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Abstract 

The United Nation’s 7th Sustainable Development Goal (SDG7) is to ensure access to 

affordable, reliable, sustainable and modern energy for all. A key challenge in achieving 

SDG7 is providing access to the estimated 0.9 billion people living in rural areas without 

access to electricity. In Nepal, factors including political unrest, challenging geography, 

and a weak economy, have limited electricity access. However, micro-hydropower has 

been used to provide electricity in rural areas. The technology is mostly manufactured 

locally, with the Nepali government supporting communities with a subsidy that funds 

approximately 50% of the total project cost. Manufacturing companies fulfil the roles of 

designer, manufacturer, and installer with the local community providing labour during the 

construction phase. The combination of locally manufactured equipment that is 

subsequently owned and operated by the community provides a unique range of challenges. 

This thesis explores the opportunity to improve the reliability of the technology and the 

operational sustainability of projects. To do so, a new design methodology is proposed that 

allows an existing technology, the Turgo turbine, to be adapted for local manufacture and 

use in Nepal.  

The proposed design methodology, known as ‘Design for Localisation’, frames the 

direction of the thesis. Firstly, an understanding of the local context is developed. A field-

based methodology is developed and used at 24 micro-hydropower plants to consider 

factors affecting their operational sustainability. Findings from the site study are combined 

with a detailed evaluation of the project process, using available literature and interviews 

with stakeholders, resulting in an improved understanding of how strengths and 

weaknesses in the operational sustainability of plants develop.  

Secondly, design solutions for local manufacture are developed. A survey of manufacturing 

companies is used to identify the local availability of materials and processes. These 

findings indicate determine the method for manufacture of the turbine blade. Subsequently, 

computational fluid dynamics is used to optimise the performance of the runner, increasing 

efficiency from 69.0 to 82.5%. In collaboration with a local manufacturing company, a 

locally appropriate design is developed and manufactured. CAD, the internet, and additive 

manufacturing are used to transfer and physically replicate the digital design as a mould 

for casting. 

Thirdly, local testing and monitoring is used to evaluate the design. A hydrodynamic testing 

rig is developed at Kathmandu University. The locally manufactured Turgo turbine runner 

and an imported off-the-shelf Turgo turbine runner are tested under the same conditions, 

and the results compared. A site-based installation is used to understand the performance 

of the runner once integrated with ancillary sub-systems, and in environmental conditions.  

Finally, the efficacy of the Design for Localisation process and its further application is 

considered. A scaling method, allowing the Turgo turbine design to be adapted for any site 

with appropriate geography, is presented. An open-source approach is proposed to improve 

the availability of the design, enable subsequent improvement and further local adaptation 

to other contexts.  
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Chapter 1  

Introduction 

1.1 Problem statement 

The United Nation’s 7th Sustainable Development Goal (SDG7) is to ensure access to 

affordable, reliable, sustainable and modern energy for all [1]. The importance of energy 

in relation to the other Sustainable Development Goals has been recognised with energy 

systems described as the “foundation of social and economic development” [2]. In 

particular, services delivered through electricity access drive improvements in education, 

health, and livelihoods [3-5]. Achieving SDG7 depends upon delivering energy services 

sustainably, in relation to the availability of the planet’s natural resources and the impact 

of energy generation upon climate change. A particular challenge is providing access to the 

estimated 0.9 billion people living in rural areas without access to electricity [6]. In rural 

areas, the effects of improved energy access can provide a greater benefit than in the urban 

areas [7], encouraging a multiplier effect that leads to diverse improvements in quality of 

life and availability of opportunities [2, 8]. However, the process of electrifying rural areas 

often provides unique obstacles which require alternative approaches to those used in urban 

areas [9-11]. Rural communities tend to live in dispersed settlements in environments with 

challenging geography and weak infrastructure; these challenges often making the 

extension of national grids unsuitable and expensive [12, 13]. 

Research has shown that off-grid technologies that are owned and operated by the local 

community can be effective in providing electricity and delivering developmental benefits 

[14-16]. These technologies have a much smaller environmental impact than on-grid 

services, using available natural resources more sustainably than large-scale fossil fuel-

based generation, and with less environmental and social impact than grid connected 

renewables such as large-scale hydropower [17, 18] or wind [19, 20]. Off-grid technologies 

also strengthen local independence through project ownership and can be used to drive 

greater economic change in the area local to the energy system [21, 22]. When such systems 

fail, communities are forced to revert to traditional energy forms, temporarily (or 

permanently) losing the developmental benefits of electricity access. Literature has 
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indicated that the combination of technical, economic and social factors that lead to weak 

sustainability of community-owned systems is often poorly understood [23-26].  

In Nepal, micro-hydropower is an off-grid technology that has been used to electrify rural 

communities. At the national level, factors including political unrest, challenging 

geography, and a weak economy, have limited electricity access across the country [27]. 

As recently as 2016, Nepalis faced blackouts of up to 12 hours day through regulated power 

cuts, known as load shedding, used to address the deficit between supply and demand [28, 

29]. Whilst load shedding occurs less frequently [28] and Nepal’s generation capacity is 

continuing to increase, the quality of power delivered by the national grid remains low with 

voltage droop and short power cuts remaining common [30]. In 2017, a study found that 

the national grid serves 72% of the population, whilst 23% have access to electricity 

through an off-grid supply, and 5% have no electricity access [31]. 

From the 1970s, micro-hydropower has been used in Nepal to electrify rural areas [32]. In 

Nepal, micro-hydropower refers to electricity generation of less than 100 kW using 

hydropower [33]. A typical micro-hydropower plant (MHP), shown in Figure 1.1, is run-

of-the-river, diverting a small amount of water from a river, using it to drive a generator, 

before returning the water to the same river further downstream. Since its use began in 

Nepal, the technology has largely been manufactured locally, with the generator being the 

only major imported component [34]. Today, the Nepali government supports local 

communities with a subsidy to fund approximately 50% of the total project cost [35]. Local 

manufacturing companies fulfil the roles of designer, manufacturer, and installer with the 

local community providing labour during the construction phase [35]. The benefits of 

micro-hydropower in Nepal have been well reported and the adoption of the technology is 

generally regarded as a success [36].  
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Figure 1.1 - A micro-hydropower plant in Ilam, Nepal. Photo credit, Sam Williamson. 

 

However, as with other forms of locally owned and operated technology, achieving 

sustainable operation of micro-hydropower plants is a significant challenge with studies 

and reports attributing this to either technical or socio-economic reasons. Technically, it 

has been suggested that the quality of manufactured equipment is low [37, 38]  with a lack 

of quality assurance [35] throughout the manufacturing, construction, and installation 

phases.  Meanwhile, a lack of productive end uses and poor tariff collection result in a 

failure to generate the required income to maintain the plant [16, 39]. Furthermore, 

maintenance is often not performed to the required standard leading to poor reliability [40, 

41].  

The combination of locally manufactured equipment that is subsequently owned and 

operated by the community provides a unique range of challenges. Frequently, whilst the 

successful installation of a project is noted, the sustainability of ongoing operation is not 

considered. Across a range of technologies, there are many challenges relating to the 

sustainable operation of electricity generating equipment, often interdisciplinary in their 

nature. Specifically, in micro-hydropower in Nepal, the actions (and interactions) of 

stakeholders throughout the project have not been considered. Particularly amongst 

manufacturing companies, their capability and their approach to project development is not 
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well understood. There are opportunities to deliver more sustainable hydropower plants 

through the introduction of new designs, and new approaches to design and manufacturing, 

whilst considering what is possible within the local context. With a local manufacturing 

industry, government supplied subsidy, and willing communities, there is a need to ensure 

that all micro-hydropower plants are reliable and sustainable, delivering electricity services 

that benefit communities.  

1.2 Sustainability and reliability  

The terms sustainable and reliable both appear within the definition of SDG7. Given the 

centrality of the goal and these terms in this thesis, there is value in considering their 

definitions and how they will be used within the research. The term sustainable 

development - which describes the goals adopted by the United Nation Member States in 

2015 - gained popularity in the Brundtland report in 1987. The definition from this report 

remains often quoted: “Sustainable development is development that meets the needs of 

the present without compromising the ability of future generations to meet their own needs” 

[42]. Specifically, for the energy sector, a later definition from [43] with similar wording 

to SDG7 is: “sustainable energy development will require electricity services that are 

reliable, available and affordable for all, on a sustainable basis, world-wide”. These 

definitions are focused on a broad picture, evaluating development concepts in relation to 

the world. When considering small-scale renewable energy projects (such as micro-

hydropower) and comparing to alternative large-scale methods of energy provision, an 

intrinsic feature is that they extract fewer natural resources and inflict less environmental 

damage. An Oxford English dictionary definition of sustainable is “capable of being 

maintained or continued at a certain rate or level” [44]. Evaluating small-scale projects at 

a global level, they can be considered environmentally sustainable. However, the ability of 

an energy project to be “maintained or continued” at the local level is not exclusive to 

environmental impact. It depends upon a wide range of factors: environmental, technical, 

social, economic, political, and cultural. In this research, where sustainability is considered 

local to the plant, it is defined as: the ability of the technology and its stakeholders to deliver 

electricity services that meet the expectations of consumers over a system’s expected 

lifespan.  

Alongside sustainability, reliability also has a range of definitions. In engineering, 

reliability can be defined as: “the probability of a device performing its purpose adequately 

for the period of time intended under the operating conditions encountered” [45]. Often, 
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numerical data is used to quantify this. For example, in energy systems the amount of power 

delivered, and the operational time lost due to failures [46]. For small-scale energy projects, 

such data is not necessarily available. Therefore, in this research, reliability will be 

considered more qualitatively, as such it is defined as: the ability of the system to 

consistently deliver the expected electricity service whilst avoiding failures. In exploring 

this, the resultant reliability depends on the installed technology and the operation & 

maintenance (O&M) practices that take place. Therefore, in the case of micro-hydropower 

in Nepal, the actions of the manufacturing company and the community are considered 

important in determining the reliability.  

1.3 Research aim and objectives 

The aim of this research is to identify approaches to local manufacture and project 

implementation that ensure micro-hydropower plants in Nepal operate reliably and 

sustainably. To address this aim, the research focuses on the introduction of a turbine type 

currently unused at the micro-hydropower scale in Nepal, using a design methodology to 

develop a locally appropriate version of the turbine.  

To achieve this, there are five research objectives: 

1. To understand the factors that affect the sustainability of plants. 

To develop a detailed understanding of the local context where micro-hydropower plants 

operate allowing the identification of the individual and interconnected factors that affect 

the sustainable operation of plants.   

2. Identify opportunities to tackle threats to sustainability within the project 

process. 

To consider the complete project process and stakeholder roles in relation to sustainable 

operation allowing the initiation, development, and manifestation of threats to be identified 

and the suggestion of mitigation that includes ‘hard’ and ‘soft’ approaches.  

3. Evaluate the approach and capability of micro-hydropower manufacturers. 

To evaluate the typical capability and the responsibilities fulfilled by manufacturing 

companies during the design, manufacture, installation and operation phases of the project 

process, and to understand the opportunities to introduce new methods in design, 

manufacturing, and quality assurance that result in more reliable systems. 
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4. Develop a new locally appropriate turbine runner design. 

To develop a locally appropriate turbine runner design in collaboration with a local 

manufacturer, that utilises recent technological developments to tackle identified technical 

issues; simultaneously, to explore the opportunity for new approaches in collaborative 

design and manufacture.  In addition, to identify the next steps which could lead to further 

replication of the turbine design.  

5. Apply a design methodology that enables the development of locally 

appropriate design solutions. 

To propose a methodology that helps address the challenge of developing locally 

appropriate design solutions. Subsequently, to use this methodology in the development of 

the turbine runner design.  

1.4 Thesis structure 

Chapter 2 reviews the available literature to showing the typical turbine technology in 

Nepal, the development of a local hydropower industry in the country, and the range of 

problems relating to the operation of plants that have been identified. The chapter considers 

the history and present status of design approaches that are used to design or adapt 

technologies for new environments, leading to the identification of a current knowledge 

gap. 

Chapter 3 proposes a new design methodology, called ‘Design for Localisation’, and uses 

it to derive the research methodology. The experiences of a case study are used to propose 

the design methodology with supporting examples used to validate it. The derived research 

methodology is presented. The research activities and their connection to the objectives are 

described, with individual research methods, collaborations, and ethical considerations 

explained.  

Chapter 4 describes a field study used to understand the sustainability of operational micro-

hydropower plants in Nepal. The study method is derived based on previous approaches 

within the literature. The results are presented in relation to three key areas: technical 

reliability, financial viability, and community engagement.  

Chapter 5 considers the complete project process for micro-hydropower in Nepal and the 

role of stakeholders within it. Using examples from Chapter 4 and within the literature, 

specific strengths and weaknesses in the sustainable operation of plants are identified, their 

initiation and development is tracked throughout the project process.  
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Chapter 6 focuses on the development of a locally appropriate turbine runner design. The 

capability of manufacturers is explored using a survey. Computational fluid dynamics is 

used as a tool to improve the efficiency of the turbine runner design whilst maintaining a 

focus on its appropriateness for local manufacture. The resulting design is presented, and 

the experiences of local production are shared.  

Chapter 7 presents the development of an testing rig, method and the experimental results. 

The results are used to compare the performance of a Chinese and Nepali manufactured 

Turgo turbine. Results and experiences from a field-based installation are also presented.  

Chapter 8 considers the broader application of the Design for Localisation methodology 

and the opportunity to increase use of the Turgo turbine design through an ‘open-source’ 

approach. A method is presented that allows the scaling of the Turgo turbine design. 

Approaches that enable transfer of the relevant design information to Nepal and elsewhere 

are proposed.  

Chapter 9 summarises the main findings of the work, discusses the applicability of the 

Design for Localisation methodology, and makes suggestions for further work.  
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Chapter 2  

Literature review 

2.1 Introduction 

The literature review considers micro-hydropower and its typical sub-systems. It provides an overview 

of the specific types of turbines that are used in Nepal, including their key components. It introduces 

the Turgo turbine as a type that is not currently used in Nepal but identifies its potential region of 

operation and reasons that support its development. To understand the present status of micro-

hydropower in Nepal, the history of its development is explored. Literature regarding studies of 

operational micro-hydropower plants provides an overview of the issues that affect their sustainability. 

Due to the interaction of social and technical elements that occurs at MHPs, a background is provided 

for a socio-technical systems approach. As a locally manufactured technology, approaches to 

technology transfer, both past and present, are explained. The chapter concludes by assimilating the 

diverse sources of literature. 

2.2 Micro-hydropower 

Hydropower turbines extract energy from a fluid, using the energy to drive a shaft [47]. Hydro-turbines 

exist at a range of sizes with their rated power commonly used to classify them. Around the world, the 

classifications vary. Table 2.1 lists the classifications of hydropower that will be used in this thesis [48, 

49]. Although separated on the basis of power, the varying scales lead to other differences in the form 

of installations and their impact. Pico-, micro-, mini-, and many small hydropower plants are typically 

run-of the river schemes [17]. Usually they require only a weir (rather than a dam) and store only a 

small amount of water [17]. As little water is stored, it is quickly returned to its source river or stream, 

a short distance downstream from where it was extracted. Consequently, the environmental impact is 

small. Conversely, the larger scales of hydropower may require large dams that impact the local 

environment, affecting water access and the local ecology. Similarly, the human impact of larger 

hydropower schemes is much greater; they often force local people to move, and with a disproportionate 

impact upon indigenous populations [50].  
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Table 2.1 - Classifications of hydropower. 

Classification Power range 

Pico <5 kW 

Micro 5 to 100 kW 

Mini 100 kW to 1 MW 

Small 1 MW to 10 MW 

Large >10 MW 

  

In this research, the focus is on turbines within the pico- and micro- range. Across this range, the same 

sub-systems are usually required. Figure 2.1 shows the sub-systems of a pico- or micro-hydropower 

plant, whilst Table 2.2 describes the function of each of these sub-systems.  

 

 

Figure 2.1 - Constituent sub-systems of a micro-hydropower plant. Labels indicate the following: 1. Intake, 

2. De-silting bay, 3.  Canal, 4. Forebay tank, 5. Penstock, 6. Powerhouse, 6a. Internal pipework, 6b. Turbine, 

6c. Control panel, 6d. Generator. Adapted from [51]. 
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Table 2.2 - Sub-systems of a micro-hydropower plant. 

No. Sub-system Description 

1 Intake  

A structure to divert water from the river into the canal. The intake 

may include a permanent weir or temporary structure, e.g. large 

stones arranged to divert the flow.  

2 De-silting bay 

A settling tank that is used to remove particles of silt and sand from 

the water. It usually has a gate which can be opened to flush the 

sediment away.  

3 Canal 

This is usually an open canal that takes water from the intake to the 

de-silting bay and from the de-silting bay to the forebay tank. Often 

made from stones lined with cement although it can be an earthen 

channel only.  

4 Forebay tank  

A settling tank which is used to remove silt and sand. A trash rack 

is used to prevent leaves and any other debris from entering the 

turbine.  

5 Penstock  

A closed pipe which transfers the water to the turbine from the 

forebay tank. Typically made from mild steel or high-density 

polyethylene (HDPE) pipe.  

6 Powerhouse 
The building or structure where the turbine and ancillary equipment 

is stored.  

6a Inlet pipework and valve  

Pipework inside the powerhouse connecting the penstock to the 

turbine. Usually, this includes a butterfly or gate valve which can 

be used to stop the flow to the turbine.  

6b Turbine  

Converts the power available as head and flow into mechanical 

shaft power. It is often necessary to use a belt drive to transmit the 

power to the generator.  

6c Generator  Converts the mechanical shaft power into electrical power.  

6d Control panel 
Regulates the rotational speed of the generator using an electronic 

load controller which diverts excess power to a ballast load. 

- Tailrace 
A civil structure that returns the water to the river. The 

environmental conditions determine the form of this sub-system. 

 

2.3 Turbine types and their use in Nepal 

The type of turbine and its power depends on the head and flow rate available at the site. The two main 

turbine types are impulse and reaction. For impulse turbines, the interaction between water and the 

turbine’s runner takes place at atmospheric pressure [17]. Typically, a jet (or jets) of water is used to 

drive the turbine’s runner. In reaction turbines, the runner is usually fully immersed with a pressure 

difference across the runner causing it to rotate [17]. This allows reaction turbines to use a draft tube 

below the runner, which slows the flow, reducing the static pressure, allowing more power to be 

generated [17]. Three common turbine types that are frequently mentioned within this thesis are 

introduced and their usage in Nepal discussed.  
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2.3.1 Pelton 

Pelton turbines are impulse-type turbines. In the case of the Pelton, the jet of water is directed at buckets 

that are attached around the periphery of the runner. Figure 2.2 shows the interaction between the 

incoming jet and the Pelton bucket. The central splitter ridge separates the jet of water and the 

symmetrical buckets divert the flow of water away from the trailing bucket. The change in momentum 

of the water imparts a force on the bucket which generates torque [47].  Table 2.3 lists the typical 

components of a Pelton turbine whilst Figure 2.3 shows a Pelton turbine and identifies the location of 

these components.  

 

 

Figure 2.2 - Diagram showing the interaction between the jet and the Pelton bucket, adapted from [52]. 

 

Table 2.3 - Typical components of a Pelton turbine. 

No. Component Function 

1 Runner To generate torque from the jet. 

2 Nozzle To direct the jet towards the runner. 

3 Casing 
To position the runner and nozzle correctly relative to one another and 

contain the water that is diverted from the runner. 

4 Deflector 

To prevent the water from impacting with the runner when the turbine is 

operating with no load (e.g., at runaway speed). Some Pelton turbines do not 

include a deflector.  
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Figure 2.3 - Typical Pelton turbine [53] with the components numbered as follows: 1. runner, 2. nozzle, 3. 

casing and 4. deflector. The function of these components is described in Table 2.3. 

 

Pelton turbines are common at all scales of hydropower. At the pico- and micro-scales, approximate 

minimum heads of 20 m and 50 m respectively are typical. High performance large-scale Pelton turbines 

are capable of hydro-mechanical efficiencies of above 90%;  at the pico- and micro- scales, efficiencies 

between 75% and 85% are possible [54].  

The Pelton turbine was invented in 1880 [55] and its widespread usage means that is produced by 

manufacturers for rated powers from 0.3 kW to 300 MW [56]. Most turbine manufacturing and design 

companies have exclusive designs; for large scale schemes, several extra percentage points of efficiency 

can result in a higher income. However, there are several designs openly available in the public domain. 

In 1957, Nechleba presented four commonly used designs for Pelton buckets [57] which could be scaled 

in relation to the diameter of the jet. Later, as part of international development efforts to widen the use 

of hydropower for off-grid generation, [54] and [58] published bucket designs that were intended for 

use in small workshops. These simple bucket designs were appropriate for use with basic casting and 

machining facilities, and they are commonly used in Nepal.  
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2.3.2 Crossflow 

The Crossflow turbine, also known as the Banki-Mitchell or Ossberger turbine [59], is considered a 

part-reaction and part-impulse turbine [60]. The runner is only partially immersed but the interaction 

between the water and runner blades involves a change in hydrodynamic pressure, meaning draft tubes 

can be used [59]. Torque is generated by a flow of water passing through the curved blades of the 

runner. The flow passes through the centre of the runner and then interacts with it again on the other 

side, generating more torque [17]. Figure 2.4 shows the flow of water passing through the Crossflow 

runner.  Crossflow turbines are typically used at sites with low and medium heads and have very good 

part flow efficiency [61]; compared to other turbines, there is only a small change in efficiency in 

response to changes in the flow rate. Table 2.4 lists the typical components of a Crossflow turbine whilst 

Figure 2.5 identifies the locations of these components.   

 

 

Figure 2.4 - Diagram of the flow of water through a Crossflow runner. 
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Table 2.4 - Typical components of a Crossflow turbine. 

No. Component Function  

1 Runner To generate torque from the jet. 

2 Diverter To direct the jet towards the runner. 

3 Casing 
To position the runner and contain the water that is diverted from the 

runner. 

4 Inlet To direct the flow of water towards the diverter.  

 

 

 

Figure 2.5 - A section view of a Crossflow turbine [62] with parts numbered as follows: 1. runner, 2. 

diverter, 3. casing and 4. inlet. The function of these components is described in Table 2.4. 

 

The maximum experimental efficiency achieved for a Crossflow turbine is 90% [61] although 

manufacturers generally state lower expected efficiencies; an example is Ossberger who state an 

average efficiency between 84 and 87% [63]. Crossflow turbines are typically used for rated powers up 

to 5 MW [63]. For higher rated powers, other low and medium head turbine types, such as the Kaplan 

and Francis, are favoured due to their higher efficiencies [61]. At the micro-hydro scale, efficiencies 
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between 70 and 80% are typical  [17, 64, 65]. Regardless of the overall rated power, Crossflow turbines 

have excellent part flow efficiency [60] achieving efficiencies of 70% when operating with only 10% 

of the rated flow [17].  

The Crossflow turbine was first invented by Anthony Mitchell in 1903 [66], and later developed further 

by Donat Banki between 1916 and 1918 [67], leading to its commonly used name – the Banki-Mitchell 

turbine. The turbine manufacturer Ossberger obtained a patent to the technology in 1933 and continues 

to have a strong association with the Crossflow turbine [63]. From the 1970s, the Crossflow design was 

adapted for use in simple workshops due to its robust nature and the ability to produce the turbine with 

limited machinery [64]. Later, a range of guidelines were produced and published by the Swiss Centre 

for Appropriate Technology (known as SKAT) [64] aiding more widespread use of the Crossflow 

turbine. 

2.3.3 Turgo 

Turgo turbines are typically used at sites with medium to high heads [68], however, research has 

suggested that they can be used at very low heads whilst maintaining high efficiencies [52]. 

Furthermore, they have also demonstrated very good part flow efficiency [68]. It is similar to the Pelton 

turbine in form and operation; the change in momentum of a jet interacting with a blade is used to 

generate torque. Figure 2.6 shows the interaction between a jet and a Turgo blade.  Unlike the Pelton, 

the jet is inclined at an angle to the runner, usually between 20° and 22.5° , meaning that the water enters 

and exits on different sides of the runner [17]. A consequence is that the diameter of the runner is not 

limited by interaction with the jet. This means that for an equivalent power, the diameter of the Turgo 

runner can be smaller than for the Pelton.  

 

Figure 2.6 - Diagram showing the interaction between the jet and the Turgo blade, adapted from [52]. 
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In Figure 2.7, a diagram is shown for the water passing through a single blade, with velocity triangles 

shown for the inlet and outlet. It is assumed that all of the jet impacts at the same radius and that the 

water enters and exits in the same vertical plane. Radial movement of the water is neglected. In the 

diagram, the following nomenclature is used: v is the absolute velocity of the water, w is the resultant 

velocity of the water, u is the peripheral velocity of the runner at the radius considered, α is the angle 

between the runner’s plane of rotation and the jet, and β is the resultant velocity angle. Where relevant, 

the subscripts I and O are used to indicate inlet and outlet, respectively.  

 

 

 

 

Figure 2.7 - Diagram showing the velocity triangles at the inlet and outlet of a Turgo blade. 

 

At the point of impact, the blade has a peripheral velocity u, dependent on the rotational speed of the 

runner and the radius at which the jet impact is being considered. The water leaves the nozzle and 

impacts the blade at an absolute velocity, vI. Due to the blade’s movement relative to the jet, the water 

enters the blade with a relative velocity, wI, with a relative velocity angle of βI. The water passes through 

the blade and leaves at the outlet with an absolute velocity vO. The rotational speed of the blade is 
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assumed to be constant as the water travels through the blade, therefore, the peripheral velocity of the 

blade is also constant. At the outlet, the blade’s movement causes the exiting water to leave with a 

relative velocity, wO, and a relative velocity angle of βO. The force exerted on the runner depends on 

the change in momentum of the water through the blade, in its direction of motion, and the mass flow 

rate of the fluid. Therefore, with reference to the diagram, the rate of change of momentum is the sum 

of the horizontal (i.e., perpendicular to u) components of vI and vO. From the diagram, it can be seen 

that the change of momentum will be greatest when the absolute velocity at outlet has no horizontal 

component, αO = 90°. The torque generated is the product of the force and the radius considered. Finally, 

the power generated is the product of the blade’s rotational speed and the generated torque. 

There are a number of key losses within the blade which are not represented in Figure 2.7. On impact, 

the jet will split and some flow will move ‘up’ the blade towards the inlet [52]. In relation to the blade’s 

performance, this interferes with the incoming jet. In addition, some of this reflected flow will pass the 

outer diameter of the runner, however, the remaining portion of the flow (depending on the runner 

orientation) may pass back through the runner, doing no useful work, and causing further interference. 

Another loss is associated with velocity profile present across the jet’s area. As a result of this, portions 

of the jet will interact with different areas of the blade surface profile. Another loss occurs following 

impact where the variable velocity within the fluid will, in practice, have a radial component (e.g., into 

or out of the page in relation to Figure 2.7). The resultant mixing that occurs leads to turbulent flow, 

reducing the relative velocity at outlet [69]. Losses also occur due to skin friction on the surface of the 

blade as the fluid film in contact with the blade’s surface will lose speed [52]. It should also be 

considered that, in practice, the blades have a physical thickness. Depending on the physical geometry 

of the blade, and the velocity triangles at the outlet, it is possible that the flow leaving a blade can 

interfere with the trailing blade. This reduces the rate of change of momentum for the trailing blade and 

therefore, the overall torque generated.   

The Turgo turbine was invented by Eric Crewdson in 1919 whilst working for the British turbine and 

pump manufacturer Gilkes [68]. Gilkes held a patent for the design until 1983, making the use of the 

Turgo less widespread than the Pelton [68]. After expiration of the patent, other manufacturers have 

begun to produce the Turgo turbine for mini-hydropower and larger projects. At the pico-hydropower 

scale, several off-the-shelf designs are available [70, 71]. At a large scale, turbines can achieve 

efficiencies up to 90% [68], whilst for smaller systems, efficiencies are typically around 85% [72]. 

Through academic research, there have been some developments in the design of Turgo turbines 

although much of this research has been focused on Gilkes’ own turbines [73]. Some efforts have been 

made to explore approaches for designing Turgo turbines [74, 75] and the optimisation of market 

available and simplified Turgo designs [72, 76] although this has not resulted in widespread production. 

In Nepal, the turbine manufacturer Kathmandu Metal Industries constructed a single prototype [77], 
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however this did not lead to widespread use. Figure 2.8 shows a typical Turgo turbine with the 

components labelled. The labels refer to the description of components provided in Table 2.3. 

 

 

 

 

 

Figure 2.8 - A Turgo turbine [78] with parts labelled as follows: 1. runner, 2. nozzle, 3. casing. The 

description of parts provided in Table 2.3 for Pelton turbines is also valid for the Turgo turbine, in this 

case. 

 

2.3.4 Turbines in Nepal 

In Nepal, micro-hydropower manufacturers produce mainly Pelton and Crossflow turbines. The simple 

Pelton bucket design developed by Thake was initially developed in Nepal for use with basic casting 

and machining facilities [54]. Similarly, the development of a simplified Crossflow turbine took place 

at workshops in Nepal [64], and it has continued to be frequently manufactured. In [79], site information 

for MHPs installed under the Nepal Rural Development Programme up to 2007 is provided. Figure 2.9 

plots the head and flow rate data for the Pelton and Crossflow sites described in this source. It should 

be noted that this list of sites is not exhaustive, providing only a selection of site data from a particular 

period. However, there is distinct trend of the Pelton turbine being used for sites with heads greater than 

60 m, whilst the Crossflow is used for heads less than this. Similarly, the majority of Pelton sites have 
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flow rates less than 0.05 m3/s, whilst the Crossflow sites have higher flow rates. On the figure, a 

selection of sites are encircled in a red oval. These sites are the outliers of these approximate limits for 

head and flow rate. In this region, the mixture of Pelton and Crossflow sites suggest both types can 

feasibly be considered acceptable by designers. At this interface, Pelton turbines become large and 

expensive due to their slow rotational speed, whilst Crossflow turbines are likely to be narrow and less 

efficient [80].  

 

 

 

Figure 2.9 - Pelton and Crossflow sites installed under the Rural Development Programme before January 

2007. Plotted using data from [79]. The red circle indicates a region where the choice between Pelton or 

Crossflow turbines is indistinct.  

 

As this interface exists, it suggests that for certain site characteristics, when considering factors such as 

cost, reliability, and efficiency, there are regions where a turbine is more appropriate than others. 

Generally, the required head and flow rate for a Turgo turbine is intermediate to the requirements of the 

other two [17]. As such, the Turgo turbine could be applicable for sites, like those indicated in Figure 

2.9, where the choice is indistinct. Other features of the Turgo (mentioned in Section 2.3.3) including 

its good part-flow efficiency, capacity to deal with silt, and smaller jet to PCD diameter ratio suggest 

potential benefits in efficiency, reliability, and cost respectively.  
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The viability of Turgo turbines for small-scale hydropower has been identified in existing research [52, 

72, 76]. As an impulse type turbine, their design and construction is similar to Pelton turbines, but with 

several features which are encouraging for application at the micro-hydropower scale, particularly in 

Nepal. In available literature [34, 35], poor performance of civil structures and high silt content in rivers 

has been observed. A consequence is abrasion of turbine runners leading to frequent repair or early 

replacement. Compared to the Pelton turbine, the jet of a Turgo turbine is aimed at a larger surface 

resulting in more evenly distributed surface abrasion [68]. In Turgo turbines, water enters and leaves 

the runner on opposite sides. As such, the majority of the flow passes through the runner without danger 

of interference with the oncoming jet. Therefore, for similar rated conditions, a Turgo turbine can have 

a smaller diameter runner than a Pelton, which results in a lower cost. Furthermore, the smaller diameter 

of the runner results in a higher rotational speed meaning there is greater potential to operate in a direct 

drive arrangement [68]. For Pelton turbines in Nepal, transmission belts are often required [54, 81] to 

increase the rotational speed to the rated speed of the generator, most notably at the lower head range. 

Directly driven systems benefit from fewer parts leading to a reduction in cost, improvements in 

performance (through fewer transmission losses) and reliability (fewer rotating components). In Nepal 

and elsewhere, at the pico- and micro- scales, local workshops have typically manufactured Pelton and 

Crossflow turbines [17]. The typical ranges of head and flow rate for Turgo turbines fall between those 

of the Pelton (higher head and lower flow) and Crossflow (lower head and higher flow). The 

introduction of the Turgo turbine could offer a third choice which for some sites may be advantageous 

in cost and performance trade-offs. 

2.4 Development of micro-hydropower in Nepal 

In the hilly areas of Nepal, hydropower has been used for centuries using traditional water mills, known 

as paani ghatta, for agricultural processing [77, 82]. This practice has helped to foster a common local 

knowledge of hydropower in Nepal. Hydropower was first used for electrification in Nepal in 1911 

[77]. A plant of 500 kW capacity was installed at Pharping, in the Kathmandu Valley, by the 

Government of Nepal [82]. In 1934, a second plant of 640 kW was installed at Sundarijal [82]. Later, 

in 1943, the 677 kW Sikarbas plant was installed at Chisang Khola [83]. The next plant was not installed 

until 1965, however, since then gradually more large-scale hydropower projects have been connected 

to the national grid, increasing electricity access but predominantly for urban populations.  

In the 1960s, alongside the increasing incorporation of large-scale hydropower into national level 

planning, there was a new focus on locally manufactured small-scale hydropower. In 1962, the first 

turbine locally manufactured in Nepal was installed near to Kathmandu [32]. Throughout the 1960s and 

70s, foreign aid initiatives aimed to improve capacity in hydropower manufacturing [36]. In 1960, a 

mechanical workshop, Balaju Yantra Shala (BYS), funded by the Swiss international development 

agency Helvetas, was founded in Kathmandu [84]. Later in 1963, the United Mission to Nepal (UMN), 
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an international Christian aid organisation focused on poverty relief, established the Butwal Technical 

Institute (BTI) which focused on training apprentices at its mechanical workshop [85]. However, as 

technical capacity improved it helped to spawn a number of private companies. In 1972, UMN founded 

Development Consultancy Services (DCS) in Butwal to design technology for the purpose of poverty 

alleviation [54]. Separately, BYS and DCS worked on the development of Crossflow turbines that could 

be used to mechanically drive milling systems [77]. Later, electric generators were added and a simple 

control system, developed by the Intermediate Technology Development Group (now Practical Action), 

was used to regulate the supply of electricity [86]. Many of the purely agro-processing units were run 

as commercial services and found to be financially sustainable after installation [32]. In 1984, The 

Nepal government responded to these developments by removing the need for water licences for 

projects with rated power below 50 kW [36].  

The Government of Nepal introduced renewable energy into national level planning in the 7th 

Development Plan (1985 – 1990) which promoted the use of off-grid renewable energy technologies 

[87]. From 1989, the Government of Nepal also made rural electrification projects eligible for a 50% 

capital cost subsidy from the Agricultural  Development Bank [32]. In 1990, this subsidy was changed 

to cover the total capital costs and the funds made more widely available by increasing the number of 

participating banks. However, the impact of these initiatives was small due to ad-hoc delivery methods 

and the limited available funds [88]. The 8th Development Plan (1992-1997) continued to emphasise 

the importance of improving capacity within the renewable energy sector [87]. During this period, the 

1992 Electricity Act, 1992 Water Resources Act, and 1992 Hydro Power Development Policy were 

introduced. Collectively, they aimed to promote small-scale hydropower (<1MW) through the 

delicensing of water rights and promotion of private sector investment into renewable energy [38]. In 

1996, the Alternative Energy Promotion Centre (AEPC) was formed, ensuring that improvements in 

the availability of renewable energy technologies were driven by policy, aided by technical support and 

backed by international donor funding [89]. The 9th Development Plan (1997 – 2002) concentrated on 

improving rural livelihoods and reducing the costs of renewable energy technologies to increase its 

deployment. In this period, the Hydro Power Development Policy was twice updated. Ultimately, the 

purpose of these changes was to ensure that conditions that were favourable for local private sector 

engagement in the hydropower sector [87]. The 10th Development Plan (2002-2007) proposed a Rural 

Energy Fund to manage grants and loans for renewable energy technologies. The Rural Energy Policy 

and Subsidy for Renewable Energy formalised a subsidy process for all technology types including 

micro-hydropower, whilst the 2006 Subsidy Delivery Mechanism legislated the process for disbursing 

subsidies. Both the Subsidy Policy and the Delivery Mechanism were updated in 2010 and again, to 

their most recent form, in 2016. The most recent changes extended the subsidy availability to include 

private sector investors as well as community groups and cooperatives [89].   
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2.5 Operation of micro-hydropower plants in Nepal 

Today, there are more than 3,300 micro-hydropower plants in Nepal, manufactured and installed by 

local small- and medium-size enterprises across the country [90]. The AEPC supports the development 

of projects by providing a subsidy of approximately 50% of the project cost [35]. The amount of the 

subsidy depends on how remote the location of the plant is [91]. Local government funding and 

contributions from the community make up the remainder of the project cost. The community also 

provides labour ‘in kind’ during the construction of the plant’s civil works. Following installation, the 

operation and management of these plants becomes the responsibility of members of the local 

community. 

In the literature, the benefits of micro-hydropower in rural Nepal are well documented. In the home, 

extended hours of evening light are used for education, socialising, and domestic tasks [16, 92]. The 

electricity is used for domestic appliances including televisions, radio, fridges, and rice cookers [92]. 

Consequently, for lighting and cooking, micro-hydropower decreases reliance on kerosene and 

firewood respectively [16], consequential effects of this are reduced health issues due to less smoke in 

the home and less time spent on firewood collection. Both of these changes tend to effect women and 

children more than men. Lighting increases the time available for education of children [92]. In addition, 

Legros et al. found a correlation between electrification using MHPs and women’s education, and their 

access to information [92]. In communities connected to MHPs, income and agricultural output tend to 

be higher whilst expenditure on energy is usually lower [92]. In addition to agricultural production, 

electricity can lead to new income generating opportunities. In the case study considered by Bhandari 

et al., this included milling, poultry farms, carpentry, photocopying, tailoring, and electronic repair 

centres [93]. Other electricity uses mentioned in the literature include community services such as 

primary and secondary schools, health centres, and local government offices [16, 22].  

The ability of an MHP to deliver these benefits depends on the operation, maintenance and management 

of the plant. Once commissioned and handed over to a community, operation and maintenance is 

typically carried out by a trained operator. Plant operator training takes place on  a 22-day course, 

arranged and delivered by the Nepal Micro-Hydro Development Association, which covers 

maintenance of the mechanical, civil and electrical components [94]. Managers are expected to collect 

the required tariffs from the community. The collective action of the community during the 

development process helps to create a sense of ownership which is beneficial in collecting tariffs from 

the consumers [35]. Where tariff collection is effective, there have been examples of the managing 

committees providing loans to the community to establish productive end uses [22].  

In discussing the issues that affect MHPs, it is worth defining two terms commonly used when 

evaluating the performance of power generating equipment. Capacity factor is the ratio of generated 
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power to the maximum possible generated power, within a given time frame [95]. It provides an 

indication of a system’s ability to deliver the expected amount of power. A low capacity factor may 

suggest that the generated power is reduced due to variation in the source (e.g. for hydropower, low 

river levels) or poor reliability of the generating equipment. Load factor is the ratio of average electrical 

load to peak electrical load, recorded within a specific time period [95]. The load factor shows the 

variation in system demand.  When low, it indicates that there is a large variation, meaning there may 

be extended periods where the consumed electricity is significantly lower than at the peak. For MHPs, 

the data required to evaluate these factors numerically is often difficult to access. However, the terms 

remain useful in describing the performance of the plants.  

Despite the positive effects of electrification, there is evidence in the literature of a range of issues that 

affect the capacity factor of MHPs. At the outset of a project, a feasibility study should indicate key site 

characteristics, most importantly the available head and flow rate. It has been suggested that in Nepal, 

these studies are often inadequate with poor estimations of flow rate resulting from limited hydrological 

surveys [35, 37, 39]. Incorrect estimation of site characteristics results in incorrect turbine design and 

an inability to deliver the expected power [96].  

Khennas and Barnett examined the quality of turbines in Nepal for a study published in 2000 [37]. They 

identified that despite efforts to improve quality, the physical assets are still a “substantial cause of 

failure” [37]. An interview respondent in [38] described the quality of micro-hydro manufacturing in 

Nepal as of “moderate to low quality”. Despite the number of manufacturing companies that now exist, 

there is a lack of research and development in the micro-hydro industry in Nepal. The manufacturing 

technology used remains basic with no use of four axis milling machines nor laser cutting [34]. Testing 

of turbines occurs only at the final stage, there are few quality assurance check during the production 

process [35]. Arter found that despite using high quality belts, pulleys were not built to specification 

resulting in faster wear of the belt and bearing [34]. Without standardisation, many components are 

built bespoke for every turbine.  

The civil installation has frequently been mentioned as a cause of problems. Gill et al. identified a 

common issue that junior field workers who oversee civil works often lack experience and are over-

accommodating to customer requests [40]. Both Khennas et al. and Gill et al. suggest that overly long 

and poorly designed canals are common [37, 40]. The World Bank recommends greater supervision 

over the construction of civil work, particularly for de-silting basins where poor design and construction 

results in increased turbine erosion [35]. During the installation of the turbine, weak foundations and 

the misalignment of pulleys can cause excessive vibrations leading to the premature failure of 

components [40]. As there is no requirement to demonstrate performance testing, a final machine 

efficiency is rarely known and generally assumed to be around 50% [40]. Khadka & Maskey carried 

out efficiency testing on 15 sites using a flow meter and a pressure gauge to accurately determine flow 
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rate and head [97]. In their sample, they found that the efficiency was highly variable with a range of 

45% to 75% at rated flow, with 3 of the 15 turbines failing to achieve an efficiency of 50% at any flow 

rate.  

Whilst there is training delivered by the Nepal Micro-Hydro Development Association (NMHDA), the 

literature suggests the quality and regularity of maintenance is highly variable. Barr’s study of operation 

and maintenance at 6 MHPs is the most detailed qualitative analysis available [41]. The report 

demonstrates that whilst there are a range of technical problems that have affected these sites, they 

rarely occur for purely technical reasons. It was shown that at sites where the benefits of electricity were 

obvious to the community, the quality of maintenance was superior. At these sites, preventative tasks 

were carried out more diligently. Gill indicates that there is often a high turnover of staff due to low 

salaries or because plant operators find work elsewhere, typically abroad [40]. A study carried out by 

Multi Electrical Ltd. found that across 15 MHPs in Nepal, there was an average of 116 days per year of 

downtime [98]. Before entering service, there is inadequate education for consumers regarding the 

connection cost, tariff cost, when and how much electricity they can use [99]. Due to this lack of 

consumer knowledge, Barr found that at an MHP in Burtibang, a town in Western Nepal, all the circuit 

breakers had been removed meaning there was no protection for the system. Meanwhile, most of the 

consumers were unaware of this and continued to use the system in the same manner [41]. When 

maintenance is required, the remote nature of sites makes repairs slow as technicians must usually be 

sent from Kathmandu or Butwal where the majority of companies are based [39]. 

Once in operation, economic and managerial issues include low load factors due to a lack of productive 

end uses, low income to pay for repair, and mis-use by consumers [16, 39]. Lord states that the 

uncertainties associated with hydropower, such as the amount and regularity of available power should 

be better communicated to the community [100]. A further issue identified in several studies is that 

access to electricity is unevenly distributed within communities due to gender, caste, and ethnicity [101, 

102].  

2.6 Socio-technical systems 

In [103], Trist claims that the term ‘socio-technical’ arose around 1949 in relation to a field research 

project undertaken by the Tavistock Institute and the British coal mining industry. The project focused 

on the diffusion of innovative working practices in the mining industry. Work organisations were 

considered as socio-technical systems where the social (the people) and technical systems (the 

equipment) were the “substantive factors”. Further development of the theory led Trist to argue that 

socio-technical studies require analysis at 3 levels. At the micro level, primary work systems where 

activities are carried out within a “bounded sub-system of a whole organisation”. Secondly, whole 
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organisation systems which may be a plant, workplace, or corporation. Lastly, at the macro level, the 

macrosocial systems that exist within communities and industrial sectors.  

The use of the term ‘socio-technical’ expanded into other areas and has often been used within the field 

of energy studies. In [104], Hughes presents the history of modern power systems and argues that large-

scale technological changes cannot be understood without an appreciation of the social context, and the 

mutual socio-technical implications. Its use has been common at a macro-societal level with the term 

‘socio-technical transition’ used to analyse the movement from one dominant ‘socio-technical system’ 

to another [105]. This has been used to consider how society-wide transitions can be made towards the 

use (and integration) of renewable energy technologies [106, 107]. Elsewhere, Sovacool has repeatedly 

used a socio-technical approach to analyse the barriers facing the development of renewable energy 

technologies in specific countries [38, 108, 109]. These studies, both the theoretical and the applied, 

have tended to be ‘top-down’, focused on the macro-level of governmental and societal actions, and 

their impact on transitions towards renewable energy use.  

Recently, some research has taken a ‘bottom-up’ socio-technical approach to consider the development 

of individual small-scale renewable energy technologies. In [110], the construction of a mini-

hydropower project in Tanzania is considered as a “dynamic process” where the creation of a socio-

technical system results in new relationships between people, technology, institutions, and resources. 

Similar to the 3 levels of analysis discussed by Trist in [103], this work considers that there are multiple 

levels of socio-technical context that influence one another. The new socio-technical system that is 

formed, encompassing the technology and direct users, develops “in relation to” but also “constrained 

by” the local context and a broader national (or international) context. In [111], a socio-technical 

systems approach is used to consider the implementation and use of solar mini-grids in the Sunderban 

Islands in India. The approach is used to highlight that the technology and society influence and shape 

one another, and the dynamic nature of the system means that the changes that occur mutually affect 

the technical elements, local community, and actions of individuals. Consequently, technical and non-

technical factors are considered indivisible in their influence upon the implementation and ongoing 

operation of the mini-grid. These factors occur at local and institutional levels demonstrating the 

importance of a holistic implementation approach. The bottom-up approach is reflected in the definition 

used in this work, where a socio-technical system is defined as a “configuration of heterogeneous 

technological and social elements, such as technical devices, organisational, involved actors and social 

practices in the implementation and use, as well as competences linked to the technologies”. The 

relationship between technology and people has been discussed directly in relation to sustainability. 

Whilst considering the sustainability of 23 small-scale renewable energy projects in [23] , Terrapon-

Pfaff et al. observe that “technical sustainability did not only depend on the reliability of the 

technological innovation alone but the embedding of the technology in the socio-cultural, political and 
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ecological context”.  In [112], the same authors further this concept with the observation that outcomes 

and sustainability depend upon “the changes in the socio-economic configurations.” 

2.7 Approaches to technology transfer 

As described in Section 1.3, micro-hydro turbines are made locally by manufacturers based in Nepal. 

The benefits of locally manufactured (and community owned) renewable energy technology have also 

been well documented, particularly for hydropower and wind power. In comparison to importing 

foreign equipment, there are numerous benefits to this approach: local capacity in repair and 

maintenance, access to spare parts, shorter downtimes, and potential for local adaptions. Alongside the 

local manufacture, involvement of the community also has potential benefits such as: easier knowledge 

transfer to end users, community ownership of the technology, and additional opportunities to build 

capacity.  

This approach of using community owned and locally manufactured technology to provide 

developmental benefits has its roots within the ‘appropriate technology’ movement. In the 1950s [113], 

the transfer of Western designed technologies was promoted as a methodology to develop countries 

(seen as less developed) by the more industrial Western economies. Nieusma suggests that a lack of 

understanding of the local context meant many early efforts failed [114]. Partially in response to this, 

the ‘appropriate technology’ movement, inspired by Mahatma Gandhi, but spearheaded by E.F. 

Schumacher [115], identified that the suitability or ‘appropriateness’ of a technology to the local context 

was vital in determining its success [113]. Initially named the ‘intermediate technology’ movement, it 

focused on technology more sophisticated than what was locally available, but smaller in scale than the 

technology used in industrialised countries [116]. Later, due to the perception that ‘intermediate 

technology’ indicated only a temporary solution, the term ‘appropriate technology’ gained wider 

popularity. In comparison to the technology transfer approach that had been used previously, 

appropriate technology made understanding of the local context the key focus and integrated this within 

the design approach [114]. The movement was influential in both developed and developing countries 

leading to projects focused on transport, agriculture, and energy.  

The movement inspired development efforts in Nepal. Initially, the focus of international development 

agencies (Swiss, Norwegian, and British) was on agricultural technology [32, 36]. Hydropower was 

used for its ability to drive rotating machinery, only later being used to power generators [54]. Despite 

the ‘appropriateness’ of the technology - it could be manufactured in Nepal and used within the local 

context – its dissemination depended on the presence of foreign experts. A sustained input of aid money 

and foreign experts was required to build the capacity and create a micro-hydropower industry within 

Nepal. Whilst Nepal continues to remain dependent on large scale funding to support the micro-

hydropower industry through subsidies for projects, the industry has reached some level of self-
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sufficiency. The experiences of the experts working on the ground in Nepal during the 1970s, 80s, and 

90s have been well documented. Literature including [81] and [54], provide all of the information 

required to identify a site, design and manufacture a turbine, construct civil structures, and operate and 

maintain the plant. 

As a movement, appropriate technology lost momentum in the West during the 1980s [117]. Whilst the 

term appropriate technology is still used, a number of design specific disciplines have emerged to 

occupy a similar space. Academics have proposed new fields and terminology to document efforts in 

design and engineering related to poverty alleviation. These include ‘human-centred design’ (HCD), 

‘design for development’, and ‘design for the developing world’. Although primarily focused on the 

design of digital interfaces, many of the key principles of HCD described by Maguire in [118] have 

parallels with those present in related fields. These include understanding the user, iteration of design 

solutions, and using multi-disciplinary teams. In [119], Mattson and Wood use the available literature 

that describes the design of products for the Global South to identify 9 key principles for ‘design for 

the developing world’. The shortened versions of these 9 principles are:  

• empathy through codesign  

• importance of in-context testing 

• risk in technology importation 

• rural and urban opportunities 

• effects on women and children 

• project management strategy 

• interdisciplinary teams 

• cooperation with government 

• using existing distribution strategies 

Despite the usefulness of the guiding principles, the terminology reduces the developing world to a 

homogenous entity. The variations in local context across the Global South, and internal to individual 

countries, require acknowledgement.  

Globally, design fields motivated by the proliferation of the internet and (more recently) additive 

manufacturing, have also developed. These innovations have supported the development of movements 

focused on making technological hardware ‘open-source’. In the field of software development, an 

open-source approach has been present as long as the early 1970s (and the early development of Unix); 

now there are numerous examples of successful software applications for a wide range of uses [120]. A 

famous instance is the operating system Linux which was created in the early 1990s [120]. The principle 

of open-source software is that the source code is openly available, allowing collaborators to work 

freely on its improvement and adaption [121]. More recently, this approach has been transferred to 



 

Literature review 

29 

 

physical technology or ‘hardware’. From 2009, the term ‘open-source appropriate technology’ (OSAT) 

has been regularly used in academia in the United States and Canada [122]. It describes appropriate 

technology that is designed collaboratively with the resulting design information and specifications 

made openly available [122]. There is evidence that a similar approach was developed at Thinkcycle at 

the Massachusetts Institute of Technology (from 2000) where ‘open collaborative design’ was proposed 

as an approach for developing ‘sustainable engineering solutions’ to “critical problems” [123]. In [122], 

the website Appropredia is highlighted as an example of OSAT in action. Appropedia is a website where 

collaborative solutions in sustainability, poverty reduction and international development can be shared 

[124]. As a wiki, anyone can add and edit content. Pearce states that such websites have significant 

potential in international development due to their ability to organise information such as project 

examples, best practices, and ‘how-tos’ [125]. In the paper, Pearce acknowledges the development of 

open-source manufacturing and discusses the potential of RepRap, an open-source 3D printer that can 

produce some of its own parts.  

In [126], Reinaur & Hansen develop a framework to consider the key determinants in the use of ‘open-

source hardware’ (OSH). Based on a comprehensive literature review of small wind turbines, they 

consider the problems being solved, the open-source community, the solutions, and the users.  They 

suggest that the benefits of open-source hardware include its cost and adaptability to local context. 

However, they also suggest that its uptake depends on poor functionality of market-based solutions or 

barriers that prevent their use. The accessibility and detail of design information is found to be an 

important determinant in the use of the design, and the degree to which it can be used by different types 

of users. Depending on the user, the most appropriate form of knowledge transfer may vary. It is 

suggested that OSH solutions are “more likely to be diffused widely” if they address a productive need 

or resource scarcity rather than being for enjoyment, in the realm of hobbyists and enthusiasts.  

Open-source technology is also central to an alternative method of international production proposed 

by Kostakis et al. in [127]. The model is called ‘design global-manufacture local’ and Kostakis et al. 

argue that “the emergence of commons-based peer production and desktop manufacturing technologies, 

may signal new alternative paths of social organisation”. In [128], two case studies are presented that 

demonstrate the concept of ‘design global, manufacture local’. For both case studies - robot hands and 

small scale off-grid renewable energy technology - evidence is presented for 3 key areas: design-

embedded sustainability, on-demand production, and sharing of the design. Common to both of the case 

studies, design-embedded sustainability is achieved through active participation of users and a design 

approach that attempts to decrease the number of components. On-demand production is achieved 

through desktop manufacturing. Designs are shared globally online under a creative commons licence, 

whilst online resources and fora allow digital collaboration, with face-to-face collaborations also 
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documented. Digital resources, including CAD files and tutorials, are made available to a (potentially) 

worldwide community who can use, modify, and adapt the design information. 

2.8 Summary 

In Nepal and similar countries, small-scale hydropower is an environmentally friendly technology that 

is capable of delivering sustainable and reliable electricity. The electricity services provided in the home 

and in communities provide improvements to health, education and income generating opportunities. 

In Nepal, through international development efforts and government support, an active micro-

hydropower industry has developed. The government provides subsidies that allow rural communities 

to develop micro-hydropower plants. Local manufacturers produce the hydropower equipment, with 

the community providing labour during the construction phase, and later operating plants 

independently. The development process involves multiple actors with individual capabilities, roles and 

responsibilities. To understand this, a socio-technical approach can be used. Akin to the levels of a 

socio-technical system identified by Trist, the following three levels can be identified for a micro-

hydropower plant:  

1) Primary level – micro-hydropower technology and operational team 

2) Community level – Interaction between the community, technology, and operational team 

3) Macro level – National landscape including government, industry, and finance.  

Within the literature, issues have been identified that affect the ability of the plants to operate reliably 

and sustainably. Typically, these sources have tended to focus on the operational stage, and on social 

or technical elements in isolation. In the Nepali context, a socio-technical approach could be useful in 

understanding that the sustainability and reliability of MHPs depends upon interactions between 

stakeholders and technology, that occur at multiple levels, and are dynamic throughout the project 

process.  

Alongside a number of specific technical issues, the literature indicated that approaches to hydropower 

manufacture in Nepal are outdated, and there is a limited variety in the types of turbine constructed. 

Pelton and Crossflow turbines are locally manufactured by companies to serve sites with high and low 

heads respectively. There are sites where in terms of cost, efficiency, and reliability, other turbine types 

may provide a superior alternative. By examining the ranges of head and flow rate that led to a mixture 

of Pelton and Crossflow turbines, a range was found where the Turgo turbine could be applicable. 

Through a detailed understanding of the availability of materials and processes, it would be possible to 

identify opportunities to improve the quality of manufactured equipment and develop locally 

appropriate designs for turbines that are currently not available.  
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Inspired by the appropriate technology movement, a range of design methodologies have developed 

that attempt to address the challenges associated with designing technology for use in the Global South. 

Whilst disciplines such as ‘design for the developing world’ and ‘design for development’ have 

emphasised the importance of understanding local context, their design approach is often externally 

based, making non-specific recommendations for a homogenous ‘developing world’. Furthermore, as 

in the case of the Pelton and Crossflow turbines in Nepal, appropriate solutions often exist but require 

adaption to ensure they are locally appropriate, manufacturable, and repairable. A design methodology 

with this focus could be effective in developing locally appropriate hydro-turbine designs. Recent 

developments, particularly the internet and additive manufacturing, are being used to drive alternative 

approaches to design and manufacturing such as ‘open-source hardware’ and ‘design global-

manufacture local’. These technologies (and the associated design approaches) provide new 

opportunities to create, share and adapt designs. However, such advantages have not been widely 

utilised in the context of the Global South, Nepal, or hydropower specifically.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Design for Localisation and the research methodology 

 

32 

 

 

 

 

 

Chapter 3  

Design for Localisation and the research 

methodology 

3.1 Introduction 

From the literature review, the opportunity to use a different turbine type in Nepal was identified. To 

achieve this requires the translation of an existing design to a new local context. In the first section of 

this chapter, a methodology called ‘Design for Localisation’ is proposed to address this translational 

process. Initially, the methodology is derived based on the experiences of a case study. Using the 

proposed methodology as a framework, supporting examples from available literature are analysed to 

establish its validity. The second section of this chapter uses this design methodology to inform the 

research methodology for this thesis. The research methodology is shown visually and used to 

demonstrate how the research aim and objectives are addressed. Finally, the specific research methods, 

collaborations with partners, and ethical considerations of the research are discussed.  

3.2 Design for Localisation 

Engineering design can be defined as “a process of developing a system, component, or process to meet 

desired needs” [129]. Meanwhile, for a given system or component, the availability of tools, materials 

and capacity of personnel affect how they are manufactured. As such, a holistic design process should 

also consider these factors. In many instances, to solve a desired need, a viable design solution may 

exist. However, factors present in the local context may limit the applicability of the solution. For 

example, supply chains may make transportation of a product prohibitively expensive, or the 

availability of particular processes may prevent manufacture of a product locally. Under these 

circumstances, it may be advantageous to develop a locally appropriate version of a proven design 

solution.  
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In design theory, the term Design for X (or DFX) has been used to describe a design approach where 

‘X’ is a particular desirable characteristic (e.g. quality, reliability, or safety) to be aimed for [130]. A 

common example is Design for Manufacture (DFM), where design goals and manufacturing constraints 

are considered simultaneously [129]. In this section, it is proposed that Design for Localisation (DFL) 

is a necessary and viable addition to the DFX paradigm. As a methodology, its objective is the adaption 

of an existing design for local manufacture, assembly, and use in a new geographic location. This major 

objective is considered as the summation of two criteria which must be fulfilled. A localised design 

must:  

• Be manufacturable and repairable in the local geographical region of use considering the 

availability of skills, processes and materials. 

• Be appropriate for the local geographical region based upon consideration of the technical, 

social, economic, and environmental context. 

In this section, a case study is used to derive three key stages of the Design for Localisation methodology 

and several principles that support its application. The case study focuses on the development of a series 

of propeller turbines in Nepal that were designed to fulfil the above criteria. The supporting evidence 

is derived from the personal experiences of the researcher and several collaborators, and from available 

literature.  

3.2.1 A case study – the propeller turbine series 

From 1997, the hydropower manufacturer Nepal Hydro and Electric (NHE) began the process of 

developing several propeller turbine sets, known as the PT series [131]. Using information from papers 

published by the University of Canterbury (UC) in New Zealand, an initial laboratory prototype model 

was specified, built, and tested. This led to the development of 0.2 kW, 0.3 kW and 1 kW versions that 

were installed in the field. NHE were responsible for the design and manufacture of all hydro-

mechanical and electrical sub-systems. In 2009, the rights to the technology were transferred to the 

People, Energy and Environment Development Association (PEEDA), an NGO focused on promoting 

economic development in Nepal. From then, PEEDA have been technically assisted by Oshin Power 

Services (OPS), a micro-hydropower manufacturer and installer, and Kathmandu Alternative Power 

and Energy Group (KAPEG), a research organisation focused on electrical engineering in renewable 

energy [132]. 

For the propeller turbine system, specific design requirements were derived through an understanding 

of the installation environment [131, 133]. Engineers working at NHE had identified that there was no 

locally manufactured technology to serve rural sites in Nepal where the available head was insufficient 

for Peltric sets (pico-hydro scale Pelton turbines) or Crossflow turbines [133]. Table 3.1 outlines 

considerations relating to the local context and their effect on the system requirements. 



 

Design for Localisation and the research methodology 

 

34 

 

 

 

 

Table 3.1 - Considerations that affect the socio-technical system design specification for a Nepali context. 

No. Consideration Design requirement 

1 Many rural areas are located far from the 

industrial centres of Kathmandu and Butwal. 

Reliability and simplicity of the design should be a 

key priority.  

2 Sites could be located far from nearest road 

head. 

Individual components should be portable on foot. 

3 Agricultural canals for irrigation are common 

across Nepal. 

Existing civil works can be used to divert water to 

the turbine. 

4 Monsoon season in Nepal often leads to 

significant flooding. 

Electrical components must be secure from water 

damage.  

5 The rivers in Nepal carry a very high sediment 

content during the monsoon season. 

The turbine must be resilient to a high sediment 

content in the flow. 

6 Water flow may include vegetation and other 

debris. 

Through filtration or alternative methods, the turbine 

should be resilient to vegetation and debris that are 

typical in the local area.  

7 The technology is owned, managed and 

operated by a community. 

• The system must be simple to operate even by 

someone with little technical expertise.  

• Electricity tariffs must be collected to pay for 

operation and maintenance of the technology. 

8 Projects where consumers make no financial 

contribution are likely to fall into disrepair. 

End users should make a financial contribution to the 

scheme prior to installation. 

9 There are limited opportunities for income 

generation in rural areas of Nepal [16].  

If possible, the technology should improve 

opportunities for income generation.  

10 Income of consumers is typically low. • The cost of the technology should be minimised.  

• Tariffs must be set at an appropriate level so that 

consumers can pay regularly. 

11 Communities in Nepal often consist of multiple 

caste groups with more disadvantaged groups 

less able to access assets and make an income 

[134].  

The provision of electricity should not discriminate 

consumers who have less ability to pay.  

12 There is typically a good availability of 

unskilled labour in rural Nepali communities. 

End users should provide labour in kind as a 

contribution during the construction works. 

13 There may be water rights issues associated 

with using water to generate power. 

Sites should be selected carefully to avoid creating 

conflict. 

14 Communities may be unfamiliar with the 

concept of hydropower. 

Communities should be educated to understand the 

technology. 

15 Some communities have no access to a reliable 

supply of electricity. In 2016, an estimated 7 

million people had no access to electricity 

whilst 20 million relied on biomass for cooking 

[6]. 

Consumers need to understand using electricity, 

electric lighting and electrical appliances. 
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16 Every community is socially and economically 

unique whilst environmental and technical 

features of each site will also vary. 

The most effective process for implementation will 

vary from one site to the next. 

17 Paying for energy services on a monthly basis 

may be unfamiliar to rural communities. 

The payment process and its importance should be 

explained to consumers. 

 

From 1981, the UC had been developing a set of cost-effective designs ready for installation at sites 

with appropriate geography in New Zealand [135]. As these sites were likely to be in remote areas, 

reliability and repairability were key drivers. The designs were all vertical shaft propeller turbines, 

standardised to minimise their cost and maximise simplicity. The sizes of turbine were considered in 

discrete steps to correspond to typical generator specifications. Alongside the turbine and generator, an 

electrical control system was developed. This electronic load controller (ELC) allowed turbines to run 

at a constant speed by maintaining a constant resistive mechanical load; using a dummy load that varied 

in response to changes in the consumer load [136]. Consequently, no moving guide vanes or blade 

actuation were required which reduced the number of parts, cost, and maintenance requirements. The 

high specific speed of a propeller turbine allowed it to be directly coupled with a generator. This avoided 

the need for a transmission system (such as a belt drive or gearbox) which also reduced the number of 

parts, cost and maintenance requirements. Reaction-type, propeller turbines are inherently good at 

dealing with silt which means complex and expensive de-silting civil structures were not required. 

Another advantage was that a draft tube could be used, allowing the generator and electrical components 

to be positioned safely above the flood plain. These features fulfilled many of the requirements in Table 

3.1, and made the design a viable candidate to be adapted for local manufacture and use in Nepal.   

Design and manufacture in the local context 

Following the identification of the propeller turbine design, the ongoing research and development 

occurred in the country of use. During the initial development at NHE, Nepali engineers were 

encouraged to devise and conduct their own tests on the sub-systems of the turbine set. By encouraging 

an experimental approach, the engineers learnt to devise experiments that tested the equipment, even to 

the point of failure. For the individuals, this improved their understanding of the equipment and its 

weaknesses, allowing them to suggest and implement design changes. The technology benefited from 

robust testing of all sub-systems, with targeted experiments conducted by Nepali engineers who 

understood the installation environment. Over the course of its development, the local context posed 

challenges affecting both the function of the technology and its production. Table 3.2 describes three 

problems, and the solutions that were developed to overcome them.  
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Table 3.2 - Problems in the local context and their solutions. 

Component Problem in the local context Solution Outcome 

Casing 

The size of engine lathe typical 

at micro-hydropower 

manufacturers was too small to 

carry out machining operations 

on the runner housing and scroll 

casing. For one version, the 

machining operations on this 

part took over 70 hours and were 

sub-contracted to a machinist 

with a larger engine lathe, 

increasing the total cost.  

The manufacturing process 

was changed to conduct 

machining operations on the 

runner housing prior to 

fabrication with the casing. 

An alignment jig was used to 

ensure concentricity between 

these two components during 

fabrication.  

This change to the design 

allowed all the 

manufacturing processes 

to take place at OPS, and 

therefore the processes 

could be replicated by 

other micro-hydropower 

manufacturers with similar 

equipment. The method 

has been successfully used 

in the production of two 1 

kW and one 3 kW 

turbines. 

Electronic 

load 

controller 

Many income generating 

activities or productive end uses 

such as grinding mills, sawmills 

and sewing machines require the 

use of motors. When powering a 

motor, a large inrush current 

occurs when a voltage is applied 

whilst the motor’s shaft is 

stationary [137]. The inrush 

current can be several times 

greater than the rated load 

current and the resulting droop 

in voltage prevents the motor 

from starting.  

A variable capacitor bank 

connected across the 

generator poles could be 

used to vary the capacitance 

across the generator phases.  

Using a testing rig, it was 

possible to identify a 

selection of capacitors that 

would allow the IMAG to 

drive an inductive load. A 

printed circuit board 

electronic load controller 

could be used to limit the 

voltage drop.  

The capacitor arrangement 

allowed the 0.3 kW rated 

turbine-generator set to 

drive a hand drill.  The 

new ELC limited the 

droop in voltage to 190V 

and ensured recovery to 

the design point voltage of 

230V in 0.5s. A method 

for the manufacture of 

PCBs was developed by 

KAPEG.  

Trash rack 

For the reliability of hydro-

turbines, it is important to 

prevent debris from passing 

through the turbine. In many 

parts of the world, small- scale 

hydropower schemes often use 

Coanda screens to effectively 

filter small particles whilst self-

cleaning. Coanda screens were 

not available in Nepal’s local 

market and the existing 

alternatives for Pelton and 

Crossflow systems allowed 

debris of up to 10 mm to pass 

through the system. Stones of 

NHE used a laboratory rig to 

test using perforated steel 

sheet as a self-cleaning 

screen. The performance of 

locally available perforated 

0.8 and 2 mm thick sheet, 

both with 3 mm diameter 

holes, was compared. The 

sheets were tested in straight 

and right-angled 

configurations.  

The final form of the trash 

rack was a simple welded 

fabrication using the 2 mm 

sheet. The rack was 

installed into sites with 

upright threaded bar 

allowing adjustment of the 

angle depending on the 

quantity and type of debris 

to be filtered. This allowed 

the rack to be optimised on 

site for specific operating 

conditions.  
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this size could easily block or 

damage the blades of the 

propeller turbine. 

 

These problems all occurred due to the local context. For the casing and trash rack, cost and the ability 

to complete production processes locally motivated the design changes. Whilst it would have been 

possible to import components from elsewhere (e.g., a Coanda screen) or pay another company to do 

machining work, these actions would have increased cost and reduced the number of components that 

could be manufactured by local companies. For the electronic load controller, the original motivation 

was to improve the functionality of the product by increasing the range of feasible electrical loads. 

Similar to the other two problems, the solution that was developed allowed the production of the 

component to take place locally.  

Monitoring and testing 

During the initial development, the laboratory developed at NHE was crucial in testing individual 

components and their integration. The testing rig consisted of an open flume which was fed by a pump. 

For the early versions of the turbine, this allowed testing to closely replicate the conditions found on 

site. Engineers at NHE were encouraged to develop their own tests to improve the reliability, 

performance and safety of all components. The method and results for all these tests were recorded so 

that the product development path could be easily understood. Over a 10-year period more than 50 tests 

were carried out, these included testing of new and existing designs, and failure analysis of parts 

returned from the field. 

For field-based testing, the BTI was responsible for conducting a monitoring programme of 3 PT 

turbines [138]. NHE were a partner in the programme and provided all the equipment, training and 

technical support to the engineers responsible for monitoring. As well as supporting the three field sites, 

NHE made a series of design changes based on reports from the field. At each installation, practical 

training was delivered regarding operation, maintenance, and repair procedures to the selected operator. 

An O&M guidebook, written in Nepali with clear supporting images, was also provided to operators. 

In addition, training for consumers explained electricity use and the importance of tariff payment. Over 

the course of the field monitoring, a number of problems were identified relating to the different sub-

systems. The identification of these problems and the feedback to NHE meant they could be individually 

resolved at the time and targeted for remediation in future designs. Examples included changing the 

quality of bolts used and adapting a stub pin design due to repeated failure.  

Alongside technical issues, monitoring indicated problems relating to installation and operation. For 

example, it was found that the distribution cable was fragile and would often tear during installation. 

Subsequently, greater care was taken with both handling and routing the cables. At some sites, to 
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increase the available load, the community tampered with miniature circuit breakers (MCBs). Operators 

were advised that regular checking of these MCBs should form an important part of their O&M 

responsibilities. The actions of the community had a significant impact on the technical performance of 

the plant. The communities learnt that their behaviour could damage the plant or reduce the quality of 

service for themselves or others. When compact fluorescent light (CFL) bulbs broke, the usual response 

by the community was to replace them with cheaper incandescent bulbs. The higher power rating of 

these bulbs led to overloading of the system. Similarly, at another site, wealthier members of the 

community began using televisions. At one site, these problems were resolved when NHE staff 

instructed households to reduce their individual loads and continue to use CFL bulbs. At another site, 

the community independently introduced their own informal system which allowed only one television 

to be used each evening. 

A later version of the turbine, manufactured at OPS, was used to test the efficiency of the complete set 

and configure the ELC for the 1 kW unit. Testing was conducted at the Turbine Testing Laboratory 

(TTL) at Kathmandu University (KU). The best efficiency of 54.3% occurred at a rotational speed of 

1557 rpm with a head and flow rate of 3.8 m and 50.3 L/s respectively. The testing did not investigate 

the efficiency of the generator therefore the exact efficiency of separate components was not known. In 

[34], a motor of equal size to the one tested had an efficiency of 76% when operating as a generator at 

full load, hence the hydraulic efficiency of the turbine can be assumed to be approximately 71%. The 

performance of the ELC was tested to ensure that the output voltage and frequency could be maintained 

at acceptable levels whilst the main load was changed. The ELC ensures that there is sufficient ballast 

load to maintain a constant rotational speed of the runner. The test began with no main load whilst the 

ELC ensured that there was sufficient ballast load. As the main load increased, less load was diverted 

to the ballast load. The ELC ensured that the voltage and frequency were maintained close to their 

design points of 230 V and 50 Hz respectively. The fluctuation in the values of voltage remained inside 

the ± 10% suggested by Nepal’s national guidelines on power output from small-scale hydropower 

projects [36].  

Testing and monitoring were used throughout the development process. Initially, laboratory-based tests 

were important in understanding performance but also in exploring failure modes affecting the 

suitability of local solutions. During field-based monitoring, lessons from the field could be used to 

understand sub-systems that needed greater consideration in the laboratory or specific redesigns. 

Alongside technical findings, the monitoring programme indicated appropriate methods for 

familiarising communities with the technology. Subsequently, prolonged use by the community 

demonstrated strengths and weaknesses in the product. The performance testing was important in 

evaluating the efficiency, with the results allowing the turbine to be quantitatively compared with others 

and promoted.  
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Discussion 

The development process of the low head propeller turbine led to a solution which satisfies the two 

criteria described above. In this case study, there were three key stages that enabled these criteria to be 

satisfied. Firstly, understanding the local environment in establishing the design requirements was key 

to developing a robust system. The operating environment in Nepal is different to New Zealand (where 

the design originated), with the market, operating conditions, and a lack of skilled labour identified as 

some of the key differences. The specific requirements for Nepal influenced the solution choice, design 

changes and methods for its implementation. Secondly, technical capabilities in Nepal affected how the 

product’s sub-systems could be manufactured. Design changes were required in response to material 

and process availability for the casing and trash rack. Finally, the laboratory and field testing of the 

product was able to provide strong and robust feedback that resulted in a more reliable and suitable 

system. The product was delivered as a complete system with tested interfaces between sub-systems.   

Based on the experiences of the case study, it is proposed that the DFL methodology is applied in three 

stages: 

1. Understand local context for solution, deriving product requirements/specification 

A requirement capture process needs to be undertaken, based upon the requirements of the solution and 

the technical, social, economic, political and natural environment that it will be implemented in. This 

derivation of local requirements can be used to inform a revised product specification for the adaption 

of the existing solution.  

2. Develop design solutions for local manufacturing 

The capabilities of the local manufacturing industry must be understood. A full assessment of the 

material, processes and skills available, including maximum size of work for the machinery, achievable 

tolerances and number of facilities and operators. Using this information, the design can be reviewed, 

any design changes identified, and a manufacturing plan can be developed. 

3. Conduct local research and field-testing phases to ensure the product is suitable for the 

application 

Once the product has been designed and manufactured, a comprehensive laboratory- and field- testing 

programme should take place. This will ensure the localisation modifications to the design work 

together as a whole, and the product system is able to operate as required to solve the initial problem 

whilst meeting the local requirements. This is a critical component of the process; without this, any 

bugs from the localisation process may cause the product to underperform, become unreliable or be 

unsuitable for local integration. 
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Alongside these three stages, the case study suggested three further principles are relevant throughout 

the process. Firstly, the DFL process may be non-linear. Lessons learnt during field testing phases 

improved understanding of the local context and led to further design changes. Secondly, the process 

of localisation should take place in the country of use. Nepali communities, engineers and implementors 

working in the field provided relevant input to the design based on an understanding of the rural context, 

the availability of materials and processes for manufacture. The short feedback loop between these 

stakeholders allowed changes to be implemented quickly. Thirdly, fulfilling the local requirements may 

require a range of supporting activities alongside the technology. Education and training were important 

in ensuring that communities were equipped to operate systems sustainably.  

3.2.2 Supporting examples 

In academic literature, the use of case studies as a research methodology has been advocated as a means 

for generating theory [139]. This process is aided by using a variety of data forms such as literature, 

observation, experiences, and the insight of the researcher [139]. Subsequently, validation of a theory 

can be reinforced by the identification of similar patterns within other case studies [139]. The propeller 

turbine case study – which was rich in multiple sources of information and relied on experiences that 

spanned 20 years – motivated the proposal of the DFL methodology. However, validation and 

progression of the theory is dependent upon corroboration elsewhere.  

Within small-scale hydropower, there are a number of turbine designs that have been adapted for use 

in local workshops. In comparison to the PT case study, the researcher is unable to draw directly on 

personal experiences when analysing these case studies. However, there are examples that are well 

documented in academic and grey literature. Furthermore, as they are recent, personal communication 

can be used to provide further insight. Consequently, whilst the breadth of available information is 

narrower than for the PT case study, there is sufficient information to cross examine several case studies 

in relation to the DFL methodology. To determine the validity of a theory requires “identification of 

similar patterns” [139]. Therefore, the objective of the analysis was to determine whether (within these 

case studies) there was evidence of the three stages and supporting principles that were proposed. Table 

3.3 presents three case studies of local micro-hydropower development, their key characteristics and 

evidence for the three stages of the DFL methodology.
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Table 3.3 - Case studies of local micro-hydropower development. 

Name of turbine/series Peltric set Remote Hydrolight (RHL) Entec/SKAT T-series 

Developer/s Akal Man Nakarmi from Kathmandu 

Metal Industries (KMI). 

Owen Schumacher and Anders 

Austegard from International 

Assistance Mission. 

Entec, SKAT, Balaju Yantra Shala. 

When did it happen? c. 1980  1998 - 2008 c. 1970 - 2005 

Type of turbine Pelton Crossflow Crossflow 

Power range 0 – 5 kW 0 – 120 kW 10 – 500 kW 

Models N/A Traditional Mill Turbine, Hindu Kush 

Turbine, Pamir Turbine 

T-1 to T-15 

Description An induction motor as a generator 

directly driven by a Pelton turbine.  

A family of Crossflow turbines 

intended to span the range of 5 to 120 

kW. Larger turbine sizes were designed 

to be increasingly robust.  

A series of Crossflow turbines 

developed collaboratively between 

local industry, foreign industrial 

consultants, and international 

development consultants. 

Country of origin Nepal. Afghanistan. Nepal, Thailand, Argentina, and 

Indonesia. 

Estimated installations At least 1000.  In Afghanistan, over 1300. It is 

suspected that the design has been 

replicated elsewhere.  

Unknown. 

Evidence of understand 

local context for solution, 

deriving product 

requirements/specification 

• Cheap enough to be affordable for 

rural Nepali communities.  

• Could be carried by a person alone.  

• Integration of turbine, generator, 

and controller for simplicity.  

 

• Must be transportable by person or 

by animal.  

• Identified that workshops will need 

to be taught how to fabricate the 

turbine.  

• Initially intended to be used only for 

agricultural processing. 

• Production of electricity added 

subsequently based on local 

demand.  

• Multiple progressions of the design 

with a different focus. 

• Education was identified as an 

important and necessary element of 

the approach. 
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Name of turbine/series Peltric set Remote Hydrolight (RHL) Entec/SKAT T-series 

Evidence of develop 

design solutions for local 

manufacturing 

• Similar approach in manufacturing 

as with larger scale Pelton turbines. 

• Use casting to produce individual 

buckets. 

• PVC rather than penstock pipe to 

reduce production costs.   

 

• Design is intended to be 

manufactured by an automotive 

workshop. 

• Can be manufactured on a Pakistani 

8ft lathe that is typical in 

Afghanistan. 

• Dimensions driven by availability 

of materials in the local market.  

• Significant effort to standardise, 

including through use of available 

bought out components.  

• Key aim was that no casting was 

required, only machining and 

welding.  

• Production of drawings that can be 

easily adapted to a range of sizes by 

local workshops.   

Evidence of conduct local 

research and field-testing 

phases to ensure the 

product is suitable for the 

application 

• Developed at a Nepali micro-

hydropower manufacturer (KMI).  

• Field testing conducted in Nepal. 

• Designs have been refined over a 

number of years in operation.  

• Tested in Norway in an 

experimental lab.  

• Multiple workshops were taught 

how to manufacture the turbines.  

• Long term partnership with a local 

Nepali workshop.  

• Iterative nature of the series 

demonstrated a willingness to revise 

and improve.  

• Long term presence of foreign 

experts.  

• Multiple phases of experimental 

testing.  

Sources [77, 96, 140] [80, 141, 142] [32, 143] 
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Table 3.3 shows that in these case studies, there is evidence for each of the stages within the DFL 

methodology. An understanding of the local context was demonstrated in all of the case studies. Akal 

Man Nakarmi, former managing director of KMI, identified an opportunity to develop a turbine ‘set’ 

that would be easier for users to install and operate themselves [77]. For the Remote Hydrolight and T-

series cases, the presence of foreign experts was significant. However, they worked in country and on 

the ground over extended periods of time. The design solutions all showed some adaption to the 

availability of manufacturing processes. Nakarmi’s own experiences with larger scale Pelton turbines 

meant he was aware of what was achievable within the KMI workshop. In Afghanistan, Remote 

Hydrolight identified that there were existing automotive workshops with the ability to produce hydro-

turbines [142, 144] . The initial development of the T-series in Nepal took place alongside the creation 

of engineering workshops in Nepal by foreign aid organisations [64]. Design solutions were developed 

on the ground within these workshops. There is evidence that in all of the case studies, the designs 

developed and improved as a result of installations in the field. For the T-series in particular, each new 

design iteration was renamed, leading to 15 versions. Changes were made due to both engineering 

requirements (e.g. reduction in vibration) and social requirements (e.g. a strong local demand for 

electricity) [64]. In Afghanistan, the Remote Hydrolight design was manufactured at multiple 

workshops. The collective experiences of the workshops lead to a best design which has been tested 

experimentally. For the Peltric set, there is some evidence of specific design progression; the ‘Pico 

Power Pack’ was a further development of the Peltric set but with the generator oriented horizontally 

rather than vertically [145]. The uptake of the Peltric set amongst manufacturers in Nepal is a useful 

indication that it was considered suitable for the local environment. 

Within the PT case study, 3 further principles were identified as important: non-linear design 

progression, development in the country of use, and the need for supporting activities alongside the 

installation of technology. In all the examples in Table 3.3, the development took place in the country 

of use where a local understanding of manufacturing capability and product requirements were 

consistently important. There is specific evidence of non-linear progression in the RHL and T-series 

where a number of design changes were made based on experiences in the field. For the Peltric set, such 

changes were not described in the literature. In addition, specific activities to support the installation 

were not mentioned. Conversely, for the RHL, extensive community education is described and for the 

T-series, education in the field was maintained as a key feature of the implementation approach. 

For these case studies, the local adaption of the design followed similar stages of development to the 

propeller turbine case study. Furthermore, there was evidence that the suggested principles were also 

relevant. The findings are supportive to the proposed DFL methodology; suggesting that following the 

3 stages and the supporting principles are appropriate measures to adopt when adapting an existing 

technology to a new local environment.  
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3.3 Research methodology 

Currently, a DFL methodology has been proposed (based on the PT case study) and used as a framework 

to consider the development histories of several different turbines. In this thesis, the methodology is 

applied. The literature review established an opportunity to expand the range of turbines available in 

Nepal, with the Turgo turbine a relevant and viable choice. Consequently, this work will follow the 

stages and principles of the Design for Localisation methodology (outlined in Section 3.2.1) and use it 

to develop a locally appropriate Turgo turbine runner design.  

In this thesis, the research methodology is guided by the stages of the Design for Localisation process. 

Individual research activities address research objectives whilst also contributing to the progression of 

the DFL process. Figure 3.1 is a diagrammatic representation of the research methodology. The 

summarised version of the research aim is shown in a box on the right of the diagram. Individual 

research activities are shown in the blue circles, with the relevant chapter for each of the activities 

indicated. 
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Figure 3.1 - A diagram to represent the research methodology.
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From the starting point (present situation), the Design for Localisation methodology 

(represented by the green line) provides the framework for the research methodology. The 

research activities are derived from this; however, each activity is also pertinent to a 

particular research objective. In addressing research objectives one to four, the findings can 

be directly applied to the research aim.  The fifth research objective concerns the 

application of the Design for Localisation methodology. As an unproven methodology, 

there is value in assessing its relevance, efficacy, and potential for future use. Whilst not 

limited to the hydropower field, future applications of the Design for Localisation 

methodology with other turbine designs could also be supportive to the research aim.  

3.3.1 Research methods 

Throughout the research, a mixed-methods approach was used to develop a more complete 

understanding of the key problems [146]. The complex and interdisciplinary nature of the 

research meant using both ‘numbers’ and ‘words’ was found to be effective in analysis 

[147]. During the research, the selection of methods frequently progressed non-linearly; 

the interrelation between research objectives resulted in new findings influencing the 

chosen research methods. 

Literature review 

A review of the available literature was used to summarise the basis of knowledge in 

relation to the micro-hydropower industry in Nepal and its development, the operational 

status of micro-hydropower plants in Nepal, and design approaches for local manufacture. 

The conclusions drawn from these diverse sources of literature were used to identify gaps 

and opportunities to address [148].  

Case study 

A case study approach was used in the consideration of the propeller turbine development. 

The case study included personal experiences of the researcher and collaborators, and a 

range of qualitative and quantitative data. Analysis of a case study can be used to develop 

a theory [139], in this case the DFL methodology. To establish the validity of the theory, 

additional cases were also analysed [149].  

Field study 

Early in the research, field visits were used to improve understanding of the local context 

where MHPs are installed. During visits, other specific research methods were used. Whilst 
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these methods were both qualitative and quantitative, several characteristics of the field 

study approach were typical of a qualitative research design [150, 151]: 

• Collecting data in a natural setting – Data was collected at the MHPs where 

technology could be observed in person and interactions could take place face-to-

face.  

• The researcher collecting the data in person – Most of the collection of data was 

carried out by the researcher themselves, rather than relying on others.  

• Using multiple sources of data – The data collected included interviews, 

observations, and a numerical site assessment. Therefore, data analysis could rely 

on themes that were emergent from all of these sources.  

• Aiming to develop a holistic account – The complex nature of the investigated 

problem required an appreciation of a broad range of influential factors.   

Data collection was carried out by the researcher and a Nepali colleague (a rural 

development officer at PEEDA) experienced at working in rural areas. During the field 

studies, informal discussions with this colleague improved understanding of the local area 

and helped to contextualise the experience in relation to the author’s personal knowledge 

of Nepal. When travelling to remote areas, local accommodation and public transport were 

predominantly used. These choices aided the cultural ‘richness’ of exposure for the 

researcher.  

Site assessment 

During the field studies, the site assessment used a combination of quantitative and 

qualitative assessment to consider the reliability of MHPs. The collection of qualitative 

data allowed the identification of common themes, whilst the quantitative data enabled 

comparison between the sites.  

Interview 

Interviews were used throughout the research to (initially) improve understanding, and 

subsequently focus on the collection of specific information. Depending on the purpose, 

the style of interviews was either semi-structured or structured. The ‘semi-structured’ 

questions were useful in understanding thoughts, values, and opinions [146]. When the 

desired data was quantitative, structured interviews with specific closed questions were 

used allowing the aggregation of interviewees’ responses [152]. 
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Document analysis 

Document analysis was conducted on government documentation and specific project 

reports from Nepal. The documentation was used alongside other qualitative information 

as a means of ‘triangulation’ [153] to understand the project process and its relation to 

project sustainability.   

CFD based simulation 

To quickly explore design changes that could drive an improvement in efficiency, 

computational fluid dynamics was used as a tool. CFD simulations have been shown to 

provide a reliable agreement with experimental testing results [154].  

Experimental testing 

Experimental hydraulic testing was used to evaluate the performance of the Turgo turbine 

design. The key quantitative data generated was the turbine efficiency allowing comparison 

with other turbines.  

Field testing 

For this research, testing at a pilot site was used to evaluate the performance of the turbine 

in conditions that resemble its expected use case. As the local environmental, social and 

cultural complexities cannot be recreated in a laboratory [155], field testing is significant 

in the product development process [119].   

3.3.2 Collaboration with partners 

Collaboration with local (Nepali) and international partners was integral to the research 

methodology. The researcher was aware of the limitations of their own knowledge in 

relation to the culture and context of Nepal. Collaboration provided multiple opportunities 

to improve the quality of research. As a foreign researcher working in a different context, 

local partners were able to facilitate research activities, help establish connections, and 

provide their own personal and professional reflections on the research direction. 

Alongside local partners, the use of computational fluid dynamics was not a skillset the 

researcher possessed nor one that can be learned and applied quickly. Consequently, a 

collaboration was established that enabled the use of CFD, without consuming a significant 

amount of time. In addition to the work of the supervisors, the key partners and their role 

in the research are described below: 
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People, Energy and Environment Development Association 

The People, Energy and Environment Development Association (PEEDA) is a non-

governmental organisation (NGO) that was founded in Nepal in 1997 [156]. Their goal is 

to “mobilize both local and external resources to harness Nepal’s indigenous resources, 

thereby promoting activities for economic development and poverty alleviation” [156]. The 

researcher has been working with PEEDA on a variety of projects since 2014. In this 

research, responsibilities fulfilled by PEEDA included:  

• Co-ordination of site visits. 

• Translation of interview material and conduction of interviews. 

• Management of partners involved in experimental testing. 

• Identification of a field-testing site and community mobilisation. 

Nepal Yantra Shala Energy 

Nepal Yantra Shala Energy is a micro-hydropower manufacturing company based in 

Kathmandu which has been trading since 1976 [157]. Services provided include turbine 

design and manufacture, production of electrical control systems, and installation and 

commissioning. The company is one of the oldest micro-hydropower companies in Nepal 

and a member of the Nepal Micro-Hydro Development Association. In this research, 

responsibilities fulfilled by NYSE included: 

• Collaborative design of the Turgo turbine. 

• Manufacturing of the Turgo turbine. 

• Manufacturing of testing rig components. 

• Field-based installation and commissioning. 

Turbine Testing Laboratory 

The Turbine Testing Laboratory (TTL) at Kathmandu University is a hydropower testing 

facility established in 2011 [158]. It is equipped with two 250 kW centrifugal pumps 

capable of producing flow rates up to 0.25 m3/s with a maximum head of 75 m [158]. In 

this research, responsibilities fulfilled by the TTL included:  

• Co-design of testing rig. 

• Procurement of testing equipment. 

• Installation of the resting rig. 

• Conducting experimental testing.  
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Shaun Benzon 

Shaun Benzon is the Head of Tidal Project Development at Liverpool City Region 

Combined Authority. In August 2016, Shaun completed a thesis at Lancaster University 

titled “The Turgo impulse turbine; a CFD based approach to the design improvement with 

experimental validation” [154]. He is experienced in the fields of CFD simulation and 

turbine design. In this research, responsibilities fulfilled by Shaun included:  

• Set-up and simulation of CFD models of the Turgo turbine. 

• Collaborative discussions regarding results and design progression. 

• Advisory role during experimental testing. 

Jonathan Cox 

Jonathan Cox is a consultant Mechanical Engineer. He worked at Nepal Hydro Electric 

between 1997 and 2005 as a secondee from the United Mission to Nepal. He has extensive 

experience in hydropower in Nepal and the UK. In this research, responsibilities fulfilled 

by Jonathan included: 

• Provision of materials regarding the development of the propeller turbine series.  

• Sharing experiences of the propeller turbine development, the requirements of 

locally manufactured equipment and the hydropower industry in Nepal.  

Anh Tran 

Anh Tran is the Humanitarian International Liaison Manager for the Modern Energy 

Cooking Services Programme at Loughborough University. In this research, 

responsibilities fulfilled by Anh included: 

• Review of site assessment materials for the field study.  

• Assisted in evaluation of results from the field.  
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3.3.3 Ethical considerations 

Taking an ethical approach to research means avoiding or minimising “doing long-term or 

systemic harm … to individuals, communities and environments” [159]. This is particularly 

important when working in foreign contexts that are socially and culturally different to the 

researcher. Prior to undertaking this study, the researcher lived in Nepal for 9 months. This 

experience helped to develop an understanding of the local culture, and a basic knowledge 

of the Nepali language. Whilst this experience is not extensive, it provided a foundation of 

local understanding that was useful when planning research activities. To achieve the 

overall research aim, there were a number of general considerations.  

Firstly, when conducting research activities, actions should be taken to minimise impact. 

For research activities involving human participants, this is particularly important. Ethical 

approval was sought from the University of Bristol and interviewees were informed that 

the interviews or surveys were conducted only for the purpose of research. With the 

permission of the interviewee, the interviews were recorded (so that they could be 

transcribed and checked after the interview), and photos were taken to document the 

process. All interviewees were informed that they could end an interview at any time. 

Whilst working in rural areas where foreign visitors are less common, it was important to 

be aware of local customs. For this, the researcher took guidance from PEEDA colleagues. 

Secondly, as a field of research, micro-hydropower has received a reasonable amount of 

attention with journal articles published by Nepali and international authors. Alongside the 

body of academic literature, there have also been numerous reports and studies published 

by Nepali and international NGOs. These organisations, many that have been working in 

this field for a long time, have a wealth of on the ground knowledge. Consequently, the 

work of local practitioners (both historic and current) should be evaluated. Furthermore, 

efforts should be made to converse and collaborate with local practitioners to improve the 

quality of research and maximise impact.  

Finally, high unemployment in Nepal means large numbers of engineers seek employment 

abroad. As a foreign researcher working in Nepal, it was important to be mindful of how 

to make the research useful in this context. It should not (deliberately or accidentally) 

reduce the availability of work for Nepali engineers, rather it should focus attention on a 

local industry that could provide greater employment opportunities.  
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3.4 Summary 

Based on the findings of the literature review, this chapter proposed a design methodology 

that enables the transfer of a design to a new geographic location, considering its local 

manufacture and use. The methodology was devised based on the experiences of a case 

study, with additional supporting examples identified in the available literature. The 

principles of the design methodology provided a framework that informed the research 

methodology. The motivation behind this approach and its applicability in addressing the 

research objectives was explained. Finally, the specific methods, collaborations and ethical 

considerations in the research were described.  

In summary:  

• Design for Localisation was proposed as a design methodology focused on 

developing solutions appropriate for a local context in terms of use and 

manufacture.  

• Three key stages of this methodology were proposed based on the experiences of 

a detailed case study and supported by evidence from literature. 

• The design methodology was used to inform a research methodology to address all 

of the research objectives.
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Chapter 4  

Understanding sustainable operation 

of micro-hydropower plants: a field 

study 

4.1 Introduction 

The literature review indicated that research into micro-hydropower tended to focus on 

either the technical or the socio-economic elements separately. A range of literature has 

established that for community owned and operated renewable energy technologies, the 

inter-relation of these factors determines the sustainability or ‘success’ of a project. An 

approach was required that considered individual technical, social, and economic elements 

and their interconnection. To achieve this, a field study was devised with two main 

objectives:  

• To understand the local context where hydropower technology resides.  

• To understand the factors that determine the operational sustainability of MHPs.  

The field study was conducted at 24 MHPs located in 2 districts in Nepal. The sites selected 

included those with Crossflow and Pelton turbines and a range in rated power, number of 

connected households, and remoteness of the electrified communities.  

4.2 Methodology 

To develop an appropriate methodology, the existing literature relating to site assessment 

of MHPs in Nepal was considered. Often there has been a focus on technical issues 

identified in the field [34, 35, 37]. Several studies have indicated that the quality of turbines 

can be low; poorly fabricated and installed pulleys have led to premature wear in belts and 

bearings [34, 35]. The construction of civil structures is often described as problematic due 

to overly long and poorly designed canals [37, 40]. A lack of supervision from installation 

companies during the civil works, particularly for the de-silting bay, can result in increased 

turbine erosion [35]. These studies have demonstrated technical issues that occur at MHPs, 

but rarely have they considered the interaction of the operational team, the community, and 
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the technology once a project goes into operation. An exception is Barr’s [41] study of 6 

sites which documented technical problems that occurred once plants were operational and 

showed that operators’ approaches to maintenance were affected by the economic 

opportunities in the local area. More recent research has focused on the sustainability or 

‘success’ of MHPs. Bhandari et al. [93] developed a detailed sustainability assessment 

model which used interviews with households, management, an operator and micro-hydro 

experts to develop a list of 54 indicators. These indicators are carefully selected and allow 

specific dimensions of sustainability to be compared. In a similar study that considered 

MHPs in Nepal alongside those in Bolivia, Cambodia and the Philippines, a framework for 

assessing the ‘success’ of projects was developed [160]. The methodology used qualitative 

data from interviews with a range of stakeholders to provide numerical scores to several 

criteria. In both studies, the quantitative information allowed for comparison between 

criteria and projects, however, greater insight regarding specific issues could be derived 

from interviews. The literature focused on Nepal has demonstrated that there is evidence 

of technical problems, with a relationship to the local context and the economic 

performance of MHPs. However, aside from Barr’s study on maintenance practices, there 

is little evidence regarding the role of the community and operational team once a plant is 

functional. Furthermore, the relationship between these roles and a plant’s operational 

sustainability has not been evaluated in detail. Consequently, the wider literature regarding 

assessment of mini-grid projects was considered to learn alternative approaches that have 

been used to understand the relationship between socio-economic and technical factors, in 

relation to project sustainability.  

4.2.1 Approaches to assessment of mini-grid projects 

In the available literature, methods for assessment of mini-grid projects vary considerably. 

As mentioned above, ‘success’ and ‘sustainability’ are often the stated measurands, 

however, these terms are often uniquely defined within each study. Consequently, the 

purpose and approach of assessments also vary. By analysing a range of existing 

approaches to assessment, factors considered important that are common throughout the 

literature could be identified, and methods for their assessment devised. As these factors 

could be non-technical, it was considered important to analyse literature covering a range 

of renewable energy technologies.  

Terrapon-Pfaff et al. [112] argue that there have been few studies that have specifically 

addressed the impact and post-installation sustainability of community-based projects. 

These authors use a combination of surveys and supporting empirical data to assess the 
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sustainability of 23 projects located in 17 countries [23]. The results demonstrated that the 

technical sustainability of projects did not depend on the reliability of the implemented 

technology alone. It also depended on how the technology was embedded into the socio-

cultural, political, and ecological context. Across all 23 projects, knowledge, maintenance 

capability, user satisfaction and community ownership were identified as key factors in 

enabling sustainability. Schnitzer et al. [26] considered best practices in the development 

of 17 mini-grid projects across several countries. They identified that to be sustainable, a 

threshold of reliability and financial viability should be maintained over a project’s 

lifetime. They found that the connection of technical, economic and social factors in the 

operation of mini-grids would tend to drive projects into either “vicious” or “virtuous” 

cycles. An example of a “virtuous” cycle was when effective tariff collection led to a high 

standard of O&M, resulting in a reliable energy service. Conversely, a “vicious” cycle 

could develop when poor tariff collection led to insufficient funds for maintenance, which 

in turn resulted in a poor quality of service. 

In a comparative study of 3 wind projects in Peru, Ferrer-Marti et al. [25] were able to 

contrast the successes and failures that occurred with different technologies and 

management methods. Similar to the cycles identified by Schnitzer et al., it was observed 

that shortages of energy affected the satisfaction of beneficiaries and consequently their 

engagement with the project. Hong and Abe [24] focussed on the social challenges and 

impacts of implementing an off-grid solar plant in the Philippines. They used interviews 

with a range of stakeholders and a survey of members of the project’s co-operative. They 

found that despite providing reliable power at a reasonable cost, the obligation of a monthly 

payment was too much for some consumers. As a consequence, the tariff was reduced, 

broken parts could not be replaced, and the quality of service suffered. They identified 

capacity development and promoting productive end uses of electricity as key factors in 

improving the sustainability of the project.   

The previous research on assessment of mini-grid projects has established that 

sustainability or project ‘success’ depends on multiple drivers. Project assessments used a 

mixture of qualitative and quantitative approaches. Typically, quantitative results were 

useful in making comparisons whilst qualitative approaches were able to provide greater 

insight into specific challenges.  Despite variations in approach and the assessment criteria, 

broadly, the existing research indicates that to be sustainable (or successful), a project must 

operate reliably, providing the community with household and commercial benefits that 

ensure their financial and social engagement. In this thesis, as outlined in Section 1.2, the 
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sustainability of a micro-hydropower plant is defined as the ability of the technology and 

its stakeholders to deliver electricity services that meet the expectations of consumers over 

a system’s expected lifespan. To understand this, the site study methodology needed to 

evaluate: the specific threats to reliability, the capability and typical behaviour of the 

operators and management team, the types of load and the income they generate, and the 

factors that lead to successful engagement of the community. Combining this information 

enables an understanding of the three key areas (that have been identified as influential) in 

the sustainable operation of plants: technical reliability, financial viability, and community 

engagement.  

4.2.2 Data collection  

Through the review of literature related to project assessments, it was shown that qualitative 

and quantitative data is useful for contextual insight and comparison respectively. Due to 

the importance of the community in operating the plant, it was important that data collected 

included the actions and perspectives of key stakeholders. This was deemed essential in 

understanding the local context and the role that stakeholders have in determining the 

sustainability of MHPs. To collect the opinions of stakeholders, interviews were considered 

the most effective method [146]. Alongside the interview, a technical assessment was used 

to evaluate the quality of the installed sub-systems and attempt to quantify the reliability of 

the plant.  Table 4.1 provides an overview of the methods used for data collection that 

resulted in a combination of qualitative and quantitative data. The mixed-methods approach 

was important in evaluating the interdisciplinary nature of plant sustainability [147]. 

 

Table 4.1 - Methods for data collection. 

 Qualitative Quantitative 

Technical assessment 

A visual evaluation was used 

to record a description of the 

quality of installed or 

constructed sub-systems. 

Numerical assessment of the 

quality of maintenance 

based on pre-defined 

criteria. 

Interviews 

Operator 
Open questions regarding their 

role, actions, and perspectives.  

Closed questions focused on 

the frequency of 

maintenance activities. 

Manager 
Open questions regarding their 

role, actions, and perspectives. 

Closed questions regarding 

specific numerical 

quantities relevant to the 

MHP. 

Consumer 
Open questions regarding their 

role, actions, and perspective.  

Closed questions regarding 

their use of electricity.  
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Site selection  

Due to its terrain and infrastructure, travelling to remote areas of Nepal is expensive and 

time consuming. As there are MHPs located in at least 45 of Nepal’s 75 districts [161], a 

study representative of the whole country would need to visit sites in a large number of 

districts. Unfortunately, the budget for the study dictated a choice between visiting a small 

number of sites (< 5) in several different districts or a larger number (> 20) in a single 

district or neighbouring districts. It was decided that visiting a larger number of sites would 

be advantageous for several reasons. There was likely to be less variation in the socio-

economic landscape than across multiple districts making it possible to develop a greater 

understanding of the local context. Proximity to turbine manufacturers – who are located 

mostly in Butwal and Kathmandu - and suppliers of parts was deemed an important factor 

in a plant’s reliability. Within a smaller geographical area, the difference in travel times 

from these cities to each site was in the order of hours rather than days. Figure 4.1 is a map 

of Nepal with major cities marked, Kathmandu and Butwal (underlined in red) are both 

shown.  

 

 

Figure 4.1 - Map of Nepal showing major cities. Image adapted from [162]. 
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To visit at least 20 sites within a small geographical area, the neighbouring districts of 

Baglung and Gulmi, located in Gandaki Pradesh and Province No. 5 respectively, were 

identified as a region with a high density of MHPs. In Figure 4.1, the city of Baglung (the 

capital of Baglung district) is underlined in red. Most of Baglung district is west of the city, 

with Gulmi district to the south west. A list of 30 potential plants was considered, where 

the contact details were known, and the sites could be reached within a single day from the 

main road, the Mid Hill Highway. The approximate area where these sites were located is 

indicated on Figure 4.1 by the blue dashed oval. From these 30 sites, a total of 24 sites were 

visited. Table 4.2 outlines the ranges in the site characteristics. There was variation in the 

size, ages, and types of turbine, distance from a main road, and the number of households 

connected to the MHP. 

Table 4.2 - Characteristics of the 24 visited sites. 

Characteristic Range 

Number of connected households 94 to 1765 

Rated power (kW) 18 to 135 

Types of turbine 18 Crossflow, 6 Pelton 

Time to powerhouse from main road (hours)1 0 to 6 

Year since commissioning  1 to 18 

1 Journeys were made by vehicle, on foot or a combination.    

 

The majority of the sites (22 of the 24) were located in Baglung district where historically 

many MHPs have been constructed. In 2009, Baglung was the only district in Nepal where 

more than 1 MW of mini- & micro-hydropower had been installed [163]. The topology of 

the visited districts is more favourable to Crossflow than Pelton turbines which accounted 

for the larger proportion of turbines of this type. Generally, Crossflow turbines are used at 

sites with lower heads and higher flow rates, whilst Pelton turbines are used for sites with 

higher heads and lower flow rates [17]. Their distinct designs can result in different issues 

relating to reliability and performance. 

Interviews 

Individual questionnaires were written for interviews with the plant operator, plant 

manager, and a consumer at each site. The questionnaires were developed based on the 

findings of Section 4.2.1 and the experience of the researcher, supervisors and Dr Anh Tran 

(see Section 3.3.2). They were reviewed by PEEDA staff, adapted to improve their 
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applicability to the local context, and translated into Nepali. Figure 4.2 shows a PEEDA 

employee interviewing a plant operator. Interviewees were made aware that it was an 

independent study for research, and it would have no financial impact on the individual nor 

the plant. Due to the focussed sample size, the responses gathered from consumers were 

used to understand their perspectives rather than draw specific conclusions about the 

individual projects. A total of 50 interviews were conducted in Nepali and subsequently 

translated into English. To comply with the University of Bristol’s ethical standards (as 

outlined in Section 3.3.3), participants were read a participant information sheet, and asked 

for permission to record the interview and take photos. 

 

 

Figure 4.2 - PEEDA employee interviewing a plant operator during an interview. The 

photograph was taken by the author, with permission given by both of the subjects. 

 

The semi-structured interview with the plant operator documented their responsibilities, 

actions, and opinions. To gain alternative perspectives on the plant’s reliability and an 

understanding of the financial viability and community engagement, semi-structured 

interviews were conducted with a plant manager and a consumer at each site. With the 

manager, the interview also explored the current economic status of the hydropower plant, 

its organisational structure and the actions performed by the management team. Interviews 
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with consumers used predominantly open questions to understand their opinion of the 

hydropower plant and their personal electricity use. The interview questions are provided 

in Appendix A.  

Technical assessment 

To support the data collected from interviews with the plant operator, a technical 

assessment was devised. The method of assessment was intended to give an indication of 

the reliability in a limited time and whilst many of the turbines were still in operation. 

Typically, numerical information regarding a system’s performance over time is used to 

consider reliability; data such as the average time between failures allow a probability to 

be calculated.  For power supply systems of all sizes, reliability can be considered in two 

parts: the amount of energy delivered over a certain period of time, and the system’s ability 

to respond to disturbances [46, 164, 165]. Usually, numerical data is used to quantify these 

two parts; for example, using the amount of power delivered, and the operational time lost 

due to failures [164]. In this case, it was not possible to access such data due to a lack of 

recorded information. Consequently, within this study, reliability is defined as the ability 

of the system to consistently deliver the expected electricity service whilst avoiding 

failures. To operate reliably, each of the sub-systems of the MHP should be maintained to 

avoid failure and function as designed, allowing the required power output to be delivered. 

To assess reliability, a two-part evaluation was conducted at the following 10 sub-systems: 

intake, de-silting bay, canal, forebay tank, penstock, powerhouse, internal pipework, 

turbine, control panel, and generator.  

At each sub-system, the evaluation consisted of a qualitative inspection and a quantitative 

assessment of the quality of maintenance. The purpose of the qualitative inspection was to 

visually identify threats that could reduce power output or lead to failure.  The observations 

were recorded on site and documented using photography. The purpose of the quantitative 

assessment was to rate the quality of maintenance at each sub-system. A marking scheme 

was used that had been developed based on available literature [41, 81, 166]. Table 1 shows 

an example of the marking scheme used to assess the de-silting bay. In the marking process, 

scores were assigned as discrete values (e.g., 1, 2, 3, 4 or 5). The site assessment procedure 

and complete marking scheme for all sub-systems is shown in Appendix B.  
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Table 4.3 - Marking scheme for the de-silting bay. 

 

4.2.3 Limitations 

With many of the turbines in operation, the mixed-methods assessment was deemed an 

appropriate methodology to provide an indication of reliability. The nature of the 

assessment meant that it was only possible to assess the maintenance and identify threats 

at the time of inspection. Whilst this approach could not provide a value for the overall 

reliability, it allowed comparison between the sub-systems and plants. The location of the 

sites visited should be considered when analysing the results. In relation to reliability, all 

the sites in the study could be reached in less than a day from Butwal, where many turbine 

manufacturers are based. This means spare parts can be delivered and maintenance carried 

out a lot more quickly than in remote districts in the far East and West of Nepal. These 

factors suggest that the technical reliability of the sites is likely to be better than those 

located in more remote areas; the findings should be considered in this context. From a 

socio-economic perspective, both districts are below the national average in terms of per 

capita income and human development index [167]. 

There were several limitations to the interview methodology. Typically for each site, there 

was a single point of contact, usually an operator or member of the managing committee. 

These individuals usually suggested who the other interviewees should be. Their selection 

was likely to be biased, particularly in the case of the consumer. To mitigate this, effort 

was made to conduct the interviews in isolation though due to cultural conventions, this 

was not always possible. Through a participant information sheet, interviewees were told 

the purpose of the study. For many of the responses of interviewees, it was not possible to 

verify the claims made. It is possible that, particularly amongst the managerial staff, there 

may have been a desire to exaggerate the degree to which the plant was performing well.  
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Description Score 

Very well maintained. Good evidence of regular preventative maintenance. 

De-silting bay is clean, free from erosion with no obvious cracks visible. Minimal 

silt build up.  

5 

Evidence of effort to maintain the sub-system but without following a schedule 

closely. Some dirt, debris and a small amount of erosion is visible. Cracks may be 

present, but they are small. Any obvious leaking is minor. Some silt is obvious in 

the bottom of the bay. 

3 

Poorly maintained. Preventative maintenance is rare. Intake is heavily 

contaminated with obvious signs of erosion. Cracks are significant and/or leakage 

is obvious. Significant build-up of silt in the bottom of the bay.  

1 
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In assessment of sustainability, it is common to consider the impact on the natural 

environment. Due to the skillset of the study team, a comprehensive method for this was 

not possible. Instead, the assessment of individual sub-systems included consideration of 

environmental risks, e.g., landslide or flood damage. As such, environmental risks were 

considered as a constituent part of the technical reliability. The assessment and interviews 

were usually conducted on a single day, occasionally over the course of two. The literature 

on site assessments had indicated the transient nature of plant sustainability. Consequently, 

assessment on a single day does not successfully capture these changes. Interviews with 

the stakeholders provided some information about past events but this did not necessarily 

lead to a detailed understanding of an MHP’s local history.  

4.3 Results 

4.3.1 Reliability  

From the numerical assessment of maintenance, a notable outcome was the difference in 

the quality of maintenance delivered by trained and untrained operators. Most operators 

receive 22 days of technical training from the NMHDA or an accredited training company 

[94]. The training includes sessions that teach operators preventative maintenance tasks 

and the function of all of the sub-systems assessed during the study [168]. Following the 

training, the expectation is that operators will be able to operate the plant, carry out 

preventative maintenance tasks, identify basic faults and replace a number of components, 

e.g. bearings, fuses and transmission belts [41]. When a significant problem occurs, 

representatives of a manufacturing company will visit the MHP to carry out repairs. At all 

the sites visited, operators were paid for their work with their monthly salaries ranging 

between NPR 4,500 ($44, at the time of the study) and NPR 15,000 ($147). However, at 9 

sites operators had left their job, typically moving abroad for employment. The operators 

who replaced them had not received any formal training. Figure 4.3 shows the mean scores 

of sub-system assessments by site for trained and untrained operators. The vertical dashed 

line is the mean (x̄ = 3.16) of all the sites suggesting (as per the marking scheme) that on 

average there was evidence of maintenance effort but without following a schedule closely.  

There were 9 sites with mean scores below 3, and 7 of these had untrained operators.  
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Figure 4.3 - Average maintenance scores by site.  

 

An independent samples t-test was used to look for significant differences between the 

mean scores of trained and untrained operators. Table 4.4 shows the results that have been 

accepted as significantly different at the 1% and 5% confidence interval levels.  It found 

that there were statistically significant differences in the overall mean and for the control 

panel, internal pipework, and turbine sub-systems.  In the table, M and SD represent the 

sample mean and standard deviation respectively. Meanwhile, t (t-value) represents the size 

of the difference relative to the sample data which is used to give a corresponding p (p-

value) which is the significance of the result. The significance of the results suggests that 

overall and for the 3 particular sub-systems, there is a very high probability that the same 

trend of worse maintenance by untrained operators would apply for the whole population. 

However, several factors are important in analysing these results. Firstly, the assessment 

was a one-off. Maintenance scores were given based on an instant assessment without 

knowledge of an operator’s typical routine. Secondly, the assessment was made without 

stopping the turbine. It was not possible to evaluate some performance critical components, 

particularly the turbine runner. Thirdly, some of the sites visited were easier to maintain 

than others. For example, it is much less time consuming to maintain a short canal than a 

long canal. Finally, even amongst operators who had attended training, each training course 

was different and their attainment within the course unknown. These factors should be 
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considered when analysing the statistical results. On a simplistic level, there is evidence 

that trained operators delivered a higher standard of maintenance. However, the factors 

noted above should be considered when discussing the results in relation to the whole 

population.   

 

Table 4.4 – Significant t-test results for trained and untrained operators. 

For the 3 sub-systems listed in Table 4.4, there were common problems observed which 

reduced the maintenance score attained by untrained operators. The electrical components 

were often poorly maintained; inside control panels, there were loose cable clamps and 

wires pulled from their conduit. For both turbines and the internal pipework, leakage (as 

shown in Figure 4.4), rust and loose bolts were common. For hydropower systems, leakage 

can reduce the overall turbine efficiency due to a loss in pressure and flow rate.  

 

 

Figure 4.4 - Leakage from a turbine casing. Photo credit, author.  

 

Type 

Trained Untrained  

t 

 

p 
Significance 

level M SD M SD 

Overall 3.47 0.59 2.62 0.49 3.49 0.002 1% 

Control panel and other electrical 3.93 0.80 2.72 1.03 3.22 0.004 1% 

Internal pipework 3.80 1.15 2.44 0.88 3.04 0.006 1% 

Turbine 3.47 0.99 2.44 1.13 2.32 0.030 5% 

N (sample size) =24 
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Amongst all the operators, the maintenance of civil structures was a weakness. The walls 

of canals were often cracked due to plant growth which resulted in leakage. The growth of 

moss reduced the safety of access as typically the walls of the canal are used to reach other 

civil structures. Alongside the maintenance issues, problems were identified with the 

original construction of some civil structures. A commonly observed problem was poorly 

shaped forebay tanks and de-silting bays. Typically, these sub-systems are located before 

the main canal section and further downstream before the penstock. Their critical function 

is to reduce the quantity of silt flowing through the system; small particles of material 

suspended in the flow of water can be abrasive to the turbine runner [81]. The shape of the 

tank slows the speed of the flow using a symmetrical divergent section (see Figure 4.5(a)), 

the particles settle on the floor of the tank allowing them to be flushed away. When these 

tanks are incorrectly shaped, they fail to decelerate the flow and are ineffective in settling 

silt. An example is shown in Figure 4.5(b), the divergent section of the tank is asymmetrical 

allowing the flow to continue quickly along one wall. The consequence of more silt passing 

through the turbine is faster abrasion of the runner. Figure 4.6 shows abrasion, scoring and 

dents on the blades of a Crossflow runner.  

 

 

Figure 4.5 – Examples of (a) effective and (b) ineffective forms of de-silting bay. Photo credit, 

author.  
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Figure 4.6 - Abrasion on a Crossflow turbine runner. Photo credit, author. 

 

Mechanical issues were also identified that can manifest at a number of stages in the project 

process. Large vibrations in transmission belts were commonly observed. As a mechanical 

system, vibrations cause movement which alters alignment and changes the belt tension. 

During operation, the plant operator is responsible for correcting this issue, but it is possible 

that poor design and low quality in manufacture contributed to the problem initially. Plant 

operators were asked about the frequency with which they performed various tasks. For 

activities in the powerhouse, the practice of operators was mostly in line with expectation. 

Of the 24 operators, 19 said that they checked the noise and temperature of bearings daily. 

Usually bearings should be greased every 500 hours although smaller bearings will likely 

require less frequent greasing [54]. Depending on the daily time in operation, this suggests 

that greasing approximately every 2-4 weeks is a reasonable frequency. Of the operators, 

14 gave a response that was within that time period, 8 said they did it more frequently and 

2 less. At several sites, there was evidence of over-greasing as shown in Figure 4.7, 

suggesting bearings were greased too frequently or too much was applied each time. Over-

greasing causes bearings to overheat as grease is churned away from rotating elements [81], 

it can also harden due to the heat and later prevent the ingress of new grease [169]. 
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Figure 4.7 - Over-greasing of bearings in the transmission shaft. Photo credit, author. 

 

Outside of the powerhouse, there was a lot more variation in what operators considered to 

be the correct frequency for various maintenance activities. Draining the de-silting bay and 

forebay tank is important to ensure that the build-up of collected silt does not pass through 

the turbine. In the monsoon season, heavy rains bring large amounts of silt and debris into 

micro-hydro systems. In this period, it is important to flush out the civil structures more 

frequently; half of the operators acknowledged the need to do this. A simple task that should 

be performed at least every other day is cleaning the trash rack [81]. Amongst the operators, 

11 of the 24 did it with this frequency. The variation in responses between operators 

indicates a potential threat to plant sustainability. To maximise reliability of the system, 

there is a minimum frequency with which maintenance activities should be carried out. It 

is the responsibility of the plant operator to carry out these tasks; however, only 1 of the 24 

sites had a maintenance schedule that the operator followed. Without a schedule, there is 

no means for the plant managers to check whether maintenance has been completed at the 

right time. Typically, this resulted in a maintenance approach that was more often 

corrective than preventative.  

Operators were asked to list all the components that had broken in the previous year and 

the parts that were kept as spares in the powerhouse. Figure 4.8 shows the frequency of 

reported component failures and the frequency with which the same parts were kept as 

spares. Across all the sites, the stocked spare parts demonstrated there was an awareness of 

what was most needed. Turbine bearings were kept as spares at over 70% of sites ensuring 
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many were ready to deal with the high proportion of bearing failures that were mentioned. 

Similarly, 25% of sites kept belts as spare parts whilst 29% mentioned a belt failure in the 

preceding year. In the figure, it can be seen that the ELC board was the second most 

frequently failing component.  During the study, it was observed that the ELCs at all of the 

sites were based on electronic ‘breadboards’; these designs have been used since the 1980s 

[17]. Using modern power electronics manufacturing and devices, e.g., printed circuit 

boards, could improve the reliability of electrical components.  

 

Figure 4.8 - Percentage of sites with component specific failures and spare parts kept. 

 

The results of the study suggested that trained operators could deliver a higher quality of 

maintenance than untrained operators. Their superior expertise was most obvious inside 

the powerhouse where there was evidence of preventative maintenance. Across the sites, 

there was evidence of operators and managers responding to the common failures in 

bearings and belts by keeping spare parts ready for replacement. The qualitative inspection 

of sub-systems found threats to reliability that originated at the design, manufacture and 

installation stages. 

4.3.2 Financial viability 

During interviews, 3 forms of management structure were encountered: there were 2 

private, 2 co-operatives and 20 community owned sites. Privately owned MHPs were run 

as a business with the proprietor(s) taking responsibility for management including tariff 

setting and financial bookkeeping. In both co-operatives and community owned sites, 

periodic meetings allow beneficiaries to have input into decisions made regarding the 
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MHPs and beneficiaries are often expected to provide labour when repairs are required. In 

the co-operative structure, consumers’ initial labour and financial contribution give them a 

share in the MHP [170]. For community owned plants, the relationship is not formalised. 

In all cases, plant managers are responsible for collecting tariffs from consumers. The 

management structure was not found to have a significant impact on the financial viability 

of the sites.  

In total, 23 of the 24 sites charged consumers based on electricity meters fitted in their 

homes. The one exception was a site where the electricity meters were not working, and a 

flat rate of NPR 200 ($2) per month was charged.  At the other sites, tariffs were charged 

using a basic rate which permitted the use of a defined number of kilowatt-hours (kWh) 

with additional consumption beyond this limit charged on a per unit kWh basis. Figure 4.9 

shows the variation in basic tariff costs for each site. The height of the individual blue boxes 

indicates the per unit charge whilst the number of boxes shows the permitted number of 

units that can be used. Beyond this, the additional charge is applied which is shown by a 

red box. Site T was the plant where the flat NPR 200 was charged. In the figure, the sites 

with a higher density of boxes represent those where the per unit electricity cost were 

lowest. The most expensive was site G, where each unit cost NPR 25. The least expensive 

was site F, where each unit cost NPR 5. Some sites used multiple tariffs structures to charge 

more for a higher current connection, meaning households with basic electricity needs (e.g., 

lighting and charging only) had a cheaper basic rate than those using higher current 

appliances. Using the tariffs charged by the national distributor, the Nepal Electricity 

Authority (NEA), the cost of electricity from the MHPs can be compared with the national 

grid. At the time of the field study, the lowest rate charged by the NEA for a 5 A connection 

was NPR 20 service charge and 3 NPR/kWh for up to 20 kWh [171]. Using this rate, the 

equivalent cost for grid-based electricity can be calculated.  In all but one case, the cost of 

electricity from the MHP was more expensive than from the grid. On average across all the 

sites, the cost of electricity from the grid is 33% cheaper.  

 



 

Understanding sustainable operation of micro-hydropower plants: a field study 

 

70 

 

 

Figure 4.9 – Variation in basic tariff costs for the visited sites. The height of blue boxes indicates the per unit (kWh) charge whilst the number of boxes is the 

number of permitted units for the base rate. The height of red boxes indicates the charge for use of additional units. 
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At the sites visited, several methods were used to collect the tariffs. Some sites located in 

more densely populated villages instructed consumers to make the payment at the plant’s 

office within a certain period in each month. At others, management employees would 

collect money from consumers’ homes. At some sites with more dispersed houses, the 

tariffs were collected by beneficiary groups who were responsible for bringing it to the 

managing committee. One management representative highlighted this as a problem 

describing their beneficiary zone as “scattered”. Another manager explained that amongst 

the 26 beneficiary groups, there were some that had not paid their bills for 15 months. With 

some of these groups more than 6 hours walk away, collecting tariffs was very time 

consuming. 

Alongside household connections, MHPs are also used to power commercial services or 

productive end uses. The term productive end use is used to describe a use of electricity 

that can increase income or productivity [172]. Historically, hydropower has been used to 

drive machinery for agro-processing, however, electricity generation allows greater 

diversity in the types of productive end use. In this study, the end uses of electricity across 

all of the sites were highly varied. Table 4.5 groups the end uses into 3 categories: industrial 

services, commercial services, and community services. Industrial services included 

traditional agro-processing such as flour and grain milling, but also a range of less 

conventional industries including a factory for processing cotton and another for making 

noodles. Commercial services were dominated by shops, however, other uses included 

mobile phone masts and radio towers. Many community services were powered by 

hydropower plants including 84 schools, 40 hospital/health clinics and 9 community 

centres. The different types of end uses consume electricity during different times in the 

day. Whilst households use most of their electricity in the early morning and evenings, 

industrial services will often use electricity during daylight hours. Other connections such 

as telecom towers and hospitals may use electricity for 24 hours a day.  These end uses that 

consume electricity continuously demonstrate the broader impact that MHPs have in rural 

areas. Significant tangential benefits are delivered through these services to the wider 

community, and not only to paying customers of a hydropower plant. For example, anyone 

in the local area might benefit from improved communication via a telecom tower, or the 

improved service offered by an electrified hospital or health post. In this way, MHPs 

contribute to the general development of an area.  
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Table 4.5 - Types of productive end use at the 24 sites. 

Commercial services Total 
Industrial 

services 
Total 

Community 

services 
Total 

Grocery shop 353 Flour/grain mill 85 School 84 

Tea shop 164 Poultry Farm 58 
Hospital/health 

clinic 
40 

Bank/Co-operative 28 
Furniture 

making 
37 

Local government 

office 
35 

Clothing shop 31 
Welding 

workshop 
19 Post office 7 

Hotel/Lodge 16 Bakery 10 Community centre 9 

Barber shop 9 
Dairy 

shop/factory 
4 Temple 2 

Meat shop 8 Cotton factory 1   

Telecom tower 9 Stone thresher 1   

Radio tower 5 Noodle factory 1   

Computer training 

centre 
3     

Stationary shop 3     

Irrigation pump 3     

Movie hall 1     

Petrol pump 1     

TV cable office 1     

Workshop/Garage 1     

 

Diversity in the types of end use is an important feature in achieving financial viability. 

Having a range of end uses can maximise the hours in the day when electricity is consumed 

(i.e., increasing the load factor) and the plant is generating an income. To understand this 

diversity, Figure 4.10 plots the number of different types of productive end use at each site 

against the number of connected households. The number of different types of end use 

gives an impression of the diversity of commercial, industrial and community services at 

that site. As the number of connected households increases, the trend is that the diversity 

in end uses does as well. However, for those sites with the highest number of connected 

households, the number of end uses appears to tend towards an upper limit. This is logical 

given that there was a lot of repetition in the types of businesses found and a likely limit to 
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the different types of business that are found in rural areas. The figure indicates that the 

larger settlements in the study had greater variety in the types of end use, making those 

MHPs more likely to generate income throughout the day.  

 

 

Figure 4.10 - Number of different productive end uses against the number of connected 

households. 

 

Income is generated from both household and commercial connections. Figure 4.11 shows 

the number of connected households and connected end uses against rated power. The area 

of a marker represents the number of end uses that are connected to that MHP. The markers 

are coloured according to the manager’s response to the following question: “When there 

have been technical problems, has there been enough money to pay for repairs?” 

Responses to this question were coded as “mostly yes”, “sometimes yes/no” and “mostly 

no” and they can give an indication of the financial viability of the plant. The site with the 

highest rated power has been removed as its connection to a stone thresher with a typical 

load of 100 kW skewed the results in relation to the number of connected end uses (n=81).  
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Figure 4.11 - Number of connected households and number of end uses against rated power. 

 

The obvious trend is that the number of households is positively correlated to the rated 

power of the site. There is also a weaker positive correlation between the rated power and 

the number of connected end uses; mostly, the size of markers increases for higher rated 

power although there are some exceptions. Both relationships are assumed to be linearly 

correlated to site rated power with correlation coefficient r values of 0.86 (strong) and 0.68 

(moderate) for households and end uses respectively.  

One would expect that at the sites with a number of connected households less than the 

average, it may struggle to pay for repairs unless it has sufficient connected end uses to 

generate income. This assumption is corroborated by the 2 red markers at 30 kW and 35 

kW, and the orange marker at 45 kW. However, the green marker at 50 kW is an exception. 

For this site, there are both a small number of household and commercial connections, yet 

it has always been able to pay for repairs. The end uses connected to this site included 2 

flour mills, 2 furniture makers, 2 mobile phone masts and a poultry farm. These end uses 

are all high load applications and are likely to be reliable customers due to a high demand 

for their services. For consumers at this site, the tariff structure had the lowest minimum 

allowance of any site (NPR 100 for 4 kWh), meaning many consumers may exceed the 

lower limit. Technically, this plant was very well maintained and was the only site where 
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a professional service took place every 6 months. This combination of factors suggest that 

good management of the plant has put it in a financially stable position. 

For the sites where there had been problems paying for repairs, 3 managers explained that 

additional funding was collected from beneficiaries. One of these respondents explained 

that for the collection of additional funding, “people are categorised into 3 groups 

depending upon [their] economic condition”. This approach, also documented in [35], is 

unreliable and can lead to prolonged downtime whilst funds are collected.  The results 

suggest that plants with higher rated power can connect both a larger number of connected 

households and end uses. Within the study, responses from managers indicated that the 

income of sites with rated power above 50 kW was usually sufficient to pay for repairs. 

With a higher number of connections, these plants are likely to benefit from a superior load 

factor, improving their financial viability [35, 37].  

At the sites in the study, the use of electricity meters was almost universal allowing the 

plants to charge consumers accurately based on the amount of power used. There was 

variation in tariff structures and in the methods used for collecting income; sites in more 

densely populated settlements usually benefited from easier tariff collection. These also 

tended be sites with higher rated power (above 50 kW) that were able to connect more 

households and a large number of diverse end uses. Consequently, these sites were the most 

financially viable.  

4.3.3 Community engagement 

An aspect of community engagement is consumers’ satisfaction with the service provided 

by the MHP. Table 4.6 shows the percentage of responses given to 3 questions that focused 

on the quality of service provided. For both the quality of service and its cost, consumers 

were largely positive. No consumer interviewed was unhappy with either the price they 

paid for electricity or considered the service to be unreliable. When asked about the impact 

that connection to the MHP had upon their lives, responses from consumers were wholly 

positive and included social, economic and health benefits. It was often mentioned that 

children could study at night and village social events were improved. Many mentioned 

their reduced expenditure; one respondent explained that their spending on lighting had 

reduced from NPR 500 ($5) to NPR 100 ($1) per month. Several chose to mention the 

benefit of reduced smoke in the home in comparison to using kerosene or candles. The 

consumer satisfaction largely translated into regular payment by consumers. At 92% of 

sites, managers answered “Yes” or “Yes, mostly” when asked if consumers paid regularly. 
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When consumers were asked about the effect of late payment, several referenced the 

potential social, economic, or technical consequences. One respondent explained that 

“society shouts if [the bill is] not paid” whilst another said that “salaries will not be paid; 

maintenance repairs will not be on time”.  

Table 4.6 - A selection of consumer responses. 

“Are you happy with the price that you pay for electricity?” 

Yes 87.5% (21 of 24) 

OK 12.5% (3 of 24) 

No 0 

“Is the supply reliable?” 

Yes 79.2% (19 of 24) 

OK 20.8% (5 of 24) 

No 0 

“Would you prefer to be connected to the national grid?” 

Yes 29.2% (7 of 24) 

Undecided 25% (6 of 24) 

No 45.8% (11 of 24) 

 

At community owned MHPs, beyond simply making payments, committee members 

expect that consumers take part in meetings and assist with the maintenance of the civil 

works. Responses from managers suggested there was more variation in the level of 

community engagement between the sites. Some felt that there was a lack of interest from 

the community as “the beneficiaries do not try to understand” when problems occur. 

Another manager said that despite beneficiaries considering the MHP essential in their 

lives, there was “low interest and ownership from the community”. It was noted by some 

that the economic condition of beneficiaries affected their ability to pay but they remained 

interested. Several other managers identified that there had been a change with time; the 

decreasing power of the MHP, an increase in the total load, and the encroachment of the 

national grid were all mentioned as factors that lead to a reduction in community interest. 

The prospect of the national grid is regularly discussed in rural areas; it is often used by 

local politicians to solicit votes in elections. Consumers were asked whether they would 

prefer to receive electricity from the national grid, Table 4.6 shows that there was a mixed 

response. For those who stated that they would prefer electricity from the grid, several 

referred to the ‘temporary’ nature of the civil structures of the MHP. Damage from 

landslides and the monsoon often lead to consumers needing to help in repairs and 

maintenance. Several consumers said that they would connect to the grid but felt that the 

decision should be made collectively. This was also true of 2 interviewees who were 

uncertain about connecting to the grid. For them, the decision needed to be made by the 
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entire community; one respondent said that they did not want to be “left alone and behind”. 

Amongst the 46% who had no interest in connecting to the grid, 3 more consumers chose 

to describe the MHP as ‘local’. Another interviewee went further by emphasising the 

collective effort that had been exerted; they did not want to be connected to the national 

grid as “much hard work had been done for the local level MHP plant”.  

In most cases, the benefits and quality of service ensured that consumers paid regularly. 

The consumers were largely happy with the amount that they paid for electricity, with 

several mentioning that the cost of alternative sources was greater. Managers recognised 

that consumers paid regularly but that it did not always translate into a sense of ownership. 

Many managers felt that the level of ownership had changed with time. However, there 

were consumers that still identified strongly with the ‘localness’ of the plant.   

4.4 Discussion 

In all 3 areas (technical reliability, financial viability, and community engagement), factors 

present before plant operation began were influential. Plants that were located in larger 

villages, which were also located close to the main road, tended to have fewer problems in 

paying for repairs, due to a higher number and greater diversity of end uses. Figure 4.12 is 

an aerial photograph of one of the MHPs visited during the study. Homes, businesses, and 

a road are all visible in the image. This MHP lies on the outskirts of a town with an 

estimated population of 30,000 [173]. At sites like this, the proximity to a main road 

increases business opportunity but also enables easier access for the repair or replacement 

of failed components. Financial management in these larger settlements is aided by easier 

tariff collection, consumers come to pay at local offices rather than managers needing to 

walk long distances to collect payments. Figure 4.13 shows one of the visited plants located 

more remotely. The nearest houses and road were more than a one hour walk from the 

powerhouse.  
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Figure 4.12 – Micro-hydropower plant from the study located on the outskirts of a town. 

Photograph still taken from [174]. 

 

 

Figure 4.13 - Micro-hydropower plant from the study in a remote location. Photo credit, 

author. 
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At all MHPs, the actions of the operator should maintain the reliability at a certain level. 

However, there were problems identified that had initiated before the operational stage. An 

example was poorly shaped de-silting bays and forebay tanks, as also identified in [35]. 

The eventual outcome is that a greater amount of silt passes through the turbine which 

increases the wear rate of the runner, leading to the need to repair or replace parts sooner. 

Similarly, other identified issues like leakage and frequent failure of bearings could result 

from the actions of manufacturers rather than operators. Table 4.7 lists major issues 

identified at each sub-system and highlights the project phases which may have been 

important in their development. These results suggest that the original socio-economic, 

environmental, and technical features of an MHP affect the probability, positively or 

negatively, of heading into either ‘virtuous’ or ‘vicious’ cycles.  
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Table 4.7 - Issues identified at each sub-system and the project phases affected.  

Subsystem Major issue (s) Design Manufacture Construction Installation Maintenance 

Intake and weir 
Temporary structures require repair or 

reconstruction after each monsoon 
●  ●  ● 

De-silting bay Poor shape limits settling of silt ●  ●  ● 

Canal Landslides make regular repair necessary   ●  ● 

Forebay tank Poor shape limits settling of silt ●  ●  ● 

Penstock 
Ineffective drainage away from penstock 

foundations 
  ●  ● 

Powerhouse Dirty and cluttered spaces     ● 

Internal pipework 

and valves 
Water leakage ● ●  ● ● 

Turbine 
Water leakage ● ●  ● ● 

Shaft and transmission belt misalignment ● ●  ● ● 

Control panel, 

cabling and ballast 

load 

Dangerous cable routing    ● ● 

Generator Transmission belt misalignment ● ●  ● ● 
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Whilst a micro-hydropower site will have certain inherent features, the socio-technical 

system comprised of community, management, and technology is dynamic [175]. 

Furthermore, the system resides in a broader socio-economic environment [176]. During 

the field study, there were numerous examples of changes, both internal and external, that 

affected the resilience of the socio-technical system. Internal events that were witnessed or 

described by interviewees included the failure of components, insufficient collection of 

tariffs or the departure of a trained operator. It is common for young Nepali men and women 

to seek work in urban areas or abroad. For MHPs, this can often lead to the departure of 

the skilled trained operators. These internal shock events result in an instantaneous or quick 

effect on the system, leading to a decrease in the financial viability or reliability of the 

plant. Changes that were external were more variable in their timespan. Development in 

rural Nepal, perhaps even due to an MHP itself, has resulted in changes in the socio-

economic landscape where they reside. Rural settlements have grown; income and 

electricity consumption have increased [41]. For MHPs, the consequences of these long-

term changes can be both negative and positive. For some plants, this may reinforce the 

inherent benefits of being located in a larger settlement. An increasingly diverse range of 

end use connections and the higher electricity consumption of households will increase 

their financial viability. However, as the consumers at these sites may depend on running 

a business rather than agriculture; they may not be willing to give time to assist with the 

MHP. Furthermore, as rural settlements grow, it becomes more difficult to mobilise a 

community en masse. 

The results of the study should also be considered within a wider context. In comparison 

to more remote districts that rely on micro-hydropower, the sites visited were largely 

accessible by road. The proliferation of MHPs within the study area means that there is a 

familiarity with hydropower; typically, communities have a good awareness of the project 

development process. Road access contributes to greater technical reliability but also 

greater access to markets, supporting the diversity of end uses found in the study. For sites 

in more remote, less accessible and less developed regions; the technical reliability and 

financial viability of MHPs is likely to be weaker. In addition, in more mountainous 

districts where distances between communities are greater, local knowledge regarding 

hydropower may be less concentrated. Even within the context of Baglung and Gulmi 

districts, threats to reliability, poor financial management and a lack of community 

engagement were witnessed. Therefore, despite the focussed geographical coverage of the 

study, one can expect that in more remote districts without a high density of MHPs, similar 
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issues will occur. Furthermore, in these places with more challenging inherent features, the 

sustainability of plants is likely to be even more vulnerable. 

4.5 Summary 

In this chapter, a field-based study was used to understand the local contexts where micro-

hydropower technology resides, and to evaluate the factors that determine the operational 

sustainability of MHPs. To do so, existing approaches for the assessment of mini-grids 

were considered and informed the development of a methodology focused on assessing 

three key areas relating to sustainability: technical reliability, financial viability, and 

community engagement. The methodology was used at 24 sites located in 2 districts in 

Nepal. The findings demonstrated that at the operational stage, the interaction between 

community and technology makes achieving sustainability complex. There was strong 

evidence that inherent features of each MHP can make a site more or less likely to be 

sustainable. It was also found that amongst the MHP sub-systems, there were problems 

affecting reliability that can initiate in earlier project phases before operation begins. These 

findings suggested that an improved understanding of the project process could be useful 

in preventing their occurrence. 

In summary: 

• A field-based methodology was devised and used to evaluate sustainability by 

considering reliability, financial viability, and community engagement. 

• Inherent features of a site make some MHPs more likely to be sustainable. 

• The socio-technical system comprised of community, management, and 

technology is dynamic, and this system resides in a broader dynamic landscape. 

• The common occurrence of some technical issues suggests that particular actions 

within the project process may lead to their initiation. 
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Chapter 5  

Evaluating the project process 

5.1 Introduction 

The findings of Chapter 4 indicated that threats to the sustainability of a plant develop at 

multiple points in the project process. Furthermore, the landscape that dictates project 

development is also influential in relation to sustainability. In this chapter, the project 

process and actions of the stakeholders are considered. Using government literature and 

other sources, the key stages of the project process and action of stakeholders are examined. 

Evidence from Chapter 4 and available literature are used to identify strengths and 

weakness that affect a plant’s ability to operate sustainably. These strengths and 

weaknesses are mapped to the project process, and the critical actions of the stakeholders 

identified.  

5.2 Background 

Within available literature, the success of national level renewable energy interventions is 

often considered. Programmes within multiple countries are often compared with the 

strengths and weaknesses of different approaches evaluated [21, 177, 178]. Elsewhere, in-

depth case studies focus on a particular country [179-181]. Both comparative and 

individual studies typically lead to the identification of factors that are deemed to affect the 

success of renewable energy interventions. Several studies have focused on the renewable 

energy landscape in Nepal. In [182], the funding mechanism of renewable energy projects 

in Nepal is analysed, with particular focus on the subsidy policy. It is found that within the 

micro-hydro industry, companies were dissatisfied with the centrally administered and 

“cumbersome” delivery process. Whilst in the financial sector, there is a reluctance for 

financial institutions to get involved due to a perceived high level of risk. In [179] and 

[183], the success of two different (but similarly administered) national level programs are 

considered: the Nepal Power Development Project (NPDP) and the Renewable Energy 

Development Project (REDP). Both programs provided funding for renewable energy and 

increased the number of MHPs in Nepal. The success of the programmes is attributed to 

their promotion of community involvement, the diversity of institutions involved (national 

and local government, and community-based), the focus placed on maintenance and after 
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sales, and the flexibility of the overall programs. It should be noted that the subsidy process 

and many of today’s practices are a legacy of the REDP programme. The findings of these 

high-level analyses of Nepal’s renewable energy landscape are primarily focused on 

success at the national level (e.g., the number of installed MHPs) but still provide insight 

at the project level regarding crucial factors for success, e.g. community involvement and 

maintenance. However, the identification of these factors does not explain why they may 

occur in some projects and not others. In addition, the focus at the high level is of limited 

use in understanding the particular sustainability issues that can arise in individual projects.  

Elsewhere in the literature, it is common to consider the success or sustainability of projects 

quantitatively at the operational stage [184, 185]. Typically, these assessments consider 

sustainability as a composite of multiple factors. Areas of focus are identified using 

numerical indicators, e.g., significant distribution losses suggest that the technical 

sustainability of a project may be poor. However, such one-off assessments are unable to 

identify what sequence of events have resulted in poor sustainability. Yadoo makes this 

argument in [22], stating that whilst there is a large body of research focused on assessment 

and technology selection, the project implementation process is rarely considered. By 

conducting interviews with governmental and industrial actors working within the 

renewable energy sector, Yadoo’s analysis of 3 projects provides greater insight into the 

how the project process can help or hinder individual projects. Similarly in [186], a 

comparative study considers the challenges and success factors throughout the project 

process for 3 rural electrification projects in different countries in Central America. The 

study highlights that the capabilities of the community, project design, and presence of an 

enabling environment determine whether the project is sustainable. The authors found that 

stable and long-lasting social structures were supportive during implementation and the 

ongoing operation. Whilst assistance from outside the community is necessary for technical 

elements, sustainable operation was most achievable when an element of local capacity 

building was integrated.  

Some literature focuses more directly on conditions within the project process that 

influence the outcome of a project. In [187], 4 capacity buildings projects are used as case 

studies to explore the conditions that result in successful (international development) 

projects in one setting but not in others. They identify initial and emergent success 

conditions at the structural, institutional, and managerial levels. Further, they suggest that 

project success depends on multi-stakeholder commitment, collaboration, alignment, and 

adaption. Ikejemba et al., take a similar approach by considering both the project process 
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and the linkages between multiple actors in the implementation of renewable energy-based 

projects in Sub-Saharan Africa [188]. They find that within these projects the following 

factors are key to success: the political agenda of government, the process through which 

projects are awarded, planning activities, maintenance & management of completed 

projects, and the inclusion of beneficiaries. They find that issues develop when the 

designation of responsibilities between stakeholders is unclear. The authors suggest that 

checks on responsibility should be multi-directional, allowing beneficiaries to hold higher-

level officials responsible. In comparison to micro-hydropower in Nepal, a key difference 

is that these papers consider projects that are not community owned-and-operated; 

therefore, less focus is given to the role of the community, and their relationship to the 

technology.  

In literature focused on the Global North, stakeholder relationships have often been 

analysed in relation to community electrification projects. In [189], structured interviews 

with local people involved in community electrification initiatives in 7 countries in Western 

Europe are used to identify stakeholder influence at 3 levels: macro, intercommunity and 

intracommunity. The study demonstrates that projects can be considered in 2 phases; the 

‘process’ where actors are involved in implementation, and the ‘outcome’ where actors are 

influenced by results. It is found that key stakeholders can support or hinder the project 

depending on their perception of benefit or harm from the project. In addition, during the 

project all stakeholders may take on multiple roles and these roles may change from process 

to outcome. These analyses of stakeholder influence are comprehensive but in the context 

of the Global North - where the community already has some form of energy access - the 

responsibilities of the community and resulting relationship with technology are very 

different to community electrification projects in the Global South. An example where 

stakeholder roles are considered for community electrification in the Global South is found 

in [190]. In this paper, a 3-phase methodology is proposed that considers the community 

as a ‘socio-ecological’ system that is affected by a technological intervention. Applying the 

methodology to a case study where a micro-grid is installed in a rural community in Chile, 

the importance of learning processes between stakeholders is highlighted. Furthermore, the 

paper finds that whilst technology adoption and adaption are unique to each community, 

they can both be enhanced by participation throughout the project process.  

The existing literature is useful in understanding the ways in which renewable energy 

projects develop within a political and institutional landscape. Methods for the assessment 

of sustainability are well developed but often do not consider the preceding project process 
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and the roles that have been fulfilled by stakeholders. Research in project management is 

useful in understanding that particular success factors are supportive to a project’s 

development. However, often the completion of a project is considered as a success, failing 

to consider that sustainability depends upon ongoing actions from stakeholders, especially 

in community owned projects. A ‘socio-technical systems’ approach (presented in Section 

2.6) is effective in documenting relationships between technology and communities during 

project implementation and demonstrates that systems continue to be dynamic at the 

operational stage. It has been shown that within the literature, the following are often 

considered, but usually separately: the institutional landscape which influences project 

development, the sustainability of operational projects, the roles of stakeholders during the 

project process, and the ‘socio-technical system’ that develops during a community 

electrification project. Within this chapter, a methodology is used to concurrently evaluate 

these areas.  

5.3 Methodology 

In Chapter 4, the field study attempted to understand sustainability by considering technical 

reliability, financial viability, and community engagement. The study revealed evidence of 

factors that were both supportive and restrictive in relation to these 3 areas, and more 

broadly to the operational sustainability of plants. To consider the development of these 

factors during the project process, it was deemed effective to consider them as strengths 

and weaknesses. As such, they can be defined as factors that either enhance or threaten 

sustainability. Whilst complex and often interrelated, the identification of individual factors 

and their categorisation was considered an effective approach when trying to understand 

the events that may lead to their occurrence.  

Figure 5.1 is a process diagram for the methodology. The results of field study were used 

to identify strengths and weaknesses, with additional literature sources and interviews with 

representatives from manufacturing companies used to corroborate the identified factors 

and derive additional ones. To understand the development of these strengths and 

weaknesses, the objective was to analyse the project process and roles of stakeholders in 

detail. To do so, evidence was collected from the field study, interviews with 

manufacturers, an interview with a government official, policy and supporting government 

documentation, and available literature. In this context, stakeholders were considered to be 

groups or individuals that had a direct influence on project development and its outcomes. 

To reduce the complexity of the analysis, the stakeholders were categorised into 3 groups:  
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• Institutional: The stakeholders that create and manage the regulative or policy 

environment [103].  

• Community: The collection of individuals located close to the micro-hydropower 

plant who participate in its development. 

• Industrial: The stakeholders with financial involvement in the project, broadly, 

engineering and financial services. 

Within the project process, each stakeholder takes a series of actions. The collective sum 

of these actions should ideally be an operationally sustainable MHP. Using the sources 

mentioned above, the actions of stakeholders could be mapped to the project process to 

understand the sequence of events and dependencies between them. The final stage of the 

methodology was to use the mapping of the project process (inclusive of stakeholder 

actions) to consider the series of events (and landscape) that result in particular strengths 

and weaknesses occurring at the operational stage. Subsequently, these results could be 

used to identify opportunities within the project process to tackle weaknesses and reinforce 

strengths. 

 

Figure 5.1 - Methodology for understanding the development of strengths and weaknesses. 

 

The following sections discuss the data sources used in the methodology: 

5.3.1 Results of the site study 

The field study used a combination of interview and observation to understand the factors 

that affect the sustainable operation of plants at 24 sites. The results of this study were used 

to identify operational strengths and weaknesses in the sustainability of plants. Whilst each 



 

Evaluating the project process  

 

88 

plant was different, common operational issues were observed. In addition, the interviews 

conducted with plant managers, operators, and consumers could be used to understand 

stakeholder experiences of the project process including roles fulfilled and actions taken. 

5.3.2 Interviews with manufacturers 

Semi-structured interviews were conducted with representatives of 5 micro-hydropower 

companies. The companies were all members of the Nepal Micro Hydro Development 

Association and have been trading for at least 20 years. The companies, as is typical in 

Nepal, fulfil roles as civil surveyors, equipment manufacturers and installers. In most cases, 

these interviews were conducted with senior employees who were responsible for 

managing the production of hydro-mechanical equipment. The questions were intended to 

explore their actions during the design, manufacture and construction phases, and their 

response to issues that occur in the field. The interviews were conducted in English and 

recorded. Table 5.1 lists the questions asked.  

Table 5.1 - Interview questions for representatives of micro-hydropower companies. 

No. Question 

1 Do you think plant operators are well trained? 

2 
What is the most common turbine fault once a turbine is in operation? Why 

do you think this problem occurs? 

3 
If you are told of a problem with a turbine in the field, what is the process 

that leads to its repair? 

4 
After a feasibility study is complete, what happens before manufacture 

begins? e.g., turbine selection, design, production drawings 

5 Is there a baseline design that you use? How is this adapted? 

6 
How are the following made? e.g., process, material including 

grade (if known), finish, coating? 

Pelton 

runner 

Crossflow 

runner 

Nozzle 

Spear 

Penstock 

7 
Have you experienced problems with communities building civil works? 

How do you mitigate against these problems? 

8 

When ordering material and components from India and China, do you 

consult with other manufacturers in the local area to order in bulk to reduce 

costs? 
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5.3.3 Interview with a government official 

A semi-structured interview was conducted with an employee of Renewable Energy for 

Rural Livelihood (RERL), a United Nations Development Programme funded subsidiary 

of the AEPC. The interview focused on understanding institutional actions throughout the 

project process, changes that are taking place within the renewable energy landscape in 

Nepal and their impact upon the sustainable operation of plants. The interview was 

conducted in English and recorded. 

Table 5.2 - Interview questions for the government representative. 

No. Question 

1 What are the differences between community owned and co-operative 

structure for micro-hydro in Nepal? 

2 Is the use of energy meters typical? 

3 Who provides the specification included in bidding documentation? 

4 Who is responsible for monitoring the construction of civil works? 

5 Do manufacturers provide operation and maintenance guidelines? 

6 Does the AEPC provide drawings of standard turbine designs? 

7 Are the banks involved in micro-hydropower sector in Nepal? 

8 What are the prospects for grid-connection of micro-hydropower? 

 

5.3.4 Policy and government documentation 

Table 5.3 lists the policy documentation and guidelines that are openly available from the 

AEPC. These documents are considered to be broadly of two types. First, those that are 

legal, e.g., the Rural Energy Policy and Renewable Energy Subsidy Policy. Second, those 

that are supportive to the policy or provide information to other stakeholders. These 

guidelines are predominantly advisory documents that advise on good practice. 
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Table 5.3 - Policy documentation and guidelines from the AEPC. 

Year Title Overview 

2006 Rural Energy Policy 

Ensures the participation of local 

government and creates a Rural Energy 

Fund for subsidy delivery.  

2008 

Micro-Mini Hydro Power Output 

and Household Verification 

Guideline 

Advises inspectors on how to verify the 

power output of MHPs at the plant and 

household level. 

2013 

Terms of reference for pre-

qualification of consulting 

companies for survey and design of 

micro-hydropower projects 

Provides the criteria that companies must 

fulfil to be eligible for subsidy.  

2013 
Guideline for cooperative model of 

mini-micro hydro projects 

Provides background and instructions for 

the formation of a mini/micro-hydro-

cooperative. 

2013 
Micro Hydro Project Construction 

& Installation Guideline 

Provides detailed instructions for 

construction of civil structures.  

2014 
Reference Micro Hydro Power 

Standard 

Provides the expected standard for 

hydroelectric-generating sets, associated 

civil works, and electrical transmission 

and distribution lines with capacities up 

to 100  kW.  

2016 Renewable Energy Subsidy Policy 
Provides the subsidy quantities for 

several renewable energy technologies.  

2016 
Subsidy Delivery Mechanism 

Policy 

Outlines the process for administering 

subsidy to renewable energy projects.  

2018 
Guideline for Detail Feasibility 

studies of MHPs 

Advises consultants on the standard 

approach for conducting and reporting 

on the detailed feasibility study of 

MHPs.  

 

Alongside the freely available government documentation, the AEPC and a manufacturing 

company provided, in total, 4 tendering documents. These describe the details of a subsidy 

eligible project and provide the specification of sub-systems to be quoted for. 

 

 

 



 

Evaluating the project process 

91 

5.4 Key stakeholders 

Within the project process, the details of the stakeholder groups are as follows: 

Institutional:  In Nepal, there are multiple institutional stakeholders acting at the national 

and local levels. Nationally, the AEPC is the government agency that supports renewable 

energy technology in Nepal. They administer subsidies, provide technical support to 

individual communities and to regional government offices. Working alongside the AEPC, 

the Nepal Micro-Hydro Development Association represents 60 of the micro-hydropower 

companies based in Nepal [191]. They advocate for the interest of these companies and 

regulate the training that is delivered to plant operators and managers. At the local level, 

District Coordination Committees (DCCs) are the government bodies that represent the 

interest of local communities within a single district. They usually provide financial support 

to renewable energy projects that occur within the district. Specifically working to improve 

access to renewable energy technologies, Regional Service Centres (RSCs) provide an on-

the-ground presence to advise and support communities. There are 9 RSCs that cover the 

77 districts of Nepal [35].  

Community: The community may comprise multiple villages interested in developing an 

MHP together. The interests of the wider community are usually represented through a 

Micro-Hydro Functional Group (MHFG) or a cooperative. From the community, several 

plant operators and a plant manager are chosen, and are responsible for the operation and 

maintenance of the MHP once the installation is complete. It should be considered that 

individual members of the community are heterogenous which affects their perception of, 

and their actions in relation to, the MHP. In addition, there are existing social structures 

and local dynamics that affect the process of MHP development and its outcomes.  

Industry: In this study, industrial stakeholders are considered to be those with financial 

interest in the project, broadly, engineering and financial services. Consulting companies 

(CCs) are responsible for conducting feasibility studies, sizing the overall scheme, 

specifying key components and designing the civil structures. Manufacturing and installer 

companies (M/ICs) produce or procure the hydro-mechanical and electrical equipment 

required to develop the project. In Nepal, it is common for companies to perform all three 

of the technical services of consultation, manufacturing, and installation. Private finance 

institutions and banks provide credit to local communities to pay for project costs that are 

not covered by the subsidy.  
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A stakeholder ‘onion’ diagram can be used to represent the relationships between 

stakeholders and a particular goal [192]. Figure 5.2 shows the onion diagram with 

stakeholder groups, sub-groups and (at the centre) their shared goal. The first level outside 

of the MHP is the community, the stakeholder group who will directly interact with the 

MHP upon project completion. The next level is shared between local institutional and 

industrial stakeholders. These stakeholders design, develop, and facilitate the installation 

and integration of the MHP within the community. The outer level comprises national 

institutional stakeholders who administer financial and technical support. For the purposes 

of this research, the boundary is drawn at this level. However, it should be considered that 

beyond this, the Ministry of Energy, Water Resources and Irrigation and international 

donors have significant influence over the AEPC’s direction and approach. Their effect 

cascades down to other stakeholders so may remain influential on a project basis.  
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Figure 5.2 - 'Onion' diagram showing the relationships between stakeholders. 
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5.5 Subsidy delivery and the project timeline 

The subsidy policy is determined by 2 documents written by the AEPC: Subsidy Policy and 

the Subsidy Policy Mechanism. These documents were updated in 2016 with the aim of 

moving towards a market driven approach through the injection of credit, provision of 

subsidy based on energy consumption and the introduction of private sector eligibility [89]. 

Within this chapter, the focus remains on projects which are community owned and 

operated. Typically, in these cases the subsidy is still delivered based on the number of 

households and the overall rated power of the scheme. Table 5.4 shows the subsidy amounts 

that are made available for hydropower projects with rated power between 10 and 1000 

kW. The total amount is capped at different levels depending on the district that the scheme 

is located in.  

Table 5.4 – Subsidy amounts made available by the AEPC through the Subsidy Delivery, 

adapted from [193]. HH refers to household. 

Subsidy 

category 

Very remote 

districts 

where goods 

transport is 

only possible 

by air 

Very remote 

districts 

Remote 

districts 

Accessible 

districts 

Distribution 

(NPR per HH)  
35,500 32,000 30,000 28,000 

Generation – 

Equipment 

(NPR per kW)  

125,000 95,000 85,000 80,000 

Generation – 

Civil (NPR per 

kW)  

80,000 30,000 25,000 20,000 

 

During the project, the subsidy is paid at 4 stages. Table 5.5 shows the milestones required 

to release the instalments of the subsidy. 
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Table 5.5 - Subsidy delivery milestones throughout the project process adapted from [91]. 

No. Milestones Instalment 

1 Advance on receipt of bank guarantee 30% 

2 Delivery of equipment to site 45% 

3 Approval of power output testing 

report  

15% 

4 Approval of one-year guarantee check 

report 

10% 

 

The first milestone is reached when the M/IC submits a bank guarantee. This guarantee 

effectively ensures that the company will underwrite a certain amount of the project cost in 

the event that they fail to deliver. The second milestone is confirmed through a report which 

demonstrates the equipment has been delivered to site. The third milestone is administered 

when the company can demonstrate that the MHP delivers the expected amount of power. 

The final instalment is paid after one year, when the company demonstrates that the MHP 

continues to deliver the expected amount of power. 

Using the information from the subsidy documentation and supporting literature, it is 

possible to map the typical actions of the stakeholders. Table 5.6 shows the key actions 

required by the stakeholder groups throughout the project process. The actions listed are 

given approximately in sequential order but may occur concurrently. The project process 

is segregated into 5 distinct phases: project initiation, design and manufacture, 

construction, installation and commissioning, and operation.  
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Table 5.6 - Actions and responsibilities of stakeholder groups throughout the project process. 

Project phase Institutional Industry Community 

Project initiation 

  
Community makes an 

application to an RSC 

or the AEPC directly 

RSC carries out pre-

feasibility study 

  

RSC recommends to AEPC 

that a detailed feasibility 

study (DFS) takes place 

 
 

RSC assists in selection of 

pre-qualified CC 

 
MHFG/C selects pre-

qualified company to 

conduct DFS  
CC conducts DFS and 

submits report to RSC 

MHFG/C submit 

business plan for the 

MHP 

RSC and AEPC decide to 

accept DFS, business plan 

and approve subsidy 

  

  
MHFG/C begin to 

collect funds and 

deposits in a 

community account 

RSC calls for bids from pre-

qualified companies 

M/ICs submit bids 

based on tender 

documentation 

 

  MHFG/C select M/IC 

Milestone: payment of 

30% instalment 

M/IC submit bank 

guarantee 

 

  Selection of operators 

and managers 

Design & 

manufacture 

 
Design by M/IC 

 

 
Manufacture of 

electro-mechanical 

equipment by M/IC 

 

Milestone: payment of 

45% instalment 

Equipment delivered 

to site 

 

Construction 

RSC support civil works 

and may report to AEPC 

M/IC supervises civil 

works 

Civil works by 

MHFG/C supervised by 

MC 

Installation & 

commissioning 

 
Installation by M/IC 

 

Power output verified by 

RSC 

Power output testing 

by M/IC 

 

Milestone: payment of 

15% instalment 

Submittal of power 

output report 

 

Power output verification 

conducted by a 3rd party 

  

NMHDA/CC train operator 
 

Operator receives 

training 

NMHDA/CC train manager 
 

Manager receives 

training 

Operation & 

maintenance 

 M/IC provides 

assistance in repair 

and maintenance 

Operation and 

maintenance of system 

Milestone: payment of 

10% instalment - Final 

test of power output after 

one year 
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5.6 Development of strengths and weaknesses 

At the operational stage, strengths and weaknesses in the operation of plants either support 

or threaten the sustainability of MHPs. Table 5.7 lists operational strengths and weaknesses 

that were identified from the available sources. Within each list, some of the identified 

strengths and weaknesses may be directly contradictory. In such cases, there is evidence 

that both can occur. Furthermore, given the transient nature of the socio-technical system, 

they could potentially occur at the same plant at different times. Elsewhere, relationships 

may exist between the identified strengths and weaknesses, e.g., the factor ‘income 

insufficient to pay for repairs’ is connected to ‘beneficiaries not paying regularly’. 

However, as each strength and weakness may develop for a range of reasons and have 

multiple causal effects, all are deemed worthy of consideration.  
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Table 5.7 - Strengths and weaknesses of sustainable operation. 

 Observation Evidence 

S
tr

en
g

th
s 

Effective collection of tariffs Field study, [101] 

Consumers pay regularly Field study, [194] 

Plants deliver benefits to community Field study, [16, 34, 93, 

195] 

Use of electricity meters Field study, [34] 

Good sense of ownership amongst community Field study, [93, 101] 

Trained operator Field study, [34, 35] 

Trained plant manager Field study, [194] 

Installed equipment delivers expected rate of power Field study, [97] 

Supportive community attitude Field study, [101] 

Good relationship with M/ICs Interviews with M/ICs 

Plant funds are correctly managed Field study 

MHFG is institutionally strong Field study, [22, 34, 93, 

179] 

Community willing to assist with repairs Field study 

High load factor Field study, [194] 

Range of productive end uses Field study, [194] 

W
ea

k
n

es
se

s 

Civil structures require repair due to landslides and monsoon [34, 101, 196] 

Poor standard of civil construction Field study, [34, 35, 196]  

Misalignment of rotating components  Field study, [196] 

Poor standard of maintenance Field study, [41, 196] 

Insufficient income to pay for repairs Field study 

Uneven distribution of benefits Field study, [101, 102, 

195] 

Conflict within the community – water/land/political  [196] 

Community not supportive in repair work Field study, [41, 196] 

Reduced power output Field study,  [97] 

Low load factor [34, 35, 194, 197] 

Problems with tariff collection Field study, [34, 101, 

194, 196] 

Beneficiaries not paying regularly Field study, [41, 196] 

Untrained operator Field study, [93, 196] 

Alternative energy sources are available (including grid 

encroachment) 

Field study, [35, 101] 

Poor functioning of MHFG/C Field study, [34] 

Insufficient flow rate [34] 

Misuse by consumers Field study  

Hydro-mechanical equipment failure Field study, [34, 41] 

Low tariff setting [35, 101] 

Distance to repair centres Field study, [41, 194] 

Lack of proper accounting [194, 197] 
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In the following five sections, each of the project phases identified in Table 5.6 is 

considered in detail. The key actions of the stakeholders, and relationships between them 

are discussed for each of these phases. Connections are identified between stakeholder 

actions (or inactions) and the strengths and weaknesses identified in Table 5.7. The strength 

and weaknesses are often mentioned in multiple phases to demonstrate the various points 

when they may begin, develop, and change. 

5.6.1 Project initiation 

The project process begins when a community applies to its local RSC or the AEPC to 

indicate an interest in constructing an MHP [35]. The community may have been advised 

by the RSC or a M/IC. When working in a local area, engineers often scope out potential 

sites. Nearby communities that have had MHPs installed provide a good advertisement and 

may recommend a particular company if they have had a positive experience. These 

recommendations allow companies to develop trust within a local area; one of the 

interviewed M/ICs had completed 8 projects within a small region of the Annapurna 

conservation area.  

The RSC or a CC carries out a pre-feasibility study to determine a project’s viability. If it 

is found to be viable, the RSC recommends to the AEPC that a detailed feasibility study 

(DFS) takes place. Consultants that are pre-qualified by the AEPC are invited to submit 

proposals to conduct the DFS. The AEPC accredits companies as pre-qualified if they can 

demonstrate that they employ human resource with sufficient experience, and they own the 

equipment required to conduct site surveys [198]. From the proposals, the community and 

the RSC select a consultant to conduct the DFS. The total cost of the DFS is paid by the 

AEPC [91]. The pre-qualification process helps to ensure that the CC is competent to 

conduct the DFS.  

In Guideline for Detail Feasibility studies of MHPs, the AEPC provides guidelines on the 

approach to conducting a DFS [199]. The document outlines the requirements, expected 

process, key considerations of the technical design, and the expected format of the report. 

During the DFS, the CC measures the flow rate of the river or stream that water will be 

extracted from and take measurements using an Abney level or a similar alternative to 

identify the location of key sub-systems. Within a year, flow rates in rivers in Nepal vary 

considerably due to the monsoon season. A hydrological mapping method allows 

estimation of the flow rate in a river in any month based on recording the flow rate and its 

geographical location [200]. Ideally, the flow rate in the river will be measured more than 
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once (a few months apart) enabling a more accurate prediction of the flow rate throughout 

the year. Otherwise, the uncertainty in a single measurement could result in insufficient 

flow for the plant to generate its rated power throughout the year. The submitted DFS report 

includes detailed drawings of the overall scheme and sub-systems: intake, de-silting bay, 

canal route, forebay tank, penstock route, powerhouse and the proposed transmission and 

distribution network. The decisions made during the DFS have a significant influence over 

the sustainability of the scheme. Technically, the design of sub-systems affects their 

performance and reliability. Particularly important decisions include the placement and 

design of the intake and powerhouse. A poorly designed intake will result in regular repair 

work due to damage by the source river, especially during the monsoon season [35]. 

Powerhouses are often located close to the banks of a river and if sited in a dangerous 

location can be swept away during a flood. For system reliability, the de-silting bay and 

forebay tank should be designed correctly to perform their function. Socially, the design of 

transmission and distribution lines may determine who is and is not connected to the MHP. 

The CC must also survey the community to understand the present energy situation in the 

area, proposed number of households to be electrified, the expected electricity usage and 

any potential productive end uses of electricity. These socio-economic considerations are 

important in understanding the financial viability of the plant. Without PEUs, the plant load 

factor may be low, limiting the plant’s potential to generate income. Understanding the 

availability of other energy sources is also important; encroachment of the grid or the 

introduction of solar home systems may reduce community interest in the MHP. Within 

the expected format of the DFS report, attention is also drawn to a range of environmental, 

economic, and social considerations. Surveyors are asked to consider the likely impact in 

the following areas: conservation and management of natural resources; impact on human 

rights; capacity building; impact on labour and working conditions; impacts on community 

health and safety; impacts on land acquisition and involuntary resettlement; and resource 

efficiency and pollution prevention. Consideration of these areas is useful in identifying 

operational risks early within the project process.  

Depending on the rated power that is available, the proposed area for transmission may 

include multiple villages. The selection of settlements, and more locally households, may 

not depend purely on proximity and technical feasibility. Within a single or multiple 

communities, certain individuals or families carry more influence than others [101, 195]. 

From the outset of a project, individuals from a lower caste may not have their interests 

properly represented [195]. Amongst more powerful castes, there may also be competition 
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due to political allegiances. When multiple villages are electrified by a single plant, the 

potential for conflict and marginalisation increases. Later, these conflicts can impact upon 

multiple project phases. For example, transmission line routes may be more favourable to 

particular groups of people; and at the operational phase, high caste beneficiaries may avoid 

providing labour for repair and reconstruction.  

The DFS is submitted to the RSC and if approved is sent on to the AEPC for consideration 

by a technical review committee (TRC). Table 5.8 outlines the expected composition of the 

TRC. The Productive Energy Use Component and the Poverty Alleviation Fund are 

internationally funded organisations focused on the improvement of living standards in 

rural Nepal.  

Table 5.8 - Composition of the TRC, adapted from [91]. 

Institution/body  Representation 

AEPC Manager  Coordinator 

Productive Energy Use Component   One representative, Member 

Poverty Alleviation Fund   One representative, Member 

Mini/Micro hydropower expert (private 

sector)  

 One representative, Member 

Mini/Micro hydro expert (civil Society)   One representative, Member 

Partner bank (financial institutions)   One representative, Member 

AEPC personnel   One representative, Member Secretary  

 

The composition of the TRC indicates a holistic consideration of the project to decide on 

its eligibility to receive funding. In particular, the presence of representatives from a 

finance institution and the Poverty Alleviation Fund indicates a consideration of the 

economic and social aspects of a project. At the same time that the DFS is submitted, a 

business plan is prepared by the MHFG/C [35]. Its preparation ensures that the members 

of the MHFG/C are aware of the importance of the financial operation of the plant. This 

business plan is also considered by the TRC, their evaluation can indicate potential 

weaknesses such as a lack of productive end uses. The TRC decide whether a project should 

be granted conditional approval for subsidy. If successful, the AEPC calls for bids from 

pre-qualified manufacturing and installation companies.  

When a project is given approval, the community registers as a user’s group such as a 

micro-hydro functional group, cooperative or private company [35]. In Nepal, the 

Cooperative Act 1992 helped to motivate the formation of cooperatives for a variety of 
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purposes [170]. Consequently, in rural areas, community groups and cooperatives are well 

understood; community forestry and women’s groups are common examples [201]. The 

cooperative structure formalises individual financial contributions by providing shares, 

thus cooperative members receive a return on any profits generated [170]. In the case of 

the MHFG/C, the cash contribution of beneficiaries is acknowledged but not formally 

recognised in shares. In both cases, the formation of a representative body for the 

community is an important element in fostering ownership over the project and developing 

local capacity. It should also ensure representation of marginalised groups and provide a 

mechanism for conflict resolution [170]. At this stage, the community must also begin 

collecting the remaining funds for the project [35]. Typically, the subsidy covers 50% of 

the total project costs  [35]. For the community, collection of funds is another stage which 

helps to develop ownership of the project. Regardless of financial status, beneficiaries are 

expected to contribute. In some instances, the community organisation may not be able to 

collect sufficient income themselves and must seek additional finance from banks or 

finance institutions. Later, the ongoing payment of bank loans from the plant’s operational 

income may limit the funds available for maintenance.  

When a project is put out to tender, pre-qualified companies have the opportunity to prepare 

proposals. The bidding document provides a detailed specification of the sub-systems to be 

quoted for, based on the information collected during the DFS. Table 5.9 is an example of 

the specification provided for the turbine, generator, and civil structures.  
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Table 5.9 - Example of the specification within a bidding document, adapted from [202]. 

Item Specification 

Turbine: T15 model 

Crossflow Turbine (15 

kW shaft power) 

Efficiency:70% 

The turbine should be in standard of AEPC (mild steel casing 

should be of 10 mm thick), rated to continuously deliver adequate 

shaft output at 780 rpm at the operating condition of site: 52.0 L/s 

design flow and 40.0 m gross head to generate 11 kW from 

generator. The set should be complete with any inlet adapter pipe 

(to connect the main valve placed just ahead of the turbine). all 

complete. 

Synchronous generator:  

25 kVA, brushless, rated 

to continuously deliver 

11 kW (KEL or 

equivalent) 

Synchronous generator 25kVA, brushless, rated to continuously 

deliver 11 kW, 230/400 volts, 50 Hz, 0.8 load power-factor, 1500 

rpm, 3 phase, self-excited, Connection Star, Insulation class F, 

Environmental Protection: IP 23 and Efficiency at full load : 85% 

with Compounding excitation system, all complete 

Civil works supervision Supervision of all civil works (Intake to Tailrace canal, all civil 

components with maintaining quality) 

Installation, erection, 

testing, commissioning 

including maintenance 

for one year, all complete 

Installation, erection, testing, commissioning including 

maintenance for one year, all complete. 

 

Table 5.9 demonstrates the difference in specification between hydro-mechanical, 

electrical equipment and civil components. For the turbine and generator, specific 

information is given which can be later verified. For civil structures, the specification is not 

detailed, does not refer to the design submitted in the DFS, and its achievement is difficult 

to measure.  

5.6.2 Design and manufacture 

Upon selection of the M/IC and contract signing, the first instalment of subsidy can be paid. 

The company that wins the tender is expected to visit the site to check the outputs of the 

DFS. If there is any disagreement, they can submit a request for changes to the AEPC. 

Once these changes are agreed, design begins. As shown in Table 5.9, the tender document 

provides some of the specification for the turbine (e.g., rated flow and rated speed) but 

manufacturing companies are still responsible for the detailed design. For Pelton turbines, 

designers use a spreadsheet (provided by the AEPC) which determines the nozzle diameter, 

bucket size and number of buckets based on information from the DFS. In interviews, 

manufacturers explained that they have sample buckets in a range of standard sizes. The 

spreadsheet assists designers in determining the correct bucket size, number of buckets and 

pitch circle diameter. All of the manufacturers interviewed used Autocad to produce 
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engineering drawing, typically by adapting a previous hydro-mechanical design. For 

Crossflow turbines, manufacturers own drawings of an Entec T-15 design, provided by the 

AEPC. This drawing package instructs designers on which dimensions should be changed 

in relation to site characteristics. The design is adapted in Autocad and the required 

drawings produced. 

For both types of turbine, the manufacture of most components takes place at the 

manufacturing company, key exceptions are Pelton runner buckets and the generator. In 

the manufacture of Pelton turbines, the runner buckets are produced at separate casting 

companies. In all cases, the interviewed manufacturers explained that these individual 

buckets were then welded onto a hub and machined. Cast steel was the most commonly 

used material although cast iron and bronze were also mentioned. For Crossflow runners, 

end plates are gas cut or machined. In [34], it is suggested that gas cutting of discs is 

expensive and inaccurate, with laser cutting proposed as a superior alternative. Of the 

interviewed manufacturers, all said that laser cutting was not available within the local 

market. The blades of the Crossflow runner are cut from pipe and welded in place. The 

manufacturers stated that they typically chose between mild and stainless steel for the 

material of the blades. In most cases, both types of turbine require pulleys to transmit power 

from the turbine to the generator. All of the manufacturers explained that they use Habasit 

belts. In [34], it is observed that whilst manufacturers use these expensive belts (often 

imported from Europe), the pulleys are often not manufactured to the required 

specification. This could contribute to the misalignment and vibration seen during the field 

study.  

In 2005, with assistance from national and international experts, the AEPC drafted the 

Reference Micro Hydro Power Standard [33]. The document is comprehensive and 

provides detail on all hydro-mechanical, electrical, and civil structures. The level of detail 

is important in ensuring high standards of quality. To consider a specific example, rusting 

was observed during the site study. Within the Reference Micro Hydro Power Standard, 

the following painting specification is provided for the turbine: “All turbine surfaces made 

of steel shall be protected from corrosion by one coat of a zinc rich primer (50 μm dry film 

thickness) and two finish coats for tar epoxy (1 0 μm) or equivalent”. By meeting this 

standard, the early onset of rusting can be avoided. Whilst comprehensive, the Reference 

Micro Hydro Power Standard is not mentioned elsewhere in policy documentation. Within 

tendering documents, as shown in Table 5.9, an AEPC standard is mentioned but it is not 

explicit what this is referring to. Within the Subsidy Delivery Mechanism, there standards 
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are not mentioned directly [91]. Whilst hydro-mechanical equipment is in production, there 

is no monitoring conducted by the AEPC and upon completion, the Subsidy Delivery 

Mechanism does not stipulate any specific forms of factory testing. Interviews with 

manufacturers revealed that typically the only factory tested components were penstock 

pipes. 

5.6.3 Construction 

The construction of the civil structures is primarily the responsibility of the community, 

AEPC guidelines suggest that a sub-committee of the MHFG/C is formed for this purpose 

[35]. It is the responsibility of this sub-committee to arrange for the collection of raw 

materials and the purchase of concrete and reinforcement bar. These materials are used by 

the community to construct all of the civil structures up to the penstock. A respondent from 

a M/IC explained that communities often collect poor quality materials, e.g., “the aggregate 

is the wrong size, and the sand is mixed with mud”. Another respondent said that they face 

situations where the community “cannot purchase sufficient cement, sufficient 

reinforcement bar.” The quality and quantity of the materials affects the civil construction. 

The beneficiaries are not paid for their time and for some households, it is difficult to 

manage the time for farming and construction work. A M/IC respondent explained that 

people are only able to give so much time as “they need to feed themselves as well.” In 

many villages, young men have moved abroad for employment leaving largely only 

women, children, and older people. This is compounded by a lack of “trained skilled 

labour” which affects the level of precision that civil structures are built to. However, it 

should be noted that the process of civil construction is important in developing community 

ownership of a project. 

RSC engineers and representatives of M/ICs companies take a supervisory role in the 

construction of civil structures. As shown in Table 5.9, “supervision of all civil works” is 

an item line within tendering documentation. All but one of the interviewed manufacturers 

said that they send a technician to site to oversee construction works. This company stated 

that they “don’t do civil works.” The other interviewees explained that the length of time a 

technician stays on site depends on the project but is typically in the range of 3 to 6 months. 

The role of M/IC technicians or RSC engineers is particularly important in the construction 

of certain civil structures. Ineffective de-silting bays and forebay tanks can lead to increased 

damage to turbine runners due to a higher silt content passing through the system. 

Inadequacies in these sub-systems can occur due to poor construction quality but also due 

to poor execution of design. A respondent explained that the technicians sent to site can 



 

Evaluating the project process  

 

106 

lack knowledge and experience of civil elements. The technicians are not necessarily aware 

of “the importance of shape and size of de-silting basin”. All manufacturers showed 

awareness of these problems, however, only one described action to mitigate against this. 

They explained that in-house training is conducted annually to their installer team to 

emphasise “that [the] shape and size of [the] de-silting basin is very important”.  

At the institutional level, the minimum expectation is that a representative of the RSC 

periodically checks the work completed at the site and reports to the AEPC. The 

interviewed government official stated that “most of the [civil construction] of micro-hydro 

is supervised by our district engineer”. However, they also noted that the recent transition 

to a federal government system - where new institutional structures are being put in a place 

-is an obstacle to achieving this.  In [35], it is suggested that each RSC is unable to provide 

regular quality control to all of the sites within its given area. The AEPC has developed the 

Micro Hydro Project Construction & Installation Guideline which provides instruction to 

installers on the expected approach for construction and installation of micro-hydropower 

projects [203]. The guidelines are useful in providing information about the best practice 

construction methods for particular civil sub-systems. Following the guidelines would 

increase the quality of the completed civil works.  

5.6.4 Installation and commissioning  

The M/ICs send employees to the site with the finished hydro-mechanical and electrical 

equipment for the installation phase. According to an interviewee, the installation of hydro-

mechanical equipment is completed without special equipment, e.g., the alignment of shafts 

is typically done using string. Installers are skilled using this method and designs allow for 

some misalignment between shafts. However, poor installation practice could lead to 

misalignment between multiple components. During installation, the plant operator (chosen 

by the community) will have the opportunity to learn from representatives of the 

manufacturing company, as one M/IC interviewee explained, “they are supposed to follow 

us”. This provides an opportunity for the operator(s) to learn directly at the plant.  

From the community, several people are chosen to receive training for the roles of operator 

and manager. The selection of these people affects the reliability and financial 

sustainability of the plant at the operational phase. The MHFG/C or the community as a 

whole will typically select someone to be the plant operator. It is recommended that they 

have completed a certain level of schooling, however, this is not compulsory. In some 

cases, plant operators are selected for social and economic reasons; for example, their land 
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might be in use for the powerhouse, or they are related to someone in a position of authority 

[101]. In these cases, the selected person may not possess the same motivation or capacity 

of someone chosen through a fair selection process.  

The NMHDA delivers a 22-day course which teaches plant operators how the system 

operates, regular preventative maintenance and correct maintenance activities [94]. The 

training is paid for as part of the subsidy [91]. According to [94], the NMHDA has also run 

10 advanced operator training courses, although these are only reported up to 2012. They 

are intended to provide a more advanced level of training for operators who have been 

working as an operator for a reasonable length of time. More recently, AEPC has 

introduced training for plant managers. Unlike operator training, this has not been a 

longstanding approach but is valuable in ensuring that plant managers understand the 

importance of tariff collection, book-keeping and financial management.   

When construction and installation of a project is complete, the installation company must 

send a testing and commissioning report to the AEPC. Subsequently, the AEPC will 

arrange for Power Output Verification (POV). The Micro-Mini Hydro Power Output and 

Household Verification Guidelines describes the process that should be followed. The POV 

test is conducted by an independent consultant, the system must demonstrate it can generate 

rated power, distribute the electricity to the originally proposed households and that the 

performance of all components and the complete system is in line with the standards [91].  

For systems rated less than 20 kW, the power must be within 10%. For systems rated 

between 20 and 100 kW, it must be within 5%. For the households, the consultant must 

determine:  

• The number of households that were initially on the list that are connected. 

• The number of households that were initially on the list that could be connected, 

as transmission line is within 50 metres of the household. 

• The number of households that were initially on the list that cannot be connected, 

as the transmission line is too far away.  

All elements of the POV test are important in ensuring the operational sustainability of the 

plant. The technical elements of the test ensure that flow rate is sufficient, the turbine can 

generate the expected amount of power and that the quality in construction of civil and 

hydro-mechanical components is adequate. However, sometimes with the available 

equipment, testing may only demonstrate the output power and the quality check may be 

largely superficial [35].  Checking the number of connected households is important in 
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ensuring that the plant will be able to deliver the benefits to the planned households, and 

that enough households are connected to generate sufficient income. After approval of the 

POV report, the installer company is paid its third instalment of the subsidy. Following a 

year of operation, another POV test is performed. If the plant passes this test, the final 10% 

of the subsidy is released.  

At some MHPs, energy meters are also installed. Within the field study, this was common 

with 23 of the 24 sites using household energy meters. Once a plant is operational, this 

allows the tariff to be set at different rates depending on consumption meaning household 

usage can be monitored and charged fairly. This is important for differentiating between 

the energy consumption of beneficiaries; some households may only use several lightbulbs 

and charging, whilst others may use a range of appliances e.g., television, radio, and fridge. 

In the interview with the government representative, it was explained that use of meters 

was not universal. It tends to be that energy meters are installed at “most of the newly 

constructed MHPs”, the “larger size of micro-hydro” (> 0 kW) and those where “there is 

a bazaar or small town”.  

5.6.5 Operation 

After a project is complete, tendering documents (as shown in Table 5.9) state that a 

company provide maintenance for one year. When asked in interview, one M/IC 

representative explained that as this is the government expectation, they “attend to [these] 

rules”. This maintenance warranty is never extended beyond this period meaning that after 

“one year the villagers, the operators, they need to pick it up [themselves]”. During the 

field study, operators explained that after the warranty period, when a problem occurs, they 

will inform the manager or management committee. Some parts may be available from 

towns close to the plant, for example, in the field study some replacement parts could be 

bought in Baglung. However, usually the original M/IC (most often in Butwal or 

Kathmandu) will be contacted. According to one interviewee, the community “trust the 

company who has been involved in the installation”. Interviews revealed that the initial 

response of the manufacturing company often depends on the knowledge of the operator. 

In some cases, the problem can be diagnosed or even resolved over the phone. At other 

times, the manufacturers explained that plant operators might have no knowledge of 

component names or were only able to say that “the lights have gone off”. Under these 

circumstances, M/ICs will typically send someone to the site from Butwal or Kathmandu. 

Two M/ICs mentioned that they employed people who worked in the field who could reach 

MHPs in certain districts more quickly. These people had worked on multiple installations 
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and were capable of checking electrical and mechanical problems; due to their experience 

they only report to the M/IC “if there is a serious mechanical problem”. Without a good 

initial diagnosis, there can be long travel times only to identify the problem; in these cases, 

the time it takes to resolve the issue can be considerable.  

Interviewees at M/ICs were asked what the most common issues encountered with turbines 

were. It was commonly stated that most problems occurred due to mishandling by the 

operators, typically resulting in problems with the belt alignment and the ELC. One 

manufacturer explained that operators did not appreciate that as a mechanical system, 

elements were liable to vibrate, move and then require adjustment. Given that a technician 

from the manufacturing company will align the turbine in the first instance, some operators 

may not be familiar with the method to align the belt. Within each year, there are typical 

maintenance activities where the operator will require assistance from members of the 

community. Repair of the civil structure and reconstruction of the intake following the 

monsoon are required each year. Without assistance, the operational team will take a longer 

time to perform these tasks.  

Alongside O&M, the manager’s responsibility is to ensure that the required income is 

collected. From the field study, it is understood that approaches for the tariff collection 

depend on the local geography. In some cases, it was possible to have an office where 

beneficiaries came to pay each month. In others, tariff collectors would visit individual 

households to collect payment on a monthly basis. The experience of some plant managers 

was that the “scattered” nature of beneficiaries’ houses made tariff collection a difficult 

and time-consuming task. Even where tariff collection practices were good, some of the 

plant managers observed that the total income was insufficient to pay for repairs. In these 

cases, beneficiaries would be asked directly to contribute additional money for repairs, or 

the MHFG/C would use banks to take out a loan. Often, tariff levels are not set at an 

appropriate level to generate an income [35]. Following the initial tariff setting, there is a 

reluctance to change the tariff due to the money that has been contributed at the outset of 

the project. 

Operational plants deliver benefits to beneficiaries through electricity services in the 

household and in the community. Electricity in the home can reduce the drudgery of 

household tasks [204], increase opportunity for leisure activities [16] and improve 

education [205]. In the community, electricity can increase agricultural productivity [92], 

increase employment opportunities [93], and improve healthcare [206]. These 
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improvements to lives contribute to willingness to pay amongst consumers of electricity. 

With a greater diversity in productive end uses, electricity is used throughout the day 

resulting in a higher load factor and higher income. Plants that depend largely on domestic 

consumers tend to generate electricity predominantly at night and in the early morning. 

Without productive end uses consuming electricity in the daytime, a plant’s load factor will 

be low and the income far below its potential.  

At some plants, low load factors are compounded by poor managerial practices. From the 

field study, it was found that some plant managers believe there is a need to “rest” the 

generating equipment, sometimes for multiple hours in a day, reducing the amount of time 

when income can be generated. During the field study and in [194], it has been found that 

when new people request to join the MHP, an extremely high connection fee is charged; 

during the field study the highest cost encountered was NPR 70,000. For many people, 

particularly those of lower socio-economic status, this extremely high cost may prevent 

people from joining [207]. Consequently, the plant will not receive the monthly income 

that they might have done. 

The operators are responsible for the O&M of the turbine and generating equipment, whilst 

at the end of the distribution network consumers are responsible for their own electricity 

use. Particularly at sites where households do not have energy meters installed, consumer 

behaviour is important. In these locations, consumers usually pay a flat rate. Therefore, it 

is expected that there is not a significant difference between consumers. If one consumer 

uses significantly more electricity than their ‘fair’ share, it may reduce the electricity that 

is available for other consumers. Even at plants that do have meters installed, often 

consumers are placed on to different tariff structures depending on the electrical current of 

their connection. In these cases, using multiple appliances and exceeding their current 

rating is a threat to the electrical protection installed in each household. 

At the POV test and one-year check, the MHP’s ability to deliver rated power is checked. 

Over time, degradation of the equipment and civil structures, and environmental changes 

can affect a plant’s ability to deliver its rated power. If insufficient flow rate is entering the 

system, the overall power available is reduced. Similarly, if the efficiency has reduced then 

the amount of power generated will also be lower. If a plant is at capacity, i.e., supply and 

demand are approximately equal, it can cause frustration amongst consumers who are 

unable to use their regular amount of electricity.  
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Alongside the tariff payment, additional mechanisms should be implemented and enforced 

to ensure regular and timely payment of the tariff. Within the site study, many of the sites 

mentioned that they used a rebate system for early payments. Consumers who paid within 

a certain time period were reimbursed a small percentage of their monthly fee. Conversely, 

those who paid late were fined. Typically, a late payment fee would increase on a weekly 

basis. The use of these measures can be effective, however, it depends on enforcement. In 

[194], it is mentioned that whilst measures are often described, they are rarely enforced. 

5.7 Discussion 

The process that results in the construction of a MHP is complex, depending on the actions 

of multiple stakeholders that are often dictated by the subsidy policy. In every project, 

sustainable operation of the plant should be the objective, however, by considering the 

current project process and results in the field, it is clear that this does not occur universally. 

Within each project, the policy and industrial landscape remain constant, but the 

community, local government, RSC, M/IC and CC does not. Whilst certain actions are 

dictated by the policy mechanism, others are not. Furthermore, for all activities, 

stakeholders complete tasks in different ways and to different standards. Added to this, the 

interrelation between stakeholders’ actions means that in some cases, different stakeholders 

bear greater responsibility for certain outcomes. In addition, particular actions are required 

at certain times with dependencies between them. To show the relationships between these 

actions, a graphical method of analysis has been used that considers the actions (throughout 

the project process) of the stakeholder groups related to a particular issue. The purpose of 

the method is to demonstrate that strengths or weaknesses develop due to the combined 

actions of the stakeholder groups. In this section, the graphical method will be used to 

consider 3 specific issues related to the 3 areas of sustainability highlighted in Chapter 4: 

technical reliability, financial viability and community engagement. Subsequently, four 

focus points are identified and discussed with corresponding recommendations made.  

5.7.1 Graphical analysis 

The interrelation between the actions of stakeholders is critical in the development of 

operational strengths and weaknesses. To aid understanding of the connection between 

these actions, they have been categorised as critical, supporting and ‘quality control’. 

Critical actions are those that directly lead to an outcome. Supporting actions involve a 

transfer of capacity or capability which aids achievement of an outcome. In the Oxford 

English Dictionary definition, it is stated that in general use the term ‘quality control’ can 
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be used to describe “any process for maintaining a desired quality of product or output”. 

For the purpose of discussion in this section, ‘quality control’ actions are defined as those 

where the output of another action is checked. This categorisation of the actions is used to 

consider the significance of their interrelation in the occurrence of particular issues. Figure 

5.3 shows a graphical analysis of the stakeholder responsibilities that determine the quality 

of civil structures. The concentric rings represent the 5 phases within the project process, 

with the outer ring representing the earliest phase. For each stakeholder group, a 

development path identifies the key actions that are taken. These actions are categorised 

with colours used to differentiate between them. Linkages between the actions are indicated 

by arrows that connect them. At the centre of the diagram an outcome is identified, in this 

case: quality of civil structures. 

 

Figure 5.3 - Graphical analysis of stakeholder responsibilities in determining the quality of 

civil structures. 
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From the figure, it can be seen that during the civil construction phase, processes involve 

stakeholders from all 3 groups. Two of the critical actions are the responsibility of the 

community but the M/IC and RSC should provide supervision at this stage. Without these 

supporting actions, the civil construction becomes solely the responsibility of the 

community. There are quality control actions that are dictated by the subsidy policy, one 

early and another late in the project process. Whilst the design for the civil structures is 

checked by the TRC, the timing of the final check (during POV) suggests that if there is an 

issue, remediation may be expensive and time consuming. The probability of identifying 

and resolving problems would be increased by an additional quality control action during 

construction. Evidence indicates that this does occasionally happen when RSCs report on 

construction progress to the AEPC. However, reporting up a stakeholder level (i.e., to those 

less involved) is unlikely to have a significant impact. 

Figure 5.4 shows the graphical method applied to evaluate the income generated from 

households. Three of the critical actions are the responsibility of the community and occur 

during installation and commissioning, and at the operation stage. In support of these, 

institutional stakeholders may be responsible for assisting in the development of the 

business plan, education of the community and training of plant managers, and the M/IC 

may install household meters. These actions do not always take place. Without these, the 

community may not set the tariff at an appropriate level or develop an effective approach 

for tariff collection. The only checking action occurs during the TRC evaluation. This may 

be an opportunity to identify potential issues relating to the ability of the community to 

pay. 
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Figure 5.4 - Graphical analysis of stakeholder responsibilities in determining the income 

from households (HHs). 

Without a subsequent quality control action, it is difficult to verify whether issues have 

been acted upon. At the operational stage, the operational team will learn whether the 

method for tariff collection is effective and how much income is generated from 

households. If they encounter problems at this stage, it may be difficult to implement new 

approaches or changes to the tariff structure as community expectations will have 

solidified.  

Figure 5.5 shows the graphical method applied to evaluate the level of community support 

that is present at the operational stage. Compared to the examples in Figure 5.3 and Figure 

5.4, the outcome is much harder to quantify and is likely to be transient during the 

operational phase. The level of community support affects the willingness of beneficiaries 

to help with repairs, the interest shown in the MHFG/C, and the probability of providing 

extra financial support when problems occur.  
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Figure 5.5 - Graphical analysis of stakeholder responsibilities in determining the level of 

community support. 

The critical actions are all the responsibility of the community with several supporting 

actions. The qualitative nature of this outcome is a factor in there being no quality control 

actions. Informally, the RSC may perceive the level of community engagement throughout 

the project. Experience suggests that the 4 actions that are the responsibility of the 

community are effective in developing community engagement. However, given the 

heterogenous nature of the community, it is difficult to confirm whether this engagement 

is experienced by all. It should be considered that the level of community engagement is 

particularly sensitive to the sustainability of the plant and external events. For example, in 

relation to the plant’s sustainability, if the service delivered is poor the community may not 

feel that assisting with repair is an effective use of their time. External to the plant, local 

development and the arrival of alternative energy sources may also distract community 

focus.  
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5.7.2 Focus points 

In this section, four focus points are used to frame the findings and make specific 

recommendations. 

1. Despite processes that foster community engagement, supporting actions from 

all stakeholders are required to ensure that the actions of the community are 

directed towards sustainable project outcomes. 

Throughout the project process, there are multiple phases where community engagement 

is developed. At the outset, the formation of a MHFG/C aligns the interest of the 

community, provides representation to marginalised groups, and creates a platform for the 

community to interact with the other stakeholders. Assuming that the project application is 

successful, the requirement for financial contribution is important. Monetary investment is 

useful in engaging individuals and as this is expected (at an appropriate level) from all 

beneficiaries, it is an opportunity for every household to contribute. Individual commitment 

to the collective cause is reinforced during the civil construction. At this stage, physical 

rather than monetary commitment is required, with some community members working for 

at least 6 months. The physical and financial engagement of the community fosters 

ownership, providing a platform for sustainability. The sense of collective achievement by 

the community (acknowledged during the field study) contributes to a desire to sustain the 

MHP. 

However, the sustainability of the plant cannot be ensured through community engagement 

and ownership alone. The community is reliant on external input for the technology, 

supervision, and capacity building. In the construction phase, a combination of the RSC 

and M/IC must support the community to build the civil structures. Later, the training of 

the operator and manager by the NMHDA or a M/IC is needed to prepare the management 

team for the operational phase. Whilst training of operators is common, training of plant 

managers is essential and should be practiced at every new installation. It should be 

conducted locally by RSCs to maximise the number of participants. Without this 

knowledge transfer, the community will not be able to fulfil their responsibilities during 

the project’s construction or at the operational phase. The collective physical and financial 

effort from the community may be misdirected, e.g., poor standard of civil construction or 

regular payment of insufficient tariffs. The collective action of the community has 

significant potential, the number of constructed MHPs in Nepal demonstrates this. 
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However, without the actions of other stakeholders, the actions of the community can lead 

to weaknesses in sustainability.  

2. The AEPC has expectations regarding standards and quality assurance, but 

the capacity of institutional stakeholders is a barrier to implementing them 

rigorously.  

The AEPC has produced an extensive range of guidelines that describe their expectations 

for how multiple phases of the project process should be completed. These are 

comprehensive examples of good practice that when followed can motivate the creation of 

operational strengths and limit weaknesses. Alongside the guidelines, there are multiple 

quality assurance processes, including several that are directly related to the delivery of 

subsidies. As the government administers both the documentation and the quality 

assurance, there needs to be correlation between these two areas.  

 

For both CCs and M/ICs, pre-qualification is a good method to assess whether companies 

possess the human resources and experience required. From the DFS stage, the guidelines 

demonstrate what should be included in the report. Following the submission of this report, 

a quality control process (the TRC panel) is an early opportunity to flag technical, social, 

and economic issues that might affect the project. It is encouraging that the members of the 

TRC panel are diverse in their professions, with the breadth of knowledge to assess the 

project in relation to reliability, financial viability, and community engagement. The 

tendering document provides specification of all the sub-systems of the MHP. In the case 

of some sub-systems such as the turbine and generator (as shown in Table 5.9) this is well 

defined. For the civil structures, whilst poorly specified, the RSC is responsible for 

checking on the quality of construction. The observed quality of civil structures suggest 

that this does not always happen, as did the response from the interviewed AEPC staff 

member. The inspection that occurs (as part of the POV test) when the installation is 

complete occurs too late for any meaningful changes to be made. For the manufactured 

components, although well specified in the documentation, there is no factory acceptance 

test or inspection of the equipment before it is sent to site. Consequently, without 

independent inspection, it is likely that equipment could be sent to site with faults. On 

behalf of the AEPC, independent consultants should use the Reference Micro Hydro Power 

Standard to check the adherence, quality and key dimensions of manufactured and bought-

in hydro-mechanical equipment before they are dispatched to site. Similarly, civil 

structures should be formally checked against the project drawings and AEPC standards by 
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the RSC during construction and before commissioning. A subsidy payment to the M/IC 

for the supervision of civil works should depend upon it. For both civil structures and 

manufactured equipment, the subsidy policy provides an opportunity for the AEPC to 

enforce the standards that must be met. 

 

3. Manufacturers possess the experience and capacity to deliver sustainable 

MHPs, but the current structure does not maximise their potential.  

Many of the M/ICs have installed a large number of projects. Most of the companies 

provide a range of services: feasibility study, civil design, electro-mechanical design and 

manufacture, and installation. This depth and breadth of experience means that M/ICs 

should understand what a sustainable project is and how it can be achieved. From 

observation during the field study and interviews with the 5 manufacturers, the approach 

of the different M/ICs to hydro-mechanical design and manufacture is largely similar, 

leading to similar results. Since 1989 [32], the subsidy has driven the way projects are 

approached; manufacturers do what is required to receive the subsidy. New companies may 

enter the market, but according to the interviewees they focus on cost reduction rather than 

innovation. Unless a prior relationship exists or an RSC is providing specific advice, the 

community will usually select the lowest bid. This has stifled innovation in Nepal and 

means that technology has remained unchanged for the last 20 or 30 years. Technical 

advancements, particularly in relation to power electronics and sensing, have not been 

integrated into projects in Nepal. The subsidy could be used to encourage innovation from 

manufacturers by supporting the integration of particular technologies that could improve 

reliability.  

As a cost saving mechanism and a successful tool in improving community engagement, 

the responsibility of the civil construction is given to the community. However, given the 

experience that most manufacturers possess, their supervision in this process is important. 

In the tender documents, the expectation that manufacturers provide “supervision” is not a 

prescriptive obligation. Manufacturers sending inexperienced technicians to site or for only 

short periods of time does not result in a good quality of construction. There are examples 

of M/ICs integrating their own approaches. For example, using an experienced local person 

ensures that the construction can be completed to the required standard with reduced cost. 

However, in most cases, as the contract does not stipulate the quality of the civil structures, 

M/ICs do only what is required. Supervision of civil structures should be made the 
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complete responsibility of the M/ICs. The terms of supervision should be clearly defined 

so that the community can hold the M/IC accountable if they fall short of expectations.  

4. Financial viability is considered in the project process but needs to be 

integrated; productive end uses and effective tariff collection do not develop 

organically once a MHP is installed.  

During the project process, there are multiple activities that consider the financial viability 

of the project. Initially, the submittal of a project business plan ensures that the MHFG/C 

consider the importance of the plant’s economic operation. In addition to the business plan, 

the DFS quantifies consumer’s willingness to pay and the opportunities for productive end 

uses in the local area. Observation of the business plan and the assessment of the DFS 

ensures that institutional stakeholders have considered the financial viability alongside the 

technical viability. Between the TRC review and training of the plant manager, there are 

no scheduled activities that focus on preparing the plant for sustainable financial operation. 

The business plan should include clearly defined actions that can be checked by the RSC. 

Sites with low potential for economic activity should be identified and supported. A second 

stage business plan which indicates progress should be submitted when the equipment is 

delivered to site.   

At the operational stage, households and businesses will begin to use electricity, and the 

management team must collect tariffs. The amount of electricity that is used by households 

and businesses, and the effectiveness of tariff collection determine the financial viability of 

the plants. Literature and the experience of the author show that an inability to do either of 

these tasks will prevent a plant from operating sustainably. The results of the field study 

indicated that some plants did not take a considered approach to tariff collection. Many 

plants have low load factors due to minimal day time usage and a lack of productive end 

uses. Plant managers did not keep up to date account records. These outcomes suggest that 

the current activities are not successful in developing financial sustainability; management 

teams are failing to generate and manage their sources of income. Whilst some 

communities may take their own actions, e.g. purchasing milling equipment to generate 

income, it is not universal.  

For community renewable energy technologies, in general, the established project cycle in 

Nepal is able to provide a number of lessons. The initiation of the project by the community 

and their ongoing involvement is effective in fostering ownership. Finding a financial or 

physical contribution that is appropriate for each household is important. A subsidy driven 
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process provides an opportunity to introduce quality control mechanisms. However, to 

administer these effectively requires sufficient capacity, and is more effective if overseen 

at the local level. Each project develops within a socio-economic and physical landscape 

which affect the project process and its outcomes. To operate sustainably, the location of 

some schemes means that they require greater support during the project process. Proper 

evaluation of the market opportunities and ongoing support to introduce productive end 

uses are important in ensuring that plants have high load factors and generate sufficient 

income. Furthermore, the responsibility of operation and maintenance usually resides with 

a handful of individuals; they must be properly trained and fairly paid.  

5.8 Summary 

In this chapter, a variety of methods were used to collect information regarding the project 

process, actions of stakeholders, and the operational strengths and weaknesses that occur. 

By connecting these areas, it was possible to assimilate findings from the field with a 

broader understanding of the institutional landscape that MHPs are developed in. The 

findings indicated that there are opportunities to address sustainability issues through 

quality assurance and capacity building. Meanwhile, the subsidy driven process provides a 

(currently unfulfilled) opportunity to ensure that the required standards are met. From this 

chapter, an improved understanding of local context and the influence of the institutional 

landscape has been developed. However, to develop appropriate design solutions requires 

an awareness of local manufacturing capacity, and the availability of materials and 

processes.  

In summary:  

• Literature sources, interviews and the results of the field study were used to 

understand the project process, its stakeholders, and the operational strengths and 

weaknesses that can occur.  

• There are opportunities within the project process to address sustainability issues 

through quality assurance and capacity building. 

• The subsidy driven process provides an opportunity to ensure that required 

standards are met. 

• In general, for community energy projects which involve diverse stakeholders, 

sustainable operation of projects depends on coordinating their actions throughout 

the project process. 
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Chapter 6  

Design and development of a Turgo 

turbine runner for local manufacture 

6.1 Introduction 

The preceding chapters established an understanding of the local context of MHPs, the 

issues that occur in operation, and the project process that leads to their development. 

Considering the DFL methodology, these findings have contributed to its first stage: 

developing an understanding of the local context. In this Chapter, the understanding of 

local context is extended to consider the capacity of manufacturing companies using a 

survey. Additionally, a survey is used to establish a baseline cost for the established turbine 

technologies in Nepal. The understanding of local context (particularly in relation to 

manufacturing) is used to inform the digital development of a Turgo turbine runner design 

using CFD. The internet, additive manufacturing and cooperative design facilitate the 

transition to a locally appropriate design. Finally, the experiences manufacturing the 

resulting design locally are shared and discussed. 

6.2 Methodology 

This Chapter presents the transition from the first to the second stage of the DFL 

methodology. It requires the application of knowledge regarding the local context and using 

it to develop appropriate design solutions. As previously discussed, there is not a readily 

available Turgo turbine design. Between the Pelton turbine and the Turgo, the runner is the 

only uniquely different sub-system. For any turbine, the runner is the most complex part 

and is the most significant determinant of the turbine’s efficiency.  Consequently, the focus 

of the DFL methodology was the Turgo turbine runner.    

The starting point for design development was an imported Turgo turbine-generator set. 

Henceforth, this will be referred to as the ‘Imported’ turbine or runner. Table 6.1 lists the 

turbine specification as provided by the supplier, whilst Figure 6.1 shows the key 

components of the set, and Figure 6.2 shows the runner in detail. The set comprises a single 

nozzle vertical axis Turgo turbine, connected directly to the shaft of an induction motor 
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running as a generator. It includes an air heating element inside the casing that is used as a 

ballast load. For hydro-turbines at the pico- and micro- scales, it is common to control the 

turbine electrically rather than mechanically [208]. The electronic load controller ‘dumps’ 

any excess power to the ballast load to ensure the turbine runs constantly at close to the 

generator’s rated speed. The turbine’s nozzle is convergent and has no spear valve, 

however, flow to the turbine can be shut off using a gate valve positioned upstream of the 

nozzle. The runner of the turbine consists of sheet metal pressed blades that are welded 

internally onto a central hub and externally to a concentric outer ring, as shown in Figure 

6.2. The profile of the blades is largely uniform, however, evidence of deformation or 

‘crinkling’ from the manufacturing process can be seen. The information supplied by the 

manufacturer was limited. It stated that the system had an expected efficiency of 70% but 

without supplying any supporting data.  

Table 6.1 - Imported Turgo turbine specification, adapted from [209]. 

Characteristic Value 

Rated head 18 – 25 m 

Rated flow 8 – 10 L/s 

Rated power 1.5 kW 

Generator rated speed 1500 rpm 

Pitch circle diameter 0.1 m 

Nozzle orifice internal diameter 0.0307 m 

Number of blades 14 

Jet inclination angle (to the horizontal) 22.5° 
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Figure 6.1 (a) and (b) - Imported Turgo turbine set including 1. induction motor, 2. 

electronic load controller, 3. turbine casing, 4. nozzle, 5. runner and 6. ballast heating 

element. Photo credit, author. 

 

 

Figure 6.2 - Imported Turgo turbine runner. Photo credit, author. 

 

In hydropower, experimental testing under laboratory conditions is widely used to confirm 

the expected performance of a turbine. This information can then be used to predict the 

turbine’s performance at a site installation under a range of conditions. Experimental 

testing is often expensive and time consuming, particularly when attempting to improve a 



 

Design and development of a Turgo turbine runner for local manufacture  

 

124 

design. When compared with experimental testing, commercially available computational 

fluid dynamics (CFD) software can be used to quickly and cheaply optimise simple turbine 

designs for improved efficiency [68, 210]. Due to the knowledge, experience and 

computational power required, the use of CFD within hydropower has largely been in 

academic and industrial applications, focused on the improvement of high-performance 

turbines for medium and large-scale hydropower projects. For a relatively low efficiency 

of 70%, CFD can be used as a tool to quickly improve the efficiency of the Turgo runner 

design.  

In Chapter 5, it was found that the interviewed manufacturers used Autocad to produce 

engineering drawings. Alongside CAD, internet use was common. The combination of 

these technologies offers opportunities for novel approaches to design development. The 

internet enables access to digital designs and the opportunity to communicate with fellow 

designers and manufacturers through website such as Thingiverse, Instructables and 

GrabCAD [211-213]. Designs available online can be downloaded, opened in CAD 

software, and printed for use by technicians. Many of these online platforms provide 

designs for additive manufacturing, enabling rapid prototyping or the production of 

moulds, e.g., rapid tooling. In Nepal, additive manufacturing was not currently available at 

the visited manufacturing companies, however, it is available at Kathmandu University. 

Thus, investigating the local manufacture of the Turgo turbine in Nepal provides an 

opportunity to explore the potential of a new design approach which uses the internet, CAD, 

and additive manufacturing. 

In this chapter, the primary focus is developing a route towards local manufacture of a 

Turgo turbine runner. Figure 6.3 shows the process that is used to achieve this. CAD is 

used to model the Imported runner with CFD simulation used to replicate its performance 

under typical operating conditions. A survey of manufacturers is used to improve 

knowledge of their capacity. This is applied to specify restrictions for the CFD design 

progression that maintain a focus on ease of manufacture. Subsequently, a cooperative 

design process with NYSE is used to ensure the design could be manufactured. Finally, 

using the internet, the design can be shared digitally in a 3D CAD format and reproduced 

using additive manufacturing to provide a precise replica. Depending on the chosen 

process, additive manufacturing could be used to develop moulds or templates to facilitate 

local manufacture. 
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Figure 6.3 - Process for runner design improvement. 

 

6.3 Manufacturing capability 

Within Chapter 5, interviews with manufacturers were used to understand their role within 

the project process. Whilst these interviews identified key actions, they did not provide 

significant detail on the capacity of the companies. To develop locally appropriate solutions 

depends on knowledge of the available processes and materials. In addition, the interviews 

did not consider specific actions during the design and manufacture process, particularly in 

relation to quality control and quality assurance. In the discussion section of Chapter 5, 

‘quality control’ was used as a general term to describe processes where the quality of 

something was checked. Whilst in general usage, quality control is often used 

interchangeably with quality assurance, in the context of engineering they have specific 

definitions. Quality assurance (QA) can be defined as “the maintenance of a desired level 

of quality in a service or a manufactured product, especially by means of attention to every 

stage of the process of delivery or manufacture” [214]. Whilst quality control (QC) is “a 
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system of maintaining standards in manufactured products by testing a sample of the output 

against the specification” [214]. Using these definitions, QC processes can be considered a 

form of QA. As a number of reliability issues had been encountered in the field and in the 

literature, an additional objective was to understand measures for QA and QC within the 

design and manufacturing process.  

A survey was used to extract qualitative and quantitative information relating to the 

experience of manufacturing companies, their approach in the manufacture of key 

components, and the available manufacturing processes. Alongside manufacturing 

companies, the interviews conducted in Chapter 5 identified the presence of casting 

companies within the turbine production process. Consequently, several were also 

interviewed. The findings of these surveys could be used to select a viable method for the 

manufacture of the Turgo turbine, and to identify opportunities for quality assurance during 

the manufacture of turbines of all types. 

6.3.1 Methodology 

Based on the initial interviews conducted with manufacturing companies in Chapter 5, 

experience of the author and review of literature, a survey for micro-hydropower 

manufacturing companies was devised with 3 main areas of focus:  

• Experience - to understand the capability and capacity of the company and the 

services provided. 

• Components - to understand how key micro-hydropower components are 

manufactured, which materials are used, and any methods used to ensure the 

quality of these components.  

• Processes - to understand the manufacturing processes that are typically available 

at micro-hydropower manufacturers in Nepal.   

 

Most of the questions were closed and led to a mixture of qualitative and quantitative 

responses. The survey was reviewed by experts within the field and their suggestions were 

incorporated. A trial survey was conducted at NYSE and the feedback of Dr Suman 

Pradhan was integrated. It was aimed to gather survey information from at least 6 

companies (10% of the 60 companies registered with the NMHDA [191]). Of these, 

companies with at least 10 years trading experience were targeted which resulted in surveys 

with 8 manufacturing companies. The interviewees were the managing directors, project 

coordinators or senior engineers from these companies. Irrespective of their position, the 
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interviewees are referred to collectively as ‘manufacturers’. In some cases, multiple staff 

were present to provide supporting answers. Alongside these, separate interviews were 

conducted with managing directors of 2 casting companies. The objective of these 

interviews was to understand their experience and capability, and the role they fulfil within 

the turbine production process. The interviews were conducted in English; however, a 

Nepali speaker was present to translate when necessary. Alongside the interview, 

photographs were used to document the types of manufacturing equipment that were 

present at each workshop.  

6.3.2 Results 

Experience 

Responses indicated that the interviewed companies had been trading for between 17 and 

58 years, with a mean of 31 years. The experience of the primary respondents themselves 

ranged from 20 to 50 years, with a mean of 33.5 years. Figure 6.4 shows that of the 7 asked 

(one interviewee was not asked this question), most of the companies had completed more 

than 50 Pelton turbine projects (5 of 7) and 50 Crossflow turbine (7 of 7) projects. Two of 

the interviewees also mentioned working on a small number of propeller turbines.  

 

Figure 6.4 - Project experience by turbine type. 

 

When asked about the core services provided, responses from all of the manufacturers 

indicated that the main service offered was design and manufacture of hydro-mechanical 
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systems. Figure 6.5 shows that in addition to this core service, electrical design & 

manufacture, survey, and civil design were also common. 

 

Figure 6.5 - Services offered by the micro-hydro companies. 

 

Components 

The available processes determine the approach used in the manufacture of key 

components. In the production of Pelton and Crossflow turbines, there are many 

components which are similar for both turbine types, e.g., incoming pipework, penstock, 

shaft, and casing. The components that differ most are the turbine runners. The Pelton 

runner consists of multiple buckets that are centred around a hub. Figure 6.6 shows a Pelton 

runner being machined on a lathe. The manufacturers explained that Pelton buckets are 

sand cast individually and then usually welded onto a hub. In the past, bolted runners were 

more common but now welding is preferred. No manufacturer does single piece casting of 

Pelton runners. The most common material choice is cast steel, although bronze and brass 

are sometimes used but less than in the past. Casting takes place externally at specialist 

casting companies in Butwal, Bhairahawa (29 km from Butwal), and India (the border is 

31 km from Butwal). Figure 6.7 is a diagram that shows the typical manufacturing process 

for a Pelton turbine runner in Nepal. This diagram was generated based on the responses 

of all the interviewees. It indicates the key manufacturing, QA/QC approaches and 

processes, and opportunities for greater QA that were identified during the surveys.  
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Figure 6.6 - Machining operation on a Pelton turbine runner. Photo credit, author.
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Figure 6.7 - Pelton turbine runner manufacturing process. 
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The Crossflow runner consists of end plates mounted perpendicular to the axis of rotation 

with blades located between them. Figure 6.8 shows a machining process on a Crossflow 

runner. The blades are either cut from pipe, or cut from sheet metal, bent, and checked 

against a jig. Material choices for the blades were usually mild steel but sometimes stainless 

steel. For mild steel (MS), specifications included MS ST40, MS ST88. In stainless steel 

(SS), specifications included SS204, SS304, SS308, SS316, and SS37. The decision to use 

stainless steel was usually based on the rated power of the site; 2 manufacturers mentioned 

a ‘rule of thumb’, using SS blades for turbines with a rated power of 100 kW. Figure 6.9 

shows the typical manufacturing process for a Crossflow turbine runner. At several early 

stages in the process, manufacturers described using different methods; this is shown in the 

diagram using a larger blue box divided by a dashed line. 

 

 

Figure 6.8 - Machining operation on a Crossflow turbine runner. Photo credit, Topaz 

Maitland. 
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Figure 6.9 - Crossflow turbine runner manufacturing process. 
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The other components considered in the survey were the main shaft, Pelton spear valve and 

spear, and generators. The primary material used for shafts was EN8 steel, mentioned by 5 

of the 8 manufacturers. Mild steel and stainless steel were also mentioned but specifications 

were not provided. According to the interviewees, the material choice depended on both 

the dimensions and the rated power of the site. For the end section of the Pelton nozzle 

(which is prone to erosion where the high velocity jet is released), 7 of the 8 manufactured 

used stainless steel (SS 304 was mentioned most often). The remaining body of the nozzle 

is manufactured from mild steel with a spigot and bolted connection between these 2 

components. Similarly, for the Pelton spear, stainless steel was the typical material (SS 308 

mentioned most) for the spear tip with the shaft of the spear made from mild steel. All of 

the interviewees asked about generators usually purchased them from KEL, a manufacturer 

based in Kerala, India but with a supplier in Kathmandu. Generators are purchased as one-

offs with the quoted lead time ranging from 1 month to 6 months. Several manufacturers 

observed that the lead times had recently increased. Three manufacturers mentioned other 

suppliers that they had used in the past: Kirloskar and Crompton, both Indian companies. 

Processes  

For welding, all manufacturers used exclusively manual metal arc welding. One 

manufacturer had MIG welding equipment but did not use it as they did not currently 

employ any staff qualified to do so. The fabricators had been trained internally, or 

externally at the Butwal Technical Institute. For cutting sheet metal, oxy-acetylene gas 

cutting was used. For straight lines, PUG machines – moving gas cutters that follow a rail 

- are used. Jigs were used for circular profiles. Four manufacturers owned shearing 

machines for cutting thinner sheet metal. No manufacturers used any form of CNC cutting 

or machining. Of the 8 companies, 7 owned at least one bending machine. Six of these were 

1.2m in width and the other was 1.8m. One manufacturer (without a bending machine) said 

that they visited another manufacturer to use their bending equipment when they needed 

to. All of the manufacturers had spray painting facilities and used this in combination with 

brush painting. Two of the manufacturers said that they only spray painted the turbine. No 

manufacturers used sandblasting before painting despite one of the companies owning 

sandblasting equipment. Several manufacturers mentioned using metal oxide paint for 

surfaces in contact with water.  

The available processes determine the achievable tolerances. The manufacturers were 

asked what the general tolerance that they aimed for was and what the best total tolerance 

that could be achieved in their workshop. Figure 6.10 shows the responses from 
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manufacturers. All manufacturers used dial test indicator gauges, micrometres, Vernier 

callipers and balancing equipment.  

 

Figure 6.10 – Total tolerances achievable according to interviewees. 

 

Results from casting companies 

The casting companies visited were different in scale and size. The interviewee at the first 

company (referred to as Company A) claimed that the company was the first casting 

foundry in Nepal, founded in 1976. They have made over 4,000 Pelton buckets and 

specialise in making smokeless stoves. The maximum weight that can be cast is 80kg. In 

contrast, Company B can cast up to 10 tonnes. Company B has been operational since 1994, 

claim to be the largest foundry in Nepal, and their focus is on larger casting pieces, yet they 

maintain an interest in micro-hydropower to satisfy their clients.  

At both companies, Pelton buckets are sand cast. Whilst investment casting is available, 

the typical production runs for Pelton buckets (20 to 25 pieces) make it too expensive. In 

the sand-casting process, the interviewees responded differently regarding the availability 

of silica sand. The interviewee for Company A said that it was not available in the local 

market, instead they mix green sand with bentonite, coal dust, and silica. Company B used 

silica sand or green sand depending on the product.  For both, available materials included 

varieties of iron, bronze, aluminium, and mild steel. The material for casting is purchased 
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from scrap. At Company A, material is selected based on observation and experience, 

whilst at Company B, for certain products, the composition of the scrap is tested.  

Upon receipt of a bucket model, the interviewee at Company A explained that material is 

added to the model using an epoxy filler to account for shrinkage. The quantity added is 

based on tabular data and experience. At Company B, sand is removed from the mould to 

account for the shrinkage. After casting, both companies occasionally test pieces by cutting 

them open. For Company B, if casting higher volume orders, some cast pieces will undergo 

destructive testing. Neither of the interviewed companies had ever cast a Pelton turbine 

runner as a single piece.  

6.3.3 Discussion 

From the survey, it has been found that most of the manufacturers provide similar services 

with a similar range of equipment and processes available. The core service for all the 

companies is the design and manufacture of the hydro-mechanical components. Responses 

indicated that electrical design & manufacture and civil design are also commonly offered 

services. All of the interviewed companies had extensive experience with most having 

completed over 100 projects. Most companies had the same processes available and their 

approach for key components was largely similar. Figure 6.7 shows the processes used by 

all manufacturers for producing Pelton turbine runners. For the Crossflow runner process, 

shown in Figure 6.9, there was some variation. All of the observed manufacturing 

equipment depended on manual control, with some equipment at least 30 years old. Figure 

6.11 and Figure 6.12 show manufacturing equipment typical of workshops in Nepal.  
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Figure 6.11 – An engine lathe in a workshop.  Photo credit: author. 

 

 

 

Figure 6.12 - Roller bending machine in a workshop. Photo credit: Topaz Maitland. 
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In terms of knowledge and availability of materials, there was more diversity between the 

companies. Some of the interviewees used and were aware of a range of materials. Their 

responses demonstrated that for some components, specific material choices were made. 

However, these choices tended to be motivated by the overall rated power of the plant 

rather than by individual calculations. For the various manufacturing processes, there was 

some evidence of quality assurance and quality control. Manufacturers used metrology 

equipment which was capable of measuring to their target tolerance ranges. Turbine 

runners were statically balanced by all manufacturers, but none performed dynamic 

balancing as they did not own the required equipment. Casting of Pelton buckets took place 

at external companies. Surplus components were cast so that the best castings could be 

chosen, however, this choice was based on measurement and observation. Whilst non-

destructive testing and spectrometry are available in Nepal, the low production runs in 

micro-hydropower means they are not used.  

The surveyed companies are well known micro-hydropower manufacturers with a good 

reputation in Nepal. In the earlier interviews (presented in Chapter 4), it was explained that 

there are newer companies that are submitting very low quotations in the bidding process. 

Evidence suggests that this is at the expense of quality. As such, it should be considered 

that the experience, capability, and approach of the surveyed manufacturers represents a 

high standard for Nepal. Other manufacturers may be less knowledgeable and less diligent 

in their approach.  

6.4 Cost in the context of Nepal 

To introduce the Turgo turbine to Nepal, it is important to understand whether its cost of 

production will be competitive with established technologies. To establish this information, 

it was necessary to understand the cost baseline for the other available technologies, the 

Pelton and Crossflow turbines. As established in Chapter 5, the subsidy driven project 

process demands low cost. Evaluation of typical costs is useful in understanding the micro-

hydropower market internally and comparing the cost of the equipment externally with 

other countries.  

6.4.1 Methodology 

When quoting for projects, micro-hydropower manufacturers provide a detailed breakdown 

for costs for the various sub-systems that are specified within the bidding documentation 

[202, 215, 216]. Using these documents as a template, a survey was developed which 

considered the cost of the turbine, power transmission system, penstock, butterfly valve, 
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generator, control & protection system, and installation & commissioning. The cost of 

micro-hydropower civil structures varies considerably depending on the topography of the 

site and geographical features. Furthermore, the community contribution of collection of 

materials and labour is difficult to quantify. Consequently, the cost of civil structures was 

not considered.   

The survey was conducted with 7 manufacturing companies, all with at least 10 years of 

experience, who also responded to the manufacturing survey. Using information from the 

field study and [79], typical ranges in head and flow rate were identified for Pelton and 

Crossflow turbine sites in Nepal. Using these ranges, a selection of randomly generated site 

details was produced. Appendix C.3 lists the 100 random sites generated. From this list, 

each manufacturing company was provided with the characteristics (head and flow rate) 

for 4 sites, chosen using a random number generator. For simplicity, it was assumed that 

for all the random sites, the penstock angle was fixed at 45°. Table 6.2 lists the questions 

in the cost survey for each random site. 
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Table 6.2 - Cost survey questions for each random site. 

Item No. Question 

- 1.1 
Specify the rated power for this micro-hydro plant 

(kW). 

Turbine 

2.1 Specify the type of turbine for this site. 

2.2 Specify the approximate runner PCD (in mm). 

2.3 
Specify an approximate price for the turbine (in 

NPR). 

Power transmission 

system 

3.1 Specify the type of belt used for power transmission. 

3.2 
Specify an approximate price for the power 

transmission system (in NPR). 

Penstock 

4.1 Specify the ID of the penstock pipe. 

4.2 
Specify the wall thickness of the penstock pipe (in 

mm). 

4.3 
Specify an approximate price for the total cost of all 

penstock pipes (in NPR). 

Butterfly valve 

5.1 Specify the ID of the butterfly valve (in mm). 

5.2 
Specify an approximate price for the butterfly valve 

(in NPR). 

Generator 

6.1 Specify the KVA rating of the generator. 

6.2 
Specify the approximate price for the generator (in 

NPR). 

Control, 

instrumentation and 

protection system 

7.1 
Specify an approximate price for the control, 

instrumentation and protection system (in NPR). 

Installation and 

commissioning 
8.1 

Specify an approximate price for mechanical and 

electrical installation and testing (in NPR). 

 

6.4.2 Results 

The results were useful for evaluating the total costs and how this varied in response to the 

rated power of the site. Figure 6.13 shows the overall cost per kilowatt against the rated 

power for the sites quoted by manufacturers. The figure demonstrates that as the rated 

power increases, the cost per kilowatt decreases considerably: the range is more than 

$600/kW. A trendline is fitted to the results with good correlation (R2 = 0.753). The shape 

of the line indicates that as the rated power increases, the rate of change of the cost 

decreases. Figure 6.14 compares the cost per kilowatt for the Crossflow and Pelton sites. 

Across the power range, the results suggest that Crossflow sites tend to be lower cost. For 
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both types, the results follow a similar trend. There is less variation amongst the Crossflow 

(R2 = 0.850) than the Pelton sites (R2 = 0.823). 

 

 

Figure 6.13 - Cost per kilowatt for all sites. 

 

 

Figure 6.14 - Cost per kilowatt comparing Crossflow and Pelton sites. 
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In Figure 6.15 and Figure 6.16, the cost of each site is broken down by item for each turbine 

type. In these figures, it can be seen that the generator, penstock, and turbine sub-systems 

tend to contribute at least half of the total cost for both types of turbine. Particularly 

amongst the Pelton turbine sites, the cost of the penstock becomes very significant, often 

contributing at least 25% of the total cost alone.  

 

 

 

Figure 6.15 - Cumulative cost by sub-system of Crossflow sites. 
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Figure 6.16 - Cumulative cost by sub-system of Pelton sites. 

 

In Figure 6.17 and Figure 6.18, the average proportional cost for these sub-systems is 

shown for Crossflow and Pelton sites respectively. The proportional cost of the penstock 

for Crossflow sites is much lower at 14%, compared to 30% for Pelton sites. The cost of 

the turbine is consistent across both types, contributing 22%. Most other components have 

a greater proportional cost amongst Crossflow sites to account for the lower cost of the 

penstock pipe.  
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Figure 6.17 - Average proportional cost by sub-system for Crossflow sites. 

 

 

Figure 6.18 - Average proportional cost by sub-system for Pelton sites. 
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In Figure 6.19, Figure 6.20 and Figure 6.21, the cost per kilowatt is plotted against the site 

rated power for the three most costly sub-systems: penstock, turbine, and generator 

respectively. In Figure 6.19, it can be seen that for Crossflow sites, there is almost no 

variation in the cost per kilowatt as the rated power of the site increases. For Pelton sites, 

there is a general trend of cost per kilowatt decreasing as rated power increases. However, 

the 2 sites with highest rated power are an exception to this. There is no clear explanation 

for these results although an error in quotation or the application of a ‘premium’ price due 

to the higher power rating are possible reasons. In Figure 6.20, it can be seen that the cost 

per kilowatt for the turbine decreases for higher rated powers. There are similar trends for 

the Crossflow and Pelton turbines, although generally the Crossflow turbines tend to be 

lower cost. For the generator, Figure 6.21 shows that there is a trend of decreasing cost per 

kilowatt with increasing site rated power. The relationship is similar for the two turbine 

types and a line of best fit is used to show the trend irrespective of the turbine type.  

 

 

Figure 6.19 - Cost per kilowatt for penstock. 
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Figure 6.20 - Cost per kilowatt for the turbine. 

 

 

Figure 6.21 - Cost per kilowatt for the generator. 
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6.4.3 Discussion 

The results of the cost survey are useful in giving an indication of the approximate cost per 

kilowatt for many of the components of an MHP. From Figure 6.13, it appears that in the 

typical range of micro-hydropower sites in Nepal, between 10 and 100 kW, the cost per 

kilowatt decreases from approximately 1,000 $/kW to 400 $/kW. By looking at the separate 

turbine types in Figure 6.14, one can see that Pelton sites are typically more costly than 

Crossflow sites. However, the gap between the two types narrows as the rated power of the 

site increases.  

Figure 6.15 and Figure 6.16 show that the penstock, turbine, and generator are the most 

expensive sub-systems. Of all the components, the penstock and turbine both require skilled 

workmanship to produce new products from stock material. Figure 6.17 and Figure 6.18 

show that the turbine accounts for the same proportion of the total cost for both Crossflow 

and Pelton sites. Typically, Pelton turbines require a smaller volume of metal, however, 

their runners are cast at separate companies which adds an extra cost. The similarity in cost 

per kilowatt for the two turbine types can be seen in Figure 6.20. Similarly, for the cost per 

kilowatt of the generator, Figure 6.21 shows that there is little difference between the two. 

One would expect that there would be no difference in the cost of generators between the 

different types of site; manufacturers tend to use 1500 rpm 4-pole machines in conjunction 

with a transmission system.  

The relationship between rated power and the cost of the penstock is much more difficult 

to predict. As shown in Figure 6.19, there is only a small variation in the cost of the 

penstock for Crossflow turbines, with all sites lying in the range of 40 to 90 $/kW. For the 

Pelton sites, the cost per kilowatt decreases for higher rated power sites but remains highly 

variable. The flow rate and head determine the dimensions of the penstock: wall thickness 

and diameter. Using the values quoted by the manufacturers for thickness, diameter, and 

penstock length, it is possible to calculate the overall volume of material required. Using 

this information, Figure 6.22 plots the volume of material per metre against the cost per 

metre. In this figure, as expected, there is a strong positive linear correlation between the 

volume of material per metre and the cost per metre. As the quotations for penstock cost 

should be directly proportional to the cost of steel, the figure can be used to identify 

penstock prices that vary significantly from the expected price. 



 

Design and development of a Turgo turbine runner for local manufacture 

147 

 

Figure 6.22 – Cost per metre of penstock material against volume per metre. 
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In predicting the cost, the expression for Crossflow sites has R2 = 0.973 and the error 

between the actual and predicted costs range from -14.0% to 17.2%. For Pelton sites, the 

expression has R2 = 0.910 and the errors range from -24.7% to 20.3%.  

By using the same approach with 7 manufacturers, the information collected provides a 

reliable estimate of the cost of micro-hydropower in Nepal. It demonstrates that there is a 

large variation in the cost of a project depending on the rated power. The largest 

contributors to the cost are the turbine, generator, and penstock. Between Pelton and 

Crossflow turbines, the longer penstocks of Pelton projects have the potential to add 

significant costs. For the Turgo turbine, one can expect that most costs will be similar to 

the other turbine types. It is expected that the penstock lengths will lie between the lengths 

typical at Crossflow and Pelton sites. Consequently, it is likely that cost of the Turgo may 

lie between the other two turbine types. Using existing methods, expressions for predicting 

the cost of Pelton and Crossflow installations have also been calculated from the data. They 

provide a reasonably accurate indication of the combined cost of the turbine, power 

transmission system, penstock, butterfly valve, generator, control & protection system, and 

installation & commissioning. This is useful for comparing the cost of sites in Nepal with 

those located elsewhere in the world. However, it must be considered that the expressions 

do not account for the cost of civil structures.  

 

6.5 Design progression of the Turgo blade 

The survey of manufacturing companies had demonstrated the availability of materials and 

processes in Nepal. The results of the survey were used to inform design choices. Selection 

of a manufacturing method was useful in defining restrictions for the design optimisation 

process; there would be no advantage in optimising a design that could not be 

manufactured. The optimisation process was driven by geometrical changes to the Turgo 

blade.  

Typically, for impulse type turbines, there are 3 main approaches to the production of 

blades (for Turgo turbines) and buckets (for Pelton turbines): machining, casting, and sheet 

metal pressing [54]. Machining of impulse turbine runners - either as a composite of 

individual blades or as a single component - depends on access to 5-axis CNC machining. 

The surveys indicated that this was not an option for manufacturing companies in Nepal. 

Whilst rare for Pelton turbines, simplified Turgo turbines (e.g. the Imported runner) use 
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sheet metal pressed blades [72]. The surveyed manufacturing companies had access to 

hydraulic presses and casting, which could be used to create a form, making this a viable 

option. Alternatively, casting of runners has been used for Pelton and Turgo runners for 

over 100 years [54]. Using investment casting complete runners can be cast, and elsewhere 

(including Nepal) sand casting of individual buckets is common. The results of the survey 

demonstrated that in the manufacture of Pelton buckets, sand casting is used with the 

material choice varying between cast steel, bronze, brass, and cast iron. When comparing 

the two available processes, casting was selected as the superior process for the production 

of the Turgo blades. It was expected that producing a die and developing a jig for the 

pressing process could be time consuming, with significant potential for inaccurate results. 

Furthermore, the repeatability and existing local familiarity of casting were deemed 

advantageous.  

With the selection of casting, the following restrictions were applied to the process of 

design improvement:  

• Minimum thickness of 2.5 mm should be maintained. In available literature 

[220] and responses from a casting company, 3 mm is cited as a minimum section 

thickness for sand casting. Through a subsequent grinding process this could be 

reduced to 2.5 mm.  

• No undercuts or re-entrant features. The blade surface should not include 

features that are susceptible to poor flow of the casting material.  

• The front face of the blade should be maintained as a plain surface. A flat front 

surface increases simplicity of the subsequent machining processes.  

 

6.5.1 CFD modelling 

This section describes the process used to computationally improve the efficiency of the 

Turgo turbine runner. For accurate CFD simulation, a CAD model of the Imported runner 

was required. The supplier of the turbine had provided replica blades produced using the 

same process as those on the runner. Using a Faro Edge Laser Scanner, a blade was scanned 

in 3D and the resulting point cloud was loaded into a CAD package and used to create a 

solid body. Figure 6.23 shows the meshed body generated from the point cloud. 
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Figure 6.23 – Mesh generated from the point cloud. The red dashed area indicates the 

                    g     g          ’s edge. 

 

In Figure 6.23, it can be seen that the resolution of the scan was sufficient to capture the 

physical surface defects; crinkling can be seen along the edge of the blade (indicated by the 

red dashed area). Measurements were taken from the Imported turbine and used to develop 

a CAD model of the complete system.  

In CFD modelling, assumptions are commonly used to reduce the complexity of the model, 

and therefore the computational power required. For an impulse turbine, it can be assumed 

that the torque acting on an individual blade passage (as it passes through the jet) is periodic 

and can be used to calculate the total torque acting on the runner. As such, it is possible to 

reduce the number of blades within a CFD model. Previously for Turgo turbines, it has 

been shown that a 2-blade model provides similar results to a 7-blade model and is able to 

accurately predict runner performance [154]. In the 2-blade model, the sum of the torque 

acting on the front and back face of a single blade passage is measured so that the total 

torque can be determined. Using the summed torques (for all the blades) and the rotational 

speed, the mechanical power at the shaft can be calculated.  The jet velocity and the known 

mass flow rate into the system is used to calculate the power of the jet.  From these values, 

the hydraulic efficiency can be calculated. 

For this study, a two-part CFD model (generated from the CAD model of the turbine) was 

developed, consisting of a rotating and stationary domain. The rotating domain comprised 
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2 blades (providing a periodic blade passage), the hub and outer ring. The stationary domain 

represents the flow of water from the nozzle and its interaction with air. For simplicity, the 

profile of the jet is assumed to be uniform. To simulate the interaction of the jet with the 

blades, the flow of water passes from the stationary domain to the rotating domain, whilst 

it is rotated through a prescribed angle. Figure 6.24 shows the separately meshed domains. 

For the stationary domain, a high-density mesh was used at the air – water interface. For 

the rotating domain, small inflation layers and mesh sizing were specified along the blade 

edges where torque is measured. A mesh convergence study compared the hydraulic 

efficiency when using a fine mesh (with 1.4 million cells) and a coarse mesh (0.6 million 

cells). The difference in efficiency was only 0.07% and for the purpose of this study, the 

coarse mesh was deemed acceptable.  

 

 

Figure 6.24 - (a) Stationary domain and (b) rotating domain. Image credit, Shaun Benzon. 

 

The simulation used a homogeneous multiphase model which is simulated using the 

commercial Eulerian solver ANSYS CFX. This is commonly used in CFD modelling of 

impulse turbines and has been shown to closely match with experimental testing results 

[55]. For turbulence modelling, the two equation k-ω SST turbulence model was chosen, 

as it is often used for impulse turbines [55]. Despite a lower accuracy than a direct 

turbulence model, it is considered appropriate for the nature of this study. Within the model, 

the effect of gravity and surface tension were assumed to be negligible. For Turgo turbines, 



 

Design and development of a Turgo turbine runner for local manufacture  

 

152 

where flow enters and leaves on opposite sides of the runner, the interaction between the 

runner and casing is minimal (particularly when compared to Pelton turbines) and was not 

modelled in this case [68]. 

Several features of the Imported turbine provided the input parameters for the CFD 

simulation. Firstly, the upstream valve could be used to vary the flow rate but its proximity 

to the nozzle would result in highly turbulent flow leaving the nozzle orifice. Instead, it 

was assumed that the turbine would always be operated with the valve fully open. Secondly, 

the position, i.e., pitch circle diameter, and geometry of the nozzle, i.e. its angle and internal 

diameter, would remain fixed. Thirdly, as the turbine’s control system is designed to 

maintain the speed at the generator’s rated speed, the target rotational speed for the turbine 

was 1500 rpm. The initial study evaluated the best efficiency point (BEP) for the Imported 

turbine. The first step was to evaluate the speed ratio: the ratio of jet velocity to peripheral 

velocity of the runner, at the point where the jet impacts.  

For best efficiency in impulse turbines, the impact of the jet upon the runner should transfer 

all of the kinetic energy from the fluid [221]. To consider an ideal case where (as with 

Pelton turbines) the incoming jet is colinear to the bucket’s direction of motion, the 

maximum change in momentum (and greatest force generated) is achieved if the fluid is 

deflected through 180°, and leaves the bucket with an absolute velocity of zero [221]. This 

occurs when the velocity of the fluid, relative to the bucket, is equal to the velocity of the 

bucket, but in the opposite direction. For this ideal case (where there assumed to be no 

losses through the bucket), a momentum balance demonstrates that the ideal jet velocity is 

twice the velocity of the bucket. As a result, the theoretical optimum speed ratio is 0.5. In 

reality, for Pelton turbines, the design must ensure that the fluid leaving a bucket is directed 

away from the following one. Therefore, the fluid must be directed at an angle less than 

180°. In addition, losses through the bucket reduce the relative velocity of the fluid on exit. 

As a result, peak efficiency for Pelton turbines tends to occur at a speed ratio of 

approximately 0.46 [54, 221] . For Turgo turbines, the inclined jet influences the theoretical 

speed ratio; the optimum occurs when the component of jet velocity colinear to the blade’s 

direction of motion is twice the peripheral velocity of the blade. It is under these 

circumstances that the absolute velocity at the exit of the blade is zero. Thus, the following 

equations (using nomenclature from Figure 2.7) can be used to determine the theoretical 

optimum speed ratio: 

𝑣𝐼 cos 𝛼𝐼 = 2𝑢 (6.4) 
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𝑢

𝑣𝐼
= 0.5 cos 𝛼𝐼 (6.5) 

For a Turgo turbine with a jet inlet angle of 22.5°, this leads to a theoretical speed ratio of 

0.46.  As with the Pelton turbine, losses through the blade reduce the velocity at exit, 

decreasing the practical value for speed ratio.   

Using the assumed rotational speed of 1500 rpm, the simulations modelled varying speed 

ratios by changing the jet velocity, which is dependent on head. Figure 6.25 shows the 

efficiency plotted against the speed ratio.  

 

 

Figure 6.25 – Efficiency calculated from CFD against speed ratio for the Imported turbine. 

 

The highest value of efficiency occurred with a speed ratio of 0.5 which corresponds to a 

head of 14.7 m at the nozzle outlet, and flow rate of 12.6 L/s. This is outside of the 

manufacturer’s recommended operating range of 1  to  5 m head and flow rate of 8 to 10 

L/s. It can be seen that the Imported blade design has a flat efficiency curve in response to 

varying speed ratio. Consequently, this means that either side of the optimum speed ratio, 

a change in operational head of ± 3m results only in a decrease in efficiency of less than 

1%. By fixing the head to 14.7 m, it was possible to investigate the sensitivity of the 

efficiency to changes in the rotational speed. Figure 6.26 plots efficiency against rotational 

speed for a fixed head of 14.7 m. It can be seen that the BEP lies between 1500 and 1550rpm 
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and that the turbine maintains a similar efficiency either side of this point. For simplicity, 

it was assumed that the BEP was nominally 1500rpm.  

 

 

Figure 6.26 – Efficiency calculated from CFD against rotational speed for the Imported 

turbine when operating at a head of 14.7 m. 

 

Thus far, each simulation had maintained the original offset between the nozzle and runner 

that had been measured from the Imported turbine. By varying the offset, it was possible 

to optimise the position of the runner in relation to the jet. From the starting position, the 

runner was moved vertically upwards closer to the jet. Figure 6.27 shows the simulation 

for the original runner position and the optimum position, an offset of 7.5 mm, at the same 

rotated angle. It can be seen that the original runner position results in a significant amount 

of flow passing over the outer ring. For the optimum position, the centre of the jet engages 

lower in the blade resulting in a more evenly distributed fluid film over the exit surface of 

the blade. It was found that beyond an offset of 7.5 mm, continuing to change the offset did 

not continue to increase the efficiency. Eventually, the position resulted in splitting of the 

jet which negatively affects the performance.   
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Figure 6.27 - Comparison of fluid velocity for the blade in its (a) original and (b) optimum 

position. Image credit, Shaun Benzon. 

 

From the initial study, the BEP was identified as occurring at a head of 14.7 m with a 

corresponding flow rate of 12.6 L/s. In addition, through variation of the offset between 

nozzle and runner it was possible to identify a position for the Imported runner (offset from 

the original by 7.5 mm) that resulted in an increase in the efficiency from 56% to 69%.  

6.5.2 Results and parameterised design progression  

To optimise the blade, a controllable parametric model was developed. Using the CAD 

model of the Imported blade, a section cut was taken through the central plane of the blade 

and at 45° to this plane. Parametric sketches were developed to match the key dimensions 

of these section cuts. Similarly, a projected cut of the front face of the scanned blade was 

taken and a parametric sketch developed to match it. A loft between these three sketches 

created half of the blade which was mirrored. By varying the parameters, the controllable 

model could be adapted and compared to the scanned model. The parametric values which 

resulted in the most similarity between the models were found by minimising the 

volumetric difference between the two. Using the BEP settings, the parametric blade was 

tested, achieving an efficiency of 69.5%. The increase in efficiency of 0.5% is assumed to 

have resulted from the removal of defects from the surface profile. From this baseline, a 

design of experiments (DOE) study was used to understand the influence of geometry upon 

efficiency. Within the parametric model, it was decided to vary the height, depth, and width 

of the blade. Figure 6.28 shows these dimensions in relation to half of the blade and 

identifies the leading and trailing edges, where the flow enters and leaves the blade 

(a (b) 
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respectively. The complete blade is formed by mirroring along the central plane.   These 

changes were easy to implement in the parametric model, maintained the simple profile of 

the blade and enable assessment of how the geometry affects efficiency. A 23 factorial 

design was used where high and low levels (±7% from their original values) were used for 

the height, width and depth dimensions, resulting in a total of 8 combinations. As these 

dimensions were changed, the exit angles from the blade also changed. The baseline 

parametric model had a trailing edge exit angle of 29° in the central plane, Figure 6.29 

shows a section view of the blade through its central plane and identifies several key 

features. A variation of ± 7% was selected as this resulted in a maximum change in this 

exit angle of 20°. It was expected that changes greater than this would not result in an 

improvement in performance: excessively shallow angles result in interference of the exit 

flow with the outside of the oncoming blades, and too steep angles result in a higher 

momentum of the exit flow reducing the efficiency. 

 

 

Figure 6.28 - Half of a blade with the height, width and depth dimensions shown. Image 

credit, author. 
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Figure 6.29 – Section view of the blade in the central plane which            α –         g  , β 

– exit angle and γ – blade cut back angle. 

 

Figure 6.30 shows the main effects plots from the DOE study. It shows that the main effects 

of height and depth were strongest; all cases of minimising height and maximising depth 

led to an improvement in efficiency.  These main effects were generally more significant 

than the interactions between factors. Figure 6.31 plots the most significant interaction 

which was between the height and depth. This significance of this interaction was due to 

the low efficiencies achieved when height and depth were at +7% values. For all other 

cases, changes of width were not highly significant.  
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Figure 6.30 - Main effects of height, width and depth in the DOE study. 

 

 

Figure 6.31 - Interaction between width and height in the DOE study. 

 

Consequently, the next set of runs explored the change in efficiency with the width held at 

its original value. This allowed the blade to maintain a similar form whilst continuing to 

decrease the height and increase the depth. Figure 6.32 shows the results of simultaneously 
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changing height and depth whilst maintaining the original blade width. The height 

(negatively) and depth (positively) were both changed by 7% and 12%. Using these results, 

as shown in Figure 6.32, a quadratic relationship was assumed suggesting a best efficiency 

could be achieved with a ± 10.9% change to depth and height respectively. When simulated 

in CFD this geometry, henceforth known as the DOE blade (where relative to the original, 

height = 0.891, width = 1 and depth = 1.109), resulted in an efficiency of 77.3%. Further 

runs with changes of 12% and 15% were used to test the validity of the relationship. With 

these additional points, the DOE blade result lies above the expected peak of the trendline. 

 

 

Figure 6.32 - Efficiency against simultaneous variation in height and depth. 

 

An alternative approach explored fitting a response surface to the results. The changes to 

geometry had not been governed by a response surface methodology (RSM), therefore this 

process was used only as an indication of possible alternative geometry changes. Figure 

6.33 compares the fit between the actual results and those predicted by the response surface. 

It can be seen that the response surface has a better fit amongst lower efficiency runs with 

more variation at higher efficiencies. An optimisation solver was used to indicate values of 

height, width and depth which would achieve the highest efficiency. The optimised 

geometry, henceforth known as the RSM blade, using height = 1.01, width = 0.93 and depth 

= 1.18 resulted in an efficiency of 77.8%.  
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Figure 6.33 - Normal probability plot from the response surface. Figure credit, Shaun 

Benzon.  

 

To this point, the two highest efficiencies had been achieved with significantly different 

geometries. When comparing the two, it was decided to explore further adaptation to the 

RSM blade using a larger section of consistent profile in the central plane of the blade, 

whilst maintaining the same overall width. It was assumed that for the blade with highest 

efficiency, a larger section with optimum entry (α) and exit (β) angles (see Figure 6.29)  

could lead to an improvement in efficiency. However, the change to geometry resulted in 

an increased amount of interference between the exiting flow and the trailing blade, also 

known as choking. Figure 6.34 shows fluid leaving a blade and interfering with the back 

face of the trailing blade. The solid black line identifies the back face of the trailing blade 

whilst the dashed red line indicates the area of interference. As a result of this interference, 

both geometries with an additional central section resulted in lower efficiencies.  
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Figure 6.34 – An example of interference between exiting flow and the trailing blade. Image 

credit, Shaun Benzon. 

 

A subsequent consideration was the blade cut back angle (γ in Figure 6.29) on the front 

face of the blade which had remained unchanged from the original design. Figure 6.35 

shows the torque measured on the front and back faces, and the resultant torque for the 

RSM blade. It can be seen that there is a significant negative torque that occurs on the back 

face of the blade at a rotated angle of approximately 70°. This negative torque indicates the 

point at which choking occurs. It was assumed that an alteration in the cut back angle could 

be used to minimise this interference by directing the exiting flow away from the following 

blade. However, it was found that both geometries with increased γ led to no improvement 

in efficiency. Whilst the change in γ was successful in reducing the negative torque, it 

increased the exit angles and changed the exit velocities which resulted in less torque 

generation from the front face of the blade. These simulations demonstrated that despite 

the presence of the choking effect, the RSM blade was able to generate sufficient positive 

torque to overcome the negative torque that was generated.   
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Figure 6.35 – Measured torques on the response surface (RSM) blade. 

 

Another adaptation to the geometry was proposed to minimise this choking effect. By 

implementing a V-shape into the central plane of the blade it was thought that the increased 

free space between blades would reduce the flow interference. In addition, as the V-shape 

introduced a shorter flow passage through the blade, it was assumed that the effect of skin 

friction on the fluid’s velocity could be reduced. A new parametric geometry was 

developed with a controllable angle (or V-shape profile) in the central plane of the blade. 

The simulations explored the RSM blade geometry with 35°, 55° and 75° angles. Whilst 

these resulted in similar efficiencies to the original RSM blade, the effect of the V-shape 

did not lead to an improvement in efficiency. The V-shape simulations did increase the 

peak front face torque due to a higher exit velocity. However, this defined spike resulted in 

a lower efficiency than the more consistent torque profile of the RSM blade.  

An alternative approach was to consider the exit angles in multiple positions along the 

blade. The parametric model was adapted so that the exit angles could be adjusted along a 

number of vertical planes within the blade. Figure 6.36 shows the distribution of these 

planes over half of the blade. On each of these planes, a controllable sketch (similar to 

Figure 6.29) allowed the exit angles to be varied. At first, it was decided to attempt to direct 

more flow to the centre of the blade. By implementing shallower exit angles in the planes 

closest to the outside edge, it was hoped more flow would exit through the effective ‘dip’ 

at the centre of the blade. In this simulation, similar to the V-blade designs, there was an 
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increase in the front face torque, however, concurrently the back face torque decreased (to 

a larger negative value) due to more interference with the trailing blade.  

 

 

Figure 6.36 - Distribution of interstitial planes through half of the blade. 

 

In order to investigate the trade-off that occurs between exit angles that focus flow towards 

the centre of the blade, and those that tend to result in a more even flow film leaving the 

blade, two blades were generated with inverted distributions of angles going from the centre 

to the outside edge. A blade had angles that increased from the centre to the outside whilst 

the other had angles that decreased from the centre. The distribution of angles was 

identified from an earlier simulation where there had been low interference, known 

henceforth as the LI blade. The angles were mapped on to the interstitial planes whilst the 

height, width and depth dimensions were derived from the RSM blade. Figure 6.37 plots a 

comparison of the resultant torques for the variations of the RSM blade. In comparison 

with the RSM blade (77.8%), the simulation with a shallower angle in the central plane 

gained a higher efficiency (78.0%), whilst the blade with the greater angle resulted in a 

lower efficiency (76.4%). 
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Figure 6.37 - Resultant torque against rotated angle for the response surface blade and two 

variations. 

 

It was decided to examine using the height, width and depth dimensions of the LI blade. 

By using this blade, due to the decreased interference there was a greater margin to optimise 

the exit angles without generating a negative torque. With this greater margin, two 

simulations were generated that both adopted the method of using the largest exit angle in 

the central plane to drive more flow towards the blade centre. For one blade, the variation 

from centre to outside was from 10° to 6° and resulted in an efficiency of 77.9%. The other 

where angles varied from 12° to 8° achieved 77.8%. For both runs, the change resulted in 

an increase in both the positive and negative torque. However, the positive torque was 

sufficient to result in an improvement of efficiency compared to the original LI simulation 

(75.7%). Figure 6.38 plots a comparison of further adaptations to the LI. To combat the 

increased negative torque, the values of the higher efficiency run were inverted placing the 

shallowest angle of 6° at the centre. This increased the back-face torque without 

substantially affecting the torque on the front face resulting in a higher efficiency of 80.4%. 

A further change was implemented using a consistent 8° exit angle in all of the interstitial 

planes. It was expected that this would provide more consistent exit velocities without 

causing substantial choking. The resulting front face torque profile was almost unchanged, 

but the improved back face torque resulted in an efficiency of 81.0%. Further runs were 

conducted using 7° and 9° constant exit angles but neither led to an improvement 

suggesting an optimum had been found.  
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Figure 6.38 - Resultant torque against rotated angle for 3 variations of the ‘low interference’ 

blade. 

 

Continuing with the LI blade with a constant 8° exit angle, a further optimisation explored 

the effect of blade thickness upon performance. The model was adapted so that the 

thickness of the blade could be controlled in 3 places in the central plane: at the leading 

edge, trailing edge and in the middle of the blade. From a constant baseline of 2.5 mm, the 

effect of decreasing thickness at the leading edge whilst increasing at the trailing edge 

concurrently was explored. Table 6.3 shows the improvements in efficiency achieved as 

the trailing and leading edge thicknesses were changed. 

 

Table 6.3 - Effect of variation in thickness upon efficiency. 

Leading edge 

thickness (mm) 

Trailing edge 

thickness (mm) 
Efficiency 

3.0 2.0 81.0% 

2.5 2.5 81.6% 

2.0 3.0 81.6% 

1.5 3.5 81.7% 

1.0 4.0 82.5% 
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Discussion 

From the configuration process at the start of the CFD simulation, it was found that when 

operating with an open nozzle, the BEP lay outside of the recommended ranges for head 

and flow rate provided by the manufacturer. Whilst variation of the flow could be achieved 

using the upstream gate valve, it is unlikely that the efficiency could be maintained close 

to 70% due to the introduction of turbulent flows. In addition, results for the variation of 

speed ratio suggest that for heads close to the manufacturer’s highest rated head (25m), 

there will be a large difference between the operational speed of the turbine and rated speed 

of the generator. Through varying the offset, the efficiency was significantly improved 

from 55.4% to 69.0%. For small-scale hydro-turbines, the difference could be significant 

in providing extra power to homes or generating additional income. As in [72], it 

demonstrates how important it is to install machines correctly or provide supporting 

information that allows users to do so.  

Throughout the CFD study, the torque curves and visualisation were used to understand 

results. From this analysis, changes were implemented into the parametric model which 

progressively became more complex. As such, the improvements did not require a very 

large number of simulations. This approach meant a total of 41 simulations were required 

to improve the efficiency from 69.5 to 82.5%. Figure 6.39 shows the design progression 

and corresponding efficiency improvement. The central 4 images show the central 

parametric sketch and half of the blade. Table 6.4 describes the design actions taken during 

the optimisation process. From the scanned blade, the first model (labelled No. 1) was 

generated and after adjustment of the jet position achieved an efficiency of 69%. A 

parametric blade was developed to match the scanned blade and an initial DOE study of 8 

runs resulted in an increase of 6.2%. Subsequent adaptions explored more varied 

geometrical changes leading to the ‘DOE blade’. From the results, it was identified that the 

key trade-off was often between generating positive torque on the front face and 

minimising the negative torque on the back face; optimum exit angles tended to result in 

choking and the generation of negative torque. Compared to many Turgo designs, the 

proportionally large nozzle diameter and mass flow rate meant that each blade ‘passed’ a 

large volume of water. As a result, the tendency for interference was high due to thick flow 

films leaving the trailing edge. The design process eventually identified that consistent exit 

angles along the trailing edge could lead to the optimum trade-off. The refinement of the 

parametric model allowed the exit angles to be controlled. Compared to the initial changes 
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to height, width and depth, this development allowed the geometry (and therefore the water 

flow through the blade) to be incrementally adjusted resulting in the ‘Final’ blade. 
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Figure 6.39 – Design progression with corresponding improvements in efficiency. 
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Table 6.4 - Designs actions during the optimisation process. 

 

 

During the development of the parametric model, the changes to geometry have maintained 

the original simple profile of the blade. It contains no re-entrant features, and both the 

external faces to the leading and trailing edges remain flat. The greatest complexity was 

added through the variation in blade thickness. However, as shown in Table 6.3, a 

consistent blade thickness of 2.5 mm compared to a variable thickness results in a change 

in efficiency of only 1%.   

6.6 Design solutions for local manufacture 

Through parametric modelling and CFD simulation, the expected efficiency of the blade 

was improved. To verify this experimentally, the improved blade profile needed to be 

produced physically. The design process was conducted in collaboration with NYSE. The 

survey of manufacturers had indicated the availability of processes, however, the author 

recognised that the experience of NYSE would be valuable in developing a locally 

replicable design. Furthermore, it was hoped that a collaborative process would foster 

design ownership, motivating quality in the prototype and ensuring ongoing interest. As a 

prototype, both the process (of design & manufacture) and its outputs required evaluation 

and a close working relationship was permissive to this. 

During this research, two new Turgo turbine runners were manufactured. The design and 

manufacture of the first runner (Mark 1) resulted in significant dimensional deviation from 

the intended design. The effect of this in experimental testing is addressed in Chapter 7. 

Within this section, the design choices for both the Mark 1 and Mark 2 runner are explained, 

CAD model Design actions  

 1      Imported blade is scanned in 3D and CAD model generated. 

Original 

 2 Parameterised model generated to represent scanned blade. 

First parametric 

 3 DOE approach used to vary height, width, and depth dimensions.  

DOE 

 4 Existing results fitted to response surface to identify optimum. 

RSM 

 5 Model adapted to include multiple parametric sketches.  

Final 

 6      Final blade is produced using additive manufacturing. 
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and the differences between the two (in terms of design, manufacture, and its outcome) are 

discussed.  

6.6.1 Design choices 

The design changes driven by CFD simulation had focused on the surface profiles of the 

Turgo blade. Figure 6.40 shows a CAD model of the final blade design. Within CFD, the 

connection to the hub and outer ring were assumed to be insignificant in relation to the 

efficiency of the runner. As such, the dimensions of hub and outer ring had been maintained 

from the Imported runner. To manufacture a new complete runner, the function of the other 

features and their interface with the blades required consideration. With casting chosen as 

the manufacturing process for producing individual blades, the key design choices were a 

method of attachment to the hub and outer ring, and the material of the parts. To maximise 

material thickness in the casting process, the objective was to achieve an approximate 

thickness of 3 mm and use grinding to decrease the thickness of the leading edge close to 

2 mm. As such, it was hoped to gain a small improvement in efficiency as shown in Table 

6.3. 

 

  

Figure 6.40 - CAD model of the blade design. 
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Attachment to the hub and outer ring 

The blades of a Turgo turbine are typically attached to a hub which transfers torque to the 

shaft. The method of attachment is often dictated by the manufacturing process used for 

the blades. Where runners are 5-axis machined in a single piece, the blades and hub are cut 

from the same billet of metal. Where blades are manufactured individually, they are 

attached by welding or with fasteners. The blades of the Imported runner are welded onto 

the hub and the outer ring. Tack welds are used as there is insufficient material on the blade 

for appropriate welding preparation. In Nepal, Pelton buckets are cast with a stem which is 

designed for either welding or bolting. After casting, the stem is machined in preparation 

for either of these methods, whilst the design of the hub must be appropriate for the method 

of attachment. Whilst not present in all Turgo designs, the outer ring provides additional 

strength. Typically, where steel is used, it is welded to the outer edge of the blades. In some 

designs, a tapped hole on the outer edge of each blade is used as a mounting point for the 

ring.  

Material 

From the survey of manufacturers, it was established that the materials used for Crossflow 

and Pelton turbines included mild steel, stainless steel, cast steel, brass, bronze, and cast 

iron. The material choice can depend on the type of turbine, the rated power, and head. 

Where sheet metal is used, mild steel and stainless steel are available. For casting, the 

material choice in Nepal is limited to cast steel, brass, bronze, and cast iron. In the 

manufacturing survey, all the manufacturers explained that their preferred choice for Pelton 

buckets was cast steel. Some mentioned that for sites with lower rated power, brass and 

bronze remained acceptable choices.  

Design considerations 

To make the design choices, there were number of key considerations. In their evaluation, 

their influence on both the experimental prototype and the future consequence for 

manufacture at scale were considered. Table 6.5 lists the design considerations and explains 

their importance.  
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Table 6.5 - Design considerations for the development of a prototype. 

Consideration Why is it important? 

Available manufacturing processes 

The manufacturing method should be 

appropriate for the typical processes and 

capability amongst micro-hydropower 

manufacturers in Nepal.   

Available materials 
The material choice should be appropriate for 

those available in Nepal.  

Scalability 
The design should be scalable for higher rated 

powers. 

Replicability 

For the blade surface profile, the design must 

ensure similarity (within tolerance) between the 

blades.  

Assembly 
The hub design should allow the runner to be 

easily assembled to the runner shaft.  

Maintainability The design should be easy to maintain. 

Durability 
The design should be resistant to wear, 

particularly due to abrasion by silt particles. 

 

6.6.2 Mark 1  

The available options for casting were steel, bronze, or brass. In collaboration with NYSE 

it was decided to use cast steel due to its machinability, weldability, higher strength, and 

durability. Considering the scaling of the Turgo runner to higher rated powers, bronze and 

brass would not be feasible. Thus, the material choice could be standardised for the micro-

hydropower range. In casting the individual blades, the approach used in Pelton turbines 

could be replicated whereby a stem is used to join each blade profile to the hub. The typical 

preference for Pelton turbines in Nepal today is to weld the buckets, regardless of the power 

rating of the runner. Consequently, it was decided to weld the individual blades onto a hub. 

If successful, the same manufacturing method could be replicated for upscaled designs.  

Following guidelines in [54], a stem design was developed that used a ‘tab’ which locates 

into a recess on the hub. Figure 6.41 shows the blade design and its interface with the hub. 

The front and rear faces of each stem are designed to be flush to those on its neighbouring 

blades. The required separation between blades is governed by the dimensions of the stem.  
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Figure 6.41 - (a) Blade design including stem and (b) interface between stem and hub. 

 

Due to the orientation of the front face of the blades and their concentric arrangement, the 

front and rear faces of the stem were not parallel. The dimensions of the stem allow a v-

notch weld and a single bevel on the bottom face, both with a leg length of 7 mm. 

Calculations confirmed that this area of weld was acceptable with a factor of safety of 2.5. 

The weld stress calculations are provided in Appendix D.3. At the outer edge, the ring is 

welded into place, using a 3 mm v-notch weld. 

Manufacture, outcome and lessons learnt 

To cast the blades, a 3D CAD model was developed with additional material added onto 

all faces to account for shrinkage during the casting process. This amount of material was 

specified by NYSE based on their personal experience. A rapid prototype model was 

produced using additive manufacturing and sent to the casting company, based in Butwal. 

After the blade had been cast, it was returned to NYSE. Figure 6.42 shows the cast blade 

where the thickness of the leading and trailing edges was found to be over 7 mm. Discussion 

between NYSE and the casting company revealed that upon receipt of the rapid prototype 

model, additional material had been added to account for shrinkage, using an epoxy filler. 

As such, the die for the cast blade had included both NYSE’s and the casting company’s 

allowance for shrinkage. In machining the stem, the technicians had trouble aligning the 

workpiece. Figure 6.43 shows the arrangement used to machine the stem of the blades. 

Without parallel or perpendicular faces available for clamping, it was difficult to ensure 

that from one blade to another, similar alignment was achieved. 

(a) (b) 
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Figure 6.42 - Cast steel blade before machining. Photo credit, author. 

 

 

Figure 6.43 - Machining process on the steel blade. Photo credit, author. 

 

The additional cast thickness required removal to match the ideal surface profile. The 

amount of material was significant (> 2mm) and it was found that work hardening slowed 

this process. Furthermore, the extra material made it difficult to verify the dimensional 

similarity in relation to the intended design. Due to constraints of time and cost, the final 

runner was not manufactured to design. The deviation from the final design was captured 

by 3D scanning; it was found that on key surfaces, the typical dimensional difference was 

3 mm. Variation in the stem dimensions meant that the blades required some manual 
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positioning in relation to the hub and ring. All of the components were tack welded in place, 

before a full weld sequence, and post-machining. Figure 6.44 shows the completed Mark 1 

Turgo runner.  

 

 

Figure 6.44 - Mark 1 runner. Photo credit, author. 

 

6.6.3 Mark 2  

To address the thickness of the blade, NYSE suggested repeating the casting process using 

brass. Compared to ferrous alloys, thinner sections can be cast more easily using copper 

alloys [220]. Whilst brazing was available, NYSE’s preference for brass blades was to use 

a bolted connection. The internal area available at the hub meant that there was only space 

for a single bolt. The clamping force is achieved through friction between neighbouring 

blades. Calculations confirmed that a single bolt would be strong enough for the applied 

force, see Appendix E.2. 

In collaboration with NYSE, a new stem design was developed. In this design, the hub is 

split into 2 components: a hub and hub cap. These 2 components are fastened on either side 

of the stem. Figure 6.45 shows the Mark 2 blade design and interface with the hub. A spigot 

with an interference fit is used to locate the components of the hub with the top and bottom 

of the blade stem. 
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Figure 6.45 - (a) Revised blade design for bolted assembly and (b) interface between bolted 

blade and hub components. 

 

The stem was also changed so that the front and rear faces are oriented parallel to the 

rotational axis.  

Manufacture, outcome and lessons learnt 

An advantage of casting in brass rather than steel was the location of the casting company. 

For brass, the casting company was located in Kathmandu allowing the mould to be 

delivered personally and the desired outcome explained in person. The unfinished brass 

casting achieved a much thinner blade profile. 

The alteration to the stem design simplified the machining process. The flat front face made 

it easier to clamp the workpiece. In the production of the Mark 1, the stems of the blades 

were milled individually. For the Mark 2, the addition of the bolt hole (which was initially 

tapped) allowed the blades to be mounted onto a disc and machined on a lathe, similar to 

the process shown in Figure 6.6. The limited space in the centre of the hub meant that 

machining operations remained difficult. There was little space between the clamped 

workpiece and the cutting tool. However, technicians explained that the machining process 

was easier and quicker than for the Mark 1 stem design. For the grinding process of the 

Mark 2 blade, 3D printed templates were used. These were inverse projections of the 

internal surface of the blade. Split into 3 sections (e.g., left, middle, and right), they could 

be inserted into the blade to check whether the ground surface matched the required profile.  

(a) (b) 
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The use of brass presented several challenges which required ongoing observation during 

experimental and field testing. Brass bar stock is not readily available in the Nepali market 

[222]. Without brass bar stock, it was also not possible to braze an exterior ring around the 

blades. Calculations suggested that the bending moment applied on the stem of the bolted 

blade alone would have a safety of factor of approximately 9, refer to Appendix E.1. These 

issues were considered acceptable for the prototype yet required observation during 

experimental testing. Figure 6.46 shows the completed Mark 2 Turgo runner.  

 

 

Figure 6.46 - Mark 2 runner. Photo credit, author. 

 

6.6.4 Discussion 

Whilst two locally appropriate design solutions were developed and manufactured, 

unexpected challenges arose. Between NYSE and the casting company used for the steel 

blade, the physical distance and a lack of communication resulted in a significant deviation 

from the expected casting tolerance. The challenge of manufacturing a new product using 

a process similar to the manufacture of Pelton buckets was overlooked. For the casting of 

Pelton buckets, the interaction and approach (despite a physical distance and no transfer of 

drawings) is sufficiently well practiced that little communication is required to achieve the 

desired result. For both Turgo prototypes, the small central area between the blades resulted 

in a small volume of stem material. This was a challenge both in the methods of connection 
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(area of weld and size of bolt) and the machining processes required. As the blade scales 

up, the increased available volume should improve the ease of manufacture.  

A benefit of producing 2 prototypes was that the process has been repeated using different 

materials and designs. It has been shown that both cast steel and brass, and welding and 

bolting, are feasible design choices in manufacturing Turgo turbine runners in Nepal. The 

design changes made in transferring from the steel to the brass design improved the ease 

of manufacture. In addition, lessons learnt during the production of the first prototype led 

to the introduction of templates which enabled physical examination of the blade’s 

accuracy. Initially, it was hoped that a single design could be scaled for a range of site 

characteristics. However, it appears that for small scale runners, casting with brass is more 

effective due to the potential for thinner section profiles. As the design scales and greater 

strength is needed, cast steel can be used. The limit for this transition should be identified.   

Reflecting further on the connection between the manufactured output and the design 

process, the consideration of a locally appropriate manufacturing method imposed several 

restrictions upon the design changes tested in CFD. It was considered that the thickness of 

the blade could not be less than 2.5 mm and that changes to the geometry should not 

introduce re-entrant features. However, whilst these considerations focused on the ease 

with which the blade could be reproduced, they did not consider the supporting 

manufacturing processes that would be required to do so. The original Imported design had 

used a cut back angle which was maintained and resulted in alignment problems during 

vertical milling operations. Removal of this cut back angle and the creation of a parallel 

surface on the rear face of this blade would have created a pair of parallel surfaces that 

could be easily clamped. Within the design improvement process, imposing this additional 

restriction would have improved the ease of manufacture and replicability of the individual 

blades.  
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6.7 Summary 

In this chapter, specific knowledge regarding the local context has been used to develop 

design solutions appropriate for local manufacture. A survey was devised to evaluate the 

experience, capacity, and process availability within the micro-hydropower industry in 

Nepal. The survey was conducted with representatives of 8 micro-hydropower 

manufacturing companies. It demonstrated that despite many years of experience, there 

were opportunities to integrate further quality assurance. The survey led to the 

identification of the range of processes and materials that could be used in the manufacture 

of a Turgo turbine runner. Additionally, a cost survey was used to establish baseline costs 

for Pelton and Crossflow turbines in Nepal. It found that the penstock, turbine, and 

generator were the most expensive sub-systems. The collected data was used to develop 

numerical expressions for predicting the cost of Pelton and Crossflow installations 

(excluding civil structures). In the subsequent development of the Turgo turbine runner, 

CFD was used as a tool for design improvement. A parametric blade design allowed the 

effect of dimensional variations upon the efficiency to be explored. Through design 

changes, the efficiency was improved from 69.0 to 82.5%. Working with a local 

manufacturing partner, the digital model was developed into a locally appropriate design 

with additive manufacturing used to produce a mould for casting. Several challenges in the 

manufacturing process resulted in the production of 2 prototypes. These resulting designs 

require experimental testing to verify their efficiency and validate CFD results.   

In summary: 

• The results of the survey of manufacturing and casting companies provided insight 

into their experience, capability, and the availability of processes. 

• The cost survey led to expected costs for Pelton and Crossflow micro-hydropower 

projects and expressions that could be used for the prediction of any project based 

on head and flow rate. 

• The parametric approach used within CFD resulted in an improvement in 

efficiency from 69 to 82.5%. 

• In collaboration with a Nepali manufacturing company, the digital model was 

developed into a locally appropriate design.  

• A cast steel welded runner and cast bronze bolted runner were manufactured.  
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Chapter 7  

Experimental results: lab and field 

7.1 Introduction 

Following the development of a Turgo blade and the resulting manufacture of two runners, 

the performance of these runners (in relation to efficiency and reliability) required 

evaluation. Experimental testing can be used to compare the efficiencies of similar turbine 

runners by holding particular variables constant. Field based testing is useful in 

understanding how a design performs over an extended period of time and when exposed 

to environmental conditions. In this chapter, the design of an experimental testing rig, the 

testing method, and the calculation of uncertainty are explained. The results of a first phase 

- where the Mark 1 and the Imported runner were tested - are presented and discussed, with 

regression analysis used to determine coefficients that could be used to predict Turgo 

turbine efficiency. The issues faced in conducting a second phase of testing (with the Mark 

2 runner) are discussed. The development of a pilot site and results from testing in the field 

are also presented.  

7.2 Design of experimental testing rig 

The purpose of the experimental testing was to compare the efficiency of the three Turgo 

runners (Imported, Mark 1, and Mark 2) across their expected operating range. Hydraulic 

efficiency (η) is the ratio of mechanical power (Pm) to available hydraulic power (Ph), and 

derived in Equation 7.1: 

𝜂 =
𝑃𝑚

𝑃ℎ
=  

𝜔𝑇

𝜌𝑔𝑄𝐻
=  

2𝜋𝑁𝑇

60𝜌𝑔𝑄𝐻
(7.1) 

 

where ω is the rotational speed (rad/s), N is the rotational speed (rpm), T is torque (Nm), ρ 

is the density of water (kg/m3), g is acceleration due to gravity (m/s2), Q is flow rate (m3/s), 

and H is head (m). Therefore, to evaluate efficiency it is necessary to measure rotational 

speed, torque, flow rate, and head.  

In experimental testing, it is typical to vary head, flow rate, and rotational speed and 

evaluate their effect on the efficiency of the turbine. An experimental rig was required that 
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allowed the variation of these parameters. Table 7.1 summarises the primary design 

requirements of the experimental testing rig.  

Table 7.1 - Design requirements of the experimental testing rig 

No. Design requirements 

1 Allow runners to be changed. 

2 Allow variation in height of runner ± 10 mm from design point.  

3 Allow variation in head from 0 to 25 m.  

4 Allow variation in flow rate from 0 to 20 L/s. 

5 Allow variation in rotational speed from 0 to 2000 rpm. 

6 Measure rotational speed, torque, head, and flow rate. 

7 Transmit torque with minimal mechanical losses. 

 

The rig needed to facilitate testing of each of the three runners. The ability to change them 

allowed replication of the testing environment and procedure. As CFD had established the 

sensitivity of efficiency in relation to runner height (jet aim position), the rig needed to 

allow variation of this. The rig needed to supply pressure head up to 25m so that the runners 

could be tested to the upper limit of the operating range suggested by the manufacturer of 

the Imported runner. In the open nozzle configuration, a head of 25m theoretically required 

a flow rate of 15.8 L/s. Therefore, 20 L/s was assumed to be a reasonable upper limit for 

the flow rate requirement. The rated speed of the Imported turbine and its generator was 

1500rpm. In CFD simulation, this rotational speed had been maintained as the target and 

the highest efficiency was achieved at this speed. To capture this peak, the rotational speed 

required variation on either side. A change of ± 500rpm was considered a reasonable 

estimate of the required range with further extension possible if required.  In CFD 

simulation, as indicated by Equation 7.1, the calculation of efficiency depended on the 

measurement of rotational speed, torque, head, and flow rate. The torque generated needed 

to be transmitted by the shaft and measured. For accurate measurement, the rig needed to 

transmit torque with minimal losses. 

7.2.1 Casing, frame, and bearing housing 

To reduce cost, and save time, it was decided to use the existing casing and the induction 

motor supplied with the Imported turbine set. To measure torque, a transducer can be used 

‘in-line’ between the turbine runner and the generator shaft. Consequently, to address 

requirements 6 and 7 in Table 7.1, a bearing housing and shaft were designed to interface 

with a coupling that connected to the torque transducer’s shaft. Figure 7.1 shows the 
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arrangement of the bearing housing, shaft, and Imported turbine casing. Based on their 

ability to deal with a combination of overhung axial (due to the weight of the runner and 

component of the jet’s force) component and radial loads (due to the jet’s force), angular 

contact ball bearings, as opposed to deep groove ball bearings, were used. The bearing 

housing used a top cap to supply the necessary preload to the bearings. The bearing 

selection is detailed in Appendix F.2. 

 

 

Figure 7.1 - Assembly drawing showing test rig components without frame. 
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Above the torque transducer, a second coupling was used to connect its shaft to the 

induction motor’s shaft. The induction motor and torque transducer are supported on a 

frame, allowing adjustment of their alignment which is maintained once securely fastened.  

7.2.2 Water supply and pipelines  

The Turbine Testing Laboratory (TTL) at Kathmandu University has a reservoir, pipe 

network, and pump system capable of delivering 150 m of head and a flow rate of 300 L/s. 

New pipework was required to direct flow from the high pressure tank to the turbine and 

to allow sufficient straight pipe sections for stable readings from the hydraulic sensing 

equipment. Figure 7.2 shows the pipeline, turbine, generator, and their supporting frame. 

The head is set by adjusting a pump motor using a variable frequency drive. To make finer 

adjustments, a bypass valve is used to vary the flow rate that either enters the turbine system 

or is returned to the reservoir. The Imported turbine set included a shut off valve and further 

downstream, a simple conical nozzle without a spear valve. Due to the proximity of the 

shut off valve to the nozzle, operating with the valve partially closed would create 

turbulence in the jet. Thus, it was decided not to use this valve to incrementally vary the 

flow rate. Instead, the turbine would be tested with the shut off valve fully open simulating 

the likely use case in the field. Consequently, each testing point for a particular head would 

have a corresponding flow rate determined by the nozzle’s discharge coefficient.  

 

Figure 7.2 - Photo of the testing rig. The numbered labels indicate: 1 – flow meter, 2 – 

pressure transducer, 3 – turbine, 4 – torque transducer, 5 – generator, and 6 – supporting 

structure. Photo credit, author. 
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7.2.3 Control and measurement  

For turbines, the flow of water causes the turbine to rotate at a particular speed with a 

particular torque. The rotational speed depends on the torque that the turbine is acting 

against. In testing, rather than applying a known torque to the shaft, the turbine is rotated 

at a set speed. As the runner and motor are directly driven, when there is no jet impinging 

on the runner, there is no difference in torque between the motor shaft and the runner. When 

the jet is applied, the interaction between the water and the runner applies a greater torque 

to the runner end of the shaft, which can be measured.  

The rotational speed of the induction motor and the turbine runner is controlled using a 

variable frequency drive (VFD). Readings are taken from a pressure transducer during the 

adjustment process. The pressure is measured close to the turbine nozzle using two 

Aplisens APR-2000 ALW pressure transducers with a range of 0 to 7 bar. They are installed 

180 degrees apart in the main pipeline of the turbine test rig, close to the turbine nozzle but 

2.5 × pipe diameters (D) away from nearest joint in the pipeline, in both directions. The 

average value of the two pressure transducers is used to calculate the head. Flow rate is 

measured upstream of the turbine using an inline DN200 KO Meter KTM-800 

electromagnetic flow meter. The range of measurement is approximately 0 to 320 L/s. The 

flow meter is installed in the pipeline 10D away from the nearest upstream joint or bend 

and 5D away from the nearest downstream joint or bend, as shown in Figure 7.2. The torque 

transducer measures the difference in torque that is applied to the runner by the jet as it is 

rotated at each speed. The torque is measured using a SETech YDRM – 50KM foil strain 

gauge torque transducer with capacity of 50 Nm. As they are directly connected, the 

rotational speed of the turbine runner is equal to that of the induction motor. The rotational 

speed is measured using an Ono Sokki MP-981 sensor (integrated with the torque 

transducer) that measures the speed of a toothed wheel. The results were recorded using a 

data logging programme created in LABVIEW by staff at the TTL. The programme could 

be used to record data for a specific time period and number of data points per second.  

7.2.4 Hydraulic system diagram 

Figure 7.3 shows the complete experimental testing rig including all elements of control 

and measurement. Table 7.2 lists experimental equipment, their specification, and 

identifies the abbreviations used within Figure 7.3.  
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Figure 7.3 – Hydraulic system diagram of the experimental testing rig. 

 

Table 7.2 - Specification of equipment. 

Abbreviation Equipment Specification 
Measurement 

range 

P-VFD 
Pump variable 

frequency drive 
- N/A 

P Pump - N/A 

HV-01 Bypass valve - N/A 

FM Flow meter KO Meter KTM-800 0.1 – 10 m/s 

PT1/2 
Pressure 

transducers 

Aplisens APR-2000 

ALW 
0 – 16 Bar 

HV-02 
Turbine shut-off 

valve 
- N/A 

HT Hydro-turbine - N/A 

TT Torque transducer 
SETech YDRM – 

50KM 
0 – 50 Nm 

RPM RPM sensor Ono Sokki MP-981 1 – 20,000 rpm 

M Motor 
Mindong Type Y 

100L2-4 
N/A 

M-VFD 
Motor variable 

frequency drive 

Delta VFD-EL&E 

BUE-40037 
N/A 

 

7.3 Testing regime 

7.3.1 Establishing uncertainty 

In the measurement of a quantity, the error is the difference between that measurement and 

the true value of a quantity [223]. The range of values that the true value of a measured 

quantity lies within is the uncertainty of the measurement [223]. Errors that contribute to 

uncertainty can be defined as three types [223]: 



 

Experimental results: lab and field  

 

186 

• Spurious errors arise due to human mistakes or instrument malfunction that result 

in incorrect measurements. These errors should not be incorporated into statistical 

analysis. 

• Systematic errors are those that have the same magnitude for every measurement. 

They are caused by faults with measuring equipment and inaccuracy in calibration.  

• Random errors occur due to random events during the testing process that prevent 

individual measurements from providing the same value. Through repeated 

measurement, the mean value can be found as the measured values should be 

normally distributed. 

 

The total uncertainty in a measurement is the combination of the systematic and random 

uncertainty. 

Systematic uncertainty 

For the speed sensor, pressure transducer, and flow meter which all had not been used since 

factory calibration, the manufacturer’s accuracy can be used as an approximation of the 

systematic uncertainty. Table 7.3 provides the manufacturer’s quoted accuracies for these 

instruments. The torque transducer was calibrated up to 50 Nm, whilst the maximum 

expected torque reading was approximately 15 Nm. It was calibrated using a rig that locks 

a counter-arm in place whilst known masses are applied at a known distance. The results 

of this and the calculation of systematic uncertainty are presented in Appendix F.1. The 

resulting systematic uncertainty for the torque transducer was ± 1.307%.  

 

Table 7.3 - Accuracy of measuring equipment.  

 

Instrument(s) and 

measurand 
M           ’  q               

Reference for 

systematic 

uncertainty 

Speed sensor and 

connected data logger 

 ω  

± 0.05% of reading [224] 

Pressure sensor (H) ± 0.05% of full scale [225, 226] 

Electromagnetic flow 

meter (Q) 

± 0.5% of reading (0.3 m/s – 10 m/s) 

± 1% of reading (0.01 m/s – 0.3 m/s) 
[227] 
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Table 7.4 shows the calculation of systematic uncertainty for the measuring instruments. 

For rotational speed, head and flow rate, the manufacturer’s quoted accuracies are used to 

consider the systematic uncertainty at a control point repeated throughout experimental 

testing, a nominal head of 19.5 m and rotational speed of 1500 rpm. Based on the 

information provided in Table 7.3 and the calibration of the torque meter, the absolute error 

is determined. This error is either relative to full scale for head or relative to the measured 

value for torque, rotational speed, and flow rate. 

 

Table 7.4 - Calculation of systematic uncertainty. 

Measurand Units 
Measured 

value 

Absolute 

error 

Systematic 

uncertainty 

Torque Nm 9.684 ± 0.12657 ±1.307%   (δ𝑇) 

Rotational 

speed 
rpm 1501 ± 0.7505 ±0.050%   (δω) 

Head m 19.46 ± 0.08160 ±0.419%    (δ𝐻) 

Flow rate m3/s 0.0139 ± 0.00007 ±0.500%   (δ𝑄) 

 

The total systematic uncertainty for the efficiency, δS, can be calculated using:  

δ𝑆 = √δ𝑇
2 + δω

2 + δ𝐻
2 + δ𝑄

2 (7.2) 

The total systematic uncertainty, δS, is ± 1.46%. It should be noted that this value provides 

an indication of the systematic uncertainty within the core range of testing. As the accuracy 

of the pressure sensor is related to its full-scale range, the systematic uncertainty will 

increase for lower heads.   

Random uncertainty 

The random uncertainty was determined by taking repeated measurements of a single 

operating point. A head of 19.5 m with a rotational speed of 1500 rpm was used as a control 

point. This operating point was repeated at the beginning, in the middle, and at the end of 

the sequence of tests on the Mark 1 runner. Each time, measurement of the control point 

was repeated 4 times leading to 12 individual repeated runs. Using the method in [223], the 
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random uncertainty in the efficiency can be determined. Table 7.5 lists the normalised 

efficiencies of the individual runs and the parameters used to calculate standard deviation.   

 

Table 7.5 - Normalised efficiencies of the control point data 

No. 𝒀𝒓 𝒀𝒓 − �̅� (𝒀𝒓 − �̅�)𝟐 

1 0.994311 -0.005688741 3.23618E-05 

2 0.994835 -0.005164603 2.66731E-05 

3 0.995097 -0.004902697 2.40364E-05 

4 0.996239 -0.003761292 1.41473E-05 

5 0.998109 -0.001891323 3.5771E-06 

6 0.999932 -6.8125E-05 4.64101E-09 

7 1.000002 1.53104E-06 2.34408E-12 

8 1.001104 0.001103579 1.21789E-06 

9 1.002511 0.002511371 6.30698E-06 

10 1.004924 0.004924353 2.42493E-05 

11 1.005123 0.005123416 2.62494E-05 

12 1.007813 0.00781253 6.10356E-05 

n = 12 �̅� =  ∑
𝑌𝑟

𝑛
= 1  ∑(𝑌𝑟 − �̅�)2 = 0.000187498 

 

The standard deviation, 𝑆𝑌 , is calculated using Bessel’s correction: 

𝑆𝑌 =  √
∑(𝑌𝑟 − �̅�)2

𝑛 − 1
 = 0.00447 (7.3) 

The range of values within which the true value of the quantity is expected to lie, with 95% 

confidence is:  

�̅� ±
𝑡 ∙ 𝑆𝑌

√𝑛
 (7.4) 

From [223], for n = 1 , the student’s t-value = 2.201. Therefore, the maximum possible 

random uncertainty can be calculated as:   

𝛿𝑟 =
𝑡 ∙ 𝑆𝑌

√𝑛
= 0.28% (7.5) 
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Total uncertainty 

The total uncertainty, 𝛿𝑡 , combines the random and systematic uncertainties and can be 

calculated using the following equation:  

𝛿𝑡 = √𝛿𝑠
2 + 𝛿𝑟

2 (7.6) 

The total uncertainty in the efficiency, 𝛿𝑡 , is ± 1.42%. It should be noted that within the 

total uncertainty, the systematic uncertainty of the torque transducer is by far the largest 

contributor. 

7.3.2 Testing plan  

Due to the timing of the manufacture of the Mark 1 and Mark 2 runner, the testing occurred 

in two phases. In the first phase, the Imported and Mark 1 runner were tested. When testing 

the runners, the experimental set up was intended to replicate the modelling simulation in 

CFD. To compare the runners, it was intended to test them both at the same heads across 

the manufacturer’s suggested operating range of the Imported runner, from 15 m to 25 m. 

Table 7.6 lists the planned sequence of ‘core’ experimental runs. Additionally, to consider 

the applicability of the Turgo at low heads which has been considered within the literature 

[52], the Mark 1 runner was tested at 3, 4, and 5 m head. Table 7.7 lists the additional low 

head experimental testing conducted. 

 

 

Table 7.6 - Register of ‘    ’ experimental tests for the Imported and Mark 1 runners. 

Head 

(m) 

Rotational speed 

(rpm) 

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 

15 ● ● ● ● ● ● ● ● ● ● ● 

17.5 ● ● ● ● ● ● ● ● ● ● ● 

20 ● ● ● ● ● ● ● ● ● ● ● 

22.5 ● ● ● ● ● ● ● ● ● ● ● 

25 ● ● ● ● ● ● ● ● ● ● ● 
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Table 7.7 - Register of additional 'low head' experimental tests for the Mark 1 runner. 

Head 

(m) 

Rotational speed 

(rpm) 

400 500 600 700 800 900 1000 1100 

3 ● ● ● ● ● ● ● ● 

4 ● ● ● ● ● ● ● ● 

5 ● ● ● ● ● ● ● ● 

 

7.3.3 Testing procedure  

Figure 7.4 shows the procedure for testing at a single head setting. During testing, it was 

necessary to allow the induction motor’s VFD to cool for approximately  0 minutes 

between each run to avoid overheating. 
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Figure 7.4 - Flow diagram of the testing procedure. 
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7.4 Phase 1 of testing 

7.4.1 Results 

Figure 7.5 shows efficiency against rotational speed for the Imported runner. It can be seen 

that the highest efficiency occurs at the lowest head, 15m. As the head increases, the peak 

efficiency values reduce. It appears that for the 3 highest heads, the efficiencies all peak at 

a similar value. In every case, as the head increases, the rotational speed at which the peak 

occurs also increases. The highest peak efficiency occurs at 1500rpm, the rated speed of 

the induction motor, meaning that the motor would also be operating efficiently at this 

rotational speed.  

 

Figure 7.5 - Efficiency against rotational speed at a range of heads for the Imported runner. 

 

Figure 7.6 plots efficiency against rotational speed for the Mark 1 runner. Similar to the 

Imported runner, the highest efficiency again occurs at the lowest head of 15 m. For the 

higher heads (e.g., 22.5 m and 25 m), the turbine did not reach its peak efficiency within 

the tested speed range. For the Mark 1 runner, the best efficiency point (BEP) at each head 
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occurs at a higher rotational speed when compared with the equivalent head for the 

Imported runner. This trend can be represented by considering the speed ratio, the ratio of 

the turbine speed to the jet velocity [72].  

 

Figure 7.6 - Efficiency against rotational speed at a range of heads for the Mark 1 runner 

 

Figure 7.7 plots the efficiency against the speed ratio for the Imported and Mark 1 runner. 

In this figure, the plotted points are for both runners at heads of 15, 20, and 25 m. The line 

of best fit represents the general relationship between speed ratio, irrespective of head. It 

provides a good fit to the data (Imported, R2 = 0.9377, and Mark 1, R2 = 0.9667). The figure 

shows that from a speed ratio of 0.25 to approximately 0.6, the Imported runner delivers 

higher efficiency. For the Imported runner, the peak efficiency point occurs at a speed ratio 

of approximately 0.5. For the Mark 1 runner, this peak occurs at a speed ratio of 

approximately 0.56. The flatter curve for the Mark 1 runner suggests that, despite lower 

peak efficiency, there is less variation in efficiency close to the peak.  
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Figure 7.7 - Efficiency against speed ratio for the Imported and Mark 1 runners at heads of 

15, 20, and 25m. 

 

The experimental resting rig was also used briefly to explore the performance of the Mark 

1 runner at low heads. It should be noted that due to the lower torques at low heads, the 

total systematic uncertainty will be higher than the value calculated earlier. Figure 7.8 plots 

efficiency against rotational speed for the Mark 1 runner at heads of 3, 4, and 5 m. In 

relation to Figure 7.6, it can be seen that the trend of increasing peak efficiency at lower 

heads is continued at these low heads. The peak efficiency for 3m head is 77%, far 

exceeding the best efficiency achieved within the core testing range. The trend of peak 

efficiency at lower heads occurring at lower rotational speeds also continues.  
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Figure 7.8 - Efficiency against rated speed at a range of low heads for the Mark 1 runner. 

 

The results of these lower head runs can be used to consider the relationship between speed 

ratio and efficiency for a greater variation in head. Figure 7.9 plots efficiency against speed 

ratio for 3, 4, 5, 15, 20, and 25 m head for the Mark 1 runner. The lines of best fit follow a 

similar trend with the peak efficiencies for each head occurring at speed ratios between 0.5 

and 0.55. As the head decreases, the peak efficiency increases.   
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Figure 7.9 - Efficiency against speed ratio for the Mark 1 runner at low heads. 

 

7.4.2 Discussion 

The results of the first phase of laboratory testing demonstrated that across the range of 

heads from 15 to 25m, the Imported runner delivered higher efficiencies than the Mark 1 

runner. In addition, at all of these heads, the Mark 1 runner’s BEP occurred at higher 

rotational speeds. Consequently, for a specific head at a specific speed, the Mark 1 runner 

generated less torque and thus less power. Therefore, to explain these results there is value 

in considering the torque generated by the two runners. As in the development of the Mark 

1 runner using CFD, examination of torque results can be used to determine factors 

affecting efficiency. During testing, the torque transducer recorded 2,000 points per second. 

This resolution made it possible to plot multiple torque values for each individual 

revolution of the runner. From the core experimental range (15 to 25m), using the BEP data 

at 15m and 1500rpm for both the Imported and Mark 1 runner, it is possible to plot the 

torque values over the course of full revolutions made by each runner. The data (that spans 

3 revolutions) is extracted from the approximate midpoint in the testing run, after 15 

seconds had elapsed. Figure 7.10 plots torque against the number of revolutions for the 

Imported runner, whilst Figure 7.11 plots the equivalent data for the Mark 1 runner.  
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Figure 7.10 - Torque against number of revolutions for the Imported runner at 1500rpm and 

at 15m head. 

 

 

Figure 7.11 - Torque against number of revolutions for the Mark 1 runner at 1500rpm and at 

15m head. 
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In these figures, the dashed grey lines represent the end of one complete revolution of a 

runner. For the Imported runner, whilst there is significant oscillation, it is possible to 

perceive general patterns. The torque oscillates around approximately 8 Nm. Within each 

period, there tends to be a peak in torque before a descent to a minimum after half a 

revolution. Subsequently, after rising again, there is an abrupt and steep change which 

spans the entire range of the torque values (from maximum to minimum). For the Mark 1 

runner, there is also a repeating trend within each period. For the first half of each 

revolution, there is oscillation around approximately 7 Nm. In the second half of each 

period, the oscillations increase in magnitude. For every rotation shown, the torque 

descends to a minimum negative value. In comparing these two graphs, it appears for both 

runners, there is a portion of each revolution where the torque becomes more unstable. 

However, for the Mark 1 runner, the magnitude of instability is greater, leading to negative 

torque values. As a result, the average torque over a single period is affected. In the CFD 

simulations, torque curves for the passage of 2 blades demonstrated regions where there 

was interference between the flow exiting a blade and the trailing runner. From the 

experimental results, it is not possible to definitively determine the cause of spikes in the 

torque reading. However, as in CFD, the changes in torque can be attributed to the 

interaction between the water flow and the runner blades. As shown in Figure 7.11, the 

negative spikes in torque occur at approximately the same position within each rotation. 

Therefore, they may indicate a specific geometric deficiency with a particular blade, or 

incorrect positioning of this blade relative to the others. The results suggest that without 

the large negative spike, there would have been much less difference in the efficiency of 

the two runners.  

Evaluation of the speed ratio for the 2 runners can be used to consider their performance 

independent of head. Compared to the Imported runner, Figure 7.7 shows that peak 

efficiencies for the Mark 1 runner occur at a higher speed ratio. As shown in Equation 6.5, 

the ideal speed ratio for a Turgo turbine (with blade inclination angle of 22.5°) is 0.46. In 

CFD simulations, the model of the Imported runner had an optimum speed ratio of 0.5 (see 

Figure 6.26). In experimental testing, the speed ratio for this runner is closer to 0.49. 

However, for the Mark 1 runner, the average optimum speed ratio is around 0.55. The 

difference in optimum speed ratio indicates that for the Imported runner, the blade speed is 

approximately half the jet speed, whilst for the Mark 1, the optimum occurs when the blade 

speed is greater. This suggests that the geometry of the Mark 1 runner is behaving atypically 

compared to previous experimental results. In the typical optimum range (between 0.46 

and 0.5), the geometry of the Mark 1 generates insufficient torque to deliver the highest 
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efficiency. At higher speed ratios, the relative torque generation is higher resulting in a 

flatter speed ratio to efficiency curve compared to the Imported runner, and testing in [72]. 

In [72], where speed ratio is plotted against efficiency for a number of heads, it is found 

that the peak efficiency remains relatively constant irrespective of the head. The results 

shown in Figure 7.9 indicate that this is not true for the Mark 1 runner. As the head 

decreases, there is a clear increase in efficiency whilst the speed ratio remains 

approximately constant. Potential explanations for this may depend on several geometric 

relationships which previous literature has identified as important: the PCD to nozzle 

diameter ratio (D/d), the nozzle diameter to blade width ratio (d/w), and the nozzle diameter 

to blade spacing ratio (d/s). Compared to [52] and [228] where best efficiencies were 

achieved with D/d of 7.5 and 10.13 respectively, both the Mark 1 and the Imported runner 

have a much lower ratio of 3.26. In [76], Gaiser et al. suggests that a low D/d is effective 

in delivering high rotational speeds but when reduced too low, flow limitations may occur. 

The same authors identify blade width to nozzle diameter as an important factor; if too low, 

turbulence and re-circulation of the flow are disruptive. In [52], best efficiency was 

achieved with 1.75 w/d, whilst in [74], Anagnostopoulos suggests 1.45 w/d should be used 

in the design of a Turgo blade but without justification. For the Mark 1, w/d is equal to 

1.94. The relationship between performance and blade spacing (or number of blades) is 

discussed less in the literature. In [76], Gaiser et al. identify it as an important factor 

suggesting that it should exceed 0.45. In experimental testing, these authors find an 

optimum d/s of 0.94 but also state that it will depend on site characteristics. In most cases, 

the number of blades exceeds 10 with at least 20 typical [72, 76, 228]. However, 

Williamson et al. achieve high efficiencies at low heads using only 9 blades [52].  

In comparison to other experimental testing set ups, the ratio of blade width to nozzle 

diameter of the Mark 1 is larger but similar in magnitude. However, there is a greater 

difference when nozzle diameter to PCD ratio is considered. The Mark 1 has a 

proportionally larger nozzle diameter compared with other runners. When evaluating these 

two ratios together, it implies that whilst the Mark 1 blade is similar in proportion to the 

other experimental blades, it is positioned at a much smaller PCD. The advantage of this is 

that it is able to run at a high rotational speed (for a comparatively low head) meaning that 

it can directly drive an induction motor. The drawback of this is that the flow rate is 

concentrated into a compact region of operation. Evaluating the blade spacing emphasises 

this.  
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Using an expression from [76] where, the nozzle diameter to blade spacing ratio is defined 

as:  

𝑑

𝑠
=

𝑑

1
𝑍

𝜋𝐷
(7.7) 

where Z is the number of blades and D is the pitch circle diameter. It is possible to compare 

this ratio for the Mark 1 with other turbines. The range of d/s in other literature is from 0.17 

to 0.91 [76], whilst for the Mark 1 it is 1.366. The lower the value, the more voluminous 

the runner is in relation to jet diameter. The ratio indicates that despite the relatively low 

number of blades (14), there is little space between them in relation to the jet diameter. The 

consequence is that it is likely that there is significant interference between flow leaving a 

blade and the trailing one. This may explain why the lower head values achieve higher 

efficiencies. As the head decreases, the fixed nozzle means that the flow rate does too. 

When there is a smaller volume of water, the fluid film leaving the blade is likely to be 

thinner decreasing the interaction with the trailing blade. As the nozzle and PCD are 

equivalent for the Imported and Mark 1 runner, the d/s ratio is equal for both runners. 

However, the thicker blade profile of the Mark 1 runner means that the free volume between 

blade surfaces is less increasing the probability of interference. These results suggest that 

using the same blade design at a larger PCD may lead to increased efficiency due to greater 

blade spacing. However, it should be considered that changing the PCD will also affect the 

operational speed.  

The results from CFD were able to provide further explanation of the experimental testing 

results. In Chapter 6, Figure 6.27 was used to show the difference in fluid velocities that 

resulted from a change in runner position. The figure shows that as the jet impacts the 

rotating runner, a portion of the flow will impact directly onto the runner’s leading edge. 

This flow will be redirected upwards and do no useful work. Furthermore, due to the 

runner’s orientation (with a vertical shaft), any portion of this reflected flow that does not 

clear the outer edge of the runner, will have to flow back through the runner. As such, 

during its passage through the runner it will interfere with flow that is passing directly 

through, increasing turbulence within the blades. Another finding from CFD was the 

prevalence of flow interaction between blades (as shown in Figure 6.34). Throughout the 

optimisation process, adaptations were made to minimise interference between flow 

leaving a blade and the trailing blade. Avoiding this reduced the generation of negative 

torque. The effect of both of these phenomena - impact on the leading edge and interference 



 

Experimental results: lab and field 

201 

with the trailing blade - is likely to be greater for thicker blades. This analysis of the CFD 

results indicates the particular modes whereby the thicker blades of the Mark 1 runner 

affected its efficiency. These findings supported the decision to manufacture the Mark 2 

runner. In particular, they emphasised the importance of minimising the thickness of the 

blade, both in general and specifically at its leading edge.  

In existing literature, regression analysis has been used to predict hydraulic performance of 

small-scale Turgo turbines [76, 228]. In these examples, it was used to consider their 

performance in relation to a number of variables such as nozzle diameter, number of 

nozzles, and jet impact location. With the data from experimental testing, it is possible to 

use a similar approach.  In this case, regression analysis has been used to consider the 

relationship between measured quantities and the hydraulic efficiency. In Figure 7.5 and 

Figure 7.6, where efficiency is plotted against rotational speed, the closest trend to the data 

was fitted using a third-order relationship.  However, it is known that efficiency is also a 

function of head and flow rate. To incorporate head, it is possible to use speed ratio (x) as 

it is a function of both head and rotational speed. Consequently, it was assumed that the 

speed ratio accounted for the third order terms, and that a first order flow rate term was also 

significant. Table 7.8 shows the regression analysis where a third order relationship 

involving x, x2, x3, and Q is assumed for all of the recorded data for both runners from 15 

to 25m. In the table, the P-value indicates the significance of the term. The lower its value, 

the more important the term is.  

Table 7.8 - Third order regression analysis for the Mark 1 and Imported runners 

 
Mark 1 Imported 

x3 x2 x Q x3 x2 x Q 

Coefficients 0.364 -2.74 2.68 -6.64 -1.54 -1.78 2.83 -8.54 

P-value 0.102 3.16E-

16 

8.57E-

37 

8.62E-

14 

4.45E-

07 

5.43E-

08 

2.39E-

46 

3.08E-

15 

R2 0.999 0.999 

 

Table 7.8 demonstrates that use of these variables provides a very good fit in relation to the 

output efficiency. However, between the two runners, there is a difference in the 

significance of the cubed speed ratio term. For the Mark 1 runner, comparison between the 

P-values for all of the variables indicate that it is unimportant. For the Imported runner, the 

P-value for the x3 term is smaller but remains the largest of all of the coefficients. Between 

the two runners, there is also a difference in the sign of its coefficient. Due to the large P-



 

Experimental results: lab and field  

 

202 

value for the x3 term, it was decided to remove it and consider only the x2, x, and Q terms. 

Table 7.8 shows the resulting second order regression analysis for the Mark 1 and Imported 

runners.  

Table 7.9 - Second order regression analysis for the Mark 1 and Imported runners 

 
Mark 1 Imported 

x2 x Q x2 x Q 

Coefficients -2.37 2.57 -6.09 -3.38 3.31 -11.2 

P-value 3.34E-42 1.22E-49 1.41E-14 2.05E-64 1.15E-72 8.5E-23 

R2 0.999 0.999 

 

With the revised terms, the quality of fit the is maintained as the R2 values is the same (to 

3 significant figures). The signs of all of the coefficients are the same for both runners. The 

results suggest that an estimate of efficiency can be derived using the following equation: 

𝜂 = 𝛼𝑥2 + 𝛽𝑥 + 𝛾𝑄 (7.8) 

In this equation, it is assumed that α, β, and γ are constant terms that depend on 

experimental parameters. The derivation of the regression coefficients used testing results 

where the runner (and therefore its geometry) was the only changed variable between the 

two data sets. Where possible, all other testing parameters were held constant, including jet 

aim position and nozzle diameter. Therefore, in this case, α, β, and γ can all be assumed to 

have some relationship to the runner geometry. To test the accuracy of the regression 

analysis in predicting efficiency, it is possible to apply the coefficients to compare 

prediction with the low head experimental results. Figure 7.12 plots efficiency against 

rotational speed for the Mark 1 runner comparing the low head experimental results to the 

results predicted using Equation 7.8 and the coefficients in Table 7.9.  
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Figure 7.12 - Efficiency against rotational speed comparing experimental to predicted results. 

 

In Figure 7.12 experimental results are shown with black lines and regression predictions 

in red. An equivalent line style indicates that results are for the same head. All of the 

predicted results capture the trend seen in experimental testing where low head results 

achieved higher efficiency than those in the 15 to 25m range. However, in the experimental 

results, 3m achieved a significantly higher efficiency than 4 or 5m. In the predicted results, 

it appears that for all of the heads, the efficiencies peak at a similar value. The largest 

difference occurs for 3m head at the BEP, where there is a difference greater than 5% 

between the experimental and the predicted results. The application of the regression 

analysis shows that there is value in being able to use a set of experimental data to check 

performance under different operating conditions. In this example, it was used to consider 

performance with different heads and flow rates. However, it should be noted that this 

method was only used to consider changes made with the same fixed nozzle. It would be 

advantageous to understand performance using a spear nozzle where the flow rate can be 

varied. Further experimental testing is required to apply the regression analysis when the 

jet diameter can be varied. This could be used to investigate the physical provenance of the 

coefficients (α, β, and γ). If their relation to physical properties was known, it may be 

possible to accurately predict variation in turbine performance in relation to changes in 

turbine geometry.  
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7.5  Phase 2 of testing 

Following the first phase of testing in which the Imported and Mark 1 runners were tested, 

the Mark 2 runner was manufactured. In the intervening period between the two phases of 

testing, the torque transducer was used on another test rig. Following re-assembly of the 

Turgo experimental test rig, initial testing was conducted to check the functionality of the 

reinstalled torque transducer. It was found that both the speed sensor and torque transducer 

were producing significant spurious errors. To examine this, the Mark 1 runner was tested 

at a head and rotational speed for which data had been recorded previously. Figure 7.13 

plots rotational speed against time for the Mark 1 runner showing data from both the first 

and second phase of testing. It can be seen that in the first phase, the reading of rotational 

speed is largely stable. In the second phase, there are periodic zero readings and between 

these frequent oscillations larger than 50rpm.  

 

Figure 7.13 - Rotational speed against time for the Mark 1 runner at a head of 15m and 

nominal rotational speed of 1500rpm. 

 

The measurement of torque provided the largest uncertainty in the first phase of testing. 

Figure 7.14 is a histogram that plots the frequency of torque readings over a 30 second 

period at a head of 15m and a rotational speed of 1500rpm in the first phase of testing. It 

can be seen that the results are approximately uniformly distributed with a positive skew, 
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and with a similar proportion of erroneous low (<1Nm) and high (>13Nm) readings. Figure 

7.15 is a histogram that plots the frequency of torque readings (using the same runner) at 

the same head and rotational speed during the second phase of testing. In this figure, it is 

obvious that a large proportion (greater than a third) of the readings were erroneous 

(<0.3Nm). Typically, the incorrect torque values corresponded to the periodic zero errors 

that occurred in the recorded data from the speed sensor.  

 

Figure 7.14 - A histogram to show the frequency of torque readings at a head of 15m and a 

rotational speed of 1500rpm in Phase 1 of testing. 

 

Figure 7.15 - A histogram to show the frequency of torque readings at a head of 15m and a 

rotational speed of 1500rpm in Phase 2 of testing. 
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Efforts were made to the clean the data by removing the spurious errors. However, as 

shown in Figure 7.13, amongst the remaining data there were still large fluctuations in the 

recorded values. Processing the data using the same approach as in the first phase led to 

highly erratic results with a very weak agreement to the expected trends established during 

the first phase of testing. All instrumentation was removed, checked, and re-installed, 

however, the zero errors and large fluctuations continued to occur. Possible explanations 

for the errors include equipment damage, shaft misalignment and resonant frequencies. Due 

to project time constraints, it was not possible to find solutions to these problems and test 

the Mark 2 runner experimentally.   

7.6 Site installation 

Alongside experimental testing, it is useful to evaluate efficiency and reliability in the field. 

A site was selected in Naubise, Dhading for the following reasons:  

• Proximity to Kathmandu. The site can be reached in less than 2 hours by vehicle 

from Kathmandu.  

• Contact person in the local area. An employee of NYSE lived in the local area, 

was willing to act as an intermediary with the local community and possessed the 

necessary experience to operate the plant. 

• Site characteristics. There was an available head of 20m and flow rate in excess 

of 20L/s.  

• Existing civil structure. The flow rate could be extracted from a pre-existing canal 

that supplies water to a traditional mill.  

The pre-existing civil structure at the site was upgraded to improve the annual flow 

reliability. Figure 7.16 shows newly constructed civil structures at the site. The de-silting 

bay minimises the entry of silt, sand, and rocks into the system. The forebay tank provides 

capacity for the system to deal with small variations in the flow rate.  



 

Experimental results: lab and field 

207 

 

Figure 7.16 - (a) de-silting bay and (b) forebay tank at the pilot site. Numbered labels 

indicate: 1 – intake, 2 – de-silting bay, 3 – canal, and 4 – forebay tank. Photo credit, Prem 

Karki.  

 

A powerhouse was constructed to provide protection to the turbine, generator, and control 

system. Figure 7.17 shows the powerhouse under construction at the pilot site. On the right 

side of this image, the PVC penstock pipe can be seen.  

 

Figure 7.17 - Powerhouse under construction at the pilot site. Photo credit, Prem Karki. 
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Figure 7.18 shows the turbine the turbine-generator set, ballast tank, and control panel 

installed in the powerhouse. The control panel contains an ELC which ensures that the 

power generated by the turbine is either used locally or diverted to the ballast tank. This 

ensures that the turbine’s rotational speed can be maintained at the generator’s rated speed 

of 1500 rpm. The generator installed in the field was the induction motor provided with the 

Imported turbine. At the pico-hydro scale, it is common to use an induction motor as a 

generator (IMAG) due to their high availability, relatively low cost and robust design [229]. 

The IMAG was used with a ‘C- C’ connection allowing the three-phase motor to generate 

a single-phase supply [208].  

 

Figure 7.18 - Turbine-generator set, ballast tank and control panel inside the powerhouse. 

Numbered labels indicate: 1 – turbine casing, 2 – generator, 3 – control panel including ELC, 

4 – ballast tank, and 5 – tailrace. Photo credit, Prem Karki.  

7.6.1 Field testing 

Following installation, the turbine-generator set could be tested in the field. This phase of 

testing provided an opportunity to compare between the Imported, Mark 1, and Mark 2 

runners. However, it should be noted that the accuracy of field-testing results was 

considerably lower than those collected in the laboratory. Environmental variation, quality 

of the testing equipment and increased opportunity for human error all contributed to this. 

In addition, due to its timing the author could not be present at the site during field testing. 

The author developed  a testing procedure based on [200] which detailed the experimental 
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process and the configuration of each runner. In particular, this included the thicknesses of 

spacers required to ensure that the 3 runners were tested in approximately the same 

position.  As per the testing procedure, the system was tested by diverting all of the power 

generated to the ballast load. Through measurement of the pressure and the flow rate, it 

was possible to estimate the input power. A root-mean-square (RMS) meter could be used 

to measure the ballast voltage, current, and power. Table 7.10 lists the measurements and 

the method used in field testing, Figure 7.19 shows the methods used for the measurement 

of head and flow rate. All 3 runners were tested on the same day meaning the environmental 

conditions were broadly similar. Figure 7.20 shows the process used for field testing.  

 

Table 7.10 – Measurements taken and methods used during field testing. 

Measurement Method 
Equipment 

required 
Range 

Estimated 

uncertainty 

Flow rate 

Height of water 

measured using a ruler 

with a rectangular 

weir in the tailrace, as 

shown in Figure 

7.19(a). 

Ruler 0 to 0.3 m 

± 5 mm (human 

error in 

measurement 

due to 

turbulence in 

tailrace). 

Pressure 

Reading of pressure 

taken whilst turbine is 

in operation, as shown 

in Figure 7.19(b). 

Analogue 

pressure 

gauge 

0 to 7 

kg/cm2 

± 0.1 kg/cm2 

(human error 

due to reading 

from gauge). 

Output power 

True RMS digital 

multimeter connected 

across the ballast load. 

UNI-T 

UT243 

Multimeter 

0 to 600 

kW 
± 3% [230]. 
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Figure 7.19 - (a) Rectangular weir arrangement and (b) analogue pressure gauge. Photo 

credit, Prem Karki. 
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Figure 7.20 - Flow chart showing the testing procedure at the pilot site. 

 

The process used during site testing ensured that the flow rate from the nozzle and the 

power generated were increased gradually. As the valve is opened further, the voltage 

across the ballast load increases until it reaches a maximum value. The ELC ensures that 
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the maximum voltage across the ballast is approximately 230 V. Figure 7.21 plots the 

power output against the ballast voltage for the three different runners. The vertical dashed 

lines represent the highest value of ballast voltage for each runner, i.e., the ballast voltage 

when the shut off valve was fully open. The horizontal dashed lines indicate the maximum 

power output achieved with the valve fully open. It can be seen that the Mark 2 runner 

achieves the highest output power, followed by the Mark 1, and then the Imported runner. 

With the valve fully open, all of the runners were operating under conditions that can be 

compared to experimental testing. Table 7.11 presents the average recorded values from 

the weir and pressure gauge and the resulting estimated values of flow rate and head. The 

estimated flow rate from the weir is calculated according to the method presented in [81]. 

The estimated head is calculated from the pressure gauge reading assuming density of water 

to be 997 kg/m3 and acceleration due to gravity to be 9.81 m/s2.  Using Equation 7.1, these 

values can be combined to estimate the potential available power. Table 7.12 presents the 

estimated ‘water-to-wire’ efficiency of the 3 runners. 

 

 

Figure 7.21 - Power output against ballast voltage for the three runners tested at the pilot site. 
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Table 7.11 - Open nozzle conditions. 

Height 

above weir 

(mm) 

Pressure 

gauge 

(kg/cm2) 

Estimated flow 

rate 

(m3/s) 

Estimated 

head 

(m) 

Potential available 

power 

(W) 

80 2.067 0.0156 20.61 3069 

 

Table 7.12 - Estimated peak power efficiency of the Imported, Mark 1, and Mark 2 runners. 

Runner Power 

generated 

(kW) 

Average 

available power 

(kW) 

Estimated 

‘water-to-wire’ 

efficiency 

Percentage 

difference relative to 

the Imported runner 

Imported 1.05 3.07 34.2% - 

Mark 1 1.20 3.07 39.1% 14.3% 

Mark 2 1.48 3.07 48.2% 41% 

 

The estimated ‘water-to-wire’ efficiencies have significant uncertainties and therefore are 

most useful in comparison to each other. The results clearly suggest that for broadly 

equivalent operating conditions, the Mark 2 runner achieved the highest efficiency. For the 

Mark 2 runner where the generator is operating closest to its rated voltage, it is reasonable 

to estimate the turbine’s hydraulic efficiency. The peak rated power for the Mark 2 runner 

was approximately 1.5 kW (50% of the induction motor’s rated load). In [208], Smith 

provides approximate efficiencies for a 2.2 kW IMAG under a numbering of loading 

conditions. For an IMAG operating at 50% rated load, Smith gives an approximate 

efficiency of 74.2%. Using this value, it is possible to derive an estimated hydraulic 

efficiency of 65.0%. It should be noted that the information used to derive the induction 

motor efficiency is for a different machine at a different rated power, however, the value 

for hydraulic efficiency appears realistic when compared to the results of laboratory testing. 

Repeating the method for the other runners is unreliable due to their operation further from 

the induction motor’s rated voltage. Given the results of experimental testing, it was not an 

expected result that the Mark 1 runner would generate more power than the Imported 

runner. The reason for this was unknown and difficult to ascertain. The runners were 

installed with spacers to replicate the runner heights used in experimental testing. In the 

field, the runner was mounted directly onto the generator shaft rather than on a shaft 

connected to the torque transducer. It is possible that inaccuracies in the measurement for 

runner height between these two configurations was significant in affecting the efficiency. 

As mentioned previously, the author was not present during field testing. First-hand 
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observation would have helped in the identification and prevention of spurious errors 

within the testing process. 

7.7 Summary 

In this chapter, the methodology, procedure and results of experimental testing have been 

presented. The testing rig and methodology led to results with a reasonable uncertainty in 

the middle of the core testing range (±1.46%) and produced efficiency-rotational speed 

curves that are typical for impulse turbines. The testing confirmed that the Imported runner 

was able to achieve the manufacturer’s expected efficiency of approximately 70%. The 

Mark 1 runner was less efficient and tended to operate with a higher speed ratio. It is 

believed that manufacturing defects discussed in Chapter 6 affected the performance by 

increasing flow interference. The Mark 2 runner could not be tested on the experimental 

rig due to a problem with the torque transducer. Field testing was completed and indicated 

that the Mark 2 runner produced the most power at the highest efficiency. Whilst the same 

approach was repeated during field testing for each runner, the variation in environmental 

conditions, and the likelihood of random errors hinder the reliability of the results. Ideally, 

the Mark 2 runner should be tested on the same experimental rig under the same conditions 

as the Imported and Mark 1 runner.  

In summary:  

• The Imported runner was able to achieve the manufacturer’s expected efficiency 

of approximately 70%. 

• The Mark 1 runner’s peak efficiency was lower (  %) and compared to the 

Imported runner, it tended to operate at a higher speed ratio. 

• Field testing was completed and suggested that the Mark 2 runner produced the 

most power at the highest efficiency. 
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Chapter 8  

Towards an open-source Turgo 

turbine design 

8.1 Introduction 

In the preceding chapters, the application of the DFL methodology led to a detailed 

understanding of the installation environment, project process, and the capability of 

manufacturers. This understanding of local context was used to inform the proposed design 

solution for a Turgo turbine runner. In this chapter, the actions taken are considered in 

relation to the DFL methodology and the experiences used to derive supporting principles. 

The ongoing use of the design and further design improvement depends upon its further 

replication. Consequently, this chapter explores the opportunity to make the design ‘open-

source’ using the testing results to identify its application range, considering the potential 

to develop a complete scalable design, and proposing routes to replication for Nepal and 

elsewhere.  

8.2 DFL: the Turgo turbine runner case study 

In this section, the development of the Turgo turbine runner and its testing (presented in 

Chapter 6 and Chapter 7) is considered in relation to the DFL methodology. The work 

undertaken thus far is analysed in relation to the 3 key phases, whilst reflections on the 

process are used to derive further principles to aid future applications of the DFL 

methodology.  

8.2.1 The process 

As shown previously, the process of DFL is considered to include three phases. In Figure 

8.1, activities that have been undertaken are grouped according to their contribution to each 

phase. It can be seen that the preparatory work undertaken in Chapters 4, 5 and 6 have all 

contributed to an understanding of the local context. Subsequently, this knowledge was 

used to design solutions for local manufacture. Finally, the manufactured prototype was 

tested and installed in the field.  
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Figure 8.1 - Completed activities considered in relation to DFL. 

 

The experiences of the study of operational plants resulted in an improved understanding 

of micro-hydropower in the context of Nepal. At the operational plants, a number of 

technical issues were identified including poor civil structures and issues in alignment of 

rotating components. These experiences supported the use of the Turgo turbine due to its 

resistance to abrasion and ability to be used in a directly driven arrangement. Alongside 

technical considerations, the assessment considered the social and economic aspects of the 

sustainability of the plants. A proposed design solution could not directly address these 

social issues, but they remained important in developing a contextual understanding. The 

analysis of the project process led to a greater awareness of the ‘landscape’ that projects 

are developed within, and the effect that this can have. It was established that there was a 

connection between the observed technical issues and the project process. By evaluating 

the project process, the occurrence of technical issues could be attributed to unclear 

designation of responsibilities and a lack of quality checks. The manufacturing capability 

survey provided a detailed understanding of the available processes and materials in Nepal. 

This ensured that proposed design solutions were feasible within the local context. The cost 
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survey established an understanding of the baseline cost for hydropower technology in 

Nepal, allowing the cost of proposed solutions to be compared.   

The proposed design solution used casting as the primary process in the manufacture of the 

runner blades. Based on the results of the manufacturer’s survey, it had been established 

that this process was familiar to manufacturers and appropriate for the local context. During 

manufacture, the selected material and process were unable to achieve the intended 

dimensions. As alternative material choices for casting had been identified, the material 

choice and design were changed. As this stage in the manufacturing process was repeated, 

it was possible to introduce a new quality assurance process. During the manufacture of the 

Mark 2 runner, templates were used to check the conformance to the expected dimensions 

during the finishing process.  

Experimental testing was conducted in the country of use and used to demonstrate the 

efficiency of the newly manufactured runner. This helped to build familiarity with the 

technology amongst a wider range of engineering professionals within Nepal. The 

challenges faced during manufacture were, to an extent, confirmed during experimental 

testing, although it would have been advantageous to verify the performance of the Mark 

2 runner. The prototype was installed in the field for ongoing monitoring. The installation 

used water extracted from a natural source and with electronic equipment (ELC and ballast 

tank) typical for this type of installation. However, the community located near to the 

installation site were already electrified from another source. Consequently, the use case 

was different from the expected application where a turbine is the only source of electricity.   

8.2.2 Contribution to the Design for Localisation methodology 

In comparison, to the original case study (see Section 3.2.1) and the others considered in 

Section 3.2.2, the Turgo turbine runner has yet to undergo prolonged field testing. Currently 

with a single installation operational for only a short period of time, there is a limited scope 

of field experience, both in quantity and duration. As such, there has not yet been the 

opportunity for lessons from the field to influence design changes. It should also be noted 

that the turbine runner represents only a single sub-system of the complete Turgo turbine. 

However, the experiences of the project can still be usefully applied to inform the DFL 

methodology. Experiences derived from its application are valuable. They can be used to 

inform design changes for the Turgo turbine runner (as seen in the changes from the Mark 

1 to the Mark 2) and inform subsequent use of DFL in other contexts. These supporting 
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principles have all been formulated based on experiences and knowledge gained during the 

activities presented in Figure 8.1:  

• The construction and implementation of a technology occurs due to the 

actions of multiple stakeholders, the importance and interrelation of 

individual actions should be considered. 

The development of a technology may be shaped by activities that occur within a 

project process. Whilst these may be difficult to directly design for, if they are 

understood, mitigating actions can be devised and implemented.  

 

• Where process limitations are not well known, there is value in learning-by-

doing.  

For some manufacturing operations, the limitations in the local environment may 

not be known. Through attempting something new, it may be possible to 

understand what these limits are, allowing them to be used in future design.  

 

• Materials and their selection are not always understood locally. 

Local manufacturers may apply material selection based on experience and ‘rules 

of thumb’. For some applications this may be appropriate, but rigour should be 

applied where possible. 

 

• New manufacturing technologies can be used alongside existing ones.  

Access to the internet is increasing both awareness and availability of new 

manufacturing technologies (e.g., additive manufacturing). Although these may be 

unfamiliar to local workshops, it may be possible to combine them with established 

technologies. 

 

• ‘Familiar’ processes may require additional quality assurance when used in 

the production of new products. 

When a manufacturing process is consistently repeated with an identical (or near 

identical) design, the application of the same process with a new design may 

present unexpected challenges. Design changes should be supported by quality 

assurance processes that are focused on preventing the development of these errors. 
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• Design information should not be communicated verbally. 

In some instances of local manufacture, the cultural context may mean design 

information is communicated verbally or through other informal methods. To 

avoid this, appropriate means of sharing design information should be identified. 

 

• Introduce jigs and guides wherever they are needed. 

For workshops that produce a limited product range, new design solutions may 

pose challenges (e.g., work piece alignment and tolerance) during the 

manufacturing process. Communication with manufacturers is valuable in 

understanding these challenges and potential methods to reduce or remove them.  

 

 

8.2.3 Continuing design improvement 

In this work, the stages of the DFL methodology were followed, leading to a design for a 

Turgo turbine runner. Whilst successfully manufactured in Nepal, field testing of this 

runner design was limited. In Chapter 3, when the DFL methodology was proposed, a key 

supporting principle was that the DFL process may be non-linear. In the PT case study, 

challenges observed during field testing led to subsequent design changes. Similarly, in the 

development of the T-series Crossflow and the RHL turbines, designs were refined 

iteratively over a number of years based on experiences in the field. These experiences 

suggest that iterative design improvement forms a key part of the DFL methodology. Every 

installation and its local context provide experiences that can be used to drive design 

improvement.  

As a result of this, the remainder of this chapter is focused on how further replication of 

the Turgo design could be driven using an open-source approach. Figure 8.2 shows the 

desired feedback loop for continuing the DFL methodology. An open-source Turgo turbine 

design would lead to local manufacture by new companies and an increased number of 

field installations. Each of these installations provides valuable experiences aiding the 

understanding of the local context. In turn, this can be applied to enable re-design that is 

focused on overcoming challenges from the field. An open-source approach allows these 

changes to be shared and incorporated where locally appropriate.   
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Figure 8.2 - Feedback loop for continuing the DFL methodology. 

 

8.3 Development of an open-source design 

In this research, the application of the DFL methodology resulted in the manufacture of 

two Turgo turbine runners. These runner designs are appropriate for the Nepali context, 

however, there are additional sub-systems where the DFL methodology requires 

application. As most of these components are (common to Pelton turbines and therefore) 

already manufactured in Nepal, and – in comparison to the turbine runner – their design is 

largely uncomplicated, they will not be considered here. Instead, there is greater value in 

contemplating how further replication of a complete Turgo turbine design could be 

motivated. If achieved, further replication would have a number of useful outcomes. Firstly, 

the DFL methodology can continue. The manufacture and installation of new Turgo 

turbines results in experiences that can be used to refine the design. Secondly, these new 

installations result could result in increased electricity generation for off-grid communities. 

Finally, if Turgo turbine replication is successful in Nepal, it may indicate a pathway for 

the introduction of other turbine types. The creation of a locally manufactured Francis 

turbine has been a long-held aim of Kathmandu University [231].  
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To achieve the objective of further replication of a complete Turgo turbine design, there 

are three interrelated challenges to overcome:  

1. How to scale existing testing results to find alternative application ranges for the 

runner design?  

2. How to create a complete turbine design that can be scaled alongside the runner? 

3. How can all of the required design information be transferred to manufacturing 

companies (and other users) in both Nepal and elsewhere?  

In this section, the scaling process will be presented for the Turgo turbine. Using the 

developed design and considering the engineering design limitations in the local context, 

the application range is calculated. Further, potential ranges for the finite blade sizes are 

also calculated. Subsequently, a methodology to make the design available ‘open-source’ 

in Nepal and elsewhere is proposed.  

8.3.1 Scaling of the Turgo turbine design 

For hydro-turbines in general, a turbine runner design is intended to operate at a particular 

rated head and flow rate. Whilst a turbine runner remains functional as the head and flow 

rate vary, there is a limit to the range of a single design. Consequently, for most turbine 

designs there is a recommended operational envelope. Outside of this, cost, efficiency, or 

reliability may prompt the use of a different design. From the testing results of a turbine, it 

is possible to predict the performance of a geometrically similar machine [221]. This 

process is achieved using laws of hydraulic similarity, otherwise known as non-

dimensional (or dimensionless) parameters. For large scale hydropower plants where 

testing is unfeasible, it enables accurate prediction of performance based on a model [57, 

232]. Using non-dimensional parameters, it is possible to find site characteristics, a 

rotational speed, and a scaling factor that determine rated operating conditions for a 

dimensionally similar turbine. This process allows the size of a turbine to be changed, and 

the resulting turbine performance predicted. 

For turbines, commonly used dimensionless groups are the flow coefficient (CQ), head 

coefficient (CH), power coefficient (CP), and the specific speed (Cω) which is derived from 

the power and head coefficients.  

𝐶𝑄 =
𝑄

𝜔𝐷3
(8.1) 
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𝐶𝐻 =
𝑔𝐻

𝜔2𝐷2
(8.2) 

𝐶𝑃 =
𝑃

𝜌𝜔3𝐷5
(8.3) 

𝐶𝜔 =
𝐶𝑃

0.5

𝐶𝐻
1.25 =

𝜔𝑃0.5

𝜌0.5(𝑔𝐻)1.25
(8.4) 

In these equations, Q is the flow rate, ω is the rotational speed in rad/s, D is a length 

dimension (typically the PCD), g is the acceleration due to gravity, and H is the head. 

Specific speed is a dimensionless parameter associated with the maximum efficiency of 

dimensionally similar turbines [221]. Thus, if the performance of a turbine is known for a 

certain set of parameters, the specific speed of a dimensionally similar turbine will be equal. 

Consequently, for different types of turbine, there exists typical ranges of specific speed 

which indicate whether the turbine is appropriate for the particular site conditions. Table 

8.1 shows ranges of specific speed for common turbine types. 

 

Table 8.1 - Specific speeds for common turbine types, adapted from [221]. 

Turbine type Specific speed 

Pelton 0.094 – 0.15 

Francis 0.32 – 2.3 

Kaplan 1.9 – 5 

 

The values that are used to evaluate these dimensionless groups are typically those that 

occur at the best efficiency point (BEP) of a physical turbine type. For the Turgo runner 

design, the values used are those derived from the CFD simulation which were the expected 

maximum efficiency results. Table 8.2 shows the BEP values from the CFD simulation.  
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Table 8.2 - BEP values from CFD simulation. 

Parameter Units Original 

H, head m 14.7 

Q, flow rate m3/s 0.0126 

n, number of jets - 1 

dj, diameter of jet m 0.0312 

a, scaling ratio - - 

D, pitch circle diameter m 0.1 

N, rotational speed rpm 1500 

ω,                  rad/s 157 

P, power W 1475 

Cω, specific speed - 1.02 

 

In Table 8.2 - BEP values from CFD simulation.Table 8.2, it can be seen that the values 

are used to calculate a specific speed of 1.02. In comparison to the ranges presented in 

Table 8.1, this specific speed is higher than for the Pelton turbine. Physically, this result 

means that for equivalent values of head, flow rate, rotational speed, and power output, a 

Pelton turbine would require a larger diameter runner.   

Turbines can be scaled by equating their dimensionless groups. As such, the ratios of key 

parameters for two turbines can be derived. From a set of experimental results for one 

turbine, this approach allows the design to be scaled depending on a desired output [233, 

234]. Typically, the turbine selection depends on the head and flow rate of the chosen site. 

The following equations demonstrate an approach that can be used for the scaling of the 

Turgo turbine. For a given head and flow rate, the velocity of the jet of water that leaves 

the nozzle will be: 

𝑣 =  𝑐𝑣√2𝑔𝐻 (8.5) 

where cv is the discharge coefficient. The required jet diameter for a given flow rate is: 

𝑑𝑗 = √
4𝑄

𝑛𝜋𝑣
(8.6) 

where n is the number of jets. For similar turbines, a length scaling ratio (indicated by a) 

will relate key dimensions.  
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Therefore, for 2 similar turbines indicated with subscripts 1 and 2: 

𝑎 =  
𝑑𝑗,2

𝑑𝑗,1

(8.7) 

The length scaling ratio can be used to scale the PCD similarly: 

𝐷2 = 𝑎𝐷1 (8.8) 

For the two turbine types, XR can be used to indicate the ratio between the original 

(indicated by subscript 1) and scaled turbine (indicated by subscript 2) for a particular 

parameter, X. 

𝑋𝑅 =
𝑋2

𝑋1

(8.9) 

Using this relationship, Equations 8.1, 8.2, 8.3, 8.4 can be rearranged to:  

𝜔𝑅 =
𝐻𝑅

1.25

𝑃𝑅
0.5

(8.10) 

𝐷𝑅
5 =

𝑃𝑅
0.5

𝐻𝑅
0.75

(8.11) 

𝑄𝑅 =
𝑃𝑅

𝐻𝑅

(8.12) 

𝜔𝑅 =
√𝐻𝑅

𝐷𝑅

(8.13) 

Henceforth, N will be used for the rotational speed with the units in revolutions per minute. 

Equation 8.13 can be rearranged to: 

𝑁2 = 𝑁1

𝐷1

𝐷2
√

𝐻2

𝐻1

(8.14) 

Similarly, Equation 8.12 can be used to calculate the output power. However, it should be 

considered that where there are multiple jets, the flow is split equally between the number 

of nozzles. Therefore, when relating turbines with multiple jets through non-dimensional 

numbers, the flow is divided by the number of jets.  
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𝑃2 = 𝑃1

𝐻2

𝐻1

𝑄2

𝑛𝑄1

(8.15) 

The scaling process results in a specific PCD and jet diameter for any combination of head 

and flow rate. In practice, particularly within the micro-hydro range, it is not cost effective 

to use a different PCD for each individual project. Furthermore, whilst the Turgo can be 

used at a wide range of heads (as seen in Chapter 7 and [52]), there will be some sites where 

the characteristics make another turbine type more appropriate. In Nepal, the survey of 

manufacturers demonstrated the typical approach taken for the selection, design, and 

manufacture of the Pelton turbine. Typically, a scaling spreadsheet is used that indicates an 

‘ideal’ PCD and jet diameter. In practice, manufacturers own Pelton bucket moulds in a 

finite number of sizes. Based on experience and calculation, the manufacturers select a 

bucket mould (corresponding to a particular PCD) from the range that they have and 

determine the appropriate jet diameter. For Pelton turbines, manufacturers may have 

moulds for bucket PCDs from 100 to 400 mm in 25 mm or 50 mm increments [54]. In 

Nepal, micro-hydropower Pelton turbines rarely exceed 500 mm as above this size it is 

likely the Pelton turbine is not the most appropriate choice [54].  

Similarly, the scaled rotational speed may also indicate that the selected turbine type is 

inappropriate. Typically, due to their availability and cost, the generators used at micro-

hydropower sites are 4-pole machines with a rated speed of 1500 rpm [81]. In Chapter 4, 

this was true of every generator observed during the site study. Whilst other electrical 

machines are available, the familiarity and cost of 4-pole machines has made them the most 

prevalent in the market. To allow operation of these generators with a wider range of 

rotational speeds, belt drives are used. Existing literature suggests that for the full micro-

hydropower range, a maximum step-up ratio of 3:1 can be used [54, 65]. This is based on 

the increased cost of transmission equipment (e.g., thicker shafts and larger bearings) for 

operation at low rotational speeds (< 500 rpm). Generators can be directly driven by hydro-

turbines which reduces transmission losses and improves reliability due to fewer 

components [81]. It is suggested that a 1500rpm rated generator could be directly driven 

by a turbine with rated speed of -15% to +10% (of 1500 rpm) with only a small loss in the 

overall efficiency (1 to 2%) [54]. For higher rotational speeds, it should be considered that 

the runaway speed of an impulse turbine is approximately twice the rated speed [54]. 

Consequently, although it should only occur occasionally, rated speeds above 1500 rpm 

are usually avoided as the resulting vibration at runaway speed is likely to damage the 

turbine [54].   
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These experiences in the field and an understanding of the approach used for Pelton 

turbines in Nepal can be used to inform a practical application of scaling for the Turgo 

turbine. Table 8.3 lists the assumptions made in the scaling process.  

Table 8.3 - Assumptions in the scaling process. 

No. Assumption 

1 

Turgo blades that correspond to particular PCDs are available within a range of 

0.1 m to 0.4 m, at discrete intervals of 0.025 m. Blades will be selected from the 

nearest available size. 

2 

The lower limit of the turbine’s rated speed is 500 rpm. This assumes that a flat 

belt with a ratio of 3:1 will be used to step up the rotational speed to match a 

generator’s rated speed of 1500 rpm. 

3 

The upper limit of the turbine’s rated speed is 1 50 rpm. This assumes that the 

turbine can be operated at 10% less than its rated speed to directly drive the 

generator. 

4 

The scaling process will consider the Turgo turbine in a single and double jet 

arrangement only. Larger number of jets (e.g., 3 or 4) increase the complexity of 

the design significantly.  

  

Using these assumptions and Equations 8.1 to 8.15, the rotational speed, PCD, and rated 

power can be calculated for any head and flow rate. Figure 8.3 plots the potential site 

characteristics for the range of PCD sizes. The red dashed lines indicate the interval 

between each PCD, i.e., when a line is crossed, a larger or smaller PCD (±0.025 m) is used. 

The continuous red lines indicate the lower and upper limit of the turbine’s rated speed, 

i.e., outside of these lines, the turbine rotates too slowly or quickly to be used in 

combination with a 1500 rpm generator. The grey dashed lines indicate lines of constant 

power for 10 kW, 50 kW and 100 kW, i.e., a head and flow rate that lies on the grey line 

will generate that much power. Each area bounded by a combination of continuous and 

dashed lines indicates the ranges of head and flow rate where a particular PCD is 

appropriate. To facilitate identification of the relevant sizes, the regions that correspond to 

PCDs of 0.2m, 0.3m, and 0.4m are indicated. In the figure, it can be seen that as the PCD 

increases, the applicable area increases. Consequently, blades for larger PCDs will 

accommodate a larger range of sites.  
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Figure 8.3 - Operating range of the scaled Turgo turbine at a number of PCDs. 

 

Figure 8.4 plots the operating range for the Turgo turbine in both single and double jet 

arrangements. The formatting is similar to Figure 8.3, however, the dashed blue lines 

indicate boundaries for a double jet rather than a single jet Turgo. The labels include 

subscripts of ‘1 jet’ and ‘2 jet’ to indicate which arrangement they are referring to. It can 

be seen that in the 2 jet arrangement, lower heads can be achieved within the lower limit of 

rotational speed. Meanwhile, for an equivalent flow rate the 2 jet upper limit of speed 

occurs at a lower head. The labelled areas show that the same PCD blade can be used to 

service sites with different heads and flow rates depending on the number of jets.  
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Figure 8.4 - Operating range for the scaled Turgo turbine in 1 and 2 jet arrangements. 

 

A motivation (identified in Section 2.3.4)  in exploring the Turgo turbine was its 

applicability to sites with characteristics at the intersection of Pelton and Crossflow 

turbines. To explore this, the same list of site characteristics of Pelton and Crossflow sites 

identified earlier in Section 2.3.4 was used in conjunction with the scaling data. Figure 8.5 

plots the operating range for a single jet scaled Turgo turbine in relation to existing Pelton 

and Crossflow sites. The markers on the figure indicate the head and flow rate of these 

sites. The boundary lines for different PCDs have been removed, i.e., the area between the 

red lines indicates the range of Turgo turbines that can be used irrespective of the PCD 

selected. It can be seen that within the red lines, the majority of markers present are for 

Crossflow sites. Close to the upper speed limit, there are several Pelton sites that fall within 

the area between the lines. At lower heads, there are also a large number of Crossflow sites 

that fall outside the range of the Turgo.  
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Figure 8.5 - Operating range of the scaled Turgo turbine in relation to existing Pelton and 

Crossflow sites in Nepal. 

 

Given the objective of targeting the boundary between Pelton and Crossflow sites, it could 

be advantageous to target a larger number of Pelton sites at this boundary. The Pelton 

turbines constructed for lower heads tend to have large diameters making them expensive. 

Turgo turbines in this region would be more compact. To consider how to change the 

operational range of the Turgo turbine, it is possible to use the scaling equations assuming 

that the BEP had occurred at a head of 25 m rather 14.7 m. Figure 8.6 shows the operating 

range of the scaled Turgo turbine using this assumption. In this case, the area between the 

blue lines incorporates a larger proportion of the Pelton sites. It suggests that the scaling 

process can be used to target particular operational envelopes.  
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Figure 8.6 - Operating range of the scaled Turgo turbine assuming BEP at 25m, in relation to 

existing Pelton and Crossflow sites in Nepal. 

 

In this section, an approach to scaling has been demonstrated. This approach can be used 

for any set of input values meaning that in the future, subsequent experimental testing 

results could be used for scaling, rather than using values from CFD. The scaling process 

was conducted with a finite number of runner sizes with the intervals for these runner sizes 

selected on an arbitrary basis. In practice, an analysis of cost and reliability will be required 

to identify the optimum range of discrete runner sizes. The results of the cost survey 

presented in Section 6.4 can be useful in comparing the cost of scaled Turgo designs to 

Pelton and Crossflow turbines in Nepal.  

8.3.2 Design development 

The dimensionless scaling of the Turgo runner demonstrates (numerically) that a finite 

number of scaled runner designs could be used to cover a potential operating range. 

Alongside the runner, the design of other components is also dependent upon the site 
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characteristics. The head and flow rate drive calculations which determine the appropriate 

dimensions of components. Figure 8.7 shows the sequence of activities which could be 

used to design an impulse (Pelton or Turgo) turbine. The process begins with known site 

characteristics: head and flow rate. If hydrodynamic testing results are available for a 

similar turbine, it is possible to use non-dimensional scaling to determine the appropriate 

size of the runner and jet diameter, which inform the engineering design of multiple 

components. Where testing results are unavailable, the runner design is derived from site 

characteristics alone. For either case, engineering design is required for all of the sub-

systems shown in the blue dashed box. For each of these components, design considerations 

include the strength, reliability, and required dimensions. Between components, interfaces 

need to be determined. Engineering design will also include the selection of bought-out 

components that are constituent in these sub-systems.  

 

Figure 8.7 - Design process for an impulse turbine. 

 

Using the Pelton turbine as an example, published guidelines exist to aid the engineering 

design of specific components. These are particularly useful for runner design where 

hydrodynamic results from a model turbine are unavailable. In [54], Thake provides a 

calculation (based on head and flow rate) to determine the runner PCD. Key dimensions of 

the turbine are then calculated using this value. Figure 8.8 shows the design of the bucket 

stem where the dimensions shown are determined in relation to “% PCD”. Similarly, in 

[57], Nechleba provides a calculation for jet diameter which is then used to dimension other 
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components. Figure 8.9 shows the bucket design with dimensions provided in relation to 

jet diameter, d0. 

 

Figure 8.8 - Thake's design of a Pelton bucket stem. Image from [54]. 

 

 

Figure 8.9 - Nechleba's design of a Pelton bucket. Image from [57]. 

 

These two examples show how site characteristics determine the development of a turbine 

design. Even with these guidelines, the responsibility remains with a designer to convert 

the numerical information into physical design information. Traditionally, design 

expression was in the form of drawings produced by hand. This was a time-consuming 

process where some replication of engineering drawings was possible (using tracing paper) 

but without any automation. More recently, CAD has allowed the faster production of 

engineering drawings and extended the opportunity for replication and increased 
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automation. In Nepal, the interviews indicated that for the Pelton turbine, manufacturers 

used a spreadsheet to determine key engineering parameters and then adapted 2D CAD 

models accordingly. Subsequently, the CAD models were developed into engineering 

drawings.  

Despite the use of CAD and spreadsheets, the complete design process used in Nepal 

remains time-consuming. To increase the availability of the Turgo turbine design, it is 

advantageous to minimise the most time-consuming design processes: engineering design, 

CAD design development, and the production of 2D drawings and a bill of materials. The 

properties of commercially available software (CAD and spreadsheet packages) allow the 

integration of these processes. Using CAD and spreadsheet software, it is possible to create 

a parametric 3D design. With relevant calculations for each sub-system, alongside 

integrated logic determining the selection of bought-out components, a complete system 

model can adapt to user inputs. 

To demonstrate this, an indicative 3D CAD model has been developed. Figure 8.10 shows 

the CAD model of the lower half of the Turgo turbine. The model includes the core 

components of the runner, shaft, lower casing, nozzle, and spear. In addition, a pair of 

plummer block bearings are shown for reference. The key omissions are the spear actuation 

mechanism, jet deflector, pipework, transmission system, fasteners, and anchoring.  

  

 

Figure 8.10 - Indicative CAD model of the Turgo turbine. 
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The potential of parametric design is explained using the nozzle as an example. The 

nozzle’s function is to accelerate the flow of water and direct a jet of the correct diameter 

at the runner. It is assumed, as was found in Chapter 6 for Pelton nozzles, that the body is 

machined from bar stock, fabricated with a flange before final machining and finishing 

processes. Figure 8.11 shows the location of the nozzle and identifies its major dimensions. 

Table 8.4 lists these major dimensions and identifies a non-exhaustive list of key design 

considerations.  

 

 

 

Figure 8.11 - Key design parameters for the nozzle. 

Table 8.4 - Engineering design consideration in the parameterised nozzle design. 

Dimension Engineering design considerations 
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Flange outside 

• Static pressure 

• Water hammer 

• Standard available flanges 

• Interface with casing 

Flange thickness 

• Standard available flanges 

• Static pressure 

• Water hammer 

• Standard fasteners 

Inlet inside diameter 

• Empirically proven constant from literature 

• Bar stock dimensions 

• Machining time 

Nozzle wall thickness 

• Static pressure 

• Water hammer 

• Bar stock dimensions 

• Machining time 

Nozzle length 

• Dimensions of spear valve 

• Interface with casing dimensions 

• Cost of bar stock 

Outlet inside diameter • Jet diameter 

Internal angle • Empirically proven constant from literature 

Bolt pitch circle diameter 

• Static pressure 

• Water hammer 

• Standard available flanges 

Number of holes 

• Static pressure 

• Water hammer 

• Standard available flanges 

Hole diameter • Standard fasteners 

 

Within CAD, the labelled dimensions are the parameters that control this part. In the table, 

there are various types of design consideration. Many are direct engineering calculations. 

For example, considering the nozzle wall thickness, the hydrostatic head exerts a pressure 

which the thickness of material must safely sustain. Other design considerations depend 

upon the interaction of the nozzle with other components and standard parts. For example, 

considering nozzle length, it can be seen in Figure 8.11 that there is a limitation on the 

length to prevent fouling of the runner on the nozzle. Some design considerations are 

empirical constants recommended within hydropower literature, e.g. a nozzle internal angle 

is often recommended [54]. The most complex design considerations are those related to 

cost and material availability. These require the integration of local knowledge and 

compared to the other considerations – calculations and interfaces – would require most 

programming. Whilst feasible within the parametric arrangement, their consideration may 

be more effective when done ‘manually’. However, to consider the nozzle, the following 

example demonstrates hypothetically how they could be evaluated. Bar stock is more 

common in certain sizes, a potential trade-off could exist between ordering an (expensive) 

less common size that results in less machining time or using a (cheaper) commonly 
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available diameter that requires more machining time. The cost of bar stock and price of 

machining are numerical values that are known or can be estimated. Therefore, it is feasible 

that an optimum design that satisfies dimensional and reliability requirements, at the lowest 

cost, could be automatically determined.   

For every component, it is possible to generate a parametric model. As indicated for the 

nozzle, between components there are numerical relationships that exist. All of the 

engineering design including calculation, relationships between components, dimensions 

of standard parts can be contained in a single spreadsheet and linked to the design 

parameters for every component. Consequently, it is possible to conduct the calculations 

and propagate these results to the relevant design parameters. The development of a 

parametric model permits a number of advantages. Firstly, once the model exists, site 

characteristic information can be used to instantaneously develop a 3D model with 

correctly scaled dimensions. Secondly, the calculation spreadsheet can be used to drive the 

nature of the design. For example, the selection of factors of safety can be changed as 

desired.  Finally, if a design improvement is identified, it can be incorporated into the 

‘master’ model.  

8.3.3 Information transfer 

This section will consider how a scalable Turgo design could be made available in Nepal 

and elsewhere, using an open-source approach. In Section 8.3.2, it was explained that CAD 

software could be used to develop a 3D parametric model that changes in response to user 

inputs. Whilst this 3D model contains all of the design information required for 

manufacture, provision of the model is not necessarily the most appropriate method of 

information transfer. Effective means of transferring the information depends on the local 

context. The purpose of this section is to consider two cases where an open-source Turgo 

design could be used: in Nepal for the micro-hydropower industry and globally, for micro-

hydropower companies and the ‘open-source hardware’ community. For the Nepal case, 

lessons from this research are used to suggest potential actions of stakeholders and 

regulatory measures that could support supportive the use of the open-source design. 

There is value in returning to consider the 3 case studies outlined in Section 3.2.2 and the 

manner in which these turbines designs have been transferred (or shared) and subsequently 

replicated. In each of these case studies, the estimated production of more than 1,000 of 

each turbine design suggests successful modes of information transfer which could provide 

lessons for an open-source approach. For the Remote Hydrolight and T-series, design 
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information was (and still is) available as 2D technical drawings. On the ground in 

Afghanistan, the original transferral of the RHL design to new workshops was carried out 

in person. Owen Schumacher, Anders Austegard [142] and their team, visited automotive 

workshops and constructed turbines co-operatively ensuring that important steps during 

manufacture were clearly communicated. This method was employed on the ground as it 

had been identified that understanding of engineering drawings was limited. Subsequently, 

to increase availability of the design, technical drawings and supporting documentation 

were made available online [235] and can be downloaded free of cost. It is believed that 

this has led to the design being used in other locations outside of Afghanistan [142]. The 

development of the T-series turbine took place in Nepal, initially at a single manufacturer 

[64]. After the establishment of the T-series, several books were published describing the 

sizing of turbines [64] and their fabrication [236]. However, Entec own the rights to the 

design and sell the drawing package (and licences to manufacture) to companies 

worldwide. In Nepal, the drawing package for the T-15 turbine was purchased by the AEPC 

and distributed amongst micro-hydropower manufacturers [222]. Elsewhere, Entec have 

conducted training to support manufacturers in the production of T-15 turbines. To use the 

drawing package, a calculation using the site parameters determines a width for the runner, 

with other dimensions varying accordingly [222]. Compared to the other examples, there 

is less literature which describes the transfer of the Peltric set design. After KMI had proven 

the concept of a small Pelton turbine with an integrated generator and control system, other 

manufacturers followed and developed their own versions. From the interviews with 

representatives from manufacturing companies (as shown in Chapter 5), it is likely that 

close inter-personal relationships meant that the design concept was communicated 

informally rather than using engineering drawings. These examples are not described 

specifically in relevant literature as open-source technologies, however, they can still 

provide applicable lessons. In particular, the two examples from Nepal show how design 

information has been shared and replicated, using different methods. For the Peltric set, it 

appears that this took place informally via direct contact between companies. For the T-15 

turbine, intervention by the AEPC resulted in distribution of the design. Common to both 

cases is a willingness by companies to use new designs when their efficacy has been 

demonstrated, either informally (in recommendation between manufacturing companies) 

or formally (through government level support). These experiences suggest that similar 

mechanisms could be supportive to the use of an open-source Turgo design in Nepal.  

As explored in Chapter 5, the subsidy-based project process determines many milestones 

within the development of micro-hydropower projects in Nepal. This contextual 
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understanding is useful in evaluating how an open-source design could be used. Within 

tendering documentation, it was found that the technology type was usually specified. 

Therefore, for the Turgo turbine, the technology needs to be recognised as a viable option 

by the AEPC, RSCs and the consulting companies who conduct detailed feasibility studies. 

These stakeholders require the necessary information to determine the site conditions 

where a Turgo turbine is a superior choice to the other turbine types. The technology must 

be approved by the AEPC to ensure that under the correct circumstances, a subsidy will be 

provided. Manufacturing companies must be capable of producing the turbine in 

accordance with the design. Alongside the transfer of the design information, training and 

on-going support for manufacturing companies will also be necessary. The subsidy 

delivery mechanism provides additional opportunities to manage the risk of deviation from 

the Turgo design. Delivery of the subsidy should depend on the power output testing but 

additionally upon a factory acceptance test which determines the manufactured product 

adheres to the specifications of the design. The description of these measures provides an 

indication of how the Turgo design could be used and regulated in Nepal in practice.  

In the examples considered previously, the communication of design information depended 

on a combination of 2D engineering drawings and face-to-face interaction. These in-person 

interactions were useful where there was uncertainty in local capacity, when pertinent 

design details required reinforcement or when particular manufacturing techniques needed 

to be learnt. Since the development periods of these case studies, there have been significant 

changes in technology and access to it. An open-source approach today can incorporate 

these technological developments. In 2017, World Bank Data indicated that 21% of the 

population had internet access in Nepal [237]. Meanwhile, at all of the manufacturing 

companies interviewed in Chapter 5, CAD software was used. More recently, additive 

manufacturing has enabled rapid prototyping and is available at Kathmandu University and 

elsewhere [238]. In Nepal, micro-hydropower is well understood across society and 

supported through government subsidy. Amongst established companies, there are many 

years of experience which informs approaches to the design, manufacturing, and 

implementation of projects. These changes to technology access and the landscape of 

micro-hydropower in Nepal have a significant impact on the way in which designs can be 

communicated, developed, manufactured, and experiential knowledge exchanged.  Efforts 

to improve the availability of the Turgo turbine in Nepal can take advantage of these 

changes. 
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In Nepal, the target audience for design transmittal is micro-hydropower manufacturers. At 

these companies, it is assumed that the available equipment is typical for a micro-

hydropower manufacturer in Nepal (e.g., similar to NYSE), that there is internet access, 

ability to use a spreadsheet program, open .pdf files, and to open and edit .dwg files. As 

found earlier, the production of the Pelton turbine depends upon using a design spreadsheet 

and adapting 2D CAD files accordingly. For the Crossflow turbine, design information is 

extracted from the Entec T-15 drawings and is usually adapted on CAD. For these two 

turbine types, manufacturers possess all of the design information that they require to build 

the turbine.  

For the Turgo turbine, the design information needs to be transferred in a way that is usable 

by these manufacturing companies. To explain this, it is assumed that there is complete 

parametric model for the Turgo turbine (as explained in Section 8.3.2). In Nepal, as use of 

3D CAD software is not widespread, provision of the complete parametric model is not an 

effective method of information transfer. Instead, it is advantageous to provide 2D 

engineering drawings as .pdf and .dwg as these formats are widely used. Thus, it is 

necessary to develop engineering drawings from the 3D parametric model. These complete 

sets of engineering drawings should correspond to each of the runner PCD sizes. A 

complete engineering drawing package, including drawings and bill of materials, is 

required for each runner PCD size. For the micro-hydropower manufacturers, a 

spreadsheet-based tool could be used to input site characteristics and determine whether a 

Turgo turbine is feasible. If so, the spreadsheet would inform the designer of the correct 

PCD runner and thus the drawing package that should be used. For the blade profile, 2D 

engineering drawings cannot be used to fully capture the complex blade dimensions. 

Therefore, 3D printing remains the most effective means of information transfer. 

Availability of 3D printing at Kathmandu University and Nepal Communitere Makerspace 

[239] could allow manufacturers to procure the 3D designs they require. Alternatively, a 

library of physical designs could be held in country. In the longer term, individual 

ownership of the specific blade designs (as with the Pelton) would allow most timely 

production. 

Globally, for the open-source community and micro-hydropower manufacturers elsewhere, 

to transfer the design it is appropriate to make the 3D parametric CAD model available 

alongside the design packages for the specific runner sizes. This information will allow 

manufacture of the Turgo turbine design in locations where manufacturing facilities are 

similar to Nepal, and there is capacity to procure a 3D printed mould. Given the increasing 



 

Towards an open-source Turgo turbine design  

 

240 

availability of additive manufacturing, it is hoped that this could motivate other companies 

to produce the Turgo turbine design. In the context of Nepal, it is known that the 

institutional stakeholders can provide some regulation of the use of the design. Elsewhere, 

it should be considered that wider replication increases the possibility of incorrect or 

inaccurate use of the design. There are a number of general measures that should be taken 

to avoid this.  A commonly cited example of successful open-source hardware are small-

scale wind turbines [25, 128, 240], and specifically the Piggot wind turbine [241]. Despite 

differences between small-scale wind and hydropower, open-source designs in both should 

adhere to specific requirements. This is particularly important in terms of user safety and 

the functionality of the technology. In [241], Piggot states that the guidelines he provides 

are followed at the user’s own risk, and provides common failure modes and mitigating 

actions. Alongside the design itself, supporting information on operation and maintenance 

is also important [240]. For wider use of an open-source Turgo design, it is necessary that 

users are provided with all of the relevant design information, a detailed explanation of the 

risks involved, and comprehensive information on how to manufacture and use the 

technology. With the correct available information to ensure safe replication, sharing of the 

design enables interrogation, adaptation, and re-use of the design. This provides an 

additional opportunity for continuation of DFL. Using the internet, individual experiences 

in production and use of the Turgo turbine design can be recorded and shared leading to 

subsequent design progression.  

8.4 Summary 

In this chapter, it was shown that the development of the Turgo turbine runner has followed 

the stages of the DFL methodology outlined in Chapter 3. The approach led to the 

identification of several supporting principles that can be used in future applications of 

DFL. To continue the DFL process for the Turgo turbine, further replication of the design 

is required. An open-source approach was proposed as a way to increase uptake of the 

design. It was demonstrated that existing results can be used to scale the runner. A number 

of different runner sizes can be used to cover the range of sites with feasible characteristics. 

The creation of a complete parametric model that adapts depending on numerical inputs 

was proposed. Finally, it was shown that this scalable model can be used to provide all of 

the required design information for Nepal and elsewhere. 
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In summary:  

• The development of the Turgo turbine runner followed the DFL methodology and 

resulted in the derivation of a number of supporting principles.  

• An open-source approach can be used to promote replication of the design and the 

integration of subsequent improvements. 

• Using non-dimensional scaling, a model was developed that allowed determination 

of appropriate runner dimensions in relation to head and flow rate. 

• For the context of Nepal, it was identified that discrete design packages related to 

specific blade sizes was the most feasible method of information transfer. 
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Chapter 9  

Conclusions and future work 

9.1 Discussion 

The motivation for this work was improving the reliability and sustainability of small-scale 

energy projects, specifically micro-hydropower in Nepal. To explore this, a design 

methodology was proposed and applied to the development of a Turgo turbine runner 

design, appropriate for manufacture and use in Nepal. Research activities (that were 

constituent in the design methodology) were diverse, leading to a range of outcomes that 

can be considered significant both independently, and collectively. 

The review of literature identified opportunities to improve the reliability and sustainability 

of community owned and operated mini-grid systems. Existing research indicated that the 

complex socio-technical nature of these systems was a challenge to sustainable operation. 

Micro-hydropower in Nepal was identified as a particular example of this, with additional 

technical challenges related to its locally manufactured equipment. To explore this, a 

technology rarely produced in Nepal, the Turgo turbine, was identified as a case study that 

could be used to consider how to successfully develop locally manufactured technology, 

where reliability and sustainability of its ongoing use were key objectives. Based on an 

existing case study, Design for Localisation was proposed as a design methodology focused 

on developing solutions appropriate for a local context in terms of use and manufacture. 

Three key stages were proposed from a detailed case study and supported by evidence in 

supporting literature. The design methodology was used to inform a research methodology 

to fulfil the research objectives.  

A field-based study was used to understand the factors affecting sustainable operation of 

MHPs in Nepal. Based on evaluation of existing literature regarding the assessment of 

small-scale energy projects, technical reliability, financial viability, and community 

engagement were identified as key factors. A field study using a mixed-methods approach 

was devised to address these areas, and was conducted at 24 MHPs in Nepal. The findings 

demonstrated that at the operational stage, the interaction between community and 

technology makes achieving sustainability complex. There was strong evidence that 

inherent features of each MHP can make a site more or less likely to be sustainable. This 
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understanding of the local context can be useful when considering new projects and in 

identifying existing projects where sustainability may be weak. The significance of this 

finding is not limited to micro-hydropower, for other small-scale energy projects inherent 

site features may also be significant. It was also found that amongst the MHP sub-systems, 

there were both social and technical problems that began in earlier project phases. This 

finding (which can also be applied in other contexts) is useful in demonstrating that early 

prevention of operational issues may be possible.  

The identification of the importance of the project process and the ‘landscape’ that it takes 

place in, led to a detailed examination of the project timeline, the involved stakeholders, 

and their actions. The objective was to understand how issues identified during the field 

study (and in other literature) develop during the project process and identify opportunities 

to prevent their occurrence. A variety of methods were used to collect information 

including a detailed review of government documentation, an interview with a government 

official, and interviews with representatives from manufacturing companies. Consequently, 

it was possible to categorise the involved stakeholders and identify their actions throughout 

the project timeline. From the field study and other literature, a comprehensive list of 

potential operational strengths and weaknesses was developed. Based on the timeline and 

actions of the stakeholders, it was possible to understand how these strengths and 

weaknesses develop. It was found that there were opportunities to address sustainability 

issues through quality assurance and capacity building. The subsidy driven process in 

Nepal provides an opportunity to ensure that required standards are met. These findings 

could be applied by the AEPC in Nepal. More broadly, they indicate that the development 

of community energy projects which involve institutional, industrial, and community-based 

stakeholders require careful consideration. Although project completion may be readily 

achievable, sustainable operation of projects requires greater coordination of stakeholder 

actions.  

In line with the stages of the DFL methodology, the field study and project process 

evaluation were successful in improving understanding of the local context in Nepal.  

However, to progress to the development of appropriate design solutions required an 

awareness of local manufacturing capacity, and the availability of materials and processes. 

To do so, a survey was conducted with representatives of 8 micro-hydropower 

manufacturing companies in Nepal. Detailed analysis of the production process for Pelton 

and Crossflow runners identified numerous opportunities for increased quality assurance. 

The survey led to identification of the range of processes and materials that could be used 
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in the manufacture of the Turgo turbine. Alongside manufacturing capability, a cost survey 

was used to establish baseline costs for Pelton and Crossflow turbines in Nepal. It found 

that the penstock, turbine, and generator were the most expensive sub-systems. The 

collected data was used to develop numerical expressions for the prediction of the cost of 

Pelton and Crossflow installations (excluding civil structures). They could be used in Nepal 

to identify approximate expected costs for hydropower equipment, and to compare costs of 

small-scale hydropower equipment worldwide.   

The improved understanding of manufacturing capability was applied to the design of a 

locally appropriate Turgo turbine runner. CFD was used as a tool to aid design 

improvement. Unlike its conventional use, restrictions derived from the local context were 

used to bound the design progression. As such, the design development was focused on 

driving an improvement in efficiency with a relatively small number of simulations. The 

design process used a 3D CAD representation of an Imported Turgo turbine runner as the 

baseline design. Its development depended on using a DOE approach to identify major 

dimensional changes (e.g., height, width, and depth) followed by incremental 

improvements driven by parametric control of the blade profile. Analysis of the torque 

results and flow visualisation were used to aid design decisions. Initially, through varying 

the offset, the efficiency of the original design was significantly improved from 55.4% to 

69.0%. Subsequent changes resulted in an eventual improvement to 82.5%. Compared to 

the use of CFD in large scale multi-variable parametric design improvement, the approach 

used relatively little computing power. However, it depended upon analysis of visual and 

numerical data to inform design changes. At stages during this process, design changes 

were made which did not result in improvements in efficiency. Initial improvements in 

efficiency came most quickly. Consequently, it is suggested as an appropriate method for 

making changes from low (~ 60%) to medium efficiency (> 70%) when access to 

significant computing power is unavailable. Continual improvement to high efficiencies (> 

80%) in this manner is likely to be an inefficient approach. Analysis of experimental results 

in the literature indicate that there may be opportunities to improve efficiency through the 

variation of geometric relations between the nozzle diameter and (i) PCD, (ii) blade width, 

and (iii) number of blades.  

Working with a local manufacturing partner, the digital model was developed into a locally 

appropriate Turgo runner design. Initially, based on the manufacturing capability survey 

and the preference of the local partner, the runner blades were cast in steel and welded to a 

central hub. To transfer the blade’s design information, additive manufacturing was used; 
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a 3D printed design was used to produce a mould for the casting process. Due to 

communication issues around the material required for shrinkage, the cast steel blades were 

considerably thicker than the intended design. Consequently, an alternative design was 

developed using blades cast in brass, bolted onto a hub. The manufacturing process 

revealed unexpected challenges relating to communication and its effect on the 

manufacturing process. In general, the use of additive manufacturing and the internet was 

found to be a successful means of transferring design information and could be used in 

applications outside hydropower.  

As part of the DFL methodology, local testing was identified as a key stage. A testing rig 

was developed that allowed the performance of the Imported and manufactured runners to 

be compared through the variation of head, flow rate, and rotational speed. During testing, 

the pitch circle diameter and nozzle diameter were held constant. In experimental testing, 

it was found that the Imported runner achieved the manufacturer’s expected efficiency of 

approximately 70%. The Mark 1 runner was less efficient and tended to operate with a 

higher speed ratio. However, it was found that the efficiency of the Mark 1 runner improved 

at low head. It is believed that the relationship between nozzle diameter and PCD was 

significant. At lower heads, thinner fluid films resulted in less interference with the trailing 

blades. The results of testing were used to identify regression coefficients that could be 

used to predict performance. A second order expression involving terms related to speed 

ratio and flow rate was derived. A second phase of testing with the brass runner was 

attempted. However, erratic results from the torque transducer prevented the collection of 

this data. A field-testing site was developed close to Kathmandu. At this site, flow from the 

tailrace of an existing MHP was used to power the Turgo turbine. The turbine was 

integrated with an ELC and ballast load. Basic testing was used to compare the performance 

of the Imported, Mark 1 and Mark 2 runners in environmental conditions. Although 

unreliable and with significant margin for error, the testing suggested that the Mark 2 

runner was the most efficient of all of the runners. The experiences of testing in the 

laboratory and in the field highlighted several challenges of local testing in Nepal.  

Procurement times for equipment were very long with multiple unexpected delays. In 

addition, when the torque transducer broke, there was no local capacity for repair.  

By following the stages of the DFL methodology, a locally appropriate Turgo turbine 

runner was designed, manufactured, and tested. The process identified a number of 

principles that were supportive to the methodology and could be applied in other contexts. 

For the Turgo turbine, further replication and subsequent iterative improvements depend 
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upon the availability of the design. The creation of an open-source design was posited as 

the most effective route. Using non-dimensional scaling, a model was developed that 

allowed determination of appropriate runner dimensions in relation to head and flow rate. 

Constraints were applied based on locally available generators and transmission 

arrangements. The development of a parametric turbine design, integrated with a 

spreadsheet, was proposed as a means to rapidly produce the design information 

appropriate for any viable site. For the context of Nepal, it was identified that discrete 

design packages related to specific blade sizes (available as 3D printed moulds) was the 

most feasible method of transferring design information. Elsewhere, complete CAD 

models could be used to replicate the design, extending the opportunity for further 

installations leading to subsequent design changes and improvements.  

In this thesis, the application of the DFL methodology has been successful in the 

development of a locally appropriate Turgo runner. The stages of the methodology and 

supporting principles were followed. Whilst not prescriptive in its nature, the methodology 

promotes stages of good practice to be followed. The approach taken in this thesis was 

exhaustive and extensive (to fulfil other research objectives), going beyond what is 

reasonable within a design process, and exploring issues that conventional engineering 

design may not be able to address. However, it is believed that for engineers intending to 

apply the DFL process, developing a basic understanding of local context through interview 

should be considered a minimum objective. The subsequent stage of understanding local 

manufacturing capacity is very important. The approach taken here was again exhaustive 

but necessary given that manufacturing capability was unknown and was described largely 

anecdotally in the literature. The developed design solutions were appropriate for local 

manufacture, although their development indicated numerous challenges to overcome. As 

identified, the DFL methodology may depend on iterative stages of design development. 

In the application of the methodology, local testing was the most significant weakness. 

Currently, a precise efficiency for the Mark 2 runner remains unknown. However, the 

installation in the field provides an opportunity for the reliability of the runner design to be 

evaluated. Consequently, it can provide useful experiences to inform subsequent design 

change.  
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9.2 Key research outcomes 

The key research outcomes are described in relation to the research objectives: 

1. To understand the factors that affect the sustainability of plants. 

A field-based study was devised to evaluate technical reliability, financial viability, and 

community engagement. These three areas were identified from available literature as 

important and interrelated. The study used a mixed-methods approach to gather a diverse 

range of information. For micro-hydropower in Nepal, the findings indicated specific 

technical issues that develop at a range of stages. Findings that could be applied more 

widely to other community-based energy projects were that inherent features of a project 

location, and events internal and external to the plant were important in determining 

sustainability.  

2. To evaluate the development of threats to sustainability within the project 

process. 

The project process which depended on the actions of multiple stakeholders was evaluated 

through a review of government documentation and semi-structured interviews with a 

government official and manufacturing companies. Using the findings from the field study, 

the development of operational strengths and weaknesses was characterised for the project 

process. Consequently, it was possible to identify opportunities within the project process 

to prevent operational weaknesses and reinforce strengths.   

3. Evaluate the approach and capability of micro-hydropower 

manufacturers. 

To understand the capability of micro-hydropower manufacturing companies, a survey was 

devised. The survey used predominantly closed question generating a combination of 

quantitative and qualitative data. The information demonstrated the experience of 

manufacturing companies, available processes and materials, and the typical approach 

taken during the production of key components. The collected data was useful in 

understanding opportunities to introduce greater quality assurance during the production of 

hydropower equipment. For the proposal of new design solutions, the information 

regarding capacity could be used to ensure that designs are locally appropriate.  
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4. Develop a new locally appropriate turbine runner design. 

The knowledge regarding local capacity was used to specify a manufacturing process and 

relevant design restrictions. CFD was used as a tool to facilitate improvement in the 

efficiency of a Turgo blade design. Working in collaboration with a local manufacturing 

company, a CAD model was developed into a complete runner design. CAD, additive 

manufacturing, and the internet were used to transfer the blade design and produce a mould 

for casting. Due to problems in manufacturing, 2 versions of the runner design were 

developed. The locally manufactured runners were tested in the laboratory and the field.  

5. Apply a design methodology that enables the development of locally 

appropriate design solutions. 

Design for Localisation was proposed as a design methodology to adapt an existing design 

for local manufacture and use in a new context. After establishment and validation based 

on existing case studies, the design methodology was applied in this thesis. The key stages 

and principles of the methodology were followed and resulted in the Turgo runner design. 

An open-source design methodology, dependent on hydrodynamic scaling, a parametric 

CAD model and the use of additive manufacturing, was proposed as a route to further 

replication of the design.  
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9.3 Future work 

Derived from the research, the following are areas for future work:  

• The field-based methodology (devised and presented in Chapter 4) can be adapted 

and applied to evaluate the sustainability of other off-grid renewable energy 

technologies, e.g., wind and solar. 

• Analysis of project processes for subsidy-based community owned energy 

technologies could be used to understand innovative approaches used elsewhere 

that drive project sustainability. 

• To understand opportunities to improve financial viability of MHPs, a power 

consumption and tariff level model could be used. Whole system modelling of the 

power used by consumers and productive end uses could help to establish 

appropriate tariff levels that are equitable for all consumers and ensure income for 

the plant.  

• Focusing specifically on Pelton and Crossflow turbines, further opportunities can 

be identified to implement quality assurance methods into the design and 

manufacturing process.  

• Laboratory-based experimental testing of the Mark 2 runner is required to 

determine its efficiency. Validation of the results of simulation in CFD can provide 

confidence that scaled versions of the turbine will deliver the expected efficiency.   

• In other fields, further case studies supportive to the Design for Localisation 

methodology can be derived.  These can be used to identify further supporting 

principles for its application.  

• The installed Turgo turbine requires ongoing monitoring and regular inspection. 

Experiences from the field should be documented as they will be useful in 

subsequent installations and informing potential design changes. 

• In Chapter 8, it was shown that multiple Turgo runner sizes can be used to cover a 

range of site characteristics. Based on considerations of cost and reliability, the 

intervals of these runner sizes should be determined. 

• Using the discrete runner sizes, a selection of complete Turgo designs appropriate 

for manufacture in Nepal can be developed. The results of the cost survey can be 

applied to determine whether complete designs are competitive with existing 

technology in Nepal. 

 



References  

 

250 

References 

1. United Nations. Sustainable Development Goal 7. 2019  [Accessed 6 December, 

2019]; Available from: https://sustainabledevelopment.un.org/sdg7. 

2. Nerini, F.F., et al., Mapping synergies and trade-offs between energy and the 

Sustainable Development Goals. Nature Energy, 2018. 3(1): p. 10-15. 

3. Casillas, C.E. and Kammen, D.M., The energy-poverty-climate nexus. Science, 

2010. 330(6008): p. 1181-1182. 

4. Cabraal, R.A., Barnes, D.F., and Agarwal, S.G., Productive uses of energy for 

rural development. Annu. Rev. Environ. Resour., 2005. 30: p. 117-144. 

5. Modi, V., et al., Energy Services for the Millennium Development Goals. Energy 

services for the millennium development goals., 2005. 

6. International Energy Agency, Energy Access Outlook 2017. 2017: Paris, France. 

7. Foley, G., Rural electrification in the developing world. Energy Policy, 1992. 

20(2): p. 145-152. 

8. McCollum, D.L., et al., Connecting the sustainable development goals by their 

energy inter-linkages. Environmental Research Letters, 2018. 13(3): p. 033006. 

9. Peters, J., Sievert, M., and Toman, M.A., Rural electrification through mini-

grids: Challenges ahead. Energy Policy, 2019. 132: p. 27-31. 

10. Almeshqab, F. and Ustun, T.S., Lessons learned from rural electrification 

initiatives in developing countries: Insights for technical, social, financial and 

public policy aspects. Renewable and Sustainable Energy Reviews, 2019. 102: p. 

35-53. 

11. Mandelli, S., et al., Off-grid systems for rural electrification in developing 

countries: Definitions, classification and a comprehensive literature review. 

Renewable and Sustainable Energy Reviews, 2016. 58: p. 1621-1646. 

12. Mahapatra, S. and Dasappa, S., Rural electrification: Optimising the choice 

between decentralised renewable energy sources and grid extension. Energy for 

Sustainable Development, 2012. 16(2): p. 146-154. 

13. Ahlborg, H. and Hammar, L., Drivers and barriers to rural electrification in 

Tanzania and Mozambique–Grid-extension, off-grid, and renewable energy 

technologies. Renewable Energy, 2014. 61: p. 117-124. 

14. Bhattacharyya, S., Rural electrification through decentralised off-grid systems in 

developing countries. 2013: Springer. 

15. Alstone, P., Gershenson, D., and Kammen, D.M., Decentralized energy systems 

for clean electricity access. Nature Climate Change, 2015. 5(4): p. 305. 

16. Gurung, A., Gurung, O.P., and Oh, S.E., The potential of a renewable energy 

technology for rural electrification in Nepal: A case study from Tangting. 

Renewable Energy, 2011. 36(11): p. 3203-3210. 

17. Paish, O., Small hydro power: technology and current status. Renewable and 

Sustainable Energy Reviews, 2002. 6(6): p. 537-556. 

18. da Silva Soito, J.L. and Freitas, M.A.V., Amazon and the expansion of 

hydropower in Brazil: Vulnerability, impacts and possibilities for adaptation to 

global climate change. Renewable and Sustainable Energy Reviews, 2011. 15(6): 

p. 3165-3177. 

19. Katsaprakakis, D.A., A review of the environmental and human impacts from 

wind parks. A case study for the Prefecture of Lasithi, Crete. Renewable and 

Sustainable Energy Reviews, 2012. 16(5): p. 2850-2863. 

https://sustainabledevelopment.un.org/sdg7


References 

251 

20. Dai, K., et al., Environmental issues associated with wind energy–A review. 

Renewable Energy, 2015. 75: p. 911-921. 

21. Palit, D. and Chaurey, A., Off-grid rural electrification experiences from South 

Asia: Status and best practices. Energy for Sustainable Development, 2011. 

15(3): p. 266-276. 

22. Yadoo, A., Delivery models for decentralised rural electrification: case studies in 

Nepal, Peru and Kenya. 2012, London, UK: International Institute for 

Environment and Development. 

23. Terrapon-Pfaff, J., et al., How effective are small-scale energy interventions in 

developing countries? Results from a post-evaluation on project-level. Applied 

Energy, 2014. 135: p. 809-814. 

24. Hong, G.W. and Abe, N., Sustainability assessment of renewable energy projects 

for off-grid rural electrification: The Pangan-an Island case in the Philippines. 

Renewable and Sustainable Energy Reviews, 2012. 16(1): p. 54-64. 

25. Ferrer-Martí, L., et al., Evaluating and comparing three community small-scale 

wind electrification projects. Renewable and Sustainable Energy Reviews, 2012. 

16(7): p. 5379-5390. 

26. Schnitzer, D., et al., Microgrids for rural electrification. 2014, New York, USA: 

United Nations Foundation. 

27. Sovacool, B.K., et al., Peeling the energy pickle: expert perceptions on 

overcoming Nepal's electricity crisis. South Asia: Journal of South Asian Studies, 

2013: p. 496-519. 

28. Timilsina, G., Sapkota, P., and Steinbuks, J., How much has Nepal lost in the last 

decade due to load shedding? an economic assessment using a CGE model. 

2018: The World Bank. 

29. Shrestha, R.S., Electricity crisis (load shedding) in Nepal, its manifestations and 

ramifications. Hydro Nepal: Journal of Water, Energy and Environment, 2010. 6: 

p. 7-17. 

30. Hoffmann, M.M., et al., Overcoming the Bottleneck of Unreliable Grids: 

Increasing Reliability of Household Supply with Decentralized Backup Systems. 

Journal of Sustainability Research, 2020. 2(1). 

31. Pinto, A., et al., Nepal, Beyond Connections, Energy Access Diagnostic Report 

Based on the Multi-Tier Framework. 2019: Washington, USA. 

32. Aitken, J.-M., Cromwell, G., and Wishart, G., Mini and Micro-hydropower in 

Nepal. 1991, ICIMOD: Kathmandu, Nepal. 

33. Alternative Energy Promotion Centre, Reference Micro Hydro Power Standard. 

2014, Government of Nepal: Kathmandu, Nepal. 

34. Arter, A., Micro-Hydropower in Nepal: Enhancing Prospects for Long-Term 

Sustainability. 2011, Entec: St Gallen. 

35. Kumar, P., et al., Nepal-Scaling up electricity access through mini and micro 

hydropower applications: a strategic stock-taking and developing a future 

roadmap. 2015, World Bank: Washington, USA. 

36. Cromwell, G., What makes technology transfer? Small-scale hydropower in 

Nepal's public and private sectors. World Development, 1992. 20(7): p. 979 - 

989. 

37. Khennas, S. and Barnett, A., Best Practices for Sustainable Development of 

Micro Hydropower in Developing Countries. 2000, DFID/ITDG: London, UK. 

38. Sovacool, B.K., et al., Halting hydro: A review of the socio-technical barriers to 

hydroelectric power plants in Nepal. Energy, 2011. 36(5): p. 3468-3476. 

39. Kim, E. and Karky, B.S. ‘Water resources use in the Annapurna Conservation 

Area: Case study of micro-hydropower management in Sikles and Chhomrong. in 

Case study on Mountain infrastructure: Access, communications, energy. 



References  

 

252 

Mountain Forum e-consultation for the UNEP/Bishkek Global Mountain Summit. 

2002. 

40. Gill, A., Moseley, P., and Fulford, D.J., Community Micro-Hydro in LDCs: 

Adoption, Management and Poverty Impact. 1999, University of Reading, UK. 

41. Barr, J., Improving Maintenance of Micro Hydropower Systems in Rural Nepal. 

2013, Uppsala University, Sweden. 

42. Brundtland, G.H., Our common future, report of the World Commission on 

Environment and Development, World commission on environment and 

development, 1987. Published as Annex to General Assembly document 

A/42/427, development and international Co-operation: Environment August, 

1987. 2: p. 1987. 

43. Johansson, T.B. and Goldemberg, J., Energy for sustainable development: a 

policy agenda. 2002: United Nations Publications. 

44. Oxford English Dictionary. "sustainable, adj.".  [Accessed 7 December, 2020]; 

Available from: 

https://www.oed.com/view/Entry/195210?redirectedFrom=sustainable. 

45. Billinton, R. and Allan, R., Reliability Evaluation of Engineering Systems: 

Concepts and Techniques. 1992, New York, USA: Plenum Press. 

46. Billinton, R. and Allan, R.N., Power-system reliability in perspective. Electronics 

and Power, 1984. 30(3): p. 231-236. 

47. White, F.M., Fluid Mechanics. 2003, Boston, USA: McGraw-Hill Book 

Company. 

48. Alternative Energy Promotion Centre, Reference micro hydro power standard. 

2013, Government of Nepal: Kathmandu, Nepal. 

49. Alternative Energy Promotion Centre. Mini Hydro.  [Accessed 4 August, 2020]; 

Available from: https://www.aepc.gov.np/mini-hydro. 

50. Manorom, K., Baird, I.G., and Shoemaker, B. The World Bank, hydropower-

based poverty alleviation and indigenous peoples: On-the-ground realities in the 

Xe Bang Fai River Basin of Laos. in Forum for development studies. 2017. 

Taylor & Francis. 

51. Sumanik-Leary, J., et al., Engineering in Development: Energy, ed. Engineers 

Without Borders UK. 2014, Peterborough, UK. 

52. Williamson, S.J., Stark, B.H., and Booker, J.D., Performance of a low-head pico-

hydro Turgo turbine. Applied Energy, 2013. 102: p. 1114-1126. 

53. Hydrolink. HHP H type – horizontal compact Pelton turbine.  [Accessed 16 July, 

2020]; Available from: http://www.hydrolink.cz/en/pelton-turbines/hhp-h-type-

horizontal-compact-pelton-turbine-4.html. 

54. Thake, J., The micro-hydro Pelton turbine manual: design, manufacture and 

installation for small-scale hydro-power. 2000, Rugby, UK: Practical Action 

Publishing. 

55. Židonis, A., Benzon, D.S., and Aggidis, G.A., Development of hydro impulse 

turbines and new opportunities. Renewable and Sustainable Energy Reviews, 

2015. 51: p. 1624-1635. 

56. Voith Hydro, Pelton turbines. 2010. 

57. Nechleba, M., Hydraulic turbines: their design and equipment. 1957: Prague: 

Artia. 

58. Eisenring, M., Micro pelton turbines. 1991, Switzerland: SKAT. 

59. Meier, T., Mini hydropower for rural development: a new market-oriented 

approach to maximize electrification benefits with special focus on Indonesia. 

Vol. 4. 2001: LIT Verlag Münster. 

60. Pereira, N.C. and Borges, J., Study of the nozzle flow in a cross-flow turbine. 

International journal of mechanical sciences, 1996. 38(3): p. 283-302. 

https://www.oed.com/view/Entry/195210?redirectedFrom=sustainable
https://www.aepc.gov.np/mini-hydro
http://www.hydrolink.cz/en/pelton-turbines/hhp-h-type-horizontal-compact-pelton-turbine-4.html
http://www.hydrolink.cz/en/pelton-turbines/hhp-h-type-horizontal-compact-pelton-turbine-4.html


References 

253 

61. Desai, V.R. and Aziz, N.M., An experimental investigation of cross-flow turbine 

efficiency. 1994. 

62. Deutsches Museum. Ossberger Turbine, 1981.  [Accessed 16 July, 2020]; 

Available from: https://www.deutsches-

museum.de/en/collections/machines/power-engines/water-turbines/ossberger-

turbine-1981/. 

63. Ossberger, The original OSSBERGER Crossflow turbine, Ossberger, Editor. 

2016. 

64. Nakarmi, K., et al., Cross Flow Turbine Design and Equipment Engineering, in 

MHPG Series Harnessing Water Power on a Small Scale. 1993, SKAT. 

65. Fraenkel, P., et al., Micro-hydro power, a guide for development workers. 1991, 

London: Intermediate Technology Publications Ltd. 

66. Khosrowpanah, S., Fiuzat, A., and Albertson, M.L., Experimental study of cross-

flow turbine. Journal of Hydraulic Engineering, 1988. 114(3): p. 299-314. 

67. Fiuzat, A.A. and Akerkar, B.P., Power outputs of two stages of cross-flow 

turbine. Journal of energy engineering, 1991. 117(2): p. 57-70. 

68. Benzon, D.S., Aggidis, G.A., and Anagnostopoulos, J.S., Development of the 

Turgo Impulse turbine: Past and present. Applied Energy, 2016. 166: p. 1-18. 

69. Webster, J., Analysis of jet-type impulse turbines. Water Power, 1971. 23: p. 287-

292. 

70. Powerspout. Powerspout. 2019  [Accessed 30 January, 2019]; Available from: 

www.powerspout.com. 

71. Hartvigsen Hydro. Hartvigsen Hydro. 2020  [Accessed 23 July, 2020]; Available 

from: https://h-hydro.com/. 

72. Cobb, B.R. and Sharp, K.V., Impulse (Turgo and Pelton) turbine performance 

characteristics and their impact on pico-hydro installations. Renewable Energy, 

2013. 50: p. 959-964. 

73. Benzon, D.S., et al., State of the art & current research on Turgo impulse 

turbines, in 13th Annual Africa Utility Week/ Clean Power Africa. 2013: Cape 

Town, South Africa. 

74. Anagnostopoulos, J.S. and Papantonis, D.E., Flow modeling and runner design 

optimization in Turgo water turbines. World Academy of Science, Engineering 

and Technology, 2007. 28: p. 206-211. 

75. Clarembaux Correa, J.L., De Andrade, J., and Asuaje, M. A preliminary analysis 

of a Turgo type turbine CFD simulation designed with an integrated dimensional 

methodology. in ASME 2012 Fluids Engineering Division Summer Meeting. 

2013. American Society of Mechanical Engineers Digital Collection. 

76. Gaiser, K., et al., An experimental investigation of design parameters for pico-

hydro Turgo turbines using a response surface methodology. Renewable Energy, 

2016. 85: p. 406-418. 

77. Regmi, A., Democratising micro-hydel: Structures, systems and agents in 

adaptive technology in the hills of Nepal. 2004. 

78. Robinson, A. and Scott, J., Development of the Turgo turbine. The International 

Journal on Hydropower & Dams, 2018. 25(1). 

79. Dutta, S., Sing, R.P., and Thakali, H., Terminal Review Report, Rural Energy 

Development Programme. 2007, United Nations Development Programme: 

Kathmandu, Nepal. 

80. Schumacher, O. and Austegard, A. RHL Cross Flow turbine.  [Accessed 7 

December, 2020]; Available from: 

http://www.remotehydrolight.com/CrossFlow.php. 

81. Harvey, A., Micro-Hydro Design Manual: a guide to small-scale water power 

schemes. 1993, Rugby, UK: Practical Action Publishing. 

https://www.deutsches-museum.de/en/collections/machines/power-engines/water-turbines/ossberger-turbine-1981/
https://www.deutsches-museum.de/en/collections/machines/power-engines/water-turbines/ossberger-turbine-1981/
https://www.deutsches-museum.de/en/collections/machines/power-engines/water-turbines/ossberger-turbine-1981/
https://uob-my.sharepoint.com/personal/jb9709_bristol_ac_uk/Documents/Documents/01%20-%20PhD/08%20-%20Thesis/00%20-%20Thesis%20in%20full/www.powerspout.com
https://h-hydro.com/
http://www.remotehydrolight.com/CrossFlow.php


References  

 

254 

82. Shakya, I., Technological capability building: a case study of the mini-micro-

hydro turbine manufacturers in Nepal. 1999, University of Strathclyde. 

83. Adhikari, D., Hydropower development in Nepal. NRB Economic Review, 2006. 

18: p. 70-94. 

84. Meier, U. and Arter, A., Solving problems of micro hydro development in Nepal. 

International water power & dam construction, 1989. 41(6): p. 9-11. 

85. Conroy, C. and Litvinoff, M., The greening of aid: Sustainable livelihoods in 

practice. 2013, London, UK: Routledge. 

86. Fulford, D.J., Mosley, P., and Gill, A., Recommendations on the use of micro-

hydro power in rural development. Journal of Internation Development, 2002. 

12(7): p. 975. 

87. Sarangi, G.K., et al., Poverty Amidst Plenty: Renewable Energy-Based Mini-Grid 

Electrification in Nepal, in Mini-Grids for Rural Electrification of Developing 

Countries: Analysis and Case Studies from South Asia, S.C. Bhattacharyya and 

D. Palit, Editors. 2014, Springer International Publishing: Cham. p. 343-371. 

88. Pokharel, S., Promotional issues on alternative energy technologies in Nepal. 

Energy Policy, 2003. 31(4): p. 307-318. 

89. Adhikari, D.M.B.M., Min; Parthan, Binu;, Modalities for Operationalizing 

Challenge Fund in Decentralized Renewable Energy. 2018, Practical Action: 

Kathmandu, Nepal. 

90. Nepal Micro Hydro Development Association. MH in Nepal.  [Accessed 7th 

December, 2020]; Available from: http://microhydro.org.np/mh-in-nepal/. 

91. Alternative Energy Promotion Centre, Renewable Energy Subsidy Delivery 

Mechanism, 2073. 2016, Government of Nepal: Kathmandu, Nepal. 

92. Legros, G., Rijal, K., and Seyedi, B., Decentralized Energy Access and the 

Millennium Development Goals. 2011, Rugby, UK: Practical Action Publishing 

Limited. 

93. Bhandari, R., Saptalena, L.G., and Kusch, W., Sustainability assessment of a 

micro hydropower plant in Nepal. Energy, Sustainability and Society, 2018. 8(1): 

p. 3. 

94. Nepal Micro Hydro Development Association. Training Activities.  [Accessed 

7th December, 2020]; Available from: http://microhydro.org.np/training-

activities/. 

95. Hartvigsson, E. and Ahlgren, E.O., Comparison of load profiles in a mini-grid: 

Assessment of performance metrics using measured and interview-based data. 

Energy for Sustainable Development, 2018. 43: p. 186-195. 

96. Maher, P., Smith, N.P.A., and Williams, A.A., Pico hydro power for rural 

electrification in developing countries. International Journal of Ambient Energy, 

1998. 19(3): p. 143-148. 

97. Khadka, S.S. and Maskey, R.K. Performance study of Micro-hydropower system 

in Nepal. in International Conference In Sustainable Energy Technologies 

(ICSET), September 24th to 27th. 2012. Kathmandu, Nepal. 

98. Multi Electrical P Ltd., Monitoring of energy consumption patterns of 

mini/micro-hyro projects promoted under the Alternative Energy Promotion 

Centre. 2016: Kathmandu. 

99. Smith, N.P.A., Key factors for the success of village hydro-electric programmes. 

Renewable Energy, 1994. 5: p. 1453-1460. 

100. Lord, A., Assessment of Micro-Hydropower Project Development in Lamjung 

District, Nepal. 2014, Lutheran World Relief: Maryland. 

101. Upadhayay, S., Evaluating the effectiveness of micro-hydropower projects in 

Nepal.  Master's Thesis. 2009, San Jose State University, California: SHSU 

Scholar Works. 

http://microhydro.org.np/mh-in-nepal/
http://microhydro.org.np/training-activities/
http://microhydro.org.np/training-activities/


References 

255 

102. Tulachan, B.M., Caste-based exclusion in Nepal’s communal micro-hydro plants. 

Undergraduate Economic Review, 2008. 4(1): p. 14. 

103. Trist, E., The evolution of socio-technical systems. Occasional paper, 1981. 

2(1981): p. 1981. 

104. Hughes, T.P., Networks of power: electrification in Western society, 1880-1930. 

1993: JHU Press. 

105. Geels, F.W., From sectoral systems of innovation to socio-technical systems: 

Insights about dynamics and change from sociology and institutional theory. 

Research policy, 2004. 33(6-7): p. 897-920. 

106. Ockwell, D. and Byrne, R., Sustainable Energy for All: Innovation, technology 

and pro-poor green transformations. 2016: Taylor & Francis. 

107. Smith, A., Stirling, A., and Berkhout, F., The governance of sustainable socio-

technical transitions. Research policy, 2005. 34(10): p. 1491-1510. 

108. Sovacool, B.K., D’Agostino, A.L., and Bambawale, M.J., The socio-technical 

barriers to Solar Home Systems (SHS) in Papua New Guinea:“Choosing pigs, 

prostitutes, and poker chips over panels”. Energy Policy, 2011. 39(3): p. 1532-

1542. 

109. Sovacool, B.K., Rejecting renewables: The socio-technical impediments to 

renewable electricity in the United States. Energy Policy, 2009. 37(11): p. 4500-

4513. 

110. Ahlborg, H. and Sjöstedt, M., Small-scale hydropower in Africa: Socio-technical 

designs for renewable energy in Tanzanian villages. Energy Research & Social 

Science, 2015. 5: p. 20-33. 

111. Ulsrud, K., et al., The solar transitions research on solar mini-grids in India: 

Learning from local cases of innovative socio-technical systems. Energy for 

Sustainable Development, 2011. 15(3): p. 293-303. 

112. Terrapon-Pfaff, J., et al., A cross-sectional review: Impacts and sustainability of 

small-scale renewable energy projects in developing countries. Renewable and 

Sustainable Energy Reviews, 2014. 40: p. 1-10. 

113. Jagtap, S., Design and poverty: a review of contexts, roles of poor people, and 

methods. Research in Engineering Design, 2019. 30(1): p. 41-62. 

114. Nieusma, D., Alternative design scholarship: Working toward appropriate 

design. Design Issues, 2004. 20(3): p. 13-24. 

115. Schumacher, E.F., Small is beautiful: A study of economics as if people mattered. 

2011, London, UK: Random House. 

116. Murphy, H.M., McBean, E.A., and Farahbakhsh, K., Appropriate technology–A 

comprehensive approach for water and sanitation in the developing world. 

Technology in Society, 2009. 31(2): p. 158-167. 

117. Pursell, C., The rise and fall of the appropriate technology movement in the 

United States, 1965-1985. Technology and culture, 1993. 34(3): p. 629-637. 

118. Maguire, M., Methods to support human-centred design. International journal of 

human-computer studies, 2001. 55(4): p. 587-634. 

119. Mattson, C.A. and Wood, A.E., Nine principles for design for the developing 

world as derived from the engineering literature. Journal of Mechanical Design, 

2014. 136(12). 

120. Weber, S., The success of open source. 2004, Harvard University Press: 

Cambridge, MA. 

121. Bonaccorsi, A. and Rossi, C., Why open source software can succeed. Research 

policy, 2003. 32(7): p. 1243-1258. 

122. Pearce, J.M. and Mushtaq, U. Overcoming technical constraints for obtaining 

sustainable development with open source appropriate technology. in 2009 IEEE 

Toronto International Conference Science and Technology for Humanity (TIC-

STH). 2009. IEEE. 



References  

 

256 

123. Sawhney, N., et al., ThinkCycle: Supporting Open Source Collaboration and 

Sustainable Engineering Design in Education. 2008. 

124. Appropedia. Welcome to Appropedia. 2020  [Accessed 4 August, 2020]; 

Available from: https://www.appropedia.org/Welcome_to_Appropedia. 

125. Pearce, J., et al., A new model for enabling innovation in appropriate technology 

for sustainable development. Sustainability: Science, Practice and Policy, 2012. 

8(2): p. 42-53. 

126. Reinauer, T. and Hansen, U.E., How open-source hardware can succeed: a 

conceptual framework and case study of small wind turbines, in 11th 

International Sustainability Transition Conference. 2020: Vienna, Austria. 

127. Kostakis, V., et al., Design global, manufacture local: Exploring the contours of 

an emerging productive model. Futures, 2015. 73: p. 126-135. 

128. Kostakis, V., et al., The convergence of digital commons with local 

manufacturing from a degrowth perspective: Two illustrative cases. Journal of 

Cleaner Production, 2018. 197: p. 1684-1693. 

129. Kuo, T.-C., Huang, S.H., and Zhang, H.-C., Design for manufacture and design 

for ‘X’: concepts, applications, and perspectives. Computers & Industrial 

Engineering, 2001. 41(3): p. 241-260. 

130. Bralla, J.G., Design for Manufacturability Handbook. 1998, New York, USA: 

McGraw-Hill Education. 

131. Cox, J., Personal communication. 2018. 

132. Kathmandu Alternative Power and Energy Group. Empowering the nation with 

innovative technologies. 2019  [Accessed 7 August, 2019]; Available from: 

https://online.kapeg.com.np/. 

133. Cox, J., Low head pico hydro recent developments in Nepal. Pico hydro, 2001. 

134. Bhandari, P., Rural livelihood change? Household capital, community resources 

and livelihood transition. Journal of Rural Studies, 2013. 32: p. 126 - 136. 

135. Giddens, E., Research in Microhydropower - A New Zealand Viewpoint. 

Renewable Energy Review, 1986. 8(1). 

136. Alexander, K.V. and Giddens, P.E., Microhydro: Cost-effective, modular systems 

for low heads. Renewable Energy, 2008. 33(6): p. 1379-1391. 

137. Jordan, H.E., ac Motor Control and Protection: Starting, Running Protection, 

and Surge Protection, in Energy-Efficient Electric Motors and their Applications. 

1994, Springer: New York, USA. p. 151-183. 

138. Niraula, S., Pico-Hydro, findings of an Implementation & Monitoring Program. 

2005, Butwal Technical Insitute: Butwal, Nepal. 

139. Eisenhardt, K.M., Building theories from case study research. Academy of 

management review, 1989. 14(4): p. 532-550. 

140. Taylor, S.D., et al., Stimulating the Market for Pico-hydro in Ecuador. IT Power, 

UK, 2003. 

141. Walseth, E.C., Investigation of the Flow through the Runner of a Cross-Flow 

Turbine. 2009, Institutt for energi-og prosessteknikk. 

142. Schumacher, O., Personal communication. 2017. 

143. Fischer, G., Technology Transfer for local production of electromechanical 

equipment, in Case studies of technically and commercially viable mini hydro 

development in Indonesia and dissemination of achievements. Asean Hydropower 

Competence Centre, Indonesia. 

144. Schumacher, O. and Austegard, A., RHL/IAM CROSS FLOW TURBINE. 

145. Smith, N. and Ranjitkhar, G., Nepal case study–part one: installation and 

performance of the pico power pack. Pico Hydro Newsletter, 2000. 2. 

146. Creswell, J.W. and Creswell, J.D., Research design: Qualitative, quantitative, 

and mixed methods approaches. 2017: Sage publications. 

https://www.appropedia.org/Welcome_to_Appropedia
https://online.kapeg.com.np/


References 

257 

147. Rossman, G.B. and Wilson, B.L., Numbers and words: Combining quantitative 

and qualitative methods in a single large-scale evaluation study. Evaluation 

review, 1985. 9(5): p. 627-643. 

148. Knopf, J.W., Doing a literature review. PS: Political Science and Politics, 2006. 

39(1): p. 127-132. 

149. Yin, R.K., How to do better case studies. The SAGE handbook of applied social 

research methods, 2009. 2: p. 254-282. 

150. Marshall, C. and Rossman, G.B., Designing Qualitative Research, 6th edition. 

2014, London, UK: Sage Publications. 

151. Creswell, J.W. and Poth, C.N., Qualitative inquiry and research design: 

Choosing among five approaches. 2016, London, UK: Sage Publications. 

152. Bryman, A., Social Research Methods, 5th edition. 2016, Oxford, UK: Oxford 

University Press. 

153. Bowen, G.A., Document analysis as a qualitative research method. Qualitative 

research journal, 2009. 9(2): p. 27. 

154. Benzon, D.S., The Turgo impulse turbine: a CFD based approach to the design 

improvement with experimental validation. 2016, Lancaster University. 

155. Murcott, S., Co‐evolutionary design for development: influences shaping 

engineering design and implementation in Nepal and the global village. Journal 

of International Development: The Journal of the Development Studies 

Association, 2007. 19(1): p. 123-144. 

156. People Energy & Environment Development Association. Poverty Alleviation 

Through Sustainable Energy. 2019  [Accessed 7 August, 2019]; Available from: 

http://peeda.net/. 

157. Nepal Yantra Shala Energy. Nepal Yantra Shala Energy. 2015  [Accessed 30 

July, 2020]; Available from: http://www.nysenergy.com.np/. 

158. Turbine Testing Lab, K.U. Background and Introduction. 2019  [Accessed 30 

July, 2020]; Available from: http://ttl.ku.edu.np/background-and-introduction/. 

159. Israel, M. and Hay, I., Research ethics for social scientists. 2006, London, UK: 

Sage. 

160. Arnaiz, M., et al., A framework for evaluating the current level of success of 

micro-hydropower schemes in remote communities of developing countries. 

Energy for Sustainable Development, 2018. 44: p. 55-63. 

161. Basnet, U. Renewable Energy Powers Rural Nepal Into the Future. 2014  

[Accessed 26 February, 2020]; Available from: 

https://www.worldbank.org/en/news/feature/2014/02/05/renewable-energy-

powers-rural-nepal-into-the-future. 

162. Furian, P.H., n.b. Nepal political map with capital Kathmandu, cities and rivers. 

Federal democratic republic and landlocked country in South Asia, bordered to 

China and India. English labeling., Editor.: Shutterstock.com. 

163. Alternative Energy Promotion Centre, Renewable Energy Data Book. 2009, 

Ministry of Energy, Government of Nepal: Kathmandu, Nepal. 

164. Numminen, S. and Lund, P.D., Evaluation of the reliability of solar micro-grids 

in emerging markets–issues and solutions. Energy for Sustainable Development, 

2019. 48: p. 34-42. 

165. Rausand, M. and Høyland, A., System reliability theory: models, statistical 

methods, and applications. Vol. 396. 2003: John Wiley & Sons. 

166. Jorde, K., Hartmann, E., and Unger, H., Good & Bad of Mini Hydro Power. 

2009, The ASEAN Centre for Energy: Jakarta. 

167. Sharma, P., Guha-Khasnobis, B., and Khanal, D.R., Nepal Human Development 

Report 2014. 2014: Kathmandu, Nepal. 

http://peeda.net/
http://www.nysenergy.com.np/
http://ttl.ku.edu.np/background-and-introduction/
https://www.worldbank.org/en/news/feature/2014/02/05/renewable-energy-powers-rural-nepal-into-the-future
https://www.worldbank.org/en/news/feature/2014/02/05/renewable-energy-powers-rural-nepal-into-the-future


References  

 

258 

168. Nepal Micro Hydro Development Association, Report on Micro Hydro Installer 

Training. 2016, Nepal Micro Hydro Development Association: Kathmandu, 

Nepal. 

169. Lugt, P.M., A review on grease lubrication in rolling bearings. Tribology 

Transactions, 2009. 52(4): p. 470-480. 

170. Alternative Energy Promotion Centre, Guideline for cooperative model of 

mini/micro hydro projects. 2013, Government of Nepal: Kathmandu, Nepal. 

171. Nepal Electricity Authority. Electricity Tariff. 2018  [Accessed 6 December, 

2019]; Available from: 

https://www.nea.org.np/admin/assets/uploads/Consumer_Tarrif.pdf. 

172. Brüderle, A., Attigah, B., and Bodenbender, M., Productive use of energy–

PRODUSE a manual for electrification practitioners. 2011, Eschborn, Germany: 

European Union Energy Initiative Partnership Dialogue Facility  

173. Baral, P. Burtibang along the Mid-Hill Highway among other nine proposed 

modern towns in disarray. 2020  [Accessed 13 July, 2020]; Available from: 

https://kathmandupost.com/gandaki-province/2020/02/13/burtibang-along-the-

mid-hill-highway-among-other-nine-proposed-modern-towns-in-disarray. 

174. Kunwar, A.J. Burtibang Via Drone. [Video] 2017  [Accessed 9 July, 2020]; 

Available from: https://youtu.be/NXCqsIR04YM. 

175. Ulsrud, K., et al., Village-level solar power in Africa: Accelerating access to 

electricity services through a socio-technical design in Kenya. 2015. 5: p. 34-44. 

176. Drinkwaard, W., Kirkels, A., and Romijn, H., A learning-based approach to 

understanding success in rural electrification: Insights from Micro Hydro 

projects in Bolivia. Energy for Sustainable Development, 2010. 14(3): p. 232-

237. 

177. Sovacool, B.K., A qualitative factor analysis of renewable energy and 

Sustainable Energy for All (SE4ALL) in the Asia-Pacific. Energy Policy, 2013. 

59: p. 393-403. 

178. Bhattacharyya, S.C., Energy access programmes and sustainable development: A 

critical review and analysis. Energy for sustainable development, 2012. 16(3): p. 

260-271. 

179. Sovacool, B.K., et al., Electrification in the Mountain Kingdom: The implications 

of the Nepal power development project (NPDP). Energy for Sustainable 

Development, 2011. 15(3): p. 254-265. 

180. Smits, M. and Bush, S.R., A light left in the dark: The practice and politics of 

pico-hydropower in the Lao PDR. Energy Policy, 2010. 38(1): p. 116-127. 

181. Mirza, U.K., et al., Identifying and addressing barriers to renewable energy 

development in Pakistan. Renewable and Sustainable Energy Reviews, 2009. 

13(4): p. 927-931. 

182. Mainali, B. and Silveira, S., Financing off-grid rural electrification: country case 

Nepal. Energy, 2011. 36(4): p. 2194-2201. 

183. Sovacool, B.K. and Drupady, I.M., Energy access, poverty, and development: the 

governance of small-scale renewable energy in developing Asia. 2016, London, 

UK: Routledge. 

184. Ilskog, E. and Kjellström, B., And then they lived sustainably ever after?—

Assessment of rural electrification cases by means of indicators. Energy Policy, 

2008. 36(7): p. 2674-2684. 

185. Mainali, B. and Silveira, S., Using a sustainability index to assess energy 

technologies for rural electrification. Renewable and Sustainable Energy 

Reviews, 2015. 41: p. 1351-1365. 

186. Madriz-Vargas, R., Bruce, A., and Watt, M., The future of Community Renewable 

Energy for electricity access in rural Central America. Energy research & social 

science, 2018. 35: p. 118-131. 

https://www.nea.org.np/admin/assets/uploads/Consumer_Tarrif.pdf
https://kathmandupost.com/gandaki-province/2020/02/13/burtibang-along-the-mid-hill-highway-among-other-nine-proposed-modern-towns-in-disarray
https://kathmandupost.com/gandaki-province/2020/02/13/burtibang-along-the-mid-hill-highway-among-other-nine-proposed-modern-towns-in-disarray
https://youtu.be/NXCqsIR04YM


References 

259 

187. Ika, L.A. and Donnelly, J., Success conditions for international development 

capacity building projects. International Journal of Project Management, 2017. 

35(1): p. 44-63. 

188. Ikejemba, E.C., et al., The empirical reality & sustainable management failures 

of renewable energy projects in Sub-Saharan Africa (part 1 of 2). Renewable 

energy, 2017. 102: p. 234-240. 

189. Ruggiero, S., Onkila, T., and Kuittinen, V., Realizing the social acceptance of 

community renewable energy: A process-outcome analysis of stakeholder 

influence. Energy research & social science, 2014. 4: p. 53-63. 

190. Alvial-Palavicino, C., et al., A methodology for community engagement in the 

introduction of renewable based smart microgrid. Energy for Sustainable 

Development, 2011. 15(3): p. 314-323. 

191. Nepal Micro Hydro Development Association. Members.  [Accessed 7th 

December, 2020]; Available from: https://microhydro.org.np/members/. 

192. Alexander, I.F. A Better Fit-Characterising the Stakeholders. in CAiSE 

Workshops (2). 2004. 

193. Alternative Energy Promotion Centre, Renewable Energy Subsidy Policy. 2016, 

Government of Nepal: Kathmandu, Nepal. 

194. Winrock International for Agricultural Development, Baseline report of Micro 

Hydro Plants (MHP) selected under Sharing Learning Across Projects: 

Operating MHPs as Commercially Viable Enterprises. 2017: Kathmandu, Nepal. 

195. Suji, M., Governing Micro-Hydro as a Form of Common Property: An Analysis 

of Local Institutions, in Social Science Baha & ANHS Annual Himalayan 

Conference. 2016: Kathmandu, Nepal. 

196. Butchers, J., et al., Understanding sustainable operation of micro-hydropower: a 

field study in Nepal Energy for Sustainable Development, 2020. 57: p. 12-21. 

197. Gurung, A., Ghimeray, A.K., and Hassan, S.H., The prospects of renewable 

energy technologies for rural electrification: A review from Nepal. Energy 

Policy, 2012. 40: p. 374-380. 

198. Alternative Energy Promotion Centre, Terms of Reference for Pre-qualification 

of Consulting Companies for Survey and Design of Micro-Hydropower Project. 

2013, Government of Nepal: Kathmandu, Nepal. 

199. Alternative Energy Promotion Centre, Guidelines for Detailed Feasibility Studies 

of Micro-Hydro Projects. 2018, Government of Nepal: Kathmandu, Nepal. 

200. Alternative Energy Promotion Centre, Micro - Mini Hydro Power Output and 

Household Verification Guidelines. 2008: Kathmandu, Nepal. 

201. Birchall, J., Rediscovering the cooperative advantage-Poverty reduction through 

self-help. 2003: International Labour Organisation. 

202. Alternative Energy Promotion Centre, Bill of Quantities and Specifications of 

Electro-mechanical Equipment and Installations Jhumara Khola  Micro Hydro 

Project (11KW) Laha-06, Jajarkot      

 Alternative Energy Promotion Centre, Editor., Government of Nepal: 

Kathmandu, Nepal. 

203. Alternative Energy Promotion Centre, Micro Hydro Project Construction & 

Installation Guideline. 2013, Government of Nepal: Kathmandu, Nepal. 

204. Matinga, M.N., Gill, B., and Winther, T., Rice cookers, social media, and unruly 

women: Disentangling electricity's gendered implications in rural Nepal. 

Frontiers in Energy Research, 2019. 6: p. 140. 

205. Pokharel, G.R., et al., Decentralized micro-hydro energy systems in Nepal: En 

route to sustainable energy development. Energy Sources, Part B, 2008. 3(2): p. 

144-154. 

206. Gippner, O., Dhakal, S., and Sovacool, B.K., Microhydro electrification and 

climate change adaptation in Nepal: Socioeconomic lessons from the Rural 

https://microhydro.org.np/members/


References  

 

260 

Energy Development Program (REDP). Mitigation and adaptation strategies for 

global change, 2013. 18(4): p. 407-427. 

207. Winrock International for Agricultural Development, Report on Knowledge 

Sharing Between Micro Hydropower Users Committee. 2018: Kathmandu, Nepal. 

208. Smith, N., Motors as generators for micro-hydro power. 1994, London, UK: 

Intermediate Technology Publications. 

209. SUNECO Hydro Turbines. 1.5KW HYDRO TURBINE. 2020  [Accessed 30 

October, 2020]; Available from: https://www.micro-hydro-power.com/Micro-

Hydro-Turbine-Power-Single-Nozzle-XJ25-1.5DCT4-Z.htm. 

210. Židonis, A., et al., Parametric optimisation of two Pelton turbine runner designs 

using CFD. Journal of Hydrodynamics, 2015. 27(3): p. 403-412. 

211. Thingiverse.  [Accessed 17 April, 2020]; Available from: 

https://www.thingiverse.com/. 

212. GrabCAD.  [Accessed 17 April, 2020]; Available from: https://grabcad.com/. 

213. Instructables.  [Accessed 17 April, 2020]; Available from: 

https://www.instructables.com/. 

214. Oxford English Dictionary. "quality, n. and adj.".  [Accessed 7th December, 

2020]; Available from: 

https://www.oed.com/view/Entry/155878?redirectedFrom=quality+assurance. 

215. Alternative Energy Promotion Centre, Bill of Quantities and Specifications of 

Electro-mechanical Equipment and Installations Manpang Khola II Micro Hydro 

Village Electrification Project (11 kw). Alternative Energy Promotion Centre,: 

Kathmandu, Nepal. 

216. Alternative Energy Promotion Centre, Bill of Quantities and Specifications of 

Electro-mechanical Equipment and Installations Sot Khola Micro Hydro Project 

(28KW), Surkhet  Alternative Energy Promotion Centre,: 

Kathmandu, Nepal. 

217. Voros, N., Kiranoudis, C., and Maroulis, Z., Short-cut design of small 

hydroelectric plants. Renewable Energy, 2000. 19(4): p. 545-563. 

218. Gordon, J., Determining ‘‘Ballpark’’costs for a proposed project. Hydro Review, 

2003. 11(1): p. 37-41. 

219. Ogayar, B. and Vidal, P., Cost determination of the electro-mechanical 

equipment of a small hydro-power plant. Renewable Energy, 2009. 34(1): p. 6-

13. 

220. Swift, K.G. and Booker, J.D., Manufacturing process selection handbook. 2013, 

Oxford, UK: Butterworth-Heinemann. 

221. Massey, B.S. and Ward-Smith, A.J., Mechanics of fluids. Ninth edition ed. 2012, 

London, UK: Spon Press. 

222. Pradhan, S.R., Personal communication. 2019. 

223. IEC, IEC 60193:2019 in Hydraulic turbines, storage pumps and pump-turbines - 

Model acceptance tests. 2019. 

224. Dacell, DIGITAL TACHOMETER / RPM SENSOR MAGNET TYPE. 

225. Aplisens, Test Certificate. 2018. 

226. Aplisens, Smart differential pressure transmitter APR-2000ALW. 2018. 

227. Korea Flow Meter Co, Electromagnetic Flowmeter KTM-800 Series. 2019. 

228. Gallego, E., et al., Experimental analysis on the performance of a pico-hydro 

Turgo turbine. Journal of King Saud University-Engineering Sciences, 2020. 

229. Ekanayake, J., Induction generators for small hydro schemes. Power Engineering 

Journal, 2002. 16(2): p. 61-67. 

230. UNI-T, UT241/242/243 Operating manual. 2018. 

231. Ghimire, A., et al. Opportunities and Challenges of introducing Francis Turbine 

in Nepalese Micro Hydropower Projects. in Journal of Physics: Conference 

Series. 2019. IOP Publishing. 

https://www.micro-hydro-power.com/Micro-Hydro-Turbine-Power-Single-Nozzle-XJ25-1.5DCT4-Z.htm
https://www.micro-hydro-power.com/Micro-Hydro-Turbine-Power-Single-Nozzle-XJ25-1.5DCT4-Z.htm
https://www.thingiverse.com/
https://grabcad.com/
https://www.instructables.com/
https://www.oed.com/view/Entry/155878?redirectedFrom=quality+assurance


References 

261 

232. Aggidis, G.A. and Židonis, A., Hydro turbine prototype testing and generation of 

performance curves: Fully automated approach. Renewable Energy, 2014. 71: p. 

433-441. 

233. Alexander, K., Giddens, E., and Fuller, A., Axial-flow turbines for low head 

microhydro systems. Renewable Energy, 2009. 34(1): p. 35-47. 

234. Williamson, S., Modular and scalable low-head pico-hydro generation for off-

grid networks. 2013, University of Bristol. 

235. Remote Hydro Light. RHL Cross Flow Turbine.  [Accessed 9 October, 2019]; 

Available from: http://www.remotehydrolight.com/CrossFlow.php. 

236. Widmer, R., Arter, A., and Eisenring, M., Cross Flow Turbine Fabrication. 1993: 

SKAT, Swiss Centre for Development Cooperation in Technology and 

Managment. 

237. World Bank. Individuals using the Internet (% of population) - Nepal. 2017  

[Accessed 30 October, 2020]; Available from: 

https://data.worldbank.org/indicator/IT.NET.USER.ZS?locations=NP. 

238. Britton, B. 3D Printing in Nepal. 2018  [Accessed 7 December, 2020]; Available 

from: https://medium.com/frontier-technologies-hub/3d-printing-in-nepal-from-

community-to-industry-25ef9b5dbd3e. 

239. Nepal Communitere. Services. 2020  [Accessed 14 October, 2020]; Available 

from: https://nepal.communitere.org/services/. 

240. Leary, J., While, A., and Howell, R., Locally manufactured wind power 

technology for sustainable rural electrification. Energy Policy, 2012. 43: p. 173-

183. 

241. Piggott, H., A wind turbine recipe book. 2013, Scoraig, UK: Scoraig Wind 

Electric. 

242. Young, W.C. and Budynas, R.G., Roark's formulas for stress and strain. Vol. 7. 

2002, New York, USA: McGraw-Hill;. 

243. Budynas, R.G. and Nisbett, J.K., Shigley's mechanical engineering design. Vol. 

8. 2008: McGraw-Hill New York. 

244. Andrews Fasteners Limited. Mechanical Properties for A1, A2 and A4 Austenitic 

Stainless Steel. 2020  [Accessed 12 December, 2020]; Available from: 

https://www.andrewsfasteners.uk/standards/mechanical-properties-for-a1-a2-and-

a4-austenitic-stainless-steel/. 

245. SKF. 7206 BE-2RZP.  [Accessed 26 October]; Available from: 

https://www.skf.com/uk/products/rolling-bearings/ball-bearings/angular-contact-

ball-bearings/single-row-angular-contact-ball-bearings/productid-7206%20BE-

2RZP. 

 

 

 

 

 

 

http://www.remotehydrolight.com/CrossFlow.php
https://data.worldbank.org/indicator/IT.NET.USER.ZS?locations=NP
https://medium.com/frontier-technologies-hub/3d-printing-in-nepal-from-community-to-industry-25ef9b5dbd3e
https://medium.com/frontier-technologies-hub/3d-printing-in-nepal-from-community-to-industry-25ef9b5dbd3e
https://nepal.communitere.org/services/
https://www.andrewsfasteners.uk/standards/mechanical-properties-for-a1-a2-and-a4-austenitic-stainless-steel/
https://www.andrewsfasteners.uk/standards/mechanical-properties-for-a1-a2-and-a4-austenitic-stainless-steel/
https://www.skf.com/uk/products/rolling-bearings/ball-bearings/angular-contact-ball-bearings/single-row-angular-contact-ball-bearings/productid-7206%20BE-2RZP
https://www.skf.com/uk/products/rolling-bearings/ball-bearings/angular-contact-ball-bearings/single-row-angular-contact-ball-bearings/productid-7206%20BE-2RZP
https://www.skf.com/uk/products/rolling-bearings/ball-bearings/angular-contact-ball-bearings/single-row-angular-contact-ball-bearings/productid-7206%20BE-2RZP


Appendices  

 

262 

 Appendices 

 

Appendix A Interview questionnaires 

Appendix B Site assessment procedure 

Appendix C Survey of manufacturing and casting companies 

Appendix D Design for the welded blade 

Appendix E Design for the bolted blade 

Appendix F Experimental testing 

 



Appendices  

Interview questionnaires 

263 

Appendix A 

Interview questionnaires 

A.1 Site assessment interviews 

A.1.1 Survey with plant operator survey 

DQ1 Gender? Male 

 

Female 

DQ2 Age? 15 to 25   

26 to 36  

37 to 45  

46 to 55  

56 or more  

DQ3 What is your education attainment level? Does not know how to 

read  

 

Can read and write   

Incomplete elementary 

school  

 

Completed elementary 

school 

 

Completed high school   

Incomplete high school  

Completed course  

DQ4 How long have you been working as the 

plant operator? 

 

 

 

 

Q1 Are you the only plant 

operator? 

Yes 

 

No 

(go to Q1a) 

Q1a How is the job shared?  

 

Q2 Did anyone have this 

job before you? 

Yes 

 

No 

(go to Q2a) 

Q2a Why did they leave the 

job? 

 

 

 

Q3 Did you attend plant 

operator training? 

Yes 

 

No 

Q4 Do you have a training 

manual from plant 

operator training or any 

other instructional 

documentation that you 

follow? 

Yes, please specify 

 

No 



Appendices  

Interview questionnaires  

 

264 

Q5 What is your salary?   

 

Q6 Is it a good job and 

why? 

Extremely good  

Good  

Not good or bad  

Bad  

Extremely bad  

Why? 

 

 

Q7 Do you have any other 

work? 

Yes, please specify 

 

 

No 

Q8 Does the plant operate 

for the same number 

hour each day? 

Yes, how many? 

 

No 

(Go to Q8a) 

Q8a If different, please enter 

number of hours in 

morning, afternoon and 

night for each day of the 

week? 

Day M A N 

Mo    

Tu    

We    

Th    

Fr    

Sa    

Su    

Q9 How many hours do 

you spend working at 

the MHP plant every 

day? (Either in the 

powerhouse or on the 

civil works) 

 

Q10 Do you follow a 

maintenance schedule?  

Yes  

(go to Q10a) 

 

No 

Q10a Do you have it in the 

powerhouse? 

Yes 

 

No 

Q11 Do you keep a logbook? Yes  

(go to Q11a) 

 

No 

Q11a Do you have it in the 

powerhouse? 

Yes 

 

No 

Q12 Were you given tools 

after commissioning? 

Yes (go to Q12a) 

 

No 

Q12a Do you have them in the 

powerhouse? 

Yes 

 

No 

Q13 Do you keep spare 

parts?  

Yes (go to 13a) 

 

No 

Q13a  If yes, what? 

(Tick all that apply)   

Belt  

O-ring material  

Gasket material  

Grease  

Bearings  
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Fuses  

Paint  

Oil  

Others, please specify. 

 

 

 

 

Q14 Where do you buy these 

spare parts? Specify for 

all mentioned in 

previous question 

 

 

 

 

 

 

Q15 What parts of the 

system have broken in 

the last year? 

(Tick all that apply) 

 

 

 

 

 

 

 

Civil components  

Valves  

Turbine runner  

Bearing  

Turbine shaft  

Generator bearing  

Belt  

ELC  

Ballast load  

Other electrical   

Other, please specify? 

 

Q16 If working: In the last 

year, what part caused 

the biggest problem? 

E.g., longest time the 

turbine wasn’t working. 

 

If broken: what is the 

current problem with 

turbine? 

Civil components  

Valves  

Turbine runner  

Turbine bearing  

Turbine shaft  

Generator bearing  

Belt  

ELC  

Ballast load  

Other electrical  

Other, please specify? 

 

Q17 If working: Due to the 

biggest problem in the 

last year, how long was 

the system not 

working?  

If broken: How long 

has the system not been 

working? 

 

 

 

 

 

 

 

Q18 If working: who found 

the problem?  

If broken: Has the 

problem been found? If 

yes, by who? 
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Please specify company 

name and 

or/profession, location, 

approximate travel 

time, how they were 

contacted 

Q19 If working: Who 

repaired the problem? 

If broken: Who will 

repair the problem? 

Please specify company 

name and 

or/profession, location, 

approximate travel time 

Plant operator  

Original turbine 

Manufacturer 

 

Different turbine 

manufacturer 

 

A non-specialist 

workshop 

 

Other, please specify. 

 

Q20 Do you stop the turbine 

to do planned 

maintenance? 

Yes 

(go to Q20a) 

No 

Q20a How often?  

 

Q21 If there is a cover, do 

you ever remove it to 

inspect the turbine?  

Yes 

(go to Q21a) 

 

No 

Q21a How often?  

 

Q22 Do you know how to 

remove the cover? 

Yes 

 

No 

Q23 How often do you 

check temperature of 

the bearings? 

 

 

 

Q24 How often do you 

listen to bearings? 

 

 

Q25 How often do you 

grease bearings?  

 

 

Q26 How often do you flush 

silt from the forebay 

tank? 

 

 

 

Q27 How often do you flush 

silt from the silt tank? 

 

 

Q28 How often do you clean 

the trash rack? 

 

 

Q29 How often do you write 

down energy meter 

values? 

 

 

 

Q30 How often do you write 

down current, voltage 

and frequency? 

 

 

 

Q31 If you find a problem 

with the turbine that 

you cannot fix yourself, 

what do you do?  
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A.1.2 Semi-structured interview with a management representative 

DQ1 Gender? Male 

 

Female 

DQ2 Age? 15 to 25   

26 to 36  

37 to 45  

46 to 55  

56 or more  

DQ3 What is your education attainment level? Does not know how to 

read  

 

Can read and write   

Incomplete elementary 

school  

 

Completed elementary 

school 

 

Completed high school   

Incomplete high 

school 

 

Completed course  

DQ4 How long have you been involved in 

managing the MHP plant?  

 

 

The following questions will be asked, where applicable the interviewee will be given the 

opportunity to expand on their answer: 

Q1 How is the MHP plant owned? Do you think this structure works well? E.g., 

private, co-operative or community owned 

Q2 How many households are connected?  

Q3 Is there a connection fee for new consumers? If yes, how much? 

Q4 What is the payment structure used and how much do consumers pay? E.g., 

consumption based, fixed amount per household, fixed amount per appliance 

Q5 How often do consumers pay?  

Q6 How is the money collected? 

Q7 Do all consumers pay regularly?  

Q8 What happens if a consumer misses a payment?  

 

Q9 

What non-residential 

facilities/businesses/productive end uses are 

connected to the hydropower? 

 

Hospital/health clinic 

Post office 

School 

Community centre 

Local government offices 

Flour mill/grain milling 

Bakery 

Furniture making 

Grocery shop 

Barber shop 

Tea shop 

Other (please specify all) 

Q8 What is the payment structure for productive end uses and what do they pay?  
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Q9 Approximately, how much money is collected per month? 

Q10 Do you keep accounts of the plant?  

Q11 What is the plant operator’s salary?  

Q12 Is there money budgeted for routine maintenance and purchasing spares?  

Q13 Where is the nearest place to buy spare parts? 

Q14 Is there good community interest in the MHP plant? 

Q15 If there is a problem with the turbine that the plant operator is unable to repair, 

what happens next? 

Q16 When there have been technical problems, has there been enough money to pay 

for repairs? 

Q17 Do you know if there is spare capacity that could be used by household 

consumers or productive end uses? If yes, how much? 

Q18 Are there any social and political issues that have been caused by the MHP plant?  

 

A.1.3 Semi-structured interview with a consumer 

DQ1 Gender? Male Female 

DQ2 Age? 15 to 25   

26 to 36  

37 to 45  

46 to 55  

56 or more  

DQ3 What is your education attainment level? Does not know how to 

read  

 

Can read and write   

Incomplete 

elementary school  

 

Completed elementary 

school 

 

Completed high 

school  

 

Incomplete high 

school 

 

Completed course  

DQ4 How long have you been receiving 

electricity from the MHP plant?  

  

 

The following questions will be asked, where applicable the interviewee will be given the 

opportunity to expand on their answer: 

Q1 How much do you pay for the electricity? 

Q2 Do you think this is a good price?  

Q3 Would you pay more money to use more electricity? 

Q4 What happens if you miss a payment? 

Q5 How often is the supply bad? Is this at particular times? E.g., no electricity when 

you want it, not enough electricity for some appliances, dim lights etc. 

Q6 Are you told when there is an issue with the supply?  
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Q7 What do you use electricity for?   

Q8 What do you use for lighting when there is no electricity? And what is the cost of 

this?  

Q9 What is electricity used for in the village? (Tick all 

that apply) 

Lighting 

Mobile phone charging 

Television 

Radio 

Computer 

Heater 

Rice cooker 

Fridge 

Other, please specify all 

Q10 Has the MHP plant make your life easier? If yes, how? e.g., spend less money on 

lighting, light in the evenings, new opportunities  

Q11 Would you prefer grid electricity? 

 

A.2 Project process interviews 

A.2.1 Interview with a representative from a manufacturing company 

Q1 Do you think plant operators are well trained? 

Q2 What is the most common turbine fault once a turbine is in operation? Why do you 

think this problem occurs? 

Q3 If you are told of a problem with a turbine in the field, what is the process that leads 

to its repair? 

Q4 After a feasibility study is complete, what happens before manufacture begins? 

E.g., turbine selection, design, production drawings 

Q5 Is there a baseline design that you use? How is this adapted? 

Q6 How are the following made? E.g., process, material including 

grade (if known), finish, coating? 

Pelton runner 

Crossflow 

runner 

Nozzle 

Spear 

Penstock 

Q7 Have you experienced problems with communities building civil works? How do 

you mitigate against these problems? 

Q8 When ordering material and components from India and China, do you consult 

with other manufacturers in the local area to order in bulk to reduce costs? 
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Appendix B 

Site assessment procedure 

G
en

er
a

l 
in

fo
rm

a
ti

o
n

 

TAKE GPS OF POSITION OF: 

•       NEAREST ROAD HEAD 

•       APPROXIMATE VILLAGE CENTRE 

•       POWERHOUSE  

NOTE THE FOLLOWING:  

•       DATE AND TIME OF ASSESSMENT 

•       APPROXIMATE WALKING TIME FROM NEAREST ROAD HEAD TO 

THE POWERHOUSE  

•       APPROXIMATE WALKING TIME FROM THE VILLAGE TO THE 

POWERHOUSE 

•       WHO IS PRESENT DURING THE ASSESSMENT 

  

In
ta

k
e 

a
n

d
 w

ei
r
 

Intake is clean, free from erosion with no obvious cracks visible. Moving parts 

appear oiled and free to move. 
5 

Some dirt, debris and a small amount erosion is visible. Cracks may be present, 

but they are small. Any obvious leaking is minor. 
3 

Intake is heavily contaminated with obvious signs of erosion. Cracks are 

significant and/or leakage is obvious. 
1 

Key points for installation quality:  

•       Is the sluice gate oiled?  

•       Is the weir well supported? E.g., width of gabions equivalent to water depth 

•       Is there provision to exclude large floating debris? 

•       Is there a gate or stop logs to close scheme for maintenance? 

•       Is there a sluice gate? And is it in an effective position to flush deposited 

sediments? 
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C
h

a
n

n
el

 

Channel is clean, free from erosion with no obvious cracks visible. Obvious effort 

to minimise entry of debris into channel e.g., banks around channel are swept and 

overhanging vegetation cut back. 

5 

Some dirt, debris and a small amount erosion is visible. Cracks may be present, 

but they are small and any obvious leaking is minor. Some effort to minimise 

entry of debris into channel.  

3 

Channel is heavily contaminated with obvious signs of erosion. Cracks are 

significant and/or leakage is obvious. No obvious effort to minimise entry of 

debris into channel.  

1 

Key points for installation quality:  

•       How is the canal lined? 

•       How fast is the flow? 

•       How steep are the slopes on either side of the channel? Is there vegetation on these 

slopes? 

  

F
o

re
b

a
y

 t
a

n
k

 

Forebay tank and trash rack are clean, free from erosion with no obvious cracks 

visible. Minimal silt build-up. Trash rack is clean.  
5 

Some dirt, debris and a small amount erosion is visible. Cracks may be present, 

but they are small. Any obvious leaking is minor. Some silt is obvious in bottom 

of bay.  

3 

Forebay and trash rack is heavily contaminated with obvious signs of erosion. 

Cracks are significant and/or leakage is obvious. Significant build-up of silt in the 

bottom of bay. 

1 

Key points for installation quality:  

•       How large is the trash rack bar spacing? What direction do the bars go in? 

•       Can the trash rack be easily removed? 

•       Is there a service area for the trash rack? 

•       Is the shape good for settling silt? E.g., length of transition should be about 3 times 

the width of headrace  

•       Is there a flushing gate? Is it in an effective position to flush deposited sediments? 

  

P
en

st
o

ck
 

Clean with good quality of paintwork (or well covered if PVC), free from rust 

with no obvious leaks visible. Bolts are all tight.  
5 

A little dirty with tired paintwork (or some exposed areas if PVC) and possible 

visible rust. Any obvious leaking is minor. Some bolts may be a little loose.  
3 

Very dirty with obvious rust (or exposed areas if PVC). Leakage is obvious. Bolts 

are loose and or/missing.  
1 

Key points for installation quality:  

•       Is the penstock made from PVC, steel or other? 

•       Are there regularly spaced sliding blocks with straps? 

•       Are there expansion joints after anchor blocks? 

•       Is there a thrust block before powerhouse? 

•       Do all the blocks and/or supports have solid foundations? 

•       Do drainage routes takes water away from supports? 
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T

a
il

ra
ce

 

Tailrace is clean, free from erosion with no obvious cracks visible. Water is 

effectively returned to the river.  
5 

Some dirt, debris and a small amount erosion is visible. Cracks may be present, 

but they are small. 
3 

Tailrace has debris in it and obvious signs of erosion. Cracks are significant. 1 

Key points for installation quality:  

•       How is the water being returned to the river? 

•       Is there an effective method to slow the flow before it returns to the river?  

•       Is there reasonable access into the tail race if required? 

  

In
te

rn
a

l 
p

ip
e
w

o
rk

 a
n

d
 v

a
lv

es
 

Clean with good quality of paintwork, free from rust with no obvious leaks 

visible. Bolts are all tight.  
5 

A little dirty with tired paintwork and possible visible rust. Any obvious leaking 

is minor. Some bolts are a little loose.  
3 

Very dirty with obvious rust. Leakage is obvious. Bolts are loose and or/missing.  1 

READING OF STATIC PRESSURE 

Key points for installation quality:  

•       Do any valves freely turn? 

  

P
o

w
er

h
o

u
se

 

A solid structure which is well looked after and a good place to work. Clean and 

organised.  
5 

There are some signs of deterioration but it still a safe place for the equipment. 

Some dust and dirt.  
3 

Powerhouse has signs of deterioration since its construction e.g., leaking roof, 

broken door etc. There is lots of dust and/or oil on the floor of the powerhouse. 
1 

Key points for installation quality:  

•       Is there a lock on the door? 

•       Does the layout provide enough space to work in?  

•       Is there sufficient lighting for work? 

•       Is the access good?  

•       Is their good protection from flooding? 
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T
u

rb
in

e
 

Clean with good quality of paintwork. All drive components are clean and free 

from grease. Belt is tight and has cover. Casing bolts are tight. Sounds correct.  
5 

Some dirt and grease. Paintwork is tired. Belt and drive components are showing 

signs of wear. 
3 

Very dirty with grease on shafts and belts. Belt is not covered. Potential leaking 

from casing and loose bolts. Abnormal sound at bearing and they appear to be 

running hot? 

1 

LISTEN WITH SCREW DRIVER TO BEARINGS  

 

Key points for installation quality:  

•       Is there a manual control system? 

•       Can the positions of components be easily adjusted on the base frame? 

•       Are washers and bolts correctly sized? 

•       Are there shims in place? 

•       Is the electro-mechanical machinery placed on adequate foundations?  

•       Are there cracks in the turbine foundations? 

•       Do components look properly aligned?   

  

C
o

n
tr

o
l 

p
a

n
el

, 
ca

b
li

n
g

 a
n

d
 b

a
ll

a
st

 l
o

a
d

 

Cable outers are in good condition. All connections look tight with cable shoes 

where necessary. Cables are all sensibly and safely routed. Ballast is well 

protected and ventilated. 

5 

Some cables are looking worn and loose but no exposed wire. Some cable routing 

is potentially hazardous.  
3 

Cables take dangerous routes. Wires are exposed. Cable shoes are missing in 

places. Fuses are also missing. Ballast is not properly protected. 
1 

RECORD GENERATOR POWER, VOLTAGES, CURRENTS AND 

FREQUENCY 

 

Key points for installation quality:  

•       Does the panel have a lock? 

•       Are the contents of the panel well arranged?  

•       Are the contents of the panel labelled?  

•       Are cables to and from the panel sensibly routed? 

•       Is the control panel earthed? 

•       Is the ballast in a safe position?  

•       Does the ballast receive good ventilation?  
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G

en
er

a
to

r 
Clean, with good quality of paintwork. No exposed moving parts or cables. All 

cabling is covered and safely leaves the generator.  
5 

Some dust and dirt but in reasonable condition. Some cables exposed but risk is 

small.  
3 

Dirty machine. Exposed moving parts and/or cables. 1 

LISTEN TO GENERATOR  

 

Key points for installation quality:  

•       Is the generator well positioned to receive a good airflow? 

•       Is cabling from the AVR securely protected? 

•       Is the generator earthed? 
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Appendix C 

Survey of manufacturing and casting 

companies 

C.1 Survey of manufacturing companies 

No. Question 

Section 1: General Information 

1.1 Name of the Company 

2.1 What is your position in the company? 

2.2 To what level have you been educated? 

2.3 Have you completed any other training? If yes, please specify 

2.4 How many years of experience in micro-hydro do you have? 

3.1 How long has the company been trading? 

3.2 What services do the company provide? 

3.3 
What types of turbines does your company manufacture? More or less than 50 

projects of each? 

3.4 Do you produce as-built drawings? 

3.5 Are these available at the site? 

3.6 Do you deliver a full bill of materials including suppliers to site? 

3.7 Do you do repairs of other manufacturers equipment? 

Section 2: Components 

4.1 
For a Pelton Turbine system, what are the most common faults (Rank in order 

of frequency) 

4.2 For each fault, what action occurs? 

4.3 
For a Crossflow Turbine system, what are the most common faults (Rank in 

order of frequency) 

4.4 For each fault, what action occurs? 

4.5 Are any components tested? If so, how? 

Component: Crossflow runner 

5.1 What materials can this part by made from? 

5.2 
If this part can be made from more than one material, what determines the 

choice of material? 

5.3 Describe how you would make a Crossflow Runner. 

5.4 Is the runner balanced? 

5.5 
For this part, are the same processes used for every project? e.g. 10 kW vs. 

100 kW 

5.6 Have you always manufactured crossflow runners in this way? 

5.7 
Have you developed any of your own jigs or methods to make the 

manufacturing easier? 

Component: Pelton Runner 

6.1 What materials can this part by made from? 
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6.2 
If this part can be made from more than one material, what determines the 

choice of material? 

6.3 Describe how you would make a Pelton Runner 

6.4 How is accuracy of buckets to the original design ensured? 

6.5 Is the runner balanced? 

6.6 How are the blades aligned with the jet? 

6.7 
For this part, are the same processes used for every project? E.g. 10 kW vs. 

100 kW 

6.8 Have you always manufactured Pelton runners in this way? 

6.9 
Have you developed any of your own jigs or methods to make the 

manufacturing easier? 

Component: Generator 

7.1 What type of generator do you use for micro-hydro systems? 

7.2 Is this the same for Pelton and Crossflow systems? 

7.3 Is this the same for different sizes of system? 

7.4 How do you determine what type of generator you use? 

7.5 How do you determine which supplier you obtain from? 

7.6 Where is your supplier based? 

7.7 What is the typical lead time for this component? 

7.8 When purchasing this component, how many are bought at a time? 

Component: Turbine shaft 

8.1 What materials can this part by made from? 

8.2 
If this part can be made from more than one material, what determines the 

choice of material? 

8.3 
For this part, are the same processes used for every project? E.g. 10 kW vs. 

100 kW 

8.4 What is the typical lead time for this component? 

8.5 When purchasing this component, how many are bought at a time? 

8.6 How do you check bearing tolerances on the shaft? 

Component: Pelton nozzle 

9.1 Is this part bought-in or manufactured on-site? 

9.2 What materials can this part by made from? 

9.3 
If this part can be made from more than one material, what determines the 

choice of material? 

9.4 Describe how this part is made. 

9.5 
For this part, are the same processes used for every project? E.g. 10 kW vs. 

100 kW 

Component: Pelton spear 

10.1 Is this part bought-in or manufactured on-site? 

10.2 What materials can this part by made from? 

10.3 
If this part can be made from more than one material, what determines the 

choice of material? 

10.4 Describe how this part is made. 

10.5 
For this part, are the same processes used for every project? E.g. 10 kW vs. 

100 kW 

Section 3: Processes 

11.1 Does casting occur in-house or off-site? 

11.2 If off-site, where does casting take place? 

11.3 How long does it take to order and procure cast components? 
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11.4 If known, what type of casting is used? 

11.5 If known, what sort of tolerance is achievable through casting? 

Tolerances 

12.1 
In general, what is the tolerance/accuracy available for micro-hydro 

components? 

12.2 What is the highest tolerance/accuracy achievable? 

Welding 

13.1 What types of welding do you have? 

13.2 What is the minimum sheet thickness for welding in mild steel? 

13.3 What qualification do the company's welders have? 

13.4 After welding, do you relieve internal stresses through heat treatment? 

13.5 Are critical components pre-heated to reduce stress? 

13.6 Do you have a welding sequence that welders follow? 

13.7 Are welded parts tested? 

Oxy-acetylene 'gas' cutting 

14.1 What is the maximum thickness of steel that can be cut? 

14.2 What is the expected tolerance? 

14.3 What method is used to cut accurately in a straight line? 

14.4 Is any other form of sheet metal cutting available? 

Roller bending and folding 

15.1 What is the largest width of sheet that can be rolled/folded? 

15.2 What is the maximum thickness of sheet that can be rolled/folded? 

Painting 

16.1 What types of painting do you use? 

16.2 What is the painting specification for surfaces in contact with water? 

16.3 Is sandblasting applied before painting? 

Metrology 

17.1 What equipment do you use? 

17.2 For each equipment used, what is the accuracy of the measuring equipment? 

17.3 For each equipment used, what is the range that can be measured? 
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C.2 Survey of casting companies 

No. Question 

1 What different types of casting are available? 

2 Why are these types used? 

3 What quality of sand is used and why? 

4 What metals (and what grade) are available to cast? 

5 Who supplies the metal material? 

6 Who supplies the sand material? 

7 What is the thinnest section that can be cast? 

8 What is the maximum weight that can be cast? 

9 Are cast pieces tested for internal quality? 

10 
If a manufacturer sends a metal Pelton bucket to be cast - what is the procedure? Do you 

make your own pattern first, and use this to cast the rest of the buckets? 

11 What is the typical delivery time? 

12 Do you ever cast a whole runner? 
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C.3 List of randomly generated sites 

No. 
Flow 

(L/s) 

Head 

(m) 

Penstock length 

(m) 
No. 

Flow 

(L/s) 
Head (m) 

Penstock 

length (m) 

1 16 128 181 60 102 100 141 

2 18 114 161 61 276 37 52 

3 116 18 25 62 53 193 273 

4 12 177 250 63 61 168 238 

5 116 19 27 64 281 37 52 

6 122 19 27 65 70 153 216 

7 21 112 158 66 96 116 164 

8 238 10 14 67 81 145 205 

9 133 18 25 68 77 154 218 

10 26 95 134 69 258 46 65 

11 208 12 17 70 62 199 281 

12 18 146 206 71 98 127 180 

13 183 15 21 72 286 46 65 

14 158 18 25 73 104 128 181 

15 27 106 150 74 92 154 218 

16 244 12 17 75 78 182 257 

17 170 18 25 76 119 120 170 

18 165 21 30 77 114 128 181 

19 151 23 33 78 108 138 195 

20 184 19 27 79 341 44 62 

21 244 15 21 80 331 46 65 

22 238 16 23 81 334 46 65 

23 181 22 31 82 117 132 187 

24 175 23 33 83 157 108 153 

25 26 155 219 84 251 68 96 

26 22 190 269 85 89 192 272 

27 24 175 247 86 100 171 242 

28 26 177 250 87 287 60 85 

29 179 26 37 88 116 150 212 

30 28 170 240 89 251 70 99 

31 221 23 33 90 312 57 81 

32 216 24 34 91 100 179 253 

33 249 21 30 92 161 112 158 

34 28 192 272 93 92 199 281 

35 292 20 28 94 346 54 76 

36 161 39 55 95 353 54 76 

37 176 36 51 96 103 189 267 

38 150 43 61 97 322 62 88 

39 216 30 42 98 271 74 105 

40 167 39 55 99 347 58 82 

41 53 125 177 100 327 62 88 

42 63 110 156     

43 169 42 59     

44 231 31 44     

45 251 29 41     

46 228 33 47     

47 210 36 51     

48 244 31 44     

49 213 36 51     

50 258 30 42     

51 244 32 45     

52 195 41 58     

53 187 43 61     

54 236 39 55     

55 243 39 55     

56 59 166 235     

57 82 121 171     

58 87 115 163     
59 257 39 55     
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Appendix D 

Design for the welded blade 

D.1 Loading on a blade 

To model the worst-case loading on a single blade, it was assumed that this would occur 

due to the force of the jet applied at 25m head. It was also assumed that this force was 

applied to a single blade, therefore, the blade was held in a constant position whilst this 

force was applied. Figure D.1 shows the loading on a single blade.  

 

Figure D.1 – Loading on a single blade.  

The force of the jet can be calculated using:  

𝐹𝑗 = �̇�𝑣 = 𝜌𝐴𝑣2 =
𝜌𝜋𝐷𝑗

2

4
(𝐷. 1) 

where m dot is mass flow rate, v is water velocity, ρ is water density, A is area of the jet, 

Dj is jet diameter, g is acceleration due to gravity and H is head. For a head of 25 m, jet 

diameter of 0.0307 m, and acceleration due to gravity of 9.81 m/s2, this results in Fj = 363 

N.  

Due to the inclination angle of the jet of 22.5°, this jet force can be considered as an axial 

component of 139 N and a radial component of 335 N. 
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D.2 Bending moment calculation welded blade 

The jet hits the blade close to its centre, this causes a bending moment in the stem [54]. As 

the runner rotates, each blade experiences a peak bending moment which falls to zero when 

the blade is not in contact with the jet. As such, this cyclical loading can result in a failure 

due to fatigue. To consider the welded runner, it is assumed that maximum bending stress 

occurs on the section of the stem located furthest from the applied load. Figure D.2 shows 

the approximate location of the highest load which occurs at the edge of a stem, the section 

through this point is identified as A-A. Figure D.3 shows the section view along A-A.  

 

Figure D.2 - Jet force acting on the welded runner with point of maximum stress identified. 
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Figure D.3 - Section where maximum bending moment occurs for the welded runner. 

 

Using the method described in [54], Table D.1 shows the parameters and results used to 

calculate the fatigue stress in the stem.  

 Table D.1 - Parameters and results in the welded blade bending moment calculation. 

Parameter Result 

Width 𝑏 = 10 𝑚𝑚 

Height 𝑑 = 14 𝑚𝑚 

Length of the parallelogram overhang 𝑎 = 2.5 𝑚𝑚 

Distance to neutral fibre 𝑦 = 5 𝑚𝑚 

Second moment of area for a 

parallelogram [242] 𝐼 =
𝑏𝑑(𝑏2 + 𝑎2)

12
= 1239.58 𝑚𝑚4 

Stem section modulus 𝑍 =
𝐼

𝑦
= 247.92 𝑚𝑚3 

Moment arm from jet to section 𝑥 = 29 𝑚𝑚 

Radial component of the jet force 𝐹𝑟 = 335 𝑁 

Moment 𝑀 = 𝐹𝑗𝑒𝑡 × 𝑎 = 9,715 𝑁𝑚𝑚 

Fatigue stress in stem 𝜎𝑓 =
𝑀

𝑍
= 39.19 𝑁/𝑚𝑚2 

 

In [54], Thake provides estimates of the maximum recommended fatigue design stress for 

Pelton buckets cast in a number of different materials. These estimates consider the applied 
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cyclical stresses and the quality of the cast bucket. For cast steel, the average maximum 

fatigue design stress is 40 N/mm2, therefore the stem design is acceptable.   

D.3 Weld stress calculations 

As well as the stem, it is also necessary to determine whether the welding on a single blade 

is sufficient to sustain the worst case loading on a single blade. It is assumed that this load 

was fully supported by the weld and that the runner ring (shown transparently in Figure 

D.1 provided) no additional support. The proposed welding arrangement used a v-notch 

weld on the top and a fillet weld on the underside of the blade. Figure D.4 shows the 

welding arrangement. For both welds, the throat length is assumed to be equal.   

 

Figure D.4 - Proposed welding arrangement. 

 

The loading can be resolved into horizontal and vertical components. For simplicity, both 

welds were modelled as identical fillet welds. Figure D.5 shows a diagram with the resolved 

components of the applied force, modelled welding arrangements and key dimensions.  
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Figure D.5 - Diagram showing assumed loading and welding arrangement. 

 

For simplicity and ease of calculation, each of the resolved components of the applied force 

was modelled as if applied vertically. Figure D.6 shows the horizontal component of the 

force modelled in a vertical position. Figure D.7 shows the dimensions of the welds.  

 

Figure D.6 - Horizontal component of force resolved into vertical position. 
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Figure D.7 - Dimensioning of the welds for horizontal component calculation. 

 

Table D.2 lists the parameters, their values and where applicable the formulae that leads to 

their calculation. It is assumed that a 7018 electrode (mentioned as available in Nepal), 

where the design stress of approximately pw = 220N/mm2  [243]. 
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Table D.2 - Parameters and results in the horizontal component calculation. 

Parameter Result 

Length of weld 𝑏 = 9 𝑚𝑚 

Distance between weld 𝑑 = 6 𝑚𝑚 

Vertical distance from 

weld centroid 
𝑦 = 4.5 𝑚𝑚 

Unit weld area 𝐴𝑢 = 2𝑑 = 2 × 9 = 18 𝑚𝑚2 

Unit moment of inertia 𝐼𝑢 =
𝑑3

6
=

93

6
= 121.5 𝑚𝑚4 

Applied force 𝑃 =  𝐹𝑗 cos(22.5) =  335 𝑁 

Applied moment 𝑀 = 𝑃 ∙ 𝑦 = 11,725 𝑁𝑚𝑚 

Shear stress 𝜏𝑟 =
𝑃

𝐴𝑢
=

335

18
= 18.6 𝑁/𝑚𝑚2 

Bending stress 𝜏𝑠 =
𝑀 ∙ 𝑦

𝐼𝑢
=

11725 × 4.5

121.5
= 434 𝑁/𝑚𝑚2 

Resultant stress 𝜏𝑟 = √𝜏𝑠
2 + 𝜏𝑏

2 =  √18.62 + 4342 = 434 𝑁/𝑚𝑚2 

Throat thickness 𝑎 =
𝜏𝑟

𝑝𝑤
=

434

220
= 1.97 

Leg length 𝑧 =  𝑎√2 =  2.79 𝑚𝑚 

 

The required leg length to meet the design stress is 2.79. For a leg length of 7 mm as is 

achievable, the factor of safety is 2.51.  

The calculation is repeated for the horizontal component of the applied force. Figure D.8 

shows the vertical component of the force. Figure D.9 shows the dimensions of the welds.  
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Figure D.8 - Vertical component of force. 

 

 

Figure D.9 - Dimensioning of the welds for vertical component calculation. 

 

Table D.3 lists the parameters, their values and where applicable the formulae that leads to 

their calculation. Again, it is assumed that the design stress is for an Electrode E35 steel 

S275 is pw = 220N/mm2.  
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Table D.3 - Parameters and results in the vertical component calculation. 

Parameter Result 

Distance between 

weld 
𝑏 = 6 𝑚𝑚 

Length of weld 𝑑 = 9 𝑚𝑚 

Vertical distance from 

weld centroid 
𝑦 = 3 𝑚𝑚 

Unit weld area 𝐴𝑢 = 2𝑑 = 2 × 9 = 18 𝑚𝑚2 

Unit moment of 

inertia 𝐼𝑢 =
𝑏𝑑2

2
=

6 × 92

2
= 243 𝑚𝑚4 

Applied force 𝑃 =  𝐹𝑗 sin(22.5) =  139 𝑁 

Applied moment 𝑀 = 𝑃 ∙ 𝑦 = 4862 𝑁𝑚𝑚 

Shear stress 𝜏𝑟 =
𝑃

𝐴𝑢
=

139

18
= 7.22 𝑁/𝑚𝑚2 

Bending stress 𝜏𝑠 =
𝑀 ∙ 𝑦

𝐼𝑢
=

4862 × 3

243
= 60 𝑁/𝑚𝑚2 

Resultant stress 𝜏𝑟 = √𝜏𝑠
2 + 𝜏𝑏

2 =  √7.222 + 602 = 60. 4𝑁/𝑚𝑚2 

Throat thickness 𝑎 =
𝜏𝑟

𝑝𝑤
=

60.4

220
= 0.274 𝑚𝑚 

Leg length 𝑧 =  𝑎√2 =  0.388 𝑚𝑚 

 

For leg length of 7 mm, the factor of safety is 18. The calculations indicate that for the 

worst-case loading, a weld with 7 mm leg length is acceptable.  
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Appendix E 

Design for the bolted blade 

E.1 Bending moment calculation for bolted blade 

For the bolted blade, it is assumed that the same worst-case loading is applied as in the case 

of the welded blade. For the bolted blade, it is assumed that the greatest bending moment 

occurs at the point on the stem at a radius marginally larger than the radius of the runner 

hub. Figure E.1 shows the location of the jet force, the point of greatest bending moment 

(indicated by the red cross) and the section A-A that passes through this point. Figure E.2 

shows the section A-A where the maximum bending stress occurs.  

 

Figure E.1 - Jet force acting on the bolted runner with point of maximum stress identified. 
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Figure E.2 - Section where maximum bending moment occurs for the bolted runner. 

 

Table E.1 shows the parameters and results used to calculate the fatigue stress in the stem.  

Table E.1 - Parameters and results in the bolted blade bending moment calculation. 

Parameter Result 

Width ℎ = 11 𝑚𝑚 

Height 𝑏 = 15 𝑚𝑚 

Distance to neutral fibre 𝑦 = 5.5 𝑚𝑚 

Second moment of area [242] 𝐼 =
𝑏ℎ3

12
= 3093.75 𝑚𝑚4 (𝐸. 1) 

Stem section modulus 𝑍 =
𝐼

𝑦
= 562.5 𝑚𝑚3 (𝐸. 2) 

Moment arm from jet to section 𝑥 = 26 𝑚𝑚 

Radial component of the jet force 𝐹𝑟 = 335 𝑁 

Moment 𝑀 = 𝐹𝑗𝑒𝑡 × 𝑎 = 8,710 𝑁𝑚𝑚 (𝐸. 3) 

Fatigue stress in stem 𝜎𝑓 =
𝑀

𝑍
= 15.48 𝑁/𝑚𝑚2 (𝐸. 4) 
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In [54], Thake provides estimates of fatigue design tress for cast Pelton buckets. For brass, 

the fatigue design stress is 20 N/mm2, therefore the stem design is acceptable.   

E.2 Shear stress on the bolt 

The horizontal component of the jet force exerts a shearing stress upon the M4 bolt that 

connects the blade to the hub. It is assumed that the entire horizontal component of jet force 

is exerted on the bolt. Acting in the opposite direction are reaction forces (equal to half the 

horizontal component of the jet force) exerted by the hub and hub cap upon the bolt. Figure 

E.3 identifies the location of these forces. The red dash line indicates the central axis of the 

bolt.  

 

Figure E.3 - Shear stress on a single bolt due to the jet force. 

 

It is assumed that the bolt is in double shear therefore the shear stress is given by [243]:  

𝜎𝑠 =
2𝐹𝑗 cos(22.5)

𝜋𝑑2 =
2×335

𝜋×42 = 13. 33 𝑁/𝑚𝑚2 (𝐸. 5)

where Fj is the jet force given previously and d is the bolt diameter, nominally 4mm in this 

case. 
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With no tensile component, using Von Mises-Hencky theory [243] to predict the factor of 

safety leads to: 

𝐹𝑜𝑆 =
𝑆𝑌

(3τ𝑥𝑦
2)

0.5 =
700

(3 × 13.332)0.5
= 30.3 (𝐸. 6) 

where SY is the tensile strength of an A2-70 bolt [244], τxy is the shear stress calculated 

above. The result demonstrates that this bolt size is acceptable.  
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Appendix F 

Experimental testing  

F.1 Torque transducer calibration 

The torque transducer was calibrated using masses of known weights. An experimental rig 

was used where the torque transducer was held in a fixed position and weights added at a 

known distance from the central axis. As weights were added, the voltage signal was 

measured. Weights were added up to approximately 50 Nm and then removed. 

Measurements of voltage signal were repeated as the weights were removed. Linear 

regression was used to determine the gradient and y-intercept (and their respective 

uncertainties) of the resulting relationship. They were:  

• Gradient = 9.98 ± 0.00791 

• Y-intercept = -3.954 ± 0.0256 

The gradient and y-intercept can be used to predict the torque based on the voltage signal. 

In addition, the uncertainties in gradient and y-intercept allow the overall uncertainty in the 

prediction to be calculated. Table F.1 shows the values recorded during the calibration 

process. 

In the core test range of 15 to 25m, the lowest recorded torque of 5.29 Nm occurred at head 

of 15m at a rotational speed of 2000 rpm whilst testing the Mark 1 runner. Based on the 

calibration data, the worst-case uncertainty is assumed to be the average of the uncertainties 

that correspond to the nearest measured torque. Th corresponding rows are highlighted in 

Table F.1. Therefore, the resulting worst-case uncertainty is 1.307%. 
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Table F.1 - Values recorded during torque transducer calibration. 

Measured 

torque 

(Nm) 

Average 

voltage 

signal 

(V) 

Predicted 

torque 

(Nm) 

Min. 

predicted 

torque 

(Nm) 

Max. 

predicted 

torque 

(Nm) 

Uncertainty 

(%) 

2.5475 0.65 2.536 2.505 2.566 2.425 

5.0139 0.9 5.032 4.999 5.064 1.301 

7.3465 1.135 7.378 7.343 7.412 0.938 

9.7674 1.38 9.824 9.787 9.860 0.744 

12.2263 1.63 12.320 12.281 12.358 0.625 

14.6561 1.875 14.766 14.725 14.806 0.548 

17.1881 2.125 17.262 17.219 17.304 0.492 

19.6819 2.375 19.758 19.713 19.802 0.450 

22.1172 2.62 22.204 22.158 22.250 0.417 

24.7572 2.88 24.800 24.751 24.848 0.390 

27.2764 3.13 27.296 27.245 27.346 0.369 

29.5369 3.36 29.592 29.540 29.644 0.353 

31.9768 3.6 31.988 31.934 32.042 0.338 

34.4458 3.85 34.484 34.428 34.540 0.325 

36.7834 4.09 36.880 36.822 36.938 0.314 

39.2067 4.33 39.276 39.217 39.336 0.305 

41.7468 4.58 41.772 41.711 41.834 0.296 

44.2859 4.84 44.368 44.304 44.432 0.288 

46.6859 5.08 46.764 46.699 46.830 0.282 

49.0726 5.32 49.161 49.093 49.228 0.276 

46.6859 5.06 46.565 46.499 46.630 0.282 

44.2859 4.82 44.169 44.105 44.232 0.289 

41.7468 4.57 41.673 41.611 41.734 0.297 

39.2067 4.32 39.177 39.117 39.236 0.305 

36.7834 4.07 36.681 36.623 36.738 0.315 

34.4458 3.84 34.384 34.328 34.440 0.326 

31.9768 3.595 31.938 31.884 31.992 0.339 

29.5369 3.345 29.442 29.390 29.494 0.354 

27.2764 3.12 27.196 27.146 27.246 0.370 

24.7572 2.87 24.700 24.652 24.748 0.391 

22.1172 2.61 22.104 22.058 22.150 0.419 

19.6819 2.365 19.658 19.614 19.702 0.451 

17.1881 2.115 17.162 17.120 17.204 0.494 

14.6561 1.86 14.616 14.576 14.657 0.552 

12.2263 1.615 12.170 12.132 12.209 0.631 

9.7674 1.37 9.724 9.688 9.761 0.750 

7.3465 1.125 7.278 7.243 7.313 0.948 

5.0139 0.895 4.982 4.949 5.014 1.312 

2.5475 0.645 2.486 2.455 2.516 2.471 
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F.2 Bearing design 

F.2.1 Loading 

The testing rig required a bearing design to support the lower section of shaft (including 

the runner) taking a combination of axial and radial loads. Figure F.1 shows a free-body 

diagram of the lower shaft section including the runner, which is indicated by the grey 

rectangle. Table F.2 describes the labels used in the free-body diagram.  

 

Figure F.1 - Free-body diagram of the lower shaft section. 

 

Table F.2 - Description of the labels used in the free-body diagram. 

Label Description 

Fj Force of the jet 

Fm Force due to weight of the runner 

F1a Axial reaction force at bearing 1 

F1r Radial reaction force at bearing 1 

F2a Axial reaction force at bearing 2 

F2r Radial reaction force at bearing 2 

α Inclination angle of jet force to horizontal plane 

h1 Distance between bearing 1 and bearing 2 

h2 Distance between bearing 2 and the runner centre of mass 
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In the model, it is assumed that the centre of mass of the runner and jet force impact at the 

same axial position.  

The force of the jet can be calculated using:  

𝐹𝑗 = �̇�𝑣 = 𝜌𝐴𝑣2 =
𝜌𝜋𝐷𝑗

2

4
(𝐹. 1) 

where m is mass, v is water velocity, ρ is water density, A is jet area, Dj is jet diameter, g 

is acceleration due to gravity and H is head.  

To find radial forces, resolving moments about bearing 2 leads to: 

𝐹1𝑟 =
𝐹𝑗 cos 𝛼

ℎ1

(𝐹. 2) 

Then, resolving moments about bearing 1 leads to: 

𝐹2𝑟 =
𝐹𝑗 cos 𝛼 (ℎ1 + ℎ2)

ℎ1

(𝐹. 3) 

Equating the axial loads:  

𝐹1𝑎 + 𝐹2𝑎 = 𝐹𝑚 + 𝐹𝑗 sin 𝛼 (𝐹. 4) 

Assuming that the complete axial load is taken by the lower bearing:  

𝐹2𝑎 = 𝐹𝑚 + 𝐹𝑗 sin 𝛼 (𝐹. 5) 

The greatest loading will occur when H = 25m. The approximate mass of the runner and 

shaft is 2.1 kg. Dimensions h1 and h2 were determined by the geometry of the testing rig, 

whilst α is a constant determined by the turbine casing. Table F.3 shows the inputs and 

outputs to the bearing loading calculation.  
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Table F.3 - Parameters and values in the bearing loading calculation. 

Parameter Value 

α 22.5° 

h1 0.105m 

h2 0.1415m 

Fj 363N 

Fm 20.6N 

F1a 0N 

F1r 452N 

F2a 160N 

F2r 787N 

 

The greatest load of 787N is the radial load on the lower bearing.  

F.2.2 Bearing selection 

Despite the fact that the upper bearing experiences no axial load, for simplicity it was 

decided to select the same bearing type for both positions. Due to their ability to deal with 

axial and radial loads, an angular contact ball bearing was chosen.  

Considering the dynamic load rating [54]:  

𝐿10 = (
𝐶

𝑃
)

𝑝

(𝐹. 6) 

where L10 is bearing life for 10% failure rate after 106 revolutions, C is the basic dynamic 

load rating, P is the actual dynamic bearing load and p is an empirical constant (equal to 3 

for ball bearings).  

Assuming a design life span of 10 years at the operational speed of 1500rpm leads to: 

𝐶

𝑃
= 19.9 (𝐹. 7) 

The selected bearing must exceed this value. Evaluating the available angular contact ball 

bearings for a 30 mm shaft diameter, SKF 7206 BE-2RZP was considered due to integrated 

sealing system [245]. As calculated previously, P = 787 N. For this bearing, C = 22,500 N. 

Therefore, C/P = 28.6 and the bearing is an acceptable choice.  




