPL7 Physical Properties Challenge. 
The mean error versus experiment was 1.8 logP units and the 
standard error of the mean was 1.0 logP units for three sepa-
rate calculations. These errors are primarily due to getting 
sufficiently converged energies to give accurate differences 
of large numbers, particularly for solvent molecules of large 
size and flexibility such as octanol. However, this is also an 
issue for entropy. Other sources of error are approximations 
in the force field and MCC theory, the neglect of water in the 
octanol phase, and different tautomeric states of the solute. 
The main advantages of EE-MCC are its wide applicability 
to many systems and that it explains the entropy in terms of 
all the degrees of freedom and all molecules in the system 

Fig. 5  Total entropy and entropy components for all the solvent mol-
ecules in the solvation shell of each solute (right) and the equivalent 
contribution of bulk solvent without solute (left). Colouring is as for 

Fig.  3 for the molecule and united-atom levels and transvibrational, 
rovibrational, and topographical components
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in a consistent and intuitive framework, which is superior to 
standard structural methods that only assess molecular flex-
ibility for a subset of all degrees of freedom. The enthalpy of 
transfer from water to octanol is mostly favourable, consist-
ent with the hydrophobic nature of the solutes. To explain 
the predominant gain in entropy, most comes from a large 
increase in the orientational entropy of water and a small 
increase in solute vibrational and orientational entropy. This 
is offset by unfavourable changes in the orientational entropy 
of octanol, the vibrational entropy of both solvents, and the 
positional and conformational entropy of the solute. This 
study makes clear the feasibility of Energy-Entropy methods 
for logP calculations, what areas need improvement, and 
how they might be applied to other systems more generally.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10822- 021- 00401-w.
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