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Abstract: The glycosaminoglycan, heparan sulphate (HS), orchestrates many developmental pro-
cesses. Yet its biological role has not yet fully been elucidated. Small molecule chemical inhibitors
can be used to perturb HS function and these compounds provide cheap alternatives to genetic
manipulation methods. However, existing chemical inhibition methods for HS also interfere with
chondroitin sulphate (CS), complicating data interpretation of HS function. Herein, a simple method
for the selective inhibition of HS biosynthesis is described. Using endogenous metabolic sugar
pathways, Ac4GalNAz produces UDP-GlcNAz, which can target HS synthesis. Cell treatment with
Ac4GalNAz resulted in defective chain elongation of the polymer and decreased HS expression.
Conversely, no adverse effect on CS production was observed. The inhibition was transient and
dose-dependent, affording rescue of HS expression after removal of the unnatural azido sugar. The
utility of inhibition is demonstrated in cell culture and in whole organisms, demonstrating that this
small molecule can be used as a tool for HS inhibition in biological systems.

Keywords: heparan sulfate; azido sugar; glycosaminoglycan; carbohydrate biosynthesis; small
molecule inhibitor; biorthogonal chemistry

1. Introduction

Heparan sulphate (HS) is a prevalent glycosaminoglycan (GAG) attached to protein
cores (proteoglycans) on the cell surface of almost every cell type. HS proteoglycans form
an integral part of the extracellular matrix with important roles in development [1], home-
ostasis [2,3] and disease [4,5]. HS is involved in cell-cell and cell-matrix communication,
fine-tuning cellular responses to the extracellular milieu.

HS biosynthesis consists of a repeating disaccharide unit structure of glucuronic
acid–N-acetylglucosamine (GlcA-GlcNAc) polymerised by the exostoses enzyme complex
(EXT1/2) from UDP-GlcA and UDP-GlcNAc active nucleotide donor sugars [6–8]. During
this process the N-deacetylase/N-sulphotransferase (NDST) enzymes work in tandem to
begin modification of the nascent chain. The NDST enzymes can replace the acetyl group
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on GlcNAc with a sulphate [9], often providing the gateway step for further modifications
of the chain. Additionally, the NDSTs are also involved in control of HS chain length [10]
with NDST shown to be co-localised with EXT2 [11]. During extension of the backbone,
several other chemical modifications are possible, resulting in fine patterning of the chain
where the functionality of HS is encoded. O-sulphotransferases (OSTs) modify the HS
chain at the 2-, 6- and 3-O position or epimerisation of GlcA to iduronic acid (IdoA) by C5-
epimerase can occur. Together, these enzymes contribute to HS functionality by influencing
the fine patterning of the chain [12].

Despite its widespread role in biology, few chemical tools exist for the manipulation
of HS function, with those available often interfering with chondroitin sulphate/dermatan
sulphate (CS/DS) pathways simultaneously. Methods to ablate HS exist via targeted
genetic deletion of biosynthetic HS enzymes [6,7]. However, genetic manipulation is
costly and labour intensive with embryonic lethality in null mutant animals [7], posing
challenges for post-embryonic analysis. In contrast, chemical approaches offer cheap, user-
friendly alternatives, which either perturb sulphation of the chain [13,14] or compete with
endogenous substrates involved in HS assembly, such as amino sugar derivatives [15,16]
and mimics of tetrasaccharide linkages [17–20]. However, the additional effect on CS/DS
synthesis can complicate data interpretation particularly when both GAGs are displayed
on the proteoglycan of interest [21].

Azido sugars and other bio-orthogonal chemistry approaches have been demonstrated
as useful functionalised chemical probes to label N-glycans [22], O-GlcNAc modifica-
tions [23], mucin type O-GalNAc glycans [24] and sialic acid moieties [25]. Tetra-acetylated
N-azidoacetylgalactosamine (Ac4GalNAz) can be metabolically converted to UDP-GlcNAz
and UDP-GalNAz via the GalNAc salvage pathway [23], potentiating its use in GAG
synthesis (Figure 1).
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Figure 1. (A) Structure of tetra-acetylated N-azidoacetylgalactosamine. (B) Schematic of biological azido sugar precursor
production for GAG synthesis. Ac4GalNAz travels across the cell membrane and enters the cytoplasm. Endogenous
deacetylases remove the acetyl protective groups leaving GalNAz, ready to enter the GalNAc salvage pathway. After
a cascade of enzymes, both UDP-GalNAz and UDP-GlcNAz are produced, which target CS/DS and potentially HS
biosynthesis respectively.

The azido sugar nucleotide donors mimic UDP-GalNAc and UDP-GlcNAc, required
for CS/DS and HS biosynthesis respectively. Recently, the EXT1/2 enzyme complex has
been shown to utilise UDP-GlcNAz as a substrate for the addition of GlcNAz to the
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non-reducing termini of heparan sulphate chains in vitro [26]. However in vivo, there is
the potential that UDP-GlcNAz could interfere with the interaction or activity of the HS
polymerisation machinery (EXT/NDST enzymes) due to the location of the azido group
situated on the acetyl position of the GlcNAc residue, thereby producing an inhibitory
effect on the biosynthetic pathway. Therefore, we sought to extend and validate the use of
Ac4GalNAz treatment as a potential novel, small chemical inhibitor of HS synthesis.

2. Results and Discussion

Chinese hamster ovary (CHO) cells were treated with different concentrations
(7–35 µM) of Ac4GalNAz. No lethal effect on the cells was observed. Cell surface HS
was analysed using flow cytometry. A reduction in anti-(10E4) HS antibody staining was
observed at the cell surface in response to increasing Ac4GalNAz concentration (Figure 2).
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Figure 2. Flow cytometric analysis of Ac4GalNAz-treated CHOs. Cells were treated with 7–35 µM Ac4GalNAz for 24–48 h,
or for the first 24 h, then 24 h without Ac4GalNAz (24 h rescue) and analysed for cell surface anti-HS (10E4) reactivity. Purple
infilled, antibody control. Green trace, Ac4GalNAz-treated cells. Inset, experimental controls: purple infilled, antibody
control; green trace, vehicle-treated; pink trace, untreated.
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To sustain the reduction of HS for longer periods, higher concentrations (35 µM) of
azido sugar were required. Both 7 µM and 17.5 µM gave partial population decreases in
10E4 staining and removal of Ac4GalNAz returned HS expression levels to match untreated
cell populations (24 h rescue), indicating that the effect of the azido sugar treatment on
HS was transient and reversible. Significantly less HS was present in 35 µM Ac4GalNAz
conditions compared with vehicle control conditions with HS depletion displaying a
significant dose-dependent decrease (Figure 3A).
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Figure 3. (A). Total relative abundance of HS from cell extracted samples. (B) Percentage chemical modification contribution
of HS and (C) percentage contribution of HS disaccharide species after RP-HPLC separation of 2-AMAC-tagged HS. Error
bars represent SEM of N = 3 independent experiments. * p ≤ 0.05, ** p ≤ 0.01, student’s t test (two tailed). HexA, hexuronic
acid (iduronic or glucuronic acid); 2S, 2-O-sulphate; 6S, 6-O-sulphate; NS, N-sulphate.
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Furthermore, HS biosynthesis was perturbed as a subtle, but significant change in
disaccharide composition (Figure 3B,C) showing alterations in the sulphation of the chain
(increase in 6-O-sulphation and decrease 2-O-sulphation), reminiscent of GAG biosynthetic
enzyme mutants [27,28]. To elucidate changes in HS chain length, CHO cell cultures
were radiolabelled with 3H-glucosamine alongside treatment with Ac4GalNAz and HS
populations from cell extracts were purified as previously described [29]. Total GAG
synthesis was normalised to protein level. Radiolabelled studies showed a dose dependent
decrease in the quantity (Figure 4) and chain length of HS (Table 1) in Ac4GalNAz-treated
cells compared to control.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 11 
 

 

Error bars represent SEM of N = 3 independent experiments. * p ≤ 0.05, ** p ≤ 0.01, student’s t test (two tailed). HexA, 

hexuronic acid (iduronic or glucuronic acid); 2S, 2-O-sulphate; 6S, 6-O-sulphate; NS, N-sulphate. 

Furthermore, HS biosynthesis was perturbed as a subtle, but significant change in 

disaccharide composition (Figure 3B,C) showing alterations in the sulphation of the chain 

(increase in 6-O-sulphation and decrease 2-O-sulphation), reminiscent of GAG biosyn-

thetic enzyme mutants [27,28]. To elucidate changes in HS chain length, CHO cell cultures 

were radiolabelled with 3H-glucosamine alongside treatment with Ac4GalNAz and HS 

populations from cell extracts were purified as previously described [29]. Total GAG syn-

thesis was normalised to protein level. Radiolabelled studies showed a dose dependent 

decrease in the quantity (Figure 4) and chain length of HS (Table 1) in Ac4GalNAz-treated 

cells compared to control. 

 

Figure 4. Total GAG synthesis normalised to protein levels from CHO-K1 cells. 

Table 1. Chain length of radiolabelled HS and CS/DS. 

Condition 
Secreted Modal Size (kDa) Cell Extract Modal Size (kDa) 

HS CS/DS HS CS/DS 

Vehicle control 22 32 8.5 38 

7 µM Ac4GalNAz 12 22 6.9 31 

35 µM Ac4GalNAz 7 32 7.5 32 

The marked decrease in chain length observed in both secreted HS and cell-derived 

HS populations after Ac4GalNAz treatment (Table 1) suggests that early termination of 

chain synthesis was responsible for the depletion of HS at the cell surface observed in flow 

cytometric experiments (Figure 2). 

Despite significant changes to HS chain synthesis, no incorporation of azido groups 

was detected in HS chains (data not shown), suggesting that either GlcNAz was not in-

corporated into the chain or that the azide was potentially removed by NDST activity 

during HS synthesis. 

Due to convergence in their synthetic pathways (Figure 1) and the utilisation of com-

mon precursors, chemical inhibitors usually affect both HS and CS/DS GAGs indiscrimi-

nately, therefore we assessed whether CS/DS synthesis was also inhibited by the same 

metabolic labelling strategy. Azido sugar labelling of CS proteoglycans using GalNAz has 

been described previously [30,31], but examination of the biosynthesis of CS/DS was not 

Figure 4. Total GAG synthesis normalised to protein levels from CHO-K1 cells.

Table 1. Chain length of radiolabelled HS and CS/DS.

Condition
Secreted Modal Size (kDa) Cell Extract Modal Size (kDa)

HS CS/DS HS CS/DS

Vehicle control 22 32 8.5 38
7 µM Ac4GalNAz 12 22 6.9 31
35 µM Ac4GalNAz 7 32 7.5 32

The marked decrease in chain length observed in both secreted HS and cell-derived
HS populations after Ac4GalNAz treatment (Table 1) suggests that early termination of
chain synthesis was responsible for the depletion of HS at the cell surface observed in flow
cytometric experiments (Figure 2).

Despite significant changes to HS chain synthesis, no incorporation of azido groups
was detected in HS chains (data not shown), suggesting that either GlcNAz was not
incorporated into the chain or that the azide was potentially removed by NDST activity
during HS synthesis.

Due to convergence in their synthetic pathways (Figure 1) and the utilisation of
common precursors, chemical inhibitors usually affect both HS and CS/DS GAGs indis-
criminately, therefore we assessed whether CS/DS synthesis was also inhibited by the same
metabolic labelling strategy. Azido sugar labelling of CS proteoglycans using GalNAz has
been described previously [30,31], but examination of the biosynthesis of CS/DS was not
reported. No changes in CS/DS composition (Figure 5), chain length (Table 1) or quantity
were observed (Figure 4), suggesting that the inhibitory effect of Ac4GalNAz treatment
was specific to HS synthesis.
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Figure 5. CS/DS disaccharide analysis from (A) CHO-K1 cell extracts and (B) cell-conditioned medium. Percentage
contribution of CS/DS disaccharide species after SAX-HPLC of radiolabelled preparations. Other CS/DS disaccharide
species were not detected. HexA, hexuronic acid (iduronic or glucuronic acid). 4S, 4-O-sulphate; 2S, 2-O-sulphate.

Ac4ManNAz has also been reported to label CS proteoglycans, however the presence
of CS-specific labelling on the proteoglycan was not investigated [32]. Notably, no NDST
enzymes are associated with CS/DS synthesis and the acetyl group of GalNAc remains
unmodified, whereas HS biosynthesis specifically involves removal of the acetyl and N-
sulphation of GlcNAc. This process, at least in part, controls HS chain length [11] possibly
via NDST interaction with EXT co-polymerase, although the mechanism is still unclear. EXT
enzyme activity in vitro has been demonstrated to utilise UDP-GlcNAz as a substrate [26],
suggesting that extension of the HS chain by the EXTs is likely to remain unaffected by
GlcNAz in vivo. Thus, we hypothesise that the presence of GlcNAz interferes with normal
NDST function, thereby inhibiting HS synthesis and resulting in truncated HS chains.
Importantly, upregulation of NDST1 has been associated with chemoresistance in breast
cancer [33] and upregulated NDST1 activity increases HS biosynthesis [11]. Thus, selective
strategies for inhibition of HS activity, such as this one, may have therapeutic potential
alongside current treatment options where HS is a known driver of chemoresistance and/or
tumour growth.

Finally, since HS has been also demonstrated to play important roles in develop-
ment [1], we sought to test the ability of the azido sugar to inhibit HS in a model organism.
Therefore, a well-characterised and widely used developmental biology vertebrate model
(Xenopus tropicalis) was utilised [34]. Following treatment with the inhibitor, the abun-
dance of total HS in Ac4GalNAz-treated embryos was decreased compared with controls
(Figure 6A), confirming that this small, soluble inhibitor can be used in both organismal
and cell culture-based experiments to inhibit HS synthesis.

The Ac4GalNAz-treated Xenopus embryos displayed a phenotypic short stature
(Figure 6B) accompanied with irregular somite boundaries and abnormal skeletal mus-
cle orientation in a dose dependent manner, resulting in gross disorganization of the
tail structure and tail kinks (Supplementary Figure S1).
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Figure 6. Ac4GalNAz treatment of Xenopus embryos. (A) Total HS (pmol) per embryo. (B) Embryo stature measure-
ments of the tail extension (µm). + Ac4GalNAz, 500 pmol injection and 500 µM soaking; + Ac4GalNAc, 500 pmol
injection and 500 µM soaking. * p ≤ 0.05, *** p ≤ 0.001 + Ac4GalNAz vs. Wildtype. Oneway ANOVA with Turkey
post-hoc comparison.

Interestingly, similar developmental abnormalities have been observed in UDP-4-
azido-4-deoxyxylose-treated zebrafish [17], where GAG synthesis (CS and HS) was broadly
targeted, preventing elongation of either type of GAG. Targeted application of Ac4GalNAz
as a small, selective HS inhibitor thus provides independent evaluation of the role of HS in
biological systems where transient knock down of HS biosynthesis is desired.

3. Conclusions

We propose that a common sugar analogue, Ac4GalNAz, can be applied as a small,
soluble and reversible chemical inhibitor of HS, which does not affect CS/DS biosynthesis,
offering a new tool for HS inhibition. Ac4GalNAz can be synthesised from inexpensive
compounds [35] and is commercially available. Using this strategy, HS inhibition can be
achieved in cell-based assays and in whole organisms. The effect of Ac4GalNAz on HS
production is transient (Figure 2), enabling flexible application and removal in experiments
without the need for gene manipulation. This novel selective HS inhibitor therefore may be
used to probe HS biology in separation from CS/DS to identify HS-mediated mechanisms
in biological systems for further investigation.

4. Materials and Methods

4.1. Cell Culture, Ac4GalNAz and D-[6-3H]-Glucosamine Treatment

Chinese Hamster Ovary-K1 (CHO-K1) cells (gifted from the Esko lab) were cultured
at 37 ◦C/5% CO2 humidified conditions in Dulbecco’s Modified Eagle Medium: F12
Nutrient Mix (Ham) media (Invitrogen, Loughborough, UK) supplemented with 10%
v/v fetal bovine serum (FBS) (batch-tested, Biosera) and 2 mM L-glutamine (PAA). Cell
culture medium was supplemented with sugars dissolved in dimethylsulfoxide (DMSO):
Ac4GalNAz (Molecular Probes, Loughborough, UK), Ac4GalNAc (gifted from the Flitsch
group). For radioactive experiments, CHO medium was supplemented with 50 µCi D-
[6-3H]-glucosamine hydrochloride (Perkin Elmer, Llantrisant, UK). CHO-K1 cells were
seeded at 40,000 cells/cm2 and then cultured for 48 h for metabolic incorporation of the
radiolabelled sugar.
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4.2. Flow Cytometry

To preserve the cell surface, non-enzymatic cell dissociation buffer (Gibco, Lough-
borough, UK) was used to remove CHOs from tissue culture plastic. After washing with
phosphate buffered saline (PBS), cells were incubated with anti-HS (F58–10E4) (1:200,
Amsbio, Abingdon, UK) in 0.2% (w/v) bovine serum albumin (BSA), followed by Alex-
aFluor goat anti-mouse IgM (κ)-488 (1:1000, Molecular Probes, Loughborough, UK). Cells
were fixed with 1% PFA for 10 min at room temperature before analysis on a Cyan ADP
cytometer (Beckman Coulter, High Wycombe, UK) using CellQuest Pro software).

4.3. GAG Collection and Purification

Cell membranes were dispersed with 1% Triton X-100 in PBS with gentle agitation
for 1–2 h. Proteins were digested with 100 µg/mL Pronase (Streptomyces griseus, Roche,
Welwyn Garden City, UK) for 4 h at 37 ◦C. Diethylaminoethyl (DEAE) anion-exchange
chromatography for GAG preparations with step elution of HS and CS/DS using 1.5 M
NaCl was used to isolate GAG material as previously described [36], with the exception
of the radiolabelled GAG preparations where gradient anion exchange chromatography
(0–1.5 M NaCl) was used. GAG samples were desalted using PD10 columns (GE Healthcare,
Amersham, UK) and lyophilised.

4.4. HS and CS Chain Length Analysis

Purified D-[6-3H]-radiolabelled HS or CS material was treated with 50 mM NaOH/1
M NaBH4 at 45 ◦C for 48 h to cleave the protein stub from the xylose residue. Samples were
neutralized with glacial acetic acid and then separated on Sepharose CL-6B columns in
0.2 M ammonium bicarbonate at a flow rate of 0.2 mL/min. 1 mL fractions were collected
in pony vials (Sigma, Gillingham, UK) and 2 mL Optimax scintillation fluid (Perkin Elmer,
Llantrisant, UK) was added. Samples were sealed and shaken before processing for
3H radioactivity (counts per minutes) using a liquid scintillation counter (Wallac 1409,
Beckman Coulter, High Wycombe, UK). Modal chain length was estimated by comparison
of Kav values with a calibration curve [37].

4.5. Generation of GAG Disaccharide Species

Purified GAG samples were digested either with 2 mIU of each heparinase I–III
(Iduron) in 0.1 M sodium acetate, 0.1 mM calcium acetate, pH 7.0 or with chondroitinase
ABC (Amsbio, Abingdon, UK) in 50 mM tris, 50 mM NaCl, pH 7.9 for 16 h at 37 ◦C. For
radiolabelled preparations, the disaccharides were separated from oligosaccharides via
Superdex-30 chromatography.

4.6. 2-AMAC Labelling and RP-HPLC Separation of HS Disaccharides

HS disaccharides were labelled with 2-aminoacridone (2-AMAC) and separated us-
ing RP-HPLC as previously described using correction factors for the batch of 2-AMAC
utilised [38,39]. Data was also used to calculate the HS sulphation modification.

4.7. Strong Anion Exchange (SAX)-HPLC Separation of CS Disaccharides

Samples of 5000 cpm digested D-[6-3H]-CS disaccharides were separated on a Hypersil
5 µm SAX column (Thermo Scientific, Loughborough, UK) with a gradient of 0.15 M–0.7 M
NaCl pH 3.5 over 47 min at a flow rate of 1 mL/min.

4.8. Sugar Microinjection and Incubation of Xenopus Embryos

Fertilised NF stage 1 embryos in injection buffer (1% (w/v) Ficoll in 0.1×Modified
Marc Ringers, (MMR), pH 8.0) were injected with 1–5 nL of 500–1000 picomoles Ac4GalNAz
or Ac4GalNAc (dissolved in 0.2 mM KCl) into the cytoplasm using a heat-pulled borosilicate
glass capillary injection needle (1 mm× 0.78 mm, Harvard apparatus, Holliston, MA, USA).
Embryos were left to recover in injection buffer for 1–2 h (stage 7–8) at 28 ◦C before they
were transferred to fresh agarose-coated dishes containing a bath of 0–500 µM Ac4GalNAz
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or Ac4GalNAc in 0.01 × MMR solution. Embryos were incubated at 23 ◦C (prior to
gastrulation) for the first day of development, then at 25 ◦C and transferred to fresh
sugar/0.01 ×MMR conditions daily.

4.9. Purification of Xenopus HS

Embryos were lyophilised and ground in a pestle and mortar with 1 mL of PBS before
addition of 1 mg/mL Pronase in 50 mM Tris/HCl pH 8.0, 1 mM CaCl2, 1% Triton X-100.
Proteins were digested for 16 h at 55 ◦C, then a further 0.5 mg Pronase was added and
the digestion continued overnight. Pronase was heat-inactivated at 100 ◦C for 10 min
and samples were then treated with 2 µL of 2 M MgCl2 and 0.5 µL Benzonase Nuclease
(300 mU, Sigma, Gillingham, UK) at 37 ◦C for 3 h before adjustment to 0.5 M NaOH and
mixing overnight. Formic acid was used to adjust the pH to 5.0 prior to centrifugation at
13,000 rpm. The supernatant was diluted with HPLC grade water and applied to DEAE
anion exchange chromatography as described in [36] with the following alterations: DEAE
beads were washed only with HPLC grade water prior to sample application and samples
were eluted with 1 M NaCl, 20 mM NaOAc pH 6.0. The eluent was desalted using PD10
columns according to the manufacturer’s instructions.

4.10. Mass Spectrometry Analysis of Xenopus HS Disaccharides

Xenopus HS disaccharides were diluted in 200 µL HPLC grade water and centrifuged
at 12,000 rpm for 10 min to remove insoluble material. Residual salts and/or proteins were
removed from the supernatant using size-exclusion chromatography (Beckman SEC offline
fractionate), followed by further clean up using a porous graphite carbon C-18 TopTip
(Glygen) prior to Liquid Chormatography-Mass Spectrometry using a Dionex GlycanPac
AXH-1 (1 mm × 15 cm) (ThermoFisher, Walton, MA, USA) on an Agilent QTOF 6520
in negative mode, with an acquisition range of 100–1700 m/z. Heparin disaccharide I-P
sodium salt (∆UA2S-GlcNCOEt6S) (V-labs, Dextra Laboratories, Reading, UK) was spiked
into all samples as an external standard to monitor the spray conditions and used for
normalization between samples.

4.11. Whole Mount Antibody Fluorescent Imaging

Embryos were fixed in 0.1 M 3-(N-Morpholino)propane sulfonic acid (MOPS) pH
7.4, 2 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA),
1 mM MgSO4, 3.7% (v/v) formaldehyde for 16 h at 4 ◦C before dehydration with 100%
methanol. Embryos were then rehydrated by gradient dilution of the methanol with
H2O and antibody staining was performed as previously described [40] using mouse
12/101 IgG1 (1:200, Developmental Studies Hybridoma Bank) followed by AlexaFluor
goat anti-mouse IgG (H + L)-594 (1:500, Molecular Probes). Embryos were imaged using a
glass-bottomed dish (MatTek Corporation, Bratislava, Slovakia) and imaged by confocal
microscopy using an Olympus Fluoview FV1000 (Olympus, Southend-on-Sea, UK).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22136988/s1, Figure S1: Wholemount fluorescence of skeletal muscle in stage 39 NF
Xenopus tropicalis tadpoles after the injection of sugars.
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