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Abstract: Secure user access to devices and datasets is widely enabled by fingerprint or face recogni-
tion. Organization of the necessarily large secure digital object datasets, with objects having content
that may consist of images, text, video or audio, involves efficient classification and feature retrieval
processing. This usually will require multidimensional methods applicable to data that is represented
through a family of probability distributions. Then information geometry is an appropriate context
in which to provide for such analytic work, whether with maximum likelihood fitted distributions or
empirical frequency distributions. The important provision is of a natural geometric measure struc-
ture on families of probability distributions by representing them as Riemannian manifolds. Then the
distributions are points lying in this geometrical manifold, different features can be identified and
dissimilarities computed, so that neighbourhoods of objects nearby a given example object can be
constructed. This can reveal clustering and projections onto smaller eigen-subspaces which can make
comparisons easier to interpret. Geodesic distances can be used as a natural dissimilarity metric
applied over data described by probability distributions. Exploring this property, we propose a new
face recognition method which scores dissimilarities between face images by multiplying geodesic
distance approximations between 3-variate RGB Gaussians representative of colour face images,
and also obtaining joint probabilities. The experimental results show that this new method is more
successful in recognition rates than published comparative state-of-the-art methods.

Keywords: entropy; information geometry; cyber security; classification; feature recognition; retrieval

MSC: 53B20; 62M40; 60D05

1. Introduction

It is probable that the widest use of cyber security software is in face and fingerprint
recognition, with perhaps a billion or more users of phones, tablets and laptops thereby
gaining daily access to their devices. The classification and searching of digital datasets for
retrieving images or other objects usually will require multidimensional methods because
the features used in classification depend on statistically distributed data. Information
geometry provides a natural Riemannian metric structure on smooth spaces of probability
density functions. This means that changing properties of a dataset or a subset thereof can
be represented on a trajectory in the space of distributions with a natural distance function
monitoring the changes. Very high dimensional datasets can be projected onto smaller
spaces of features by dimensionality reduction, via eigenvalues of the positive definite
symmetric matrices of inter-feature distances [1].

In the context of data represented via probability distributions, multivariate Gaussian
distributions are a common choice in representing features in complex large datasets, in
consequence of their maximal entropy for given mean and covariance; we outline their

Entropy 2021, 23, 878. https://doi.org/10.3390/e23070878 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4000-903X
https://doi.org/10.3390/e23070878
https://doi.org/10.3390/e23070878
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23070878
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23070878?type=check_update&version=1


Entropy 2021, 23, 878 2 of 10

geometry in Section 2. We described in [2,3] an efficient method for colour face image
recognition using information geometry in such a way that each face image was represented
by a set of 3-variate Gaussians, one for the vicinity of each landmark point in the face.
The three variables are the RGB colours of pixels and we used sums of geodesic distance
approximations between them at corresponding landmarks of distinct images to measure
dissimilarities between face images. Such geodesic distance approximations between k-
variate Gaussians are presented in Section 3. Here in Section 4 we describe a new face
recognition method which represents face dissimilarities via the product of such geodesic
distances and via joint probabilities. This new method proves to be better than comparable
state-of-the-art other face recognition methods.

2. Multivariate Gaussian Distributions

In the classification of large sets of digital data objects, a common practical choice
is the numerical representation of individual features through multivariate Gaussian
distributions, which have a maximal entropy property among distributions with a given
mean vector and covariance matrix. Then we have, as described below, an information
metric on the space of such multivariate Gaussian probability density functions and we
can retrieve all objects with a given feature near to that of a chosen object.

The k-variate Gaussian distributions have the parameter space

Rk ⊕R(k2+k)/2

with probability density functions f (x; µ, Σ) given by:

f (x; µ, Σ) =
e−

1
2 (x−µ)TΣ−1(x−µ)√

(2π)k|Σ|
, (1)

where x ∈ Rk is a possible value for the random variable, µ ∈ Rk a k-dimensional mean
vector, and Σ ∈ R(k2+k)/2 is the k× k positive definite symmetric covariance matrix, for
features with k-dimensional representation [4]. In such cases the parameters are obtained
using maximum likelihood estimation, as was the case for face recognition applications [3].
The Riemannian manifold of the family of k-variate Gaussians for a given k is well under-
stood through information geometric study using the Fisher information metric. For an
introduction to information geometry and a range of applications see [5–7].

The Fisher information metric is a Riemannian metric defined on a smooth statistical
manifold whose points are probability measures from a probability density function. The
Fisher metric determines the geodesic distance between between points in this Rieman-
nian manifold. Given a statistical manifold with coordinates θ = (θ1, θ2, . . . , θn), and a
probability density function p(x, θ) as a function of θ, the Fisher information metric is
defined as:

gjk(θ) =
∫

X

∂ log p(x, θ)

∂θj

∂ log p(x, θ)

∂θk
p(x, θ) dx, (2)

which can be understood as the infinitesimal form of the relative entropy and it is also
related to the Kullback-Leibler divergence [6,7]. Moreover, a closed-form solution for the
Fisher information distance for k-variate Gaussian distributions is still unknown [8]. The
entropy of the k-variate Gaussian (1) is maximal for a given covariance Σ, and mean µ, and
it is independent of translations of the mean

H(µ, Σ) = −
∫ ∞

0
f (x) log f (x) dx =

1
2

log(2πe|Σ|)k. (3)

The natural norm on mean vectors is

||µ|| =
√

µTΣ−1µ (4)
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and the eigenvalues {λi}i=1···k of Σ yield a norm on covariances:

||Σ|| =

√√√√ k

∑
i
(λi)2 (5)

The information distance, that is the length of a geodesic, between two k-variate
Gaussians f A and f B is the infimum over the length of curves from f A to f B. It is known
analytically in three particular cases:

Diagonal covariance matrix: Σ = Diag(σ1, ..., σk) : f A = (k, µA, ΣA), f B = (k, µB, ΣB)
Here Σ is a diagonal covariance matrix with null covariances [8]:

Dσ( f A, f B) =

√√√√√√√2
k

∑
i=1

log s

∣∣∣( µi
A
√

2
, σi

A)− ( µi
B
√

2
,−σi

B)
∣∣∣+ ∣∣∣∣( µA

i√
2

, σi
A)− (

µB
i√
2

, σi
B)

∣∣∣∣∣∣∣( µi
A
√

2
, σi

A)− ( µi
B
√

2
,−σi

B)
∣∣∣− ∣∣∣( µi

A
√

2
, σi

A)− ( µi
B
√

2
, σi

B)
∣∣∣


2

. (6)

Common covariance matrix: ΣA = ΣB = Σ : f A = (k, µA, Σ), f B = (k, µB, Σ)
Here Σ is a positive definite symmetric quadratic form and gives a norm on the
difference vector of means:

Dµ( f A, f B) =

√
(µA − µB)

T · Σ−1 · (µA − µB). (7)

Common mean vector: µA = µB = µ : f A = (k, µ, ΣA), f B = (k, µ, ΣB)
In this case we need a positive definite symmetric matrix constructed from ΣA and
ΣB to give a norm on the space of differences between covariances. The appropriate
information metric is given by Atkinson and Mitchell [9] from a result attributed to
S.T. Jensen, using

SAB = ΣA−1/2 · ΣB · ΣA−1/2
, with {λAB

j } = Eig(SAB) so

DΣ( f A, f B) =

√√√√1
2

k

∑
j=1

log2(λAB
j ). (8)

In principle, (8) yields all of the geodesic distances since the information metric is in-
variant under affine transformations of the mean [9] Appendix 1; see also the article of
P. S. Eriksen [10].

In cases where we have only empirical frequency distributions, and empirical esti-
mates of moments, we can use the Kullback-Leibler divergence, also called relative entropy,
between two k-variate distributions

f A = (x; µA, ΣA), f B = (x; µB, ΣB)

with given mean and covariance matrices, its square root yields a separation measure-
ment [11,12]:

KL( f A, f B) =
1
2

log(
det ΣB

det ΣA ) +
1
2

Tr[ΣB−1 · ΣA]

+
1
2

(
µA − µB

)T
· ΣB−1 ·

(
µA − µB

)
− k

2
. (9)
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This is not symmetric, so to obtain a distance we can take the average KL-distance in
both directions:

DKL( f A, f B) =

√
|KL( f A, f B)|+ |KL( f B, f A)|

2
(10)

The Kullback-Leibler distance tends to the Fisher information distance as two distributions
become closer together; conversely it becomes less accurate as they move apart. Using only
the first and last term in (11) together with (10), we define a divergence DKLΣ( f A, f B) by

DKLΣ( f A, f B) =
1
2

(√∣∣∣∣12 log
(

det ΣB

det ΣA

)
+

1
2

Tr[Σ−B.ΣA]− k
2

∣∣∣∣
+

√∣∣∣∣12 log
(

det ΣA

det ΣB

)
+

1
2

Tr[Σ−A.ΣB]− k
2

∣∣∣∣
)

. (11)

The Kullback-Leibler divergence does in fact induce the Fisher metric [5,6]. However,
there are other geometries with known closed-form solutions for the geodesic distance
between k-variate Gaussians such as the one defined by the L2-Wasserstein metric which is
derived by the optimal transport problem in which the mass of one distribution is moved
to the other [13]. In this geometry, the space of Gaussian measures on a Euclidean space
is geodesically convex and corresponds to a finite dimensional manifold since Gaussian
measures are parameterized by means and covariance matrices. By restricting it to the space
of Gaussian measures inside the L2-Wasserstein space, giving a Riemannian manifold which
is geodesically convex, several authors derived a closed-form solution for the distance
between two such Gaussian measures A, B, for example Takatsu [13]:

W( fA, fB)
2 = |µA − µB|+ Tr[ΣA] + Tr[ΣB]− 2Tr[ΣA

1
2 ΣBΣA

1
2 ]

1
2 . (12)

Additionally, Bhatia et al. [14] used the Bures-Wasserstein distance on the space of
k-variate Gaussian distributions with zero means in the form:

BW( fA, fB)
2 = Tr[ΣA] + Tr[ΣB]− 2Tr[ΣA

1
2 ΣBΣA

1
2 ]

1
2 . (13)

3. Geodesic Separation between k-Variate Gaussians

Using the results in Section 2 from [15], we investigated in [2,3] the following possible
choices for approximating the geodesic distance between two k-variate Gaussians F1, F2
with arbitrary means:

Gg
µ(F1, F2) = 0.5

√
(µ1 − µ2)

T(Σ1)
−1(µ1 − µ2)

+ 0.5
√
(µ1 − µ2)

T(Σ2)
−1(µ1 − µ2), (14)

and,

Gh
µ(F1, F2) =

√
(µ1 − µ2)

T
(

Σ1 + Σ2

2

)−1

(µ1 − µ2) . (15)

From (8), GΣ(F1, F2) between the covariances at fixed mean is given by:

GΣ(F1, F2) =

√√√√1
2

k

∑
j=1

log2(λ12
j ) with S12 = Σ1

−1/2 · Σ2 · Σ1
−1/2, (16)

and {λ12
j } = Eig(S12).
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This led to two distinct ways to approximate the geodesic distance between k-variate Gaussians,

Gg(F1, F2) =
Gg

µ(F1, F2) + GΣ(F1, F2)

2
, or (17)

Gh(F1, F2) =
Gh

µ(F1, F2) + GΣ(F1, F2)

2
. (18)

In the context of face recognition, dissimilarity metrics can be very useful to measure
dissimilarities between face images or between patches of face images. Accordingly,
geodesic distance approximations such as Gg and Gh, Equations (17) and (18), can be
employed as a dissimilarity metric between probability distributions representative of face
landmarks [2,3] as we show in the face recognition approach that we present next.

4. Face Recognition Experiments

The distance between two Gaussian distributions lying in the Riemannian manifold
of k-variate Gaussians is given by the arc length of a minimizing geodesic curve which
connects both Gaussians. Moreover, geodesics are intrinsic geometric objects and they are
invariant under smooth transformations of coordinates, so in particular the length of a
segment is invariant under scale changes of the random variables, from which the mean
vectors and covariances are computed.

Consequently, geodesic distances play the role of a natural dissimilarity metric in
biometric applications which represent features by probability distributions such as face
recognition [2,3]. In such applications, landmark topologies can be used to locate and
extract compact biometric features from characteristic face locations in high resolution
colour face images [16,17].

Since an analytic form for the geodesic distance in the Riemannian manifold of k-
variate Gaussians is currently unknown, here we approximate it by constructing approx-
imations applied in a set of face recognition experiments with features represented as
k-variate Gaussians.

In order to extract efficient features for face recognition, we used the FEI Face database [18],
which provides colour (RGB) face images with 640× 480 pixels. The database images were
taken against a white homogenous background, with the head in the upright position, turn-
ing from left to right, and there are varying illumination conditions and face expressions.
Since the images are 3-channeled (RGB), so here k = 3.

Also, we made use of another challenging database, namely the FERET Face Database [19],
which provides colour (RGB) face images with 512× 768 pixels organized in several subsets
with specific head pose, expression, age, and illumination conditions.

To extract meaningful features from face images of both databases, we adopted the
landmark topology presented in Figure 1 with seven landmarks at characteristic face
locations such as eyebrows, eyes, nose, mouth and chin (in red dots), together with three
equally spaced interpolated landmarks between each pair of consecutive landmarks (in
blue), leading to a total of L = 25 landmarks for each face image. Next, all pixels inside
squared patches with size 11× 11 centred at each landmark location are extracted, leading
to a feature space dimensionality of 3025 pixels.

However, it is possible to reduce this high-dimensionality feature space and preserve
its discriminative properties by representing each landmark ` by the 3-dimensional mean
µ` and the 3-variate covariance matrix Σ` of each extracted face patch, using images with
three colour channels (RGB). Accordingly, each landmark is represented by 9 dimensions
(3 from the mean and 6 from the covariance matrix since it is symmetric). As result, the
original feature space dimensionality is reduced to 225. Experimentally, the optimally small
landmark topology, interpolated landmark number L and vicinity size were determined,
leading to the landmark number L = 25 and square patches with size 11× 11 pixels.
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Figure 1. Adopted landmark topology in the FEI Face Database with varying face poses and
expressions [18].

Therefore, by representing each face image as an ordered sequence of probability
distributions as in previous approaches [2,3], dissimilarities between distinct face images
were scored by summing geodesic distances between 3-variate Gaussians representative of
corresponding landmarks of pairs of face images x and y. Differently here, we obtained
an improved score function for dissimilarities between face images by multiplying the
geodesics between corresponding landmarks as follows. We define the functions:

Using (µ, Diag(Σ)) : Sd
x,y =

L

∏
l=1

Dσ(F`
x , F`

y ), (19)

Using (µ, Σ) : Sg
x,y =

L

∏
l=1

Gg(F`
x , F`

y ), (20)

Using (µ, Σ) : Sh
x,y =

L

∏
l=1

Gh(F`
x , F`

y ), (21)

Using (µ, Σ) : Sw
x,y =

L

∏
l=1

W(F`
x , F`

y ). (22)

where F`
x and F`

y represent 3-variate Gaussians, F`
x(µ

`
x, Σ`

x) and F`
y (µ

`
y, Σ`

y), respectively,
` is the `th landmark from a total of L landmarks, and Sd

x,y, Sg
x,y, Sh

x,y, Sw
x,y are score

functions applicable to images x and y. Clearly, in our experiments we cannot use the
Bures-Wasserstein distance, Equation (13), since we measure varying means for our RGB
variables, but the Wasserstein distance, Equation (12), is suitable and we tested it with the
score in Equation (22). Equation (12) might be worth investigating further in future work,
as might be a hybrid distance, GBW + Dµ using Equations (7) and (13).

All the aforementioned scores define face dissimilarities as products of individual
landmark dissimilarities given by geodesic distances. However, by considering a face
matching problem, it is possible to convert such dissimilarities between landmarks into
probabilities of landmarks not matching, as follows:

P(x, y)` =
G(F`

x , F`
y )

∑M
m=1 G(F`

x , F`
m)

, (23)

where m represents the m-th candidate face image from a total of M available face images,
and G is a chosen dissimilarity metric. Then, the problem of finding the face image Fy
which is more similar to Fx is converted into the problem of finding the face image Fy
which has the least probability of not matching Fx. This probability is defined as the joint
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probability of not matching for all landmarks, i.e., the product of the probabilities of not
matching each landmark ` as follows:

Using (µ, Diag(Σ)) : Pd(x, y) =
L

∏
l=1

Dσ(F`
x , F`

y )

∑M
m=1 Dσ(F`

x , F`
m)

, (24)

Using (µ, Σ) : Pg(x, y) =
L

∏
l=1

Gg(F`
x , F`

y )

∑M
m=1 Gg(F`

x , F`
m)

, (25)

Using (µ, Σ) : Ph(x, y) =
L

∏
l=1

Gh(F`
x , F`

y )

∑M
m=1 Gh(F`

x , F`
m)

, (26)

Using (µ, Σ) : Pw(x, y) =
L

∏
l=1

W(F`
x , F`

y )

∑M
m=1 W(F`

x , F`
m)

. (27)

We can also provide an informal interpretation of our three methods: joint probabili-
ties, sums or products of geodesic distances over the set of L = 25 landmarks. By defining
the problem of matching one face to another in terms of corresponding landmark dissim-
ilarities, such dissimilarities are converted into probabilities of landmarks not matching
as previously presented. Then, by multiplying individual probabilities of landmarks not
matching, we obtain the joint probability of all landmarks not matching together at the
same time. However, the sum of such probabilities of distinct sequenced events does not
have much statistical meaning in our case. Accordingly, by multiplying the landmark
dissimilarities, the impact of very similar landmarks is greatly increased as well as very
dissimilar landmarks, and the same occurs in the joint probability which also multiplies
such landmark dissimilarities. Finally, the product of geodesics has a formulation very
similar to the joint probability up to a normalizing factor unique for each test face image.

Finally, the classification procedure is according to the nearest neighbour rule, which
means that a new test face sample is attributed to the database individual which presents
the training sample that minimizes the chosen score function Sd, Sg, Sh, Sw, or joint prob-
ability Pd, Pg, Ph, Pw. Even with large datasets, this classification rule has presented low
computational complexity due to the fact that we calculate geodesic distance approxima-
tions between k-variate Gaussians, with a small k value, i.e., k = 3, allowing the proposed
method to operate near real time as further detailed [2].

In order to validate these new score functions and our geodesic product distance
approximations, face recognition experiments were performed to compare our meth-
ods with state-of-the-art comparative methods. In the experiments with the FEI face
database [18], the first 100 individuals were selected considering the eight head poses
indicated in Figure 1, which include the frontal neutral and smiling expressions. Ten runs
were performed with the selected database images, and in each run, seven head poses per
individual were randomly selected for training, and the remaining one was selected for
testing. The averaged recognition rates for the proposed method and comparative methods
are presented in Table 1, with all methods using features extracted from the landmark
topology shown in Figure 1.

Additionally, an extended set of experiments was performed in the FERET face
database [19] by using the first 150 individuals which present the subsets f a, f b, hl, hr,
ql and qr, which are like the head poses and face expressions in Figure 1. Ten runs were
performed with the selected database images, and in each run, five head poses per individ-
ual were randomly selected for training, and the remaining one was selected for testing.
The averaged recognition rates for the proposed method and comparative methods are
also presented in Table 1, with all methods using features extracted from the landmark
topology shown in Figure 1. Some of the comparative methods presented in this Table
have parameters, so the parameter values which maximized their recognition rates were
experimentally determined to obtain their final recognition rates. Those methods are
outlined briefly below.
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The Eigenfaces method [20] linearly approximates the inherently non-linear face
manifold by creating a orthogonal linear projection which best preserves the global feature
geometry. On other hand, the Fisherfaces method [21] determines a linear projection which
maximizes the between class covariance while minimizing the within class covariance,
leading to a better class separation. Furthermore, the method Customized Orthogonal
Laplacianfaces (COLPP) [17] obtains an orthogonal linear projection onto a discriminative
linear space, which better preserves both the data and class geometry.

In another linear approach, the Multi-view Discriminant Analysis (MvDA) method [22]
seeks for a single discriminant common space for multiple views in a non-pairwise manner
by jointly learning multiple view-specific linear transforms. In the CCA method [23],
multiple feature vectors are fused to produce a feature vector that is more robust to the
weakness of each individual vector. And the Coupled Discriminant Multi-manifold Analy-
sis (CDMMA) method [24] explores the neighbourhood information as well as the local
geometric structure of the multi-manifold space.

Although the linear approach is simple and efficient, it is also possible to approx-
imate the non-linear face manifold by using non-linear approaches like the Enhanced
ASM method [16], which estimates the most discriminative landmarks and scores face
similarities by summing probabilities associated to each landmark, taking advantage
of this natural multi-modal feature representation. It turned out that the geodesic sum
method [2,3] improves on this approach by more accurately scoring face dissimilarities by
summing geodesic distances between corresponding landmarks of distinct face images.
The experimental results presented in Table 1 include our new methods, geodesic prod-
ucts using the score functions Sg, Sh, Sd, Sw, and joint probabilities using Pg, Ph, Pd, Pw,
which use our geodesic distance approximations between landmarks on face images. Fi-
nally, we performed experiments with the method CM (Continuous Model) [25], summing
dissimilarities from corresponding landmarks by using Mahalanobis distance.

Table 1. Averaged recognition rates of comparative face recognition methods in the FEI Face
database [18] and the FERET Face database [19] using colour (RGB) face images and the landmark
topology presented in Figure 1.

Method FEI FERET

Joint Probabilities (with Pg) Equation (17) 99.50% 97.13%
Joint Probabilities (with Ph) Equation (18) 99.50% 96.86%
Joint Probabilities (with Pd) Equation (6) 90.00% 79.26%
Joint Probabilities (with Pw) Equation (12) 96.70% 87.06%
Geodesic Products (with Sg) Equation (17) 99.50% 97.13%
Geodesic Products (with Sh) Equation (18) 99.50% 96.86%
Geodesic Products (with Sd) Equation (6) 90.00% 79.26%
Geodesic Products (with Sw) Equation (12) 96.70% 87.06%
Geodesic Sums [3], uses Equation (17) 99.50% 96.80%
Geodesic Sums [3], uses Equation (18) 99.50% 96.73%
Geodesic Sums [3], uses Equation (6) 88.40% 75.93%
Geodesic Sums [3], uses Equation (12) 87.30% 81.40%
CM [25] 98.60% 92.33%
Enhanced ASM [16] 89.20% 69.20%
CCA [23] 70.90% 29.06%
CDMMA [24] 37.70% 12.26%
MvDA [22] 44.40% 20.13%
COLPP [17] 96.10% 88.66%
LDA [21] 87.20% 66.00%
Eigenfaces [20] 82.20% 52.00%



Entropy 2021, 23, 878 9 of 10

5. Conclusions

From the experiments reported in Table 1, the geodesic product distance approxi-
mation Sg Equation (17) for 3-variate Gaussians provided the best recognition rate in all
experiments, overcoming comparative state-of-the-art methods and also confirming its
efficiency as a dissimilarity metric applied in face recognition.

Another conclusion based on Table 1 is that recognition rates with the geodesic dis-
tance approximations Sg and Sh are better than with Sd (and Pg and Ph are better than with
Pd) mainly because they take account of local covariances among RGB values in the face
images while Sd and Pd ignore all covariances, leading to the conclusion that covariances
increase the reliability of geodesic distance approximations between 3-variate Gaussians.

Moreover, scores Sg and Sh and joint probabilities Pg and Ph based on our geodesic
distance approximations applied in face recognition also achieved higher recognition rates
than scores Sw and joint probabilities Pw based on the Wasserstein metric, helping to con-
firm the efficiency of the Fisher metric [6] over other geometries for such distributions in
our case, since the Fisher metric better accounts the geometry of the k-variate Gaussian dis-
tributions because this metric measures the amount of information variation of probability
distributions in relation to its parameters, in our case, individual means and covariances.

Finally, the results show that the product of geodesic distances (and joint probabilities)
can more accurately score dissimilarities between 3-variate face feature representations
than just summing such dissimilarities, since by multiplying landmark dissimilarities the
impact of very similar landmarks is greatly increased as well as very dissimilar landmarks,
increasing the reliability of face recognition.
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