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Simple Summary: Medulloblastoma is rare after puberty. Among several molecular subgroups that 

have been described, the sonic hedgehog (SHH) subgroup is highly overrepresented in the post-

pubertal population and can be targeted with smoothened (SMO) inhibitors. However, no practice-

changing prospective clinical trials have been published in adults to date. Tumors often recur, and 

treatment toxicity is relevant. Thus, the EORTC 1634-BTG/NOA-23 trial for post-pubertal patients 

with standard risk medulloblastoma will aim to increase treatment efficacy and to decrease treat-

ment toxicity. Patients will be randomized between standard-dose vs. reduced-dosed radiotherapy, 

and SHH-subgroup patients will also be randomized between the SMO inhibitor sonidegib (Odom-

zoTM,, Sun Pharmaceuticals Industries, Inc., New York, USA) in addition to standard radio-chemo-

therapy vs. standard radio-chemotherapy alone. In ancillary studies, we will investigate tumor tis-

sue, blood and cerebrospinal fluid samples, magnetic resonance images, and radiotherapy plans to 

gain information that may improve future treatment. Patients will also be monitored long-term for 

late side effects of therapy, health-related quality of life, cognitive function, social and professional 

live outcomes, and reproduction and fertility. In summary, EORTC 1634-BTG/NOA-23 is a unique 

multi-national effort that will help to council patients and clinical scientists for the appropriate de-

sign of treatments and future clinical trials for post-pubertal patients with medulloblastoma. 

Abstract: Medulloblastoma is a rare brain malignancy. Patients after puberty are rare and bear an 

intermediate prognosis. Standard treatment consists of maximal resection plus radio-chemother-

apy. Treatment toxicity is high and produces disabling long-term side effects. The sonic hedgehog 

(SHH) subgroup is highly overrepresented in the post-pubertal and adult population and can be 

targeted by smoothened (SMO) inhibitors. No practice-changing prospective randomized data have 

been generated in adults. The EORTC 1634-BTG/NOA-23 trial will randomize patients between 

standard-dose vs. reduced-dosed craniospinal radiotherapy and SHH-subgroup patients between 

the SMO inhibitor sonidegib (OdomzoTM, Sun Pharmaceuticals Industries, Inc., New York, USA) in 

addition to standard radio-chemotherapy vs. standard radio-chemotherapy alone to improve out-

comes in view of decreased radiotherapy-related toxicity and increased efficacy. We will further 

investigate tumor tissue, blood, and cerebrospinal fluid as well as magnetic resonance imaging and 

radiotherapy plans to generate information that helps to further improve treatment outcomes. 

Given that treatment side effects typically occur late, long-term follow-up will monitor classic side 

effects of therapy, but also health-related quality of life, cognition, social and professional outcome, 

and reproduction and fertility. In summary, we will generate unprecedented data that will be trans-

lated into treatment changes in post-pubertal patients with medulloblastoma and will help to design 

future clinical trials. 
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1. Introduction 

Medulloblastoma is a rare condition in adult neuro-oncology practice [1]. Around 

70% of cases occur in patients under 15 years of age, and the peak incidence is around 5 

years of age [2]. The US registry analysis from the Surveillance, Epidemiology, and End 

Results (SEER) database reported that the incidence of medulloblastoma was 0.6 cases per 

million in adults [3]. One can assume that the incidence in Europe is similar to the US, 

summing up to approximately 450 newly diagnosed patients per year in Europe. In post-

pubertal patients, medulloblastoma is equally distributed between sexes [1,4]. 

A staging system was introduced by Chang et al. in 1969 to describe the extent of 

tumoral infiltration (T1–T4) and metastases (M0-M4) in medulloblastoma [5]. T-stage 

likely has a prognostic role in adults [6,7]. Concerning metastasis, M1-M4 is considered 

high-risk in pediatric patients [8,9]. Whether M1 disease has prognostic value in post-pu-

bertal patients and adults is, however, still a matter of debate. 

Depending on genetic subgroups, adult and pediatric medulloblastomas are distinct 

[10–12], which mandates the development of molecularly adapted treatment strategies. In 

addition to molecular differences, clinically relevant features clearly differentiate adult 

from pediatric medulloblastoma. For example, adolescents and adults have a higher inci-

dence of lateral localization of the tumor in the hemispheres of the cerebellum than chil-

dren [13,14]. This localization relates to the known overrepresentation of the SHH sub-

group in adults [10]. In addition, and in contrast to children, SHH mutations in adults are 

at the level of SMO or upstream in the vast majority [15]. While treatment has evolved, 

based on the results of successive randomized clinical trials, in a step-wise fashion in chil-

dren, it has never been optimized for post-pubertal patients in a prospective, randomized 

way [16]. Treatment has therefore been extrapolated from experiences in children, and 

personalized or molecularly stratified therapies have not been developed in adults. The 

most common treatment regimen in adults is radiotherapy of the craniospinal axis only 

or radiotherapy combined with the Packer [17] or Taylor [18] chemotherapy regimen at 

this time. Furthermore, considering the current associated widespread variation in treat-

ment algorithms both within and between countries, multi-national prospective random-

ized trials in the post-pubertal and adult population are highly warranted. Such trials will 

be instrumental in improving treatment guidelines and counseling for the design of future 

clinical trials in this population [16]. In addition, treatment toxicity is high and often in-

cludes declines in neurological function, hearing, and cognition, connected to severe im-

pairments in quality of life and social and professional function [19–23], which also man-

dates approaches to decrease the detrimental side effects of treatment. 

Efficacy data for combined radio-chemotherapy for adult patients with medulloblas-

toma are scarce. The Packer chemotherapy regimen [17,24] has set the basis for a series of 

pediatric trials [23,25,26] and has also been used in adults. It consists of craniospinal radi-

otherapy plus weekly vincristine 1.5 mg/m2 (maximum 2 mg), followed by a maximum of 

eight cycles of lomustine 75 mg/m2 and cisplatin 70 mg/m2 on day 1 and vincristine 1.5 

mg/m2 (max. 2 mg) on day 1, 8, and 15 of six weekly cycles. In a retrospectively evaluated 

cohort of the pediatric HIT-2000 trial, 49 non-metastatic adults who received combined 

radio-chemotherapy experienced a 4-year event-free survival of 74% and OS of 94% [23]. 

These and other data constitute the basis for a compiled estimated 3-year progression free-

survival in adults of around 73% [7,21,23,27]. Alternative chemotherapy regimens that 

move away from a purely Packer-based adjuvant chemotherapy in favor of a less toxic 

alternating cisplatin/cyclophosphamide regimen have not yet been tested in adults. 
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2. Classification of Medulloblastoma 

According to the concept of an integrated diagnosis of the current and upcoming 

WHO classifications of tumors of the CNS, medulloblastoma subgroups must be defined 

by both histological and molecular/genetic features [28]. All medulloblastoma subgroups 

correspond to WHO grade 4. The WHO classification of 2016, as well as the upcoming 

2021 classification [28], describes five molecularly defined medulloblastoma subgroups—

WNT-activated, SHH-activated/TP53 mutated, SHH-activated/TP53 wild-type, group 3, 

and group 4—and four histological patterns—classic, desmoplastic/nodular, with exten-

sive nodularity, and large cell/anaplastic. There is no perfect concordance of the genetic 

and histological subgroups at this time. 

Diagnosis can be further refined by DNA sequencing, which reveals exact mutations, 

with the advantage of informing a clinician regarding the potential suitability of a patient 

for consideration of targeted therapies in SHH medulloblastoma. In adults, SHH-acti-

vated, TP53 wild-type medulloblastomas represent the most frequent subgroup, with 

around 60 to 70% of cases [11]. SHH activation is typically caused by mutations of PTCH1 

or SMO in most adult cases, coding for central critical cell membrane-associated compo-

nents of the SHH pathway that are potentially actionable with SMO inhibitors [15]. SHH 

tumors have similar outcomes in infants (5-year overall survival (OS) rate of 67.3–88.0%), 

children (5-year OS rate of 69.8%), and adults (5-year OS rate of 88.5%) [12], with differ-

ential—and sometimes worse—outcomes for the adult subgroup in the older literature. 

This is likely associated with a specific biology that leads to desmoplastic histology among 

SHH tumors in infants. Subgroups of patients with certain germline alterations such as 

TP53, BRCA2, and PALB2 [29] as well as amplifications of MYC/MYCN [30] bear a worse 

prognosis. However, germline mutations are less commonly found in adults in compari-

son to children, and most mutations are somatic in this population [31]. 

3. Backbone of Therapeutic Strategy in EORTC 1634-BTG/NOA-23 

3.1. Resection 

Most patients initially present with hydrocephalus or symptoms from mass effect 

caused by the tumor. A gross total resection of the primary tumor should therefore be 

considered in all patients to alleviate symptoms and to facilitate rapid diagnosis [32]. In 

patients with group 4 tumors, there is an established association between improved pro-

gression-free survival and gross total resection. In cases where gross total resection is not 

safe and/or feasible, a maximal safe resection, sparing eloquent areas and leaving residual 

tumor behind, should be performed [33]. Best possible resection will therefore be a main-

stay of EORTC 1634-BTG/NOA-23 to set the stage for an effective therapy and also to pro-

vide sufficient tissue for histological and molecular diagnosis and subgrouping. 

3.2. Radiotherapy 

Radiotherapy is an essential component of the combined modality treatment of me-

dulloblastoma and also the backbone of EORTC 1634-BTG. Given the propensity of me-

dulloblastoma to disseminate via the CSF, EORTC 1634-BTG will follow the current prac-

tice in non-infants with confirmed medulloblastoma that consists of craniospinal irradia-

tion (CSI) with a boost to the tumor bed [34]. 

In pediatric cohorts, the quality of radiotherapy strongly relates to survival and func-

tional outcome. Several reports showed that inadequate treatment had a negative impact 

on tumor control and survival [35,36]. A more recent analysis of the PNET5 trial under-

lined the necessity of pretreatment central quality control [37]. Radiotherapy should be 

initiated within 4–6 weeks after surgery, and the course of radiotherapy should ideally be 

performed without interruptions [37,38]. 

Historically, CSI is delivered with a total dose of 36 Gy in daily fractions of 1.8 Gy, or 

of 35.2 Gy in daily fractions of 1.6 Gy, each five times weekly. In addition, a local dose 

escalation to the posterior fossa or, more recently, tumor bed [39] is performed as a boost 
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treatment. Generally, a total dose up to 54/55.8 Gy should be achieved in the boost region 

[6]. Since radiotherapy can generate dose-dependent long-term side effects, dose reduc-

tion of craniospinal axis radiotherapy has been evaluated in clinical trials in children. A 

neuroaxis dose reduction from 36 Gy to 23.4 Gy in combination with chemotherapy has 

been used in pediatric trials [17] and was equivalent in all published trials. The current 

PNET5 trial will evaluate if an even lower total CSI dose of 18.0 Gy is possible in good 

prognostic subgroups. The question of radiotherapy dose reduction has not been investi-

gated in a randomized way in adults; however, single-arm data indicate that a dose re-

duction to 23.4 Gy is feasible without losing efficacy [40]. A phase III trial for patients up 

to 21 years of age with standard-risk disease showed that a CSI dose of 23.4 Gy in 13 

fractions with local dose escalation to the tumor bed of 32.4 Gy in 18 fractions demon-

strated similar efficacy to contemporary studies of higher-dose craniospinal radiotherapy 

[41]. 

Radiotherapy-related toxicity is of concern, especially in patients with long-term sur-

vival, where chronic side effects become relevant. It may include declines in neurocogni-

tive and neuropsychological functioning, social skills, attention, and reading [42–44]. The 

effect of CSI on cognition is dose-dependent [45,46]. Moreover, radiotherapy of the spinal 

axis may contribute to a risk of gonadal dysfunction and subsequent fertility issues in 

female patients caused by scatter irradiation. Long-term survivors of childhood medullo-

blastoma are also at increased risk of secondary tumors, hearing impairment, stroke, poor 

balance, and cataracts [47]. Of caution, the risk for certain side effects, particularly hema-

tological side effects, is higher in older patients. Therefore, high-precision radiotherapy 

techniques to spare the vertebrae represent an important issue [48]. Radiotherapy dose 

reduction with the aim of reducing radiotherapy toxicity will therefore be the most im-

portant clinical secondary endpoint of EORTC 1634-BTG. Based on the referenced data, 

we will adhere to a 35.2 Gy dose to the craniospinal axis in the standard arm, except for 

patients below age 18, who will receive 23.4 Gy. All patients with M0 disease in the exper-

imental arm will receive a reduced 23.4 Gy dose to the craniospinal axis. Patients with M1 

disease will receive 35.2 Gy. 

If available, proton beam therapy can be considered an alternative to helical tomo-

therapy or volumetric modulated arc therapy (VMAT) to reduce the radiation dose out-

side of the target volume and therefore reduce the risk of short-term and long-term side 

effects [49,50]. Similar survival outcomes were reached in children with proton compared 

to photon irradiation [51,52]. However, there are only a few prospective comparisons be-

tween photon and proton treatment with regard to short- and long-term toxicity as well 

as disease outcomes. Proton beam therapy will be encouraged in EORTC 1634-BTG and 

its safety and efficacy will be investigated as a secondary endpoint in comparison to pho-

ton therapy. 

3.3. Combined Radio-Chemotherapy 

Data from recent meta-analyses [53,54] and prospective single-arm trials 

[21,23,27,55,56] strongly suggest a beneficial role of chemotherapy in addition to radio-

therapy in adult patients with medulloblastoma. A recent meta-analysis by Kocakaya et 

al. analyzed 227 publications with 907 patients. Patients who received chemotherapy first-

line survived significantly longer (median OS, mOS: 108 months, 95% CI: 68.6–148.4) than 

patients treated with radiotherapy alone (mOS: 57 months, 95% CI: 39.6–74.4) [53]. In a 

similar meta-analysis, radio-chemotherapy was associated with a superior mOS com-

pared with radiotherapy alone (HR: 0.53; 95% CI: 0.32–0.88, p = 0.01) [54]. 

Prospective single-arm trials in adults and retrospectively evaluated subpopulations 

from pediatric trials corroborate a survival gain through radio-chemotherapy in compar-

ison to radiotherapy. In a prospective trial by Brandes et al. [55,57], 26 high-risk patients 

received two cycles of upfront chemotherapy, either with a MOPP-like regimen or with 

cisplatin, etoposide, and cyclophosphamide, followed by radiotherapy and maintenance 

chemotherapy. After a median follow-up of 7.6 years, the overall PFS and OS rates at 5 
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years were 72% and 75%, respectively. A further analysis of this trial with a median fol-

low-up of 10 years showed that low-risk patients who had received cisplatin-based chem-

otherapy after radiotherapy obtained 5-year and 10-year OS rates of 100%, compared to 

5-year and 10-year OS rates of 100% and 78.6% in patients treated with radiotherapy alone 

[7,27]. The HIT-2000 trial generated an adult observational cohort of 49 patients with non-

metastatic disease patients who received combined radio-chemotherapy with eight doses 

of vincristine 1.5 mg/m2 (maximum 2 mg) during radiotherapy, followed by a maximum 

of eight cycles of lomustine 75 mg/m2 day 1, cisplatin 70 mg/m2 day 1, and vincristine 1.5 

mg/m2 (max. 2 mg) on day 1, 8, and 15 of six-weekly cycles and experienced a 4-year event-

free survival rate of 74% and overall survival rate of 94% [23]. This regimen has been pro-

spectively evaluated with regard to toxicity aspects within the NOA-07 trial [21]. In NOA-

07, toxicity was moderate, with 70% of patients tolerating at least four cycles of chemo-

therapy, all of them with dose modifications. Feasibility appeared to be age-dependent, 

leading to the application of four cycles of chemotherapy in 72.7% of patients below age 

45 and 62.5% of patients aged 45 or above (p = 0.66). Assessing for the specific outcome of 

completion of all eight maintenance cycles demonstrated that 45.5% of all patients 

younger than 45 years completed eight cycles, whereas only 12.5% of patients over 45 

years received all cycles (p = 0.199). Severe adverse events were significantly more fre-

quent in patients older than 45 years of age (p = 0.040). No treatment-related deaths were 

observed. Leukopenia was the major toxicity. Polyneuropathy and ototoxicity were the 

only grade 3 and 4 non-hematological toxicities [21]. 

A combined view on the efficacy and tolerable toxicity of all previously used options 

in the adult setting led to the selection of NOA-07 (HIT-2000, Packer) as the suitable radio-

chemotherapy regimen for the standard arm of a prospective trial in post-pubertal and 

adult patients with medulloblastoma. Based on published data, we concluded that lower-

ing the dosing frequency of vincristine to every second week and the number of mainte-

nance cycles to six would allow clinicians to treat more than 50% of patients with the full 

regimen and acceptable resultant toxicity. As we intend to adhere as much as possible to 

published data, we will not eliminate vincristine from the chemotherapy regimen. Addi-

tionally, carboplatin might be a pragmatic substitute for cisplatin, based on its more fa-

vorable toxicity profile [23,58]. However, no published data thus far have systematically 

replaced cisplatin by carboplatin in adults, and it is therefore deemed not justified to rou-

tinely replace cisplatin with carboplatin in the EORTC 1634-BTG/NOA-23 trial. However, 

if cisplatin-related side effects occur, investigators will be free to substitute cisplatin by 

carboplatin. Strict tapering and stopping rules will apply that will allow early and fast de-

escalation and discontinuation of the drugs used in EORTC 1634-BTG/NOA-23, if pre-

sumptively related symptoms occur. 

3.4. Targeted Therapy 

Medulloblastoma is well understood on a molecular level, and two of the molecular 

subgroups, SHH and WNT, are driven by pivotal signaling pathways that are, in princi-

ple, amenable to targeted therapies [59,60]. A series of clinical trials have been initiated 

that target specific molecular subgroups of medulloblastoma [61,62]. 

At this point, the sonic hedgehog (SHH) subgroup is the population of choice for a 

personalized targeted intervention in adults with medulloblastoma, as this subgroup con-

stitutes the majority of adult patients (60–70%) [11,63], and specific inhibitors of smooth-

ened (SMO), an upstream member of the SHH signaling pathway, are available. In addi-

tion, the use of SMO inhibition as a mechanism to reduce SHH pathway activation holds 

excellent biological rationale, as adult patients within the SHH subgroup have a very low 

frequency of mutations downstream of SMO [10,15]. 

Animal model data [64] and non-randomized trials in patients with SHH-driven tu-

mors [65,66] generated impressive results. An activated hedgehog pathway predicts re-

sponse to SMO inhibition in these tumors [67]. Sonidegib is a potent oral SMO inhibitor, 

which showed efficacy in patients with solid tumors [68] and was evaluated in a phase II 
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(ClinicalTrials.gov: NCT01125800, 26 May 2020) and a phase III trial (ClinicalTrials.gov: 

NCT01708174, 26 May 2020) in pediatric and adult patients with medulloblastoma [69]. 

One of the reasons for low recruitment in these trials was that SMO inhibitors induce 

premature growth plate fusions in children [70], a side effect that is fortunately not rele-

vant in post-pubertal patients and therefore not limiting when growth plates have already 

fused. In the EORTC 1634-BTG/NOA-23 study, only post-pubertal and adult patients will 

be included, avoiding this problem. The recently published MEVITEM trial evaluated 

vismodegib, another SMO inhibitor, plus temozolomide in immunohistochemically de-

fined, recurrent, SHH-driven adult medulloblastoma. In 10 patients in the combination 

arm, PFS-6 was 20% and the overall response rate was 40% (95% CI: 12.2; 73.8), and among 

11 patients with an expected sensitivity according to next-generation sequencing, three 

had a partial response and four remained stable. The authors concluded that the predic-

tion of sensitivity to vismodegib needs further refinements [62]. In addition, sensitivity to 

SMO inhibition is likely lower in this relapsed cohort in comparison to a therapy-naïve 

cohort due to the genetic divergence between primary and relapsed disease [71]. Of note, 

sonidegib also seems to be more effective in comparison to vismodegib in patients with 

medulloblastoma [72]. 

Data on the pharmacokinetics of sonidegib suggest favorable blood–brain barrier 

penetration [68,73]. As medulloblastomas are associated with a disrupted blood–brain 

barrier [74] that correlates to contrast enhancement in MRI [75], sufficient intra-tumoral 

drug levels can be anticipated. In addition, sonidegib will be given in combination with 

radiotherapy in EORTC 1634-BTG/NOA-23, which is thought to further disrupt the 

blood–brain barrier, at least in the short term [76]. 

Sonidegib has a favorable toxicity profile with rare haematological toxicities in 

adults, which is an important point if a combination therapy with classical chemothera-

peutics and radiotherapy is considered. The most frequently reported adverse events with 

combined therapy including sonidegib in 230 patients with basal cell carcinoma were 

muscle spasms (54%), musculoskeletal pain (32%), and myalgia (19%). Increased serum 

creatin kinase (CK) laboratory values occurred in 61% of patients, with 8% of patients 

having grade 3 or 4 serum CK elevations [77]. In a pooled safety analysis of 12 clinical 

studies involving 571 patients with various advanced cancers treated with sonidegib at 

daily doses ranging from 100 mg to 3000 mg, rhabdomyolysis occurred in one patient 

(0.2%) treated with sonidegib 800 mg. Other relevant side effects were alopecia, dysgeusia, 

decreased appetite, nausea, diarrhea, fatigue, abdominal pain, headache, pruritus, and 

minor effects on bone marrow. Therefore, the treatment-limiting side effects of sonidegib 

do not overlap with the typical side effects of radiotherapy, besides a possible, but minor, 

additional toxicity on bone marrow. As CSI and sonidegib have not been investigated in 

a combined manner yet, a run-in phase will be performed in EORTC 1634-BTG/NOA-23. 

4. Trial Design 

Considering the biological and prognostic diversity of pediatric and adult medullo-

blastoma [10,11] and the lack of prospective randomized data in adults, there is an unmet 

medical need to develop efficacious treatment regimens for these patients. This is also true 

in view of the intermediate to dismal prognosis for post-pubertal and adult medulloblas-

toma patients, and the considerable toxicity of craniospinal radiotherapy. The EORTC 

1634-BTG/NOA-23 trial (ClinicalTrials.gov: NCT04402073, 26 May 2020) is a multicenter, 

randomized, controlled, open-label, phase II trial open for M0/M1 medulloblastoma. 

EORTC 1634-BTG/NOA-23 is the first trial worldwide that prospectively enrolls post-pu-

bertal and adult patients with medulloblastoma according to their molecular subgroup in 

a randomized design, with the aim to lower treatment toxicity and increase efficacy in 

these patients (Figure 1). 
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Figure 1. Trial design: Patients will be stratified into their respective genetic subgroups. Randomization will be performed 

into regular-dose (35.2 Gy) and low-dose (23.4 Gy) radiotherapy for all strata, and radio-chemotherapy vs. reduced radio-

chemotherapy plus sonidegib in the SHH subgroup. Chemotherapy consists of 4 doses of vincristine 1.5 mg/m2 (maximum 

2 mg) during radiotherapy, followed by a maximum of 6 cycles of lomustine 75 mg/m2 on day 1, cisplatin 70 mg/m2 on 

day 1, and vincristine 1.5 mg/m2 (max. 2 mg) on day 1 and 15 of 6-weekly cycles. The following modification for post-

pubertal patients aged 17 and below with WNT and group 3/group 4 will apply: these patients will not be treated in the 

EORTC 1634-BTG/NOA-23 trial and will be recommended to participate in a suitable pediatric trial. N = number of pa-

tients; R = randomization; SHH, WNT, group 3/group 4 are medulloblastoma subgroups; M = metastasis; CSI = craniospi-

nal irradiation; Gy = gray; ChemoTx = chemotherapy, ITT = intent to treat. Please note that group 3 patients were not 

included in the initial version of the protocol, but will be included in the amended version 3.0 as depicted. 

The 1634-BTG/NOA-23 trial therefore aims at developing a personalized, genotype-

based, intensity-modulated therapy for post-pubertal and adult patients with newly di-

agnosed medulloblastoma. It will generate a study population with well-annotated clini-

cal data that will be connected to translational subprojects. The translational subprojects 

will enable us to evaluate molecular, radiomic, and radiogenomic data as well as data on 

health-related quality of life (HR-QoL), neurocognitive functioning, and fertility and en-

docrine events to gain deeper insights into subgrouping, risk stratification of adult dis-

ease, therapeutic targets, resistance mechanisms, and the toxicity of these treatments. 

Patients of all medulloblastoma molecular subgroups will be included in the trial and 

treated. Adult patients with M1 disease will be included in 1634-BTG/NOA-23, as there 

are no clear data that M1 disease bears an inferior prognosis in adults [53,58,78]. 

A radio-chemotherapy backbone will be used in the standard as well as the experi-

mental arm. In the experimental arm, CSI dose will be reduced [17,24] and an SMO inhib-

itor, sonidegib, will be added for patients with SHH-activated medulloblastoma, based on 

its biological rationale and published clinical data [68,69,73]. Based on the referenced data 

that suggest equal efficacy of 35 Gy vs. 23.4 Gy CSI doses [17,40,41,79], the reduction of 

toxicity with dose-reduced CSI while maintaining efficacy will be investigated by using 

35.2 Gy in the standard vs. 24.6 Gy in the experimental arm of the trial. The EORTC 

1634/NOA-23 chemotherapy regimen will consist of four doses of vincristine 1.5 mg/m2 

Adult Group 3/4 M0-1 
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(maximum 2 mg) during radiotherapy, followed by a maximum of six cycles of lomustine 

75 mg/m2 on day 1, cisplatin 70 mg/m2 on day 1, and vincristine 1.5 mg/m2 (max. 2 mg) on 

day 1 and 15 of six-weekly cycles. Considering that post-pubertal patients with SHH-sub-

group medulloblastomas are the prime target population for SHH inhibitors [15,67], an 

increase in efficacy in the SHH subgroup will be the primary efficacy endpoint. As no 

formal combination data of sonidegib with radiotherapy are available at this time, a run-

in phase with 10 patients will be included in EORTC 1634-BTG/NOA-23, who will be ob-

served closely for unexpected toxicity. 

The EORTC 1634-BTG/NOA-23 trial will be performed in more than 40 sites in Eu-

rope and Australia. A list of activated participating sites can be found at https://www.clin-

icaltrials.gov/ct2/show/NCT04402073, accessed on 26 May 2020. 

5. Objectives 

The primary objective of 1634-BTG/NOA-23 is to compare progression-free survival 

of a personalized intensity-modulated therapy (experimental arm; sonidegib) vs. stand-

ard therapy in the SHH-dependent subgroup. Secondary objectives include the reduction 

of radiotherapy toxicity with a dose-reduced CSI while maintaining efficacy and addi-

tional efficacy objectives. As patient-reported outcomes are highly important in a setting 

where young patients in the middle of their lives are affected, short- and long-term health-

related quality of life (HR-QoL), neurocognitive function, social outcome, and fertility/en-

docrine function as well as fertility interventions will be related to these data. Even if the 

primary objective of the trial should remain negative, the secondary objectives will enable 

us to better understand the individual value of this risk-stratified personalized therapy 

approach, which not only bears the chance for enhanced efficacy, but also the risk of en-

hanced toxicity during the entire disease trajectory. 

A number of translational research objectives aim to construct measurable parame-

ters that can predict the clinical outcome of post-pubertal patients with medulloblastoma. 

This includes a more precise classification of subgroups using molecular data and radio-

genomic classifiers, as well as the evaluation of molecular characteristics within the SHH 

subtype that may explain response patterns, testing of the feasibility of circulating tumor 

DNA (ctDNA) from cell-free cerebro-spinal fluid (CSF) and blood for molecular sub-

grouping, detection of minimal residual disease, and detection of new molecular targets, 

pathway modifiers, and resistance mechanisms in the SHH subgroup. We further will 

evaluate biomarkers from tumor tissue within the SHH subtype that may explain early 

side effects and predict radiotherapy toxicity and endocrinology and fertility issues. These 

translational objectives will also add important information to the design of future trials 

in medulloblastoma. 

6. Evaluation of Efficacy and Statistics 

Verification of inclusion and exclusion criteria will be done centrally and includes a 

neuropathology review and molecular subgroup analysis, which classifies patients ac-

cording to their molecular subgroup (SHH, WNT, group 3, and group 4). Patients will be 

centrally randomized between the standard and experimental arm. A minimization tech-

nique will be used for random treatment allocation stratified by country, type of radio-

therapy (proton versus photon), and age (≤30 vs. >30) in the SHH subgroup and type of 

radiotherapy (proton vs. photon) in the WNT, group 3, and group 4 subgroups. SHH-

activated patients under age 18 with M1 disease and patients under age 18 in the WNT-, 

group 3, and group 4 subgroups will not be enrolled, and will be recommended to partic-

ipate in the HRMB or PNET5/SIOP trials, depending on their risk profile. Adults with M1 

disease in the WNT, group 3, and group 4 subgroups will be enrolled, but not random-

ized, and will be treated with standard radio-chemotherapy. 

The total number of patients to be registered is estimated at 205, including 128 SHH 

M0-1 eligible patients who started their allocated treatment. 
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Treatment decisions will be based on the adapted response assessment in pediatric 

neuro-oncology (RAPNO) criteria [75] as assessed by the local investigator. Imaging will 

be verified by a central review board at the time point of patient inclusion and suspected 

tumor progression. Response to treatment will be assessed on the basis of an MRI of the 

brain and spine, CSF cytology, and the neurologic exam. 

The evaluation of progression-free survival (PFS) in patients with SHH-subgroup 

medulloblastoma in comparison of the standard vs. experimental arm will be powered 

statistically as the primary endpoint. We hypothesize that the addition of sonidegib to the 

standard treatment will increase the progression-free survival (PFS) rate at 3 years in a 

statistically significant and clinically meaningful way. A PFS rate at 3 years equal to 86.6% 

in the experimental arm (HR, Hazard Ratio, equal to 0.456) is considered clinically rele-

vant compared to an expected PFS-3 of 73.0% in the standard arm for SHH-subgroup pa-

tients based on cumulative prior literature [7,21,23,27]. We plan to show this difference at 

one-sided 10% significance (20% two-sided) and with 90% power and assume a cumula-

tive drop-out rate at 3 years of 5% in each treatment arm. Based on these assumptions, 43 

PFS events in the standard arm of the SHH subgroup are needed to evaluate the primary 

endpoint. For the WNT subgroup, group 3, and group 4, differences in PFS between the 

treatment arms will be assessed in the intent-to-treat patients (ITT) population. Assuming 

a monthly accrual of 4.26 patients after an activation period of 1 year, 128 eligible patients 

from the SHH subgroup who started their allocated treatment will be randomized be-

tween the standard arm and experimental arm during 36 months and followed-up for 55 

months with a total duration of 91 months. 

The evaluation of safety in medulloblastoma patients in the SHH, WNT, group 3, and 

group 4 subgroups in comparison of the standard vs. experimental arm will be performed 

with descriptive intent only, based on CTCAE criteria. 

7. Translational Research 

Several reference and translational work packages are based on the prospective ran-

domized EORTC-1634/NOA-23 phase II trial. The trial backbone will allow the generation 

of data and bio- as well as imaging material that will be processed to the reference centers 

and translational work packages (Figure 2). 

 

Figure 2. Graphic representation of the overall trial and translational project organization: EORTC is the sponsor of the 

trial, will host the trial in cooperation with Neuro-Onkologische Arbeitsgemeinschaft in der Deutschen Krebsgesellschaft 

(NOA), and ensure processing of clinical data, imaging data, and biomaterial that are analyzed within the translational 

subprojects. Reference sites for neuropathology, neuroimaging, and radiotherapy quality assurance have been defined 

and will directly receive biomaterial from sites and MRI images and voxel-based radiotherapy plans from the EORTC 
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imaging platform and EORTC quality assurance in radiotherapy (RT-QA) platform. Neuro-cognition (NCF), health-re-

lated quality of life (HRQoL), and fertility and endocrine function will be assessed centrally. Responsible sites and princi-

pal investigators are named in the respective task boxes. WP = work package; FFPE = formalin-fixed paraffin-embedded; 

CSF = cerebrospinal fluid; CRF = case report form; MRI = magnetic resonance imaging; N’pathol = neuropathology; CRO 

= contract research organization. 

7.1. Neuropathology Reference and Subgrouping 

The main aim of the neuropathology reference and molecular grouping part is to 

provide a state-of-the-art molecular and histological sub-classification of post-pubertal 

medulloblastoma, to allow for the identification of new molecular targets, pathway mod-

ifiers, and resistance mechanisms, as well as to ensure suitable material for further analy-

sis in other work packages [16,60]. The entire trial population will be subjected to central 

neuropathology assessment, with one European site and one Australian neuropathology 

site performing these central reviews. After exclusion of non-medulloblastomas, all cases 

will be molecularly analyzed by methylation-based classification employing the 850 K 

chip and detection of targetable mutations by next-generation panel sequencing (NGS) 

[80,81]. 

7.2. Genotype-Based Subgrouping and Target Detection from Liquid Biopsies 

In this work package, we aim to identify and establish novel innovative biomarkers 

for response prediction and treatment monitoring to inform EORTC 1634-BTG/NOA-23 

trial interpretation, but also future refined clinical trials. RNA sequencing data from fresh 

frozen tumor samples generated in this work package will be used for biomarker discov-

ery, including the prediction of treatment response to SMO inhibition, identification of 

potential resistance mechanisms, and prediction of genotype-associated treatment tox-

icity. For this purpose, RNA sequencing data will be integrated with DNA methylation 

array data and panel sequencing data from primary tumor samples generated in the neu-

ropathology subproject as well as circulating tumor DNA (ctDNA) data, imaging, and 

clinical outcome. 

The work package will also test the feasibility of using ctDNA from CSF and blood 

for molecular subgrouping and treatment monitoring to assess minimal residual disease 

[82]. CSF and blood will be collected from all patients at baseline. Analyses of ctDNA 

using NGS gene panel sequencing will be used to track SHH-associated mutations in the 

CSF and blood. Patients with medulloblastoma predicted as SHH that harbor an SHH-

associated mutation will undergo liquid biopsies at three additional time points, follow-

ing radiotherapy, following chemotherapy, and in case of relapse. The overall ambition is 

to identify novel, more precise predictive and minimal residual disease biomarkers for 

response prediction to radiotherapy, conventional chemotherapy, and SMO inhibition in 

post-pubertal SHH medulloblastoma patients to inform the next generation of trials. 

7.3. Imaging and Radiotherapy-Related Biomarkers 

Image analysis driven by deep learning enables new insights into tumor biology and 

how it is reflected in the imaging phenotype [83–85]. Within this work package, we will 

combine information derived from imaging data with clinical and genomic data from the 

other work packages towards two overarching goals: the first is to investigate the geno-

type-/imaging relationship in medulloblastoma. For this, we will associate clinical data 

and genomic data with imaging features through an automated pipeline, yielding non-

invasive prediction models of the genotype and clinical variables from imaging data, as 

we already demonstrated for glioma [86]. We will also correlate—secondly—imaging and 

radiotherapy with clinical data to deepen the understanding of patterns of treatment fail-

ure [87,88] and radiotherapy-associated neurotoxicity. A flexible data analysis platform 

will be developed that allows integrative analysis of imaging, clinical, and genomic data. 

Results from this subproject have the potential to assist clinical decision-making both for 

targeted therapies as well as radiotherapy. In addition, the potential to non-invasively 
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observe genotype changes may help to shed further light on the development of treatment 

resistance. 

In addition, we will also compare proton-based and photon-based radiotherapy in 

view of their toxicity on craniospinal axis function and on other systems including bone 

marrow function, neuro-cognitive function, hearing, endocrine function, and fertility. 

7.4. Neurocognitive Function 

In post-pubertal patients with medulloblastoma, information on the mechanism of 

development of deficits in neurocognitive function (NCF), and thus insight into the po-

tential future avenues for preventing treatment-related neurotoxicity, is widely lacking. 

NCF impairment after craniospinal irradiation is more severe in young patients with me-

dulloblastoma, but is also prevalent in those irradiated as adults [89]. Impairments nega-

tively affect daily life activities and psychosocial functioning [90]. In addition, NCF not 

only has independent prognostic significance on survival [91], but neurocognitive deteri-

oration also indicates tumor progression before signs of disease recurrence are evident on 

MRI [92]. 

Since a combination of brain lesions, treatment side effects, and psychological dis-

tress is likely to contribute to neurocognitive dysfunction in an individually unpredictable 

way, it is most pragmatic to choose a core testing battery that gauges a broad range of 

neurocognitive functions. The test battery that meets this prerequisite in the best way has 

successfully been used in a number of multicenter clinical trials and has been recom-

mended by the International Cognition and Cancer Task Force [93]. This clinical trial bat-

tery comprises the Hopkins Verbal Learning Test—Revised (HVLT-R) for total recall, de-

layed recall, and delayed recognition indexing verbal learning and memory [94]; the Trail 

Making Test (TMT part A and part B), which measures attention, visual–motor scanning 

speed, and executive function, and the Controlled Oral Word Association Test (COWA), 

which evaluates the spontaneous production of words under restricted search conditions 

[95]. In patients with medulloblastoma, cerebellar compromise due to tumor infiltration 

or treatment side effects may give rise to distinct deficits in executive functioning, linguis-

tic processing, spatial cognition, and affect regulation. Therefore, NCF assessment in this 

trial will also include the cerebellar cognitive affective/Schmahmann syndrome scale [96]. 

The NCF tests will be administered by centrally trained and certified healthcare per-

sonnel—for example, a research nurse or neuropsychologist. 

7.5. Health-Related Quality of Life 

HRQoL is a highly relevant domain in the outcome of young adults with cancer 

[97,98]. Although data are scarce, previous studies have shown that HRQoL outcomes in 

adult medulloblastoma patients are poor directly postoperative, but improved during 

treatment up to 30 months post-treatment, after which scores deteriorate again [21,99]. In 

the 1634-BTG study, HRQoL outcomes will be assessed longitudinally to determine the 

impact of the tumor and different treatment regimens on aspects of HRQoL and survivor-

ship during the disease course. We will correlate health-related quality of life (HR-QoL) 

and neurocognitive function (NCF) data at baseline and during the treatment course. 

The primary HR-QoL scale that is considered relevant for this study is social func-

tioning, as patients are typically younger adults with an active family and social life. The 

other scales from the EORTC QLQ-C30 and QLQ-BN20 [100] questionnaires will be con-

sidered exploratory in nature. Selected items from the survivorship questionnaire QLQ-

SURV111 will also be used [101], including issues related to recurrence, mort-

gage/loans/insurance, job opportunities and life plans/goals, and relationships with 

friends and family. Mean HRQoL and survivorship scores over time, as well as mean 

changes in scores over time, will be evaluated. Relevant subgroup analyses (e.g., SHH 

subgroup vs. WNT subgroup vs. group 3 and group 4; or proton- vs. photon-based crani-

ospinal radiotherapy) will be performed and HRQoL outcomes will be compared with 

data from the pediatric population in order to determine similarities in neurotoxicity. 
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7.6. Fertility and Endocrine Function 

Radiotherapy and systemic therapy in medulloblastoma patients have a high risk of 

causing loss or damage of gonadal tissue or gametes or loss or reduction in sex hormones. 

These abnormalities may result in reproductive complications in survivors of medullo-

blastoma [102,103]. Potential and actual infertility affects the future quality of life of pa-

tients, leads to psychological distress, and is a predictor of stress in present and future 

relationships [104]. 

With the development of fertility preservation strategies and oncofertility care, which 

have been laid down in international guidelines, an increasing number of patients of re-

productive age are being referred for fertility preservation and may be able to plan for a 

biological child after cancer treatment [105]. However, there are a number of barriers to 

delivering oncofertility care [106], including the lack of available reproductive infor-

mation that is documented in clinical trials’ protocols about the gonadotoxic and terato-

genic risk of new treatment modalities and recommendations for oncofertility care [107]. 

Very limited gonadotoxic data are available for patients with medulloblastoma and 

patients taking SMO inhibitors [108]. As part of the EORTC 1634-BTG/NOA-23 study, 

protocol patients will therefore have an opportunity to consent to an additional fertility 

substudy. This prospective longitudinal fertility study will describe the uptake and utili-

zation of oncofertility care as well as psychosocial and mental health-related issues sur-

rounding cancer patients of reproductive age. Patients will complete a fertility question-

naire at diagnosis and 12 months, 36 months, and 60 months after the end of treatments. 

In sites suitable for more detailed substudies, female patients will be assessed for men-

strual cycles, reproductive hormones, and antral follicle count measured on pelvic ultra-

sound scan. Male patients will be assessed for testicular volume, semen analysis, and re-

productive hormones. 

7.7. Comparison of Data with Data from Pediatric Trials 

Important efficacy, safety, and translational endpoints from clinical data as well as 

biomaterial and imaging data raised in EORTC 1634-BTG/NOA-23 will be statistically 

compared to the pediatric and adolescent SIOP-PNET5-MB medulloblastoma trial (Clini-

calTrials.gov: NCT02066220) [37]. Endpoints of EORTC 1634-BTG/NOA-23 and functional 

scores used within the study have been harmonized with PNET5. 

8. Summary and Outlook 

EORTC 1634-BTG/NOA-23 will be the first prospective randomized trial in post-pu-

bertal pediatric and adult patients with medulloblastoma worldwide. In view of novel 

combination therapies, it will, for the first time, use a targeted therapy, sonidegib, in com-

bination with radio-chemotherapy in a randomized setting, based on evaluation of the 

genetic subtype of medulloblastoma, and will therefore be personalized. Its main objec-

tives will be to investigate if there is increased efficacy in the SHH subgroup due to the 

addition of the SMO inhibitor, sonidegib, and to assess in the whole population whether 

a reduction in radiotherapy toxicity can be attained without compromising efficacy by 

using a lower dose of radiotherapy. 

Translational projects including molecular subgrouping, biomarker design, MRI-im-

aging evaluation, radiotherapy quality assurance, and evaluation of neuro-cognitive func-

tion, health-related quality of life, and fertility/endocrine function are closely connected 

to the trial. As a result of this, EORTC 1634-BTG/NOA-23 will improve the characteriza-

tion of medulloblastoma in post-pubertal adolescents and adults through clinical, molec-

ular, and imaging biomarkers. EORTC 1634-BTG/NOA-23 will thereby have a potentially 

high impact on relieving the burden of medulloblastoma in post-pubertal patients. Infor-

mation gleaned from this study will ultimately help to decrease short- and long-term tox-

icity and thereby inform therapeutic teams on how to best reintegrate affected patients 

into their social and professional lives. 
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Both the EORTC 1634-BTG/NOA-23 trial and the connected translational work pack-

ages aim to support research that advances therapeutic approaches while providing the 

best possible outcome with the least toxicity for each individual patient. EORTC 1634-

BTG/NOA-23 will therefore generate a wealth of data that can be explored in view of fu-

ture clinical-translational and basic science-translational development, not only in pa-

tients with medulloblastoma but also in other rare cancers. 
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