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Abstract 

 

Glioblastoma Multiforme (GBM) is a very aggressive type of primary brain cancer with poor 

prognosis. According to the WHO classification of CNS tumours, GBM is a high-grade 

infiltrating glioma (grade IV). The introduction of “Stupp protocol” in 2005 was a major 

milestone towards improving quality of life and clinical outcome for GBM patients. However, 

since then and up until now, the expanding knowledge about the molecular basis of the 

disease has only led to small advancement in the therapy and prognosis of GBM, which 

remains abysmal. This is mainly due to the tremendous heterogeneity of molecular 

abnormalities between GBM and within GBM. Non-conventional therapeutic approaches, 

such as photodynamic therapy (PDT) and drug repurposing, could help to speed up the 

progress in our fight against this deadly disease. PDT is the concept of using a molecule, a 

photosensitizer (PS) that is not inherently toxic, to induce toxicity selectively on cancer cells 

after illumination. Drug repurposing is defined as the use of an existing approved drugs for 

treatment of other diseases than the indicated target disease. Six different primary human 

GBM cell lines were used in the project and normal rat astrocytes served as a reference. In 

the first part of the project, the molecular heterogeneity of my GBM cohort was evaluated by 

Sanger sequencing. RNA samples were extracted from all 6 GBM cell lines, followed by reverse 

transcription for cDNA synthesis. Next, PCR was done using primers for 4 commonly mutated 

genes implicated in gliomagenesis, including IDH-1, p53, PTEN, and EGFR. In the second part, 

the feasibility and efficiency of utilizing Tetramethylrhodamine methyl ester (TMRM), as a 

novel PS was assessed. TMRM was originally develop as dye to assess mitochondrial 

membrane potential. The properties of TMRM as a PS, and the efficacy of TMRM-PDT were 

evaluated. Possible synergy with other pharmacological agents was also examined. Finally, 

based on pre-existing literature, efficacy of antidepressants (AD) for treatment of GBM was 

re-evaluated. ADs were assessed for their toxicity towards GBM cells, and their effect on some 

cellular biological functions.  

Different molecular prints were documented among the 6 GBM cell lines, including 

mutations in p53 and EGFR genes. Future work should include functional gene studies to 

correlate these molecular profiling of GBM with their sensitivity to different therapeutic 
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models. TMRM-PDT showed promising results on GBM cell lines. Future modification of 

treatment protocol should aim to enhance efficacy and selectivity of this treatment modality. 

Finally, ADs were effective in inducing GBM death, however, the required concentrations for 

this effect were high and poor selectivity towards cancer cells vs normal astrocytes was noted. 

This effect was associated with mitochondrial depolarization rather than cAMP activation, 

contrary to some previous reports.  
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 Introduction 

 

1.1 An Overview of GBM 

1.1.1 Definition and origin 

Gliomas are tumours of glial cells arising in the CNS (1). Glial cells are the type of cells 

responsible for structural support and maintenance of homeostasis in the CNS. Glial cells are 

classified into astrocytes, oligodendrocytes, microglia, and ependymal cells (2).  

Glioblastoma multiforme (GBM) is the most aggressive type of gliomas. 2016 WHO 

classification of brain tumours describes GBM as the highest grade (grade 4) diffuse 

infiltrative glioma (3). The term multiforme implies that this disease is heterogenous in 

nature, with different cellular phenotypes, mutational profile, and molecular and clinical 

trajectories (4). Glial cells have long been thought of as electrically silent despite their 

known major role in modulating synaptic transmission (2). Bergles et al. were among the 

first groups who documented synaptic communication between neurons and non-neuronal 

glial cells (5). Stimulation of excitatory axons in the hippocampus elicited an inward current 

detected from oligodendrocyte precursor cells (OPCs) and mediated by AMPA receptors (5). 

These synapses are believed to regulate growth and differentiation in the developing brain. 

Regarding malignant brain tumours, GBM in particular, synapses between neurons and 

glioma cells (neuron-to-glioma synapses) were recently identified using electron microscopy 

(6). These synapses were predominantly found in the infiltrative zone of the tumour and 

were electro-physiologically functional (6). In addition, the neuronal factor neuroligin-3, 

which is known to promote glioma progression in a paracrine fashion (7), is found to 

stimulate the expression of synaptic genes and enhance neuron-to-glioma synapse 

formation (6). These findings strongly suggest a role of neuron-to-glioma synapse in 

regulating glioma progression and infiltration. Moreover, synaptic gene enrichment was 

chiefly found in subpopulation of glioma cells resembling OPCs, and the postsynaptic 

current in them was mediated by glutamate AMPA receptors (8). This highly suggests a role 
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of these synapses in regulating proliferation of tumour cells, because of the similar 

properties they share with the normal neuron-to-glia synapses. In fact, glioma cells are 

known for their ability to hijack growth promoting mechanisms of the normal brain for their 

own benefit (8). 

There are many theories about the cell of origin in glioma tumours, all of them 

perhaps could prove to be true at least to some extent. The most recognized candidates for 

glioma origin are astrocytes, OPCs, and neural stem cells (NSCs) (9). One of the key studies 

on this topic was carried out ~20 years ago (10). Induction of the expression of oncogenic 

mutations in a cell specific manner in astrocytes and NSCs, utilizing tissue specific 

promoters, was performed. Holland et al. induced activating mutations of Ras and Akt in 

astrocytes and NSCs of genetically engineered mice using viral vectors and assessed them 

for GBM-like tumour formation. They found that co-expression of these two activating 

mutations was sufficient to induce glioma tumours in mice only if expressed in NSCs but not 

in mature astrocytes (10). This finding is one of those, supporting the notion that neural 

stem cells are the origin of glioma tumours. On the other hand, Lindberg et al. have done 

similar work on genetically modified mice models inducing oncogenic mutations, but this 

time in OPCs (11). They found that oncogenic mutation in OPCs was sufficient to induce 

glioma-like tumour formation, concluding that OPCs, in particular, are the cells of origin of 

glioma (11). However, some recent studies have provided strong evidence that some 

subpopulations of astrocytes can be precursors of malignant cells (12). 

A number of studies identified subpopulations of cells within GBM tumours with stem 

cell-like properties, known as cancer stem cells (CSCs) or, more precisely, glioma stem cells 

(GSCs) (13). They have been implicated in tumour initiation, progression, therapy failure, 

and recurrence. These cells are identified by expression of stemness markers such as nestin, 

SOX1/2, CD44, and CD133 and reside in niches within tumour microenvironment (TME), 

around vascular or necrotic foci (13). Among the first studies which identified these markers 

in primary brain tumours is Singh et al. (14). These authors identified CD133 expression in 

subpopulations of cultured astrocytoma cells. These cells lacked the expression of neural 

differentiation markers and had a high capacity for proliferation and self-renewal, which 

correlated with tumour aggressiveness (14). GSCs or GBM cells can lose or gain stemness 

markers and stem cell-like properties depending on signals from the TME (14), making their 
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accurate identification and classification difficult. Moreover, a sub-population of fibroblast-

like cells called glioma-associated stem cells (GASC) has also been described (15). GASC had 

some stem cell-like properties such as anchorage-independent growth, but they are not 

tumorigenic (15). These cells are suggested to reside within the TME and modulate its 

cellular components to support the growth of the tumour and the aggressiveness of GCS in-

vitro by releasing exosomes (15). 

The three universally accepted models about the mechanism of initiation and 

maintenance of tumour growth are illustrated in Figure 1.1. The clonal evolution model 

(stochastic model) states that the accumulation of genetic mutations or epigenetic 

alterations, inherited or acquired, can potentially cause differentiated cells to become 

tumour cells (16). These mutations produce clones of cells with stem-like properties. 

Stronger clones with evolutionary growth advantages expand to form a tumour bulk that 

houses multiple clones of stem-like cells with tumorigenic potentials (Figure 1.1 a) (17). On 

the other hand, the stem-cell model (hierarchical model) states that mutations in embryonic 

stem cells or NSCs give rise to CSC with self-renewal and tumorigenic capacities, and only 

these CSCs can give rise and sustain tumour growth (17). CSCs divide symmetrically to 

expand the pool of stem cells, and asymmetrically to generate the bulk of the tumour 

(Figure 1.1 b) (17). The third model, the plasticity model, suggests that the previous two 

models are not mutually exclusive, and that any cell of the tumour bulk has the potential to 

de-differentiate and form a CSC with stem cell properties and growth potentials (Figure 1.1 

c), and this is suggested as one of the mechanisms responsible for tumour heterogeneity 

(17, 18). 
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Figure 1.1. Models of cancer origin and maintenance.  
 
 
 

1.1.2 Epidemiology and risk factors 

GBM is the most lethal and the most frequently diagnosed primary malignant CNS 

tumours (80%) (4, 19). GBM accounts for 56.6% of all gliomas (20). It also accounts for 60% 

of all brain tumours diagnosed in adults (19). The average survival rate after diagnosis is 12 

months and the 5-year survival rate is less than 5% (21). Different reports of incidence rates 

of glioma vary significantly according to country, age group, gender, and histological 

definitions (22). According to the Central Brain Tumour Registry of the USA statistical report 

published in 2018, the overall age and population-adjusted incidence rates range from 4.67 

to 5.73 per 100 000 population for all gliomas and from 0.59 to 3.69 per 100 000 population 

for GBM (20, 22). For all primary CNS tumours, the median age at diagnosis is 60 years (20). 

GBM incidence rates are higher among elderly, reaching the peak at age 85 years or more 

(83.75 per 100,000 population) (20). 

Primary malignant CNS tumours have an average annual mortality rates ranging from 

0.72 per 100,000 population in children to 9.01 per 100,000 population in 40+ year-old 

individuals (20). More than 95% of GBM occur in cerebral hemispheres (19). Of all gliomas 
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diagnosed in the USA during 2011-2015, 23.9% occurred in the frontal lobe, 17.5% occurred 

in the temporal lobe, 10.4% occurred in the parietal lobe (20).  

Thousands of epidemiological studies have been performed to understand the risk 

factors for GBM. However, few of them showed consistent results and of those, only few 

have shown strong association (23). Exposure to ionizing radiation is one of the risk factors 

that have strong association with increased risk of glioma (23). In contrast to some other 

cancers, alcohol and cigarette smoking have not been linked to increasing GBM risk (23), 

and neither have been dietary factors or environmental exposure to chemicals (19). In 

regard to the alleged risk of mobile phone use, an international case-control study 

INTERPHONE has found no association between  phone use and risk of glioma (24). 

Surprisingly, there is a strong epidemiological evidence (mostly case-control studies) 

that asthma and other allergic conditions are associated with reduced risk of glioma (22, 25-

29). A recent meta-analysis of 19 studies included a total of 8435 cases and 118,719 controls 

has also concluded that allergies, general or specific to particular antigens, are “protective” 

against glioma (25). Whether this association is due to the hyper-reactive immune system 

causing allergic disease itself, or the use of anti-inflammatory or antihistamine medications 

is yet to be established. Moreover, IgE, commonly associated with the allergic reaction seem 

to be somehow protective against glioma. At least, it was found that higher glioma risk is 

associated with lower serum IgE levels (26, 30). Aggressive gliomas with higher expression of 

stemness marker CD133 were found to have lower expression of 80% of 919 genes related 

to allergy and inflammation (31). 

An important inflammatory mediator negatively associated with glioma risk is 

interleukin-4 (IL-4). Several attempts have been made to develop therapeutic approaches 

aimed to increase IL-4 levels, and they were to some extent successful in inhibiting GBM 

tumour growth or prolonging animal survival (28). For example, in one study U87 glioma 

cells and engineered interleukin 4-secreting cells were co-transplanted into nude mice (32). 

This has resulted in decreased tumour size and improved survival of mice withn mixed 

transplants compared to control mice which received U87 glioma cells and negative control 

cells only (32). Moreover, some studies are focusing on the expression of IL-4 receptor (IL-
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4Ralpha) which is found to be higher in GBM cells compared to normal cells, and makes a 

plausible target for immunotherapy (33).  

Micro-RNAs (miRNA) are known to be crucial onco-modulators, and expression of 

some miRNAs was thought to be a factor of risk for (e.g. miR-221, miR-222) or protective 

against (e.g. miR-17-5p, miR-19) the development of GBM (34). However, although 

extensively researched, no strong or conclusive association between these miRNAs and the 

risk of GBM has been proven (34). 

Some inherited genetic disorders are strongly associated with increased risk of 

developing gliomas (22). Familial adenomatous polyposis (APC gene mutation), melanoma-

neural system tumour syndrome (mutations in CDKN2A), mismatch repair deficiency 

syndrome (DNA mismatch repair genes), Li–Fraumeni syndrome (mutations in p53 gene), 

retinoblastoma (mutations in Rb1), and neurofibromatosis 1 (mutations NF1), are examples 

of hereditary cancer syndromes associated with high glioma risk (35). This is not surprising 

since these mutations all cause or promote genetic instability and/or loss of control of cell 

cycle. Nevertheless, these diseases does not noticeably contribute to the overall risk of 

GBM, due to their rarity (23). 5-10% of glioma patients have relatives, most commonly 

siblings, who have the disease (23). This familial clustering of glioma cases may suggest a 

distinct genetic aetiology, or may point toward shared environmental exposure as well (23). 

 

1.1.3 Classification of glioma 

The latest WHO revision for classification of tumours of the central nervous system 

was published in 2016 (36). It integrates histopathological features with molecular 

signatures for more precise diagnosis. It also recognized for the first time the diagnostic and 

prognostic importance of Isocitrate dehydrogenase (IDH) mutational status. Histological 

grading is based on: anaplasia, nuclear pleomorphism, proliferative activity (mitotic cells), 

necrosis, and neovascularization (3). This classification broadly stratifies gliomas into non-

proliferating low grade gliomas (grade I) and infiltrating high grade gliomas (grade II- IV) 

(36). GBM is considered high grade (grade IV) diffuse infiltrative glioma. These grades are 

further classifies according to presence or absence of common mutations found in gliomas 
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such as IDH mutation status, p53 mutation status, 1p19q co-deletion status, O6-

methylguanine-DNA methyltransferase (MGMT) promoter methylation status, α-

thalassemia/mental retardation syndrome X-linked protein (ATRX), telomerase reverse 

transcriptase (TERT) promoter, and Epidermal growth factor receptor (EGFR) (36). 

Since then, advances and discoveries of new molecular markers and gene signatures 

have led to the formation of a scientific platform called: Consortium to Inform Molecular 

and Practical Approaches to CNS Tumor Taxonomy – not officially WHO (cIMPACT-NOW). 

This platform has further refined the WHO classification based on newly discovered data on 

the role and interplay of different molecular markers, and came up with recommendations 

that are more clinically relevant (37). 

According to cIMPACT, IDH mutation remains a major classifying factor. IDH-mutant 

gliomas with ATRX mutation are now called IDH-mutant astrocytoma with or without 

1p/19q codeletion (38). IDH-mutant astrocytoma may correspond to grade II, III, or IV of the 

WHO classification, with CDKN2A homozygous deletion as a marker for the highest grade 

(38). IDH-wildtype tumors with TERT promoter mutation, EGFR amplification, and/or 

chromosome 7 or 10 abnormalities are classified as IDH-wildtype glioblastoma (37). A new 

entity of IDH-wildtype glioblastoma has been proposed as grade IV diffuse hemispheric 

gliomas exhibiting histone 3.3 G34- mutations (37). This refined classification is important 

for accurate prediction of clinical behaviour and assignment of appropriate treatment plan 

(37). 

 

1.1.4 Histological features of GBM  

Macroscopically, GBM appears as an irregular heterogenous mass , with multiple 

haemorrhagic spots, cystic formations, and foci of necrosis (19). Histologically, these 

tumours are anaplastic, pleomorphic, poorly differentiated cells displaying high mitotic 

activity, high nucleus/ cytoplasm ratio, and glomeruloid structures indicative of 

neovascularization (newly formed blood vessels) (19). Pseudo-palisading necrosis is a 

hallmark for glioblastoma (39). It consists of crowded palisade-like alignment of 

pleomorphic nuclei around an irregularly shaped centre of necrosis (39). Neovascularization 
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classically appear as glomeruloide tufts, with multi-layered endothelial cells, smooth muscle 

cells and pericytes (19).  

GBM are histologically heterogenous but predominantly resemble astrocytes. 

Therefore, the expression of glial fibrillary acidic protein (GFAP), the well accepted marker 

of astrocytes, along with the presence of fine fibrillary processes are important diagnostic 

features of GBM tumours (4). Different histopathological variants of GBM have been 

described in the literature. They represent the spectrum of phenotypic heterogeneity, 

associated with fairly specific molecular fingerprint. These variants include small cell 

glioblastoma, giant cell glioblastoma, granular cell glioblastoma, epithelioid glioblastoma, 

glioblastoma with primitive neuronal component, and gliosarcoma (36, 40, 41). Small, giant, 

and granular cell glioblastomas appear under the microscope with minimal pleomorphism 

and as their names suggest: small, big, and granular macrophage-like, respectively (36, 41). 

Small cell glioblastoma is associated with Epidermal growth factor receptor (EGFR) 

amplification in 70% of the cases (42), and PTEN/10q mutations in 100% (41). Epithelioid 

glioblastoma cells look large and eosinophilic, with prominent nucleoli and rhomboid-like 

component (36). They are associated with BRAF mutations in 50% of the cases (42). 

Glioblastoma with primitive neuronal component are diffuse nodular astrocytomas that can 

spread into the craniospinal fluid (36). Gliosarcomas are tumours with both glial and 

mesenchymal components (41). Epithelioid, giant cell glioblastoma, as well as gliosarcoma 

are almost always genotypically IDH-wildtype (36). Each of these histological variants are 

further clinically classified into primary (IDH-wildtype) or secondary (IDH-mutant) GBM. This 

molecular diversity will be discussed later in more details.  

 

1.1.5 Clinical presentation and diagnosis 

Gliomas occur most commonly in the frontal lobe, then overlapping more than one 

lobe, and less likely in the temporal or parietal lobes (43). 95% of GBM tumour arise in the 

supratentorium, and only rarely gliomas are found in the brain stem, cerebellum, or spinal 

cord (4). These atypical locations are more prevalent, but still rare, in younger patients (43). 
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The time from the onset of symptoms until the diagnosis of GBM is typically weeks or 

months depending on the severity of symptoms, which reflects the aggressiveness of the 

tumour (44). Mostly, symptoms arise from increased intracranial pressure, or pressure from 

the tumour mass affecting nearby neurological structures depending on the location of the 

tumour (44). Seizures, headache, and/or neurological deficits (cognitive, motor, or sensory) 

are the most common presenting symptoms in GBM (45). Fatigue, drowsiness, aphasia, and 

confusions are also common but more prevalent as symptoms of advanced disease (45). 

Provisional diagnosis of GBM is routinely made based on radiographic imaging with 

computed tomography (CT) scans or magnetic resonance imaging (MRI) (44). These imaging 

modalities are usually supplemented with anatomical, functional, and/or metabolic contrast 

imaging techniques in order to aid the diagnosis, differentiating glioma from non-glioma 

tumours or non-neoplastic lesions, outline tumour extension, and delineate its relationship 

to the surrounding brain structures (44). A stereotactic biopsy can be taken from the 

tumour preoperatively with radiographic guidance, and it is often enough to establish the 

diagnosis of GBM, but more precise diagnosis is made with tumour tissue samples acquired 

intraoperatively (46). Microscopic histopathological examination of tumour sample frozen 

sections is the golden standard in GBM diagnosis (46). Degree of anaplasia, extent of 

tumour infiltration, and signs of necrosis are all considered in the examination and 

classification of glioma tumours (47).  

 

1.1.6 Molecular hallmarks of GBM 

Advancements in molecular and genetic testing have led to expansion in our 

knowledge about driver genetic mutations for gliomagenesis and other molecular changes 

associated with its progression. The Cancer Genome Atlas (TCGA) study published in 2008 

has identified main signalling abnormalities involved in the development of GBM, including 

[1] activation of growth signals by activating receptor tyrosine kinase (RTK) pathways 

involving growth factors (GF), [2] activation of phosphatidylinositol-3-OH-kinase (PI3K) 

pathway, and [3] mutations of p53 and retinoblastoma (Rb) tumour suppressor pathways 

(48). A summary of the molecular hallmarks in GBM is presented in Figure 1.2. 
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RTK and growth factors. RTKs are transmembrane glycoprotein receptors for 

numerous ligand types such as growth factors, hormones, or cytokines (49). When 

activated, RTKs’ downstream signals are mediated by several effectors including Ras/MAP 

kinase pathway, PI3K pathway, Phospholipase C and others (49). These pathways regulate 

cell proliferation, response to apoptosis signals, inflammation, and cell migration (49). RTK 

signalling is dysregulated in 70% of GBM cases and either an RTK or one of its effector 

pathways is altered in 90% of GBM cases (50). Epidermal growth factor receptor (EGFR) is 

the most frequently affected RTK in cancers and accounts for 45-55% of RTK abnormalities 

in GBM (50). The most common type of alterations involving EGFR signalling is EGFR gene 

amplification resulting from structural rearrangement of EGFR gene, namely in-frame 

deletion in exon 2-7 affecting the extracellular ligand-binding domain (51). This variant is 

called EGFRvIII, and the product of it is a constitutively active growth receptor which signals 

downstream regardless of the availability of the ligand (49, 51). Other alterations include 

defective gene inactivation, increase copy number, EGFR single nucleotide variants (SNVs), 

or ligand (Endothelial Growth Factor) overproduction (51). Other RTKs related to glioma 

development or progression are vascular endothelial growth factor receptor (VEGFR) and 

platelet derived growth factor receptor (PDGFR) (49). VEGFR and its ligand VEGF are the 

master regulator of angiogenesis and neovascularization in cancer cells and are commonly 

overactivated in GBM in areas adjacent to necrosis (4). PDGFR and the ligand PDGF are 

important for cellular differentiation and migration (49). PDGFR or PDGF gene 

overexpression is only detected in 13% of GBM patients (49). Any of these abnormal RTKs 

along with their ligands are capable of creating a growth-promoting autocrine loop, 

stimulating uncontrollable growth in the GBM (4, 49). 
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Figure 1.2. Molecular aberrations commonly seen in GBM. 

 

PI3K-Akt-mTOR pathway. PI3K is an enzyme that interacts with RTK or GPCR and 

delivers signals to cellular pathways controlling growth, apoptosis, and motility (52). It 

consists of two subunits: regulatory and catalytic (4). Gene amplification of the catalytic 

subunit (p110α) is reported 4 – 27% in primary GBM and is associated with poor prognosis 

(52). Under normal circumstances, activated RTK activates PI3K, resulting in the recruitment 

of Akt to its active site at the plasma membrane, which then phosphorylates downstream 

molecules such as mTOR and regulates protein synthesis (translation) and cell growth (52). 

PTEN inhibits the activation of Akt by interfering with its recruitment to this active site (52) 

thus limiting its signalling. Homozygous deletions or inactivating mutations in PTEN gene are 

detected in 40% of GBM patients (4). PI3K seems to be an obvious drug target and more 

than 50 different PI3K inhibitors have been tested for cancer therapy including GBM (52). 

However, only few of them have moved to phase I or II clinical trials (52). PI3K inhibitors, 

selective p110α inhibitors, dual PI3K/mTOR inhibitors have shown some initial promising 

results in GBM research (52). However, activation of compensatory pathways and severe 
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side effects limiting their tolerable doses have proven difficult to avoid, leading to failures in 

clinical trials (52).  

P53 and Rb tumour suppressor pathways. In normal cells, there is always a balance 

between mitogenic stimuli and cell cycle suppressors such as p53 and Rb (4). In GBM, 

disturbances of p53 and Rb tumour suppressor pathways are common and are among the 

main molecular drivers, responsible for gliomagenesis (48). In fact, p53 tumour suppressor 

pathway is the most commonly mutated pathway in cancer in general (53). 

Cellular stressors (DNA damage, hypoxia, etc.) induce different kinases and mediators 

of p53 tumour suppressor pathway, resulting in activation of p53 tumour suppressor protein 

by post-translational modifications at different amino acid residues (54). Different types of 

stressors uniquely modify different amino acids residues, which is followed by modulation 

of specific effectors and transcription factors leading to inhibition of cell cycle progression 

and induction of DNA repair or apoptosis (54). 

MDM2 is a negative regulator of p53, blocking its function and resulting in progression 

of cell cycle. P53 activity activates MDM2 creating a negative feedback loop between the 

two molecules as illustrated in Figure 1.3. Protein ARF, on the other hand, exerts its tumour 

suppressor effect by inhibiting MDM2 activity, thus supporting the activity and function of 

p53 pathway (54). 

A study on 34 different human glioma cell lines has shown a high incidence of 

mutations in p53 tumour suppressor pathway among these cell lines (94.1% of glioma cell 

lines) (55). More recently, TCGA study has revealed that ARF-MDM2-p53 pathway is 

dysregulated in 84% of GBM tumours (48). The most common mutation in p53 pathway is 

homozygous deletion of the CDKN2A/ARF locus, seen in about 60% of GBM cases, followed 

by missense mutation of p53 gene, and MDM2 amplification (56). P53 pathway mutations 

are more associated to secondary GBM than primary (56). 
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Figure 1.3. Activators and feedback loop of p53 tumour suppressor pathway. 

 

RB (retinoblastoma pathway) is a tumour suppressor pathway involving cyclins, cyclin 

dependent kinases (CDKs), retinoblastoma protein (pRB), and E2F family of transcription 

factors. Normally, pRB is dephosphorylated and active. When active, it attaches to E2F and 

blocks it from stimulating transcription of genes required for cell cycle progression (Figure 

1.4). The result is cell cycle arrest at G1/S phase and induction of cell differentiation (57). 

CDKN2A/B is a key regulator of Rb pathway. As shown in Figure 1.4, it blocks CyclinD/CDK4-

6 dependent phosphorylation (inactivation) of pRB. When phosphorylated, pRB can no 

longer form a complex with E2F, which is now released from the block and actives 

transcription of cell cycle E2F-dependent genes (57). RB pathway anomalies found in GBM 

include CDKN2A/B deletions or inactivating mutations (40%), RB1 gene deletions or 

inactivating mutations (40%), or Cyclin/CDK4 -6 amplification (15%) (4).  
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Figure 1.4. RB tumour suppressor pathway.  
 
 

Angiogenesis. Growth of solid tumours is tightly associated with angiogenesis, which is 

the formation of new blood vessels (58). Neovascularization is typically stimulated by 

hypoxia. One of the key molecules sensing hypoxia is Hypoxia inducible factor (HIF), which 

increases production of VEGF, which then initiates sprouting of old blood vessels, building of 

an endothelial lining, and remodelling of the extracellular matrix to form new tumour 

vasculature (59). Within TME there are niches of GSC, neoplastic infiltrating cells, reactive 

astrocytes, fibroblasts, endothelial cells, and immune cells such as tumour associated 

macrophages and T-cells (42). Components of TME synergise to promote invasion, 

angiogenesis, and therapy resistance (60). GCSs have been hypothesised to mediate the 

recruitment of tumor-associated endothelial cells to angiogenic foci (13). It has also been 

suggested that neovascularization in GBM involves differentiation of tumour stem cells into 

endothelial cells (59) although this idea needs further proof. 

The new vasculature of GBM is distorted with leaky and poorly organised vessels, 

which do not meet the tumour’s growing need for oxygen and nutrients, thus creating a 
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feedback loop of hypoxia-mediated stimulation of angiogenesis, which renders GBM 

tumours extensively vascular (58). The degree of hypoxia and acidosis correlates to GBM 

aggressiveness and poor patient survival (61). HIF were found to be highly expressed in GSCs 

(60). Activation of HIF enhances the expression of multiple genes related to angiogenesis 

and cell migration (60). For that reason HIF is suggested as yet another target for therapy 

and this has even been tested in GBM xenograft models (58). 

VEGF is found to be overexpressed in GSCs compared to non-stem cells, suggestive of 

increased angiogenic properties of these cells (58). Bevacizumab, a monoclonal anti-VEGF 

antibody, was developed with the aim to cut the blood supply to the tumour and has indeed 

shown promising results in pre-clinical research (58). However, in phase II clinical trials there 

was only minimal survival advantage in GBM treatment arm compared to control arm (58). 

This is now believed to be a consequence of a tumour adaptive process to hypoxia mediated 

by HIFs. The result of such adaptation is enhancement of stemness characteristics of the 

tumour and further vascularization rather than induction of apoptosis (58). 

Invasion. Presence of fibrillary cellular extensions is a distinctive feature of astrocytic 

tumours and is more prominent in aggressive tumours such as GBM (62). GBM does not 

metastasize to other organs but it is highly invasive within the brain (4). Invading cells 

detach from neighbouring tumour cells, and migrate along vessels, dendrites, or fibres of 

the white matter in fine streaks (4). Their migratory behaviour resembles that of neural 

progenitor cells during development, suggesting a role for modulators of developmental 

neural cell migration in tumour cell invasion (4). Migrating tumour cells can infiltrate beyond 

the margins of resectable tumour and serve as an origin of recurrence, which almost always 

happen within the borders of the previously resected tumour directly at the wall of the 

surgical cavity (63). In a study concerning patterns of recurrent GBM, 17 out of 20 patients 

(85%) had the recurrent tumour within 2.5 cm from the resected tumour edge despite 

having had complete resection of the contrast-enhanced tumour, indicating the presence of 

infiltrative cells not identified radiographically (64).  

By using high resolution time-lapse intravital imaging techniques, Alieva et al. were 

able to provide reliable images and analysis for the dynamics of cell invasion (63) in mice. 

They implanted GSCs derived from IDH-wildtype GBM tumours and stably expressing neural 
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marker (H2B-Dendra2) into the brains of immunodeficient mice. The images obtained have 

shown two distinctive invasion patterns in GBM tumours: (a) protruding multicellular edge 

from the tumour core into the surrounding tissue, creating an ‘invasive edge pattern’, (b) no 

defined protrusions but instead individual ‘scout cells’ diffusely infiltrating the surrounding 

tissue and creating a ‘diffuse infiltration pattern’ (63). Measurements of cell velocity 

revealed that cells in the tumour core and cells at well-defined borders are much less motile 

than cells at the diffuse infiltrative margins (63). 

Smith et al. have also documented differential expression of some genes in fresh 

surgical samples taken during fluorescence guided surgery (FGS) from the core compared to 

samples obtained from the infiltrating margins (65). Analysis of RNA sequencing data 

obtained from these different samples revealed significantly different gene expression 

profiles for metabolism and extracellular matrix components (65). Invasive cells had an 

overall pre-inflammatory and anti-apoptotic gene print (65). Moreover, two of the 

differentially expressed genes, VEGFα and Matrix metalloproteinase-19 (MMP-19) were 

particularly involved in migration and invasion process  (65). This differential expression is 

possibly the reason why therapies targeted against these two molecules failed in clinical 

trials. RNA sequencing also identified SERPINE1 gene (also known as plasminogen activator 

inhibitor 1, PAI-1) as a candidate for anti-invasion targeted therapy, due to its increased 

expression in infiltrating cells (65). 

Invasion occurs early in GBM progression (63). It is thought to be initiated by different 

autocrine and paracrine factors that regulate the activity of number of cell surface proteins. 

Key players in glioma invasion are: Rho family GTPases; which mediate receptor-mediated 

invasion signals, integrins; which mediate interactions with extracellular matrix 

components, cell adhesion molecule CD44 and proteolytic enzymes; such as ADAMs and 

MMPs (66).  

TERT and ATRX mutations. Telomeres are repetitive guanine-rich non-coding DNA 

elements that cap the ends of a linear chromosome to protect coding regions from terminal 

sequence loss (67). Telomere shortening is a normal phenomenon that accompanies cell 

division and is accountable for cell senescence, when cells have exhausted their replicative 

potential but are still metabolically active (67). Telomerase is a specialized reverse 
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transcriptase responsible for maintaining telomere length. It is inactivated in most non-

dividing cell types by silencing the telomerase reverse transcriptase (TERT) gene encoding its 

catalytic domain (67). This physiological silencing of TERT is an important tumour suppressor 

mechanism to ensure that old cells which most probably have accumulated DNA damage 

and might have escaped DNA repair mechanisms do not enter mitotic cycle. 

Activating mutations of TERT are detected in more than 90% of all human cancers 

(68). TERT promoter mutations are found in more than 50% of primary adult GBM, or up to 

80% in some reports (41, 68). Cells with activating TERT promoter mutations become 

immortal due to high expression of telomerase which maintains long telomeres.  

Another type of mutation that leads to maintenance of telomere length is inactivating 

mutation of α-thalassemia/mental retardation syndrome X-linked protein (ATRX). ATRX 

mutation does not lead to overexpression of telomerase; it rather induces telomere 

lengthening by a mechanism known as alternative lengthening of telomeres (69). This type 

of mutation is associated more with secondary GBM, and paediatric and lower grade 

gliomas, with strong correlation with IDH mutations (41, 69).  

Epigenetic modifications. Epigenetic modifications modify gene expression without 

affecting the DNA sequence, and could potentially also be targeted for anti-GBM therapy 

(70). The most important epigenetic modifications in GBM are histone acetylation and DNA 

methylation (70). Chromatin is the structure formed by the organization of DNA molecule 

around histone proteins (70). Histone acetylation is the addition of acetyl group to amino 

acid lysine of histone H3 or H4 molecule (70). This modification causes chromatin 

remodelling in a form that makes DNA more accessible to transcription factors, which 

enhances gene expression (70). Histone deacetylases (HDAC) are commonly over-expressed 

in GBM (71). HDAC inhibitors have been developed and pre-clinical studies reported 

promising results for this class of drugs, including inhibition of tumour growth, improvement 

of radiosensitivity (71), or induction of metabolic re-programming in GBM cells (72). 

DNA methylation is a silencing modification which compacts the chromatin and makes 

it inaccessible for transcriptional machinery (70). DNA methylation occurs mainly in CpG 

islands (CG rich regions of the DNA) which typically belong to promoter regions of genes 
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(70). GBM genome, like other cancers, is generally hypomethylated which leads to 

pathological enhancement of gene expression and genomic instability (70). This 

phenomenon is observed in 80% of GBM (70).  

Glioma-CpG island methylator phenotype (G-CIMP) was first identified in 2010 as a 

unique subset of GBM (73). G-CIMP is usually found in younger patients and is associated 

with IDH-1 mutations and better prognosis (73). In fact, IDH-1 mutation is believed to cause 

this hypermethylated phenotype (74). Induction of IDH-1 mutation in astrocytes resulted in 

hypermethylated genome, with identical distribution of methylation marks to G-CIMP IDH-

mutant glioma (74). CpG methylation marks were found to be differently distributed among 

gene sets in new tumours compared to recurrent ones (75). Kraboth et al. examined the 

methylome of primary and recurrent GBM tumours and reported that hypomethylation of 

gene sets associated with neuronal differentiation, synapse organization, and endothelial 

cell proliferation could be implicated in tumour development (75). They also found that 

gene families which regulate cellular communication and neurotransmitter release were 

significantly more methylated in recurrent GBM samples (75) which perhaps reflects their 

progressive de-differentiation. 

O6-methylguanine-DNA methyltransferase (MGMT) is a nuclear dealkylating enzyme 

important in repairing DNA mismatches that occur spontaneously during DNA replication, or 

due to the impact of mutagens, environmental pollutants or alkylating drugs (76). MGMT 

gene status has a significant role in chemotherapy resistance in GBM patients. When 

overexpressed, MGMT enzyme corrects the intentional base mispairing produced by 

alkylating chemotherapeutic agents such as temozolomide (TMZ) (76). This will ultimately 

result in tumour cells escaping apoptosis and death and resistance (76). MGMT gene is 

located on chromosome 10q26.3 and its expression is highly regulated by different 

mechanisms including transcription factors such as NF-κB and CREBP, which are known to 

activate its transcription (76). Epigenetic regulation of MGMT plays an important role in 

development of resistance in GBM (76). Histone acetylation in MGMT promoter region is 

associated with active transcription of MGMT gene and higher expression of MGMT 

promoting the resistance (77). Histone deacetylase inhibitors (77) in xenograft models 

promoted a hyperacetylated chromatin status, induced MGMT expression, and aided the 

development of TMZ resistance (77). On the contrary, MGMT promoter methylation is 
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associated with silencing of MGMT gene and downregulation of MGMT enzyme level, which 

negatively affects DNA repair and enhances the response to anti-cancer alkylating agents 

(76). In a study involving 109 GBM patients, surgically obtained samples were examined for 

MGMT promoter methylation (78). These patients also received chemotherapy and 

radiotherapy after the surgery. MGMT promoter methylation was documented in 53.2% of 

patients, and it positively correlated to progression-free survival (PFS) and overall survival 

(OS) (78). Intratumour heterogeneity in MGMT methylation status was also documented in 

~14% of the cases where different methylation status was found in different samples (78).  

 

1.1.7 Classification of GBM based on transcriptional profile 

There is more than one way to classify GBM. These classifications, either clinical, 

histological or molecular, overlap and complement each other in describing each case of 

GBM individually to help in making decisions regarding therapy and prognosis. 

IDH-1 or 2 mutations are found in almost all secondary gliomas and are considered 

‘core mutations’ essential for the secondary transformation of lower grade tumours to high 

grade infiltrative ones (79). Primary GBM rarely have IDH mutations. IDH is an enzyme that 

has 5 isoforms, IDH-1 to -5. They play roles in citric acid cycle, glutamine metabolism, and 

most importantly regulation of redox status by providing NADH/ NADPH and maintaining 

cellular levels of reduced glutathione (80). Mutations of IDH-1 or -2 found in GBM are 

monoallelic point mutation and are considered gain-of-function mutations resulting in 

neomorphic enzyme activity, where IDH-1 or -2 enzymes gain the ability to catalyse a 

reverse reductive carboxylation reaction that leads to accumulation of the oncometabolite 

2-hydroxyglutarate (2-HG) and exhaustion of cellular NADPH (80). NADPH is important in 

cellular antioxidant defence system. Accumulation of 2-HG promotes epigenetic changes 

associated with abnormal expression of many genes, including activation of oncogenes and 

silencing of tumour suppressor genes (81-83). Moreover, 2-HG can inhibit key dioxygenases 

(80), and diminish complement system activation (84), affecting many elements of cellular 

signalling and immunity. Accumulating 2-HG destabilizes HIF-1 (85), which will negatively 

affect angiogenic capabilities of tumour cells and this perhaps could explain observations of 
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less necrosis and less vascularity associated with IDH-mutant GBM. The impact of IDH 

mutation on cellular functions is summarized in Figure 1.5. 

IDH-mutant and IDH-wild type gliomas behave differently in terms of treatment 

response and prognosis. IDH-mutant GBM cells were found to be more sensitive to oxidative 

damage from chemotherapy and radiotherapy than IDH-wildtype GBM cells (86-88), most 

probably caused by inability of cells to buffer radiation-induced reactive oxygen species due 

to reduced cellular NADPH (89). In general, GBM with IDH-1 or -2 mutations have better 

prognosis and longer progression free survival than IDH-wildtype (83). Concurrent CDKN2A 

homozygous deletion was found to be a reliable predictor of poorer prognosis and shorter 

overall survival in IDH-mutant GBM (79, 90). Table 1.1 summarizes the main differences 

between primary and secondary GBM in terms of clinical and molecular profile. 

 

 

 
 
 
Figure 1.5. The impact of mutant IDH neomorphic enzyme on cellular mechanisms. IDH-wt: IDH 

wildtype, IDH-mut: mutant IDH, α-KG: α-ketoglutarate, D-2-HG: D-2-hydroxyglutarate, HIF-1: hypoxia 
inducible factor-1. Adapted from (91). 
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Verhaak et al. have described a molecular classification of GBM based on gene profile 

(gene expression, patterns of somatic mutations, and DNA copy number alterations) (92). 

Advanced gene analysis technology and software were used to analyse data derived from 

TCGA project, to try to find specific clustering of gene aberrations that can define a distinct 

GBM class. 1,740 genes (further filtered to 840 classifying genes) were found to be 

consistent within clusters but highly variable between them. Accordingly, four different 

molecular GBM classes are defined: Classical GBM, Proneural GBM, neural GBM, and 

mesenchymal GBM (92).  

Classical GBM is characterised by chromosome 7 amplification, loss of chromosome 

10, and EGFR amplification, distinctly paired with CDKN2A deletion affecting RB pathway, 

plus lack of IDH-1 and p53 mutations. Classical GBM highly express neural stem cell markers 

NES and Notch. 

Proneural GBM is defined by abnormalities in PDGFRA and point mutations in IDH-1. 

Other features include higher expression of oligodendrocytic development gene OLIG2 as 

well as neural development gene SOX, plus p53 mutations. 

Neural GBM is the least defined of the four GBM classes. It expresses neuron markers 

such as NEFL (an axo-skeleton gene) and GABRA1. It also shows similar expression pattern 

to normal oligodendrocytes and astrocytes. 

Mesenchymal GBM is characterised by NF1 and PTEN co-mutations. This class of GBM 

is associated with higher degree of necrosis and inflammation. Expectedly, genes of tumour 

necrosis factor super family pathway (e.g. TRADD) and genes of NF-κB immune pathway are 

highly expressed in mesenchymal GBM. They also express Schwann cell markers and 

microglial markers.  
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Table 1.1. Comparing clinical behaviour and molecular profiles of primary and secondary 
GBM. Reference (40, 41). 

Primary GBM (de novo); IDH-wild type 
 
- Comprises 90% of all GBM cases. 
- Aggressive tumours with more 

pronounced necrosis and angiogenesis. 
- Older age at diagnosis. 
- Lower overall survival rate (11-15 

months). 
- Clinical subtype: Proneural, neural, 

mesenchymal, or classical. 
 

Secondary GBM; IDH-mutant 
 
- Comprises 10% of all GBM cases. 
- Less aggressive, less necrosis, and less 

angiogenesis. 
- Younger age at diagnosis. 
- Better overall survival rate (31 months). 
 
- Clinical subtype: Proneural. 

 
- IDH mutations are rare. 
- Amplification of EGFR signalling. 
- PTEN mutations. 
- TERT mutations. 
- Monosomy 10. 

 
- IDH mutations are very common (85%). 

Thought of as a driver mutation for 
development of secondary GBM from 
lower grade tumours. 

- P53 and Rb mutations. 
- PDGFR mutations. 
- ATRX mutations. 
- 1p/19q co-deletion. 
- MGMT promoter methylation. 
 

 

1.1.8 Standard treatment for GBM 

“Stupp” protocol has been the standard protocol for treatment of newly diagnosed 

GBM since 2005 (93). A 2-year multi-centre phase III randomized clinical trial, supported by 

the European Organisation for Research and Treatment of Cancer (EORTC) and the National 

Cancer Institute of Canada Clinical Trials Group (NCIC) (93), was followed by a 5-year 

analysis (94). After maximal safe resection (complete in 40%, partial in 45%, or biopsy in 

15%), 573 patients were randomized to receive radiotherapy alone or radiotherapy with 

concomitant and adjuvant chemotherapy (93). Radiotherapy was delivered as fractional 

focal irradiation with a total dose of 60 Gy divided as 2 Gy daily for 5 days/ week for 6 weeks 

(93). Concomitant TMZ was given at low continuous dose of 75mg/ cm2/day daily during the 

radiotherapy period (93). This dosing schedule was expected to eventually exceed the 

capacity of the DNA repair mechanisms (mainly the MGMT enzyme) and was found to be 

well tolerated by patient in a pilot phase II trial (93). Adjuvant TMZ was given after a 4-week 

break after radiotherapy and concomitant chemotherapy, with the approved conventional 
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dose of 150-200mg/cm2/day for 5 successive days in a 28-day cycle, for 6 cycles (93). OS was 

14.6 months for combined-therapy arm versus 12.1 months for the radiotherapy-alone arm. 

In the two year follow up, 26.5% of the patient in the combined-therapy arm were alive 

compared to 10.4% in the other group (93). Regarding toxicity, about half of the patients in 

the combined-therapy arm developed grade 3 or 4 adverse effects (mainly haematological) 

at any point during the trial, either during the concomitant TMZ period (17%) or the 

adjuvant TMZ period (35%) (93). In addition, 33% of the patients reported moderate to 

severe tiredness in the combined-therapy arm compared to 26% in the radiotherapy-alone 

arm (93). In the 5-year follow up analysis, the overall survival at 3 and 5 years was 16% and 

9.8%, respectively, in the combined-therapy arm compared to 4.4% and 1.9% in the 

radiotherapy-alone arm (94). Thus, a clear survival advantage for concomitant and adjuvant 

TMZ therapy over radiotherapy alone in GBM patients was established (94) and became the 

standard of care across the world to this day. 

TMZ is an oral alkylating prodrug that can cross the BBB (95). After oral administration, 

TMZ has a 100% bioavailability and a short half-life of 1.8 hours (95). It undergoes rapid non-

enzymatic conversion to the active metabolite 5-(3-methyltriazen-1-yl) imidazole-4-

carboxamide (MTIC) (95). MTIC methylates guanine bases in the DNA (95). At therapeutic 

doses, DNA repair mechanisms fail to correct for the DNA damage induced by TMZ and 

apoptosis signalling is initiated (95). Myelosuppression is not uncommon with TMZ 

treatment (95). The risk of potentially irreversible haematological toxicity such as aplastic 

anaemia and sever thrombocytopenia is small but significant, and must be addressed in 

research and discussed with patients (95). 

The standard protocol for GBM therapy now consists of maximum safe surgical 

resection, followed by radiotherapy plus concomitant chemotherapy with TMZ, followed by 

adjuvant chemotherapy with TMZ (96). Gross total resection whenever feasible improves 

survival outcome regardless of age or molecular profile of the tumour (96).  

More recently a method of fluorescence-guided surgery (FGS) was developed. This 

method is based on the use of 5-aminolevulinic acid (5-ALA). 5-ALA accumulates 

preferentially in GBM cells due to their high proliferative metabolic signature and helps 

surgeons to better visualize the tumour boundaries and to achieve maximum safe tumour 



24 
 

resection (97). This increases the extent of safe resection and improves survival in GBM 

patients compared to conventional surgery (96). Corticosteroids are sometimes used to 

reduce peritumoral oedema preoperatively or to control the side effects of radiotherapy, 

although their impact on overall survival is controversial (98). Radiotherapy for GBM helps 

in local control of the disease and improve survival.  

For recurrent GBM, re-surgery is used to relieve intracranial pressure symptoms if 

present (99). At this stage treatment aims to slow down the progress of the disease and 

improve quality of life (99). TMZ is still an option although resistance is common at this 

point. Other alkylating agents might be used including carboplatin or lomustine (99). A slow-

release chemotherapy wafers containing the alkylating agent carmustine (Gliadel wafers) 

could be placed inside the tumor bed intraoperatively for local release of the drug. Although 

FDA approved, this therapy carries a risk of serious side effects (99). A retrospective analysis 

of 6 clinical trials involving a total of 44 patients who received local carmustine plus 

chemoradiotherapy reported grade 3 or 4 adverse effects in 19/44 patients, including 

wound healing problems, intracranial abscesses, and seizures (100). In a literature analysis 

of 8 retrospective analyses (including the previously mentioned one), 2 Phase I/II clinical 

trials, and 1 observational study a survival advantage was documented for the use of 

carmustine wafers. However, the treatment caused grade 3 or 4 adverse effects in ~22% of 

the cases, including problems of surgical wound healing and neurological deficits (101).  

In 2011 the US FDA approved yet another treatment modality for recurrent GBM and 

in 2015 it was approved for treatment of newly diagnosed GBM (102). This treatment 

modality is called tumour treating fields (TTF) (103). It consists of a device with number of 

electrodes connected to the patients’ scalp delivering low intensity intermediate frequency 

alternating electrical fields to the tumour (103). This electrical current is meant to disturb 

the architecture of mitotic spindles in proliferating cells and induce mitotic arrest and cell 

death (104). 

Despite the growing volume of research on GBM, the addition of TTF to the treatment 

protocol for GBM was the only major advancement during the past 15 years. Some 

molecular targeted drugs have shown promising results in preclinical research but have 

failed to improve progression free survival or overall survival in clinical trials. Examples 
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include an EGFR inhibitor gefitinib ((105), a selective integrin inhibitor cilengitide (106) and 

an mTOR inhibitor everolimus (107). The controversial results of molecular therapy are most 

likely due to intertumour/ intratumour heterogeneity, failure to reach therapeutic 

concentrations inside the brain or the presence of compensatory signalling pathways (51). 

As mentioned above, bevacizumab, a monoclonal antibody against VEGF-A has only 

shown minimal survival advantage in clinical trials (108, 109), although was approved by the 

FDA for treatment of recurrent GBM (109). Attempts to combine it with other modalities are 

not very successful, since they lead to high rates of toxicity. One example is a phase II clinical 

trial (110) where combination therapy with TMZ resulted in no improvement of clinical 

outcome, quite the contrary, combination therapy resulted in serious haematological side 

effects in 33% of the cases including one death due to haemorrhage from severe 

thrombocytopenia, as well as neurological deficits in 86% of the cases (110). Other examples 

include combining bevacizumab with a PI3K inhibitor (111) or an HDAC inhibitor (112) and 

both combinations were ineffective and poorly tolerable.  

Immunotherapy involves the utilization of the patient’s immune system to fight the 

cancer (99). One way to accomplish this is by triggering an immune response against a 

specific tumour marker which is lacking in normal cells (99). An example of immunotherapy 

in GBM is the vaccine rindopepimut targeting the EGFR variant EGFRvIII that is expressed 

uniquely in GBM cells (99). The vaccine was successful in phase II clinical trials in inducing 

immunity against EGFRvIII positive GBM cells and eliminating them (99). More advanced 

clinical testing is needed to confirm its efficacy and safety. 

Oncolytic viruses, suicide gene therapy, and immunomodulatory gene therapy are 

viral vector mediated therapeutic modalities that can be developed for GBM therapy, this 

was recently reviewed by our laboratory (113). Clinical studies on viral vectors for GBM 

therapy are mostly concerning safety at this stage (113). 

From the previous, it is clear how far we still are from the ideal treatment protocol for 

GBM. Available chemotherapeutic agents carry significant toxicity. Scientists are 

continuously developing older treatment modalities including surgical techniques and trying 

innovative ones such as electrical therapy and photodynamic therapy (PDT). GBM treatment 
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is particularly challenging due to the biological characteristics of the disease including the 

location, the unique brain microenvironment, and the presence of the BBB. It is believed 

that the future of GBM treatment is a multi-modal individualized treatment protocol with 

surgery remaining the cornerstone of GBM therapy, not forgetting the role of supportive 

and palliative treatment in improving the quality of life (96). 

 

1.1.9 Challenges in GBM treatment 

The diversity in genetic and epi-genetic alterations is huge, leading to GBM tumours 

that are heterogenous, yet receive almost similar standard treatment. Different studies 

have reported that different tumour samples derived from one patient could fall into 

different TCGA subtypes depending on the site from where the sample is obtained (114, 

115). Tumours classified together often respond differently to chemotherapy or radiation, 

and molecularly targeted drugs have not been successful in clinical trials mainly due to 

intertumoral or intratumoral heterogeneity. 

The introduction FGS in GBM surgeries has maximized the extent of safe resection and 

has improved patient survival (116). However, total surgical resection is in most cases 

impossible because of the critical location of the tumour and its infiltrative nature. 

Infiltrating cells may extend beyond the contrast-enhancing mass, and they are often left 

behind despite maximum surgical resection (117). Scientists have successfully cultured GBM 

cells from brain tissue acquired from sites as far as 4 cm away from the main resectable 

tumour mass (118). All of this will ultimately lead to inevitable recurrence. Figure 1.6. recaps 

the main aspects of this challenging war against GBM. 

Resistance to therapy by TMZ commonly develops, mainly by MGMT enzyme 

expression, which mediates a one-step transalkylation DNA repair reaction (119). 

Interestingly, although MGMT promoter methylation is the most important predictor of 

good TMZ response in GBM (119), some patients methylated MGMT promoter still don’t 

respond to TMZ, or develop resistance eventually (120).  



27 
 

There are various ways by which GBM evade the effects of drugs such as TMZ. One 

interesting mechanism of resistance is via regulation of alternative pathways by long non-

coding RNA (lncRNA) (121). Pengfei et al. utilized RNA microarray to compare expression of 

lncRNA between TMZ-sensitive and TMZ-resistant GBM cells (121). This was a paired 

comparison as the TMZ-resistant cells were developed from TMZ-sensitive cells following 

TMZ desensitization protocol (121). They found that lnc-TALC was overexpressed in resistant 

cells (121). The expression of lnc-TALC correlated to the degree of phosphorylation 

(activation) of Akt and STAT3 molecules involved in growth signalling and are commonly 

activated in TMZ-resistant GBM (121).  

Another example concerns dehydroepiandrosterone (DHEA), a circulating 

neurosteroid that protects cells from stress-induced apoptosis (122). High levels of DHEA 

were detected in serum of GBM patients and that correlated with poor treatment response 

(122). Moreover, DHEA attenuated DNA damage caused by TMZ in MGMT-deficient 

astrocytes, inducing TMZ resistance (122). This effect was mediated by specificity protein-1 

(Sp1) which was activated in presence of DHEA presumably facilitating DNA repair 

mechanisms (122). 

The role of GSCs in therapy resistance is very well recognized but not well understood. 

It could be due to upregulation of mechanisms or shutting down apoptosis signals (123). 

Resistance could also be acquired following exposure to antineoplastic therapy (123). The 

stress produced by chemotherapy or radiotherapy, on GBM cells or GSCs, promotes 

Darwinian clonal selection which leads to survival of the toughest cells with the best 

adaptive mechanisms against therapy, resulting in resistant, more aggressive tumours (123). 
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Figure 1.6. Challenges in GBM treatment.  
CNV; copy number variation, NSC; neural stem cell, OPC; oligodendrocyte precursor cell. 

 

Tumour heterogeneity is a complex problem that leads to recurrence and treatment 

failure. Genetic instability and the resultant tumour heterogeneity drive tumour adaptation 

allowing tumour cells to grow. Two models to explain tumour heterogeneity have been 

proposed (145). The Clonal evolution model supports the erratic genetic instability 

hypothesis, namely that during tumour progression, a cell micro-population acquires genetic 

or epigenetic modifications that are beneficial for its survival, these cells then proliferate 

and form a unique constituent of the tumour mass (145). Successive waves of similar 

incidents create a tumour mass containing subpopulations of cells with different molecular 

profiles and different biological behaviours (145). The other model, known as stem cell 

model, proposes that only CSCs can self-renew, proliferate, and initiate diverse subclones 

within the same tumour, which have different molecular profiles from the mother stem cell 

(145). Clonal evolution model correlates more to intratumour heterogeneity, while stem cell 
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model correlates more to intertumour heterogeneity (145). Clonal evolution is the key to 

the development of resistance. Unfortunately, the most powerful stressors to induce 

genomic or epigenetic alterations in tumour cells are surgery, chemotherapy, and 

radiotherapy (143). It follows that although we successfully destroy some of the cells by the 

therapy, those which survive are theoretically the toughest according to natural selection 

laws (143). These cells start a focus of recurrence, more aggressive and resistant to 

treatment than the initial tumour (143). 

Comparative gene analysis of different GBM samples has been used to study GBM 

heterogeneity. Different cells obtained from the same tumour mass have shown different 

EGFR and PDGFRA gene profiles and responded differentially to ligand stimulation and 

chemical inhibition (124). A key study on intratumoural heterogeneity was published in 

2013 by a group of scientists from the University of Cambridge (115). They used 

Florescence-Guided Multiple Sampling technique to extract 4-6 samples from the individual 

tumour from 11 different patients. Samples were at least 1 cm apart and were labelled 

according to the depth they were situated at in the tumour mass. Profiling of DNA copy 

number revealed copy number alterations (CAN) detected in some samples but not others 

from the same tumour mass (115). These CANs involved common GBM driver genes 

including EGFR, PDGFR, and PTEN. Moreover, heterogeneously altered genes were found to 

be related to the same biological process, suggesting that during tumour growth, a subset of 

cells experience some environmental challenges unique to them due to their location within 

the tumour and modify their DNA to survive and overcome these challenges. 

A study by Smith SJ et al. evaluated expression of stemness markers, along with other 

parameters, in different samples taken from different tumor locations in 14 patients during 

FGS (125). Core samples were taken from the deep enhancing tumour, rim samples were 

taken from rim enhancement and invasive tumour samples were taken from 5-ALA-positive 

region beyond the tumour enhancement delineated by MRI (125). Array PCR studies 

revealed high variability of stem cell marker expression between different tumour sites 

suggestive of polyclonal heterogeneity and consistent high expression of certain markers in 

invasive samples, which is suggested to be functionally related to radio and 

chemoresistance (125). 
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Evolution and survival of cancer cells is influenced by their immediate 

microenvironment, which modulate gene expression patterns in cancer cells or CSCs, 

resulting in tumour heterogeneity (126). Gillies et al. described tumour heterogeneity as 

being either spatial or temporal (127). Different tumour cells encounter different 

microenvironmental stressors due to their different spatial relationship to the TME, 

resulting in subpopulation of cells, each one carrying a distinct genomic profile that ensure 

their survival against the type of stressor they have encountered (127). Temporal 

heterogeneity on the other hand is exemplified in recurrent tumours that exhibit different, 

often more aggressive, molecular profile than the initial tumor due to selection pressure on 

the residual cells induced by therapy (127).  

Johnson et al. performed mutational analysis on initial tumours and compared them 

to matched recurrent tumors in 23 GBM patients (126). They reported that recurrent 

tumours had only 54% similarity with the parent tumour in the mutational profile (126). 

IDH-1, p53, and ATRX mutation statuses were found to be preserved in the two groups, 

suggesting a pivotal role for these mutations in the development of the tumour (126). 

Drug delivery and retention at the tumour site is a major issue in neuropharmacology 

due to the presence of the blood brain barrier (BBB). Surprisingly, it was reported that less 

than 20% of plasma TMZ concentration is found in the brain tissue (128). On the other hand, 

gefitinib, a drug that has shown no success in clinical trials, had 30 times higher 

concentration in brain tissue than in blood (128). Thus, understanding drug distribution in 

the CNS is another complicating factor in GBM therapy leading to treatment failure.  

In summary, modern medicine faces multiple very difficult problems which have to be 

addressed in order to improve the outcomes for GBM patients. Molecular diversity and 

biological features of GBM require application of novel strategies and ideas. 
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1.2 Photodynamic therapy in GBM 

1.2.1 Definition of photodynamic effect 

A photodynamic effect may be defined as an effect of light on the atomic dynamics of 

a chemical substance in the presence of oxygen, leading ultimately to the production of 

reactive chemical species (129). This effect can be used to induce damage to biological 

structures such as abnormal cells or microorganisms. This is a concept known as 

photodynamic therapy (PDT) (129). The ultimate goal of PDT in cancer treatment is to 

destroy cancer cells without significantly affecting the surrounding normal tissue. PDT 

involves the use of a non-toxic substance, called a photosensitiser (PS), that preferentially 

affects or accumulates in the target cells and only produce toxicity upon activation with light 

delivered to that specific area (130). Oxygen is a crucial requirement for the traditional 

photodynamic effect and the formation of reactive oxygen species (ROS) (130).  

 

1.2.2 Development of the concept of photodynamic therapy 

Since ancient civilizations, light has been used to treat skin disorders. The beginning of 

the 20th century demarcates the establishment of a scientifically founded case for the use of 

light for therapy (131). Figure 1.7 illustrates the main developments in the photodynamic 

therapy field since the beginning of the 20th century to date. PDT naturally evolved from 

attempts to use light to treat skin diseases and malignancies. The development of 

Hematoporphyrin derivatives (HPD) in 1955 by Samuel Schwartz, and later the refinement 

of the molecule by Richard Lipson were considered a big step forward in PDT research (131). 

HPD, chlorin derivatives (e.g. temoporfin and talaporfin sodium), Benzoporphyrin derivative, 

and 5-ALA were later identified as photosensitisers and were used (and some are approved- 

see Figure 1.7) for diagnosis or treatment of many types of cancer including bladder cancer, 

oesophageal cancer, and GBM (131). Regarding GBM, the first attempt to use PDT against 

GBM date back to the 1970s, but there has been no major breakthrough in application of 

this technology until the utilization of 5-ALA in FGS was approved in 2007 after proving 

effectiveness in improving surgical resection and OS (116). As for therapy, many in-vivo and 

clinical studies have utilized PDT for treatment of GBM but the results were controversial 
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due to technical matters or occurrence of toxicity (132). This will be discussed more in the 

following sections. 

 

1.2.3 Mechanisms of photodynamic induced toxicity 

During light application, PS molecules absorb light and transform from the ground 

state to the excited singlet state (129). This state is short lived and soon the electrons 

excited within the molecule go back to ground state and the energy is released as 

florescence or heat as shown in Figure 1.8. Sometimes, randomly, molecules transform into 

an excited triplet state (129). This state is relatively longer-lived than the excited singlet 

state. The excited triplet PS molecule can either directly react with the surrounding cellular 

organic substrates to form reactive radicals that can themselves react with oxygen and 

generate ROS, namely, superoxide anions or hydrogen peroxides, or transfer its energy to 

oxygen and excite it to form the highly reactive singlet oxygen (129). These two possibilities 

are known as type I and type II photodynamic reactions, respectively (Figure 1.8). The ROSs 

produced by both types of reactions have detrimental effects on cellular health and 

commonly leads to apoptosis. Both types of photodynamic reactions can occur 

simultaneously, the overall direction of the reaction depends on many intermingled factors 

such as the type of PS, the site of its accumulation, availability of oxygen and others (130). 

Photodynamic reactions induce cell toxicity in one of three ways: induction of necrosis 

or apoptosis in cells by direct interaction between reactive species and cell components, 

indirect induction of necrosis or apoptosis as a result of local hypoxemia produced by local 

vascular constriction or thrombus formation (induction of coagulation), or indirect induction 

of necrosis or apoptosis due to activation of intense local inflammatory response and 

infiltration by immune cells (133). Because the photo-induced oxygen species are highly 

reactive, they react instantaneously with organic substances (e.g. amino acids, lipids, or DNA 

molecules) that are in close proximity to their site of production (130). Therefore, they have 

ultra-short half-lives of nanoseconds to microseconds (132). This is advantageous for clinical 

PDT application, since the toxic effect is expected to be confined to a radius of less than 20 

nm from the site of PS generation (130).  
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Figure 1.7. Timeline of the most important milestones in the development of PDT for cancer. 
References (97, 131, 134-143) 

Niels Finsen was the first to use phototherapy 
to treat non-cancerous cutaneous lesions and 
won a Nobel prize for that (131). 

Von Tappeiner and Jesionek A. used eosin and 
white light topically to treat skin cancer. They 
introduced the term (photodynamic effect) 
(136). 

Hausmann W. identified the phototoxic 
properties of haematoporphyrin (HP) on 
animals’ skin (131). Friedrich M.B. used porphyrins topically on 

his own hands to describe the photodynamic 
effect of this molecule on human’s skin 
(131). 

Development of haematoporphyrin derivative 
(HPD) by Samuel Schwartz (131). 

Figge FH. Reported preferential accumulation 

of HP in neoplastic cells (134). 

Establishment of HPD as a better 
photosensetizer than HP in photodynamic 
therapy and photodetection of tumors, by 

Lipson and Baldes (135). 
Diamond I. demonstrated phototoxic effects of 
HP on GBM (139). 

Dougherty and his group successfully treated 

skin cancer with PDT (140,141). 

Kelly J. successfully used PDT on bladder 
cancer in humans using HPD (131). 

Identification of 5-ALA as a powerful 
photosensitiser by Malik Z. and Lugaci H 
(136). 

Identification of benzoporphyrin derivative 
(BPD) as a powerful photosensitiser by 
Richter AM et al (131). 

5-ALA was approved for treatment of actinic 
keratosis, and BPD was approved for treatment 
of macular degeneration (137). 

5-ALA was approved in Europe and Asia for 
fluorescence-guided surgery (97). 

Talaporfin-PDT was approved in Japan for 
treatment of malignant brain tumours and 
refractory oesophageal cancer (138).  

First FDA approval of PDT came out for HPD 
(Photofrin) for treatment/ detection of 
bladder, oesophageal, and lung cancer (137). 

Talaporfin was approved in Japan for 
treatment of lung cancer (142). 

Photofrin was approved for treatment of 
Barrett’s esophagus (137). 

5-ALA was approved by US-FDA for 
fluorescence-guided surgery (97). 

An ester derivative of 5-ALA was approved 
for diagnostic bladder imaging (137). 

INDYGO trial for feasibility of 5-ALA PDT plus 
standard protocol for GBM therapy. no 
published results yet (143). 



34 
 

  
 
 
Figure 1.8. Graphical representation of the basic mechanism of Photodynamic reactions. 1PS: PS 

molecule in ground singlet state, 1PS*: PS molecule in excited singlet state, 3PS*: PS molecule in triplet 
excited state, 3O2: triplet ground oxygen, 1O2

*: singlet excited oxygen. Adapted from (132). 

 
 
 

 

1.2.4 Elements of PDT: photosensitizers and light sources 

For successful PDT 3 principal elements are required: a photosensitizer, light source, 

and oxygen. It starts with the administration of a non-toxic PS that should localize and 

accumulate inside target cells. PS needs to be illuminated by light at specific wavelength 

from a light source. When the absorbed light photons excite the PS, ROS are generated via 

either one of two photodynamic reaction (see Figure 1.8). The ideal PS must [1] be naturally 

occurring and easily purified or easily synthesized, [2] be easily administered, stable and 

soluble in tissue fluids, [3] specifically target cancer cells, [4] have no toxicity on cells except 

when light is applied, [5] have high ROS yield, [6] have an excitation wavelength that has a 

good tissue penetration property (137). Some of the problems of the currently used PSs 

arise from their lipophilic nature and their consequent tendency to form hydrophobic 

aggregates in aqueous solutions, which compromises their distribution and delivery to 

target sites, hinders their effectiveness by reducing the quantum yield of ROS, and 
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complicate their use in clinical practice (144). On the other hand, highly hydrophilic PS will 

not penetrate the cell membrane and will not accumulate inside target cells. Therefore, an 

ideal PS must be amphiphilic with both hydrophilic and hydrophobic moieties for better 

solubility and diffusion (144). 

Most of PS used in research and diagnostics are naturally occurring substances (or 

their derivatives) that have tetrapyrrole aromatic centre in their chemical structure (130). 

Some non-tetrapyrrole naturally occurring dyes ,like curcuminoids, are known for anti-

microbial rather than anti-cancer PDT (130).  

PS may be classified into first, second, and third/ new generation PS (137, 145). First 

generation PS are Hematoporphyrin (HP) and its derivatives HPD. The best known HPD is 

Porfimer sodium (Photofrin®). HPD have high ROS quantum yield, and they are the first 

group of photosensitizers to be studied in research. However, apart from the presence of 

hematoporphyrin oligomers, the exact chemical structure of the side chains is still not clear 

(130). Moreover, this group of PS have poor selectivity to cancer cells, prolonged half-life 

causing long-lasting skin sensitivity where they accumulate (130). All these drawbacks 

prompted the need to develop PS with better characteristics. 

Second generation PS are a big category which includes chlorins and benzoporphyrin 

derivatives (e.g. Talaporfin sodium, BPD-MA, and temoporfin), pheophorbides, 

bacteriopheophorbides (e.g. Tookad), phthalocyanines, texaphyrins, and protoporphyrin IX 

(PpIX) inducing compounds (e.g. 5-ALA), plus other molecules designed around a porphyrin 

or chlorin core (137, 145). They are theoretically superior to first generation PS. In general, 

they have improved chemical purity, better localization, and less skin photosensitivity. In 

clinical studies, they are often excited with red light at ~630 nm (132). This wavelength 

might be better penetrating in brain tissue, but long wave photons carry much less energy 

than green or blue and very inefficient in exciting the most commonly used PS, 5-ALA, as the 

optimum excitation wavelength for these PS is between ~400-440 nm (116). On the other 

hand, red photons easily release their energy as heat, thus predisposing the surrounding 

normal tissue to heat injury and necrosis (132).  
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Third generation is an emerging category of PS. They were developed be conjugating 

first or second generation PS with a carrier for targeted delivery (144). Researchers have 

been trying conjugation with different carriers such as albumin, liposomes, and 

nanoparticles to prevent aggregation of the PS, and to ensure better delivery and 

accumulation in target tissue (129, 145). Engineered multifunctional nanoparticles that can 

recognize specific GBM-related surface moieties, which might increase PS concentration in 

target cells, and/or increase production of ROS have been successfully developed and tested 

with promising results (144). However, most of the development of potential PS for GBM 

was performed in-vitro using one particular GBM cell line, U87-MG (144). This is a very old 

line with a huge burden of de-novo mutations and unclear degree of similarity to the in situ 

GBM cells in a human brain. Taking into consideration the intertumoural and intratumoural 

GBM heterogeneity, future work must include more cell lines, primary GBM cells, and most 

importantly in-vivo models. 

Light in the PDT protocols may be delivered by two approaches. In interstitial PDT 

(iPDT) optic fibers are inserted with radiographic guidance into the tumour mass itself, thus, 

light is applied directly into the tumour tissue in cases where the resection is not an option. 

In other cases “open” or “cavity” illumination (oPDT or cPDT) is employed, when the light 

illumination is carried out after surgical resection either directly into the resection cavity or 

via an inflatable cavity balloon filled with light diffusing solution (117, 146). iPDT is 

developed as a therapy option for unresectable tumours, and to overcome the problem 

arising from poor penetration of light in brain tissue, by directly applying light into the 

tumour mass. The use of multiple cylindrical light diffusers in iPDT is thought to further 

improve light delivery to tumour areas and was implemented on non-resectable GBM 

tumours for photodynamic therapy with 5-ALA (147, 148). These studies suggested a 

possible therapeutic effect of this treatment modality, although outcome depended largely 

on initial 5-ALA accumulation which was heterogenous across patients. A laser device have 

been developed, by Modulight (Finland), with the aim to ensure even distribution of light 

inside tumour mass via the use of multiple optical fibres which emit light laterally. Multiple 

channels could be arranged according to the tumour size. The same device can also be used 

to monitor fluorescence of the tissue and even temperature.  
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Light sources can be either non-coherent (e.g. light emitting diodes; LED) or coherent 

(e.g. laser light) (132). The type of light source per se does not affect the outcome of PDT, 

yet laser light is superior to LED because it can be delivered through fine optic fibers which 

can be inserted into the brain tissue for iPDT (132). The most important factors related to 

the use of light, which can affect the outcome of PDT are, excitation wavelength and the 

total dose of light (149). Longer wavelengths tend to penetrate deeper in the tissue reaching 

for deeply situated tumour cells (149). A range of wavelengths from 400-800 nm is usually 

studied for PDT (149). Wavelengths of less than 400 nm should be avoided for their poor 

tissue penetration, while wavelengths of more than 800 nm bare a huge risk of strong 

thermal effect (132). As mentioned before, for the sake of further tissue penetration, many 

of previously tested PS were excited with wavelengths between 600-700 nm (145). Yet 

when 5 different wavelengths were tested for their singlet oxygen yield, It was found that 

the quantum yield of singlet oxygen is the greatest at wavelengths 488, 510, and 532 nm, 

and very low at 578 and 630 nm (150). Thus, higher efficacy of shorter wavelengths could 

compensate for the poorer penetration. In the majority of biological tissues, light energy 

drops very rapidly, being only a small fraction of the initial power at 5 mm of depth, and 

essentially zero at 1 cm (149). It follows that the optimum wavelength for excitation might 

be somewhere in between the far red and deep blue light in the green part of the spectrum 

(530-560 nm) but the type of tissue and the mode of delivery of the PDT (iPDT or o/cPDT) 

also need to be taken into account (132).  

 

1.2.5 Photodynamic therapy in the management of GBM: diagnostic and therapeutic 

applications 

The use of advanced imaging techniques, like magnetic resonance imaging (MRI) or 

positron emission tomography (PET), has a major role in the diagnostics and pre-surgical 

evaluation of GBM cases (44). FGS is one of the relatively recent imaging techniques used 

intra-operatively to facilitate maximum tumour resection (149). It is unique for being simple 

in application yet very efficient in delineating the tumour territories and allowing real-time 

tracking of the tumour margins at macro level. The use of 5-ALA for FGS has been popular in 

clinical practice especially after the results of the randomised phase III clinical trial by 
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Stummer and his group were published in 2006 (116), which led to its approval by the FDA 

in 2007 in Europe and later in USA in 2017 (97). With the help of 5-ALA guided surgery, total 

resection was achieved in 65% of GBM patients, which significantly improved their 

progression-free survival (116). Up to date, PDT for GBM treatment is still in clinical trials. 

INDYGO is an example of a clinical trial addressing the feasibility and efficacy of 

intraoperative cavity PDT, after tumour resection (143). PDT is planned to be delivered using 

a cavity illumination with an inflatable balloon, filled with a diffusing solution, to house 

multiple light diffusers for more uniform light distribution within the resection cavity (143, 

146). The trial is in the active phase now and no results are published yet. The main 4 PSs 

under investigation are: hematoporphyrin derivative (porfimer sodium or Photofrin©), 5-

ALA (Levulan© or Gleolan©), talaporfin sodium (NPe6 known also as Laserphyrin©), and 

meta-tetra(hydroxyphenyl) chlorin ( mTHPC known also as temoporfin or Foscan©) (144).  

Porfimer sodium (Photofrin©) is a first-generation PS derived from hematoporphyrin 

by acid purification (151). It is injected intravenously and has a strong excitation at 

wavelength 400 nm (152). Post-operative photofrin-PDT with cavity illumination proved to 

be tolerable for glioblastoma patients, however, this series of studies and clinical trials 

conducted by Muller and Wilson did not report any survival benefits in test arm compared 

to surgical resection alone (153). They suggested that this might be due to low illumination 

light power and suggested the use of higher light dose in future. Nevertheless, consequent 

research have shown poor qualities of photofrin as a photosensitiser, such as poor chemical 

purity, nonspecific accumulation in normal cells, and prolonged skin sensitivity (117, 145, 

154, 155), and the focus has shifted towards the radio-sensitizing property of the molecule 

in radiodynamic therapy rather than its photodynamic effect (151).  

5-ALA (Levulan© or Gleolan©) is a pro-drug that is not florescent itself. It is the 

natural precursor of protoporphyrin (PpIX) in the heme synthesis pathway. After the 

administration of 5-ALA, PpIX accumulates preferentially in GBM cells due to their deficiency 

in the enzyme ferrochelatase that converts PpIX into heme. PpXI is florescent and it may act 

as a PS. It absorbs light in the range of 375-440 nm and emits light in the range of 640-710 

nm (156). 5-ALA carries the advantage of being orally administered with high bioavailability 

(149). It is also very convenient to carry out 5-ALA PDT right after 5-ALA FGS, which is now a 

well-established practice in GBM surgeries (149). In a recent study by Schipmann et al., 5-
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ALA FGS was combined with 5-ALA PDT in 20 recurrent GBM patients (154). This treatment 

approach, although well tolerable, resulted in no improvement in PFS, which was reported 

to be 6 months (154), while the expected survival in recurrent GBM is 5-7 months (157). 

Three small scale clinical studies were conducted to evaluate the efficacy and safety of 

5-ALA mediated iPDT in non-resectable GBM (147, 148, 158). They have utilized 

mathematical modelling software to design their illumination protocols. Authors reported 

adequate illumination of the tumour mass by using several fiber-based laser light diffusers 

that were stereotactically placed inside the tumour mass and emitted light at a wavelength 

of 633 nm (147, 148, 158). As mentioned above, PpXI, which is the product of 5ALA 

conversion, absorbs photons best in the deep blue part of the spectrum (420-430 nm), and 

the use of 633 nm laser light seems odd. In fact, photons of long wavelengths carry much 

less energy which inevitably makes them less efficient in triggering photochemical reactions. 

This might explain the lack of clear survival advantage reported in these studies.  

One of the three studies utilized their protocol to evaluate intertumour heterogenous 

uptake of 5-ALA during 5-LAL-iPDT (148). Live intraoperative spectroscopic measurements of 

5-ALA fluorescent intensity were obtained before and after photoactivation, and at least 

three tissue samples were taken from each patient from different tumour areas before 

photoactivation to measure 5-ALA tissue concentration (148). Results revealed high pre-

illumination fluorescent intensity coinciding with high tissue concentration of 5-ALA in three 

patients, low fluorescent intensity occurring despite high 5-ALA tissue concentration in one 

patient, and low florescent intensity coinciding with low tissue concentration in one patient 

(148). Photoactivation was carried out for all patients regardless of the fluorescent intensity. 

The three patients who exhibited higher florescent intensity survived longer (at least two 

years) than the other two patients who died after 3 or 9 months from the time of the 

procedure (148). Even though this suggest some benefit, the sample size was much too 

small to draw any conclusions. Nevertheless, the sample was sufficient to demonstrate 

three different patterns of 5-ALA uptake among GBM tumours. This heterogeneity in 5-ALA 

uptake could explain the variability in treatment response to PDT.   

5-ALA was successfully implemented in purifying infiltrating GBM cells from the 

margins of the tumour by developing 5-ALA-based metabolic cell sorting (65). Smith et al. 



40 
 

have obtained samples from different tumour regions from a total of 11 GBM patients who 

underwent 5-ALA FGS. Samples were taken from the central 5-ALA enhancing region (core 

samples), the peripheral 5-ALA and gadolinium-enhancing areas (rim samples), and from 5-

ALA enhancing tumour peripheries that are beyond gadolinium enhancing regions (invasive 

zone) (65). Invasive samples were then stratified using FACS against 5-ALA fluorescence into 

5-LAA enriched true infiltrative cells and 5-ALA negative cells (65). This method of isolating 

infiltrative GBM cells from non-neoplastic parenchyma is novel and valuable in representing 

true molecular profile of infiltrative cells which are important targets in molecular therapy 

(65). In fact, the study group have reported a significant difference in expression of 78 genes 

between the 5-ALA enriched and 5-ALA negative cells (65). 

Talaporfin sodium (Laserphyrin®) is a second-generation PS derived from chlorin 

structure with peak excitation wavelength at 412 nm (159). In a phase II clinical trial (160) 

involving 22 patients with primary malignant brain tumours, 13 of whom where GBM cases, 

subjects received intravenous talaporfin 1 day prior to surgery. Next day, they were treated 

with intraoperative cavity PDT carried out after maximal safe tumour resection and followed 

by standard treatment protocol. 100% of the GBM study cohort were free of recurrence at 

6-month follow up and survived for at least one year after talaporfin-PDT combined therapy 

(160). The PFS and OS were 12.0 and 24.8 months, respectively (160). This was interpreted 

as a promising outcome and talaporfin-PDT was approved in Japan for treatment of primary 

brain tumour as an adjuvant therapy (138). A follow up analysis of the long-term outcome of 

the previous trial was published in 2019 (138). This analysis also included GBM patients who 

enrolled in the post-therapy surveillance, increasing the total sample size to 30 cases. The 

results of talaporfin-PDT were compared to 164 control cases diagnosed and treated with 

standard treatment protocol during the same period of the trial (138). PFS was 19.6 months 

in PDT group compared to 9 months in control group, and the OS was 27.4 months in PDT 

group compared to 22.1 months in the control group (138). Thus, it is possible that this 

protocol, if developed further could increase the quality of life of patients which had to 

undergo GBM surgical removal. 

Meta-tetra(hydroxyphenyl) chlorin (temoporfin or Foscan®) is a second generation 

PS with significant cell specificity to tumor cells (145). It has a peak excitation wavelength at 

400-440 nm (161), and was extensively studied for treatment of head and neck  tumours, 
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colorectal cancer, and dermatological diseases (145). In two independent small clinical trials 

including newly diagnosed and recurrent GBM cases, temoporfin-PDT was delivered in form 

of intraoperative cavity irradiation after tumour resection (162, 163). Post operatively, all 

groups of patients (treatment and control) received the standard chemotherapy and 

radiotherapy. Results of the two studies are conflicting. One reported a significant 

improvement of overall survival by 5.5 months in treatment compared to control arm (162), 

the other reported weak evidence of survival advantage (wide range for confidence interval) 

(163). Moreover, some serious PDT-related adverse effects (including two deaths) were 

reported in one of the two studies (163). 

In conclusion, a key factor for GBM recurrence are infiltrating GBM cells, and PDT 

could be a promising modality to locally destroy these residual cells. PDT for GBM is a work 

in progress and the development of good PS is a cornerstone of its success. Studies have 

reported what looks like promising clinical outcomes using second-generation PS, however, 

the small sample size, the development of toxicity, and some technical issues related to light 

illumination make it hard to draw clear conclusions as to the feasibility and effectiveness of 

current PDT protocols tested against GBM. I hypothesize that TMRM – a dye commonly 

used to visualize mitochondria- is a safe and effective photosensitizer in inducing death in 

GBM cells, and that it has better spectral properties than other photosensitizers used in the 

field.  

 

  



42 
 

1.3 Repurposing of Antidepressants for GBM Therapy 

1.3.1 Concept and examples of drug repurposing in GBM 

The idea of drug repurposing implies the use of the existing FDA-approved drugs for 

new applications (164). It is related to the concept of poly-pharmacology which is defined as 

use of a drug for multiple diseases rather than one drug for one disease (165). These 

concepts are based on the fact that most, if not all drugs have multiple cellular and 

molecular targets and affect a variety of biological pathways (165). The development of new 

therapies is desperately required to tackle GBM and drug repurposing might be a fast-track 

strategy. 

There is epidemiological evidence supporting the statement that the use of 

antidepressants decrease the risk of many types of cancers including colon cancer (166), 

hepatocellular carcinoma (167), and GBM (168). A very interesting in-silico study matched 

the molecular classification of GBM to the best candidate drugs for repurposing, based on 

the genetic and phenotypic profile of GBM and the drugs’ known molecular targets (169). 

Using artificial intelligence programs, antipsychotics were identified as best candidates for 

repurposing in classical, proneural, and mesenchymal subtypes, but second to best in neural 

subtype. Blood lowering drugs were among the top 5 drug candidates for repurposing in all 

subtypes except mesenchymal GBM. Antidepressants and protein kinase inhibitors were 

among the top 5 ranked candidates in all four GBM subtypes. The study has also uniquely 

prioritized imipramine as a candidate drug for repurposing in proneural GBM. A more recent 

study used a robotic platform to perform concentration/ response analysis of the effect of 

167 FDA approved drugs with variable molecular targets and good brain tissue penetration, 

on the growth of GSCs (170). Twenty-two candidate drugs were identified which led to a 

concentration-dependent growth inhibition on GSCs, 4 of which were neuropsychiatric 

drugs. The list included anti-psychotics Divalproex and Brexpiprazole, an anti-migraine drug 

Rizatriptan, and the anticholinergic Alzheimer’s medication Trihexyphenidyl (170). These 

drugs (except the last) are already in different stages of clinical or pre-clinical research as 

candidates for repurposing for GBM therapy (170). 
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The blood lowering drug metformin, the lipid lowering drug mevastatin, and the 

antimalaria drug chloroquine, along with antipsychotics and antidepressants, are among the 

most notable drugs in GBM repurposing research literature (164). Although these drugs 

have been reported to be effective against cloned GBM cells in vitro, the research 

methodology of these studies are criticised for using much higher, than biologically relevant 

concentrations, using old commercially available cell lines, rather than those obtained 

recently from patients and/or the lack of well-matched controls (164). Moreover, different 

research groups propose different mechanisms of action to explain the anti-GBM effect of 

the same drug, which further weakens the scientific argument. 

 

1.3.2 Repurposing of Antidepressants for GBM treatment 

As mentioned in the previous section antipsychotics and antidepressants have been 

suggested as potential drug classes for re-purposing (164, 169, 170). These drugs have well-

studied pharmacokinetics including ability to cross BBB and an already established safety 

profile (164). Moreover, these medications are anyway being prescribed to some patients 

against depression or anxiety, which are common co-morbidities with cancer, especially 

very aggressive forms such as GBM. 

In 2005, Barak et al. have found significantly lower incidences of cancer among 

schizophrenic patients compared with the general population (171). This has opened the 

door for other epidemiological studies to examine the correlation between psychiatric 

illnesses and the development of cancers in general, and brain cancer in particular. Two 

matched case-control studies, with minimal differences in methodologies, have reported an 

inverse association between the use of tricyclic antidepressants (TCAs), but not selective 

serotonin reuptake inhibitors (SSRIs), and the risk of development of glioma tumours 

including GBM (168, 172). Although this association was not proven to be statistically 

significant, there was a trend in both studies towards decreasing glioma incidence with 

prolonged exposure to TCAs. 

Two well-known antidepressants are imipramine (IM) and clomipramine (CL), which 

chemically are tertiary amines. IM has been approved for treatment of depression long time 
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ago. Although it is no longer the first line for treatment of depression, it is still used to treat 

severe melancholic and psychotic depressions, nocturnal enuresis in children, and 

neuropathic pain (173). Antidepressant effect of IM is usually ascribed to the blockade of 

the reuptake of monoamines (e.g. serotonin and noradrenaline), thus increasing their 

extracellular concentration or enhancing signalling via their cognate receptors. IM also 

blocks some ‘’off-target’’ receptors (e.g. histamine and muscarinic receptors) producing 

anti-histaminic and anti-cholinergic side effects (173). On the other hand, CL is approved for 

the treatment of anxiety and obsessive-compulsive disorder (OCD) and is the most potent of 

all TCAs in terms of blocking serotonin reuptake (174). CL has been reported to have a pro-

apoptotic effect on cancer cells via its action on mitochondria (175). A study by Z Xia et al. 

published ~ 20 years ago, reported reactive oxygen species (ROS) accumulation, caspase 3 

activation, and induction of apoptosis in acute myeloid leukaemia cells following IM and CL 

treatment (175), and studies on GBM  cells have come to similar conclusions (see Table 1.2). 

Imipramine’s toxicity to GBM cells is believed to be mediated by induction of autophagy 

rather than apoptosis (176). 

Fluoxetine (FLX), a specific serotonin reuptake inhibitor (SSRI), is an FDA approved 

drug for treatment of depression, obsessive compulsive disorder, panic disorders, and 

bulimia (177). Fluoxetine rather selectively blocks reuptake of serotonin, increasing 

serotonin mediated signalling (177). The anti-cancer effect of fluoxetine is usually explained 

by ‘induction of apoptosis’, following cellular calcium overload and mitochondrial 

disfunction. Fluoxetine is thought to increase intracellular calcium by activating α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA; ionotropic glutamate receptors which 

are over expressed in GBM cells), or by triggering endoplasmic reticulum stress response 

(178, 179). Fluoxetine has also demonstrated synergy with TMZ and radiotherapy (179-

181).In contrast, a negative effect of imipramine treatment on sensitivity of GBM cells to 

TMZ has been described (182). Fluoxetine treatment successfully reversed concomitant 

neuropsychological problems, such as depressive behaviours and anxiety, in GBM mouse 

models following radiotherapy and chemotherapy (183, 184). A number of studies where 

the effect of antidepressants on GBM cells was studied are summarized in Table 1.2. 
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Table 1.2. summary of studies on the effect of antidepressants IM, CL, and FLX treatment on GBM. 
RT: radiotherapy, h: hours. Study findings irrelevant to the topic are not discussed in the table.  
 

Drug Cell type Treatment 
plan 

Key findings Reference 

IM and 
FLX 

C6 rat glioma 
cells 

1 or 5 µM for 1 
or 5 days 

Induction of a DNA fragmentation pattern 
related to apoptosis. 

(Spanova et al., 
1997) (185) 

IM, CL, 
and 
FLX 

C6 rat glioma 
cells 

100 nM for 48h 
followed by 10 
µM serotonin 

↑ serotonin-dependant intracellular 
calcium mobilization. 
(FLX did not show similar results). 

(Muraoka et al., 
1998) (186) 

CL and 
FLX 

C6 rat glioma 
cells 

6-50 µM for 4 
or 24h 

Detection of fragmented apoptotic DNA. 
↑ caspase 3 and cytochrome c. 
(IM did not show similar results). 
Effective concentration: CL 25 µM, FLX 50 
µM. 

(Levkovitz et al., 
2005) (187) 

CL Primary GBM 
cells 

1-228 µM for 
duration range 
1h-24h 

↓ Oxygen consumption (inhibition of 
cellular respiration). 
↑ caspase 3 activity. 
Effective concentration: starting at 114 
µM 

(Daley et al., 
2005) (188) 

CL 5 different 
primary GBM 
cell lines 

20-100 µM for 
6 hours 

More apoptotic cells detected by Annexin 
V/ flowcytometry. Induction of intrinsic 
apoptosis pathway. Suggestions of 
calcium involvement. 
Effective concentration: staring at 60 µM. 

(Peregrin K and 
Pilkington GJ, 
2006) (189) 

CL HGG cell line 
(at passages 
46-50) 

250, 500, 750, 
and 900 µM OR 
dexamethasone 
pre-treatment 
+ 500 µM 

↓ Oxygen consumption rate indicating 
inhibition of cellular respiration (OCR was 
measured in different time points in the 
20 minutes following addition of 
treatment). 
Effective concentration starting at 250 µM 

(Higgins SC and 
Pilkington GJ, 
2010) (190) 

IM U-87MG and 
C6 glioma cells 

60 µM for 24h Cell death and decreased clonogenicity. 
Inhibition of Akt-mTOR signalling. 
Induction of autophagy, but not 
apoptosis. 
↑ LC3 expression (marker of autophagy). 
Autophagy is Beclin-1 dependent. 

(Jeon SH et al., 
2011) (191) 

FLX C6 rat glioma 
cells 

10 µM for 24 or 
72h 

Gene profile suggestive of increased cAMP 
signalling: upregulation of Gsα and 
downregulation of Gαi2 gene expression. 
Upregulation of Bcl-xL gene expression 
indicating apoptosis inhibition. 

(Choi MR et al., 
2011) (192) 

FLX C6 rat GBM 
and U87MG, 
GBM8401, and 
Hs683 human 
GBM cell lines 

0-30 µM for 
24h 

↑ transmembrane calcium influx 
associated with AMPAR activation. 
Induction of intrinsic apoptosis pathway. 
↓ tumour growth in nude mice. 
Effective concentration: 25 µM in-vivo 
Effective dose in-vivo: 10 mg/kg 

(Liu KH et al., 
2015) (178) 

IM In-vitro: LN71, 
LN229, and 
LN443 human 
GBM cell line 
In-vivo: 
gliomagenesis 
mice models 

In-vitro: 20 or 
40 µM for 24, 
48, or 72h 
In-vivo: 40 
mg/kg/day 

Induction of autophagy. 
↑ LC3 expression (marker of autophagy). 
Associated with ↑ cAMP. 
Prolonged survival of treated tumour-
bearing animals. 
Less expression of proliferation marker 
Ki67 in tumour samples. 
Effective concentration: 40 µM. 

(shchors et al., 
2015) (176) 
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(defective p53 
and HRas) 

FLX T98G, U138, 
SF767, and 
U251 glioma 
cell lines, with 
high MGMT 
expression 

1-30 µM for 6, 
12, 24, 48h +/- 
TMZ 

Reduction of MGMT expression with 1 µM 
FLX. 
FLX sensitized glioma cells to TMZ: no 
inhibition of colony formation when given 
at 10 µM except in combination with TMZ. 
Down regulation of NF-κB signalling. 

(Song T et al., 
2015) (180) 

FLX C6 rat glioma 
cells 

10 or 20 µM for 
24h +/- TMZ 

Inhibition of growth. 
Induction of apoptosis via endoplasmic 
reticulum stress-induced apoptosis 
pathway. 
Synergy between FLX and TMZ. 
Effective concentration starting at 10 µM. 

(Ma J et al., 2016) 
(179) 

IM and 
FLX 

T98G and U87 
human glioma 
cell line 

10 µM for 24h, 
in different 
hypoxia 
models. 

↓ viability and mitochondrial activity. 
↓ expression of stemness markers: CD44, 
nestin, and SOX1/2. 
Pro-survival effect on normal human 
astrocyte line. 
Results were seen with IM only, FLX did 
not show significant results. 

(Bielecka-
Wajdman AM et 
al., 2017) (193) 

IM and 
FLX 

T98G human 
GBM cell line 

10 µM for 24h, 
in 2.5 or 20% 
oxygen. 

↓ MMP and mitochondrial volume. 
↑ ROS production. 
↓ lactate release. 
↓ expression of nuclear factor кB (NF- кB) 
gene. 

(Bielecka-
Wajdman AM et 
al., 2018) (194) 

IM In-vitro: 
U87MG and 
GBM8401 
human GBM 
cells 
In-vivo: 
athymic 
BALB/c nu/nu 
mice 

In-vitro: 20-80 
µM for 24 or 
48h 
In-vivo: 10 
mg/kg/day for 
21 days 

↓ cell viability, migration, and invasion 
abilities. 
Induction of apoptosis via both extrinsic 
and calcium mediated intrinsic pathways. 
↓ tumour progression via inhibiting 
ERK/NF-κB signalling. 
Suppression of growth of U-87MG tumour 
xenograft in vivo. 
Effective concentration: 20 µM 

(Hsu FT et al., 
2020) (195) 

FLX U-87MG 
glioma cells 

5-60 µM for 2 
or 3 days OR 10 
µM for 24h +/- 
RT  

↓ proliferation, ↓ survival fraction of U-
87 colonies with FLX + RT compared to RT 
alone. 
↑ apoptotic cells with FLX + RT compared 
to RT alone. 
Effective concentration: 10 µM. 

(Hosseinimehr SJ 
et al., 2020) (181) 

FLX U87 and U251 
GBM cells, and 
other non-
glioma cells 
(colon cancer 
and breast 
cancer) 

10, 20, 40, 80, 
and 160 µM for 
72 h 

Among different drugs tested for 
induction of cell death, FLX induced strong 
toxicity in all cell lines IC50 ~20 µM 
FLX treatment disrupted MMP and 
increased the lysotracker stain for 
autophagosome-lysosomes in breast 
cancer cells, at 5 µM. 
 

(Varalda M. et al., 
2020) (196) 
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There is no obvious universal mechanism to explain how antidepressants may be 

effective against GBM. One of the ideas proposed relatively recently implicated cyclic 

adenosine monophosphate (cAMP). cAMP may play a role in the antidepressant action of 

TCA and SSRI (197). Classical ADs are believed to increase the central concentration of 

monoamines by blocking their reuptake, which in theory should increase their signalling via 

their cognate receptors some of which are coupled to adenylate cyclase (AC) and therefore 

can lead to cAMP production. Some of the studies suggested that an increase in cAMP 

production can explain their suppressant effect on the tumour cell lines, while others 

proposed anti-GBM mechanisms revolving around mitochondrial damage and induction of 

apoptosis or autophagy (see Table 1.2).  

 

1.3.3 Cyclic adenosine monophosphate signalling pathway as a target for anti-GBM 

therapy 

Physiology of cAMP signalling pathway 

cAMP is a key second messenger in intracellular signalling and the first ever 

discovered molecule to mediate this type of signalling. It is essential in regulating many 

cellular functions, including inflammation, immunity, growth, differentiation, transcription 

and protein expression (198). In a classic scenario transmembrane G-protein coupled 

receptors (GPCR) coupled to AC activate production of cAMP from ATP (198). Upon 

activation of GPCR by its ligand, the type of Gα subunit of the GPCR determines the 

downstream consequences. Gαs-coupled receptors, when activated, increase intracellular 

cAMP, while Gi coupled reduce cAMP production. Downstream effectors of cAMP include 

protein kinase A (PKA), exchange protein directly associated with cAMP (Epac) and cyclic 

nucleotide gated ion channels found at some locations (199). Phosphodiesterases (PDE) are 

responsible for the hydrolysis of cAMP and the termination of its signalling (198). 

cAMP signalling in astrocytes 

Astrocytes are among the cells often mentioned as the key progenitors for the GBM. 

Differentiation of cortical precursor cells through astroglial linage and maturation of 
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astrocytes are thought to be triggered by cAMP (200). Mature astrocytes, the most 

abundant glial cells in the human brain, express various GPCRs that can up or down regulate 

astrocytic cAMP, which plays a major role in executing homeostatic functions of astrocytes 

such as glycogenolysis, glutamate uptake, K+ buffering, and lactate-pyruvate shuttle (201). A 

differential effect of cAMP on astrocytes versus neurons has been reported. cAMP was 

found to stimulate MEK1/2 and ERK growth pathways in neurons ,which have high 

expression of B-RAF, while in astrocytes, which have lower expression of B-RAF, cAMP 

decreased the activity of MAPK, thus, inhibited growth and proliferation (202). More effects 

on astrocytes were observed with experimentally elevated cAMP including decreased 

reactive gliosis (203), cell cycle arrest due to downregulation of Cyclin G1 (204), and 

increased stellation (205), all seen as signs of terminal differentiation. In cultured astrocytes 

activation of AC by chemicals such as forskolin results in a switch to a phenotype closely 

resembling postnatal differentiated quiescent astrocytes in situ (206). 

 Gene Ontology analysis was conducted to study the effect of cAMP elevation on 

functional gene expression profile of mouse cortical astrocytes (206). Paco et al. found that 

cAMP upregulated the expression of genes associated with mature homeostatic non-

reactive astrocyte, and down regulated genes that are usually up regulated in reactive 

astrocytes (206). Among the most up regulated functional categories are genes responsible 

for antioxidant defence, ions and neurotransmitter transporters, and genes of metabolic 

functions, where down regulated genes included genes responsible for cell cycle and 

apoptosis, and genes of cytoskeleton and motility (206). Thus, overall, cAMP pathway seems 

to be directing astrocytes towards a resting, fully differentiated phenotype and away from 

the proliferative and reactive state. 

cAMP signalling in GBM as a potential molecular target for therapy 

Dysfunction of cAMP signalling pathways is known to contribute to cancer progression 

(207). For instance, CREB which is a transcription factor downstream of cAMP regulates the 

expression of 2 important proteins implicated in cell cycle, c-Jun and cyclin D1 (207). 

Depending on the cancer cell type and the nature of the underlying molecular defects, 

pathological or experimental induction of intracellular cAMP or downstream PKA in cancer 

cells can have either tumour-suppressor (reported in GBM) or tumour-promoting effect 
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(reported in lung cancers) (207). Four times lower cAMP levels have been found in brain 

cancer cells compared to normal cells (208). In 1975, Sato et al. have successfully induced 

differentiation of GBM cells to astrocyte-like cells by adding cAMP analogue di-butyryl cyclic 

AMP (db-cAMP) to the culture medium (209). Following that, researchers have tried 

different means for elevating intracellular cAMP in GBM cells. For example, U87MG glioma 

cell line was exposed to db-cAMP for 6 days resulting in decreased proliferation and 

invasiveness (210). Elevating cAMP also decreased the angiogenic properties of U87MG cell 

line, evident by reduced angiogenic transformation of co-cultured peripheral endothelial 

cells (210). 

One of the ways to increase cAMP is to inhibit PDE and PDE inhibitors are among 

candidates for GBM therapy (211). Higher expression of PDE is documented in GBM, 

correlating to tumour aggressiveness (211, 212). Elevating intracellular cAMP in primary 

GBM cells, using a novel small molecule PDE4 inhibitor, resulted in growth arrest and 

induced neural differentiation of the CSCs sub-population, which was associated with 

upregulation of p53 protein expression (213). In another study, using an AC activator 

forskolin (FSK) +/- a non-selective PDE inhibitor (IBMX) to stimulate elevation of intracellular 

cAMP has resulted in growth inhibition of some GBM cell lines but not the others (214). That 

study identified low MAPK activity and high CD44 expression as predictors of GBM 

sensitivity to cAMP treatment (214). 

Exposure to db-cAMP for 48 hours have induced morphological changes in different 

GBM cell lines and their differentiation into a mature astrocyte-like phenotype (215). Global 

gene expression profile and gene set enrichment analysis (GSEA) found a significant effect of 

cAMP elevating treatment on the expression of genes related to mitochondria, especially 

those involved in oxidative phosphorylation (215). Measurements of metabolism such as 

oxygen consumption rate, extracellular acidification rate, and uptake of florescent glucose 

have all indicated a shift in metabolism of db-cAMP treated cells to oxidative 

phosphorylation rather than glycolysis, a phenomenon described by the authors as “anti-

Warburg” effect (215). Furthermore, treatment with db-cAMP inhibited tumour growth in-

vivo, and prolonged survival of GBM-xenografted nude mice (215). The authors 

hypothesized that cAMP elevation modified the expression profile of mitochondrial genes 

which resulted in mitochondrial biogenesis and enhanced mitochondrial functions, which in 
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turn caused a shift in the metabolic state of the tumour cells from glycolysis to oxidative 

phosphorylation. Thus, db-cAMP has forced GBM cells to exhibit features of differentiated 

healthy glial cells (215). 

In another study, treatment of Nestin/CD133-positive GSCs with FSK plus IBMX 

resulted in inhibition of growth and induction of apoptosis in one of the two cell lines 

tested, although both cell lines have increased expression of phosphorylated CREB protein 

as a result of the treatment (216). Inhibiting MAPK pathway pharmacologically increased the 

sensitivity of the non-responsive GSC line to FSK/ IBMX-induced growth inhibition (216). 

From the studies cited above, it is clear, that elevation of cAMP is disadvantageous to 

GBM cells, and therefore, therapies aimed for rising cAMP might be a good novel strategy in 

GBM therapy. As discussed earlier, there is an opinion that some currently used 

antidepressants may be able to do that.  

This concept, namely that the anti-tumour effect of antidepressants is due to their 

ability to increase intracellular cAMP has been strongly argued by Shchors et al. (176). The 

study reports the therapeutic effect of IM on genetically modified mice with p53 loss, 

known to reproducibly develop high grade gliomas (176). Tumour bearing animals were 

reported to survive longer, and to exhibit less proliferation and lower histological grades 

after IM treatment compared to the control cohort (176). The mechanism of this effect was 

investigated, and it was reported that the tumour tissue collected from IM-treated animals 

had higher expression of microtubule associated protein light chain 3 (MAP1-LC3), which is 

an indicator of autophagy activation, whose expression correlates with the number of 

autophagosomes in the cell (176). The induction of autophagy was associated with increase 

in intracellular cAMP levels (176). Similar effects were seen on human GBM cell lines. The 

authors concluded that the mechanism of anti-tumour action of IM is via stimulating AC and 

cAMP-Epac signalling pathway leading to induction of autophagy (176). However, the 

authors failed to explain how IM could engage a cAMP-dependent signalling in vitro, in the 

absence of any monoamines which, in theory could then act on Gs-coupled receptors to 

stimulate cAMP production. Even in vivo such scenario appears rather unlikely because the 

tumour cells lack properly organised innervation by monoaminergic axons from the nuclei in 

the brainstem, and therefore should not have the biological substrate from which 
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noradrenaline and/or serotonin can be released or into which monoamines should be taken 

up. In fact, clear evidence for the ability of antidepressants to elevate cAMP in astrocytes of 

GBM cells in vivo is lacking altogether, in spite of the presence of some Gs-coupled 

receptors for noradrenaline and serotonin on these cells. 

If this effect is not mediated by an increased signalling of noradrenaline and/or 

serotonin, what are the alternatives? One current hypothesis suggests a direct action on the 

lipid rafts within cells membrane. Chronic treatment of C6 glioma cells with AD (desipramine 

and fluoxetine) was reported to enhance the translocation of Gαs from the lipid rafts to 

associate more with AC, increasing intracellular cAMP (217). Similarly, chronic treatment 

using other AD such as escitalopram and fluoxetine was found to cause re-distribution of 

Gαs protein away from lipid rafts, increasing the receptor’s availability, thus increasing 

cAMP signalling (218). Imipramine has also shown the same Gαs-translocating effect (219). 

The three studies cited above utilised C6 glioma cells as a model while focusing on an 

alternative mechanism of action of antidepressants. C6 is a common cell line for studying 

signalling mechanisms in vitro or in-vivo, as xenografts (220, 221). Thus, if antidepressants 

can elevate cAMP via a mechanism independent of the monoamines, that would be one 

potential explanation for the results of the study by Shchors et al. (176) discussed above. 

Altogether, at first glance antidepressants seem like a promising drug for repurposing 

for GBM therapy, but there is obviously a need to further explore their efficacy. Possible 

mechanisms of the anti-tumour effects of antidepressants are also not clear. Published 

evidence points towards two main possibilities: antidepressants could act by increasing the 

level of cAMP (176, 192), and by some toxic effect on GBM mitochondria (188, 190, 194). 

There is also a need to conduct tests on primary human GBM cells of relatively low passage 

from a range of recent patients, ideally from the invasive margin, rather than commercially 

available cell lines some of which have been passaged over 30 years in vitro or even more. In 

contrast, most- if not all- of the studies mentioned earlier in this section and in Table 1.2 

utilised commercially available GBM cell lines, such as C6, U87MG, or U251. These cell lines 

have been used in research for decades and might have accumulated numerous mutations 

which make them poor representatives of the real GBM. 
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1.3.4 Mitochondria as a target for anti-GBM therapy 

Our study is looking at novel/alternative strategies which could be used to tackle the 

formidable problem of GBM. Mitochondria attract a lot of attention in cancer research. They 

are numerous double-membrane cellular organelles responsible for energy production, 

regulation of cell metabolism and apoptosis signals (222). A mitochondrion consists of two 

membranes: inner and outer mitochondrial membranes (IMM and OMM), creating an 

intermembrane space (IMS) between them (222). The IMM encloses the mitochondrial 

matrix which holds the mitochondrial DNA (mtDNA) (222). Cristae form from folding of the 

IMM and serve to increase the surface area of the IMM and enhance the efficiency of 

electron transport chain and ATP production (222). Brain cells extract essentially all their 

energy from glucose, which first undergoes glycolysis, followed by utilization of pyruvate in 

the citric acid cycle, and finally the production of ATP on the inner mitochondrial 

membrane, in a process called oxidative phosphorylation (OXPHOS) (222). Mitochondrial 

redox reactions create a proton gradient (ΔpH+), and an electrical gradient called the 

mitochondrial membrane potential (ΔΨm or MMP) across the inner mitochondrial 

membrane (223). MMP is maintained in certain range to ensure the continuity of normal 

mitochondrial functions and is the key indicator of mitochondrial ability to generate ATP. 

In cancer cells, metabolic reprogramming results in decrease reliance on OXPHOS for 

ATP synthesis. Instead, cancer cells consume 5-10 times more glucose than normal cells and 

use it for glycolysis, producing copious amount of lactate (222). This metabolic shift from 

OXPHOS to aerobic glycolysis regardless of oxygen availability is called the Warburg effect. 

Inhibitors of glycolysis are extensively studied for their role as anti-cancer therapy (224), 

although up to this day we do not know exactly why Warburg effect is so characteristic to 

cancers. Nevertheless, it is a generally accepted fact that mitochondria in cancers are 

different to their counterparts in healthy cells. 

Mitochondria are also linked to cancer development or progression via their 

fundamental role in regulating apoptosis (222). Apoptosis can be triggered by one of two 

pathways, an extrinsic pathway (death receptor pathway originating from signals at the 

plasma membrane), and the intrinsic pathway (release of relevant apoptotic trigger 

molecules from the mitochondria) (222). In a classic scenario for the extrinsic pathway, a 
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ligand binds to the cell tumor necrosis factor (TNF) receptor, this leads to assembly of the 

death-inducing signalling complex and subsequent activation of initiator caspases (222). The 

intrinsic apoptosis pathway can be initiated by opening of the mitochondrial permeability 

transition pore (MPTP) and the release of cytochrome C and mitochondria-derived activator 

of caspase (Smac) into the cytoplasm (222). The release of these molecules triggers the 

formation of apoptosome and the activation of the apoptotic protease activating factor-1 

(APAF-1), which in turn activates executioner caspases 3 and 9 (222). 

It is important to realise that evolution resulted in the loss of the vast majority of the 

mitochondrial genes required for the synthesis of mitochondrial proteins and their 

translocation into the nuclear genome. As few as 13 key mitochondrial proteins are still 

encoded by the circular chromosomes residing in the organelle, but the rest are supplied by 

the main cellular genome either as ready-made proteins or as mRNAs which are locally 

translated in the mitochondria (222). This creates a unique situation where the two 

independent genomes must coordinate their activity very tightly because any mismatch in 

the expression of the proteins involved in OXPHOS is detrimental to the electron transport 

chain. The process of coordination of the activity of nuclear and mitochondrial genomes is 

poorly understood but is fundamental to the efficiency and health of these organelles and 

the cell as a whole. 

Dysregulation of mitochondrial functions can be either a result of nuclear DNA 

aberrations (mutations or epigenetic dysregulation) or mtDNA mutations (222). mtDNA is 

highly susceptible to mutations, mainly due to lack of histone structure, poor DNA repair 

mechanisms, and proximity to ROS production sites at the IMM (222).  

Cancer genome and particularly of GBM, is extremely unstable and gain or loss of 

function mutations are common. Thus, the fine tuning of expression of mitochondrial genes 

is almost always absent in cancer cells, resulting in dysregulation of mitochondrial functions 

and metabolic disturbances (225). Identifying these differences in mitochondrial function 

between cancer and normal cells and utilizing them as targets for anti-GBM therapy is a 

developing and promising field of research (225). 



54 
 

Compromising GBM energy supply and triggering apoptosis seem to be the two 

plausible strategies in targeting mitochondria for GBM therapy. Three connected groups of 

scientists examined the ability of some antidepressants, particularly CL and FLX, to activate 

the intrinsic (mitochondrial) apoptotic pathway in GBM (187-189). They have all reported 

some evidence of apoptosis in GBM following CL or FLX treatment, including increase 

apoptotic cell count, and activation of caspase 3 and cytochrome C. One of these studies 

uniquely reported a decrease in oxygen consumption and MMP indicating an injury to the 

mitochondria, however, this injury was induced only with exceedingly high concentration of 

CL (114µM) (188). The other study has suggested that the apoptosis-inducing effect of CL is 

mediated by Ca+2 overload which can stimulate intrinsic apoptotic cascade (189). Two other 

independent groups have reported mitochondrial calcium overload following FLX treatment 

in GBM and non-GBM cells, which consequently resulted in activation of the intrinsic 

apoptosis pathway (178, 226). In GBM cells, this effect was induced by direct binding of FLX 

to glutamate receptor-1 (GluR-1) subunit of AMPA receptor, which is highly expressed in 

gliomas (178). On the other hand, FLX at lower doses (10µM compared to 25 µM or 50 µM 

in the previous studies) was not effective in inducing mitochondrial damage in two GBM cell 

lines, unlike IM, which significantly inhibited mitochondrial oxidation of NADPH, 

compromising mitochondrial metabolic function, and inducing cell death (193). This is 

surprisingly incompatible with other studies which reported effectiveness of FLX but not IM 

in inducing apoptosis (187). It is worth notice that AMPA receptor is the key excitatory 

receptor mediating glutamatergic transmission in the mammalian CNS and from the 

biological perspective the idea that FLX “overexcites” AMPA receptors looks implausible. 

Treatment with db-cAMP was reported to induce mitochondrial biogenesis, increase 

oxygen consumption, and decrease extracellular acidification in commercially available and 

patient derived GBM cell lines (215). This was associated with enhanced expression of 

mitochondrial OXPHOS genes (215). The authors called it anti-Warburg effect to describe 

the shift in metabolic state of GBM cells from glycolysis to OXPHOS following cAMP 

stimulation, which is also reported to induce differentiation of GBM cells to more mature 

phenotype (215). 

Possibly, mitochondria could be targeted with the aim to sensitize GBM cells to 

conventional chemotherapy with TMZ. TMZ-resistant GBM were found to have better 
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mitochondrial coupling capacity associated with higher expression of cytochrome c oxidase, 

which enhances the OXPHOS capabilities of TMZ-resistant cells and is associated with 

disease progression and poor prognosis (227). Oliva et al. identified chlorpromazine (the 

anti-psychotic) as mitochondrial cytochrome oxidase inhibitor and reported its growth 

inhibiting effect on TMZ-resistant GBM cells (228), as well as GSCs (229). 

In summary, the evidence presented in this section suggests that the dysregulated 

mitochondria could be one of the few universal “weak spots” of the cancer cells, including 

GBM. Some of the cited studies reported that TCA and SSRI might have anti-cancer effects 

via targeting the mitochondria, although in most cases the concentrations used seem to be 

physiologically irrelevant. Moreover, there is inconsistency between the different groups 

regarding proposed mechanisms of action, which further complicates any conclusions. 

Nevertheless, I believe that targeting mitochondria in GBM is a strategy worth of further 

investigation and exploration. I hypothesize that ADs are effective in inducing GBM cell 

death via disrupting mitochondrial functions rather than cAMP elevation. 
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1.4 Project outlines 

Motivated by the urgent need for more innovative, effective, and less invasive therapy 

modalities for GBM, my project aims to explore PDT and drug repurposing as novel 

therapeutic approaches for GBM therapy, inspired by the recent findings in the field. I used 

6 different patient derived primary GBM cells. The first part of my project was dedicated 

towards exploring the molecular heterogeneity in my GBM sample in regard to TMZ 

sensitivity and mutational profile. I used Sanger sequencing technique to sequence 4 

common genes involved in GBM development and progression in my GBM cells. In the 

second part, I explored the possibility of utilizing a dye, previously used to estimate 

mitochondrial membrane potential, as a novel PS to be used for PDT of GBM. I examined its 

localization in cells, safety, and efficacy in PDT against GBM cells, and I explored possible 

synergy between TMRM-mediated PDT and two pharmacological agents, NKH477 and 

clotrimazole. In the final part, I re-evaluated the efficacy some of the classical 

antidepressants IM, CL, and FLX, proposed for repurposing for treatment of GBM. I 

examined their toxicity to GBM cells and investigated into the mechanism of action behind 

that toxic effect, specifically whether it is mediated through cAMP rise or mitochondrial 

depolarization. Different treatment outcomes were observed within my GBM cohort 

throughout the project. 
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 Experimental Materials and 

Methods 

 

2.1 The source and handling of cell cultures 

2.1.1 Source and description of GBM cells 

All GBM cell lines used in my experiments are primary cultures of human GBM cells 

obtained from patients during surgical resection, typically before TMZ treatment (not 

known in all cases). UP007 and UP029 GBM cells were received via collaboration from 

professor G. Pilkington (University of Portsmouth). GIN GBM cells (GIN8, GIN27, GIN28, and 

GIN31) were kindly donated by Dr S. Smith and Dr R. Rahman (University of Nottingham). 

While the exact location from which UP glioma cell lines were derived is unknown, GIN 

glioma cells were specifically extracted from the infiltrating cells taken from the tumor edge. 

The protocol for isolating GIN cells is described in Smith et al. paper (65). Briefly, surgical 

samples were obtained from multiple tumour regions. Invasive samples were obtained from 

areas of 5-ALA enhancement that are beyond the gadolinium enhancing tumour bulk or rim 

on fMRI (65). These cells were then sorted using Florescence-activated cell sorting (FACS) 

against 5-ALA florescence (65). GIN lines are derived from these FACS-sorted 5-ALA positive 

“true” infiltrating cells (65).  

 

2.1.2 Preparation of cultured rat astrocytes  

In my work normal rat astrocytes (RA) obtained from neonatal pups served as 

reference. It is important to state that these astrocytes may not be seen as equal to the 

mature human astrocytes, especially from older people. In fact, rats are born with brain 

much less developed than humans and their neonatal astrocytes are closer to the 

embryonic mid-term human astrocytes (230). For example, they still divide, something 
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which only rarely happen with astrocytes in the postnatal human brain (230). This factor is 

important to keep in mind when comparing them to the GBM cells. However, there are no 

better models available at the moment. This includes stem-cell-derived glia which cannot be 

equated to mature postnatal cells. I attempted to use human embryonic astrocytes (Lonza, 

#CC-2565), but the results were unreliable and are not presented here. 

The preparation of primary dissociated RA was adapted from Marriott, Hirst & 

Ljungberg protocol published in 1995 (231). The protocol was modified as per previous 

publications from our laboratory (232, 233). All procedures followed directions of the 

Animal Scientific Procedures Act 1986 and current guidance of the UK Home office.  

Two solutions were needed for the preparation of the cultures: DNase I solution and 

trypsin solution, and they were prepared fresh before the prep. DNase I solution contained 

3mg/ml bovine albumin serum (Sigma A3294) and 0.04mg/ml Deoxyribonuclease I (Sigma 

D5025) diluted in 40ml Hank’s Balanced Salt Solution (Invitrogen 14175-129). Trypsin 

solution was made by adding 15 ml of the DNase I solution to 0.25mg/ml trypsin (Sigma 

T9935). Neonate (P2) Wistar rat pups were overdosed with 5% isoflurane before 

decapitation. The head was immediately transferred into cold HBSS and to the laminar flow 

hood. In a petri dish, the skin was removed, and the skull was exposed and dissected to 

allow the collection of the brain tissue. Tissue was minced using a sharp scalpel and then 

submerged in trypsin solution for 15 minutes with constant gentle shaking at room 

temperature. After that Dulbecco's Modified Eagles Medium (DMEM) containing 10% foetal 

bovine serum (FBS, Invitrogen, 10108-165) was added to deactivate trypsin and the 

suspension was centrifuged for 5 minutes at 2000 rpm. The supernatant was removed, and 

the pellet was resuspended in DNase I solution. The cell-containing suspension was let to 

settle so the debris can sink at the bottom and the upper part containing cells was collected 

into a new falcon tube. The cell suspension was filtered through a 40 µm cell filter and 

centrifuged for 5min at 2000rpm. Finally, the pellet was resuspended in DMEM 

supplemented with 10% FBS and 1% Penicillin/ Streptomycin (P/S, at 10,000 U/mL, 

Invitrogen, 15140-122), and contents were transferred into T75 cell culture flask and 

incubated in a cell culture incubator at 37°C and 5% CO2 for 7 days to allow astrocytes to 

attach and grow. To eliminate microglia and oligodendrocyte contamination, flasks were 

gently shaken overnight in a shaking chamber at 37°C. The media containing non-astrocytic 
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cells were replaced with fresh media and the flask was put back in the incubator. Astrocyte 

cultures prepared in this way were used in experiments for up to 3 weeks. 

 

2.1.3 Maintenance and handling of GBM cell lines and astrocytes 

UP GBM cell lines and normal RA were grown in Dulbecco's Modified Eagles Medium 

(DMEM) with GlutaMAX™ (Invitrogen, 61965-059), supplemented with 10% FBS and 1% P/S. 

GIN GBM cell lines were grown in low-glucose DMEM with L-Glutamine supplemented with 

1% P/S and 10% or 15% FBS (15% for GIN8 and GIN27, and 10% for GIN28 and GIN31, as 

advised by the providers of these lines). All media and supplements were purchased from 

Gibco®. In all my experiments, the passage number of cells was always 30 or less, except for 

GIN31 where it was 32 or less. 

For passage, cells were harvested when they were 70-80% confluent. First, flasks were 

washed with sterile phosphate buffer solution (PBS), then Trypsin-EDTA (Gibco®) was added 

to cover the bottom of the flask, which was then incubated at 37°C for 2-3 minutes to allow 

cells to detach. After incubation, sufficient amount of complete media was added to 

deactivate trypsin, then cell suspension was centrifuged at 1000 rpm for 5 minutes. The 

supernatant was discarded, and the pellet was resuspended in 2-3 ml of fresh full media. 

Finally, cell suspension was either sampled for measuring cell concentration and then used 

for experiments or sub-cultured in a new flask with the addition of fresh media. Flasks were 

carefully labelled and returned into the incubator. Cell handling was done in a sterile 

laminar flow hood to guarantee aseptic environment. Cell incubator was set to maintain 

temperature at 37°C and 5% CO2, referred to as standard culture conditions hereafter. 

Sterile conditions were strictly followed at all times. 

To achieve consistency in cell density between experiments, cells were counted using 

Neubauer Haemacytometers. This cell counting tool consists of a glass slide with a 

calibrated chamber and a glass cover. When the glass cover is placed over the glass slide a 

narrow chamber is created with a capillary action that allows a sample of previously diluted 

cell suspension to be loaded for counting. Cells occupying the outer 4 squares of the 
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calibrated chamber are counted. Considering the volume of a single square of the calibrated 

chamber (0.1mm3 or 10-4 ml), cell concentration is calculated using the following formula: 

 

2.1.4 Coating of glass coverslips with rat tail collagen  

Whenever imaging of cells required plating them on glass coverslips, type 1 rat tail 

collagen (Sigma C3867) was used to coat the coverslip at working concentration of 0.25 

mg/ml to promote cell attachment. Stock was diluted with 0.2M acetic acid. Glass coverslips 

were incubated with 300µl collagen for 15 minutes at room temperature. Collagen was then 

re-collected for re-use and coverslips were washed twice with PBS. Coated coverslips were 

made fresh before each experiment. 

 

2.1.5 Production of stable EGFP-expressing GBM lines 

One of the objectives of my project was generation of GBM cell lines stably expressing 

enhanced green florescent protein (EGFP) in order to track their behaviour in complex 

systems, such as cultured slices, in real time. This was achieved using lentiviral vectors (LVV) 

which permanently integrate their transgenes into the genomes of the target cells. This LVV 

was available in the laboratory and generated previously. An LVV where EGFP is expressed 

under the control of a stable and potent mammalian EF1-α promoter was used to produce 

stable lines of GFP-tagged GBM cells. GBM cells were seeded in 6-well plates at density of 

105 cells/ 2 ml/ well, in order to achieve 80% confluency at time of transduction. Next day, 

LVV was introduced to cells in the presence of 8 µg/ml Polybrene (Hexadimethrine bromide, 

Sigma H-9268) to facilitate the transduction. The viral stock concentration was 5.1x10E10 

pfu/ml, which was diluted to achieve MOI of 10, 20, 50, 70, and 100. For UP glioma cell 

lines, MOI of 30 was sufficient to transduce all cells, while for GIN cells MOI of 50 for GIN8 

and GIN28, 70 for GIN31, and 100 for GIN27 were used. The following day (24 hours after 

introduction of the virus), polybrene containing media was replaced by fresh media. 48 

Cell concentration (cells/ml) = (number of cells counted/ 4) x dilution factor x 104 
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hours after transduction, cells were checked for GFP expression. Since all visible cells were 

fluorescent green, not cell sorting was used. Cells were then transferred into cell culture 

flask to allow sufficient growth for cryopreservation. 

 

2.1.6 Cryopreservation of cell lines 

Whenever needed, cryopreservation was carried out as following: cells were grown in 

175 cm2 cell culture flask, trypsinized and collected for centrifugation. The cell pellet was 

then resuspended in adequate volume of freezing solution, consisting of FBS plus 10% 

dimethyl sulfoxide (DMSO). Finally, the cell solution was aliquoted in clearly labelled 

cryotubes and kept in -80°C freezer for future use. 

 

2.1.7 Staining nuclei for counting using 4′,6-Diamidine-2′-phenylindole 

dihydrochloride (DAPI) florescent dye 

For cell counting, images of fluorescent nuclear stain DAPI were obtained using ZOE™ 

Fluorescent Cell Imager. ImageJ (Fiji) software was used to count the number of stained 

nuclei. DAPI is a dye that selectively binds to nuclear DNA and form a florescent complex 

(234). DAPI is more specific and photostable than other nuclear stains (234). It requires 

fixation of cells or permeabilization of cell membranes before the staining (234). Briefly, 

cells were washed with PBS and fixed using 4% paraformaldehyde (PFA) solution. After 15 

minutes incubation with PFA, cells were washed with PBS then DAPI was added at working 

concentration of 1µg/ml and left to stain for 5-10 minutes. Finally, DAPI was removed and 

cells were washed and kept in PBS ready for imaging. 

 

  



62 
 

2.2 Exploring molecular diversity of our GBM sample 

It was noted that different lines of GBM differ in their responses to the treatments 

that have been investigated. This was not surprising as GBM tumours are known to be 

heterogenous. It was reasonable to expect differences in TMZ sensitivity as well. Therefore, 

an initial enquiry into TMZ sensitivity among GBM cell lines was made. It is also well known 

that differences in treatment sensitivity are related to heterogeneity of molecular profiles of 

the tumours. Accordingly, I investigated the mutational status of four different known GBM 

driver genes (IDH1, EGFR, p53, and PTEN) using sequencing of the products obtained by RT-

PCR of the mRNAs isolated from these genes. 

 

2.2.1 Evaluating the toxicity of TMZ on GBM cell lines 

The effect of TMZ was tested to evaluate TMZ sensitivity among the different GBM cell 

lines. It can also serve as a reference for other treatments tested in this project. TMZ is a 

first line chemotherapy in GBM treatment and has been described in chapter 1. 

TMZ toxicity was assessed using PrestoBlue™ viability reagent (Invitrogen A13261). 

The basis of this assay is that only viable cells can convert the blue cell-permeable active 

ingredient, resazurin, into a red and florescent metabolite. This red colour and/ or florescent 

intensity are then measured. The more viable cells there are, the darker the red colour is in 

the culture media, and the more intense the florescence is. In my experiments, I measured 

colour absorbance in the culture media of the cells.  

Cells were seeded in 96-well plates at 6,000 cells/ 100ul/ well for RA, and 5,000 cells/ 

100ul/ well for GBM cells and incubated in standard culture conditions overnight. The next 

day, cells were treated with different concentrations of TMZ. Since TMZ needs to be 

dissolved in DMSO, for control I used solutions containing equivalent quantities of DMSO. 

Cells were incubated with TMZ for 9 days. Media containing drugs, negative controls, and 

DMSO controls were replaced with fresh ones every 3 days. After 9 days, a volume of 

PrestoBlue reagent was added to the final concentration of 10% of the total volume of 

culture media per well. Plates were returned into the incubators for 2 hours before reading 
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absorbance using the microplate reader. Absorbance was read at 570nm and normalized to 

600nm (baseline). 

 

2.2.2 RNA isolation 

RNA purification from GBM cell lines was carried out using RNeasy Mini Kit from 

Qiagen. First, cells were detached from culture flasks using trypsin as mentioned previously 

in section 2.1.3. After centrifugation step the supernatant was removed, and the pellet was 

resuspended in 350 µl RLT lysis buffer. Equal amount of 70% ethanol was then added, and 

the mixture was loaded into a silica-membrane RNA-binding spin column, which was 

centrifuged at 8000 rpm for 15 seconds. The flow-through was discarded, and the spin 

column was placed back in the tube. Next, 700 µl of RW1 buffer was added to the spin 

column and the tube was centrifuged at 8000 rpm for 15 seconds. Again, the flow-through 

was discarded, and the spin column was placed back in the tube. Next, 500 µl of RPE buffer 

was added to the spin column and the tube was centrifuged again at 8000 rpm for 15 

seconds. This step was then repeated with 2 minutes centrifugation instead of 15 seconds to 

dry the membrane out from any residual RPE buffer. Next, the column was placed in a clean 

microfuge tube and 30-50µl RNase-free water was added to the column and the tube was 

centrifuged for 1 minute at 8000 rpm to elute the RNA. RNA concentration was then 

measured using Nanodrop Spectrophotometer ND-1000. 

 

2.2.3 Reverse transcription 

Reverse transcription (RT) of RNA was carried out using QuantiTect Reverse 

Transcription kit from Qiagen, which consists of two main steps (1) elimination of genomic 

DNA (gDNA), (2) reverse transcription reaction. Briefly, RNA was incubated with gDNA wipe-

out reagent in a water bath at 42°C for two minutes and placed in ice immediately. RT 

mixture was prepared on ice as well. It consists of reverse transcriptase, RT primer mix, and 

RT buffer. RT mixture was then added to the RNA isolated in the previous step and 

incubated for 15 minutes in water bath at 42°C. Finally, reverse transcriptase is inactivated 

by incubating at 95°C for 3 minutes. cDNA was either used directly or stored at -20°C. 
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2.2.4 Primer design and PCR for desired genes 

Polymerase chain reaction (PCR) is a technique that allows in-vitro amplification of 

nanoscale quantities of DNA. It consists of cycles of thermally-driven enzymatic reactions: 

DNA denaturation, primer annealing, and extension (235). 

Using IntOGen database of Oncogenomics, 4 driver genes implicated in the 

pathogenesis of GBM were selected and tested for mutations in my GBM cohort. Available 

information: https://www.intogen.org/search?cancer=GBM#driver-genes:plot .These genes 

are: IDH-1, p53, EGFR, and PTEN. PCR primers for those genes were designed using NCBI 

Primer-BLAST primer designing tool and ordered from Eurofins Genomics (Table 2.1). 

Initially I planned to use Oxford Nanopore process for sequencing, which has no limit on the 

length of the sequenced nucleic acid fragments. However, because of the disruption caused 

by COVID pandemic I eventually chose to use Sanger sequencing. Sanger process is reliable 

for fragments of <700-800 nucleotides. However, in some cases I had to scan longer 

segments of the chosen genes. In these cases, more than one primer pair were designed 

with overlaps to cover the whole length of mRNA sequence. Primer pairs (forward and 

reverse) had Tm values not more than 4.1°C different from each other, with an average Tm 

of 59.3 ± 1.77 °C (mean ± SD) for all primer pairs. The average CG content was 54% ± 7.77 

(mean ± SD).  

PCR mixture was prepared as following: 2.5µl of forward primer, 2.5µl of reverse 

primer, 1μl (10mM) of dNTPs (New England Biolabs, N0447L), 0.5μl of DNA Polymerase, 

10μl of Phusion High Fidelity Buffer (New England Biolabs, B0518S), and 31.5µl of nuclease-

free water. Finally, 2µl of cDNA (the template) plus 48µl of the PCR mixture were added into 

a flat cap PCR tube (Starlab, I1402-8100) to the total volume of 50µl. PCR thermal cycler (G-

Storm) was set as following: denaturation at 94°C for 20 seconds, annealing at variable 

temperatures according to the primers used ranging from 55.3-61.8°C for 30 seconds. When 

multiple samples with different primers were run simultaneously, annealing temperature 

was set at the average Tm. Annealing is followed by a 30-second extension step at 72°C (the 

optimum temperature for DNA polymerase enzyme activity). The cycle was repeated 35 

times. 

  

https://www.intogen.org/search?cancer=GBM#driver-genes:plot
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Table 2.1. List of primers used in PCR experiments.  
 

Gene of interest 
 

Sequence Product 
length (bp) 

IDH1 

Pair 1 

  IDH1-fw: GCGTCAAATGTGCCACTATCA 

        IDH1-rv: CTCAGATACAAAGGCCAACCCT 
416 

EGFR 

Pair 1 

  EGFR-fw1: TGCGACCCTCCGGGAC 

        EGFR-rv1: TCACTGGGGGACTTGCCAC 
688 

Pair 2 

  EGFR-fw2: GTGGCAAGTCCCCCAGTGA 

        EGFR-rv2: AGGTTCTCAAAGGCATGGAGG 
598 

Pair 3 

  EGFR-fw3: ACGGACCTCCATGCCTTTGA 

        EGFR-rv3: TCTTAGGCCCATTCGTTGGAC 
685 

Pair 4 

  EGFR-fw4: GGCCTAAGATCCCGTCCATC 

        EGFR-rv4: TTGGCCAGCCCAAAATCTGT 
685 

Pair 5 

  EGFR-fw5: ACACCGCAGCATGTCAAGAT 

        EGFR-rv5: GACAGCTTTGCAGCCCATTT 
637 

PTEN 

Pair 1 

  PTEN-fw1: TTCTTCAGCCACAGGCTCC 

        PTEN-rv1: CTTGTGAAACAACAGTGCCA 
615 

Pair 2 

  PTEN-fw2: AGTGGCACTGTTGTTTCACAAG 

        PTEN-rv2: GCTGATCTTCATCAAAAGGTTCA 
620 

p53 

Pair 1 

  p53-fw1: GTCCCCGGACGATATTGAACA 

        p53-rv1: CGGATAAGATGCTGAGGAGGG 
453 

Pair 2 

  p53-fw2: GCCCCTCCTCAGCATCTTATC 

        p53-rv2: AGTCTGAGTCAGGCCCTTCT 
616 

 

 

2.2.5 Agarose gel electrophoresis 

Agarose gel electrophoresis was used for identification and purification of target DNA 

fragment after the PCR step. PCR products, along with a DNA indicator ladder (New England 

Biolabs, N3200S), were loaded into freshly prepared 1% agarose gel containing 0.01% DNA-

binding fluorophore (SafeView Nucleic Acid Stain, NBS Biologicals, NBS-SV1). Prior to 

loading, samples were mixed with a gel loading dye (Orange G; Sigma, O-3756) at a volume 
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ratio of 1:4. Electrical power supply was set to apply 110 volts for 20-30 minutes. Gels were 

placed in a transilluminating chamber to be visualized and photographed under UV light. 

Desired bands were then cut using clean scalpels and collected for DNA purification in 1.5ml 

microfuge tubes. 

 

2.2.6 DNA purification 

DNA extraction from gel bands was carried out using QIAquick Gel Extraction Kit from 

Qiagen. Buffer QG was added to obtain volume ratio 1:3 gel to buffer. The tube was then 

placed in 50°C water bath for 10 minutes to dissolve the gel. The mixture was then loaded 

into a filter column and centrifuged for 1 minute at 10,000rpm to trap the DNA in the filter. 

The flow through was discarded and 100% ethanol was added then the tube was 

centrifuged at 10,000 rpm for 1 minute. This was repeated with 750µl of buffer PE. Finally, 

Milli-Q water was added to elute DNA from the filter, which was then collected by 

centrifugation in a clean microfuge tube. Purified PCR products were then sent for 

sequencing. The sequencing sample was prepared by adding 2µl of one of the primers 

(either forward or reverse) to 15µl of DNA sample for a total concentration of 5ng/µl of the 

purified PCR product. Sanger sequencing was performed by Eurofin Genomics (UK). 

 

2.3 Experiments with TMRM as a novel photosensitizer in 

photodynamic therapy for GBM 

TMRM, the dye mentioned above, can be potentially used as an efficient 

photosensitiser. Upon illumination with moderate activity green light for fairly short periods 

of time (22 or 40 sec). TMRM led to strong depolarisation of mitochondria, manifested by 

the loss of fluorescence. It is generally believed that depolarisation of mitochondria may 

severely damage it, leading to release of pro-apoptotic molecules and cell death. Attempts 

were done to potentiate TMRM-PDT effect on GBM cells with AC activator NKH477 or 

glycolysis inhibitor clotrimazole. 
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2.3.1 TMRM as a photosensitizer 

TMRM fluorescence decay dynamics after application of light was tested. The cells 

were plated at density of 5x104 cells/ ml, on glass cover slips coated with type 1 rat tail 

collagen as previously described in section 2.1.4. Cover slips were placed inside small 

corning dishes. Dishes were incubated overnight under standard culture conditions. The 

next day, cells were loaded with 100nM TMRM for 1 hour. Before photoactivation of TMRM, 

baseline images were obtained as a sequence of 6 images, one every 10 seconds, for a total 

of one minute. This was followed by illumination with green light (1.4mW/mm2 with x10 

objective) for 30 seconds followed by a series of 20 images every 10 seconds, for a total of 3 

minutes. Imaging was done using Leica DM IRB Inverted florescent microscope equipped 

with R6 Retiga digital camera and controlled by Micromanager software. Imaging 

parameters such as exposure time (200 msec) and light intensity were fixed throughout all 

imaging sessions. ImageJ (Fiji) software was used to process the images. 

TMRM toxicity in absence of illumination was also evaluated. Cells were seeded in 96-

well plates at density of 6,000 cells/100ul/well for GBM cells and 104 cells/100ul/well for RA. 

Next day, cells were loaded with different concentrations of TMRM ranging from 0 to 1600 

nM for 1 hour, then media was replaced with fresh one, and the plates were incubated in 

standard culture conditions for 3 days. Measurement of toxicity was carried out using LDH 

assay as described in section 2.4.1. 

 

2.3.2 Effect of photodynamic therapy on GBM cells’ viability using TMRM as 

photosensitizer 

Our protocol for photodynamic experiment consists of plating GBM cells, loading them 

with TMRM, photoactivation of TMRM using green light, and finally, an end point 

measurement of GBM cells’ survival. 

On day 1, a 4µl drop of cell suspension solution containing 350-400 cells was carefully 

placed in the centre of the well of 96-well plate (Figure 2.1 left panel). Cells were let to 

attach to the bottom of the plate for 45 minutes inside the incubator before topping up the 
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wells with 100µl fresh media. Cells were then allowed to grow in cell culture incubator 

overnight. This cell plating protocol was developed by my colleague Dr A Vasilev to ensure 

that the beam directed from the objective is able to illuminate all cells in the well (Figure 2.1 

middle panel). This was important because in the preliminary experiments I found that the 

cells located at the margins of the wells and the walls do not receive sufficient density of 

light and therefore do not react to PDT. On day 2, media was replaced by 100µl fresh media 

containing 300nM TMRM. Cells were allowed to load for 45 minutes. After that, the centre 

of each well was illuminated by green light (~530-550 nm) using Leica EC3 florescent 

microscope with 5x objective at 1.06 mW/mm2 for 22 or 40 seconds. Media was then 

removed, and cells were returned into the cell incubator. 3 days after photoactivation, PDT 

outcome was assessed by counting the number of visible nuclei in each well. This was done 

by staining nuclei with DAPI, according to DAPI staining protocol described in section 2.1.7, 

followed by obtaining florescent images for each well using Leica LASX live imaging 

fluorescent microscope with Leica DFC420C colour camera, with x5 objective to include all 

DAPI positive cells in one image for each well (Figure 2.1 right panel). Number of DAPI-

stained nuclei was counted using Fiji image processing software.  

 

 

 
Figure 2.1. An illustration of the protocol used in TMRM-mediated PDT experiments. Plating of the 

cells, photoactivation of TMRM, and finally the measurement of outcome using cell counting as an 
estimation of toxicity in all experiments involving TMRM-PDT. Cell type, treatment conditions and 
durations, TMRM loading concentration, and light dose are unique to each experiment. 
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2.3.3 Using TMRM to assess the recovery of MMP after the PDT 

Next to be tested was whether GBM cells would recover their normal MMP after 

photoactivation with TMRM. As mentioned above the insult caused by mitochondrial 

depolarisation may lead to irreversible consequences and cell death, however, it is possible 

that cells which are more resilient to treatment will recover their MMP.  

Cells were treated with PDT initially as mentioned in the previous section. Briefly on 

day 1, cells were seeded using the special seeding protocol described previously. On day 2, 

cells were loaded with 300uM TMRM for 45 minutes, followed by photoactivation of TMRM 

with green light (1.06 mW/mm2 for 40 seconds) using Leica EC3 florescent microscope and 

5x objective, then cells were incubated with fresh media overnight. On day 3 of the 

experiment, cells were re-loaded with 300uM TMRM for 45 minutes. Images of TMRM-

loaded cells were then obtained using ZOE™ Fluorescent Cell Imager. ImageJ (Fiji) image 

processing software was used to measure dye intensity to assess the recovery of MMP 

compared to baseline controls. 

2.3.4 Potentiating the effect of photodynamic therapy on GBM cells 

I investigated the possibility to enhance the effect of PDT with two pharmacological 

approaches, either an inhibitor of glycolysis (clotrimazole) or an activator of AC (NKH 477). 

Plating of cells was performed using the plating protocol described earlier in section 2.3.2. 

Milder TMRM-PDT conditions were used in these experiments, in order to easily reveal any 

additive or synergistic effects of the combined treatment. Specifically, 200nM TMRM was 

used to load the cells, instead of 300nM, and the duration of illumination was 17 seconds 

only. Leica EC3 florescent microscope was used to illuminate the cells with 5x objective lens 

and a light dose of 1.06 mW/mm2 for 17 seconds. 

To test whether NKH 477 can enhance TMRM-PDT, GBM cells were pre-incubated 

with 10 µM NKH 477 for 24 hours before TMRM-PDT was carried out. PDT outcome was 

evaluated on day 3 by cell counting using DAPI nuclear stain as previously described. I also 

tested whether I could potentiate the outcome of PDT with clotrimazole. 10µM of 

clotrimazole was added to the cells right after TMRM-PDT. Cells were incubated with 
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clotrimazole for three days before evaluating the outcome by cell counting using DAPI 

nuclear stain as previously described. 

 

2.4 Re-evaluating the efficacy of antidepressants for GBM therapy  

One of the objectives of this study was to re-evaluate the ability of antidepressant 

drugs to suppress GBM cells’ growth and survival. The inspiration for this study came from 

several previously published studies where such effects were reported, and antidepressants 

were consequently proposed to be repurposed for cancer therapy (Table 1.2). However, the 

issue remains highly controversial. Here I re-evaluated the effect of several antidepressants 

on cell viability, proliferation and migration, intracellular cAMP level, and MMP.  

The choice of IM and CL (TCA), and FLX (SSRI) was based on previously published work 

highlighted in Table 1.2. CL was also studied because it has a similar pharmacokinetic profile 

to, but is more potent than, imipramine (lower Ki for reuptake inhibition of serotonin) (2). I 

reasoned that this comparison might be useful in order to better understand the 

mechanisms of TCA effects on GBM. 

 

2.4.1 Lactate dehydrogenase cytotoxicity assay 

Lactate dehydrogenase (LDH) assay was used to determine the toxic action of 

antidepressants on GBM. LDH is an intracellular enzyme that is released from the cell upon 

disruption of the cell membrane or cell lysis (236). LDH is stable in the extracellular 

environment for 48 hours and its level in culture media reflects the degree of cytotoxicity 

induced by a stimulus (236). I used Thermo Scientific™ Pierce™ LDH Cytotoxicity Assay Kit 

(cat no. 88954) to measure LDH levels in the media. This is a colorimetric assay where a red 

product is generated in proportion to the LDH content of a sample (Figure 2.2). Cells were 

plated in 96-well plates at density of 6,000 cells/100ul/well for GBM cells and 104 

cells/100ul/well for normal RA. Plates were incubated overnight in standard culture 

conditions. On the next day, media was replaced with 100 µl fresh media containing 

different concentrations of IM, CL, or FLX. After three days of drug incubation, reaction 
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buffers provided with the kit were added and colour intensity in wells was measured using 

Infinite® 200 PRO microplate reader. 

Toxicity was calculated based on levels of LDH in the media from wells (which reflects 

the amount of LDH released from dead or disintegrating cells as a direct effect of drug 

toxicity) and total levels of LDH obtained after lysis of the remaining cells (reflecting the LDH 

released from the remaining cells that were not affected by the treatment, this serves as 

internal control for each treatment condition). Ratio of both LDH levels were calculated as 

LDH in media/ LDH after lysis. Higher ratio means higher toxicity. 

 

 

 
Figure 2.2. Schematic representation of the mechanism underlying LDH-mediated toxicity assay. 

Adapted from the assay manual. 

 

2.4.2 Scratch wound healing assay 

In-vitro scratch wound healing assay involves removing a streak of cells from a 

confluent cell monolayer and observing the proliferation and migratory behaviour of the 

cells into the barren area (237). It is an efficient method to study cell proliferation/ 

migration in-vitro. 

Essen BioScience’s IncuCyte™ 96-Well Scratch Wound Assay was used to evaluate the 

effect of drugs on GBM cells’ proliferation/ migration. Cells were seeded in 96-well 

ImageLock plates (Essen BioScience 4379) at density of 30,000 cells/100ul/well for GBM 
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cells and 50,000 cells /100ul/well for normal RA and incubated in standard culture 

conditions for 24 hours to form a confluent cell monolayer. After 24 hours, identical micro-

scratches were done in each well using WoundMaker™. Wells were washed twice using PBS 

to remove dislodged cells. Finally, media containing different concentrations of drugs were 

added and plates were incubated in IncuCyte ZOOM®. ZOOM software was set to obtain 

scans of the wound area every hour for 48 hours. ZOOM software was also used to analyse 

the images. Figure 2.3 illustrates the principal steps in this assay. Confluency of wound area 

is compared between different time points and is expected to increase with time in 

physiological conditions as cells proliferate and migrate to close the wound gap. This 

measurement however is not very accurate, as it does not take into account the initial 

confluency of the monolayer or the confluency at the non-wound area. Relative wound 

density (RWD) is a more reliable measurement. It measures the density at wound area in 

relation to the density at the non-wound area at a given time. It Is calculated as follow: 

 % RWD (t) =  100 ∙
w(t)−w(0)

c(t)−w(0)
 

Where (t) means at a given time point, (0) means at time zero, (w) is the density at 

wound area, and (c) is the density at non-wound area. See Figure 2.3 for reference. 

 

 

 

Figure 2.3. An illustration of the technical method of scratch wound healing assay. Cells are seeded 
to form a monolayer in a 96-well plate. A scratch wound is applied. Serial images are taken in time lapse 
mode to capture the process of wound healing for at least 48 hours after the scratch. a: initial wound 
area or wound width at time 0, b: non-wound area at time 0, c: wound area or wound width at time z, 
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d: wound confluency (fractional width of the initial wound occupied by cells at time z). Adapted from 
the assay manual. 

 
 

2.4.3 Measurement of intracellular cAMP level changes in response to antidepressant 

drugs treatment using FRET Epac-based cAMP sensor 

Föster resonance energy transfer (FRET)  is the physical transference of light energy 

from one molecule, the donor to another, the acceptor (238). The efficacy of transfer 

depends on the proximity and geometrical interrelation of the two fluorophores (238). A 

typical FRET sensor consists of donor fluorophore, acceptor fluorophore, and ligand binding 

site. Upon binding of the ligand, the geometrical alignment of the two fluorophores 

changes. This affects the amount of energy transferred from the donor to the acceptor 

fluorophore (238). As a result, the relative quantities of photons emitted by donor and 

acceptor changes and this is what is registered by an optical instrument, such as a confocal 

microscope. 

Measuring changes of intracellular cAMP level in GBM cells in response to drugs was 

carried out using Epac (Exchange protein directly activated by cAMP)-based FRET sensors 

kindly provided by Prof Kees Jalink (van Leeuwenhoek Centre of Advanced Microscopy, 

Amsterdam, The Netherlands) and described in (239). This sensor consists of donor cyan 

fluorophore (CFP), acceptor yellow fluorophore (YFP), and cAMP-binding domain based on 

the molecular structure of Epac (240). Physiologically, Epac protein binds cAMP and 

regulates the function of downstream proteins of cAMP pathway Rap-1 and Rap-2 (239). In 

a FRET experiment as in Figure 2.4, binding of cAMP to the Epac-based sensor causes 

conformational changes in the structure of the sensor, pulling the two fluorophores apart, 

and decreasing the amount of energy transfer (240). Hence, CFP fluorescence increases and 

YFP decreases.  

cAMP EPAC sensor was delivered by plasmid transfection. On day 1, GBM cells were 

plated on glass coverslips coated with type I rat tail collagen as described in section 2.1.4, 

and placed inside 24-well plate, at density of roughly 3,000-4,000 cells/ 500µl/ well. Next 

day, plasmid transfection with mT2-Epac high aff-cpVcpV plasmid was carried out using 

TurboFect transfection reagent (Thermo Scientific R0531) to deliver the construct into GBM 
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cells. Transfection was carried out according to the manufacturer protocol using 

transfection reagent to DNA ratio 2:1. On day 3, media in wells were replaced with fresh 

media containing different concentrations of drugs (IM, CL, or NKH477). On day 4, 2 days 

post transfection, measurements were performed on Leica SP5 spectral confocal 

microscope. The readout is obtained by ratiometric measurement of CFP and YFP emissions 

as CFP/YFP ratio (channel 1/ channel 2), the higher ratio reflects higher intracellular cAMP 

level. Excitation wavelength was 458 nm, and emission was detected within 465-495 nm for 

CFP and within 515-560 nm for YFP. Parameters such as laser power, photomultiplier tube 

(PMT) sensitivity, pinhole and resolution were fixed throughout all imaging sessions. Images 

were analysed using Leica software quantifying tool.  

 

 

 

Figure 2.4. A schematic diagram of the Epac-based cAMP FRET sensor. CNBD: cyclic nucleotide 
binding domain, Ex: excitation wavelength, Em: emission wavelength, CFP: cyan fluorescent protein 
(donor fluorophore), YFP: yellow fluorescent protein (acceptor fluorophore), ET: energy transfer. 
Adapted from Ponsioen B, et al., 2004 (240). 
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2.4.4 Assessment of Mitochondrial Membrane potential (MMP) in normal RA and 

GBM cells 

Potential of the mitochondria is a critical determinant of mitochondrial ability to 

generate ATP and is also a signature of cell’s metabolic status. One of the objectives of this 

project required evaluation of MMP in context of drug action and effects of photodynamic 

therapy. Therefore, an experiment was done to establish baseline MMP measurements for 

all untreated GBM cell lines as well as normal RA. This was achieved using Tetramethyl-

rhodamine methyl ester (TMRM), which is a lipophilic cationic florescent dye that is 

potentially driven to specifically accumulate in the mitochondria in proportion to MMP. 

Therefore, TMRM is often used to estimate MMP and to assess mitochondrial integrity (223, 

241, 242).  

Cells were plated in a 96-well plate at density of 6,000 cells/ 100ul/ well. Plates were 

kept in the cell culture incubator at standard conditions overnight. Next day, culture media 

in each well was replaced with media containing 200nM TMRM and cells were incubated 

with the dye for 1 hour. After that, images were taken using ZOE™ Fluorescent Cell Imager. 

ImageJ software was used to measure dye intensity as an estimate for MMP. 

 

2.4.5 Evaluation of antidepressants’ effect on MMP of GBM cells and RA using JC-10 

MMP assay 

JC-10 method was used in conjunction with TMRM in experiments concerning MMP of 

GBM and RA. JC-1 (5,5′,6,6'tetrachloro‐1,1′,3,3′‐tetraethylbenzimidazole‐carbocyanine) is a 

lipophilic fluorescent mitochondrial dye which can selectively enter the mitochondria driven 

by the MMP (243, 244). JC-10 Abcam® is a modified version of JC-1 mitochondrial probe with 

higher water solubility. According to the manufacturer guide, JC-10 monomers in the 

cytoplasm emit green florescence that can be detected at 520 nm. Upon entering the 

mitochondria, JC-10 monomers form aggregates and now emit orange/ red florescence that 

can be detected at 590 nm. The ratio between orange/ red to green florescence is used to 

estimate dye accumulation inside the mitochondria, which reflects the MMP.  
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On day 1, cells were plated in 96-well plates with black walls and clear flat bottom. 

Density of cells plated was 6,000 cells/ 100ul/ well for UP007 and UP029 GBM cells and 

8,000 cells/ 100ul/ well for RA. Plates were kept in the incubator in standard conditions 

overnight. Next day, culture media in each well was replaced with fresh media containing 

different concentrations of drugs: from 0 to 50 µM IM, from 0 to 25 µM CL and FLX, 5 µM of 

mitochondrial un-coupler FCCP as a positive control, and 10 µM NKH477 (AC activator) for 

comparison. After 3 days of drug incubation, JC-10 assay was performed by adding 50 µL/ 

well of the dye-loading solution then incubating the plate in cell culture incubator at 

standard culture conditions for 1 hour. Next, 50 µL/ well of the assay buffer were added and 

the plate was kept at room temperature protected from light. After 15 minutes, 

measurements of fluorescence intensity at Ex/Em = 490/525 and 540/590 nm were 

obtained using Infinite® 200 PRO microplate reader set on bottom-reading mode. 
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 RESULTS-1  

Identifying Heterogeneity in My GBM 

Sample 

 

3.1 Heterogenous morphology of GBM cells 

In my project I used a range of GBM cell lines obtained using different methods, from 

different areas of the tumours and from different patients. Images of GFP-tagged GBM cells 

were taken using upright Leica SP5 confocal laser scanning microscopes with 25x water 

immersion objective. Figure 3.1 shows different morphology of these lines. For example, 

UP029 GBM cells were thin and elongated, similar to GIN8 and GIN28, and different from 

GIN27, which were obviously bigger and flatter. UP007 and GIN31 GBM cells’ morphology 

was somewhere in between, cells being relatively large but also elongated. These GFP 

expressing stable cell lines were then cryopreserved and will be used for future work. 

 

3.2 Differential effect of TMZ (standard drug of choice in GBM) on 

the 6 GBM cells 

I decided to assess the effects of TMZ, as the standard of care drug, on GBM cells to 

examine for heterogenous sensitivity within my cohort of GBM cells. TMZ was applied for 9 

days and control wells were supplemented with media containing the same amount of 

DMSO as used to dissolve TMZ. After 9 days, PrestoBlue assay was carried out as described 

in Methods section 2.2.1. This longer exposure time was chosen to simulate the clinical 

protocol of TMZ, which involves administration of TMZ in extended cycles with an intention 

to deplete cellular DNA repair mechanisms (95). Information about TMZ is presented in 

Chapter 1 section 1.1.8. 



78 
 

 

 

Figure 3.1. Confocal images of GFP-tagged GBM cells reveal heterogenous morphology. 
Scale bar: 80 µm. 

 
 

The results of this analysis are rather surprising. It appears that RA which were used as 

control did not seem to be affected by TMZ more than by an equivalent concentration of 

DMSO (Figure 3.2 a). UP007, UP029, and GIN28 exhibited sensitivity to TMZ (Figure 3.2 b, c, 

and f), while GIN8, GIN27, and GIN31 were almost insensitive to it (Figure 3.2 d, e, and g). In 

a previous publication, UP007 were also found to be sensitive to TMZ in-vitro in a 

concentration-dependent manner (245). Calculated EC50 values are: 41.46 µM for UP007, 

149.9 µM for UP029, and 35.92 for GIN28. Here again, we see heterogeneity translated into 

different levels of sensitivity to therapy which is most probably linked to resistance 

mechanisms. GBM cells are known for their ability to evade chemotherapy and there are 

some reported mechanisms of this resistance discussed in chapter 1. It also appears that 

only 1 of the 4 cell lines derived from the leading edge of the GBM is sensitive to TMZ, 

possibly adding weight to the argument that infiltrating, fast migrating cells are equipped 

with survival mechanisms and are extremely aggressive. 
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Figure 3.2. TMZ toxicity assessed using PrestoBlue assay. Effects of different concentrations of 
TMZ and the corresponding concentrations of DMSO were tested after 9 days of exposure. (ns) 
p >0.05, (*) p <0.033, (**) p <0.002, (***) p <0.0002, (****) p <0.0001, alpha= 0.05. the number of 
independent experiments (n) is 5 for RA and UP GBMs, 4 for GIN8 and GIN28 GBMs, and 2 for GIN27 
and GIN31 GBMs, all in triplicates. Statistical method: two-way ANOVA, and Tukey’s and Šídák's 
multiple comparisons tests. Data presented as mean ± standard error of the mean (SEM). 
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3.3 Molecular signature of common glioblastoma driver genes in this 

cohort of primary GBM cells. 

 GBM are notorious for their genomic instability. Moreover, multiple mutations have 

been linked to the malignant transformations as mentioned in detail in Chapter 1. 

Mutations have been analysed by various groups and are summarised at various WEB 

resources, such as https://www.intogen.org. 

As shown in the previous sections, my sample of GBM cell lines is quite diverse in 

morphology and sensitivity to TMZ. Possibly these differences could be a consequence of 

different mutations present in these cell lines. Therefore, I decided to assess mutational 

status of GBM cell lines. Initially I planned to perform a wider screen of larger number of 

transcripts using Oxford Nanopore sequencing protocol. However, due to a COVID pandemic 

and loss of time and access to the laboratory, I had to adopt a simplified strategy.  

Four well characterised GBM driver genes have been chosen IDH-1, p53, PTEN, and 

EGFR. A range of primers were generated to cover their protein-coding parts, listed in 

chapter 2 Table 2.1, and RT-PCR was used to amplify products which were then processed 

individually using Sanger sequencing process. 

After RNA extraction, cDNA synthesis (reverse transcription), and PCR with the 

appropriate primer, PCR products were run in agarose gel electrophoresis to examine the 

expression of 4 commonly mutated glioma-driver genes, IDH-1, p53, PTEN, and EGFR. All 

PCR products from all 6 GBM samples were visualised as clear bands of expected sizes on 

agarose gel electrophoresis. Examples are shown in Figure 3.3. Main findings are illustrated 

in graphic format in Figures 3.4. to 3.7. Results of sanger sequencing are summarized in 

Table 3.1. 

 

https://www.intogen.org/
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Figure 3.3. Examples of images of agarose gel electrophoresis. PCR products were run in agarose 

gel electrophoresis in order to examine GBM cells for commonly mutated genes implicated in GBM. 
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UP007, UP029, and GIN31 are IDH1-wt (Figure 3.4). Sequencing of IDH-1 failed for 

GIN8 and was not done for GIN27 and GIN28 due to time constraints. UP007 and GIN31 

shared a similar mutation in p53 gene: CA to TG substitution at nucleotide position 880 and 

881 (only A to G substitution in GIN31), plus T to C substitution at nucleotide position 988 

(Figure 3.5 c and d). In UP007, CA to TG substitution produces a histidine to cysteine 

substitution at amino acid position 273, while in GIN31, A to G substitution results in 

histidine to arginine substitution. Amino acid position 273 is a known hotspot for mutations 

in p53 gene (246, 247). Mutations at this site affect DNA binding capacity of p53 protein 

(246, 247). The T to C substitution at nucleotide position 988 results in serine to proline 

substitution at amino acid position 309. This mutation was not reported in the top 50 

common mutations in p53 gene (246), although serine residues at the carboxy-terminal 

domain are known targets for phosphorylation for p53 activation (54, 248), and mutations 

of any of these residues will theoretically disturb p53 response to stress signals. In GIN8 

cells, G to C substitution at nucleotide position 735 was found, which results in glutamate to 

aspartate substitution at amino acid position 224 (Figure 3.5 b). To the best of my 

knowledge, I couldn’t trace any publication reporting this specific mutation in p53 gene. In 

GIN28, C to T substitution was found at nucleotide position 598, which results in histidine to 

tyrosine substitution at amino acid position 179 (Figure 3.5 a). This mutation was listed 

among the top 50 common somatic mutations of p53 gene, with high score for predicted 

protein misfolding (246).  

 

 

 



84 
 

 

 
 
Figure 3.4. Schematic representation of mRNA sequence of human IDH-1 gene. The arrow 

indicates the common site of mutation of IDH-1 gene at nucleotide position 617-619 resulting in 
substitution of arginine in the amino acid sequence (>90% are R132H mutation: substitution of 
arginine with histidine at position 132 of amino acid sequence). UP007, UP029, and GIN31 lacked 
this mutation. 
Reference: https://www.intogen.org/search?cancer=GBM&gene=IDH1#distribution:plot 
NCBI sequence reference NM_005896.4 
(249) (250) 
 
 

 

 
Figure 3.5. Schematic representation of mRNA sequence of human p53 gene. Mutations found 

in our GBM are mapped as (a) C to T substitution at nucleotide position 598 of mRNA of GIN28 GBM 
cells, (b) G to C substitution at nucleotide position 735 of the mRNA of GIN8 GBM cells, (c) CA to TG 
substitution at nucleotide position 880 and 881 of the mRNA in UP007 GBM cells, also noted in 
GIN31 but only in a form of A to G substitution at position 881, and (d) T to C substitution at 
nucleotide position 988 of the mRNA noted in UP007 and GIN31. 
Reference: https://www.intogen.org/search?cancer=GBM&gene=TP53#distribution:plot 
GenBank sequence reference AB082923.1 
(249) (250) 

https://www.intogen.org/search?cancer=GBM&gene=IDH1#distribution:plot
https://www.intogen.org/search?cancer=GBM&gene=TP53#distribution:plot
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Regarding EGFR gene, a common G/A synonymous SNP at nucleotide 2622 (variation 

ID: rs1050171) is found in UP007, UP029, GIN8, and GIN 31 (Figure 3.6 a). This SNP has been 

linked to better clinical outcome in colon cancer and small cell carcinoma of the lung (251, 

252). To the contrary, this SNP was correlated to worst survival in non-small-cell lung 

carcinoma (253) and oesophageal cancer patients (254). No published data on this SNP in 

GBM was found. Thymine insertion at nucleotide position 2770 which was found in UP007 

and UP029 results in stop codon at amino acid position 837 within tyrosine catalytic domain 

(Figure 3.6 b). In UP029, T/C synonymous SNP was detected at nucleotide position 2970 as 

shown in Figure 3.6 c (variation ID: rs1140475). This SNP has been identified in colon, 

bladder, and lung cancer but it was not significantly associated with higher risk of 

developing these cancers (255, 256). Unfortunately sequencing of products of PTEN gene 

was unsuccessful. The only results I can report is that UP029 have no mutations in their 

DSPc (Figure 3.7) domain which encodes the tyrosine phosphatase-like catalytic domain in 

PTEN protein, and that GIN8 is probably wildtype, but no meaningful conclusions could be 

drawn. I was unable to repeat the sequencing reactions due to time constrains. 

 

 

 
Figure 3.6. Schematic representation of mRNA sequence of human EGFR gene. Common 

mutations found in our GBM cells are mapped as (a) G to A substitution at nucleotide position 2622 
is seen in UP007, UP029, GIN8, and GIN31, (b) Thymine insertion is found at position 2770 in UP007 
and UP029, and (c) T to C substitution at nucleotide position 2970 is seen in UP029, GIN8, and 
GIN31. Other mutations found are listed in table 3.2. 
Reference: https://www.intogen.org/search?cancer=GBM&gene=EGFR#distribution:plot 
NCBI sequence reference NM_005228.5 
(257) 

https://www.intogen.org/search?cancer=GBM&gene=EGFR#distribution:plot
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Figure 3.7. Schematic representation of mRNA sequence of human PTEN gene.  

Reference: https://www.intogen.org/search?cancer=GBM&gene=PTEN#distribution:plot 
NCBI sequence reference NM_000314.8 
(258) 
 
 
 
 
 
 

Table 3.1. Summary of the results of sequencing of 4 genes implicated in the development of 
GBM. 
WT: wild type, nt: nucleotide, SNP: single nucleotide polymorphism. Similar findings are colour coded. 
 

 IDH-1 p53 EGFR* PTEN 

UP007 WT Within DNA binding 
domain of the protein: 

- CA to TG 
substitution at nt 
position 880 and 881 
(hotspot for mutations). 
 
T to C substitution at nt 
position 988 (possible 
site for p53 protein 
phosphorylation). 

Part of the sequencing result 
is missing (failed sequencing 
with primer set 1 plus some 
missing data towards the end 
of the sequencing reaction). 
 
Within Furin-like region: 

- G to A substitution at nt 
position 1030 (no published 
reports). 

- G to C substitution at nt 
position 1143 (no published 
reports). 
 
Within Tyrosine kinase 
catalytic domain: 

- G to A substitution at nt 
position 2622 (SNP). 

- thymine insertion at 
2770 (stop codon) 

Sequencing 
failed 

UP029 WT No mutations detected 
with primer set 1 but 
sequencing failed with 
primer set 2. 

Part of the sequencing result 
is missing (small gaps). 
 

Failed 
sequencing with 
primer set 2, 

https://www.intogen.org/search?cancer=GBM&gene=PTEN#distribution:plot
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Within Furin-like region: G to 
C substitution at nt position 
876 (no published reports). 
 
Within Tyrosine kinase 
catalytic domain 

- G to A substitution at nt 
position 2622 (SNP). 

- thymine insertion at 
2770 (stop codon). 

- cytosine insertion at 
2905 (frameshift- no 
published reports) 

- T to C substitution at nt 
position 2970 (SNP). 

otherwise no 
mutations. 

GIN8 Sequencing 
failed 

G to C substitution at nt 
position 735 (within 
DNA binding domain of 
the protein- no 
published reports). 
 
Some of sequencing 
results are missing. 

Part of the sequencing result 
is missing (small gaps). 
 
C to T substitution at nt 
positions 487 and 507 (within 
Receptor-L domain- no 
published reports). 
 
Within Tyrosine kinase 
catalytic domain: 

- G to A substitution at nt 
position 2622 (SNP).  

- T to C substitution at nt 
position 2970 (SNP). 

Small gaps in 
sequencing 
results, 
otherwise no 
mutations. 

GIN27 Not done Failed sequencing with 
primer set 2, otherwise 
no mutations. 

Not done Sequencing 
failed 

GIN28 Not done C to T substitution at nt 
position 598 (within 
DNA binding domain of 
the protein). 
 
Failed sequencing with 
primer set 2. 

Not done Sequencing 
failed 

GIN31 WT Within DNA binding 
domain of the protein: 

- A to G substitution 
at nt position 881 
(hotspot for mutations). 
 
T to C substitution at nt 
position 988 (possible 
site for p53 protein 
phosphorylation). 

Failed sequencing with primer 
set 1. 
 
Adenine insertion at 1024 and 
1030 (within Furin-like region- 
frameshift- no published 
reports). 
 
Within Tyrosine kinase 
catalytic domain: 

- G to A substitution at nt 
position 2622 (SNP).  

- cytosine insertion at 
2773 (frameshift- no 
published reports) 

- T to C substitution at nt 
position 2970 (SNP). 

Sequencing 
failed 
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To conclude this section, it was feasible to assess the mutational status of the 4 driver 

genes in GBM cells using RT-PCR and Sanger sequencing. I have identified certain key 

mutations in p53 gene in UP007, GIN28, and GIN31 which most probably resulted in loss of 

p53 tumour suppressor function and contributed to the development of GBM in the 

patients from whom these cells were obtained. SNPs in EGFR were documented in UP007, 

UP029, GIN8, and GIN31 in tyrosine kinase domain which is responsible for the 

phosphorylation function of the receptor. These mutations are correlated to cancer risk in 

some cancer types, but no reports could be found on their impact on GBM risk.  

This sequencing approach could be improved with the use of parallel sequencing 

methods such as Oxford nanopore sequencing. This method relies on direct reading of 

nucleotide sequences rather than the use of DNA synthesis for detection as in Sanger 

sequencing. As a result, this method has high throughput with no length limit of the 

sequenced nucleic acid fragments. In future work, Oxford nanopore sequencing protocol 

should be developed for wide scale genomic analysis of molecular heterogeneity in GBM 

samples.  
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 RESULTS-2 

Evaluation of the Feasibility and Efficacy of 

TMRM as a Photosensitizer for Photo-

dynamic Therapy of GBM 

 

4.1 GBM cell lines have high basal mitochondrial membrane 

potential (MMP). 

As explained in the introduction, mitochondria has been considered as an important 

player in the survival of cancer cells including GBM cells. Mitochondria is also the origin and 

primary trigger of the intrinsic apoptotic cascade (222). In this chapter I have looked further 

into the properties of the mitochondria in GBM cell lines and investigated the potential use 

of the technology known as PDT using TMRM as a novel photosensitiser. 

Mitochondria accumulate TMRM, which is driven into them by the membrane 

potential against concentration gradient. TMRM is frequently used for estimation of MMP 

(241, 242, 259). In these experiments and all others which follow, I used both types of GBM 

cell lines, including those obtained using conventional approaches (UP007 and UP0029) and 

more recently derived lines from the GBM leading edge (GIN cell lines). 

Cells were loaded with 200nM of TMRM for one hour, then images were obtained 

using ZOE™ Fluorescent Cell Imager. Figure 4.1 demonstrates that GBM cells, with only one 

exception, have MMP which is significantly more polarized (hyperpolarized) than MMP of 

RA. Indeed, the only exception was GIN27, which has an MMP not significantly different 

from that of RA. 
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Figure 4.1. Estimation of baseline MMP using TMRM mitochondrial dye. Florescent intensity 
after TMRM staining was measured, which correlates with MMP. All except one (GIN27) GBM cells 
have significantly higher baseline MMP than RA. (ns) p >0.05, (****) p <0.0001. alpha 0.05. n= 
RA:155, UP007: 80, UP029:72, GIN8:71, GIN27:77, GIN28:76, and GIN31:82. n is the total number of 
cells examined from 6 independent experiments on RA, and 3 on GBM cells. Statistical method: one-
way ANOVA and Tukey’s multiple comparison test. Data presented as mean ± SEM. 

 

These results are consistent with a view, previously expressed in the literature, that 

mitochondria in tumour cells are hyperpolarised (260-262). It is very interesting to note that 

here again a striking heterogeneity of GBM cells is observed, which reinforces the need to 

utilize a wide range of patient derived samples for hypothesis testing rather than employing 

one or two types of commercial cell lines, often of unclear origin. 

By serendipity, while imaging cells for MMP, our laboratory discovered that TMRM 

could be utilized as an effective PS in PDT against GBM. TMRM localizes almost exclusively in 

the mitochondria (Figure 4.2). After brief exposure to green light of moderate intensity, 

TMRM-loaded GBM cells’ mitochondria rapidly depolarised. Evident by redistribution of 

TMRM out of the mitochondria into the cytoplasm. We reasoned that this phenomenon 

may have therapeutic value. Strong depolarisation is generally thought to lead to 

irreversible damage to the mitochondria and the release of pro-apoptotic molecules, which 

eventually should lead to cells death (222). 

 



91 
 

 

 

 

 



92 
 

 

 
Figure 4.2. Localization of TMRM inside the mitochondria of RA and GBM cells. Cells were 

loaded with 200nM TMRM for 1 hour prior to imaging. Note the lower uptake of TMRM in RA and 
GIN27 cells which is consistent with the data in figure 4.1. n=6. Scale bar= 100µm.  

 

4.2 TMRM decay dynamics 

To examine the dynamics of TMRM decay after photoactivation, cells were loaded 

with 100nM TMRM for 1 hour then baseline images were obtained. Exposure time for 

imaging was 200 ms. As can be seen from Figure 4.3, TMRM fluorescence without 

prolonged light application is very stable. Light illumination then followed using LED-

powered green light source. Immediately after 30 seconds of constant light application 

(1.4mW/mm2), serial images were obtained every 10 second for 3 minutes. Figure 4.3 

illustrates the dynamics of TMRM decay due to the dissipation of MMP. UP007, UP029, 

GIN8, GIN28, and GIN31 all experienced a sharp decline in TMRM mitochondrial/ nuclear 

fluorescence ratio caused by mitochondrial depolarization due to TMRM photoactivation. 

Interestingly, the trace for GIN27 in Figure 4.3 is almost a flat line, indicating no effect of 

light illumination of TMRM on the MMP of these cells. Indeed, they had lower basal 

fluorescence ratio to start with, which is consistent with data shown in Figure 4.1 and 4.2. 
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This is also seen with RA, which had a lower basal ratio and a mild drop of fluorescence ratio 

after light illumination.  
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Figure 4.3. The dynamics of TMRM decay after photoactivation in RA and GBM cell lines. After 

light illumination (1.4mW/mm2), GBM cells immediately released TMRM which reflects the drop in 
their MMP. The number of independent experiments is 4 for RA, 3 for UP GBM cells, 2 for GIN GBM 
cells. The total number of cells examined is 24 for RA, 21 for UP007, 19 for UP029, 11 for GIN8, 16 
for GIN27, 14 for GIN28, 10 for GIN31 GBM cells. Data points presented as mean ±SEM. 

 

By comparing initial ratios at time zero to the final ratios at the end of the trace, it may 

be seen that RA were significantly affected by the photoactivation, but the drop in their 

MMP is smaller (30.9% ± 3.1 SEM) compared to the GBM cells (with the exception of GIN27: 

7.2% ± 2.2 and GIN31: 20.8% ± 4.5) (Figure 4.4). UP007 has lost 36.2% ± 3.5, UP029 has lost 

32.2% ± 5.8, GIN8 has lost 59.4% ± 3.1, and GIN28 has lost 57.0% ± 2.4 of their MMP (mean 

± SEM). It is overall reasonable to hypothesise that stronger loading of the mitochondria 

with TMRM as a result of greater MMP could make cells more susceptible to the PDT action 

of TMRM. Figure 4.5 is a representative example of the images obtained for this analysis. 
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Figure 4.4. Comparison between initial and final fluorescence ratio among GBM cell lines and 
RA after TMRM photoactivation for 30 seconds. (ns) p >0.05, (*) p <0.033, (**) p <0.002, (***) p 
<0.0002, (****) p <0.0001, alpha= 0.05. Statistical method: two-way ANOVA and Šídák's multiple 
comparisons test. Data presented as mean ±SEM. 
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Figure 4.5. TMRM-induced depolarization of UP007 mitochondria. Left panel: images of mitochondria of 

UP007 GBM cells before photoactivation of TMRM. Right panel: images of mitochondria immediately after 
photoactivation of TMRM with green light for 30 seconds. 
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4.3 TMRM up to 1600 nM is not toxic to cells without 

photoactivation. 

Having found that TMRM can be used to trigger powerful depolarising effect on GBM 

mitochondria, I decided to further investigate its potential as a novel agent for PDT. An ideal 

photosensitiser should have no toxic effect unless illuminated with appropriate light 

wavelength. Hence, toxicity of TMRM in absence of illumination was assessed. TMRM 

proved to be only toxic upon light illumination (Figure 4.6). Cells were seeded in 96-well 

plates and incubated overnight. On the next day, cells were loaded with different 

concentrations of TMRM for 1 hour then media was replaced with fresh one, and the plates 

were incubated for 3 days. Measurement of toxicity was carried out using LDH assay. With 

no light illumination, pre-loading cells with TMRM in concentrations up to 1600nM did not 

induce toxicity detectable by LDH assay in RA or GBM cell lines. In fact, even a higher 

concentration (3200nM) did not induce significant toxicity, although a trend may be noticed 

in Figure 4.6. 
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Figure 4.6. TMRM toxicity in absence of illumination assessed using LDH assay. Cells were 
treated with TMRM in different concentrations for one hour, then were incubated with fresh media 
for 3 days before LDH assay was carried out. No statistically significant difference in toxicity between 
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any of the 5 concentrations used in this experiment compared to controls. alpha= 0.05. n=6 for RA, 
n=3 for GBM cells. Data presented as mean ±SEM. 

 
 

4.4 Photoactivation of TMRM, using green light, induced cell death in 

primary GBM cells. 

The next logical step was to test the efficacy of TMRM-mediated PDT on GBM cells. To 

achieve equal exposure of cells to light, special seeding protocol was implemented (see 

chapter 2 section 2.3.2). Briefly, a 4µl drop of cell suspension was placed at the centre of 96-

well plate then plates were incubated to allow attachment of the cells to the bottom of the 

well. After 45 minutes, 100µl of fresh media is added to each well. GBM cells as well as RA 

preincubated with 200 or 300nM TMRM were subjected to green light illumination for 22 or 

40 seconds. Following that, cells were incubated with fresh media for 3 days before fixation 

and staining with DAPI for nuclear counting. I found that TMRM-mediated PDT resulted in 

reduced cell count. Cell number reduction was different between different cell lines. Milder 

treatment (200 nM and 22 sec of light application) reduced proliferation of all cell lines with 

GIN28 affected the most (Figure 4.7 a). Stronger PDT treatment (300 nM plus 40 seconds 

light application) almost completely eliminated GIN28 cells and had a powerful effect on all 

others (Figure 4.7 b). RA were also susceptible to this effect, but it must be reminded that 

these are cultured astrocytes at a stage when they are still semi-embryonic and dividing, 

and probably heavily dependent on mitochondrial energy supply as any embryonic cell 

(263). At the same time, it is well known that postnatal astrocytes are highly glycolytic (264). 

Thus, it is quite possible that mature postnatal astrocytes are more resistant to this type of 

PDT.  
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Figure 4.7. Photoactivation of mitochondrial dye TMRM supresses proliferation of GBM cells. 
(a) Results obtained with 200nM TMRM and illumination for 22 seconds,  
(b) Results with TMRM 300nM and light illumination for 40 seconds.  
DAPI stained nuclear count was used. (n) is the number of independent experiments, each one is 
done in duplicates. (ns) p >0.05, (*) p <0.033, (**) p <0.002, (***) p <0.0002, (****) p <0.0001, 
alpha= 0.05. Statistical method: two-way ANOVA and Tukey's multiple comparisons test. Data 
presented as mean ±SEM. 
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4.5 GBM cells, in contrast to normal RA, failed to recover their MMP 

24 hours after TMRM photoactivation. 

Ideally, TMRM-PDT aims to preferentially affect GBM cells, thus, its effect on GBM 

cells should be compared to its effect on postnatal differentiated human astrocytes. 

However, this does not appear to be possible. Therefore, the lack of clear-cut specificity for 

GBM in the previous experiment cannot be seen as an evidence that healthy cells are 

affected to the same degree as GBM. I therefore investigated whether RA or GBM cells 

would recover their normal MMP after TMRM-PDT. Initially all cells were loaded with 

300nM TMRM and test group underwent photoactivation with green light for 40 seconds. 

As shown above this is well enough to trigger the loss of MMP. Media was then replaced 

with fresh one. Next day, all cells were re-loaded with 300nM TMRM to assess how well 

mitochondria have recovered their membrane potential. The results show that all GBM 

cells, except for GIN27, still have significantly lowered MMP (depolarized) 24 hours after 

TMRM-PDT. Unlike GBM, RA managed to recover their normal MMP within 24 hours as seen 

in Figure 4.8, after having it significantly depolarized by photoactivation (Figure 4.4). 

Figure 4.9 demonstrates examples of how 24 hours after Photoactivation, GBM cells 

(b and c) have failed to load with TMRM due to defective MMP, evident by lower intensity 

staining, in contrast to RA (a). 
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Figure 4.8. MMP of RA and GBM cell lines measured 24 hours after photoactivation. All GBM 
cell lines (except GIN27) have still had compromised MMP 24 hours after photoactivation, with 
significant difference in dye loading between test and control groups. Normal RA and GIN27 GBM 
cells recovered their MMP, with no significant difference in dye loading between test and control 
groups. (ns) p >0.05, (****) p <0.0001, alpha= 0.05. n is the total number of cells examined in 6 
independent experiments for RA, and 3 for GBM cells. Statistical method: one-way ANOVA and 
Tukey’s multiple comparison test. Data presented as mean ±SEM. 
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Figure 4.9. Representative images of the MMP recovery (TMRM reloading experiment) after 

photoactivation. (a) Normal RA: although cell density is affected due to photoactivation, 
mitochondria in test image (lower right image) are showing same intensity red fluorescence 24 
hours after photoactivation compared to controls (upper right image). Mitochondria of (b) and (c) 
GBM cells’ mitochondria have faint red fluorescence (lower right images) due to disturbed MMP 
after photoactivation and failure to recover normal mitochondrial potential. 

 

 

4.6 NKH477, but not clotrimazole, differentially enhanced TMRM-

PDT in GBM cells 

Milder TMRM-PDT protocol was conducted along with treatment with clotrimazole a 

glycolysis inhibitor. The rationale was that upon depolarisation, GBM mitochondrial ATP 

production should be further compromised, making cells more dependent on glycolysis for 

energy production. This was tested using a PFK inhibitor clotrimazole. In these experiments I 

employed a mild PDT effect with the assumption that drugs could potentiate it. TMRM was 
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loaded in concentration of 200nM and photoactivated for 17 seconds only. After that, cells 

were incubated with 10 µM of clotrimazole for 3 days.  

I chose to use 10 µM concentration based on the results of previous publications, 

which indicated that around 40 µM of clotrimazole alone was enough to induce cell death in 

GBM cells (265, 266). I did not aim to induce cell death, rather I wanted to mildly inhibit 

glycolysis to look for synergistic effect with TMRM-PDT if present. First, I tried 20 µM 

clotrimazole but this concentration was too toxic for all cells (results not shown), therefore, I 

decided to use 10 µM instead. At this concentration, clotrimazole alone also induced death 

of RA but did not significantly do so in GBM cells (Figure 4.10). Unfortunately, in cultures 

treated with TMRM-PDT and clotrimazole, I was unable to reveal a supra-additive effect, 

possibly with the exception of UP029. 

As mentioned previously, increased level of cAMP has been reported by a number of 

studies to exert negative effects on GBM cells and make them vulnerable for various insults 

(176, 267). To assess whether an elevated level of cAMP would sensitize GBM cells to 

TMRM-PDT, cells were pre-incubated with NKH477 for 1 day before TMRM loading (200µM) 

and photoactivation (17 seconds). Media was then replaced with fresh one and cells were 

incubated for 3 days before the end point measurement was taken (cell counting using 

DAPI). 

This combined treatment scheme in general was found to bring an additive effect to 

TMRM-PDT (Figure 4.10). Treatment with NKH477 alone did not induce toxicity in any of 

GBM cells. Statistical analysis has revealed that in at least two of our cell lines, UP007 and 

GIN27 (Figure 4.10 b and e), this regime resulted in a supra-additive effect where the 

suppression of GBM cell number after TMRM-PDT was significantly increased by pre-

incubation in NHK477. Thus, in at least some GBM cases this approach could be used to 

further enhance the efficacy of PDT. 

 

 



104 
 

 

 

 

 



105 
 

 

 

 

Figure 4.10. Potentiation of TMRM-mediated toxicity on GBM cell lines with glycolytic inhibitor 
clotrimazole and AC activator NKH477. The number of independent experiments is: 5 for RA, 4 for 
UP007, UP029, GIN8, and GIN28 cells, and 3 for GIN27 and GIN31 cells, all in duplicates. (ns) p >0.05, 
(*) p <0.033, (**) p <0.002, (***) p <0.0002, (****) p <0.0001, alpha= 0.05. Statistical method: one-
way ANOVA and Tukey's multiple comparisons test. Data presented as mean ±SEM. 
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 Results-3 

Re-evaluating the Repurposing of 

Antidepressants for GBM Therapy 

 

5.1 Antidepressants exert cytotoxic effects on primary GBM cell lines 

as well as normal RA. 

A number of studies reported potential cytotoxic effects of antidepressants on many 

types of cancer cells including GBM cells (Table 1.2). However, the concentrations used in 

these experiments often greatly exceed biologically plausible range and concentration-

dependence of the effects was often not documented (188-190). Moreover, the use of 

commercial cell lines makes these results less valid as models to represent GBM cells’ 

behaviour in real life.  

Patient-derived primary GBM cell lines UP007 and UP0029 were used in these 

experiments, as well as normal RA. Cells were grown until 70% confluent then trypsinized 

and plated in 96-well plates to be treated with different concentrations of antidepressants. 

After 3 days of drug exposure, LDH assay was performed to assess cell integrity.  

All 3 antidepressants IM, CL, and FLX appeared to be toxic to GBM cells as well as 

normal RA. The results of these experiments are summarised in Figure 5.1. Of the 3 drugs, 

IM effect was fairly concentration-dependent with toxicity becoming evident at ~ 50 µM and 

then reaching plateau at 100 µM with no further increase at 200 µM. CL and FLX acted in 

almost all-or-nothing manner. Already with 25 µM cells were severely damaged and the 

effect essentially did not increase any further up to 200 µM concentrations.  
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Comparing the degree of toxicity with threshold concentrations of the drugs (50µM 

for IM, and 25µM for CL and FLX) between astrocytes and GBM cell lines did not reveal 

statistically significant differences (Figure 5.1 d). Moreover, when comparing values of the 

fitted concentration-response curves (CRC) of the three ADs on the three cell types, no 

significant differences in EC50 was found between GBM cells and RA (figure 5.2). These 

observations indicate that antidepressants do not exhibit selectivity to tested GBM cell lines 

in comparison to normal RA. Nevertheless, it has to be stated again, that the RA are 

obtained at the stage when these cells are still not fully mature and are still dividing (230), 

hence the response of the mature human astrocytes might be different.  These observations 

also help to better understand the range of concentrations required for the anti-GBM 

actions, unlike some concentrations reported in other studies which are clearly very high 

and, perhaps exceed what is physically possible in vivo.  
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Figure 5.1. Toxicity of antidepressants on normal RA and GBM cell lines assessed using LDH 

release method. 3-day treatment with (a) imipramine; IM, (b) clomipramine; CL, (c) fluoxetine; FLX, 
induced toxicity (LDH release) in GBM cells as well as normal RA. Toxic threshold values are 50μM for 
IM, and 25μM for CL and FLX. Threshold values are the same across the three cell types. (d) % 
toxicity of threshold values of the three drugs did not differ between RA and GBM cells. (ns) p >0.05, 
(*) p <0.033, (**) p <0.002, (***) p <0.0002, (****) p <0.0001. alpha= 0.05. n= 3 independent 
experiments (in duplicates). Comparisons are made between each concentration and the control (0 
μM) within each cell type. Statistical method: (a-c) two-way ANOVA and Tukey multiple comparison 
test, (d) ordinary one-way ANOVA. Data presented as mean ± SEM. 
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Figure 5.2. Concentration response curve (CRC) for antidepressants toxicity on normal RA and 
GBM cell lines. (a-c) CRCs were generated in Prism software using the same data as in Figure 1. (d) 
EC50 and p values. No significant differences in EC50 between the three cell types was revealed. (ns) 
p > 0.05, alpha= 0.05. Statistical method: nonlinear regression (curve fit). Data presented as mean ± 
SEM. 

 

5.2 Subtoxic concentrations of antidepressants supress wound 

healing process in GBM cells but not normal RA. 

Scratch wound healing assay was utilized to test whether sub-toxic concentrations of 

antidepressants, as established in previous section, affect migration and/or proliferation of 

cancer cells in preference to normal RA. In scratch wound healing assay, filling of the wound 

gap during the first 24 hours is attributed mainly to cell migration from the edges of the 

wound (268). After 24 hours, filling of the wound gap continues due to proliferation of cells 

until the wound is completely healed (268). Overall, time for complete wound healing 

differs from cell type to another according to motility and cell cycle duration for each cell 

type (268). 
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Scratch wound healing assay was carried out as outlined in methods section 2.4.2. IM 

and CL were tested against UP007 and UP029 GBM cell lines. Normal RA were used as 

controls. Serial images of the wound healing process plus measurements of relative wound 

density and wound gap size over time were obtained. I found that sub-toxic concentrations 

of IM (<50μM) and CL (<25μM) significantly inhibited migration/ proliferation of UP029 

GBM cells but not UP007 GBM cell line or normal RA (Figure 5.3). CL only inhibited wound 

healing in UP007 at threshold dose (25μM), but no effect was seen at sub-toxic doses. 

Representative images of the initial scratch wound and the healing process in UP029 GBM 

cells is presented in Figure 5.4. Interestingly, CL at as low as 12 µM significantly suppressed 

wound closure in UP029 at both 24 and 48 hours (Figure 5.3 b and d). CL was more effective 

at 25 µM but based on the data from the previous section, I believe that this concentration 

is already significantly toxic to all cell types. IM was also effective against UP029 although 

the effect was more obvious at 48 hours when both 12 and 25 µM were effective (Figure 5.3 

a and c). Importantly, astrocytes were completely unaffected by antidepressants. 

 Thus, it appears that the survival benefit reported with antidepressants in mice 

models in vivo, could be related to the inhibition of GBM infiltrative growth which seem to 

occure even at lower concentrations in some GBM cell lines (195). It is also clear that the 

effect is not universal, since UP029 was clearly affected more than UP007. 
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Figure 5.3. The effects of antidepressants on wound healing process. Graphs show relative 
wound density 24 hours (upper panels a and b) and 48 hours (lower panels c and d) after the scratch 
with and without drug treatment. The number of independent experiments (n) is (a) 7, 8, and 10, (b) 
6, 7, and 5, (c) 7, 7, and 9, (d) 6, 6, and 4, for RA, UP007 GBM, and UP029 GBM respectively. 
Comparisons were made between different concentrations and the control (0μM) within each 
group. (ns) p > 0.05, (*) p <0.033, (**) p <0.002, (***) p <0.0002, (****) p <0.0001. alpha= 0.05. 
Statistical method: two-way ANOVA and Dunnett’s multiple comparison. Data presented as mean ± 
SEM. 
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Figure 5.4. Scratch wound assay images of UP029 GBM cells at different time points. IM and CL 
at sub-toxic concentrations slowed down scratch wound healing in UP029 GBM cells only. 
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5.3 Antidepressants treatment for 24 hours did not change 

intracellular cAMP levels in primary GBM cells. 

Previously it has been suggested that antidepressants can suppress GBM via 

elevations in cAMP (176, 192). Elevation of cAMP is generally acknowledged to have a range 

of negative effects on growth and proliferation of GBM tumours (211, 212). As shown in the 

previous section, sub-toxic concentrations of ADs affected the ability of UP029 GBM cells to 

spread and close the scratch in the wound assay. I therefore studied whether intracellular 

cAMP levels were altered by AD when using similar sub-toxic concentrations. I used Epac-

based FRET cAMP sensor, introduced in the Methods section 2.4.3. Images were obtained 

on SP5 confocal microscope with settings fixed for all series.  

Figure 5.5 shows relative intracellular cAMP levels measured after incubation of GBM 

cells with IM and CL for 24 hours. Interestingly, there was a tendency to an increase in cAMP 

with IM, but the effect was only significant at IM 25 µM in UP007 GBM cells. Thus, the effect 

of CL on wound closure mentioned in section 5.2. cannot be explained by elevation of 

cAMP. Our results are also inconsistent with the concept of cAMP being the primary 

mediator of antidepressant action on GBM (176). 
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Figure 5.5. The effect of 24-hour imipramine (IM) and clomipramine (CL) treatment on 
intracellular cAMP levels in GBM cell lines. Treatment with subtoxic concentrations of IM (a) and CL 
(b) for 1 day had no significant effect on cAMP levels in UP007 or UP029 cells, except for IM at 25µM 
in UP029 GBM cells. (ns) p >0.05, (*) p <0.033, (**) p <0.002, (***) p <0.0002, (****) p <0.0001, 
alpha= 0.05. n is the total number of cells examined in two independent experiments for UP029 
GBM and three independent experiments for UP007 GBM cells. Statistical analysis: one-way ANOVA 
and Tukey’s multiple comparison test. Data presented as mean ± SEM. 

 
 
 

5.4 Forskolin analogue NKH477 differentially affected cAMP levels in 

normal RA and GBM cell lines. 

GBM cells are found to generally have a lower basal cAMP level compared to normal 

brain cells (208, 267). Also, the level of cAMP was found to negatively correlate with GBM 

tumour growth and aggressiveness (212, 269). Thus, it could be that ADs failed to elevate 

intracellular cAMP levels in GBM cells because GBM cells have a mechanism of suppressing 

cAMP rise for their own survival advantage (211). In this case, known cAMP elevating 

compounds e.g. NKH477 should also be ineffective. NKH477 is a forskolin hydrochloride 

derivative that is water-soluble, and directly activates AC thus increasing intracellular cAMP 

(270). It has been previously reported to induce cell cycle arrest and apoptosis in GBM cells 

(216, 267).  

Therefore, I measured the effect of NKH477 on intracellular cAMP levels using Epac-

based FRET sensor as outlined in Methods section 2.4.3. NKH477 had differential effect on 

GBM cells and RA (Figure 5.6). 5μM of NKH477 was able to increase cAMP in RA by > 90% of 

baseline value, in UP007 by > 125% of baseline value (Figure 5.7). In contrast, UP029 line 

showed minimal sensitivity NKH477, with ~10% elevation of cAMP level from baseline value 

which was not statistically significant. Only 10μM NKH477 was able to increase cMAP 

significantly in UP029 by 40% from baseline.  

Thus, there is a striking difference between UP007 and UP029 cell lines in their 

sensitivity to NKH477. Given that UP029 was quite more susceptible to AD-induced toxicity, 

with the lowest EC50 among the three cell types (although not statistically significant) 

(Figure 5.2) and with significant inhibition of wound closure (Figure 5.3), it appears that the 

ability to clamp down cAMP does not seem to protect this cell line from damage induced by 
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these drugs, which again, argues against the idea that cAMP elevation is the principal 

mechanism of their reported anti-GBM action (176). 

 

Figure 5.6. The effect of 1-day NKH477 treatment on intracellular cAMP levels in RA and GBM 
cell lines. Treatment with low concentrations of NKH477 for 1 day significantly increased cAMP level 
in RA and UP007 GBM cells but not UP029 GBM cells. baseline cAMP levels are not significantly 
different between the three cell types. (ns) p > 0.05, (*) p <0.033, (**) p <0.002, (***) p <0.0002, 
(****) p <0.0001. alpha= 0.05. n is the total number of cells examined in two independent 
experiments. Statistical analysis: one-way ANOVA and Tukey’s multiple comparison test. Data 
presented as mean ± SEM. 

 

 

 

 
Figure 5.7. The increase in intracellular cAMP level relative to the baseline. Following 1-day 

incubation with NKH 477. Data presented as mean ± SEM. 
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5.5 Effects of forskolin analogue NKH477 on cell migration and/or 

proliferation in scratch wound healing assay. 

Given the information about the potential suppressant actions of the elevated cAMP 

levels on various aspects of GBM survival and proliferation (210, 214, 215), I wanted to test 

whether NKH447 affects the behaviour of GBM cell lines in the scratch wound assay in light 

of its ability to differentially cause cAMP elevation in each cell type. 

Measurements taken at 24 hours are interpreted mainly as effect on cell migration 

and motility rather than proliferation (268). As shown in Figure 5.8 a, spread of astrocytes 

was most strongly affected already with 5 µM of NKH 477 while as much as 40 µM was 

required to achieve a comparable effect in either of the GBM cell lines. Overall, although 

cAMP treatment had significantly disrupted their motility, it is clear that GBM cells are more 

resistant to the effects of cAMP on cytoskeleton and motility apparatus and that this may 

not be mechanistically explained by their inability to raise cAMP because NKH 477 was much 

more effective in this respect in UP007 than in UP 029 (Figure 5.6). 

At 48 hours newly formed cells more significantly aid the closure of the gap but this 

perhaps is more important for GBM lines, than astrocytes which divide slowly. As shown in 

panel b on Figure 5.8, UP029 line was again, more sensitive (effects significant at 10 and 20 

µM ) than UP007 at this time point, in spite of its ability to suppress cAMP elevations (Figure 

5.6). Therefore, other factors, but cAMP concentration, seem to determine the response of 

GBM cell lines to antidepressants and NHK477. 
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Figure 5.8. The effect of NKH477 treatment on cell proliferation and migration in RA and GBM 
cell lines. Graphs showing relative wound density 24 hours (a) and 48 hours (b) after scratch wound 
and NKH477 treatment. The number of independent experiments (n) is (a) 6, 7, and 5, (b) 6, 6, and 3, 
for RA, UP007 GBM, and UP029 GBM respectively. (ns) p > 0.05, (*) p <0.033, (**) p <0.002, (***) p 
<0.0002, (****) p <0.0001. alpha= 0.05. Statistical method: two-way ANOVA and Dunnett’s multiple 
comparison. Data presented as mean ± SEM. 

 
 
 

5.6 Antidepressant treatment for 3 days decreased MMP of primary 

GBM cells. 

One of the theories proposed to explain previously reported effects of antidepressants 

on GBM, link their actions to their effect on mitochondria (187, 188, 193, 194). 

Mitochondria are the main source of ATP in cells in presence of oxygen and they are also 

able to trigger apoptosis via the intrinsic apoptotic pathway. I decided to re-evaluate this 

hypothesis using mitochondrial membrane potential as a sensitive parameter of 

mitochondrial health and activity (223, 260). 

MMP was assessed using JC-10 MMP assay described in Methods section 2.4.5. 

Typically, mitochondrial depolarisation is seen as a trigger for release of pro-apoptotic 

signalling molecules (223). 24-hour treatment did not change MMP with any of the drugs 

(results not shown). However, after 3 days, MMP in UP007 GBM cells was clearly affected by 

IM and CL treatment (Figure 5.9. a and b), while UP029 and RA showed some resistance to 

this effect at lower doses. Regarding FLX, unfortunately, variability was great and I could not 
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make a solid conclusion, although a trend towards decreasing MMP with increasing 

concentrations can be noted. This was largely due to small sample size which I was unable 

to increase for technical reasons. However, the results with IM and CL show that at least 

some GBM cell lines (exemplified by UP007) are quite sensitive to these drugs and respond 

with mitochondrial depolarisation while others only show a significant reduction with very 

high concentrations (50 µM), which however cause general toxicity as seen in Figure 5.1.  

Some representative images of the assay are presented in Figure 5.10. 
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Figure 5.9. The effect of sub-toxic concentrations of IM, CL, and FLX on MMP of normal RA and 

GBM cell lines. Quantification of the percentage (%) of red to total florescence reflects the 
percentage of dye driven into the mitochondria based on its membrane potential. Duration of 
treatment: 3 days. NKH477 is an adenylate cyclase activator. FCCP is an uncoupler of mitochondrial 
oxidative phosphorylation.  (ns) p > 0.05, (*) p <0.033, (**) p <0.002, (***) p <0.0002, (****) p 
<0.0001. alpha= 0.05. n is the number of independent experiments, each one in at least duplicates. 
Statistical method: two-way ANOVA and Tukey’s multiple comparison test. Data presented as mean 
± SEM. 
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Figure 5.10. Representative images of JC-10 MMP assay on UP007 GBM cells. (a) is the negative 

control group with no treatment, while (b) is the positive control group treated with 5µM FCCP 
(mitochondrial oxidative phosphorylation inhibitor) for one hour. JC-10 mitochondrial dye fluoresces 
green when in the cytoplasm (left panels) and red when inside the mitochondria (right panels). Note 
the disappearance of red fluorescence after FCCP treatment (lower right panel) due to disruption of 
mitochondrial membrane potential, (c-e) The effect of imipramine (IM) treatment for 3 days on 
UP007 GBM cells’ MMP. Note the decrease in red to total fluorescence ratio with increasing IM 
concentration (best seen with 50 µM IM), indicating MMP depolarization, (f) The effect of NKH477 
treatment for 1 day on MMP. Stimulation of intracellular cAMP did not change MMP. Note the 
matched distribution of green fluorescence (cytoplasmic) and red fluorescence (mitochondrial). 

 
 

In summary, in this chapter I have presented my experiments aimed at re-evaluation 

of some of the concepts related to potential re-purposing of antidepressants as anti-GBM. 

AD induced toxicity in GBM cells and RA, which was not accompanied by elevation in cAMP. 

In fact, using NKH477, cAMP was differentially induced in GBM cells and RA in a way that did 

not correlate with AD effect on viability or migration. The results presented in this chapter 

suggest that AD’s effect on GBM cells might be mediated by their effects on mitochondria, 

at least in case of IM and CL. 
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 Thesis Discussion 

  

In my project I pursued two strategies which potentially could supplement current set 

of therapies used against GBM. In the first part I have revealed a clear heterogeneity 

between my samples of GBM cells, in terms of morphology, sensitivity to TMZ, and 

molecular profile. I planned to do a pilot study to assess the feasibility of using Oxford 

Nanopore sequencing process to assess their mutational landscape. The plan was then 

changed to using Sanger sequencing due to time constrains related to COVID-19 national 

lock down. In the second part, I investigated the possibility of using a serendipitous finding 

of PDT-inducing effect of a chemical TMRM, via a previously unexplored mechanism, aimed 

at tumour mitochondria. Finally, I have re-evaluated the therapeutic potential of several AD 

on GBM cells. In my project I have used 6 GBM lines, including four isolated using a novel 

technique specifically from the GBM invasive margin. 

 

6.1 The primary GBM cell lines used in this project 

In my project, I used 6 different primary patient derived GBM cells: 2 UP cell lines 

kindly provided by Prof. G. Pilkington from the University of Portsmouth, and 4 GIN cell lines 

(GIN8, GIN27, GIN28, and GIN31) kindly provided by Dr S. Smith and R. Rahman from the 

University of Nottingham. UP cell lines were isolated some years ago using traditional 

process from the tumour mass. In contrast, GIN cells were recently isolated using a novel 

protocol specifically from the infiltrative margin. In this case patients received 5-ALA to aid 

visual resection and GBM cells were FACS-sorted from the invasive margin of the tumour to 

isolate true invasive cells from non-neoplastic parenchyma (65). Prof. Pilkington and his 

group reported in a previous publication that UP007 cells overexpress Axl receptor, an RTK 

involved in proliferation and migration signalling (245). Consistent with a number of other 

groups, my results demonstrate that the use of primary cells is preferable to the use of 

commercially available cell lines (271). Although genomic and epigenetic alterations, 
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especially in GBM, are unavoidable with continuous subculturing, chances that primary GBM 

cells maintain adequate transcriptional similarity to the parent tumour are much higher. 

This should make them more reliable than commercial cell lines in representing the true 

biological behaviour of the tumour (271). In fact, in my own experiments, I saw major 

differences even within the 6 cell lines, although all of them are technically GBM cell lines 

from patients. This underscores the importance to base any interpretation on an array of 

GBM samples before making any generalised conclusions. Not all experiments were 

performed on all 6 cell lines due to time constrains.  

 

6.2 Molecular diversity of GBM 

Despite tremendous heterogeneity in GBM, a single agent; TMZ is always prescribed 

as the first-line chemotherapy for newly diagnosed and recurrent GBM since 2005, following 

the success of the clinical trial conducted by Stupp R, et al (93). TMZ is a DNA alkylating 

agent that adds methyl groups to specific locations in the DNA (95). This methylation, if not 

repaired, usually by the enzyme MGMT in TMZ-resistant GBM, induces DNA base mismatch 

upon replication and subsequently induces apoptosis (95). Molecular aberrations other than 

MGMT promoter methylation may also be responsible for determining the sensitivity of 

GBM to TMZ (119). Reported IC50 for TMZ on different GBM cell lines range from 14 µM to 

1000 µM (272, 273). This broad range reflects an extreme diversity in molecular set up 

responsible for TMZ response or resistance. 

I examined TMZ sensitivity in my cohort of GBM cell lines. GBM cell lines showed 

different sensitivity patterns to TMZ treatment. As seen in Figure 3.2 b, c, and f, there is a 

trend for higher sensitivity in GIN28 > UP007 > UP029, with EC50 values of 35.92 µM, 41.46 

µM, and 149 µM, respectively. While the trend is obvious, EC50 values did not differ 

significantly enough from each other (p= 0.06). Probably a bigger sample size would have 

revealed the difference. Among the four GIN cell lines, three were resistant to TMZ as seen 

in Figure 3.2 d, e, and g. In these three lines, no additive toxicity of TMZ over DMSO was 

observed even at 1000 µM TMZ. GIN cells are isolated from the infiltrative edge of the 

tumour, as described in chapter 2 section 2.1.1. This resistance of GIN cells to TMZ is not 
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surprising as infiltrative GBM cells are known to resist conventional therapies such as TMZ 

or radiotherapy (64, 125). The infiltrative nature of these cells is ascribed to a unique 

molecular profile controlling essential pathways such as proliferation, DNA repair and 

apoptosis pathways, matrix remodelling, and angiogenesis (274). Besides enabling invasion, 

these molecular aberrations are implicated in therapy resistance and tumour recurrence 

(274). 

I wanted to relate functional differences of these GBM samples to their mutational 

profile. To investigate the molecular diversity of GBM cells, I examined them for mutations 

in four well characterised genes that support development of GBM. These genes are IDH-1, 

p53, EGFR, and PTEN. Regarding IDH-1, sequencing was successfully carried out for UP007, 

UP029, and GIN31, and none of them showed a mutation at the hotspot amino acid position 

132, which is the site of almost all IDH-1 mutations related to GBM (249). 

For the p53 gene, UP007, GIN8, GIN28, and GIN31 were successfully sequenced and 

mutations within the DNA binding domain were detected in all four of them. Particularly 

two of these mutations (in UP007 and GIN31) were found in a mutation hotspot at amino 

acid position 273 (246). These mutations are predicted to disturb the binding of p53 to DNA 

and prevent the p53-dependent transcription and tumour suppression (246). 

Sequencing of the EGFR gene was successful in UP007, UP029, GIN8, and GIN31. 

UP007, UP029, and GIN31 had similar mutation patterns with mutations detected in furin-

like region (within the extracellular domain) and common SNPs found within the tyrosine 

kinase catalytic domain. Most commonly in GBM, EGFR mutations are found in the 

extracellular domain of the gene, and these mutations affect mainly the affinity of binding 

of the ligand and sometimes the response to RTK inhibitors (257). Mutations in the furin-like 

region in particular, which mediates receptor aggregation and signal transduction, are 

associated with EGFR amplification (257). In GIN8, a mutation in receptor L-domain (which 

contains the ligand binding site) was found, as well as a SNP in the tyrosine kinase catalytic 

domain. Two insertions were found in UP007 and UP029 and generated a stop codon in the 

tyrosine kinase catalytic domain. More Insertions in the tyrosine kinase catalytic domain 

were identified in UP029 and GIN31 and would probably cause a frame-shift mutation. 

Although no report about these particular mutations is found in the literature, insertions in 
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the tyrosine kinase domain were reported to cause EGFR constitutive activation in some 

lung cancer patients (275). The impact of the new mutations which we have revealed on the 

signalling of EGFR is not known. 

In summary, GBM cells have shown a range of mutations with known implications on 

tumour behaviour and prognosis (276). IDH-1 wildtype tumours are known for poor 

prognosis compared to IDH-1 mutants (83). UP007 and GIN31 carry a very similar mutation 

profile for p53 and EGFR genes, while each of UP029, GIN8, and GIN28 have distinct 

mutation types in at least one of these genes. However, regarding response to treatment 

UP007 and GIN31 are far from similar. In fact, UP007 and GIN28 show similar sensitivity to 

TMZ and TMRM-PDT as shown in results. Of course, this analysis is not comprehensive, yet 

it highlights some aspects of similarities and differences among GBM cells. 

I initially aimed to utilize Oxford Nanopore sequencing, but due to the unfortunate 

disruption caused by the COVID pandemic, the decision was made to adopt Sanger 

sequencing instead. Nanopore sequencing is a third-generation sequencing technology that 

utilizes electrical current to identify nucleotide base sequence of DNA and RNA, in contrast 

to other sequencing methods which predominantly rely on DNA synthesis for detection 

(277). It consists of protein nanopores, embedded in an electrically resistant membrane so 

when an electrical current is applied, it can only pass through these nanopores (277). A 

leader enzyme guides the DNA (or RNA) from the applied sample to pass through the pore 1 

strand at a time (277). Each nucleotide while passing comes in contact with the membrane 

once and alter the magnitude of the electrical current in a different way than other 

nucleotides (277). The sequence of alterations of the electrical current are detected and 

translated into nucleotide sequence in real time (277). This sequencing method provides 

high throughput sequencing that is relatively cheap, with no limit for the length of the 

sequenced DNA (277), and it would have been a great addition to this project. Time 

permitting, I would have been able to perform a wide scale analysis to include more genes 

and test for their mutational status in my GBM cells, to obtain a widefield view of the 

mutational landscape of GBM. Nanopore sequencing is also being increasingly used for 

detection of copy number variations (CNV), and it is of great value to examine CNV in 

relation to GBM development. 
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6.3 TMRM as a potential PS for GBM PDT 

In the second part of my project, I decided to pursue an alternative strategy for 

treatment of GBM, known as PDT. By serendipity in our laboratory, we discovered that a 

fluorescent agent used to estimate MMP, TMRM, when illuminated with green light of 

moderate intensity for relatively short periods of time is an efficient PS and decided to 

further investigate the possibility of using this effect. For this part of the project, I have used 

all 6 GBM cell lines: UP and GIN GBM cells. GIN cells are representatives of the residual cells 

usually left behind by surgeons performing debulking surgeries because the infiltration is 

not visible to eye. These infiltrating cells are the source of recurrences and are the prime 

target for any local treatment modality. Therefore, results obtained from experiments on 

GIN cells are particularly valuable in examining potential treatment approaches. 

Targeting mitochondria for cancer therapy has been proposed and attempted by 

previous studies. GBM’s mitochondria are compromised by a wide range of aberrations 

including mtDNA gains or depletion, disturbances of the respiratory chain and dysregulation 

of apoptosis signalling (222). This makes tumour mitochondria a good target for therapy.  

First, I established MMP in my GBM lines. MMP is an indicator of the status of the 

mitochondrial respiratory chain (223). In cancer cells, MMP is often hyperpolarized 

compared to normal cells (260). Such hyperpolarized MMP has been suggested to be 

associated with more aggressive tumour growth (46, 47). 

MMP is often inferred from fluorescent intensity readings obtained using potential 

sensitive florescent dyes (223). TMRM, a rhodamine derivative, is a cationic fluorescent dye 

that is driven to the inside of the mitochondria proportionally to MMP (259, 278). This 

process is easily reversible and when mitochondrial membrane potential is lowered, TMRM 

immediately leaves mitochondria and disperses in the cytoplasm before leaving the cell 

altogether (241, 278). Thus, changes in florescence directly correspond to changes in 

mitochondrial membrane potential (278). Moreover, TMRM is reported to have the least 

non-specific accumulation (outside the mitochondria) and to have minimal interference 

with mitochondrial respiration among the commonly used mitochondrial fluorescent probes 

(223, 241). TMRM is distributed in both the inter-membrane space and the matrix due to its 
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lipophilicity and ability to cross the outer and inner mitochondrial membranes (241), 

although a recent study has shown that TMRM only accumulates near the surface of the 

inner mitochondrial membrane (in the inter-membrane space) and not in the matrix (259). 

TMRM preferably absorbs green light, mainly between 530-560 nm and emits yellow-red 

light, mainly between 565–592 nm (241, 259). 

As shown in Figure 4.1, GBM cells had higher MMP (hyperpolarized) compared to RA 

with the exception of GIN27, which had a MMP not significantly different from that of RA. I 

do not yet have an explanation for this remarkable difference but once again we see that 

even at this level, no general conclusions can be made. In all the GBM lines, there was a 

noticeable heterogeneity of intensity of TMRM fluorescence between individual cells. The 

distribution of data was examined in order to test for the presence of more than one 

population (normality test), but in no case it could be confirmed that the distribution was 

statistically significantly different from the Gaussian. Thus, I believe that my GBM cell lines 

are statistically homogenous in respect to their MMP (Figure 4.2.). 

Prolonged (longer than a few seconds) illumination of TMRM induced rapid re-

distribution of the dye into the cytoplasm, reflecting a sudden drop in MMP. To further 

investigate into this observation, I did time lapse imaging of TMRM-loaded GBM cells before 

and after light illumination (30 sec), in order to track TMRM dynamics. TMRM was stably 

localized in the mitochondria before light illumination. Immediately after light illumination, 

a sharp drop in fluorescent intensity in the mitochondria was noted, as well as appearance 

of the dye in the nucleus and the cytoplasm of the cell. Since TMRM builds up in 

mitochondria against concentration gradient and is only retained by the MMP, this could 

only be explained by a sudden mitochondrial depolarization. MMP is critical for the 

functioning of mitochondria and such depolarization should theoretically lead to induction 

of intrinsic apoptosis pathways and cell death (223, 260). Thus, the possibility opens to use 

TMRM as a PS. TMRM was reported previously to induce depolarization upon strong 

photoactivation in isolated mitochondria and intact cells (279) but conditions in our 

experiments are much milder and achievable in realistic biological environment. Once again 

GIN27 cell line behaved differently to the other GBM cells in that it hardly responded to light 

exposure (Figure 4.3), which matched with their poor TMRM loading. At face value, this 

indicates low basal MMP in GIN27. Interestingly, even RA which had a similar lower MMP 
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still demonstrated a small decline in fluorescence after illumination. Overall, this experiment 

demonstrates clearly, that with one specific exemption of GIN27, GBM cells have more 

polarized potential than normal MMP, which guarantees greater loading of the cell with 

TMRM, and in theory makes them more susceptible to the PDT effect of TMRM. 

One of the fundamental requirements for a PS is lack of toxicity in absence of light, in 

other words, the photosensitizer must only induce toxicity upon light illumination. The 

mechanism of the light induced toxicity is detailed in the introduction chapter section 1.2.3. 

Briefly, a PS molecule localizes to cancer cells and upon light exposure, it absorbs light 

photons. This brings the molecule to the excited state, and eventually the excited molecule 

either directly or indirectly triggers photochemical reactions, ROS formation, and induces 

apoptosis (132). TMRM was tested for its safety in the dark. Concentrations ranging from 0 

to 1.6 µM were safe on all GBM cells as well as rat astrocytes in absence of light exposure. In 

one study, TMRM was reported to induce toxicity independent of light exposure at 

concentrations higher than 2.5 µM (278), which is ~ 2 orders of magnitude higher than my 

working concentration where I used concentrations of TMRM typically ranging from 100nM 

to 300nM (278). Therefore, TMRM is a promising candidate for PS. Firstly, it is driven into 

the mitochondria by a mechanism which seems to be a common feature of cancer cells, 

which is the hyperpolarised state of the mitochondria, leading to preferential localization in 

GBM cells compared to non-malignant cells such as RA. Secondly, it induces no toxicity 

unless illuminated with light. 

The next logical step was to test the efficacy of TMRM-PDT on GBM cells. GBM cells 

were incubated with 200 or 300 nM TMRM for 45 minutes before illumination with green 

light for 22 or 40 seconds. The end point measurement of toxicity was carried out by 

staining the cells with DAPI and counting the number of cells. A novel and unique seeding 

protocol was employed to ensure reproducibility and reliability of the results obtained from 

this PDT in-vitro model (Figure 2.1). In a 96-well plate, 4 µl drop of cell suspension 

containing 350-400 cells was placed at the centre of each well. This seeding protocol 

ensures that at least 95% of the cells are located at the centre of the well. This was very 

important to ensure that all cells are subject to equal amount of light and to avoid false 

negative results due to the re-population of the affected area by the cells from the corners 

of the well or from the sides where the light was not delivered.  
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TMRM-PDT was effective against all GBM cell lines. Surprisingly, it also affected GIN27. 

More toxicity was achieved with stronger TMRM loading and longer duration of light 

illumination (Figure 4.7). Some degree of selectivity was achieved by milder treatment 

protocol (using 20nM TMRM and light illumination for 22 seconds) although still RA were 

significantly affected by both treatment protocols. This again could be attributed to the fact 

that these rat astrocytes are not post-mitotic, with metabolism and gene expression profile 

different from mature astrocytes (230). Sensitivity of GBM cells to PDT was different among 

the 6 cell types. UP007 and GIN28 were the most sensitive, while UP029 and GIN31 were 

the least sensitive. Comparing this to their ability to build up TMRM, it may be concluded 

that the impact of TMRM-PDT is determined not only by the quantity of PS but also intrinsic 

sensitivity of GBM. 

It has been suggested that GBM cells generally have a pro-oxidant signature and a 

higher oxidative stress than normal cells (144). Caverzan et al. reported that patient derived 

GBM samples had higher basal level of ROS compared to normal brain cells (280). This 

elevated ROS level was associated with elevated levels of antioxidant enzymes such as 

superoxide dismutase and catalase (280). This was true for GBM cell lines too. Interestingly, 

heterogeneity in GBM cells is also reflected at the level of oxidative stress that was found to 

be different among them (144). Molecular heterogeneity results in different basal ROS 

levels, different redox balance systems and different antioxidant defence between different 

GBM tumours (144). This will ultimately result in different response to PDT, presumably 

higher basal ROS levels associated with higher level of antioxidant defence may indicate a 

more resistant type of GBM to such treatment. It is also arguable that higher basal ROS level 

may indicate a more “vulnerable” type of GBM to a further increase in ROS. 

Depolarization induced by TMRM-PDT can be expected to lead to the opening of the 

mitochondria permeability transition pore (MPTP) which opens the gates for the exit of pro-

apoptotic signals and at the same time allows Ca2+ overflow of the mitochondria, but if this 

process is not complete, mitochondrial potential may recover (279). Yet, the mechanisms of 

re-polarization is not fully understood, although a role for normal ETC to regenerate the 

MMP is highly probable (279). The ability of mitochondria to recover its MMP, which 

determines the fate of the cell, depends on the time the single mitochondrion stays 

depolarized (223). Brief depolarization may not be detrimental to normal cells with normal 
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mitochondria functions (223). “The point of no return” differs from cell type to another 

(223). 

The photoactivation of TMRM in GBM cells induced a lasting depolarization state, 

evident by low TMRM uptake 24 hours after the initial photoactivation (Figure 4.8). This 

state of sustained depolarization will ultimately lead to induction of the intrinsic apoptosis 

pathway. Interestingly, this was not the case for RA. Initially RA had a lower TMRM load and 

their mitochondria responded mildly to the application of light (Figure 4.3 and 4.4), but 

then, RA recovered this minimal loss of MMP due to normal mitochondrial functions. 

Looking in contrast, GIN27 had poor TMRM uptake to start with, and there is no evidence of 

initial depolarization mediated by photoactivation of TMRM in these cells (see Figures 4.3 

and 4.4). When re-loaded with TMRM 24 hours later, they exhibited a similarly low level of 

fluorescence demonstrating an apparent resistance of their MMP to this modality of PDT. 

Nevertheless, PDT was able to suppress their viability. I speculate that there are other 

factors and mechanisms engaged by TMRM-PDT which have not been revealed here, and 

which determine the sensitivity of GBM cells to PDT. 

In an attempt to enhance the effect of TMRM mediated PDT, combination therapy 

with either clotrimazole or NKH477 was examined for possible synergy between the two 

treatment modalities. Clotrimazole (1-α-2-chlorotritylimidazole), is an azole derivative used 

clinically for treating fungal infections (266). It has been also recognized as an inhibitor of 

glycolysis acting on phosphofructokinase (PFK), the rate limiting enzyme in glycolysis 

pathway (266, 281, 282). With Ki of 28 ± 2μM, clotrimazole was reported to inhibit PFK by 

dissociating the tetrameric structure of the enzyme (282). Clotrimazole has been tested on 

GBM cells, and it was found to induce cell cycle arrest and consequently cell death at 

effective concentrations starting from 40µM (265, 281, 283). The reasoning behind using a 

glycolytic inhibitor to try to potentiate the effect of TMRM-PDT is that with photoactivation 

and depolarization of mitochondrial membrane, mitochondrial energy metabolism is further 

disrupted, and cells are solely dependent now on glycolysis, inhibition of which should 

starve GBM cells of energy and ultimately lead to their demise.  

A shorter duration of illumination was employed in this combination therapy 

experiment to easily identify synergy if present. Cells were loaded with 200 nM TMRM and 
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after 45 minutes, TMRM was photoactivated for 17 seconds only. They were then incubated 

with 10 μM clotrimazole for 3 days. At 10μM, clotrimazole was reported to significantly 

inhibit PFK enzyme without affecting cell viability (281). In my experiments, 10 µM 

clotrimazole alone was toxic to RA but not to GBM cells, and no additive effect was found in 

cells treated with combination treatment. Possibly I could have optimised the conditions, 

but this result suggests that limitation of glycolysis is not an effective approach to potentiate 

the destruction of GBM after TMRM-PDT. 

As mentioned previously, cAMP elevation has been reported to have various 

detrimental effects on GBM cells (214-216, 267). I therefore examined the effect of pre-

incubating GBM cell with AC activator NKH477 for 24 hours before photoactivation of 

TMRM, reasoning that elevated intracellular cAMP would make the cells more vulnerable to 

photo-toxicity. NKH477 alone did not induce toxicity in RA or GBM cells. Interestingly, 

NHK477 potentiated the effect of TMRM-PDT on UP007 and GIN27 GBM cells while in other 

cell lines there was a trend, but differences were not statistically significant. Here again we 

see the example of heterogeneity of the biological behaviour of the GBM which highlights 

the need to work with a range of GBM samples in order to avoid generalised conclusions 

which may only apply in some cases. Nevertheless, it seems that combination of cAMP 

potentiators with TMRM-PDT could be a useful approach at least in a sub-set of cases.  

Our expanding knowledge about the molecular pathology of GBM is not well reflected 

yet on patient survival. The Stupp protocol was approved for treatment of GBM based on a 

2.5-month benefit in median survival (93), which indicates how devastating is this type of 

cancer, and highlight the need for novel therapies. 

Tumour recurrence in GBM almost always originate from the margins of a resected 

tumour (132). Infiltrative cells migrate along white matter tracts or grey matter nuclei, and 

along blood vessels (132). These critical areas often cannot be surgically removed because 

of the risk of neurological damage, and infiltrative cells are often left behind (132). 

Therefore, the need for developing local therapies that are directly applied to the resection 

cavity to eliminate infiltrating cells, such as PDT, might be superior to the need for 

developing systemic medications (132, 144). 
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Selectivity of PDT is determined by preferential accumulation of the PS in cancer cells. 

PS accumulate in cancer cells depending on common criteria that are found in most cancer 

cells such as aberrant heme metabolism, acidity of the microenvironment, or poor 

vasculature and lymphatic drainage (132). This contrasts with molecular targeted therapy, 

when a drug specifically targets cancer cells harbouring a specific molecular abnormality. 

This aspect of PDT is particularly useful against GBM because of their notorious molecular 

heterogeneity. Targeting the mitochondria by TMRM-PDT seems an attractive treatment 

approach, because it targets a common feature of most glioblastoma cells (hyperpolarized 

MMP) rather than targeting a specific molecular marker that is only present in a fraction of 

cells. Moreover, a PS which accumulates in the mitochondria has a potential to be 

particularly powerful in inducing apoptosis (132). This is due to the close proximity of the 

generated reactive oxygen species to mitochondrial proteins and mtDNA, which has a very 

limited repair capacity (132).  

PDT has shown promising results in therapy of many types of cancers such as 

oesophageal cancer, bronchial carcer, and skin cancer (see Figure 1.7). This treatment 

modality has been attempted against GBM (117, 145), but many fundamental issues remain, 

including an effective PS, the optical wavelength for excitation, and the mode of delivery of 

light. Previously tested PS include HPD porfimer sodium (Photofrin©), 5-ALA (Levulan© or 

Gleolan©), talaporfin sodium (Laserphyrin©), and chlorin derivative temoporfin (Foscan©) 

(144).   

5-ALA is commonly used for visualising GBM in FGS (284). It has an excitation 

wavelength of 375-440 nm and emission wavelength range of 640-710 nm (156). A 

randomized clinical trial demonstrated an increased volume of resection and improved 

survival with 5-ALA FGS (116). Clinical trials attempted to use 5-ALA for PDT with light at 

~630 nm, arguing that it has better tissue penetration than deep blue light (147, 148, 155, 

284). While this may be the case, the evidence for ROS generation when using 630nm to 

excite 5-ALA is lacking and clearly this is very far from optimal wavelength for its excitation. 

Moreover, high power light used in those studies carries a significant risk of heat injury 

(132). In fact, almost all studies where PDT in GBM was attempted with deep red light 

reported side effects such as brain oedema and thromboembolic events (155, 162, 163, 

285). Photons of blue and deep blue light (400-500 nm) carry much more energy (132) but 
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are absorbed in tissue, easily scattered, and poorly propagate further. Therefore, on 

balance, it is reasonable to say that an optimum excitation wavelength for PDT should be 

somewhere around 530-550 nm, which is green light. At this wavelength, light photons carry 

enough energy to excite PS but penetrate tissue better than blue wavelengths (132). 

TMRM, which has peak absorption at ~530-540 nm has a promise as a PS, because it 

demonstrated good tumour cell localization, induced no toxicity in absence of illumination, 

effectively depolarized mitochondria upon light illumination, and subsequently induced 

GBM cell death. I envisage a protocol where after de-bulking the risky areas of the brain, 

where the surgeon suspects infiltrations that are not surgically removable, will be infiltrated 

by TMRM and after a short period, light will be delivered directly into the brain parenchyma. 

Importantly, such hardware is already being developed. As an example, Modulight (Finland) 

have developed a system for interstitial light delivery with fine optical fibres on a comb-like 

assembly where light is delivered laterally, rather than shining directly straight out of the 

fibre. More details are found in their website: Medical laser ML7710 - Modulight, Inc. This 

should ensure even and complete illumination of brain tissue and, hopefully, help to 

exterminate the remaining infiltrating GBM cells. 

 

6.4 Repurposing of antidepressants for GBM therapy 

Obviously, if AD have a convincing and reliable anti-tumour effect on GBM, they would 

be good candidates for repurposing for GBM therapy because they can cross the BBB and 

accumulate in brain tissue (164). However, this topic is highly controversial. Table 1.2 

reveals some important weaknesses in the previous research supporting this topic. First, 

while some studies reported effective anti-tumour effect within physiologically reasonable 

range of concentrations, many studies have used very high concentrations of AD. 

Therapeutic plasma concentration of Clomipramine for example is 230-450 ng/ml (286), 

which is equivalent to 0.65- 1.28 µM. Collective human data indicate that AD can 

accumulate in high concentrations in the brain, reaching up to 10 µg/ml, which is equivalent 

to approximately 20–30 µM but it is not known what part of that substance is extracellular 

and what is inside cells, where it might or might not be biologically relevant (164). It also 

needs to be stressed that such numbers represent the theoretical maximum, which is 

https://www.modulight.com/ml7710/
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almost certainly not achievable in the real world, especially in a tumour. In any case, even if 

AD, including CL, are indeed accumulated in brain tissue at higher concentrations than 

plasma (287-290), the concentrations used in two of the cited studies, 114µM and 250µM; 

(188, 190), far exceed the feasible concentration range, making these observations clinically 

irrelevant.  

The other problem with the majority of the published studies is that the cells used 

were commercially available lines that have been around for many decades and might have 

accumulated mutations and became molecularly too distant to GBM as seen in the clinics. In 

addition, the origin of these cells is not always known with certainty (291). In fact, 3 out of 

39 specifically tested cell lines were found to be misidentified as glioma cells (292). 

Moreover, when two vials of the commonly used U87MG cell line were purchased from two 

different sources, only one of them was genotypically identical to U87 genotype published 

in Cell Lines Service (293). These considerations have motivated me to explore the effect of 

AD on primary patient derived GBM cells, including GIN lines, and try to assess the 

concentration-dependency of the effects of these drugs staying closer to clinically and 

physiologically relevant concentration range. It is reasonable to expect that the effect must 

be concentration-dependent but, in fact, there are hardly any studies where AD were tested 

in that way. 

TCAs in general have a relatively narrow therapeutic index which means that the 

range between effective dose and minimum toxic dose is fairly narrow (294). When I 

examined the impact of IM, CL, and FLX on my GBM cells, a somehow similar pattern was 

detected. Figure 5.1 shows no evidence of a classical dose-response relationship between 

AD concentration and effect on GBM cell lines. With IM, the toxic effect is only statistically 

significant at 50 µM, but at 100 µM the effect is already maximal. CL and FLX also seem to 

act in an all-or-nothing fashion. Both drugs exhibited measurable toxicity to the cells at of 25 

µM, which seemed to immediately produce the maximum effect with no additional effect 

seen at higher doses. This is consistent with an earlier observation by Levkovitz et al. who 

reported a similar pattern of all-or-nothing effect when inducing apoptosis with CL and FLX 

at 25 µM and 50 µM, respectively (187). Interestingly, they also tested IM and they reported 

no significant induction of apoptosis with this drug. This could be attributed to GBM 

heterogeneity, because they have only used a commercial GBM cell line C6 in their 
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experiment (187), and is a strong argument in favour of my approach of using a panel of 

patient-derived cell lines. 

EC50 values of each drug did not differ significantly between RA and GBM cells (Figure 

5.2). On one hand this might suggest that this treatment fails to preferentially kill tumour 

cells and therefore is not particularly promising. One the other, the use of neonatal rat 

astrocytes as controls may also be criticised. Neonatal rat astrocytes are not fully mature 

and not post-mitotic, they keep dividing in vitro albeit slower than GBM cell lines (230). 

They exhibit different morphology and protein expression profile than the mature rat 

astrocytes (230), let alone mature human astrocytes. Lack of perfectly matched in-vitro 

controls is a known limitation in our work and in brain cancer research in general (164). 

Researchers typically use either primary neonatal or adult rodent astrocytes, or human 

embryonic astrocytes as models to evaluate adverse effects on healthy/normal cells (164). 

But embryonic human astrocytes are no match to mature human astrocytes, and therefore, 

normal cells’ tolerability to treatment cannot be accurately inferred (164). In my work I have 

also attempted to utilize human embryonic astrocytes NHA (Lonza, #CC-2565), but the 

results I obtained using this cell line were not reliable because they are extremely different 

from batch to batch, sometimes fail to expand, must be cultured in a special media and 

easily die in vitro. In addition, they are extremely expensive. Eventually the decision was 

then made to use neonatal rat astrocytes as control because of feasibility, reliability, and 

cost-effectiveness. 

In the scratch wound healing experiment, I tried to examine the effect of sub-toxic 

concentrations (based on LDH assay) of AD on GBM cells’ migration and proliferation. My 

results show that IM and CL in sub-toxic concentrations impaired wound healing process 

only significantly in one of the two GBM lines tested, UP029. UP007 GBM cells as well as 

normal rat astrocytes were not significantly affected with the sub-toxic concentrations, 

although at the toxic concentration of 25µM, which clearly affects cell viability, CL impaired 

wound closure in UP007 GBM cells (Figure 5.3). This differential effect is obviously 

attributed to differences in molecular profile between the two GBM cell lines, a very well-

known feature of GBM. 
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The effect of sub-toxic dose of AD on wound healing was significant after only 24 

hours, and highly significant after 48 hours as well. This suggests that the effect is mediated 

by blockade of cell growth as well as cell migration.  

Because of the time constrains caused by COVID pandemic, I did not evaluate the GIN 

cell lines in this paradigm, but it might be that the suppression of infiltration is a more 

biologically feasible explanation of any detected anti-GBM action of AD, than their direct 

toxic action of the GBM.  

Both IM and CL are taken orally. They are rapidly absorbed from the intestine, strongly 

bind to plasma proteins, and have a large volume of distribution (295). They undergo 

extensive first pass hepatic metabolism by hepatic cytochrome P450 (CYP) oxidative 

enzymes (295). This hepatic metabolism produces metabolites that are as active as the 

primary drug (295). CYP are a family of enzymes essential for normal hepatic metabolic 

functions including drug metabolism. They are present in other extra-hepatic tissue as well 

including the CNS, and localize predominantly in the mitochondria (296). Brain CYP have 

minimal effect on systemic drug concentration, however, they hugely influence local drug 

metabolism and concentration in the brain, especially with the preferential increased 

expression of some CYP enzymes in astrocytes (297). This fact is significant for in vitro 

experiments. FLX, an SSRI, is metabolized by almost the same hepatic enzymes as IM and CL, 

and the three of them, plus their metabolites, have the property to inhibit these hepatic 

enzymes (298). This leads to inhibition of their own metabolism, prolonging their half-life 

and giving rise to side effects (298). It also causes drug-drug interactions as many drugs rely 

on hepatic CYP for their metabolism (298). There is also a wide genetic variability, among 

the population, in the metabolism of TCAs due to different genotypic variants of CYP450 

enzymes (299). This leads to inter-individual variability of plasma concentration produced by 

the same dose of the same drug (298, 299). All this can explain why these AD lack clear dose 

to plasma concentration relationship. Along with the molecular heterogeneity of GBM, this 

creates a weak spot in the idea of repurposing AD for GBM therapy, as the calculation of 

effective safe dose is so complicated. At the same time, in vitro, inhibition of CYP in the 

mitochondria of GBM could explain their ability to suppress functions and growth of these 

cells. Moreover, this mechanism could perhaps explain their abrupt concentration-effect 



138 
 

relationship: at some level, mitochondria CYP become overloaded and this triggers 

apoptosis. It would be interesting to further test this hypothesis. 

TCAs and SSRIs were reported by some studies to elevate cAMP in brain cells, the 

effect that is believed to mediate their therapeutic effect in depression, which may be 

associated with decreased cAMP level (197). Interestingly, lower levels of cyclic AMP are 

also associated with more aggressive behaviour of GBM tumours (211, 212). Moreover, 

stimulation of cAMP signalling pathway resulted in inhibition of tumour growth, metabolic 

reprogramming, and differentiation of GBM cells (210, 211, 214-216, 267). It has been 

proposed that the mechanism of anti-cancer effect of some AD on GBM is mediated by 

cAMP (176, 192). 

In light of these considerations, I examined the effect of AD on intracellular cAMP level 

in GBM cells using a FRET-based cAMP sensor (239). This is a relatively novel approach and 

allows direct assessment of cAMP level in living cells, in contrast to indirect biochemical 

assays, such as ELISA. Neither IM nor CL seemed to affect cAMP level in GBM cell lines 

(Figure 5.5). A small increase in cAMP with 25µM IM in UP007 GBM cells is noted, but at this 

concentration IM did not suppress GBM cells or affected wound healing process in UP007.  

Interestingly, AC activator NKH477 differentially affected cAMP in RA and GBM cells. 

RA robustly responded to 5µM and 10 µM NKH477 by ~90% and ~120% increase in cAMP 

compared to baseline, respectively. UP007 also responded prominently (~125% and ~140%), 

but only ~10% and ~40% elevations of cAMP in UP029 were detected (Figure 5.6 and 5.7). 

This contrasts with the somewhat higher sensitivity of UP029 to AD (the lowest EC50 in LDH 

assay and the most significantly affected wound healing dynamics), yet they are the least 

sensitive to NKH477. On the other hand, UP007 are much more able to build up cAMP upon 

stimulation yet wound healing process, for example, was less affected by AD. I reason that 

this observation further indicates a lack of correlation between AD anti-GBM effects and the 

cAMP cascade. 

Activation of AC by NKH477 resulted in significant impairment of wound healing in RA 

and GBM cells. However, 10 µM NKH477 which produced profound increase in cAMP level 

in UP007 only moderately affected wound healing during the first 24 hours, and this effect 
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was no longer significant after the next 24 hours. In UP029 similar dynamics of the effect are 

observed (Figure 5.8). It is generally considered that the early phases of the wound healing 

pathway mainly depend on the lateral mobility of the cultured cells, rather than the speed 

of their division. cAMP is reported in the literature to control a number of signalling 

pathways involved in wound healing, including cytoskeleton remodelling and cell migration 

(300-302). Nevertheless, cAMP only minimally affected GBM cells’ migratory capacity 

compared to a profound effect on RA, this suggests a resistance mechanism to cAMP-

mediated inhibition of motility in GBM cell lines.  

The almost all-or-nothing effect of AD in the LDH test suggests a mechanism which has 

a certain threshold, such as an overload of the mitochondrial CYP system leading to the 

destruction of these organelles and apoptosis. It is generally believed that mitochondria in 

cancer cells are abnormal. They often have more negative (hyperpolarized) basal MMP than 

normal cells (260-262, 303), and this might be particularly true for the GBM cells, which 

have been reported to have mitochondria-related disturbances including hyperpolarized 

MMP, abnormal mtDNA content and morphology (304). Some studies reported a disruptive 

effect of IM, CL, and FLX on mitochondrial functions in GBM cell lines, with subsequent 

activation of intrinsic apoptosis pathway (187, 188, 193, 194). I examined changes in MMP 

in response to AD treatment. IM and CL produced a concentration-dependent decrease in 

MMP (mitochondrial depolarization) in both GBM cell lines as well as rat astrocytes (Figure 

5.9). The effect was more significant on UP007 than on UP029. FLX, however, had no 

statistically significant effect. These observations are generally consistent with the idea that 

AD, which are oxidised in the mitochondria, at some point overload their CYP and trigger 

release of the apoptotic signals into the cytoplasm with catastrophic consequences for the 

cells.  

While my data confirm suppressive effect of IM, CL, and FLX on GBM cells viability, 

migration, and proliferation, their mechanism of action of is not clear. My results suggest 

that the effects of these AD on GBM cells are mediated by the impact on mitochondria 

rather than cAMP signalling pathway. It is also very obvious that UP007 and UP029 

responses to treatments are often different in terms of the outcomes or effective 

concentrations, which is a manifestation of different molecular makeup in these two cell 

lines. This is yet another demonstration that GBM molecular heterogeneity precludes 
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generalised conclusions based on experiments with one or two cell lines as has been the 

case with many previous studies. 

To conclude, in this thesis I have presented my work aimed at looking for novel and 

alternative strategies for anti-GBM therapy. I have used a panel of primary patient derived 

GBM cell lines including novel lines obtained from the GBM leading edge. An initial enquiry 

into molecular diversity of the GBM cell lines has been made. A novel TMRM-PDT protocol 

has been proposed and tested in vitro. Anti-GBM potentials previously reported for some 

AD has been re-evaluated. I hope that my findings will be useful for further development of 

new therapeutic modalities against GBM. 
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