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Abstract

Allergic airway inflammation is heterogeneous with variability in immune

phenotypes observed across asthmatic patients. Inflammation has been thought

to directly contribute to airway remodeling in asthma, but clinical data suggest

that neutralizing type 2 cytokines does not necessarily alter disease

pathogenesis. Here, we utilized C57BL/6 and BALB/c mice to investigate the

development of allergic airway inflammation and remodeling. Exposure to an

allergen cocktail for up to 8 weeks led to type 2 and type 17 inflammation,

characterized by airway eosinophilia and neutrophilia and increased expression

of chitinase-like proteins in both C57BL/6 and BALB/c mice. However, BALB/c

mice developed much greater inflammatory responses than C57BL/6 mice,

effects possibly explained by a failure to induce pathways that regulate and

maintain T-cell activation in C57BL/6 mice, as shown by whole lung RNA

transcript analysis. Allergen administration resulted in a similar degree of

airway remodeling between mouse strains but with differences in collagen

subtype composition. Increased collagen III was observed around the airways of

C57BL/6 but not BALB/c mice while allergen-induced loss of basement

membrane collagen IV was only observed in BALB/c mice. This study

highlights a model of type 2/type 17 airway inflammation in mice whereby

development of airway remodeling can occur in both BALB/c and C57BL/6

mice despite differences in immune response dynamics between strains.

Importantly, compositional changes in the extracellular matrix between genetic

strains of mice may help us better understand the relationships between lung

function, remodeling and airway inflammation.

INTRODUCTION

Asthma is a global health problem with increasing

prevalence, currently affecting over 300 million people.1

Of note, the term “asthma” encompasses a range of

disease phenotypes. Progress in understanding

heterogeneity of airway inflammation has led to defined

asthma endotypes2,3 often characterized by the presence

or absence of type 2 eosinophilic inflammation and/or

type 17 neutrophilic inflammation.4 A clarified definition

of such inflammatory phenotypes in asthma has led to

development of innovative therapies directed at

modulating specific inflammatory pathways, in particular

type 2 inflammation.5 While the use of biologicals

targeting immunoglobulin E or either type 2 cytokines

interleukin (IL)-4, IL-5, IL-13 or their cognate receptors

(IL-4Ra, IL-5R, IL-13Ra1) has been effective at reducing

disease exacerbations in allergic asthmatics, these

therapies are often insufficient to improve underlying

disease pathogenesis.6–8 Furthermore, clinical trials with
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antibodies targeting IL-17 signaling have shown no

benefit,9 despite a strong association of severe asthma

with type 17 neutrophilic inflammation.10 To achieve

progress in treating asthma we need a more

comprehensive understanding of its pathology beyond

viewing inflammation as the main instigator of disease.

Along with airway inflammation, asthma is characterized

by airway hyperresponsiveness (AHR) and airway

remodeling, a process of changes to the composition,

content and organization of cells and extracellular matrix in

the lung. Although tissue remodeling is a critical process

during development and tissue repair,11 it is also a

pathogenic response in diseases such as asthma, and

undoubtedly impacts on lung function.12 Comprehensive

research using a combination of mouse models and human

studies typically attributes the development of remodeling to

chronic airway inflammation.13–17 However, this view

conflicts with emerging data that show remodeling can

occur as a primary event prior to inflammation.18–20

Glucocorticoid steroids can generally improve lung function

but do not alter airway remodeling.21 Alternatively, drugs

that successfully target specific inflammatory pathways fail

to improve lung function,7,8 presumably because they do

not affect airway remodeling. Overall, the links between

inflammation, remodeling and lung function are still

unclear and thus warrant investigation. Airway remodeling

is a complex disease process, difficult to study in patients

especially in the context of understanding multiple

components that may influence development of individual

remodeling processes over time. Therefore, there is a crucial

need for animal models that reflect asthma disease processes

with a focus on studying the development of stable and

irreversible airway remodeling.

Genetic differences between inbred mouse strains are well

known to strongly affect both airway inflammation22–25 and

AHR.26 For instance, C57BL/6 mice are known to have a

high airway resistance in response to methacholine challenge

independent of allergic inflammation,22 whereas BALB/c

mice generally exhibit greater airway reactivity in response

to allergens.26 Therefore, studies examining airway

pathology in different mouse strains can provide a basis to

explore the relationships between immune cell dynamics in

relation to changes in airway remodeling and lung function.

In this study we utilized a model of chronic allergic airway

inflammation that shares features of disease common to

severe asthma in people, including mixed type 2 and type 17

airway inflammation, steroid-resistant neutrophilia and

AHR independent of type 2 cytokines,27,28 to investigate

inflammation and remodeling parameters. Together, our

results highlight mouse strain-dependent differences in type

2 and type 17 inflammation that do not seem to alter the

development of remodeling but may impact on deposition

of specific collagen subtypes.

RESULTS

CHRONIC ALLERGEN-INDUCED IMMUNE
RESPONSE DYNAMICS DIFFER BETWEEN
C57BL/6 AND BALB/C MOUSE STRAINS

Aspects of allergen-induced airway inflammation have been

extensively studied in mouse models, largely in the context

of acute T helper type 2 (Th2)-mediated immune

responses.29,30 Here, using a model of mixed type 2 and type

17 inflammation, we characterized immune cell dynamics in

two common in-bred mouse strains, C57BL/6 and BALB/c,

that are known to respond differently in models of airway

inflammation and hyper-responsiveness.26,31,32 Mice were

exposed to a multiallergen cocktail [house dust mite,

ragweed and Aspergillus fumigatus (DRA)] for 4 or 8 weeks

(Figure 1a) and inflammation assessed. All mice exposed to

DRA had a mixed neutrophilic/eosinophilic inflammation,

although neutrophilia was not evident in C57BL/6 mice

until week 8 (Figure 1b). Neutrophils were still present in

the bronchoalveolar lavage (BAL) 5 days after the last

allergen administration (Figure 1a, b), even though their

numbers were considerably lower compared with

eosinophils (Figure 1b). Analysis of T lymphocytes and

related populations in the lungs revealed relatively similar

proportions of allergen-induced immune cell accumulation

between mouse strains, with gradual increases in ICOS+

innate lymphoid cells (ILCs; Figure 1c). BALB/c mice

generally had a greater ratio of CD4+ to CD8+ T cells

compared with C57BL/6 mice, reflected in higher total lung

CD4+ T-cell numbers (Supplementary figure 1), but this

ratio did not change as a result of allergen exposure

(Figure 1c). In addition, innate populations of cdT cells and

ICOS+ ILCs were more predominant in BALB/c mice

compared with C57BL/6 mice with clear increases in cell

numbers in BALB/c mice following allergen exposure at

either week 4 or 8 (Figure 1c and Supplementary figure 1).

Despite the increased innate lymphoid cell numbers

(Supplementary figure 1), CD4+ T cells and cdT cells

appeared to be the major cytokine-producing lymphocyte

populations in the lungs of all allergic mice. Exposure to

DRA resulted in both IL-17A and type 2 inflammatory

responses in the lung, with an increased proportion of IL-4

and IL-17A expressing CD4+ T cells in both C57BL/6 and

BALB/c mice (Figure 2a). Interestingly, the numbers of IL-

4+ CD4+ T cells were reduced from week 4 to week 8 in

BALB/c mice (Figure 2b), also corresponding to a reduction

in eosinophils (Figure 1b). Nonetheless, there were

enhanced numbers of IL-17A+ TCRɣd+ T cells and IL-17A+

CD4+ T as well as IL-4+ CD4+ T cells on week 4 in BALB/c

compared with C57BL/6 mice (Figure 2b). Of note, TCRɣd+

and CD4+ T cells contributed equally to the pool of IL-17A+

cells in allergic BALB/c mice, whereas CD4+ T cells were the
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main IL-17A+ population in C57BL/6 mice (Figure 2b).

Expression of key cytokines in whole lung RNA also revealed

an increase in type 2 genes (Il4, Il5, Il13) and Il17a upon

DRA treatment with exaggerated Il13 and Il17a expression

at week 4 in allergic BALB/c compared with C57BL/6 mice

(Figure 2c). While we saw no evidence of increased IFNc+ T
cells or ILCs (data not shown) in the lungs of mice following

allergen administration, there was a transient increase in Ifng

expression in the lungs of C57BL/6 but not BALB/c mice

(Figure 2c). Overall, although both mouse strains developed

allergen-induced airway inflammation, the degree of

inflammation and eosinophilic and neutrophilic responses

were higher in BALB/c compared with C57BL/6 mice.

Chitinase-like proteins are abundantly expressed in the

lungs during type 2 and type 17 allergic airway

inflammation

Chitinase-like proteins are molecules strongly associated

with severe asthma, neutrophilia and IL-17A.33–36 Following

exposure to DRA allergen, mRNA expression of murine

chitinase-like genes Chil1, Chil3 and Chil4 were upregulated

(a)

(b)

(c)

Figure 1. Chronic exposure to DRA allergens induces neutrophil and eosinophil airway inflammation. (a) Schematic showing an allergic airway

inflammation model highlighting the timing of DRA or PBS intranasal administration into C57BL/6 or BALB/c mice. Cells were collected for flow

cytometry analysis 5 days after the last administration of PBS or DRA (rest) at either 4 or 8 weeks. (b) Numbers of neutrophils and eosinophils in

the BAL of C57BL/6 or BALB/c mice administered PBS or DRA for 4 or 8 weeks. (c) Plot showing the average proportions of different T cells and

ILCs in the lungs of C57BL/6 or BALB/c mice administered PBS or DRA for 4 or 8 weeks. Data are representative of two experiments. Data are

plotted as mean � s.e.m. with points representing individual animals (b). Data in b were analyzed by ANOVA with Tukey’s multiple comparison

test with significance level showing comparisons between either PBS animals within each strain and each time point or C57BL/6 and BALB/c mice

as indicated on the graph. *P < 0.05, **P < 0.01, ****P < 0.0001. BAL, bronchoalveolar lavage; DRA, house dust mite, ragweed and Aspergillus

fumigatus; ILCs, innate lymphoid cells; NS, not significant; PBS, phosphate-buffered saline.
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(a)

(b)

(c)

Figure 2. Chronic exposure to DRA allergens induces mixed Th2/Th17 airway inflammation. (a) Whole lung single-cell suspensions were stained

for flow cytometry. Live, single TCRɣd–TCRb+ CD8–CD4+ cells were gated on and representative intracellular staining plots of IL-4+ and IL-17A+

CD4+ T cells in the lungs of C57BL/6 or BALB/c mice administered PBS or DRA intranasally twice a week for up to 8 weeks. Cells were analyzed

by flow cytometry 5 days after the last instillation of allergen. Single-cell lung suspensions were stimulated with phorbol myristate acetate/

ionomycin prior to analysis by flow cytometry. Numbers indicate the percentage of cytokine-positive CD4+ T cells within each gate. (b) Absolute

numbers of IL-17A+ TCRɣd+ or IL-17A+ or IL-4+ CD4+ T cells in the lungs of mice as in a. (c) mRNA expression of Il4, Il13, Il5, Il17a and Ifng in

whole lungs of mice treated as in a. mRNAs were normalized to levels found in PBS C57BL/6 or BALB/c mice at each time point and are relative

to geometric mean of housekeeping genes Gapdh, Rpl13a and Rn45s. Data are representative of two experiments. Data are plotted as

mean � s.e.m. with points representing individual animals. Data were analyzed by ANOVA with Tukey’s multiple comparison test with

significance level showing comparisons between either PBS animals within each strain and each time point or C57BL/6 and BALB/c mice as

indicated on the graph. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. DRA, house dust mite, ragweed and Aspergillus fumigatus; IL,

interleukin; mRNA, messenger RNA; NS, not significant; PBS, phosphate-buffered saline; TCR, T-cell receptor; Th2, T helper type 2; Th17, T helper

type 17.
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in both BALB/c and C57BL/6 mice compared with PBS

controls (Figure 3a). However, Chil1 mRNA expression was

less in C57BL/6 compared with BALB/c mice, although this

did not reach statistical significance in this data set (P = 0.07

for DRA C57BL/6 versus DRA BALB/c mice at week 4 or 8).

In addition, no significant increase in Chil1 mRNA was

detected in whole lung tissue of C57BL/6 mice after 4 weeks

of allergen exposure as compared with PBS controls

(Figure 3a) despite significant increases in secreted BRP-39

protein levels in the BAL (Figure 3b). Chil3 and Chil4 were

significantly increased in both mouse strains at week 4, and

expression levels did not change upon further allergen

exposure (Figure 3a), findings that were supported by

measurement of Ym1 secreted protein in the BAL

(Figure 3b). As there were no commercially available

reagents to measure Ym2 protein levels, we developed a

Ym2-specific antibody to examine Ym2 expression in the

lungs (Supplementary figure 2). By western blot, neither

Ym1 nor Ym2 was detected in mice administered PBS, but

both Ym1 and Ym2 greatly increased following allergen

exposure (Figure 3c). Chitinase-like proteins can be readily

detected in the serum, and serum levels of YKL-40 in

humans have been proposed as a biomarker for disease

severity and are associated with reduced lung function in

several pulmonary pathologies.37–39 Although BRP-39 is a

genetic ortholog of YKL-40, the level of BRP-39 in the

blood was not significantly altered following allergic

inflammation in this model (Figure 3d). However,

increased serum Ym1 was detectable in allergic mice of

both strains (Figure 3d). To determine whether localization

of the three chitinase-like proteins differed between strains

of mice following allergen exposure, we examined

immunostained lung sections. BRP-39 was already

expressed in macrophages and epithelial cells in the steady

state, but the intensity and number of positive cells

increased further following allergen administration and the

increase was particularly evident in BALB/c mice

(Figure 3e). Corresponding to secreted levels in the BAL

(Figure 3c), expression of Ym2 was absent in the lungs of

PBS mice, while numerous Ym1+ cells, such as alveolar

macrophages, could be detected (Figure 3f).40 The

expression of Ym1 and Ym2 dramatically increased in the

lungs of allergic BALB/c or C57BL/6 mice and the level of

expression reached its maximum expression at 4 weeks

post-DRA treatment (Figure 3f). Interestingly, Ym1 and

Ym2 appear to have a fairly distinct expression pattern in

the lung, with Ym1 largely restricted to myeloid cells and

Ym2 largely expressed by epithelial cells, and there were

very few cells that costained for Ym1 and Ym2 (Figure 3f,

g). Overall, we observed modest increases in BRP-39 levels

in allergic animals, but strongly enhanced Ym1 and Ym2

expression in the lungs of both allergic C57BL/6 and BALB/

c mice. For the first time, we show distinct expression of

Ym2 in the lungs compared with Ym1, despite their

protein sequence being about 96% homologous.

Allergen-induced immune pathways are fundamentally

different between C57BL/6 and BALB/c mouse strains

Both C57BL/6 and BALB/c mice developed neutrophilic

and eosinophilic airway inflammation in response to

chronic allergen administration, despite a greater

magnitude of both type 2 and IL-17A cytokine responses in

BALB/c mice. Therefore, to more broadly characterize the

differences in immune response between mouse strains, we

performed differential gene expression analysis of whole

lung RNA after 8 weeks of allergen or PBS administration

using the NanoString nCounter Myeloid Innate Immunity

Panel (NanoString, Amersham, UK). Principal component

analysis demonstrated a clear separation in gene signatures

not only from exposure to DRA versus PBS, principal

component 1, but also between mouse strains, explained

by principal component 2 (Figure 4a). Investigation of the

genes that were significantly altered in the DRA model

showed that numerous genes were induced (e.g. type 2

effector molecules Retnla and Arg1) or inhibited (e.g.

basement membrane collagens, Col4a1, Col4a2) to an

equivalent degree in both strains (Supplementary

figure 3a). Hierarchical clustering also separated a

considerable number of genes that were regulated in the

same way between the strains, but to a much higher degree

in one mouse strain over the other (Figure 4b) or

expression of genes that were fundamentally different

between strains (Supplementary figure 3b). As predicted

from the allergic cytokine responses and alterations in

immune cell infiltration into the lung (Figures 1 and 2), it

was not surprising that type 2-related genes such as Il13,

Fcer2a, Csf2, Ccl2, Ccl11 were more highly upregulated in

whole lung tissue from BALB/c compared with C57BL/6

mice (Figure 4b). However, interesting factors known to

play an important role in leukocyte adhesion (Itgb2, Itgb7,

Selplg) were upregulated in allergic C57BL/6 mice but

not in BALB/c mice (Figure 4b), despite an apparent

slower rate of inflammatory cell accumulation in

C57BL/6 compared with BALB/c mice (Figure 1b and

Supplementary figure 1).

Analysis of common properties within a signaling

pathway (canonical pathway) showed enrichment of various

pathways in C57BL/6 compared with BALB/c mice

(Figure 4c). Pathways including “IL-4 signaling” and

“airway pathology in chronic obstructive pulmonary

disease” were significantly different between mouse strains

(Figure 4c). Whether these pathways were activated or

inhibited in C57BL/6 compared with BALB/c mice could

not be clearly defined by the analysis (as denoted by the gray

bar; Figure 4c). However, the specific genes that contributed
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(a)

(b) (c) (d)

(e) (f)

(g)

Figure 3. Chitinase-like proteins are abundantly expressed during chronic allergic airway inflammation. (a) mRNA expression of CLPs Chil1, Chil3 and

Chil4 in whole lungs of C57BL/6 or BALB/c mice exposed intranasally to PBS or DRA for 4 or 8 weeks. Lungs were collected 5 days after the last PBS/DRA

administration. mRNAs were normalized to levels found in PBS C57BL/6 or BALB/c mice at each time point and are relative to the geometric mean of

housekeeping genesGapdh, Rpl13a and Rn45s. Chil3 and Chil4 are depicted as log mRNA levels. (b) Concentration of Ym1 and BRP-39 protein measured

by ELISA in the BAL of C57BL/6 or BALB/c mice treated as in a. (c)Western blot analysis of Ym1 (red) and Ym2 (green) levels in the BAL from C57BL/6 mice

administered PBS or DRA for 8 weeks, with BAL taken 5 days after the last DRA/PBS administration. (d) Concentration of Ym1 and BRP-39 protein

measured by ELISA in serum of C57BL/6 or BALB/c mice treated as in a. (e)Microscopy images of immunohistochemical staining of BRP-39 (brown) in lung

sections from C57BL/6 and BALB/c mice treated with either PBS for 8 weeks, or DRA for 4 or 8 weeks. Cell nuclei counterstained with hematoxylin

(purple); scale bar 50 µm. (f)Microscopy images of lung sections of mice as in a stained with DNA-binding dye (DAPI; blue), Ym1 (yellow) and Ym2 (red).

Scale bar; 50 µm. Images are representative of five mice per group. Quantification of antibody-positive staining intensity from stained sections. Ym1 and

Ym2 intensity in lung parenchyma areas and Ym2 intensity in airway epithelial cells normalized to length of airway basement membrane. (g)Microscopy

images of immunofluorescent staining for Ym1 (yellow) and Ym2 (red) in lung sections for mice as in f. Images show areas where costaining in airway

epithelial or parenchyma cells is evident. Triangles superimposed onto images show Ym1+Ym2– cells (yellow), Ym1–Ym2+ cells (red) or Ym1+Ym2+ cells

(white). Center image scale bar, 100 µm; outer images scale bar, 50 µm. Datapoints depict individual animals with bars representing mean and s.e.m. (a,

b, d, f). Data are representative of two experiments. Data were analyzed by ANOVAwith Tukey’s multiple comparison test with significance level showing

comparisons between either PBS animals within each strain and each time point or C57BL/6 and BALB/c mice as indicated on the graph. *P < 0.05,

**P < 0.01, ***P < 0.001, ****P < 0.0001. BAL, bronchoalveolar lavage; CLP, chitinase-like proteins; DAPI, 40,6-diamidino-2-phenylindole; DRA, house

dust mite, ragweed andAspergillus fumigatus; mRNA, messenger RNA; NS, not significant; PBS, phosphate-buffered saline.
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to the z scores (Figure 4c) were also examined (Figure 4d).

For example, a downregulation of both type 2 cytokines (Il5

and Il13) and the type-2-inducing cytokine Il25 in addition

to reduced expression of proinflammatory cytokines Il1a,

Il1b, Il12a and Il12b indicates that genes characteristic of the

“airway pathology in chronic obstructive pulmonary

disease” pathway (Figure 4d) were reduced in allergic

C57BL/6 mice relative to BALB/c mice. Interestingly, both

“OX40 signaling” and “PD-1, PD-L1 signaling,” pathways

involved in maintenance and regulation of T-cell responses,

respectively, were downregulated in allergic C57BL/6

compared with BALB/c mice (Figure 4d). These and other

changes in canonical pathways involved in dendritic cell T-

cell stimulation possibly explain reduced cytokine

production in C57BL/6 mice (Figure 2). In addition, liver X

receptor/retinoid X receptor activation, which maintains

cholesterol homeostasis but is also known to be antifibrotic

and anti-inflammatory,41 was downregulated in C57BL/6

mice (Figure 4c, d). Overall, analysis of gene regulation at

chronic allergic inflammatory time points revealed

differences in gene signatures between mouse strains that

may explain reduced immune responses in C57BL/6

compared with BALB/c mice.

Airway remodeling develops in both C57BL/6 and

BALB/c mice despite different allergic inflammation

dynamics and immune signatures

The relationship between inflammation and airway

remodeling in asthma is still controversial (reviewed by

Saglani & Lloyd,42 Boulet,43 Guida & Riccio44). Some

features of remodeling may occur in parallel or even prior to

excessive inflammation,18–20 although this is difficult to test

in the clinical setting. Considering different immune cell

dynamics between BALB/c and C57BL/6 mice (Figures 1–4),
we sought to determine whether features of airway

remodeling also varied between mouse strains. Goblet cell

hyperplasia is a key feature of remodeling in asthma and

contributes to excessive airway mucus secretion. Equivalent

increases in periodic acid Schiff-positive cells, indicative of

goblet cells, were observed in both C57BL/6 and BALB/c

mice at weeks 4 and 8 (Figure 5a). Airway remodeling in

asthmatic patients is also characterized by thickening of the

basement membrane and deposition of subepithelial

extracellular matrix proteins. Following DRA allergen

exposure, increased collagen deposition, measured by

Masson’s trichrome stain, was also evident around the

airways of both mouse strains (Figure 5b). Specific

immunostaining for components of the extracellular matrix

(ECM; Figure 6a, c) previously described to be regulated in

asthma45–48 supported increases in total airway collagen

following allergen exposure (Figure 5b). However,

fundamental differences in collagen expression between

mouse strains were also evident (Figure 6a, b). Basement

membrane protein collagen IV alpha 1 was highly expressed

in the steady state around the airways and alveoli of BALB/c

mice compared with C57BL/6 (Figure 6a). Upon allergen

administration, collagen IV alpha 1 expression decreased

over time in BALB/c mice, whereas its levels transiently

increased in C57BL/6 mice. In addition, a greater and more

rapid increase in airway collagen I in allergic C57BL/6

compared with BALB/c mice was observed (Figure 6a) and

similarly, accumulation of airway collagen III was

significantly increased only in allergic C57BL/6 mice

(Figure 6b). By contrast, expression of a major

glycosaminoglycan component of the ECM, hyaluronan,

was increased in response to allergen exposure

independently of mouse strain (Figure 6b). Changes to

collagen composition around the airways of allergic mice

were accompanied by an increase in the number of

vimentin-positive cells (Figure 6c), potentially indicating an

increase in matrix-secreting fibroblasts.49 In addition, airway

muscle mass was examined which revealed increases in mice

administered DRA allergens regardless of mouse strain

(Figure 6c). Together, these results demonstrate that

features of remodeling such as goblet cell hyperplasia,

increased smooth muscle mass and ECM changes occur in

both C57BL/6 and BALB/c mice. However, differences in

deposition of specific collagen subtypes exist between mouse

strains.

DISCUSSION

IL-17 and neutrophilia are often associated with severe

asthma.10 Despite this, models of allergic airway

inflammation still largely focus on studying the

regulation of allergen-induced type 2 immune responses,

utilizing BALB/c mice that generally show a strongly

skewed type 2 inflammatory response.26 Here, we utilized

a model of allergic airway inflammation in which

neutrophilia and IL-17 are dominant features, with

inflammation resistant to steroid intervention28 and AHR

unaffected by neutralization of IL-5 or IL-13 cytokines.27

As expected, BALB/c mice developed rapid and

prominent airway inflammation that was skewed toward

type 2 responses, but also showed greater IL-17

production, particularly by cd T cells. However, type 2

inflammation was reduced from week 4 to week 8,

perhaps reflecting the emergence of a tolerogenic

response to allergens in BALB/c mice.25 C57BL/6 mice

still responded to allergens, but Th2 and IL-17A

responses developed at a slower rate compared with

BALB/c mice. Delayed type 2 cytokine expression is

potentially explained by an early but transient spike in

interferon-gamma (IFNc) expression only observed in

C57BL/6 mice. Interestingly, increased IL-17A expression
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in C57BL/6 mice between weeks 4 and 8 coincided with a

reduction in IFNc levels in allergic mice, which we have

shown previously to be an important factor that allows

the development of a pulmonary type 2 immune

response.50 In addition, IL-10 derived from T cells has

been shown to signal via alveolar macrophages, leading to

(a)

(b)

(c)

(d)

Figure 4. C57BL/6 and BALB/c allergic mice have fundamental differences in immune gene signatures. Whole lung RNAs from C57BL/6 and

BALB/c mice administered with either PBS or DRA for 8 weeks were analyzed using NanoString Myeloid Panel version 2. (a) PCA of expressed

genes from C57BL/6 and BALB/c. (b) Unsupervised, hierarchically clustered heatmap of genes that were significantly regulated in C57BL/6 and

BALB/c allergic mice compared with PBS mice, but also differentially regulated between the treated strains. (c) Differentially expressed genes were

visualized with the Ingenuity Pathway Analysis tool and the top 20 canonical pathways are shown for C57BL/6 versus BALB/c mice. Red or blue

indicates pathways upregulated or downregulated, respectively, in C57BL/6 compared with BALB/c allergic mice. Gray indicates pathways that are

significantly regulated but not in a particular direction. The percentage at the end of the bar equates to the number of molecules detected

compared with the total number of molecules within the canonical pathway. (d) Chord diagram shows specific genes upregulated or

downregulated (color indicating log fold change) within the GO term that were found to be significantly regulated in C57BL/6 allergic mice

compared with BALB/c allergic mice. Transcriptomic analysis was performed on one experiment that was representative of two individual

experiments. DRA, house dust mite, ragweed and Aspergillus fumigatus; GO, gene ontology; LXR, liver X receptor; NFAT, nuclear factor of

activated T cells; PCA, principal component analysis; PBS, phosphate-buffered saline; RXR, retinoid X receptor.
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suppression of IFNc-induced airway epithelial

disruption.51 No difference in expression of Il10 between

strains at chronic time points was observed after DRA

administration in our study. However, temporal changes

in IL-10 in C57BL/6 mice may contribute to suppression

of IFNc alongside IL-17A.

IL-13 production is known to be higher in BALB/c

versus C57BL/6 mice,26 as also shown here, and is

thought to account for increased AHR observed in BALB/

c compared with the relatively hyporesponsive C57BL/6

mice.22,52 In fact, type 2 cytokine-producing cells, rather

than eosinophilic inflammation, appear to be key for the

maintenance of AHR in models of type 2 airway

inflammation.53,23 In addition to enhanced type 2

cytokine production, pathway analysis suggested a

reduced capacity (in C57BL/6 mice) for antigen-

presenting cell-mediated activation of T cells via

costimulatory molecules PD-1/PD-L1 and OX40/OX40L,

despite enhanced “dendritic cell maturation” pathways

from NanoString analysis in these mice. Different

dendritic cell subsets can dictate the allergic immune

response and targeting either dendritic cell activation or

molecules involved in antigen presentation may be a

fruitful approach to therapeutically target allergic asthma,

and specifically different immune phenotypes of

disease.54,55 PD-L1 is known to enhance AHR and Th2

cytokine production in allergic mice.56 Therefore, a

reduction in PD-1–PD-L1 signaling, alongside reduced

OX40 signaling, may explain the reduced Th2 response in

C57BL/6 mice compared with BALB/c. Future research

(a)

(b)

Figure 5. Goblet cell numbers and total collagen increase around the airways following exposure to DRA allergens. C57BL/6 or BALB/c mice

were intranasally administered PBS or DRA twice a week for up to 8 weeks, and lungs were collected for histological analysis 5 days after the last

PBS or DRA administration at weeks 4 and 8. (a) Microscopy images of lung sections stained for PAS. Airways show PAS+ cells (purple) within the

epithelium. Graph shows quantification of numbers of PAS+ cells per length of basement membrane. (b) Microscopy images of lung sections

stained for Masson’s trichrome (MT) from C57BL/6 or BALB/c mice. Airways show accumulation of collagen (blue) below the basement

membrane. Graph shows quantification of the area of MT-positive staining around the airways normalized to basement membrane length. All

images are representative of five mice; scale bar equals 50 µm. Datapoints depict individual animals with bars representing mean and s.e.m. Data

are representative of two experiments and were analyzed by ANOVA with Tukey’s multiple comparison test and significance level shown relative

to PBS animals within each strain and each time point. ***P < 0.001, ****P < 0.0001. BM, basement membrane; DRA, house dust mite,

ragweed and Aspergillus fumigatus; PAS, periodic acid Schiff; PBS, phosphate-buffered saline.
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identifying specific dendritic cell phenotypes in both

strains during allergic airway inflammation could prove

useful for understanding pathways to target AHR and

inflammation in asthma.

In this model of Th2/Th17 allergic airway inflammation,

both BALB/c and C57BL/6 mice developed a similar degree

of airway remodeling in response to allergen exposure.

However, our study reveals intriguing differences in ECM

composition between mouse strains, not only in response to

allergens but also in the steady state. One could anticipate

that changes in collagen composition, particularly those

centered around the ratios of collagen I and III, could

profoundly alter lung function and, along with varied

immune responses, may contribute to well-reported

(a)

(b)

(c)

Figure 6. Changes to the ECM and muscle mass around the airway occur following exposure to DRA allergens. C57BL/6 or BALB/c mice were

intranasally administered PBS or DRA twice a week for up to 8 weeks, and lungs were collected for immunostaining 5 days after the last PBS or

DRA administration at weeks 4 and 8. (a–c) Microscopy images of lung sections from C57BL/6 or BALB/c mice stained with DNA-binding dye

(DAPI; blue); (a) collagen IV (white) and collagen I (red); (b) collagen III (white) and HA-binding protein (red); (c) vimentin (Vim; white) and alpha

smooth muscle actin (aSMA; red). Scale bar, 30 µm. Images are representative of five mice. Antibody-positive staining area was quantified

around the airway and normalized to basement membrane length and values are depicted in a–c. Datapoints depict individual animals with bars

representing mean and s.e.m. Data are representative of two experiments and were analyzed by ANOVA with Tukey’s multiple comparison test

and significance level showing comparisons between either PBS animals within each strain and each time point or C57BL/6 and BALB/c mice as

indicated on the graph. *P < 0.05, **P < 0.01, ***P < 0.001. Coll, collagen; BM, basement membrane; DAPI, 40,6-diamidino-2-phenylindole;

DRA, house dust mite, ragweed and Aspergillus fumigatus; ECM, extracellular matrix; HA, hyaluronan; PBS, phosphate-buffered saline.
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differences in AHR measurement between mouse

strains.22,52 Both collagen I and III play major roles in the

structural integrity of tissues and are often coexpressed

within the tissue, with collagen I contributing to tensile

strength, and collagen III allowing tissue flexibility.57

Collagen III can modulate scar formation58 and during early

active fibrosis levels of collagen III significantly increase.59,60

However, an increased ratio between collagen I and III

occurs in infants diagnosed with chronic lung disease

proceeding respiratory distress syndrome.59 In addition, a

lack of collagen III can disturb the development of collagen

fibril formation, resulting in functional failure of the

organ.61,62 Here, allergic BALB/c mice appeared to have

preferential increase in collagen I around the airways, with

no significant changes to collagen III, although we cannot

rule out expression of collagen III at time points earlier than

week 4. A failure to induce collagen III during remodeling

processes may in fact perturb lung function, perhaps

contributing to increases in AHR often observed in BALB/c

mice in response to allergen challenge.22,26,52 Differential

dynamics in collagen IV alpha 1 expression between mouse

strains is also intriguing, as collagen IV is crucial for barrier

formation anchoring airway epithelial cells. The rapid loss of

collagen IV alpha 1 in BALB/c mice may relate to

significantly increased vimentin-positive cells around the

airways at week 4, and potentially enhanced epithelial-to-

mesenchymal transition leading to a more rapid remodeling

response in BALB/c versus C57BL/6. Although both mouse

strains feature a similar magnitude of allergen-induced

remodeling, further analysis of the early dynamics, before

week 4, and mechanisms leading to changes in the ECM in

these two mouse strains may reveal important features of

tissue remodeling in disease.

Remodeling is typically examined as a change in

epithelial goblet hyperplasia, increased muscle mass and

total collagen, but in this study of genetically distinct

mouse strains, the term remodeling is much more

complicated. Just as inflammation varies greatly between

asthmatic cohorts, airway remodeling too may be

considered an “umbrella” term, whereby different

pathways are likely to be more or less important in

different asthma phenotypes. A greater understanding of

how ECM composition changes can alter lung

mechanics/function, as well as how the differing ECM

components can regulate immune cell recruitment and

activation, will help us to understand the development of

lung diseases such as asthma and whether approaches to

target remodeling will prove useful in treating such

chronic inflammatory diseases. Furthermore, it is

interesting to speculate that different genetic strains of

mice, rather than using different allergens or timings of

allergen exposure, could prove more useful for modeling

different trajectories of allergic asthma in people.

METHODS

Animals and ethics

Wild-type (BALB/c or C57BL/6J on OlaHsd background) mice
were obtained from a commercial supplier (Envigo, Hillcrest,
UK). Experimental mice, all female, were between 7 and
10 weeks of age at the start of the experiment and were
housed in individually ventilated cages maintained in groups
of five animals in specific pathogen-free facilities at the
University of Manchester. Mice were not randomized in cages,
but each cage was randomly assigned to a treatment group.
Sample size was calculated on the basis of the number of
animals needed for detection of a 25% change in Masson’s
trichrome-positive area around the airway in PBS versus
allergic mice, with a P-value of <0.05, based on pilot
experiments carried out with three mice per group. All animal
experiments were performed in accordance with the UK
Animals (Scientific Procedures) Act of 1986 under a Project
License (70/8548) granted by the UK Home Office and
approved by the University of Manchester Animal Welfare and
Ethical Review Body. Euthanasia was performed by
asphyxiation in a rising concentration of carbon dioxide.

Model of allergic airway inflammation

Allergic airway inflammation was induced in mice in a similar
manner as has been described previously.27 Allergen DRA
cocktail comprising 5 µg house dust mite (Dermatophagoides
pteronyssinus, 5450 EU, 69.23 mg per vial), 50 µg ragweed
(Ambrosia artemisiifolia) and 5 µg Aspergillus fumigatus
extracts (Greer Laboratories, Lenoir, NC, USA) was freshly
prepared prior to each instillation. Mice were briefly
anesthetized via inhalation of isoflurane, and 20 µL of DRA
cocktail or PBS was administered via intranasal instilliation
twice weekly for up to 8 weeks. Mice were rested for 5 days
prior to performing BAL and collecting lung tissue.

Isolation of cells from the BAL and lung tissue

Following exsanguination, BAL cells were obtained through
cannulation of the trachea and washing (four times) the
lungs with 0.4 mL PBS (Sigma Aldrich, St. Louis, MO,
USA) containing 0.25% bovine serum albumin (Sigma
Aldrich, St. Louis, MO, USA). Lungs were processed as
previously described.40 In brief, a right lobe was removed
and minced in 1 mL of Hank’s Balanced Salt Solution
buffer containing 0.4 U mL�1 Liberase TL (Sigma Aldrich,
St. Louis, MO, USA) and 80 U mL–1 DNase type I
(Thermo Fisher Scientific, Waltham, MA, USA) for 25 min
in a 37°C shaking incubator. Digestion was stopped with
2% fetal bovine serum (Thermo Fisher Scientific, Waltham,
MA, USA) and 2 mM ethylenediaminetetraacetic acid prior
to passing the suspension through a 70 µm cell strainer
(Greiner Bio-One, Stonehouse, UK). Red blood cells were
lysed (Sigma Aldrich, St. Louis, MO, USA) and total live
BAL and lung cell counts assessed with ViaStain AOPI
(Nexcelom Bioscience LLC, Lawrence, MA, USA) using a
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Cellometer Auto 2000 automated cell counter (Nexcelom
Bioscience LLC, Lawrence, MA, USA).

Flow cytometry

Equal cell numbers of each lung and BAL sample were
stained for flow cytometry. Cells were washed with ice-cold
PBS and stained with Live/Dead Aqua or Blue (Thermo
Fisher Scientific, Waltham, MA, USA) for 10 min at room
temperature. All samples were then incubated with Fc
block (5 µg mL�1 CD16/CD32; BD Biosciences, San Diego,
CA, USA) and 0.1% mouse serum in fluorescence-activated
cell sorting buffer [PBS containing 0.5% bovine serum
albumin and 2 mM ethylenediaminetetraacetic acid (Thermo
Fisher Scientific, Waltham, MA, USA)] for 20 min before
staining for specific surface markers with fluorescence-
conjugated antibodies for 25 min at 4°C (Table 1)
Following surface staining, cells were fixed with ICC fix
(BioLegend, San Diego, CA, USA) and stored at 4°C until
intracellular staining was performed or cells were acquired.
For intracellular cytokine staining, cells were stimulated for
4 h at 37°C with phorbol myristate acetate (0.5 µg mL–1;
Sigma Aldrich, St. Louis, MO, USA) and ionomycin
(1 µg mL–1; Sigma Aldrich, St. Louis, MO, USA) and for
3 h at 37°C with Brefeldin A (10 µg mL�1; BioLegend, San
Diego, CA, USA). Cell surfaces were stained and cells fixed
as described above. All cells were permeabilized
(eBioscience, San Diego, CA, USA) and then stained with
antibodies for intracellular cytokines (Table 1). Cells were
identified with the following markers: eosinophils F4/80+

CD11c– CD11b+ SigF+; neutrophils Ly6G+ CD11b+ CD11c–;
T cells TCRb+ TCRɣd– and either CD4+ or CD8+; gamma
delta T cells TCRb– TCRɣd+ CD4– CD8–; innate lymphoid
cells (ILCs) CD90+ ICOS+ lineage– (CD11b, Ly6G, Ly6C,
CD11c, Ter119, NK1.1, B220, CD3). All samples were
acquired with an FACS Canto II or 5-Laser Fortessa with
BD FACS Diva software and analyzed with FlowJo software
(versions 9 and 10; BD Biosciences, San Diego, CA, USA).

RNA extraction and quantitative real-time-PCR

One right lung lobe was stored in RNAlater (Thermo Fisher
Scientific, Waltham, MA, USA) prior to homogenization in
QIAzol reagent (Qiagen, Hilden, Germany). RNA was
prepared according to manufacturer’s instructions and stored
at �70°C. Reverse transcription of 0.2–0.5 µg total RNA was
performed using 50 U Tetro reverse transcriptase (Bioline,
London, UK), 40 mM deoxynucleoside triphosphates
(Promega, Madison, WI, USA), 0.5 µg primer for
complementary DNA synthesis (Sigma Aldrich, St. Louis, MO,
USA) and RNasin inhibitor (Promega, Madison, WI, USA).
The transcripts for genes of interest were measured by real-
time PCR with a LightCycler 480 II System (Roche, Basel,
Switzerland) and a Brilliant III SYBR Green Master Mix
(Agilent Technologies, Santa Clara, CA, USA) with specific
primer pairs (Table 2). mRNA amplification was analyzed by
second derivative maximum algorithm (LightCycler 480
software, version 1.5; Roche, Basel, Switzerland) and

expression of the gene of interest was normalized to the
geometric mean of three housekeeping genes, namely, Rn45s,
Rpl13a and Gapdh (Table 2).

Transcriptome profile and associated analysis

Quality of RNA extracted from lung tissue, as described above,
was assessed with an Agilent 2200 TapeStation system prior to
downstream analyses; samples with an RNA integrity number
less than 5.5 were excluded. RNA concentration was
determined using the Qubit TM RNA BR Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA) and 100 ng RNA (per
sample) run on a NanoString nCounter R FLEX system using
the Myeloid Innate Immunity version 2 panel (XT-CSO-
MMII2-12; note that the probes in this panel do not
distinguish between Chil3 and Chil4). Raw counts were
uploaded onto nSolver version 4.0 using default settings. Non-
normalized counts were exported, and subsequent analyses
performed in R (version 3.6.3) using RStudio Version 1.2.5033
(2009-2019 RStudio, Inc, Boston, MA, USA). Positive controls
were analyzed to ensure there was clear resolution at variable
expression levels and negative controls were used to set a
minimum detection threshold which was then applied to all
samples. Data were normalized with edgeR using the upper
quartile method and differential expression of genes was
calculated by linear modeling accounting for sample quality
weights with empirical Bayes smoothing using the limma-
voom R packages.63 All genes expressed above the background
threshold were used for principal component analysis. Genes
with an absolute fold change of greater than 0.5 and a
significance value of under 0.05 after correction for multiple
comparisons using the Benjamini–Yekutieli method were

Table 1. Antibodies used for flow cytometry analysis

Antigen Antibody clone Isotype Source

Ly6G 1A8 Rat IgG2a j BioLegend

CD11b M1/70 Rat IgG2b j BioLegend

CD11c N418 Armenian Hamster IgG BioLegend

F4/80 BM8 Rat IgG2a j BioLegend

CD64 X54-5/7.1 Mouse IgG1 j BioLegend

SiglecF E50-2440 Rat IgG2a j BD Biosciences

I-A/I-E M5/144.15.2 Rat IgG2b j BioLegend

TCRb H57-597 Armenian Hamster IgG eBioscience

TCRɣd GL3 Armenian Hamster IgG BioLegend

CD4 GK1.5 Rat IgG2b j BioLegend

CD8 53-6.7 Rat IgG2a j BioLegend

CD3 17A2 Rat IgG2b j BioLegend

B220 RA3-682 Rat IgG2a j BioLegend

Ter119 Ter-119 Rat IgG2b j BioLegend

NK1.1 PK136 Mouse IgG2a j BioLegend

ICOS C398.4A Armenian Hamster IgG BioLegend

CD90.2 30-H12 Rat IgG2b j BioLegend

IL-4 11b11 Rat IgG1 j BioLegend

IL-13 eBio13A Rat IgG1 j eBioscience

IL-17a TC11-18H10.1 Rat IgG1 j BioLegend

IFNɣ XMG1.2 Rat IgG1 j BioLegend
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defined as “differentially expressed” and taken forward for
further analysis. Heatmaps were then generated from scaled
normalized counts of DE genes using the ComplexHeatmaps
R package. The networks and functional analyses of DE genes
were generated with Ingenuity Pathway Analyzer (QIAGEN
Inc., https://www.qiagenbio-informatics.com/products/inge
nuity-pathway-analysis). Within the Ingenuity Pathway
Analyzer software no tissue filtering was used and the user
data set was defined as the reference. Pathway data were then
imported into R for visualization using the ggplot package.

Generating anti-Ym2 and determining antibody

specificity

Anti-Ym2-specific antibodies were generated by Cambridge
Research Biochemicals (Billingham, UK). The 9-amino acid
sequence at the N terminal (CKASYRGEL) was used as the
immunogen as it has almost no homology to the Ym1 sequence.
Bacterial optimized expression plasmids for Ym1 and Ym2 were
purchased from GenScript (Piscataway, NJ, USA). Plasmids were
then transfected into competent Escherichia coli (BL21) by heat
shock followed antibiotic selection against ampicillin
(25 mg mL�1) and chloramphenicol (34 mg mL�1). To generate
recombinant protein a small scraping of the stock sample was
expanded in Luria-Bertani media including antibiotics until
optical density reached between 0.6 and 1.0 at which point
isopropyl b- d-1-thiogalactopyranoside (0.1 M) was added to the
cultures. The optical density was kept under 1.0 by diluting the
culture with fresh media as required and left overnight.
Thereafter, bacteria were pelleted and resuspended in loading
buffer containing dithiothreitol (200 mM; Thermo Fisher
Scientific, Waltham, MA, USA).

Western blotting

Lysed Ym1- or Ym2-transfected E. coli cells and murine BAL
were denatured in the presence of dithiothreitol (200 mM;
Thermo Fischer Scientific, Waltham, MA, USA) for 5 min at
95°C. Each sample (2–10 µL) or protein ladder (SeeBlue;
Thermo Fisher Scientific, Waltham, MA, USA) was separated

on Bis-Tris 4–12% gradient gel with 2-(N-morpholino)
ethanesulfonic acid buffer (Thermo Fisher Scientific, Waltham,
MA, USA) before transfer onto a polyvinylidene difluoride
membrane. The membrane was washed in distilled water
followed by incubation in blocking buffer (5% bovine serum
albumin in 0.05% Tween-20 in PBS) for 60 min at room
temperature on a rocking platform. Primary antibodies were
used at 1:500 [rabbit anti-mouse Ym2, polyclonal (custom
made) or goat anti-mouse Ym1 polyclonal; R&D Systems,
Minneapolis, MN, USA] and incubated at room temperature
overnight on a rocking platform. The membrane was then
washed in 0.05% Tween-20 in PBS followed by secondary
antibody detection (1:1000 anti-rabbit immunoglobulin G Cy3
and Streptavidin-Cy5; Thermo Fisher Scientific, Waltham,
MA, USA) for 1 hour at room temperature. Membranes were
imaged using a Gel Documentation System (Azure Biosystems,
Cambridge Bioscience, Cambridge, UK).

Histology and immunostaining

The left lung lobe was fixed perfused with 10% neutral buffered
formalin (Sigma Aldrich, St. Louis, MO, USA) and incubated
overnight before being transferred to 70% ethanol. Lungs were
processed and embedded in paraffin, then sectioned (5 µm) and
stained with Masson’s trichrome or periodic acid Schiff stains
using standard protocols. Images were captured with a Leica
microscope with a digital camera (DMC2900). For
immunostaining with antibodies, lung sections were
deparaffinized and heat-mediated antigen retrieval was
performed using Tris-ethylenediaminetetraacetic acid buffer
(10 mM Tris base, 1 mM ethylenediaminetetraacetic acid, 0.05%
Tween-20 pH 8.0; incubation 20 min 95°C). Nonspecific protein
was blocked with 2% normal donkey serum (Sigma Aldrich, St.
Louis, MO, USA) in PBS containing 0.05% Tween-20 and 1%
bovine serum albumin. If a biotin-labeled antibody or probe was
used, avidin biotin blocking (Thermo Fisher Scientific) was
performed prior to an overnight incubation at 4°C with primary
antibodies (Table 3). Sections were washed in PBS before
incubation with secondary antibodies (Table 3) for 1 h at room
temperature followed by mounting with 40,6-diamidino-2-
phenylindole containing Fluoromount (Southern Biotech,

Table 2. Sequences of primers for measurement of mRNA expression via quantitative real-time-PCR

Gene Forward primer Reverse primer

Il4 CCTGCTCTTCTTTCTCGAATG CACATCCATCTCCGTGCAT

Il13 CCTCTGACCCTTAAGGAGCTTAT CGTTGCACAGGGGAGTCT

Il5 ACATTGACCGCCAAAAAGAG CACCATGGAGCAGCTCAG

Il17a GCTCCAGAAGGCCCTCAGACT CCAGCTTTCCCTCCGCATTGA

Ifng GGAGGAACTGGCAAAAGGAT TTCAAGACTTCAAAGAGTCTGAGG

Chil1 CCAGCCAGGCAGAGAGAAAC GCCACCTTTCCTGCTGACA

Chil3 TCTGGTGAAGGAAATGCGTAAA GCAGCCTTGGAATGTCTTTCTC

Chil4 TCTGGTGCAGGAAATGCGTAAA GCAGCCTTGGAATGTGGTTCAAAG

Rn45s GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG

Rpl13a CATGAGGTCGGGTGGAAGTA GCCTGTTTCCGTAACCTCAA

Gapdh ATGACATCAAGAAGGTGGTG CATACCAGGAAATGAGCTTG
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Birmingham, AL, USA). Images were captured with an EVOS FL
imaging system (Thermo Fisher Scientific, Waltham, MA, USA).
Analysis of images was performed using ImageJ software (version
2.09.0-rc69/1.52p) on sections where sample identification was
blinded for the investigator and airways analyzed had to be intact
and fit within a single microscope field of view 480 9 360 µm.
Goblet cells were visualized on periodic acid Schiff-stained
sections and numbers of periodic acid Schiff-positive cells were
counted per airway and normalized to the length of the airway
basement membrane. Total collagen area was calculated by
measuring the area of Masson’s trichrome-positive stain (blue)
around the airway and values were normalized to basement
membrane length. For calculation of collagen, hyaluronan,
vimentin and alpha-smooth muscle actin area, background
autofluorescence was subtracted from all images based on pixel
intensities of sections stained with secondary antibodies only. A
region of interest was drawn parallel to the airway basement
membrane at a distance of 50 µm. A threshold was applied to all
images to incorporate positively stained pixels and area of
positively stained pixels within the region of interest was
calculated and normalized to the length of the basement
membrane. All areas of the airway that contained a blood vessel
was excluded from analysis to ensure measurements specifically
related to airways and not vasculature. For all image analysis,
between 5 and 15 airways were measured per mouse.

Quantification of Ym1 and BRP-39

The levels of Ym1 and BRP-39 in the serum and BAL were
measured by sandwich ELISA using DuoSet ELISA kits (R&D
Systems, Minneapolis, MN, USA) as per manufacturer’s
recommendation.

Statistical analysis

Statistical analysis was performed using JMP Pro 12.2.0 for
Mac OS X (SAS Institute Inc., Cary, NC, USA). Normal

distribution of data was determined by optical examination of
residuals, and each group was tested for unequal variances
using Welch’s test. Differences between groups were
determined by ANOVA followed by a Tukey–Kramer honest
significant difference multiple comparison test or an unpaired
two-tailed Student’s t-test as indicated in the figure captions.
In some data sets, data were log-transformed to achieve
normal distribution. Differences were considered statistically
significant for P-values less than 0.05.

ACKNOWLEDGMENTS

This work was supported by the Medical Research Foundation
UK jointly with Asthma UK (MRFAUK-2015-302 to TES), the
Medical Research Council UK (MR/P02615X/1 to DR and
MR/K01207X/1 to JEA) and the Wellcome Trust (106898/A/
15/Z to JEA). The authors thank Brian Chan for his technical
support, Alistair Chenery and Anthony Day for E. coli
expressing recombinant Ym1 and Ym2 and Conor Finlay for
critical reading of the manuscript. We also thank the Flow
Cytometry, Histology and Biological Services core facilities at
the University of Manchester.

CONFLICT OF INTEREST

The authors declare no competing financial interests.

AUTHOR CONTRIBUTIONS

James E Parkinson: Data curation; Formal analysis; Investigation;
Methodology; Writing-original draft; Writing-review & editing.
Stella Pearson: Investigation; Methodology. Dominik R€uckerl:
Investigation; Writing-review & editing. Judith E Allen: Funding
acquisition; Investigation; Writing-review & editing. Tara E
Sutherland: Conceptualization; Formal analysis; Funding
acquisition; Investigation; Project administration; Supervision;
Writing-original draft; Writing-review & editing.

Table 3. Antibodies used for immuno-histological analysis

Antigen Antibody clone Dilution Source (catalog number)

Ym1 Goat polyclonal—Biotinylated 1:100 R&D (BAF2446)

Ym2 Rabbit polyclonal 1:1000 Home-made (not applicable)

Collagen I Goat polyclonal 1:200 Cambridge Bioscience (1310-01)

Collagen III (N-terminal) Rabbit polyclonal 1:300 Proteintech (22734-1-AP)

Collagen IV alpha I Rabbit polyclonal 1:200 Novus Biologicals (NB120-6586)

Hyaluronan binding protein Biotinylated 1:100 Merck Millipore (385911)

a-Smooth muscle actin Goat polyclonal 1:200 Novus Biologicals (NB-300-978)

Vimentin Rabbit polyclonal 1:200 Abcam (ab45939)

BRP-39 Rabbit Polyclonal 1:100 Biorbyt (orb10365)

- Streptavidin 557 1:800 R&D (NL999)

- Streptavidin 637 1:400 R&D (NL998)

- Donkey anti-rabbit IgG 557 1:200 R&D (NL004)

- Donkey anti-rabbit IgG 637 1:200 R&D (NL005)

- Donkey anti-goat IgG 557 1:200 R&D (NL001)

- Donkey anti-goat IgG 637 1:200 R&D (NL002)
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