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ABSTRACT

Inequalities in health outcomes have received increasing attention both in the research landscape

and in policy environments. Social determinants of health, especially those which are modifiable,

have been examined thoroughly. One such determinant, occupation - in terms of the jobs and

places people work - has been received less attention and scrutiny than the others, and it is

often operationalised as social class. This lack of attention is further complicated because

research into work and health has often been fairly heterogeneous in terms of contexts used,

data deployed, and methodological approaches adopted and therefore conclusions are hard

to reconcile. There have been calls for a theoretical framework to help link these disparate

pieces of current and future research. Therefore, this thesis develops ’the worksome’ out of

the biological exposome, an epidemiologic life-course approach to exposure. The empirical

portion of the thesis explores and supports the concept of the worksome, which emphasises the

importance of context (geographical, temporal, and so on) and varying scales. This is done

by employing two robust datasets: the European Working Conditions Survey (EWCS) and the

British Household Panel Survey (BHPS), to examine a selected set of working conditions in the

context of a variety of health outcomes using logistic regression techniques. The final set of

models uses multilevel logistic regression. The various health outcomes, such as backache or

anxiety, are characterised by differences in the effect of the working conditions, such as flexible

time arrangements. The individual level accounts for a large part of the variance, and, with the

BHPS, the observations over individuals through time were most relevant for general health.

However, for specific health outcomes, the differences between individuals were most pertinent,

meaning the conditions under which people live, and therefore work, are highly relevant. The

contexts and scales within which the individuals are situated also have reasonably strong impacts

on whether they report specific health outcomes. The heterogeneity of factors which promote

and are of detriment to work has been clarified: feelings of control, certainty and security, and

tasks which match skills can make two jobs with the same characteristics have different health

impacts. The worksome emphasises the importance of examining the interactions between and

within all of the elements in which an individual is situated. The concept of the worksome

provides an empirically supported, solid theoretical framework for future research into work and

health.
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Glossary

Advanced Quantitative Methods: A priority pathway for postgraduate training under the ESRC

Bayesian statistics: An approach to statistics based on Bayes’ interpretation of probability,
which uses prior knowledge to inform modelling strategies.

β : In regression analysis, the coefficient relating to the covariate.

British Household Panel Survey: A longitudinal survey with a representative British
population, conducted every year from 1991-2008

Capital: Per Marx, a social relation characterised by the exclusive control of the means of
production by the moneyed social classes, with influence on the conditions and activities of
labour

Capitalism: The economic system characterised by private ownership of property.

Class: See social class

Constant: In logistic regression, the term which represents the probability of an outcome when
all other covariates are 0.

Correlation: A statistical representation of how variables are associated with one another.

Covariate: A predictor variable in a regression analysis, expressed as xi

Delocalisation: The fragmentation and geogrpahical dispersal of industries by global capital

Deregulation: The process of the repeal or reduction of government regulations related to the
economy, often due to apparent inefficiencies in those regulations. Commonly promoted under
neoliberalism

Deviance Information Criterion: A Bayesian measure of predictive accuracy, penalised by
model complexity. [Eyles et al., 2019]

Domain: A conceptual context or scale employed in the worksome

Economically active: Those employed in any working arrangement, including informal
arrangements, as well as the unemployed currently seeking or about to start work.

Economically inactive: Those without a job, who are not seeking work, generally students,
carers, disabled people, and retired people.

Economic and Social Research Council : The funder of this PhD, a part of UK Research and
Innovation.

Effort-reward imbalance model: A model of the relationships betweenworking conditions and
health, developed by Siegrist [1996], where the trade-off between effort, or risk, and reward is
emphasised.

Employment: The relationship of an employee, who labours, with an employer, who pays for
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that labour towards a particular task or enterprise, or simply put, an individual having (usually
paid) work

Employment Grade: A hierarchy of occupational status, related to income.

Error term: The term in the regression equation that represents everything the other terms,
such as the constant and covariates do not capture. In single level models, there is just one,
represented often by e, and in multilevel models, there are several, to represent the error at each
level.

Eurofound: The European Foundation for the Improvement of Living and Working Conditions,
which provides research and data to help develop better social policy.

European Working Conditions Survey : A repeated cross-sectional survey, with a
representative European Union/European Economic Area population, conducted every 5 years
from 1991-2015.

Exposome: A theoretical framework developed by Wild [2005] to encompass all exposures
across the life course, primarily to examine environmental exposures. It is sometimes described
as a measure of all of those exposures.

Exposure: For an individual or group, an occurrence of contact with a material, which is not
necessarily physical, considered toxic or otherwise detrimental to health, i.e. a hazard.

Flexibility: Characterised by a pursuit of efficiency and cost-saving, leading to apparently
seamless adjustments by capital, with total control, in wages, employment levels, job roles,
locations, and other aspects. This principle first was applied to production, and then trickled
through to the more abstract elements of work described above.

Flexible employment: A scheme of employment characterised by precarity, job insecurity, and
often poor income as a consequence of flexibility.

Fordism: See Taylorism

FYROM: North Macedonia, the ’former Yugoslav Republic of Macedonia’

Gender: The social construction of characteristics (often also socially constructed) around
masculine and feminine identities. Gender is a spectrum, and gender identity is the personal
perception of what one’s gender is. This may not match assigned sex. While surveys often ask
for sex, as the recorded answer is based off of self determination, it is, effectively, gender.

Geocontextual: Geographic and contextual factors relating to scales and domains.

Globalisation: The internationalisation of capital as it seeks flexibility, i.e. to maximise
efficiency and minimise costs.

Government Office Region: A subnational geographic division in the United Kingdom,
including 9 areas in England, as well as the other constituent nations of the United Kingdom.

Hazard: A material, which is not necessarily physical, that is considered toxic or otherwise
detrimental to health. Some examples could be cleaning chemicals, or stress at work.

Health: The state of wellbeing in all aspects: physical, mental, and social.

Health inequalities: Variations in the health outcomes or status of individuals, often by
socioeconomic status or other characteristics, such as sex.

Health intervention: A policy effort or act which is executed in order to assess, promote or
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improve health and/or health behaviours, usually on the population level.

Health outcome: A general or specific health condition or health status that may result from
particular events or conditions through an individual’s life course.

Health status: A relative measure of an individual’s health.

Heterogeneity: A characteristic of data meaning that it has high variability for particular data
items.

Heteroskedasticity: Given two variables, when one varies differently across values of the
second. It varies variably.

Idée force: An ideal with social power, proposed by [Bourdieu, 1998]

Income: The money gained through wages, salaries, or other payments in an individual’s
occupation.

International Standard Classification of Occupations: An occupation-based categorisation
system developed by the International Labour Organisation.

International Labour Organisation: A United Nations agency, with the goal of promoting
social justice through human and labour rights, by setting labour standards, and creating
programmes and policy to forward good working conditions and work for all.

Intensification: In general, raising the workload for an employee, i.e. giving more work in the
same amount of time, often for the same pay

Intraclass Correlation: See VPC

Job : See occupation:

Job-demand-control model: A model of the relationships between working conditions and
health developed by Karasek [1979] and furthered by Karasek and Theorell [1990]. It describes
how control modifies the potential impact of job demands.

Labour: The capacity for production of things of value sold for pay by individual workers in
employment.

Labour market: The supply and demand of labour for employment

Labour market segmentation: Where a labour market is structured in a core-periphery manner,
with the core having more secure working arrangements, and the periphery having less secure
flexible employment arrangements.

Life course: An approach to analysis that looks across an individual’s entire life.

Logistic regression: A special case of regression analysis for binary response outcomes

Log odds: The logarithm of the odds, produced by logistic regression, which are difficult to
interpret, as their range is from -∞ to +∞ so often converted to odds ratios.

Markov chain Monte Carlo: A type of simulation used to sample from probability distributions
to conduct Bayesian statistics

Morbidity: The state of having a condition or illness that impacts on health.

Mortality: Put simply, death, or the rate thereof.

Multicollinearity: When two or more covariates are linearly related.
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Multilevel model: A type of regression model that accounts for clustering in the data.

National Health Service: The UK’s public healthcare system.

National Institute for Health and Care Excellence: An institute in the UK which provides
guidance on a variety of health topics to aid the NHS.

National Statistics Socio-economic classification: The UK’s official social class classification

Neoliberalism: A political or economic system of belief, that is characterised by deregulation
of welfare states and increasing privatisation.

Nomenclature of Economic Activities: An EU classification of economic processes, i.e.
resources in, products out, mostly used for organisations and firms rather than individuals.

Occupation: The specific activity, task, or role undertaken by an employee, i.e. labour.

Odds: The ratio of probability an event will happen. It ranges from 0 to ∞.

Odds ratio: The increased or decreased odds of an event happening. An odds ratio of 1 can be
interpreted as no effect occurring.

Office for National Statistics: The UK government statistics agency.

Ordnance Survey: The UK’s national cartographic agency.

Outcome: The variable of interest in statistical analysis, often represented by y.

Pay: See income

Policy: A systematic procedure or process to guide interventions and decisions.

Policymaker: Those who develop or enact policy

Precarious employment: see flexible employment

Probability: The likelihood of an event occuring, ranging from 0 to 1.

Probability distribution: A mathematical function that encompasses all possible values of a
random variable within a given range. The normal distribution, or bell curve, is a common
probability distribution.

Psychosocial environment: ”The sociostructural range of opportunities that is available to
an individual person to meet his or her needs of well being, productivity and positive self-
experience” [Siegrist and Marmot, 2004, pg1465]

Regression: A type of statistical analysis or model that seeks to estimate relationships between
an outcome of interest and particular covariates.

Residuals: In regression, the difference between the observed outcome and the predicted values
of that outcome.

Risk: In part, the likelihood of a hazard occurring through an exposure, and the idea of this as a
future consequence of some particular action or event.

Risk analysis: The process of identifying and managing potential risks, and/or determining how
things may change if the risk in question occurs.

Risk assessment: See risk analysis

Risk society: Beck [1992]’s perspective on risks, in that they ”only exist in terms of the
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(scientific or anti-scientific) knowledge about them. They can be changed, magnified, dramatized
or minimized within knowledge, and to that extent they are particularly open to social definition
or construction.” [Beck, 1992, pg23]

Scale: In the worksome, a fluid, interactive concept of levels, related to domains, the delineation
of which at times is socially and politically mediated.

Self-esteem: Individual self-worth and the experience thereof.

Self-efficacy: Personal, individual belief in one’s abilities.

Self-rated health: Individual perception of health status, often reported in survey data.

Sex: In survey data, generally male or female, and based on assignment at birth. For most
people, this matches their gender.

Single level model: A simple regression model with only one error term, which conforms to the
basic regression assumptions of independence of observations and so on.

Social class: A measure of position or ranking in society, dictated by social value, and, in effect,
a hierarchical operationalisation of socioeconomic status, often largely based in occupation.

Social determinants of health: Individuals are born and live in these conditions and
circumstances, which often are a result of social inequalities in health, or health inequalities

Socioeconomic status: A measure of social and economic position, which often includes not
only occupation, but education and income. Social class is one way of measuring socioeconomic
status.

Stakeholder: An individual or group who has an interest in a venture or initiative due to having
a (perceived) effect on the initiative, or it affecting them directly or indirectly. For example, the
stakeholders in a workplace safety initiative would be those in the workplace themselves, i.e. the
employees and managers, but also the owner of the firm, and anyone in the wider community
who may be affected by it.

South West Doctoral Training Partnership: An ESRC-funded successor to the South West
Doctoral Training Centre, which funds postgraduate research on behalf of ESRC in the South
West of England.

Survey data: Data collected through questionnaires or other similar means, generally on a
representative population. The EWCS and BHPS are examples of survey data.

Taylorism: ’Scientific management’ of production, whereby each process in production is
broken down into discrete units or steps and examined for efficiencies above all else.

Unemployed: The state of not having an employment arrangement, for a person who is
economically active

Variance components model: A special type of multilevel model, which is used to examine
where variability lies in the data.

Variance Partition Coefficient: It describes the proportion of within-group variance in a
multilevel model, or how related the observations within the group are to one another. In the
case of this thesis, analogous to ICC.

Wages: See income

Welfare state: A form of government characterised by the prioritisation of socioeconomic well-
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being of its inhabitants.

Wellbeing: Not the presence of absence of illness, but a holistic state of positive existence,
experience, and feeling.

Whitehall (II) Study: A cohort study of British civil servants of both genders between 1985
and 1988, following on from the first Whitehall Study, which examined male civil servants over
10 years form 1967. Its particular focus was the social determinants of health.

Work: See occupation

Working arrangements: See employment

Working conditions: The material and immaterial circumstances and characteristics of a
particular workplace or occupation.

Workplace: A place of employment, where someone engages in work for their employer.

Worksome: A theoretical framework developed out of the exposome to focus on the
relationships between working conditions and health, social determinants of health, a gradient
of social-physical exposures, and the interactions within and between scales and domains.

World Health Organisation: A United Nations agency, whose fundamental role is to improve
health globally.
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Chapter 1

Introduction

1.1. Rationale and Context

The gap in health inequalities has widened over the past 35 years, despite extensive policy

interventions and efforts to prevent this [Mackenbach et al., 2015]. The social determinants

of these inequalities have thus been strongly emphasised as part of the ongoing research agenda

in improving health [Raphael, 2015]. There has been an increasing amount of attention given by

the literature to the influence of employment on health outcomes. Initially, interest attention was

directed at the dichotomous unemployment/employment relationship [Bartley and Ferrie, 2001;

Smith, 1985] and of course, most studies have found that being employed has a positive effect on

health in comparison with not [Dodu, 2005; Payne, 1999]. Moreover, there has always been an

undercurrent of research on the employed specifically [Benavides et al., 2000; Van der Doef and

Maes, 1999]. The employed make up a large portion of the economically active population of

the United Kingdom. The economically inactive include, for example, students, carers, disabled

people, and the retired. According to the 2011 Census, the unemployed only account for around

6.4% of economically active individuals aged 16-74, while those in any form of employment

account for approximately 88.7% of those individuals [ONS, 2011]. Most societies emphasise

the cultural and economic importance of sustained employment [van der Noordt et al., 2014] .

Work is also socio-culturally important [Bambra, 2011]. To be a member of society, one must

work. Occupations are also unevenly distributed across a variety of axes, often due to social

constraints, meaning that there should be differences both in working conditions and health

outcomes between occupations [Benach et al., 2012]. Furthermore, work also has impacts on

people’s lives outside of the workplace [Kleiner and Pavalko, 2013]. While it may at first appear

that the relationship between working conditions and health is one way, the health of workers

is also important with regards to economic productivity. For example, the economic cost of

absence due to sickness absence to the economy is substantial – according to a Department

of Health [2004] white paper, it costs industry at least £11 billion each year; further, according

to the Chartered Institute of Personnel and Development (CIPD), sickness absence costs around

£550 per employee per year [C.I.P.D., 2015].
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However, it is only recently that attention has been directed at specific conditions in the

workplace [Siegrist et al., 2010], though working conditions in general have been thought

of as a social determinant of health for some time [for example, Benach et al., 2012, 2014;

Braveman et al., 2005; Karasek, 1979; Lewchuk et al., 2003; Marmot et al., 1995; Siegrist,

1996]. Often, though, study of health outcomes arising at least in part from working conditions

has focused predominantly on those arising from exposure to physical hazards, such as chemical

exposure [Arif and Delclos, 2012]. However, other working conditions can be operationalised

as exposures, such as team cohesion (Fruhen and Keith 2014), working time (Dembe et al 2005,

Kivimaki et al 2015), or social support (Niedhammer et al 2012). What often characterises

exposure in the risk analysis literature are tangible hazards which individuals are involuntarily

exposed to [Smith, 2013]. However, while an intangible exposure such as working time may

appear voluntary, social constraints may cause it to be involuntary. What appears to be missing,

though, from work on psychosocial working conditions and physical ones, is occupational

specificity. That is to say that some research may focus on one particular industry or workplace,

or on certain geographies, but little research compares individuals across different occupations or

industries and geographies [Schutte et al., 2015]. Kim et al. [2012, pg100] critiqued the lack of

‘precise conclusions’ in research about the relationship between working conditions and health,

naming factors such as:

“some inconsistent results in the majority of empirical studies, the lack of a sound interpretative

framework that is capable of facilitating an understanding of different social and employment

realities; and limited contextual and labour market-related variables that interact with

individual employment situations.”

If health is considered across the life-course, as advocated for by Ben-Shlomo and Kuh

[2002], work takes up a large proportion of an individual’s life course. Most people will work at

some point during their life, as it is materially, socially, and culturally important [Bambra, 2011;

Payne, 1999; Peck, 1996], and work may influence how individuals live their lives even outside

the workplace [Kleiner and Pavalko, 2013]. Wild [2005, 2012, pg24] advocates for a concept he

terms the ‘exposome,’ that is, “a comprehensive description of lifelong exposure history.” With

the exposome, like much of the prior occupational health research, there is a strong emphasis on

measurable physical exposures rather than the more amorphous ‘social determinants of health’

[Wild, 2012].

The concept of the exposome is nonetheless a useful one, and informs the underlying

theoretical framework of this work developed here. This new framework is called the worksome.

The worksome can be considered as part of the greater exposome, though it will require far

more integration of the aforementioned psychosocial elements into the broad domains of the

exposome (internal/general external/specific external) than described by Wild [2012]. Of course,

in emphasising the psychosocial aspects the physical exposures of course must still be considered

too and remain important. The worksome consists of a wide array of exposures and pathways that

are shaped by and contribute to social inequalities in health. Thus, factors that influence health
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are each a blend of physical and social components, represented as a gradient. A physical-social

gradient will feature in the worksome. Changes in working conditions may originate in one an

industry or occupational type and subsequently spread to other fields, so addressing the temporal

element of these changes is important [Benach et al., 2014]. The concept of the worksome

will be expanded on through the theoretical framework itself, developed in this thesis, and

examined reinforced with empirical analysis of survey data, specifically data from the European

Working Conditions Survey, and the British Household Panel Survey. As such, the worksome

can contribute to the This therefore will provide the ‘sound interpretive framework’ that Kim

et al. [2012, pg100] called for.

The worksome framework will be investigated empirically using the European Working

Conditions Survey (EWCS), which is conducted every five years in the member states of the

European Union, as well as associated states such as Norway and Turkey[Eurofound, 2020].

The inaugural survey was taken in 1991, followed by surveys in 1995, 2000, 2005, 2010, and

2015. Each individual country has a sample of between 500 and 1500 taken per wave, and

individuals are classified by both International Standard Classification of Occupations (ISCO)

and EU occupational types. This allows for the grouping of individuals by occupation and by

country in multilevel models. The survey asks several questions with respect to health outcomes

as well, allowing for a robust picture of the linkages between individual working conditions,

contextual information such as occupation type or country of residence, and a wide variety of

health outcomes.

Further empirical support exploration of the worksome is will be given through repeating

the analysis using the British Household Panel Survey (BHPS), an 18 wave, nationally

representative longitudinal panel survey, following individuals through time in the United

Kingdom, between 1991 and 2008 [University of Essex, 2018]. The initial sample was 10,300

individuals in 5,500 households. Each individual has wave-observations through time, allowing

for a longitudinal picture to be built through multilevel models, with wave-observations grouped

in their respective individuals, who are classified into ISCOs, and then grouped into Government

Office Regions (GORs). There is one general health outcome, and two specific health condition

outcomes in this dataset.

In order to organise this thesis, a set of specific research questions and objectives was

derived, and these are discussed below. The overarching aim of this thesis is to examine working

conditions and their relationship with health, and to develop a theoretical framework which will

allow the unification of disparate research in this area.

1.2. Research Objectives

In order to investigate the thesis aims, the following objectives have been defined:

1. Investigate and confirm the relationship between work and health: It is well known

that there is a relationship between health and work. However, prior to exploring the detail
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for the worksome it is necessary to provide a baseline analysis within the datasets under

investigation

2. Determine which specific working conditions underlie this relationship: As prior work

has established the relationship between work and health, it is key to expand on this work

and understand which specific working conditions may impact on this relationship.

3. Examine and explore the geographies of these relationships: These relationships should

vary geographically if only because there are significant regulatory and welfare-regime

differences between European states, and because the data are naturally clustered into

countries.

4. Develop a transferable conceptual framework, the ‘worksome’, and apply it to the
empirical examples: A conceptual framework is a useful tool to ensure that research is

transferable, and, as Kim and colleagues (2012) argue, a crucial missing link in research

into work and health. By applying it to the empirical work carried out to meet the prior

objectives, the framework can be substantiated.

1.3. Specific Research Questions

1. What is the relationship between work and health?

2. Which specific working conditions impact on this relationship? How do they vary across

individuals (i.e. by gender, age, and so on)?

3. What is the impact of geography - in this case varying EU countries and UK regions? Does

this vary by time?

4. How do responses change over time, and is this related to geography?

5. How might the impact on health vary across occupation types?

• Do individuals vary more within the same occupation type or between occupation

types?

• What is the geography and temporality of this?

• Does the system of occupational classification matter (e.g. either the Nomenclature

of Economic Activities (NACE) or the International Standard Classification of

Occupations (ISCO)?

6. What is the relationship between work, working conditions, and specific health outcomes

such as backache or anxiety? Does this vary by occupation type, geography, and/or time?

1.4. Thesis Structure

The objectives listed above dictate the general thesis structure. After the introduction, the thesis

proceeds through a further 11 chapters.

Chapter 2 is the literature review. It furthers the rationale and context for this thesis,

providing background around the research questions, conceptual framework, and the landscape
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of work-health research. Specifically, it will define and discuss flexible employment and the

new world of work, use the UK regulatory context as an example, and describe current models

of the work-health relationship. Finally, extant research will be characterised and interpreted,

moving towards Chapter 3, which is the outline of the theoretical framework, the worksome.

This chapter forwards research objectives 1 and 2, and research questions 1, 2, 3, and 6.

Chapter 3 is based in large part on a paper published in Social Science and Medicine [Eyles

et al., 2019], and describes the theoretical and philosophical basis for the worksome framework

by first introducing the concept of risk, then linking epidemiological concepts to the task at hand.

Further justification of the need for this framework is also provided. This chapter meets research

objective 4.

Publication (Chapter 3, Chapter 7)

Eyles, E., Manley, D., Jones, K. 2019. Occupied with classification: Which occupational

classification scheme better predicts health outcomes? Social Science and Medicine, 227: 56-62.

Chapter 4 describes the EWCS and BHPS datasets, through their data collection and

sampling methodology, to the data structure and variables included, such as the individual health

outcomes in the data, and the working conditions which will be examined. The methods are also

specified, and the modelling strategy will be described. Part of the methods section is based on

the same publication Chapter 3 was derived from [Eyles et al., 2019]. This chapter addresses

research objectives 1-3, and research questions 1-6.

Chapter 5 is the first results chapter and features the single-level logistic regression results

from the EWCS data. It uses a parsimonious modelling strategy to examine whether work and

health are related, and to provide the groundwork for the multilevel models. It also examines

each individual health outcome described in Chapter 4. Chapter 6 is the second single-level

logistic regression modelling chapter, and examines the BHPS data in the same manner. Chapters

5 and 6 examine research objectives 1 and 2, and research questions 1, 2 and 6.

Chapter 7 extends the analytical implementation through the variance components model.

It sets out the structure necessary for the multilevel models in Chapters 8 and 9. It looks at

countries, years, welfare regimes, and occupational types as potential levels for the multilevel

models. Some text in this chapter was taken from the paper published in Social Science and

Medicine (Eyles, Manley, and Jones 2019) paper. It meets research objectives 1-3, and answers

research questions 3-6.

Chapter 8 is the multilevel model results chapter for the EWCS data. It follows a similar

structure to Chapters 5 and 6, however, it mitigates the natural clustering in the EWCS data

through including a random component in the model, decided upon in Chapter 7. Chapter 9 is

the corresponding BHPS data analysis. Chapters 8 and 9 forward research objectives 1-3 and

research questions 1-6, as well as indirectly reinforcing objective 4.

Chapter 10 is the discussion chapter, where the results are put into context, especially with

respect to the worksome framework and the existing literature. This chapter examines research
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objectives 1-4, and research questions 1-6.

Chapter 11 is the conclusion, which brings this thesis to a close. It will reiterate the

rationale and context for the work, present the completed research objectives and questions,

discuss strengths and limitations of the work, and provide directions for future research.
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Literature Review

2.1. Introduction and Background

This review primarily focuses on employment conditions and their relation to health. The

meanings attached to these relations are not given, but constantly negotiated [Daykin, 1999].

First, a discussion of the previous research on health inequalities and recommendations made

is undertaken, followed by a brief definition of flexible employment. While this study will

examine all forms of employment, flexible employment is described in particular here as it is an

increasingly common phenomenon with spill-over to other forms of employment be it in the form

of working conditions or contracts. A case study discussion of the regulatory context and history

of employment in the United Kingdom, one of the larger countries in one of the datasets used in

the analysis, and the setting for the other, is used to explore the relationship between government

policy and occupational health outcomes. This is followed up with a debate about the varying

models of the employment-health relationship as well as a discussion of the indicators of working

conditions and how they may be used both within the models and alone. It is important as well to

understand the events and decisions leading to the emergence of certain forms of employment,

such as flexible employment.

Occupation has been somewhat neglected in research on the social determinants of health

[Siegrist et al., 2010] However, choosing an occupation is often socially constrained in some way

or other. Occupations are unevenly distributed by class, gender, ethnicity, immigration status,

geography, and other axes of discrimination though it may not be immediately obvious why

[Benach et al., 2014]. There has been a large array of work on social class, often measured by

employment grade or category, such as the Whitehall studies [Marmot et al., 1991], which found

a sharp inverse association between mortality from an array of health conditions and diseases

and social class. However, as the worksome chapter will later discuss, this is not necessarily the

best approach to the question of the relationships between working conditions and health. This

is mainly due to the hierarchical and changing nature of how class is measured. Indeed, that

class is a separate axis of difference to occupation, though related.
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According to van der Noordt et al. [2014], developed and advanced developing societies

aim to get as many people as possible in some form of sustained employment. It is essential

for most people to start and continue working, given that living in subsistence is generally

impossible in modernised societies [Peck, 1996], as well as work being socially and culturally

important [Bambra, 2011; Richter et al., 2013]. Work holds social value [Payne, 1999].

“. . . [W]ork affects not only job demands and job resources, but also how people live their

lives when they are away from the job.” [Kleiner and Pavalko, 2013, ,p985]

The multiple exposures and pathways of working conditions and the work environment

contribute to social inequalities in health as work is a major social determinant of health

[Niedhammer et al., 2008]. There has been a wide range of work on the health effects of

unemployment [Bambra, 2010; Bartley and Ferrie, 2010; Giatti et al., 2008; Hergenrather et al.,

2015; Lundin et al., 2009; Norstrom and Gronqvist, 2015; Smith, 1985], however, it cannot be

assumed that employment itself or the transition to/from it will cause positive health effects

[Ahs and Westerling, 2006; van der Noordt et al., 2014]. Furthermore, employment should be

examined excluding unemployment, which is different in its mechanisms and well-explored.

It is possible for employment to cause both positive and negative health effects [Bambra,

2011; Dodu, 2005]. Clougherty et al. [2010] suggest that the act of working (employment in

other words) itself may promote wellbeing. They emphasise that establishing what aspects of

work as opposed to income or other material benefits improve health may be difficult [Clougherty

et al., 2010]. Marmot and Bell [2010] underline the influence of working conditions and the

nature of work on health, be it promoting or having adverse effect on both physical and mental

health. Occupational health has explored the physical hazards faced by a variety of workers,

but understanding exposure to the organization of work is as important for health as exposure

to biochemical hazards in understanding (work-related) health outcomes [Lewchuk et al., 2003].

Empirical work-related health research often focuses on illness and does not generally address

health promoting workplace conditions [Aronsson and Blom, 2010]. This may be due to

the difficulty of operationalising good health or wellbeing as opposed to disease or ill health

[Aronsson and Blom, 2010]. Wellbeing is not necessarily just the absence of illness or negative

health effects, though its definition has proven to be challenging, with some proposing a meaning

based on a state of balance [Dodge et al., 2012].

The workplace, though, is seen as a promising site for delivering health interventions, both

for reasons of population (most adults are employed), and for financial and business reasons

(improved work performance and safety) [Martin et al., 2009]. Further, the National Institute

for Health and Care Excellence (NICE), which produces public health guidance in the UK,

published guidelines for mental wellbeing at work, on request from the Department of Health

in the United Kingdom [NICE, 2009]. The Black Report [Black, 2008] also argued for the

promotion of healthy workplaces in improving general wellbeing. The Marmot Review into

health inequalities in England identified work as a key domain for improvement [Marmot et al.,

2008], although in the 10-year review of the Marmot Review, it was found that health inequalities
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had not improved, and most new employment was in lower quality jobs [Marmot et al., 2020].

While seeking out health promoting conditions is important, the availability of data or lack

thereof may be a constraining factor. It is important too to consider how labour is organised

and how the labour market is structured. Organizations are changing rapidly in most countries

so older models of work and health may no longer be wholly appropriate [Richter et al., 2013].

2.2. Health Inequalities

Health inequalities, when measured, can show the range of variation in health, or the distribution

of the population within the variation [Murray et al., 1999]. This variation is unlikely to be only

due to chance, therefore health inequalities are likely due to systematic factors relating to risk

and outcome [Murray et al., 1999]. Dahlgren and Whitehead [2006] in a WHO report affirm that

inequalities in health are often caused by policy and lifestyle determined in part by structural

factors. These inequalities have also been found to persist from working age adults into later life

[Corna, 2013].

Oakes and Rossi [2003] describe that the “strong” relationship between socioeconomic

status and health has been recorded since the times of ancient Egypt, China, and Greece,

and argue that the inequality between socioeconomic status and health has persisted through

time, despite a reduction in the impact of acute infections, due to improvements in medicine.

Health inequalities, or social inequalities in health can be defined as “differences, variations,

and disparities in the health achievements of individuals and groups” [Kawachi, 2002, pg647].

Siegrist and Marmot [2004]explain how despite significant focus on improving them from both

science and government, social inequalities in health have widened. Marmot and Bell [2010]

suggests that health inequalities arising due to social inequalities. These inequalities are also

often termed as the health divide or the health gap [Shaw et al., 2000; Wilkinson, 2005].

Social inequalities in health can be measured by social determinants of health, i.e., “the

conditions in which people are born, grow, live, work and age, and inequities in power, money

and resources” [Marmot et al., 2020, pg5]. Simply put, they are factors that influence health,

either positively or negatively, which also can be mediated by policy and other conditions,

and crucially which occur and interact at several scales. Some of these scales are modifiable,

such as working conditions [Dahlgren and Whitehead, 2006; Wilkinson, 2005]. Dahlgren and

Whitehead [1991] developed a schematic framework of the social determinants of health [see

Figure 2.1]. Marmot and Bell [2016] highlight the need to examine these determinants in

detail in order to better understand what they term “the causes of the causes,” or those critical

factors which lie beyond the immediate causes of poor health. Marmot [2005] emphasises the

importance of taking action, be it undertaking research, or influencing policy on the social

determinants of health, to reduce the inequalities in health between countries. The WHO

report on Social Determinants of Health emphasised that fair employment with good working

conditions was an important determinant of health, and should be a policy priority [WHO, 2008].

Despite their pervasiveness in all societies, it is important to study social inequalities
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Figure 2.1: Social determinants of health [Dahlgren and Whitehead, 1991]

in health, as Siegrist and Marmot [2004] argue, because the magnitude of inequality may

vary significantly between and within societies. Marmot and Bell [2010] argue that “health

inequalities are not a natural and immutable feature of society,” nor is it only a problem of

access to care, especially given the National Health Service (NHS) in the UK, which provides

care to all, regardless of social position, income, or ability to pay. Moreover, Cutler et al. [2006]

highlight that some larger changes in access to healthcare have not shown similar improvements

to health gradients. Eikemo and Bambra [2008] attribute some of these health inequalities to the

structure and social policies of welfare states. Espelt et al. [2008] emphasise the importance of

social policy in terms of reducing social inequalities, and Marmot and Bell (2010) observe that

health inequalities appear to respond to changes in society, economy, politics, and culture.

Crucially, some of these inequalities are modifiable, avoidable and, hopefully could be

mitigated, particularly those relating to working conditions. Marmot and Bell [2016] argue that

the slope of the social gradient in health varies temporally and geographically, and while perhaps,

according to them, social hierarchies are ‘inevitable’ in society, the variation in the slope implies

that strategies to reduce health inequalities are possible, something reiterated in Marmot et al.

[2008]. Mackenbach et al. [2008] found that the magnitude of inequalities in health between

socioeconomic groups varied considerably between countries, but thought these differences may

be amenable to change. Social inequalities in health can be argued as not being due to a free,

individual choice, but due to a range of influences starting in early-life influences. In other words,
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individual life chances may depend on contextual factors which are not necessarily decided on

by the individual, and in many cases, because they are out of the control of the individual being

impacted, could be regarded as unfair [Kawachi, 2002]. Elo [2009] emphasises the importance

of reducing these inequalities in health, in order to improve life for all, and to reduce unnecessary

suffering [Marmot and Bell, 2010].

In the first Whitehall study a “steep, inverse association between social class, as assessed by

grade of employment and mortality from a wide range of diseases [was found]” [Marmot et al.,

1991, pg1387]. The follow up in in the late 1980s, the Whitehall II study, was conducted as an

expansion of the first Whitehall study in the late 1960s, which found that the gradient remained

despite major advances in health [Marmot et al., 1991]. Marmot et al. [1991] further stressed that

this association is a gradient, rather than a strict dichotomy. That is to say, poor health is not only

the domain of those of with lower social status, but those in other positions also have relative

inequalities in their health [Marmot, 2005]. Marmot and Bell [2012] in their summary of their

WHO report into the social determinants of health, describe the social gradient in inequalities

in health as substantial. Similar gradients in health were found in Canada and other European

countries [Cutler et al., 2006; Elstad and Krokstad, 2003; Mackenbach et al., 2008]. However,

Marmot et al. [1991] suggested that established risk factors may not explain these differences,

even when adjusting for lifestyle differences; adjusting for smoking only changes the difference

in life expectancy between the highest and lowest categories by 2 years, from 6 to 4 Cutler et al.

[2006]; Marmot [1994]. Social circumstances at work (e.g., low control, low satisfaction, social

support) were also found to be related to these inequalities [Marmot et al., 1991]. However,

the relation with employment grade for certain outcomes was less consistent for women than

men. Those in lower status jobs reported low control, variety of work, and high pace, with less

satisfaction [Marmot et al., 1991]. The work environment is perceived differently by different

grades [Marmot, 1994; Marmot et al., 1991]. Often, occupational class or rank is used to measure

social status, but it only is one element of social inequality. It may not, for example, adequately

capture material resources, or qualifications, so a pluralistic approach may be necessary [Siegrist

and Marmot, 2004]. Occupational class is often seen as a summary measure, which can capture

early-life social status, and further, adult position in society [Elo, 2009].

One critical observation which arises from the literature above is that occupation is not

merely something to be controlled for, but something which needs to be examined. Marmot et al.

[1987] advocate for examining inequalities and their characteristics while maintaining a critical

eye on how inequality is measured. Poor working conditions not only relate to the physical

but also the psychosocial [Siegrist and Marmot, 2004]. Marmot and Bell [2012], describing

the Strategic Review of Health Inequalities in England, named ‘good work for all’ as one of

the six domains for action on social determinants of health; they emphasised the quality of this

work, particularly related to working conditions as important. Different jobs will have different

environments, and creating more precarious work will likely not improve health inequalities

significantly (as will be described in the subsequent sections of this chapter). Indeed, most

jobs created since 2010 in the United Kingdom were found to be of poor quality, leading to
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little improvement in health inequalities [Marmot et al., 2020, 2008]. Indeed, adverse working

conditions are damaging to health, and reinforce the social gradient in health inequalities

[Marmot and Bell, 2010]. Siegrist et al. [2010] describe the “significant contribution” working

conditions make to social inequalities in health, and underline the importance of improving

working conditions to reduce health inequalities.

2.3. Psychosocial Environment

According to Giddens [1976], the structures of society both influence and enable individual

agency, rather than merely constraining them. A sense of belonging to these structures, be it

through contributing to them, or acting in them unconstrained, creates positive self-experience

[Siegrist and Marmot, 2004]. Siegrist and Marmot [2004, pg1465] define the psychosocial

environment as: “the sociostructural range of opportunities that is available to an individual

person to meet his or her needs of well being, productivity and positive self-experience,”

continuing by emphasising the importance of self-efficacy and self-esteem. Self-efficacy is

defined as “the belief a person has in his or her ability to accomplish tasks,” which is based on

“a favourable evaluation of one’s competence and of expected outcomes” [Siegrist and Marmot,

2004, pg1465-1466]. Therefore, in terms of self-efficacy, a good psychosocial environment

allows for the practice of skills and the experience of a sense of control. Marmot et al. [1997]

found that control also was related to the position in the social gradient with greater control being

exhibited at the higher end of the slope.

Self-esteem is “the continued positive experience of a person’s self-worth” [Siegrist and

Marmot, 2004, pg1466]. In terms of self-esteem, a good psychosocial environment allows for

appropriate, useful feedback for tasks, and enables connections with others, to increase belong,

social approval, and success [Siegrist and Marmot, 2004]. The NICE [2009] public health

guidelines for mental wellbeing at work argue that work itself is an important determinant of

self-esteem. The Whitehall studies were some of the first to clearly show the importance of

relative social position, created by psychosocial environments, over, for example, the material

effects of income, in relation to health inequalities [Marmot et al., 1991; North et al., 1996].

North et al. [1996], as part of the Whitehall II Study, found that adjusting for socioecnomic

status, measured by employment grade, was a strong predictor of sickness absence. However,

other measures of material circumstances did not have a strong predictive effect, but aspects of

the psychosocial environment did, some of which are likely mediated by grade [North et al.,

1996]. That is to say, the psychosocial environment itself and the perception of that environment

influences sickness absence.

Bambra et al. [2008a]. Pikhart et al. [2004] and Niedhammer et al. [2004] emphasise the

importance of the psychosocial environment at work in particular as being important in studying

health inequalities. Bambra et al. [2008a] emphasise that the psychosocial work environment in

particular is under increased consideration by policymakers as a point of intervention to reduce

health inequalities. Indeed, the NICE [2009] public health guidelines on mental wellbeing at
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work emphasise the interaction between the psychosocial environment, the working conditions

and nature of the job, and the person in question. The (work) psychosocial environment i.e.,

that which helps an individual meet their wellbeing needs Siegrist and Marmot [2004], should

encompass working conditions that allow for self-efficacy and self-esteem, often via a sense of

control. This can have positive health impacts. Further, self-rated health has been found to vary

across the psychosocial environment Pikhart et al. [2001].

2.4. Self-rated Health

Self reported health data, which relies on individual perception, is linked to other measures of

health status [Marmot et al., 1991]). Self rated health has been consistently important across

time. Perceived health is reflective of an individual’s self awareness of integrated dimensions of

health – physical, mental, and social, that may not be obvious to an outside observer [Kaplan

and Camacho, 1983; Kaplan et al., 1996; Miilunpalo et al., 1997; Møller et al., 1996]. Møller

et al. [1996] emphasise that all studies examining this relationship of self-rated health and future

mortality had very different designs, including population, control variables, assessment of self-

rated health, and follow-up, yet these studies consistently found this association to exist. Idler

and Benyamini [1997, pg22] also emphasise that self-rated health is “relatively insensitive to

the semantic variations in the questions eliciting it,” as well as translation from English causing

relatively few difficulties. Marmot et al. [1991, pg1391] describe it as reflecting “a burden of

perceived ill-health, that shows a clear social class gradient.” Rating health overall as poor or

average was found by Marmot et al. [1991] in the Whitehall II study to be a very strong predictor

of mortality.

Kaplan et al. [1996], in a Finnish population study (the Kuopio Ischaemic Hearth Disease

Risk Factor Study), reinforced this result, with very few exceptions, noting it may be possible

that the association may be weakened with more adequate objective measures of health status.

McGee et al. [1999] found self-rated health to be a strong indicator of mortality even controlling

for gender and ethnicity. However, for epidemiological research based on survey or secondary

data, self-rated health is useful as it reflects underlying disease or other health problems,

without requiring expensive, invasive, or complicated measurements of objective health. Idler

and Benyamini [1997] found in their review that many investigations using self-rated health

are studies of secondary data, and emphasise that it is economical and allows for improved

replication or improvement of analysis. Further, Kaplan et al. [1996], in studying a healthy

subsample, found that self-rated health had a much smaller association with objective health

than in the whole sample; there should be emphasis on validity in different subpopulations

[Miilunpalo et al., 1997]. Heliövaara et al. [1993] examined a nationally representative sample,

comparing health interviews and health examinations, and found that they both gave a similar

view of chronic morbidity in the population. Miilunpalo et al. [1997] suggested that self-rated

health can be verified by objective measures of health, or health records, and did so on a sample

cohort in an industrial town in Finland, finding it to be stable across time (individuals transition

only to adjacent classes, and 60% did not transition at all one year later). Pikhart et al. [2001]
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assert the importance of self-rated health for social and epidemiological research due to its

stability and consistency in results across a large number of studies.

Self-rated health, then, is key in research with secondary data, which most geographical

and health-related studies employ. It has been validated as a concept for use as a reflection

of underlying health status, problems, and outcomes. It can be used to examine the health

inequalities through the lens of occupation, discussed earlier. However, occupation is not static;

standard employment relations have become less common. Over time, the world of work has

changed towards a ‘flexible’ model of employment, something that will be discussed in the

following section.

2.5. What is Flexible Employment?

“Flexible production,” an innovation in how factories operated, developed in the 1970s, is

commonly thought of as a positive, necessary step in labour organisation towards economic

growth [Benach and Muntaner, 2007]. Its origins could be traced back to ‘scientific

management’ principles, often called Taylorism or Fordism. Taylorism is characterised by a

pursuit of efficiency, and a high level of control on the part of managers: each process is made

into discrete units, and workers are thought of as cogs in a machine [Rosen, 1993]. These

principles evolved to make the link between production and consumption more efficient with

‘just in time’ (JIT) production or ‘total quality control’ (TQC) [Canaan, 1999]. JIT aims to

precisely meet demand with just about enough production, whereas TQC aims to produce high

quality products [Canaan, 1999]. These approaches to production filter into the concept of

flexibility. Flexibility has trickled not just to technological and industrial systems of production,

such as the factory floor, but to more abstract elements of working, including schedules, tasks,

and status [Benach and Muntaner, 2007; Ross, 2009]. This is a consequence of the dramatic

socioeconomic changes of the late 20th century, primarily the shift to neoliberalism [Kim et al.,

2012].

The neoliberal model of the economy insists that market principles percolate through

all aspects of life, in order to increase market competitiveness and therefore growth and

development [Standing, 2011]. Bourdieu [1998] expounds the dominant discourse around

neoliberalism – that there is no alternative to place in opposition to it. Further, neoliberalism

is never fully complete, so the process continues. Mechanisms within the legal system can allow

for the adoption of these principles by interested parties. Bourdieu [1998] refers to the use of

terms like flexibility and deregulation as a connotative game of metaphors. These metaphors

serve to hide what these terms truly entail. Insecurity may be rationally managed by firms in

order to engender obedience to the new cost-saving regime Bourdieu [1998]. Diverse contract

types and higher flexibility are used by firms to adapt to competitive global markets Dawson

et al. [2015].

Paradoxically, though, flexible employment both reduces and generates constraints on

labour – unions and labour laws are removed, so workers are technically more mobile, but with
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that in mind, workers are thus constrained by a dearth of security and an increase in uncertainty.

This widespread uncertainty may affect the health of those subject to it Daykin [1999]. Standing

[2011, pg6] describes a number of types of flexibility:

“wage flexibility meant speeding up adjustments to changes in demand, particularly downwards;

employment flexibility meant easy and costless ability of firms to change employment levels,

particularly downwards, implying a reduction in employment security and protection; job

flexibility meant being able to move employees around inside the firm and to change job

structures with minimal opposition or cost; skill flexibility meant being able to adjust workers’

skills easily.”

These types of flexibility in the labour market are thought of by employers and

policymakers as a system to develop worker performance and adaptability undeterred by

technological change and globalisation [Bardasi and Francesconi, 2004]. However, it is

globalization, labour market deregulation, and increasing competition which cause firms to

restructure to include short term and temporary contracts, which can be perceived as threatening

by employees, detrimentally impacting their performance, and in turn also changing the

effectiveness of the firms they work for [D’Souza et al., 2003; Laszlo et al., 2010].

Globalisation causes competitive pressures within labour markets and the economy more

generally. This is due in part to the supply of low-cost labour emerging from developing, or

newly industrialising countries, making flexibility “a prerequisite for economic competition”

[Standing, 2011, pg56]. Bourdieu [1998, pg34] terms globalisation as an ‘idée force,’ or an

ideal with social force that can obtain belief; European workers are shown the harder working

conditions in developing countries as the ideal, and thereby flexibility is imposed and normalised

over time. Working conditions have therefore changed as the economy globalises.

The level of perceived control is important for employees as “social relations in the

workplace (the labour process) involve negotiating a fragile balance between control and

consent: managerial despotism is rarely the best way to secure and reproduce a productive

workforce” [Peck, 1996, pg23-24, italics in original]. However, “today’s precarity is, in large

part, an exercise of capitalist control. Postindustrial capitalism thrives on actively disorganizing

employment and socio-economic life in general so that it can profit from vulnerability, instability,

and desperation,” again, an idée force [Bourdieu, 1998; Ross, 2009, pg51]. Intensification

of work erodes worker control over workplace practises, and this, again, becomes normalised

[Canaan, 1999]. It would seem then that anxiety about instability is now endemic to the labour

market [Bardasi and Francesconi, 2004].

The anti-regulatory environment which emerged through the 1980s fetishized

marketization at the expense of trade unions and labour’s power [Nichols, 1999]. Thus,

neoliberalisation relocated the bargaining power of labour to labour’s disadvantage, as

individuals are seen to have power over their own economic destinies, though precarious types

of employment did exist prior to this period [Quinlan, 2012; Ross, 2009]. The flexible labour

market generally is structured in the form of core-periphery; the core is comprised of (more)
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secure workers surrounded by a periphery or buffer of a variety of unstable and insecure work

arrangements, i.e., ‘labour market segmentation’ [Samuelsson et al., 2012; Virtanen et al.,

2005a]. Industries are fragmented and geographically dispersed following the principles of

global capitalism [Benach et al., 2014]. [Bourdieu, 1998] terms this ‘delocalization.’ Indeed,

individual experiences of work are also increasingly fragmented and competitive [Daykin, 1999].

Peck [1996] argues that the premise of labour as commodity, i.e., the peripheral worker, is in

direct denial of the social nature of labour and the (re)production of labour: it is a pseudo-

commodity, as supply is relatively autonomous from the market. Insecurity is sometimes seen as

a trade-off for retaining investments and jobs, and often under neoliberalism, each setback in the

economy is blamed on a lack of ‘structural reform’ in the labour market and a lack of flexibility

on the part of workers – carrying through that idée force [Standing, 2011]. Standing [2011]

further asserts that firms themselves have become commodities, being bought and sold via a

series of instruments. Due to this, workers and employers have little impetus to establish longer

relationships based on trust, for example, as these relationships become increasingly contingent

and re-negotiable [Standing, 2011].

There is a new expectation of labour to do the same or more work in fewer hours, or

expectations or tasks have expanded – the increasing intensification of employment [McNamara

et al., 2011]. The idée force of the flexible labour market is generalised and pervasive, and

constantly moving the goalposts so that workers and firms are constantly on edge, engendering

a permanent sense of insecurity. Precarious experiences do transcend contract types, though the

constituent working conditions of this experience should theoretically vary.

Decomposing these experiences to their parts is an increasingly common approach in

research [Scott-Marshall and Tompa, 2011], though it is important to understand how these

experiences and their underlying parts may interact or influence one another. The impact of these

structural changes is exacerbated by the slow evolution of the legislative, economic, and social

mechanisms surrounding the labour market [Scott-Marshall and Tompa, 2011]. While there is

general agreement on the processes encompassing new types of employment, the sheer variety

of contract types and indeed working conditions which may only vary subtly particularly within

differing contexts may cause analytical issues, as seen in the lack of consensus with respect to

what is and is not flexible employment.

Flexible employment encompasses a variety of schemes and terminologies: precarious,

casual, temporary, non-standard, atypical, non-permanent, unregulated, contingent, fixed-term,

and so on [Benach and Muntaner, 2007; EMCONET., 2007; Kauskamp et al., 2013; Kim et al.,

2012; Peck, 1996]. However, all of these seem to be essentially the same – not necessarily

mutually exclusive, though terminology and analytic differences may raise issues, especially

around the transferability of research. For example, Hadden et al. [2007] define contingent

employment as having unpredictable hours and limited duration, while Connelly et al. [2011]

define it as having no ongoing employment with a single employer. Bourdieu [1998, pg85]

describes the casualization of employment as a component of a so-called ‘mode of domination’,

“based on the creation of a generalized and permanent state of insecurity aimed at forcing
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workers into submission, into the acceptance of exploitation.” A docile workforce, essentially

one subject to what Bourdieu [1998] terms the ‘structural violence’ of insecurity, is an ideal

one under neoliberal schemes. Lewchuk et al. [2003] describe precarious employment as

the cumulative combination of a number of factors, inclusive of but not limited to atypical

employment contracts, job insecurity, and low wages.

Kauskamp et al. [2013] emphasise the importance of taking the heterogeneity of precarious

employment into account as it will not necessarily be inferior in all contexts. To put it

plainly, sometimes it is a matter of choice. Some workers with higher levels of control in

their temporary position use it as a pathway towards lasting employment, or they may hold a

preference for project-based work [Samuelsson et al., 2012; Virtanen et al., 2005b]. Others

take lesser jobs for tax or regulatory reasons – earning under a certain threshold (1.03 million

yen, £5630) is tax exempt for secondary earners in Japan, for example [Kachi et al., 2014]).

Domestic constraints may also limit the choice of job for women, as proximity to the home and

complementary hours will be likely requirements [Weststar, 2011]. Job loss negatively effects

future career prospects, so workers may take less than ideal employment in order to continue

to earn [Virick, 2011]. Furthermore, while flexible employment types may benefit some, it,

all things considered, undermines employment conditions [Benach et al., 2014]. Peck [1996]’s

insistence that labour market allocation processes themselves must be questioned due to the

pervasiveness of inequalities in the labour market, partly self-created and self-shaped is highly

relevant.

There is indeed a social gradient in health and health outcomes, some of which has been

evidenced using occupational classes [Marmot et al., 1995], and understanding these social

inequalities is important for mitigating the effects of it [Niedhammer et al., 2008]. Popham

and Bambra [2010] found this gradient in self-rated health by employment status, as well as

a social gradient in unemployment risk. Benach et al. [2014] present a summary table of

reviews of work and health by health outcomes, and nearly all studies found adverse effects

of particular conditions, be it job insecurity or on call work. Morrison and Berezovsky [2003]

argue that labour market risk is unevenly distributed, which may be reflected in those conditions

having more or less adverse effects depending on occupation or workplace. Bambra [2011]

further asserts that production is driven by the hunger of capital accumulation rather than by

what is best for the health of workers. Daykin [1999] emphasises, though that as contexts

shift, traditional understandings of the work-health relationship must also change, and modes of

political organisation should no longer be assumed. The UK context, for example, has changed

greatly over the past fifty or so years, as the following section shows.

2.6. The Historical and Regulatory Context of Work, Health, and
Inequality: United Kingdom Case Study

While the European Working Conditions Survey, the first major dataset used in this thesis, covers

all EU, EEA and candidate countries, for the purpose of this thesis, one particular context, the

17



CHAPTER 2.

United Kingdom, will be examined as a case study as it forms the focus of the second dataset –

the British Household Panel Study.

During the First World War, the UK Government Industrial Fatigue Research Board

investigated workplace injuries, concluding that the cause of accidents is mostly found in the

psychology of individual workers [Nichols, 1999]. This was broadly rejected on methodological

grounds, however notions about victims and their culpability in workplace accidents still remain

[Nichols, 1999]. The classic welfare state did not fully exist until post-World War Two and was

laid out in detail in the 1942 Beveridge Report (‘Social Insurance and Allied Services’) [Lowe,

2005]. The Beveridge Report developed the welfare state from past practice but ultimately its

significance related to the tenets of universalism and comprehensiveness: “all citizens were

to be insured ‘from the cradle to the grave’ against every eventuality which might lead to the

inadvertent loss of their income” [Lowe, 2005, p17]. A high level of employment, or ‘full

employment’ was proposed as the best guarantor of individual welfare, and this philosophy

persisted in British government up until the mid-1970s; ‘full employment’ was delineated as

under 3% unemployment [Lowe, 2005]. In a modern reflection of this philosophy, one of the

Employment Conditions Knowledge Network’s (EMCONET) key recommendations to reduce

worldwide health inequalities through employment conditions was a return to full employment

[EMCONET., 2007]. Inequality fell rapidly under Wilson between 1964 and 1970, and did not

rise back above its previous peak until the Thatcher administration in the eighties [Shaw et al.,

2000]. Full employment was abandoned 1975, as it exists in conflict with economic growth-

related goals, as growth requires a more mobile (i.e., flexible) labour force [Lowe, 2005]. In the

1975 April budget, Labour abandoned the goal of full employment to avoid reflation of economy;

Lowe [2005, pg1] states that “one of the ‘props’ of the welfare state, that government could

and should guarantee a high level of employment – was thereby kicked away.” The next year,

Keynesian demand management was also abandoned, and in 1978-9, the ‘Winter of Discontent’

of strikes occurred mainly due to Labour failing its so-called social contract with the unions

[Lowe, 2005]. Lowe [2005] argues that Labour’s failure effectively elected Thatcher in 1979

and led to the adoption of neoliberalism.

There was a longstanding belief by both Labour and Tory governments that workers in the

UK were unproductive, and even deliberately idle [Nichols, 1999]. Throughout the 1980s, the

government held an almost antagonistic stance towards occupational health; it reduced funding

and support of regulatory agencies, held deregulation philosophies, and actively resisted EU

directives, as discussed below in subsection 2.6.1 [Daykin, 1999]. Standing [2011] argues that

‘deregulation’ is really ‘reregulation’ as more increasingly directive regulations were introduced,

mainly, it seems, to dictate what people had to do to benefit from social policy. Bourdieu

[1998] claims that Thatcher presents a restoration of the oldest capitalist tactics as a revolution,

appealing to progress, through writing off progressive thought as archaic. Indeed, in that decade,

Thatcher claimed to have turned around productivity, growth rates, and cured ‘the British

disease,’ though these ‘triumphs’ were contingent on the power of labour being diminished

economically, politically, and ideologically, rather than any neutral policy masterstroke [Nichols,
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1999]. Thatcherite policy generally resulted in insecurity not only in the lower classes but

in the middle classes as well [Bourdieu, 1998]. Hutton [1997] claims that the Thatcherite

reforms since 1979 only dealt with the consequences and not the root of UK decline, adopting

a fundamental amorality which emphasises the market at the cost of social exclusion. Unions

were systematically dismantled by 1993, with nine major pieces of legislation leading to, for

example, the abolishment of closed shops, the reduction of union membership, and the loss of

collective bargaining agreements [Hutton, 1997]. The work day became more porous as the

workplace adapted to the new neoliberal climate, reducing labour’s confidence to endure due to

higher levels of uncertainty and even, in some cases, fear [Nichols, 1999].

In the 1990s, the Labour opposition focused on increasing equality [Shaw et al., 2000].

After ‘New Labour,’ which as a social democratic focus as opposed to ‘old’ Labour’s democratic

socialist focus, was elected in 1997, there was a change in tack, and decreasing inequalities,

especially in health, dropped rapidly down the policy agenda [Shaw et al., 2000]. Thatcher

herself famously claimed that New Labour was her greatest political achievement [Burns,

2008]. However, it was not all necessarily Labour’s fault, as it had to maintain the previous

(Conservative) government’s financial framework. There was generally movement away from

the rhetoric of collective responsibility that carried Labour to election towards the (neoliberal)

idea of individual responsibility for inequalities, something that has continued to present.

2.6.1. EU Regulations in the UK

While there are regulations to counter certain negative aspects of fixed term and part time

employment, for example, (such as EU directives 1999/70/EC; 1997/81/EC; 1998/23/EC

[Bardasi and Francesconi, 2004; EU, 1993, 1997, 1998, 1999, 2000, 2003], the majority of

public policy appears aimed at increasing equality in pay, but not necessarily on the “non-

monetary” conditions around atypical employment [Bardasi and Francesconi, 2004]. The UK

government passed the Working Time Regulations 1998 [UK, 1998] in response to the European

Working Time Directive (1993/104/EC [EU, 1993] and 2000/34/EC [EU, 2000] consolidated

and superseded by 2003/88/EC [EU, 2003]). However, there are a number of professions

with exceptions, up to 2003, when the Regulations were amended to include more exceptions

(WTR 1998 [UK, 1998], (18(1); The Working Time (Amendment) Regulations 2003 [UK,

2003], 18(1)/18(2)). Such workers are exempted, for example, from “an employer shall take

all reasonable steps, in keeping with the need to protect the health and safety or workers, to

ensure that the limit specified in paragraph (1) [work no more than an average of 8 hours in each

24 hour period] is complied with in the case of each night worker employed by him” (6(2)); these

workers are also excluded from having adequate rest breaks from strenuous work (8), and other

further articles of the Act (WTR 1998 [UK, 1998], (18)). Further exemptions are specified,

whereby the above exclusions (and others) also apply to cases “where the worker’s activities

involve the need for continuity of service or production [. . . ]” (ibid. 21(c)); “where there is a

foreseeable surge of activity [. . . ]” (ibid. 21(d)). Arguably many jobs could be classified under

these exclusions: retail employees during holiday shopping, or programmers before a production
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deadline. Indeed, these workers may ‘voluntarily’ decide to exceed reasonable working hours

and limit rest breaks; the Act does suggest a maximum 48-hour work week, for example, but

this is not required (WTR 1998 [UK, 1998], 4(1)). It was further amended in 2007 regarding

entitlements to additional annual leave, and in 2013 with smaller amendments (Working Time

(Amendment) Regulations 2007 [UK, 2007], 2013 [UK, 2013]).

Temporary agency work is one aspect of temporary work, whereby an agency supplies

employees to a client, who is effectively the employer, but the employee is administered and paid

through the agency. This means that there may be different pay schemes for agency workers and

those employed by the firm itself [Connelly et al., 2011]. There is also a substantial amount of

heterogeneity between temporary employment organisations [Benach et al., 2014]. Until 2010,

temporary agency workers in the UK were not entitled to the same rights, entitlements, and

protections as their permanent counterparts under the Employment Rights Act 1996. However,

through the EU Temporary Agency Work Directive (2008/104/EC [?]), the UK was compelled

to pass the Agency Workers Regulations 2010 [UK, 2010]. The UK government negotiated

with the EU over this directive for six years, only capitulating so it would not lose its opt-

out from the working time directives (1993/104/EC [EU, 1993] and 2000/34/EC [EU, 2000]

consolidated and superseded by 2003/88/EC [EU, 2003], referred to above), according to The

Guardian [Wintour, 2008]. The Agency Workers Regulations 2010 [UK, 2010] asserts that an

agency worker is entitled to the same working conditions someone permanently in the same role,

subject to a twelve-week continuous qualifying period working in the same job (The Agency

Workers Regulations 2010 (5), (7)). The Regulations state that the worker is in the same role

unless:

(a) ”the agency worker has started a new role with the same hirer, whether supplied by the

same or by a different temporary work agency;

(b) the work or duties that make up the whole or the main part of that new role are substantively

different from the work or duties that made up the whole or the main part of the previous

role; and

(c) the temporary work agency has informed the agency worker in writing of the type of work

the agency worker will be required to do in the new role.” (AWR 2010 [UK, 2010] (7(3(a-

c)))).”

Again, the language of these exceptions, similar to the Working Time Regulation Act 1998

[UK, 1998], leaves enough ambiguity for any enterprising hirer of agency staff to supply workers

with a ‘new’ role before the 12-week period is met. According to a report by the Liverpool City

Council, the EU Regulation has a loophole, called the ‘Swedish derogation,’ which means that

agency workers are not entitled to equal compensation, as long as they have a permanent contract,

are compensated between assignments, and this must be explained to the worker [Kushner,

2014]. According to the Trades Union Congress, TUC [2013, pg1]:

”a Swedish derogation contract exempts the agency from having to pay the worker the same rate

of pay, as long as the agency directly employs individuals and guarantees to pay them for at
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least four weeks during the times they can’t find them work. In Sweden, where these contracts

originate, workers still receive equal pay once in post and 90 per cent of normal pay between

assignments. However in the UK workers have no equal pay rights and are paid half as much as

they received in their last assignment, or minimum wage rates, between assignments. Agencies

can also cut their hours, so receive as little as one hour of paid work a week.”

Rossman [2013] reported that some union members were pressured to sign ‘derogation’

contracts which effectively reduced their weekly pay by up to £200 per week. Furthermore,

those agency workers who do not sign such contracts often found that the comparator for ‘equal

pay’ was the lowest starter pay for a permanent employee, or the legal minimum [Rossman,

2013]. Indeed, the Association of Labour Providers (ALP)in the UK offers a course specifically

aimed towards agencies and hirers considering using the Derogation, specifically how to transfer

workers to this type of contract and how to avoid any ‘risk’ [ALP, 2015]. It seems that there are

a dizzying array of contracts and categories for workers to fall under, especially when some of

these allow a firm to revoke or alter concessions made to workers, such as the Swedish derogation

and the Temporary Agency Work Directive (2008/104/EC [EU, 2008]). This makes defining and

understanding the conditions and outcomes of these a complicated proposition. A model-based

approach can help simplify these contexts and make research transferable. Of course, on 1st

January 2021, the UK left the European Union and whilst some of the previous directives remain

in place, there may over time be divergence and the impact of this on health remains to be seen.

2.7. Models of employment and health

Two decades of scholarship on precarious employment arrangements have not generated

precise conclusions on the relationship between precarious employment and health. This is

due to several factors: some inconsistent results in empirical studies, the lack of a sound

interpretative framework that is capable of facilitating an understanding of different social and

employment realities; and limited contextual and labour market-related variables that interact

with individual employment situations.” [Kim et al., 2012, pg100]

Despite continued recommendations and agendas for research [EMCONET., 2007], there

is inconsistency within research on precarious working conditions. Kauskamp et al. [2013]

attribute this inconsistency to differences on several fronts: the specific form(s) of employment,

sample composition, health outcomes, and location or context [Virtanen et al., 2005b]. Pikhart

et al. [2001] also note a dearth of research into the quality of working conditions and health.

Further, [Siegrist and Marmot, 2004], emphasise that some processes and variables cannot

be measured directly, and require theoretical concepts to operationalise particular working

conditions or other characteristics at a generalizable level, allowing for comparison between and

within occupations. This suggests a model-based approach may be appropriate to unite disparate

areas of research.

The mechanisms linking health and employment conditions are still unclear, but an array

of models, approaches, and frameworks have tried to resolve this Kauskamp et al. [2013]. The
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workplace psychosocial environment is a result of employment relations and not unrelated to

them [Benach et al., 2014]. It is not only the work itself, but the hierarchies and structures

of the workplace that can create both negative physical and mental health effects [Canaan,

1999]. Psychosocial exposures at work are often thought of as disconnected to physical hazards

[Karasek and Theorell, 1990], but they are indeed linked (see Chapter 3).

Many newer models have built upon older models [Lewchuk et al., 2008]. EMCONET.

[2007] also emphasises a need for more research surrounding working conditions and health,

particularly on the mechanisms of, routes to, and the effects themselves. This can be difficult,

though, as there is little agreement on the distribution of health effects among different types of

worker [Virtanen et al., 2005b]. Watterson [1999] argues that occupational disease is a social

construction, as the relationship between the disease and the occupation may be tenuous or

confounded by other factors. A model-based approach could mitigate this tenuousness.

2.7.1. The Job-Demand-Control Model

The job strain or job demand-control (JDC) model developed initially by Karasek [1979],

expanded with a colleague approximately ten years later to integrate support and develop

questionnaires are some of the main models used in analysing working conditions and health.

[Karasek and Theorell, 1990].

“Job control refers to employees’ ability to make decisions about how and when they

perform their work as well as the extent to which their job entails using and developing their

skills. Job demands encompasses the amount and pace of work” [D’Souza et al., 2003, pg849].

Low levels of control are associated with poor health outcomes (e.g., distress,

cardiovascular disease mortality) and employment outcomes (high absenteeism and turnover)

[Johnson et al., 1996; McNamara et al., 2011]. Siegrist and Marmot [2004] emphasise that this

model links the experience of self-efficacy with the way work is structured. Lewchuk et al.

[2003] emphasise the importance of control but also that it can vary. Mohren et al. [2003] found

among workers reporting job insecurity that demands were higher and decision latitude was

lower. McNamara et al. [2011] found that employment status in general did not affect workers’

perceptions of job security, though.

Indeed, while the control dimension produces consistent results, such as Marmot et al.

[1997]’s finding that low control predicts coronary heart disease independent of socioeconomic

status, the full model has produced mixed results [Siegrist and Marmot, 2004]. This was

found by Godin and Kittel [2004] in their study of psychosocial stress at work, where control

was significant but high demand had negligible impact on the health outcomes studied. The

JDC model has a very specific allocation of power and support, which limits its usefulness

in understanding new forms of employment [Lewchuk et al., 2003]. Furthermore, it exists at

a task-level scale using only ‘objective’ measures whereas individual level data appears more

commonly collected and analysed [Ostry et al., 2003; Van der Doef and Maes, 1999]. Egan et al.

[2007] systematically reviewed organisational-level control, finding that interventions focusing
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Figure 2.2: The job-demand-control model [Karasek, 1979]

on control or support improved health, and demand-reduction interventions also improved

health, but warned that some evidence is inconsistent in terms of the direction of the effects,

such as when interventions increased demands.

2.7.2. The Effort-Reward Imbalance Model

The effort-reward imbalance model (ERI, figure 2.3), the other major model used in this work-

health research, is based on the notion that chronic stress (such as that at work) can be strongly

associated with adverse long-term health effects [Muntaner et al., 2006]. It was developed in

response to the JDC model, in order to integrate individual coping and the social reciprocity

of modern work contracts, i.e., labour market and workplace related features [Siegrist, 1996;

Siegrist and Marmot, 2004; Tsutsumi et al., 2001]. Niedhammer et al. [2004] found that the

ERI was a significant risk factor for poor self-reported health in both men and women, under

several different types of ERI, however under one year of follow up, some formulations of ERI

were unpredictive of poor self-rated health. Godin and Kittel [2004] found ERI an excellent

predictor of absenteeism and poor self-rated health. Further, Siegrist and Marmot [2004]

describe the effort-reward imbalance model as linking the individual worker’s self-esteem and

the structure of work. Control is defined as a generalised belief on the part of the individual

in question about the extent that outcomes important to them are under their own influence, or,

controllable. It is therefore modelled at the individual level. The job-demand-control model

does not distinguish this clearly. Therefore, the ERI improved on this by shifting the focus onto
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Figure 2.3: The effort-reward imbalance model [Siegrist, 1996]

reward. The effort-reward imbalance model is essentially about costs and gains, though it may

not always adequately capture trade-offs. Siegrist [1996] rightfully points out that people may

‘choose’ to be in high effort/low reward situations due to social constraints, and a lack of control

often characterises these situations. These situations are conceptualised in the ERI model as

an absence of reciprocity [Siegrist and Marmot, 2004], i.e., high effort, low reward, which is

not necessarily uncommon in certain occupations [Niedhammer et al., 2004]. This absence of

reciprocity can impact negatively on self-esteem and self-efficacy.

Similar results, though, have been found by both models at both levels, and it has been

proposed that these models complement one another, as Siegrist and Marmot [2004] discuss,

they model both self-efficacy (JDC) and self-esteem (ERI). Further, in a study of depression and

job stress in Japan, Tsutsumi et al. [2001] found that the measures in the two models were also

relatively statistically independent to one another in relation to depression.

The Karasek model relies solely on objective measures of ‘work’ that do not adequately

capture individual-level variation, although more recent adaptation also includes social support

[Karasek and Theorell, 1990]. The Siegrist model was developed to integrate individual

responses to conditions, however, it does not include any measure of task-level control [Siegrist,

1996]. Furthermore, Benach and Muntaner [2007, pg277] claim such psychosocial models may

be unable to include other “more distal social and organizational determinants of health.” Thus,

factors relating to both structural and social inequalities, especially labour market variables,

should be taken into account [Benach and Muntaner, 2007].

In terms of model success, regulatory context may also be important. For example,

Virtanen et al. [2005b] found that, in Scandinavian countries, those working on a fixed term

did not experience many differences to permanent employees, but this was partially attributed

to its welfare regime. Lowe [2005, pg14] explains that the ‘ultimate objectives’ vary and reflect

different cultures and political regimes. Finally, it is important to reflect on when these models

were developed. Employment has, as argued, changed significantly in the past few decades,

and some of the models were developed when standard employment relationships were the

norm [Scott-Marshall and Tompa, 2011]. However, few recent models have attempted to be
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as generalised as Karasek’s or Siegrist’s, perhaps due to increased uncertainty, stemming from

the idée force of the neoliberal, globalised economy [Lewchuk et al., 2008, 2003; Underhill and

Quinlan, 2011]. There is also uncertainty to be found in applying these models to analyses, as

there are many possible indicators to use.

2.8. Indicators of Working Conditions and Health

While a lot of work has been done on examining the social gradient in health, such as in

the Whitehall studies [Marmot et al., 1991], which have influenced a large portion of further

work on the role of working conditions on health, more detail about the factors underlying this

gradient and social inequalities in health should be examined, as the understanding of them is

somewhat unclear [Elo, 2009]. Examining more specific elements of working conditions and

how they relate to health is needed to help mitigate these inequalities with effective policy and

interventions.

Choosing which indicator(s) will be suitable within the model-based approach and useful

for analysis can be a difficult proposition. “For example, job satisfaction is not a direct measure

of health status, and health-absenteeism may be a poor proxy for health outcomes” [Benavides

et al., 2000, pg500]. Focusing on a single indicator may cause estimation problems [Scott-

Marshall and Tompa, 2011]. It is necessary to clearly define concepts, though often there

may be subtle variation due in part to the terminological differences discussed earlier. Scale

is also important – how can working conditions vary across, between, and within workplaces,

individuals, labour markets, and states? People with better jobs are more likely to be healthier,

but by how much, and is this difference significant and independent [Clougherty et al., 2010;

Honjo et al., 2015]? Employment status or occupational type are a commonly used indicator

in this type of analysis, as is job insecurity and working hours in several forms. There is

variation across disciplines and even across the specific occupation examined in how outcomes

or conditions, like stress, for example, are measured.

In McNamara et al. [2011, pg230] analysis of hospitality workers in Australia, they

found that employment status did not cause any effect on workers’ perception of job security,

suggesting “the taxonomic approach has limited value.” Workers surveyed felt similarly insecure,

regardless of permanent or casual status [McNamara et al., 2011]. Perhaps, then, it is important

to not only consider employment status in examining health outcomes but other measures of

working conditions. Researchers have found that agency workers’ employment can create

downward pressure on working conditions, safety, and wages for other workers [Arrowsmith,

2006; Davidov, 2004; Underhill and Quinlan, 2011]. Temporary workers, according to Standing

[2011], may be used to wrest concessions from permanent employees, as they can be replaced

with temporary ones. A study of Japanese workers between 2001 and 2007 found workers’

health was negatively changing over time, even if variation in employment contracts were

adjusted for [Nishikitani et al., 2012]. In the Japanese context, the relationship between self-

rated health and type of contract varied by household structure for women but not for men;
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women in single parent families, for example suffered from fair/poor health [Kachi et al., 2014].

Indeed, consistent results are not always found – Bardasi and Francesconi [2004] assert

that there was not a significant association with poor general health and a variety of types of

flexible employment, though some types (seasonal/casual jobs across both genders), for example,

were associated with higher chances of experiencing poor mental health. Scott-Marshall and

Tompa [2011] found that exposure to nonstandard employment contracts was not associated with

negative health impacts, though exposure to aspects of work precariousness were. Bardasi and

Francesconi [2004] propose that, theoretically, the health effects of atypical types of employment

are ambiguous, due to the preferences, expectations, and financial constraints of the individuals

under consideration. Social constraints should also be considered. Indeed, effects may be

dependant, for example, on the level of volatility in an atypical employment situation [Virtanen

et al., 2005b]. Scott-Marshall and Tompa [2011] suggest that focusing exclusively on the type of

contract may obscure that labour market experiences in ‘the new economy’ inclusive of ‘standard

work’ exhibiting insecure characteristics, so it is key to determine what is associated with the

effects.

Another issue to consider in determining the health effects of employment is reverse

causation or selection bias, whereby it is not that atypical types of employment lead to

health effects but that people more likely to be working those types of job are already

unhealthy [Bardasi and Francesconi, 2004; Carpenter, 1987; Muntaner et al., 2010; Payne, 1999].

Clougherty et al. [2010] posit that those of more advantageous backgrounds are often already

healthier, and will be healthier, as well as being more likely to be employed in better jobs as

opposed to their less privileged colleagues. Moreover, what Virtanen et al. [2005b] and Kim

et al. [2012] refer to as the ‘healthy worker effect’ posits that healthier people are more likely

to look for a job, and to get a job. Bartley and Owen [1996] characterize this effect as weaker

in non-manual versus manual workers. Watterson [1999] argues that employees needed to be

healthier in 1997 than in 1977 to keep the same jobs. Further, Martikainen and Valkonen [1999]

found that the healthy worker effect wore off with increasing duration of follow-up. However,

George [2005] argues that the dominant direction of causation is from socioeconomic status to

health, though Cutler et al. [2006] discuss that poor health can lead to low income. Perhaps

insecurity, which may not be related to health at baseline, may be a useful indicator?

Job insecurity has been defined as “the discrepancy between the level of job security a

person experiences and the level she might prefer”; while the concept is sometimes limited to

the threat of job loss, it may also include “the loss of any valued condition of employment”

[Bartley and Ferrie, 2001, pg778]. This implies a certain degree of subjectivity. Greenhalgh and

Rosenblatt [1984, pg438, cited in[Richter et al., 2013]] define job insecurity in their framework

as “the perceived powerlessness to maintain the desired continuity in a threatened job situation.”

Lau and Knardahl [2008] separate job insecurity and employment insecurity, emphasising that

employment insecurity focuses on the ability to find an equally satisfactory job. Bourdieu

[1998, p84] describes flexibility as an ‘insecurity-inducing strategy,’ claiming insecurity not as

an economic inevitability but as a product of political will and idées forces. Costs are reduced
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for firms by creating insecure working arrangements – insecure workers are less demanding

[Bourdieu, 1998]. For example, Bartley [2004] suggest that the deterioration of job security

over time may be a key reason of the increasing prevalence of limiting illness (an increase of

14% between 1972 and 2000). Ferrie et al. [2005] found poor self-rated health was related to job

insecurity, as well as the General Health Questionnaire score and depression. People reporting

insecure working conditions were four times as likely to report depression and poor self-rated

health, and those claiming moderate insecurity were nonetheless also more likely to be depressed

[D’Souza et al., 2003].

Job security is related to poor mental health [Benach et al., 2002; Lau and Knardahl,

2008]. Self-reported morbidity was higher among the insecure [Benach and Muntaner, 2007].

Job insecurity can be viewed as an exposure resulting in impaired mental and physical health

[Kim et al., 2012; Mohren et al., 2003]. Potential explanations of the relationship between job

insecurity and health have not been thoroughly explored, however [Ferrie et al., 2005]. Richter

et al. [2013] also suggest that more research is required to determine the conditions under which

job insecurity relates to documented health outcomes. It has been found that “a combination of

personal characteristics [. . . ,] material factors [. . . ,] and other psychosocial characteristics of the

work environment [. . . ] explained 68% of the association between self-reported job insecurity

and self-rated health in women and 36% in men” [Ferrie et al., 2005, pg1598].

The regulatory context, as indicated earlier, is also highly important – in a review of

studies published stratified by welfare regime, those in Scandinavian countries, for example

often reported no or little association between experiences of insecurity and ill health [Kim

et al., 2012]. It was theorised that more egalitarian welfare employment societies buffer the

negative effects of insecurity; all other welfare regimes were found to have a strong relationship

between ill health and job insecurity [Kim et al., 2012]. Including a welfare regime component

in analysis may be prudent. Work involvement, or in this case, the psychological identification of

work, was found to moderate the negative effects of job insecurity on satisfaction [Richter et al.,

2013]. Insecure workers withdraw from their roles, reducing their commitments and productivity

[Scott-Marshall and Tompa, 2011]. It is the anticipation of change that causes more adverse

effects than the change itself – losing a job allows one to use certain coping mechanisms that

are not viable when there is merely the threat of job loss [Scott-Marshall and Tompa, 2011].

Precarious employment and job insecurity are associated with significantly worse occupational

health and safety outcomes [Quinlan et al., 2001].

Sickness absence (SA) has been related to job insecurity by Kivimaki et al. [1997]. Job

insecurity and low social support were found to increase the number of absent days across both

genders [Niedhammer et al., 2013]. North et al. [1996] using the Whitehall II study, found

that self-reported work characteristics were predictive of sickness absence spells of varying

lengths, especially in relation to work demand, or social support at work. Kinnunen et al. [1999]

modelled this relationship using their sample of Finnish employees in three industries over a

three-year period: the more likely a job change was perceived to be negative or insecure, the

more likely the employee was to feel job exhaustion one year later, and it was more likely that
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that employee would be absent due to illness. The costs of sickness absence to the economy

and business are considered substantial [C.I.P.D., 2015; Marmot et al., 1995]. Long term sick

leave is also a significant public health problem [Ahlstrom et al., 2010]. Head et al. [2008, pg1]

claim that diagnosis-specific sickness absence is a useful total health measure, in that “it reflects

day to day functioning in occupational setting and predicts mortality at least as well as more

established indicators of health.” Indeed, Head et al. [2008] found a dose-response association

between mortality and diagnosis-specific sickness absence (hazard ratio 1.97 for 2+ certified

absences and 1.48 for one absence, compared to no absences). Aronsson and Blom [2010] use

measures of sickness absence and presence (as well as self-rated health) to create a long-term-

health outcome variable measuring ‘good’ health. Being in a preferred occupation and workplace

had an odds ratio of 1.34, compared to not, and was therefore the most important labour market

aspect [Aronsson and Blom, 2010].

Absenteeism captures the range of ill health that is experienced within an organisation,

though its inverse, presenteeism, should be considered also – Wada et al. [2013] claim that

presenteeism reduces worker performance. Presenteeism can mask serious health problems that

may emerge later in life; it may decrease productivity. Sickness absence and presenteeism both

stem from the same decision process, so understanding of both can be enhanced [Hansen and

Andersen, 2008]. Gerich [2015] argues that a combination of sickness absence and sickness

presence is a more valid indicator of health. It may remain difficult to define and measure,

though, as perception (both of the employee and employer) is heavily involved [Hansen and

Andersen, 2008]. Presenteeism stems from ”the moral evaluation of sick employees by peers

and superiors depends not only upon the biological reality of illness but on pre-existing attitudes

and patterns of power and control” [Daykin, 1999, pg2]. The culture of a workplace is

clearly important: presenteeism may be a part of professional identity, as it is perceived by

those working in nursing as ‘not letting anyone down,’ or management may be unresponsive

or uncaring, perhaps promoting presenteeism [Dew et al., 2005]. Demands for presence are

therefore both work and personally related, and related to more than one causal mechanism

[Hansen and Andersen, 2008].

Fixed term and temporary forms of employment are both related to a lower rate of sickness

absence than the rate for those permanently employed, likely due to higher job insecurity

[Virtanen et al., 2003, 2005b]. [Virtanen et al., 2003] found that an employee transitioning from

fixed term to permanent contract was associated with increases in job security and satisfaction

and also, importantly, medically certified sickness absence. Dew et al. [2005] found that

the organisation of workplaces mattered in terms of illness reporting – workplaces with well-

organised trade unions tended to have better reporting, and the rationalisation of presenteeism

varied across sites. Sector or workplace organisation may therefore be related to health. An

agency worker interviewed by [Underhill and Quinlan, 2011, pg406] they quoted explained that

agency workers had more pressure to keep working and to work rapidly, stating “you can just see

the permanents work slower, because they know they’ve got a job.” Agency workers too often

work longer hours.
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“Work time poses a unique challenge, theoretically and methodologically, because it can

potentially channel several health-relevant mechanisms” [Kleiner and Pavalko, 2013, p985].

This can include things like night or shift work, the amount of work, or the structure and

organisation of that time. Erren et al. [2008] describe the medium to long term disruptions

of the circadian rhythm and its effect on bodily systems as ‘chronodisruption.’ Artificial light

sources provide the body with ‘inappropriate and confusing information’ which desynchronises

the internal clock and can bring about short- and long-term adverse health effects Erren et al.

[2008, p369]. Bambra et al. [2008b] also discussed the health problems reported with shift

work, which can include fatigue, digestive issues, stress, and sleep disturbances, which can be

associated with the disruption of the natural circadian rhythm. Shift workers are at greater risk

of cardiovascular and gastrointestinal disease [Knutsson, 2003]. A Danish study of women aged

30-54 who mostly worked at night found an increased risk of breast cancer compared to those

who did not (OR = 1.5, 95%CI = 1.3-1.7, [Hansen, 2001]). In their meta-analysis, Erren et al.

[2008] found a 70% increase in relative breast cancer risk across 12 studies, and a 40% excess

relative risk for prostate cancer across nine studies. For the shift work meta-analysis, in seven

studies, female shift workers faced a 40-50% increase in breast cancer risk [Erren et al., 2008].

Bannai and Tamakoshi [2014] emphasise the importance of separating shift workers from

regular workers in analysis as they can skew results. For example, while Wong et al. [2011] found

a 27.9% decline in reported workplace injuries in Canada between 1996 and 2006, for night shift

workers, the injury rate did not change. Furthermore, when Kobayashi et al. [2012] presented

their results of long working hours of male manufacturing workers in Shuzoka, Japan both with

and without shift workers, the significant negative impact on health they found disappeared

when the shift workers were removed from the analysis. However, there was nonetheless a

positive association with working hours and metabolic syndrome after adjusting for shift work

[Kobayashi et al., 2012]. Interestingly, Kobayashi et al. [2012] found a nonlinear pattern, with

an OR drop from 8-9 hours and 9-10 hours, and a rise at >10 hours. Wong et al. [2011, p54]

point out that shift work may be confounded by workplace characteristics, which can vary across

shifts, as “the shift length, type of tasks, and number of staff and level of supervision may differ

between day and night shifts thereby making it difficult to compare risks.” Bambra et al. [2008a]

describe shift work as important but overlooked in terms of being a working condition that is

determinant of health, and emphasise that it is socially patterned. Harrington [2001]’s review of

shift and extended-hours work found a consensus on the negative effect on sleep of these types of

work, arguing that fatigue is a common complaint, though difficult to measure. Standing [2011,

pg115] cites a “growing disrespect for the 24-hour body clock.” Wong et al. [2011] stress that it

is not only the disruption to normal biological processes that can cause harm, but also changes

to sleeping routines leading to fatigue which may increase the risk of accidents.

Flexible workers are less likely to have control over their hours than those more securely

employed [Bohle et al., 2004]. Bannai and Tamakoshi [2014] reviewed the literature on long

working hours, emphasising the difficulty of drawing overarching conclusions when the question

of how long is too long remains inconsistently answered. Accounting for this issue in the
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analytic phase, they concluded that long working hours are associated with CHD, sleep disorders,

anxiety, and depressive states [Bannai and Tamakoshi, 2014]. Associations were drawn between

women’s low level of control over working time and poor self-rated health and psychological

distress, and interaction analyses revealed that this effect was gender-dependent [Ala-Mursula,

2004]. Women, despite increasing workforce participation, still perform the majority of domestic

labour [Weststar, 2011]. It could be that similar ‘caring’ labour is unequally assigned to female

employees at the workplace as well [Cottingham et al., 2015]. Indeed, Standing [2011, pg117]

points out that work is defined not only by “what was done but for whom it was done.” Similar

associations were found between control of working time and work stress with sickness absence

at individual and aggregate scales [Ala-Mursula et al., 2005]. This is important as risk factors

may not remain static across workplaces and individuals [Benach et al., 2002]. “[H]osts too often

appeared to assume that casual observation of others and ‘common sense’ could replace training”

[Underhill and Quinlan, 2011, pg408]. Further, as Nichols [1999] indicates, the moment the

human factor is considered, everything that is done or not done by the victim or other workers

can be blamed. Medical staff may be hostile towards writing about any sort of ‘occupational

epidemic’ due to evidentiary issues or value judgments about the nature of the injury [Canaan,

1999; Watterson, 1999]. More weight may be allocated to a doctor’s examination of visible

symptoms as opposed to the patient’s experience: essentially value judgements made in the

name of science [Canaan, 1999].

2.9. Conclusions

Health inequalities have persisted through time, despite efforts to mitigate them [Marmot et al.,

2020]. This chapter has argued that the workplace, and therefore, occupation, are factors in

influencing health and health outcomes, as social determinants of health. Decomposing the work

experience to working conditions and environments of work allows for the closer examination

of these influences on inequalities and individual health [Scott-Marshall and Tompa, 2011].

Changes over time in employment arrangements have increased precarity, insecurity, and other

negative aspects of these changes via flexibility, and are unequally distributed [Bambra, 2011].

As a consequence, this may increase inequalities in health. Through this literature review,

it has been shown that working conditions, such as working time [Ala-Mursula et al., 2005;

Artazcoz et al., 2013; Bohle et al., 2004], do have an impact on health and health outcomes.

Several models were proposed to better understand thesse relationships, such as the effort-reward

imbalance model Siegrist [1996], yet they miss certain aspects of these relationships, such as

individual variation, or less immediate social determinants of health [Benach and Muntaner,

2007]. Therefore a reasonably broad approach should be taken, inclusive of the life course

approach [Ben-Shlomo and Kuh, 2002], as well as general and specific social determinants of

health [WHO, 2008].

EMCONET. [2007] calls attention to the frequent underestimation of data around

occupational diseases and exposures. Clougherty et al. [2010, pg8] found that “the distribution

of hazardous exposures is sufficiently parallel to the social gradient of health that a significant
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contribution of this is plausible,” though it is generally assumed so obvious that evidence is rarely

if ever produced empirically of these relationships. Some ‘safety’ improvements may exist more

in the name of increasing profits than protecting workers: Nichols [1999] gives the example

of the Davy lamp in mining, which, while partially increasing safety, also allowed for more

dangerous veins to be exploited. Other safety interventions may have better improved workers’

situations. More intangible variables should be examined. Changing patterns of employment

are echoed in new arrangements of the production and distribution of risk and exposure, such as

the externalisation of risk and cost to the employee from the employer [Daykin, 1999; Standing,

2011]. These considerations should be incorporated into a theoretical framework, similar to the

models described in this chapter, but with an epidemiological approach to integrate concepts of

risk, hazard, and exposure. This framework is called the worksome.
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Chapter 3

The Worksome Theoretical
Framework

3.1. Introduction

1

The models presented in the literature review, such as Siegrist [1996]’s effort-reward

imbalance model which address the employment-health relationship have been found to be

insufficient in terms of i) adequately explaining the relationship as it may occur in varying

contexts; ii) operationalising concepts discretely and unambiguously, and iii) not considering

how results may be presented to and perceived by a political or lay audience. The risk assessment

and analysis concepts are introduced in this chapter as a bridge towards the worksome – while

much of the literature using the concepts of hazard and risk addresses only tangible exposures,

it is possible to adapt risk analytic models and language to intangible ones. There is a clear

gap within research around the work-health relationship and risk that may be closed through

applying the worksome framework to the work-health relationship.

The exposome is an epidemiological model developed by Wild [2005] in response to

the sequencing of the human genome, the development of biomarkers, and the (at the time)

strong emphasis on genotyping. Whilst the exposome is very useful for epidemiological work

it does not allow for the accurate assessment of environmental exposures. The worksome as

a framework was developed to reorient the exposome towards improving this area. Looking

towards the life-course approach [Ben-Shlomo and Kuh, 2002], and through the lens of exposure,

a framework linking concepts in epidemiology, occupational health, and inequalities research is

developed and described: the worksome.

Lynch and Smith [2004] describe many chronic conditions, such as cardiovascular

diseases, as developing over a long period of time, attenuated or amplified by other life

1A part of this chapter has already been published in Social Science and Medicine [Eyles et al., 2019]
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course factors. The worksome includes the interactions between scales, individuals, times,

and geographies. This furthers our understanding of the complexities of this landscape. As

work too consumes a large part of any given individual’s life, the life course approach is key to

understanding work as a social determinant of health. George [2005] emphasises how critical it

is to study the relationships between health and socioeconomic status with a life course approach

and argues that the consistent causal direction is from SES to health.

This chapter describes the process of risk analysis and the concept of hazard or

exposure, and then moves towards the idea of an intangible exposure that crosses physical

and social/psychological boundaries. The language of risk analysis and assessment, even in

relation to epidemiology, is familiar ground to many policymakers. This is important because

policymakers often require time-efficient briefs that are easily understood. Using familiar

concepts is one way to ensure that policy-focused research will be effective.

Integrating these concepts into the worksome allows for easier adoption of the framework

in research that aims to influence policy. The chapter takes the interconnected ‘whole person’

view of physical and mental health [Carter et al., 2015]. The worksome will be then situated

into health inequalities research, particularly in relation to the use of social class. A critique

of current class-based approaches to research will be made. Finally, a rationale for using the

worksome will be provided.

3.2. Risk assessment, risk analysis, and epidemiology: Developing
a new paradigm for assessing intangible hazards

Policymakers use risk frameworks to decide on exposures and hazards, so using the language

and concepts of risk assessment in a framework focusing on the social determinants of health

proximate to occupation may allow for better translation of research to policy. This section

forms a bridge from the exposure science and risk analysis concepts from tangible to intangible

exposures and sets the base for the worksome framework. The risk literature will be briefly

overviewed, followed by a short discussion on the sociocultural construction of risk.

Prior to the 20th Century, risk was generally considered as a neutral term, but now it is

primarily used in the context of negative outcomes over words like ‘danger’ or ‘hazard’ [Fox,

1999; Gabe, 1995]. Hazards are those circumstances which may give rise to harm, whereas risk

is the likelihood of a given hazard occurring [Fox, 1999]. However, these circumstances are

not always without controversy. Risk is inherently uncertain, and the way it is characterised

can be controversial. John Snow, arguably one of the fathers of modern epidemiology, was

recommended to withhold his results of his famous cholera study as there was worry of a panic

[Brown, 1995]. [Bourdieu, 1998, pg40] put this sort of recommended censorship as such: “You

cannot cheat with the law of conservation of violence: all violence is paid for [. . . ].” Violence,

in this case, is the exposure to risk and hazard. Who ‘pays’ for the violence is determined by

many factors, be it structural factors (government policy, employment relations) or individual

ones (lifestyle choices)? Those under risky conditions can still suffer from them even if they
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are unaware of them, but as there are many ways of examining risk, characterisations and

interpretations can still differ [Gabe, 1995].

“The technical concept of risk focuses narrowly on the probability of events and the magnitude
of specific consequences. Risk is usually defined by multiplication of the two terms, assuming

that society should be indifferent towards a low-consequence/high-probability risk and a high-

consequence/low-probability risk with identical expected values.” [Kasperson et al., 1988,

pg177-8, emphasis in original]

A more discriminating sort of analysis than this simplistic approach is, therefore, required

in order to distinguish between these forms of consequence and probability discussed by

Kasperson et al. [1988]. Risks are, by definition, scientifically uncertain as they relate to future

consequences of an action. The future is generally unpredictable: if the environment and human

behaviour are taken into account during the course of analysis, uncertainties will exist throughout

the entire scientific process [Fisher, 2010]. Relationships are not always linear or obvious and

people make choices that cannot always be predicted. Different people will accept different

risks at different thresholds, and this can vary culturally and contextually. Different people are

subjected to different risks at different levels, and some pay for risks they are not at all involved

in creating nor benefit from. This calls back to the ‘law of conservation of violence,’ in that these

risks, i.e., ‘violence,’ are paid for not necessarily by those who enact them [Bourdieu, 1998].

Risks are open to social definition by those with power and access to knowledge [Fox,

1999]. Fox [1999] describes hazards as ‘natural,’ and risks as ‘cultural.’ The externalisation of

risk from firms is common in neoliberal economies, and there lies inequality in the probabilities

of the negative consequences of these risks. There are nonetheless efforts to include multiple

voices in these decisions around how risk is characterised and analysed, in order to better mitigate

or control exposure to risks. Risk characterisation and evaluation can be improved through

an analytic-deliberative process, whereby analysis is defined as using “rigorous, replicable

methods developed by experts to arrive at answers to factual questions,” and deliberation as using

“processes such as discussion, reflection, and persuasion to communicate, raise and collectively

consider issues, increase understanding, and arrive at substantive decisions” [Stern and Fineberg,

1996, pg20]. This is an iterative process, as analysis may be framed by deliberation, and

deliberation informed by analysis [Stern and Fineberg, 1996]. That is not to say that this process

is without problems: those in power can use these structures to claim that the processes around

risk assessment are fair, when the probabilities and consequences of those risks are unevenly

distributed.

As risk is ‘cultural,’ differing viewpoints and the structures of power in society can make

it a moral issue in several respects. Beck [1992, pg23]’s ‘risk society’ perspective should also be

considered here:

“[risks] only exist in terms of the (scientific or anti-scientific) knowledge about them. They

can be changed, magnified, dramatized or minimized within knowledge, and to that extent they

are particularly open to social definition or construction.”
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Those who are exposed to risks can be subject to blame. The moral dimension of risk and

blame is important to address. Those on the margins may be subject to higher levels of risk, and

this distribution blamed on ‘choices’ they have made. For example, an individual may ‘choose’

to work at a hazardous job, because they have to work to survive, not because they truly want

to work in those conditions. This ‘choice’ comes into play when the consequence of the risk is

considered: the individual may be blamed for what may happen, since they were aware of the

risk. It should therefore not be assumed that science and values are so easily distinguishable.

Risk decision-making is not, fundamentally, a conflict between these two, but a balance. It is

important to consider the potentially numerous subsets of the population: those who die, who

become ill, who are infected or otherwise affected, who are exposed, and who are susceptible

[Katz et al., 2014].

Further, individuals can be socially constrained and afflicted by risks (not solely physical

ones) ‘voluntarily.’ A worker may ‘choose’ to continue to work in an office where they

experience workplace harassment, for example, because finding a new job may be too difficult

or impossible. Not working is an impossibility for many considering the neoliberalisation of

welfare systems worldwide, a consequence of which is the individualisation of responsibility.

Put simply, under neoliberal welfare systems, the individual, not the state, must help themselves.

Not all exposures are equally likely to engender negative health effects, and Anderson and U. S.

E. P. Agency [1983] call for ‘reasonableness’ (again) around low dose and low risk thresholds,

though there remains uncertainty. To reiterate, a more discriminate form of analysis is required,

that includes both substantively- and theoretically-driven objectives. The worksome, which

explicitly articulates this kind of interaction between exposure and risk, does this.

The assessment of risk, and the actions to take from this assessment form an important

part of public policy, especially that around the health consequences of those risks. Risks are

uncertain, and subject to what Bourdieu [1998] termed the ‘law of conservation of violence,’

whereby risks and exposures must be paid for in some sense. Risks are largely socially defined,

and inequalities arise when risks are externalised from firms outwards in neoliberal economies,

which, as discussed in Chapter 2, are an idée force, or an ideal with social power. These risks

are imposed or shifted often through the flexibilisation of employment, which Peck [1996, pg23]

(1996, p23, emphasis in original) argues is ‘an exercise of capitalist control.’ This is a source

of health inequalities: those who take on the risks are often not those who create them, yet as

described earlier, suffer the consequences and blame for what occurs. It is often the constrained

worker who must ‘pay’ for the risk or exposure, due to increased instability and decreased control

over work practices and organisation. These changes occur over the life course, and in order to

examine and understand how these exposures, both tangible and intangible, happen and are

processed, a robust conceptual framework is required, as suggested by Kim et al. [2012].
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3.3. The Worksome

The worksome is a theoretical framework that organizes the factors that impact human health.

It is a representational model of the factors and interactions that can impact health. Extending

the past concept of the “exposome,” the worksome is innovative in the way it classifies and

models interactions between the social and physical components of exposure. It is precisely

these interactions that recognize the fact that not all individuals may be harmed by a given

workplace, but that the interactions between the workplace and other social factors drive health

outcomes.

Paracelsus established the concept of dose-response by stating “solely the dose determines

that a thing is not a poison” [Borzelleca, 2000; Paracelsus, 1538]. This can be applied to many

models of exposure and contexts. Not all effects caused by an exposure are harmful, which

is similar to not all jobs causing ill health. The occurrence and intensity of effects are related

to dose in the toxicologic framework; dose is thought of as meaningful when its pathway and

interval of exposure are indicated [Loomis and Hayes, 1996]. These concepts underpin much of

exposure science and epidemiology, and one such model of how exposures may come together

is the exposome (figure 3.1), which is the precursor to the worksome.

The exposome was developed by Wild [2005] in response to the sequencing of the human

genome, and to incorporate the life-course approach to exposure into epidemiology [Ben-Shlomo

and Kuh, 2002]. The exposome includes three separate - but related- domains that encompass

pathways to and effects on health, the internal, specific external, and general external [Wild,

2005, 2012] whilst also capturing both nature and nurture [Miller and Jones, 2014]. This sort

of life-course approach is appropriate for work (which we can define as a ‘general external’

element) as it accounts for a large proportion of time in a life-course [Bambra, 2011; Payne,

1999; Peck, 1996], and it can impact how lives are lived outside the workplace [Kleiner and

Pavalko, 2013]. Working consumes a large part of any life course, regardless of whether that

work is formal or informal. The general external elements, like work, of the framework are, in

the general version of the exposome assumed rather than measured, as work with the exposome

is predominantly top-down, focusing on physically measurable exposures [Rappaport, 2011].

The exposome has been adapted for health inequality research, notably by Juarez et al.

[2014] who created ‘the public health exposome,’ which focuses primarily on environmental

health. Research creating various types of exposome, for instance the exposomics project [Vineis

et al., 2017], the public health exposome [Juarez et al., 2014], and the occupational exposome

[Faisandier et al., 2011], focuses on the use or adaption of the exposome more with respect to

biological analyses and issues which may arise thereof, without realising that other approaches

using survey data may also be suitable under the paradigm [Brunekreef, 2013]. The worksome

is an expansion of the exposome, in order to account more strongly for the social determinants

of health, and the interactions between the scales of exposure.

The worksome expands on the idea of exposure to include a social-physical gradient,
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Figure 3.1: The exposome [Wild, 2012]

integrating the idea of intangible exposure (Figure 3.2). The worksome is necessary to explicitly

model workplace in order to draw out lower-level scale (micro/meso) exposures, vectors, and

effects. The worksome emphasises the importance of the scale of exposure and the interactions

both within and between scales. It can include individuals, work groups, firms, industries,

with other geographic and contextual (geocontextual) factors existing at the same or different

levels, such as the workplace, the city, or the regulatory regime at varying levels of government.

When data are collected, they are often structured consciously on particular scales, and therefore

particular social structures, which are historically contingent, and subject to production or

alteration by those in power [Sayre, 2005]. Jonas [2006] argues that “scalar-defined geographic

processes” can empower or disempower individuals, and this can impact, for example, on their

health outcomes. Therefore, including scales is important, and finding the right scales to include

in an analysis using the worksome is therefore highly important. As a practical matter, the extent

of an analysis is in part determined by scale and data availability.
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Figure 3.2: The worksome, published in [Eyles et al., 2019]

Scale can be seen in the worksome (figure 3.2), as each bubble can represent a single scale

(i.e., the internal) or a set of scales (the geocontextual). In geography, scale refers to, most

simply, the levels, or sociospatial categories (e.g., local, international) at which geographical

units, or what could be termed ‘places’ (e.g., cities, regions) may sit, as well as their size and

how they relate to one another [Marston, 2000; Sayre, 2005]. The geographies are highly relevant

to research into health as place “constitutes as well as contains social relations and physical

resources” [Cummins et al., 2007, p1825, italics in original]. The temporal element must not be

neglected either, as analysis can be conducted along different timescales, and life courses are, of

course, different lengths.

Specific delineation, however, does not mean that scales are rigid. Delaney and Leitner

[1997], argue that scale is often constructed. The worksome takes scale as a fluid, interactive

concept of levels, while keeping in mind that the scale at which an effect is experienced, as

well as the delineation of those scales are often socially and politically mediated. This in turn

goes along with how Sayre [2005, pg280] describes scale as “an attribute of how one observes

something rather than of the thing being observed”. Thus, scale is relational, and taking it as an

interactive concept allows for the linking of research, which may vary over scales, in different

contexts (i.e., differing regions, countries, or times).

The physical-social aspects of exposure are represented in the worksome model (figure

3.2) by the social gradient linking the physical to the geocontextual and the workplace. This

encompasses largely physical exposures such as chemical handling [Arif and Delclos, 2012]
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, predominantly social exposures including social support [Niedhammer et al., 2013], and

exposures which are inherently both physical and social and fall between the extremes, such

as working time [Dembe et al., 2005; Kivimäki et al., 2015]. Working time is both physical and

social. It is physical, since the time spent exerting oneself or being present at work is a physical

aspect of work, but it too is social, in the sense that it is also the time spent being exposed to a

variety of (physical and social) working conditions. To expand on the social aspect of working

time, it, in a meta sense, mediates how other working conditions are received and is mediated

itself by interactions within the workplace, e.g., an individual’s relationship with their manager.

As well, the specific contacts with a variety of people, be it colleagues, or perhaps clients, are a

part of working time.

Social exposures are essentially intangible, something which is emphasised in the social-

physical gradient of the worksome, and it is an exposure type not emphasised by the exposome.

Social exposures can be related to the social determinants of health in some respects. The social-

physical gradient of exposure in the worksome model allows for flexibility in analysis as it

provides a framework within the worksome for disparate and similar-but-different measures of

exposure to be compared. Siegrist et al. [2010] argues that these are all measurable, through the

careful application of theoretical concepts and reliable, valid social science research methods.

Moreover, individual-level exposures and workplace level exposures interact: individuals within

a workplace are affected and have effects upon workplace-level characteristics. Individuals,

therefore, cannot be considered solely as discrete entities, but as relational ones, with respect to

the work-health relationship along the life course. The worksome is novel, since it represents

the pathways and direction of the relationships.

Returning to the life course approach, Ben-Shlomo and Kuh [2002] describe four pathways

which should be integrated into research, using the example of adult respiratory disease. The

pathways are labelled as predominantly biological, predominantly social, sociobiological, and

biosocial. These are partly accounted for in the exposome, but its approach to the social

aspects of exposure is weak. The worksome improves on this through the physical-social

gradient of the worksome. The examples for each pathway, using adult respiratory disease

as the endpoint are: impaired fetal lung development leading to impaired adult lung function

(biological), adverse childhood SES influencing adverse childhood exposures and lifestyle

choices in adulthood (social), adverse childhood SES being associated with the ‘likelihood of

exposure to infectious agents’ (sociobiological), and finally, ‘repeated childhood infections’

leading to poorer educational attainment and adult SES (biosocial) [Ben-Shlomo and Kuh,

2002, pg285]. This can be seen in the worksome’s integrated, interactive approach to scale

and exposure: the directions and pathways to the endpoint of a health outcome are not always

linear. Some of these pathways are influenced by those above the individual and workplace, or by

interactions within the workplace and between individuals, or even within individuals (internal

scale).

The worksome has an explicit model for geo-contextual factors. This is because

workplaces are also located within geographical contexts, be it in relation to other firms,
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related industries, as well as in social and regulatory contexts. Geocontextual influences are

an undercurrent and require consideration in work-health research. Geocontextual effects have

long been considered of high importance and relevance to understanding health outcomes [Jones

et al., 1987]. Further, a geographical approach has been argued to help support public health

policy [Dummer, 2008]. Interactions within and between the domains of the worksome must

be emphasised – people exist at multiple scales simultaneously: ‘echoes’ of past actions or

consequences are reflected in these interactions as well. Time, or the life course, is an important

element of the worksome. A given individual’s contribution can prevail and the residual impacts

remain with people for a long time after the initial exposure, as well as influencing their and

others’ behaviours. In addition, a person can change jobs, move to different areas, and live many

different types of life in an individual life course. Trajectories can change, be it due to individual

choice or structural factors. In terms of exposures, and the health outcomes arising from them,

there can often be a time lag, or latency period between exposure and outcome.

With respect especially to time, the life course approach allows the worksome to also

cover those who are unemployed or engaged in informal work. The former are incorporated

as they move in and out of the workforce. The latter are encompassed as the worksome does

not distinguish between formal and informal work, in the sense that they are both considered

equally under the framework. Indeed, there are a number of papers examining life trajectories

and career typologies with respect to occupational mobility, for example, and these approaches,

often using sequence analysis or latent class analysis, can and should be emulated in work that

examines the relationships between working conditions and health [Anders and Dorsett, 2017;

Corna and Sacker, 2013; Haapakorva et al., 2017; Scott and Zeidenberg, 2016].

Movement between occupation types, such as from manufacturing to low-paid service

sector, has been connected with poorer health using these approaches [Kampanellou and

Houston, 2016]. Employing latent class models, Corna and Sacker [2013] modelled the lifetimes

of older British adults, particularly around the labour market and family experiences, finding

significant differences in the mental health domain. The worksome is useful in this respect over

the exposome as it adds specificity and interaction between the domains, meaning that those

experiences can be modelled both where they occur and how these occurrences interact with

experiences in other domains. This is a result of the strong emphasis on the scales of these

exposures and experiences. Further, it has a social-physical exposure gradient which allows

more explicitly for intangible exposures.

One important emphasis of the worksome is on using occupation specifically. Ideally,

workplaces themselves would be modelled or examined. However, it is often not practicable to

survey or conduct qualitative research on multiple individuals in multiple workplaces. Further,

epidemiological and social health research often use secondary data, which are economical and

reproducible [Idler and Benyamini, 1997]. This means that reliable occupational classification

systems are necessary. However, as the next section will discuss, social class is often used in

place conceptually over occupation, or as a proxy for occupation when it is a separate social

determinant of health, and when looking at work and health, occupation is a more appropriate
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dimension.

3.4. Why Occupation, and not Social Class?

According to Liberatos et al. [1988, pg89], “many sociologists feel that occupation is a reliable

single indicator of relative standing in industrial societies”. Most social class classifications are

based in some notion of the social value of particular occupations, but as will be argued, the

divisions between classes are often arbitrary and atheoretical. There is a certain inconsistency,

whereby classes both are hierarchical, and they are not – sometimes labelled as ‘relational’.

Inequalities of opportunity are socially constructed and politically mediated; it is not only the

job itself that is important but the type and nature of it and its social (and arguably, geographical)

distribution [Peck, 1996]. The worksome takes these factors into account, through time and

context. Bambra [2011] maintains that labour types and statuses have an inherent social status,

which leads to those of differing statuses selecting into different occupations. This selection bias

reflects the circumstances of those in those jobs and their ‘choices’. Siegrist et al. [2010] argue

that the distribution of working conditions is “socially patterned”, in that those of lower status

tend to experience more adverse working conditions, and attribute it to a social gradient overall

in these conditions. Social status and occupation are linked and reflected in the ‘occupational’

class classifications still used today in many studies [Liberatos et al., 1988].

Occupation in some form is widely used as an explanatory variable to represent social class

in health research MacDonald et al. [2009]. Often education, income, and occupational class are

interchangeably analysed in studies in health inequalities [Geyer et al., 2006; Lahelma et al.,

2004; Liberatos et al., 1988; Macintyre et al., 2003]. Geyer et al. [2006] concluded that these

factors, though correlated, measure different latent social and causal phenomena, and should

not be used interchangeably. This was done by examining the independent effects via Cox

and logistic regressions of education, income, and occupational class on four separate health

outcomes on German and Swedish populations [Geyer et al., 2006]. Whether education, income,

or occupational class showed strong effects on health was dependent on the outcome measured,

but the effects were still nonetheless independent [Geyer et al., 2006]. Careful consideration

of the health outcome in question is also necessary, in order to avoid pragmatic or convenient

choices not driven by substantive or theoretical rationale [Macintyre et al., 2003]. Social class

is more complicated than occupation alone – it is a hierarchical measure of socioeconomic

positioning.

The variety of ways in which social class has been historically articulated, and the difficulty

of comparison, e.g., where does a skilled, successful tradesman lie compared with an unskilled

white-collar worker, means that social class is less than ideal as a social determinant of health,

especially considering working conditions [Savage et al., 2015]. Savage et al. [2015] also point

out that income and social class do not always match – some in the higher managerial and

professional class are in the bottom 20% of income earners: incomes within each social class

can vary significantly. The selection of certain occupational groups into particular social classes,
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in some regards, then, lacks substantive validity.

Occupations can be ranked in multiple ways. The two most common are prestige-based,

i.e. social-value based classifications and socioeconomic-based, i.e. education- and income-

based classifications. Marmot et al. [1991], in the Whitehall II study, use the civil service grades,

which are, essentially, a hierarchy of job status, strongly related to income. Social class can also

be articulated through education, background, or even in relation to something people have or do

not have [Leiulfsrud et al., 2010]. Social classes should and do change over time as (the nature

of) work changes as the social prioritisation of certain types of status shifts. However, this

change over time makes them unsuitable for the type of life course analyses that the worksome

advocates for – while it is plausible for an individual to change classes through their life, if

the classes themselves continue to change, it makes for unwieldy or irreconcilable analyses that

cannot be carried into the future.

Social class was defined occupationally by the Registrar General’s Office in 1911 into five

categories [Pamuk, 1985]. Savage et al. [2015, pg35] assert that the “‘occupational’ measure of

class was actually a way of making cultural judgements about the ranking and social importance

of jobs.” Indeed, this classification did change over time, as, for example, approximately a

quarter of occupations changed classes between the 1951 and 1961 revisions [Liberatos et al.,

1988]. Occupations in this scheme change class every census, and Pamuk [1985] points out that

the Registrar General’s Office warned that the classes should not be compared longitudinally.

Distinctions between classes can be difficult to identify, especially through time, due to their

‘inherently relational logic,’ which is readily impacted by social change [Leiulfsrud et al., 2010].

Cambois et al. [2001] emphasise the importance of limiting intergroup mobility in order to

measure more permanently individual SES, but, as argued above, social class is far too erratic

over time to be used in this way. Furthermore, social class measures struggle to find the same

strength of difference or inequality amongst women, meaning they fail on gender [Cambois et al.,

2001; Leiulfsrud et al., 2010; Marmot et al., 1991].

Occupational classification systems change far less over time; the ISCO classification

system was created in 1957, and was revised in 1968, 1988, and 2008 [ILO, 2010]. This is

more due to occupations being created (computer programmers, for example, were only just

starting to exist in 1957) rather than the social value of any given occupation changing, as they

do in social class classifications. It is unlikely that the lawyer classification will change into the

travel guide one. Cambois et al. [2001] give the example of French teachers, who historically

have some of the lowest mortality rates, despite low incomes and classification. Using social

class would miss these finer nuances at the occupation level.

Using occupation alone also requires little practical change, as the procedure of generating

many modern social class classifications often begins with occupational information, often as

International Standard Classification of Occupations (ISCO) codes, which are adapted for use

in different countries [Connelly et al., 2016]. Furthermore, there is likely to be more consensus

both between actors and contexts through time about who constitutes any given occupation, and
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generally what this occupation entails. Occupational classifications can even allow for those who

are working informally or under other unusual arrangements [Eurostat, 2020b]. Martikainen and

Valkonen [1999] found that the economically inactive are not well captured by social class, based

on occupation, but this can be mitigated by the life course approach of the worksome, whereby

previous occupation can be accounted for.

Corna [2013] argues that socioeconomic position is not fixed over time and should not

be considered as such. Further, in the British context, and many others, the labour market has

changed radically over the last 30 years, with large changes to dominant industries, employment

arrangements, and occupational structure [Siegrist et al., 2010]. This means that social class,

while important as a unit of analysis in some cases, at the very least needs supplementation with

alternative views, as well as careful consideration of whether it is appropriate to use in any given

study. Therefore, the worksome framework will recommend using a system of classification

that is relatively fixed, to allow for the robust inter-temporal and contextual comparisons and

analyses.

To summarize, how occupation is conceptualised, and operationalised as well as how it is

measured. is key to identify the linkages between observed conditions and health [MacDonald

et al., 2009]. Operationalising occupation as a measure of class may confound the actual impact

of occupation itself and the conditions therein. The role occupation plays in analysis and how it

is controlled may have consequences for any study [Liberatos et al., 1988]. While socioeconomic

status is inclusive of occupation to some degree, it usually is measured through the ‘class’

system, income, or educational attainment rather than working conditions within occupations

themselves.

The problem with using occupation as a stand-in for socio-economic status is that there

are nuances within and between each class with regards to working conditions and exposures.

Social class is also articulated differently in different societies, as what holds social value can

vary significantly between contexts. This can reduce the transferability of results because of

variation in social class measures and contexts. An occupation-specific classification system is

therefore required. Fortunately, the International Standard Classification of Occupations (ISCO)

was developed to allow for international comparison of occupations for research and policy. The

ISCO has influenced the development of national-level standard occupational groups which are

readily translatable to ISCO, including the British Standard Occupational Classification (SOC),

the UK adaptation [Connelly et al., 2016].

Furthermore, as Braveman et al. [2005] rightly point out, questions on socioeconomic

comparability arise when individuals have one similarity alone (i.e., same level of education,

but other characteristics may be different). Liberatos et al. [1988] warn that misleading results

may be obtained due to either using the wrong indicators or random misclassification during data

collection. Inequalities can and do exist outside of the (institutional) class system [Leiulfsrud

et al., 2010]. Individual socio-economic indicators do not all relate in the same way to health

outcomes. Using measures as a proxy for one underlying phenomenon is poor practice, though
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one often done, i.e., occupation for class [Shaw et al., 2000].

3.4.1. Example: The Genesis of Mortality and Class Demography in England and
Wales

The stratification of mortality by social class began in England and Wales in 1851, in the

‘Decennial Supplements to the Annual Report of the Registrar General’ [Elo, 2009]. Further,

from the 1920s, they were linked to the Registrar General’s social classes, first developed in

1911, and these class inequalities in mortality persist even to today [Elo, 2009]. Cambois et al.

[2001] suggest that a there was a lag in survival improvement, with decreases in mortality

filtering downward from high to low status groups. These assume a constant, or widening

gap, perhaps this due to “equivalent changes in mortality and disability” for each group, or

disproportionate experiences of improvements [Cambois et al., 2001, pg515]. This may be

indicative of a problem with the way these groups are operationalised [Murray et al., 1999],

which is often a function of method or dataset, or even due to a standardised approach rather

than having solid theoretical ground. Further, these classifications may be reflective of bias on

the part of their creators, who, like everyone, are influenced by and influence the class system.

Macintyre et al. [2003] argue that the Registrar General’s scale was in part calibrated

by class differences in mortality. In effect this makes analysing mortality by social class an

endeavour with a redundant conclusion, as what is used to make the classes contains a hierarchy

based on a particular result, i.e., a class gradient of mortality. Jones and Cameron [1984, p37]

argue strongly against the use of the Registrar General’s social classes, calling them “engineered

to conform to the prejudices of narrow-minded professionals and blatantly manipulated to

produce smooth mortality gradients.” Pamuk [1985] further argues that ‘a continuous decline

in mortality differentials’ is empirically unsupported, and the notion of it is victim to the old-

fashioned scientific ideal of ‘perpetual progress,’ with a unilinear history.

Scott [2002] describes the development of the class system by Stevenson and his colleagues

in the General Registrar’s office, which was largely based in their own experiences and instincts

of class. Grusky and Sorensen (1998) argue that these sorts of classifications often echo

“the interests and assumptions of the classifiers themselves (i.e., statisticians) rather than the

operation of more fundamental technical or social boundaries.” The rationale for tinkering with

the classification system often appears to be arbitrary and atheoretical. In order to adjust

the Registrar General classes, for example, Scott [2002] further claims that the standardised

mortality ratio (SMR) was used to decide on cut-offs for the classes. This was done to create

a smooth gradient and emphasise contrast. As a system, these classes and similar may not be

entirely based in theory or principle, and indeed, are designed to generate a particular statistical

result. This means that another approach is necessary.

The National Statistics Socio-Economic Classification (NS-SEC) was developed to solve

the (partly hierarchical) issues with the Registrar General’s scale, based on employment relations

and status. The NS-SEC is said to group people who experience similar life chances and
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lifestyles partly due to employment relations [Connelly et al., 2016]. The NS-SEC allegedly

does not have an implied hierarchy, and is a ‘relational’ scheme rather than an ordinal one

[Oakes and Rossi, 2003]. But as Macintyre et al. [2003] rightly point out, the terminology

used for the classifications show a clear hierarchy. Indeed, in the threefold version of the NS-

SEC, the third level is ‘lower occupations.’ Scott [2002, p27] argues that “there is not, however,

a straightforward linear hierarchy across all classes for all variables.” A final argument against

social class schemes of this sort is the heterogeneity within classes [Connelly et al., 2016; Pamuk,

1985; Scott, 2002]. That is to say, people within the same category can hold fairly different

social positions, and can have vastly different life chances and experiences, as well as, more

relevant to work, working conditions and employment relations. If social class groups are fairly

heterogeneous, and generated in part with the outcome under analysis (i.e., mortality rates),

more discriminate and homogeneous groups are required. This is why the worksome advocates

for analysing individuals using occupation, rather than class, especially with respect to working

conditions and how they may relate to health.

MacDonald et al. [2009] found in their review of occupation use in epidemiological

research that while 83% of projects collected descriptive occupational measures, less than half

used these data in published analyses. Often, only broad categories are used [Elo, 2009], which

do not always add much to the analysis, especially with new, precarious modes of work that

transcend the manual/nonmanual or white/blue collar divisions. In addition, most research used

occupational and workplace information to represent environmental exposures or to control

for socioeconomic status, though MacDonald et al. [2009, pg1416] argue that “authors rarely

acknowledged the likely interdependence and interaction of SES and workplace conditions,

despite considerably theoretical and empirical evidence linking the two.” Elo [2009, pg555]

argues that the various measures of SES are “linked to distinct proximate determinants of health

and mortality,” emphasising the importance of examining “multiple dimensions of social class

that may have an independent influence on health outcomes.”

Unpacking the dimensions of SES is important in matters of effective public policy, though

social ranking should not be used as a determinant of health, if structural elements of inequality

are to be properly uncovered. This is why the worksome accounts for multiple dimensions,

pathways, and interactions between occupation, income, employment, and health. Social ranking

is undeniably socially mediated, and the measurement, operationalisation, and validation of

measures of this are created by those who experience the system in particular ways, and therefore

contains some element of bias. [Murray et al., 1999, pg540] argue that, via the definition

of health inequalities as “the difference in health status between social groups, with lower as

compared to higher social position, does not allow for scientific inquiry into other determinants

of health inequality across individuals.” Further, there is likely not one latent underlying social

dimension represented by class, a convenient catchall often integrating occupation, education,

income, and job status. There are multiple dimensions, pathways, and interactions at play, which

the worksome framework accounts for.

Macintyre et al. [2003] argue that measures of SES are often used interchangeably to
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examine ‘similar underlying constructs.’ Also, Leiulfsrud et al. [2010] assert that often social

class systems can not be decomposed, such as occupation, even if occupation is an important

element in the classification. The NS-SEC, for example, is partly composed of the UK version

of the ISCO classification codes. There is nonetheless still a strong belief, despite awareness

to the contrary, that due to this alleged single latent social phenomenon, one SES indicator

can be substituted easily for another in analysis [Geyer et al., 2006]. This is an ultimately

unproductive belief, as effective policy requires effective research, that is able to articulate the

social determinants of health inequalities. While class may have a place in this, its dominance in

the research landscape should be called to question.

To conclude, it is not just the theory of SES but how they are operationalised that matters,

in terms of understanding social inequalities, especially with respect to reliable comparisons

and analyses of data from a variety of contexts [Leiulfsrud et al., 2010]. It is indeed possible

or desirable to employ more than one standard classification system, to allow for alternative

views which may hold advantages for particular types of analysis. This is especially true

substantively, where one measure of SES may show a stronger effect on a given outcome,

though the effects of the others should be considered [Geyer et al., 2006]. If the relationship

between working conditions and health is of interest, then stratifying or analysing by occupation

rather than social class is likely to be more appropriate, as will be shown in Chapter 7. This

is where empirical validation of occupational classifications over social class is undertaken.

Macintyre et al. [2003] assert that while research often asks which classification “‘best’ measures

socioeconomic gradients in health,” there is an implication that a universal relationship between

SES and health exists. They warn against looking for the ‘best’ measure by simply finding

the strongest association or effect [Macintyre et al., 2003]. While the strongest association

might nonetheless be indicative of substantive importance, theoretical importance and relevance

should also be crtieria for which classification system to employ. Indeed, Connelly et al. [2016]

argue for a flexible approach, being inclusive of theory (which they contend does not always

influence substantive results). Considering research objectives and policy goals substantively

and theoretically when making these choices is also important.

Therefore, justifying one classification over the other requires ”robust empirical and

theoretical adjudication” [Leiulfsrud et al., 2010, p1]. I provide this justification later, both in

Chapter 7 and in Eyles et al. [2019]. In both cases, an empirical justification for the worksome

framework is provided that supports its explicit focus on occupation by comparing different

classification systems in the context of working conditions and health [Eyles et al., 2019].

3.5. Conclusion

Using the language of biomedical epidemiology is key to the worksome approach; the goal

is to not only forward a clearer and comparable set of social research projects but also to

develop clearer research findings for policymakers and other scientists. This allows for informed

decision-making and more effective policy. Policymakers are familiar with risk assessment
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information, as it has been used by many governments for years, and therefore research using

this combined framework will be more visible and adoptable [Anderson and U. S. E. P. Agency,

1983]. The worksome makes explicit the elements that the exposome treats as givens, allowing

for the use of language familiar to policymakers while including effects that may not be

considered explicitly in the biomedical approach. This framework can help fit disparate pieces

of research together and contextualise them to form a wider collective of research.

The explicit focus on workplace and occupation allows for the examination of finer

differences between individuals. Cutler et al. [2006] argue that the catchall of socioeconomic

status (SES) covers a range of concepts, but that its constituent parts may have separate effects

on health. Furthermore, they argue that these groupings can be ultimately unhelpful for the

implementation of research in policy, where more discriminating classifications are required to

test and implement policy. Scott [2002, pg26] argues “for most purposes a far more fine-grained

economic classification is likely to prove useful.” This approach also allows for the examination

of differences at the occupational level that may be obscured by the larger categories of social

class classifications [Connelly et al., 2016]. Flexibility is important, as for research involving

people, a complete body of research is impossible as society is constantly changing, so gaps in

research are to be expected, and can be filled. The current paradigm of research, where social

class is used as a proxy for a wide range of different circumstances, rather than occupation,

misses out on the specificity of occupation-specific classifications, and the ready transferability

between contexts. Without quantifying the risk, there is less information for policymakers to go

on in order to balance risk with (socio)economic concerns [Anderson and U. S. E. P. Agency,

1983]. Furthermore, these models are widely used by government agencies often to address

environmental health, and therefore are more familiar to a wider variety of audiences [Stern

and Fineberg, 1996]. As risks themselves are socially defined and constructed [Beck, 1992],

it is therefore acceptable to address the work-health relationship within this framework. It is

therefore important then, in analysing this relationship through the worksome which includes

aspects of the risk model and the exposome, to take into account different contexts and scales –

not all jobs are the same, and not all people in the same job will be similarly affected, but some

will be.

Social class has its place in analyses, but something more exists, so through the worksome,

I argue, we can look for what is missing from contemporary analysis into SES and health.

Employment relations and the hierarchies that result from them in terms of social class are

complex. It is therefore more appropriate to perhaps take into account these conditions in

analysis, rather than having the ‘black box’ of social class schemes, so that we may examine the

constituent parts in order to be able to influence policy. There are a variety of reasons occupation

is preferable as a unit of analysis in the worksome framework. Social class classifications can

reflect the bias or class experience of their creators, and at times, the criteria used to create the

groups themselves may use the outcomes we are interested in analysing as criteria for group

assignment itself. For example, if the groups are based in part on particular morbidities, then

this will influence, I suggest detrimentally, any analysis of morbidities using those groups. They
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have smaller numbers of groups, which can be fairly heterogeneous in terms of social position,

especially in the middle. These sorts of schemes also change significantly over time as social

priorities and value shifts. Most simply, the identified composition of social classes can vary

between places and times, meaning research using these is difficult to compare and translate into

policy. Therefore, occupation provides a temporally and geographically more sound system for

examining working conditions and health.

The worksome can provide a transferable framework for research into work and health

across these contexts. Through its flexibility, it can accommodate research from a variety

of scales and contexts, allowing for the conceptual linking of disparate yet related studies.

Further, by examining occupation, it eliminates the aforementioned difficulty of comparing class

contexts. Occupations, while socially mediated, are not, like class, socially defined, and are more

readily conceptually transferable between contexts.

The worksome is an expansion of a familiar concept, the exposome [Wild, 2005, 2012], and

encompasses a life-course approach, as work is something which generally consumes a large part

of any given individual’s time. The exposome was explicitly chosen as a base, as its biomedical

language and approach is well understood by policymakers. The worksome is useful over

the exposome as it adds specificity and interaction between the domains, has a social-physical

exposure gradient, allows more explicitly for intangible exposures, and emphasises scale more

strongly. The worksome reorients the way in which the relationship between occupation and

health is understood – as an interactive, multi-scalar framework of exposures set along a social-

physical gradient (figure 3.2). By integrating scales, times, individuals, and geographies and

their interactions, the complexities of these relationships become clearer. Further, the worksome

promotes a new paradigm for health inequalities research, namely an approach which prioritises

looking at finer details and the interactions between individuals, scales, and contexts. Finally,

the worksome also allows for alternative views on sources of and influences on inequalities, due

to its flexible approach to exposure, and interaction between individuals, scales, and contexts.

The following chapter will present the datasets chosen to empirically investigate the worksome,

as well as the methods employed for the analyses.
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Data and Methods

4.1. Introduction

1 The worksome provides a theoretical framework for examining the relationships between

working conditions and health. While one major research objective of this thesis is to develop

this transferable conceptual framework, other objectives also include identifying and confirming

these relationships, as well as specifying working conditions which underlie them. The

worksome framework allows for these objectives to be met, through specific research questions,

importantly those addressing changes through geographies, over time, across occupation types,

and within individuals. The specific research questions address these changes, and, the

final research question is to examine them in the context of specific health outcomes. The

structure of the worksome answers this: it explicitly includes scales of exposure and a social-

physical gradient of exposure, which draws out the relationships between working conditions,

demographic variables, structural scales and health outcomes.

In order to answer the research questions posed by this thesis and meet the research

objectives, quantitative analysis is employed to examine general health, as well as a set of specific

health outcomes. This will provide empirical support of the worksome concept. Temporal,

spatial, and occupational variation will also be examined at the national level with the European

Working Conditions Survey (EWCS) data [Eurofound, 2020], and at the subnational level with

the British Household Panel Survey (BHPS) data [University of Essex, 2018]. This chapter will

describe the datasets, provide some exploratory descriptive statistics and maps, and discuss the

most appropriate approach to analysing the data, namely (multilevel) logistic regression.

4.2. Data Choice

The European Working Conditions Survey (EWCS) and the British Household Panel Survey

(BHPS) were chosen over several other datasets. The Whitehall and the Census datasets were

also considered but excluded for a number of reasons. The Whitehall data were excluded because
1Some text in this chapter was taken from the paper published in Social Science and Medicine [Eyles et al., 2019]
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it is only about a specific population within the UK Civil Service, whereas research question 5

is about the impact on different types of occupations, not all of which exist in the Civil Service.

Furthermore, conclusions drawn from the Whitehall data may be more difficult to generalise

because of this specific population, meaning empirically supporting the worksome, a broad

theoretical framework, would be difficult. The Census was not chosen as it does not have many

variables with respect to working conditions, and it is difficult to obtain specific individual-level

data. By contrast, the richness and depth in the EWCS data is ideal for exploring the worksome

across countries.

The BHPS was chosen to complement the EWCS data, because it matches in terms of time

with the EWCS waves: the EWCS was collected between 1991 and 2015, the BHPS between

1991 and 2008. This means that they are more readily comparable than data collected later,

like Understanding Society, the continuation of BHPS. Furthermore, where the EWCS data are

repeated cross-sectional, the BHPS data are longitudinal, and do have several health outcomes

and working conditions assessed throughout. The EWCS data are tailored towards examining

working conditions specifically, and have many health outcome variables, though this does vary

by wave. Furthermore, the international extent of the EWCS data is of particular interest, because

of the differing legislative environments.

The EWCS data in particular are very rich, but poorly explored in health research. Other

work using the EWCS has not approached health with a holistic theoretical perspective. With the

worksome as a theoretical framework, however, a more purposeful, broad approach is possible.

However, the EWCS does not have subnational data, and further, was taken as repeated cross-

sectional surveys, rather than a longitudinal survey. Therefore, the BHPS was also chosen in

order to investigate finer subnational geographic variation, primarily at the region level, and

examine in more detail the longitudinal aspects of the research questions, using the same broad

approach.

4.3. Data: European Working Conditions Survey

The EWCS dataset, specifically the 1991-2015 integrated data file, was obtained from the UK

Data Service [Eurofound, 2020]. EWCS is administered by the European Foundation for the

Improvement of Living and Working Conditions, or Eurofound for the European Union (EU).

The survey was conducted approximately every five years starting in 1991, repeating cross-

sectional waves in 1995/6, 2000/1, 2005, 2010, and 2015. Generally, the target sample size in

larger countries was between 1,000-1,500 individuals and 500-1,000 in smaller countries (see

figure 4.1). It should also be noted that not all countries are in all waves, and some dropped

out of waves and returned to the survey later. For example, Serbia was only in the 2015 wave,

while Kosovo was only present in the 2010 wave and Switzerland was omitted from the 2010

wave. The survey years 2000 and 2001 are presented separately here to show that they are

mutually exclusive and can be treated as one wave for the purposes of analysis. EU countries

were surveyed in 2000 and candidate countries in 2001 – candidate countries are those countries
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which are not in the EU but may be in the future [Eurofound, 2015; Paoli and Merllié, 2001].

However, despite the different status of these countries, the survey was administered with the

same questionnaire and approach [Eurofound, 2015; Paoli and Merllié, 2001]. To prepare for

the exploratory analysis conducted in Chapter 7, the countries have been sorted into welfare

regimes, following Bambra [2007]’s classification. The classification can be found in table

4.1. The graphs in this section are sorted into these regimes, so that more similar countries

are grouped together.

Figure 4.1: EWCS Countries through Survey Years. The 2000 and 2001 years
comprise one wave of the survey. The countries are sorted into welfare regimes

The sampling methodology varied in some minor respects by survey wave, and in some

cases by country. For example, Switzerland dropped out of the survey in 2010, but returned in

the following 2015 wave. In the case of this thesis, 1991 data have only been included in some

simpler preliminary descriptive analysis, as the data collection was much sparser; the survey

questionnaire itself only had 19 questions [Paoli, 1992]. All sample designs aim to include

only the ‘total active population,’ (i.e., employees or self-employed) excluding the non-working

population, aiming to only include those 15-65, though members of the respondents’ households

were also asked some basic questions, e.g., their sex, age, and employment situation [Eurofound,

2007, 2011; Paoli, 1992, 1997; Paoli and Merllié, 2001].

In 1991, the Survey was carried out by INRA, a European research institute, using a multi-

stage random design, whereby sampling points were drawn from ‘administrative regional units’

post-stratification (in the United Kingdom, electoral registers were used) [Paoli, 1992]. In 1995,

it was carried out by INTRA-EUROPE, using a multi-stage random design, and includes non-EU

workers working in the EU speaking the respective national language [Paoli, 1997]. In 2000, the

multi-stage random sampling methodology (for 1991, 1995, and 2000) was described as using

a ‘random walk’ procedure: using the Eurostat or national institute territorial breakdowns and
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Table 4.1: Welfare regime classification and component countries

Welfare Regime
Classification

Percent Component Countries

Conservative
Corporatist
(Bismarckian)

28 Belgium, Germany, France, Luxembourg, Netherlands,
Austria, Switzerland

Former USSR 6.52 Estonia, Latvia, Lithuania
Post-Communist 22.99 Bulgaria, Czech Republic, Hungary, Poland, Romania,

Slovenia, Slovakia, Croatia, Albania, North Macedonia
(FYROM), Kosovo, Montenegro, Serbia

Social Democratic 11.85 Denmark, Finland, Sweden, Norway
Mediterranean/
Southern

22.6 Greece, Spain, Italy, Cyprus, Malta, Portugal, Turkey

Liberal 8.05 Ireland, United Kingdom

population densities, a list of sampling points was created [Paoli and Merllié, 2001]. Starting

points are then chosen for each sampling point and each interviewer follows the ‘random walk

procedure’; when a household is encountered where several individuals are within the survey

scope, the individual whose upcoming birthday is the nearest to the current date is chosen [Paoli

and Merllié, 2001, ’first birthday method’]. In 2005, the sampling design was further described

as stratified and clustered, though in Belgium, the Netherlands, Sweden, and Switzerland, a

different procedure was undertaken, as the ‘random walk’ had low response rates in previous

waves: telephone directories were used to select interviewees [Eurofound, 2007]. In 2010, the

survey was conducted by Gallup Europe, and the sampling methodology appears to be similar to

previous years, though samples in Finland and Denmark were not clustered [Eurofound, 2011].

In 2015, the Survey was carried out by Ipsos NV, and the sampling strategy was similar to

previous years [Eurofound, 2015].

The samples were also weighted in each wave in order to be nationally representative of

the economically active population, generally by assigning a weight to each individual varying

according to their ‘rarity,’ that is, said individual would have a higher weight if the group they

represent is under-represented in the sample [Eurofound, 2007, 2011; Paoli, 1992, 1997; Paoli

and Merllié, 2001].

4.3.1. EWCS Data Structure and Variables

In terms of the data themselves, many of the data items in earlier waves are not comparable with

later waves, especially in terms of health outcomes, but also for explanatory ones. Omitting data

from 1991, 1995, and 2000, due to missing information from both outcome and explanatory

variables, resulted in a loss of 61,559 observations, accounting for 34.4% of the initial dataset.

Questions about specific health outcomes, such as backache, were not asked to all respondents

in those years. There did not appear to be any pattern to the missingness on the explanatory

variables, so observations with missing data on explanatory variables were also removed from

the dataset, as their exclusion should not induce bias. Table 4.2 shows the exclusions from the

data. Those over 65 were also excluded, as the EWCS sampling frame consists of those aged
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15-65 [Eurofound, 2007, 2011; Paoli, 1992, 1997; Paoli and Merllié, 2001]. Figure 4.2 shows

the data by country and year after the exclusions.

Table 4.2: Exclusions from the EWCS Data.

Exclusion n
178,905 (total initial sample)

Full Exclusion Cases removed Cases remaining
1991 12819 166,086
1995 15986 150,100
2000 32754 117,346
Over 65s 3168 114,178

Exclusions due to Missingness
Education 806 113,372
Shiftwork 835 112,537
Weekly Hours 3427 109,110
Time Arrangement 659 108,451
Skill-Duty Match 1269 107,182
Satisfaction with Working Conditions 702 106,480
Appropriate Pay 1639 104,841
Night Work 1263 103,578
ISCO 1 digit (1988) (missing code) 520 103,058
ISCO 2 digit (1988) (missing code) 48 103,010
Converted ISCO 2-digit 2008 (missing code) 59 102,951

Total n: 102,951

Figure 4.2: EWCS Countries through Survey Years after Exclusions. The countries
are sorted into welfare regimes

The EWCS data include highly detailed information on occupations. However, in 2008 the

International Labour Organisation’s (ILO) International Standard Classification of Occupations

(ISCO) was changed. As such, to ensure it was possible to use as many waves as possible the

2005 wave was reclassified from the original 1988 classification into the new 2008 standard
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using the International Labour Organisation’s (ILO) International Standard Classification of

Occupations (ISCO) correspondence tables [ILO, 2016]. The ISCO is a classification system

which is structured (from finest to coarsest) into unit groups, minor groups, sub-major groups,

and major groups, “based on their similarity in terms of the skill level and skill specialization

required for the jobs” [ILO, 2016, np]. Table 4.3 shows the data split into the ISCO major

groups, which include categories such as technicians and associate professionals, and skilled

agricultural, forestry and fisheries workers. A sub-major group from the former major group

is, for example, information and communications technicians, and within that classification fall

several minor groups, including telecommunications and broadcasting technicians.

Table 4.3: ISCO 2008 Major (1-digit) Categories (n=10)

Occupation Frequency Percent
Armed forces occupations 477 0.46
Managers 7,251 7.04
Professionals 18,365 17.84
Technicians and associate professionals 14,236 13.83
Clerical support workers 9,035 8.78
Service and sales workers 19,282 18.73
Skilled agricultural, forestry and fisheries workers 3,303 3.21
Craft and related trades workers 12,642 12.28
Plant and machine operators, and assemblers 7,312 7.1
Elementary occupations 11,048 10.73

Facilitating international occupational comparisons is one of the objectives of the ISCO, so

therefore it should in theory be the most suitable classification system in the data. There is also

the Statistical Classification of Economic Activities in the European Community (NACE), which

is an industrial classification system. The data broken down into the major ISCO categories (n

in data=43) and 1-letter NACE categories are shown in tables 4.3 and 4.4 respectively. The most

common ISCO occupations at the major level are service and sales (18.73%) and professionals

(17.84%); the least common are armed forces (0.46%) and skilled primary industries (3.21%).

The most common NACE classifications are wholesale and retail (15.29%) and manufacturing

(14.65%), and the least common are extraterritorial organisations (0.12%) and fishing (0.10%).

For gender, the total sample is a 50/50 split, men to women, as would be expected with a

representative sample of the European population. The gender split for most countries is roughly

similar, although Kosovo, Turkey, Malta, Greece, the FYROM, and Switzerland have 45% or

less proportion of women in the sample, with the first three having under 40% women in the

sample. Portugal, Finland, Slovakia, Bulgaria, Latvia, Estonia, and Lithuania have 55% or more

proportion of women in the sample, with the last three having more than 60% women in the

sample (see figure 4.3). This country-level variation means that it may be necessary to account

for geography in the modelling strategy.

In terms of education (see table 4.5), most of the sample has finished (upper) secondary

education (42.24%) or the first stage of tertiary education (29.32%). The questionnaire uses

the International Standard Classification of Education (1997 version). The lower secondary

stage goes up to the end of compulsory education; the upper secondary stage tends to have an
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Table 4.4: NACE (1-digit) Categories (n=17)

Classification FrequencyPercent
A Agriculture, hunting, and forestry 4,642 4.54
B Fishing 103 0.1
C Mining and quarrying 527 0.51
D Manufacturing 14,992 14.65
E Electricity, gas, and water supply 1,324 1.29
F Construction 6,676 6.52
G Wholesale and retail trade; repair of motor vehicles and motorcycles 15,651 15.29
H Hotels and restaurants 5,018 4.9
I Transport, storage and communication 6,309 6.16
J Financial intermediation 3,128 3.06
K Real estate activities 9,214 9
L Public administration and defence; compulsory social security 6,779 6.62
M Education 9,171 8.96
N Health and social work activities 10,470 10.23
O Other service activities 6,750 6.6
P Activities of households as employers 1,161 1.13
Q Activities of extraterritorial organisations 120 0.12
Not classified 314 0.31

entrance requirement [U.N.E.S.C.O., 1997]. The first stage of tertiary education can include both

Bachelor’s and Master’s degrees, and the second stage is research oriented and includes PhDs

[U.N.E.S.C.O., 1997]. For the purposes of analysis, the education variable was split into those

with tertiary or above education, and those without, leading to a split of 69.34% without tertiary

education, and 30.66% with tertiary education. This was done as there would be a small number

of observations per country, per year, and per occupation, leading to the educational effect being

poorly estimated, following the example of von dem Knesebeck and Geyer [2007]. Tertiary

education was chosen as the split, as it is a commonly researched transition point in education

research worldwide [Aizawa, 2016; Gueudet, 2008; Pampaka et al., 2012; Raffe, 2008; Schindler

and Lörz, 2012].

Table 4.5: Educational Attainment

Classification Frequency Percent
Pre-primary education 528 0.51
Primary education or first stage of basic education 5,271 5.12
Lower secondary or second stage of basic education 14,617 14.2
(Upper) secondary education 43,489 42.24
Post-secondary non-tertiary education 7,505 7.29
First stage of tertiary education 30,183 29.32
Second stage of tertiary education 1,358 1.32

For variables relating to working conditions, several were selected, rather than using all the

variables available in EWCS, primarily to avoid overparameterisation of the model, and difficulty

in interpreting a large amount of effects. This is especially important given the multilevel

structure required by the worksome conceptual framework, which increases the number of

model parameters. These variables were selected for the set of theoretical reasons presented

in Chapter 2. To measure working conditions concerning working time, the variables are shift
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Figure 4.3: Gender Ratio by Country. The countries are sorted into welfare regimes

work, nights per month, working time arrangements, and hours worked per week. Working time

is of particular importance, as discussed in the literature review, since working time regulations

are a particularly contentious policy issue in the UK. Further, Dembe et al. [2005] argue that

working overtime is associated with a disproportionately higher level of occupational illness and

injury Appropriate pay for work was included because it can proxy job insecurity according

to Siegrist [1996]’s effort-reward imbalance model. Alternatively, people are willing to accept

risk for reward (i.e., pay), as Katz et al. [2014] argue. Skill-demand match, which includes

both control and efficacy in meeting tasks and the demands behind them was included. Finally,

satisfaction with working conditions was included firstly to ensure the other working conditions

still had an effect when this was accounted for, and secondly as it is an overall measure of an

individual’s feeling on the conditions of their occupation, which is relevant to health.

In terms of shiftwork, 19.57% of the sample works shifts. Splitting working time

arrangements by shiftwork shows that shift workers primarily have hours set by the company

(75.92%), whereas non-shift workers have more heterogeneity in terms of their working time

arrangements. Nights worked per month is a reasonably right-skewed variable, with a mean of

1.36 nights, but a median of 0, with a standard deviation of 3.92 nights per month; 81.39% of

participants did not work any nights. Continuing to the final time-related variable, working hours

per week had a median of 40, a mean of 38.89, and a max of 168. The first quartile is 35 hours

per week, and the 95 percentile is 60 hours per week, meaning there is a reasonably long tail of

low numbers of participants working from 60-168 hours per week.

Whether or not a participant’s skill levels allow them to cope with the duties of their job
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(following Siegrist [1996]’s skill-demand match) was another variable of interest. This also uses

concepts from Karasek and Theorell [1990]’s job-demand control model and measures self-

efficacy in the context of the requirements and tasks of their occupation. 30.94% of participants

felt that the demands of their job were too low, 56.61% felt they matched, and 12.44% felt

they were too high. Further, in terms of whether a participant felt they are paid appropriately

considering “all efforts and achievements”, most tended to agree (32.08%), followed by neither

agree nor disagree (23.05%), with strongly agree coming last (11.70%), see table 4.6. The

variable was grouped into three categories and compared with neither agree nor disagree,

leading to proportions of 33.17% for disagree, 43.78% for agree, and 23.05% for neither agree

nor disagree. Again, appropriate pay was selected because the EWCS data covers several

European countries with diverse economies, between which gross pay may not be directly

comparable. Further, it helps operationalise the risk-reward relationship, in that people often are

willing to take on more risk for higher compensation, described in the effort-reward imbalance

model [Siegrist, 1996]. Finally, in terms of satisfaction with working conditions, an overall

measure of an individual’s assessment of their working conditions, 3.50% are not at all satisfied,

14.87% were not very satisfied, 76.09% were satisfied, and 23.91% were very satisfied.

Table 4.6: Considering all efforts and achievements, participant’s job is paid
appropriately.

Job is paid appropriately Frequency Percent
Strongly disagree 12,978 12.61
Tend to disagree 21,169 20.56
Neither agree nor disagree 23,733 23.05
Tend to agree 33,030 32.08
Strongly agree 12,041 11.70

For outcome variables, the primary one was whether the participant felt that their work

affected their health. The question was phrased “Does your work effect your health?” in the

EWCS survey questionnaire rather than ’affect,’ but for the purpose of this thesis, it will be

referred to with ’affect.’ This is a self-rated health variable that covers both physical and mental

health. Self-rated health assessments show consistent results even with differing assessment

types or wordings of questions [Idler and Benyamini, 1997; Møller et al., 1996]. Over the whole

sample, the ratio of No/Yes was 59.93%/40.07%, and this changed very slightly from 2005 to

2015 – the proportion of naysayers increased slightly. Indeed, geography too appears to matter:

the proportion varies across countries (see figure 4.4), with Italy, Belgium, the United Kingdom,

and Ireland, for example, having much higher proportions of those who feel their work does

not affect their health, and Latvia, for example, having a much greater proportion of those that

do feel that their work affects their health. This geographic variation means that there is likely

clustering in the data, and methods which account for this should be considered. Returning to the

map (figure 4.5), there appears to be a concentration in Finland, Scandinavia and the Baltic and

Balkan countries in saying that their work does affect their health, whereas Germany, Austria,

Ireland, and the UK report lower proportions of those saying their work affects their health. This

could be due to differing perceptions of work in these countries, as Finland and Scandinavia
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have similar political and economic environments, for exmaple.

Figure 4.4: ”Does your Work Affect your Health?”, by Country, boundary data
[Eurostat, 2020a]

As for the other specific health outcomes, there was one difference between the 2005 and

2010/2015 waves, in that the specific condition questions were asked in 2005 only if they had

answered that their work affected their health, effectively putting them in the not mentioned

category. Those missing values were put into the not mentioned category. Muscular or joint-

related pain or problems appeared to have the highest proportion of mentions to not-mentioneds

(see Table 4.7). All of the health outcomes appeared to vary by geography, particularly anxiety

and fatigue (see figure 4.5a-i).

To look over the specific health outcomes: hearing problems (Figure 4.5a) in the last 12

months appear to be concentrated in Finland, Scandinavia, The Netherlands, and Slovenia. Skin

problems (Figure 4.5b) appear to be more commonly reported in France, Sweden, Finland, the

Balkans, and Slovenia. Back problems (Figure 4.5c) seem to be more common in Portugal,

France, the Balkans, and the Baltic states. Headaches and eyestrain (Figure 4.5d) appear

to be mentioned more frequently in Eastern Europe, particularly the Balkan states, FYROM,

and Montenegro. Shoulder and neck pain, or upper muscular pain (Figure 4.5e) appears

most common in Finland, Scandinavia, France, and Croatia, as well as Estonia. Pain in the

lower limbs, lower muscular pain (Figure 4.5f) seems to be most common in Eastern Europe,

particularly the Baltic states, Finland, Turkey, Greece, and, in Western Europe, Portugal.
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Table 4.7: Specific Health Outcomes in the EWCS

Condition
Percent
Mentioned

Percent Not
Mentioned

Hearing problems in the last 12 months 6.45 93.55
Skin problems in the last 12 months 7.94 92.06
Back problems in the last 12months 40.73 59.27
Headaches and/or Eyestrain in the last 12 months 34.54 65.46
Shoulder or Neck pain (upper muscular pain) in the
last 12 months

40.10 59.90

Pain in the lower limbs (lower muscular pain) in the
last 12 months

31.59 68.41

Injury(ies) in the last 12 months 8.48 91.53
Anxiety in the last 12 months 13.10 86.90
Fatigue in the last 12 months 37.57 62.43

Injury(ies) (Figure 4.5g) in the last 12 months appear more frequently reported in France,

Turkey, Greece, the Netherlands, and Latvia. Anxiety (Figure 4.5h) seems to be most commonly

mentioned in France, Greece, and the Baltic states. Fatigue (Figure 4.5i) has a large range, and

is more common in Eastern Europe, particularly the Baltic and Balkan states, as well as Turkey.

This variation in the reporting of outcomes is therefore important to account for in the modelling

strategy - there are country-level differences that may impact on any results. This could be

due to differences in political or economic regimes, i.e. welfare regimes, or to differences

in the geographical distribution of occupations that may engender these outcomes more than

others. For example, the injury(ies) may be more common in jobs with physical tasks, such as

manufacturing jobs, whereas headaches and/or eyestrain may be common in jobs that require a

lot of computer work. Therefore, occupation too should be included in the modelling strategy.
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Figure 4.5: Health Outcomes in the Last 12 Months, by Country, Quantiles. a)
Hearing Problems; b) Skin Problems; c) Backache; d) Headache and/or Eyestrain; e)
Upper Muscular Pain f) Lower Muscular Pain; g) Injury(ies); h) Anxiety; i) Fatigue
(Boundary data: [Eurostat, 2020a])
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4.4. Data: British Household Panel Survey (BHPS)

In order to explore subnational variations in health outcomes, as well as to examine the research

questions using a longitudinal dataset rather than a repeated cross-sectional one, the BHPS was

employed. The data was obtained from the UK Data Service [University of Essex, 2018]. This

allows for a more detailed examination of the influence of the temporal aspects of the worksome,

as individuals are followed through all the waves of the study. The BHPS is a panel study

following a nationally representative sample of individuals over 18 waves, which were taken

over 18 years between 1991 and 2008 (see Figure 4.6 for the BHPS data by wave). This matches

the EWCS waves, which are between 1991 and 2015. The BHPS was funded by The Economic

and Social Research Council (ESRC) in the United Kingdom and was undertaken by the ESRC

UK Longitudinal Studies Centre and the Institute for Social and Economic Research (ISER) at

the University of Essex [Taylor et al., 2018]. The first wave started in 1991, and the initial sample

was 5,500 households consisting of 10,300 individuals, using a stratified clustered designed

based on postcodes [Taylor et al., 2018]. For the first part of sampling, primary sampling units

(PSUs) were made of 250 postcode sectors, each containing approximately 2,500 addresses.

After excluding non-residential addresses, approximately 33 addresses were selected per PSU,

with a range of 21-36 per PSU. Further samples from Scotland and Wales of 1,500 samples were

added in 1999, and 2,000 Northern Irish households were added in 2001 [Taylor et al., 2018].

Individuals who move out of households or change households were followed and re-interviewed

in successive waves of the survey. Core questions were repeated in each wave, allowing for a

longitudinal analytical approach to this data, as opposed to the repeated cross-sectional design

of the EWCS.

The waves combined into a single dataset following the guidance in Taylor et al. [2018].

Figure 4.6: BHPS Data by Wave
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4.4.1. BHPS Data Structure and Variables

The data were adjusted to match the parameters of the EWCS data, so that the analysis would be

easily comparable. In doing so, the observations were limited to those between 15 and 65 years

old, which is the sampling frame of the EWCS [Eurofound, 2007, 2011; Paoli, 1992, 1997;

Paoli and Merllié, 2001]. This means that observations of individuals through time are excluded

when the individual is under 15, or over 65, but those in between are included. Other exclusions

were due to missingness in explanatory variables. One variable with a particularly large group

of missing data is job satisfaction with overall pay. Largely, the missing data for this variable

was comprised of a single category, ’inapplicable,’ meaning the respondent was likely not in

employment at the time of the questionnaire. The second largest missing category was ’proxy,’

meaning the questions were answered on behalf of the individual in question, using a shorter

questionnaire [Taylor et al., 2018]. As the population of interest is the employed in particular [see

1.1], the missing observations were thus excluded. Table 4.8 shows the number of observations

per wave for the data with exclusions, giving a total n of 114,426. Each observation represents

a wave-observation of a particular individual at that timepoint. After exclusions, the minimum

number of observations per individual is 1, and the maximum 18. Individuals have an average

of 5.92 wave-observations within them, with a standard deviation of 4.97 wave-observations.

Table 4.8: Exclusions from the BHPS Data.

Exclusion n
238,996 (total initial sample)

Full Exclusion Cases removed Cases remaining
Under 15s 9 238,987
Over 65s 41,036 197,951

Exclusions due to Missingness
No Sex 2,094 195,857
No Job Hours 768 195,089
No job satisfaction 76,426 118,663
No job satisfaction with overall pay 208 118,455
No pay 3,284 115,171
Missing Region 745 114,426

Total n: 114,426

Within the BHPS data it is possible to obtain high level geocoding. The highest subnational

level is the Government Office Regions (GOR), which, in England, include 9 areas along with

the other constituent nations of the United Kingdom as wholes. Figure 4.7 shows the sample per

GOR.

The covariates selected for the BHPS analysis were demographics and working conditions

which reflected the variables chosen for the EWCS analysis. Sex, age, and education were

chosen as demographic variables. 47.8% of the sample was male, and 52.2% was female. The

mean age is 37.67 (standard deviation 12.20), and the median age is 37, which indicates that age

is normally distributed through the sample. As for education, to match the EWCS analysis,

the variable was dichotomised. The no tertiary education category included the following

categories: HND/HNC Teaching, A level, O level, CSE, none of these. The tertiary education
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Figure 4.7: BHPS Data by Government Office Region

category included higher degree, and first degree. 83.7% of the sample had education up to

tertiary, and 16.3% did. This was done following the structuring of the education variable in the

EWCS analysis (section 4.3).

As for working conditions, 86.7% did not mention working flexitime, while 13.3% did.

This variable was chosen to match the working time arrangements variable in the EWCS

analysis. The mean job hours per week, which is the same as the hours variable in the EWCS

analysis, were 33.22, with a standard deviation of 11.74. Mean gross monthly pay, which was

not included in the EWCS analysis because of the variety of economies in the sample as well

as problems in the data itself, was £1359, with a standard deviation of £1104. Two satisfaction

variables were also included, and were reduced from seven categories to five, to match the coding

of the satisfaction variable in the EWCS data. The first satisfaction variable was job satisfaction

with total pay, which was chosen to match the appropriate pay variable in the EWCS. It is

described in table 4.9. The second is job satisfaction overall, which matches the satisfaction

with working conditions variable in the EWCS and is described in table 4.10. These variables

were chosen following the same arguments as the corresponding EWCS variables.

Table 4.9: Job Satisfaction with Total Pay

Job Satisfaction with Total Pay Frequency Percent
Not Satisfied 4,563 3.99
Not very satisfied 21,238 18.56
Neither Satisfied/dissatisfied 9,630 8.42
Satisfied 67,668 59.14
Very Satisfied 11,327 9.90

There were three outcome variables chosen from the BHPS data. These were

chosen in order to empirically test the worksome framework with a number of health

outcomes. They were health in the last 12 months (health status), health problems:

arms, legs, hands, etc. (i.e., problems with the limbs or muscles), and health problems:

anxiety/depression(anxiety/depression). These all match to EWCS variables. Health status was
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Table 4.10: Job Satisfaction Overall

Job satisfaction overall Frequency Percent
Not Satisfied 1,703 1.49
Not very satisfied 10,364 9.06
Neither Satisfied/dissatisfied 8,682 7.59
Satisfied 77,952 68.12
Very Satisfied 15,725 13.74

dichotomised, so excellent, very good, and good health were classified as good, and fair and

poor health were classified as poor. This is a common approach in epidemiology, and it has

been shown to be empirically justifiable [Manor et al., 2000]. The two specific health problems

were either mentioned or not mentioned. The health status variable matches the work-health

effect, phrased as ‘does your work affect your health?’ The problems with the limbs or muscles

variable matches the upper and lower muscular issue outcomes in the EWCS data. Finally, the

anxiety/depression variable matches the anxiety/depression variable in the EWCS.

Figures 4.8a-4.8c show the geographical distribution of the outcomes in the GORs, or

regions of the UK. For health status (Figure 4.8a) it appears that good health is concentrated

in the south of the country and Northern Ireland but, on the whole, most people report good

health (the lowest proportion of good health is around 70%). For problems with the limbs or

muscles (Figure 4.8b). the concentration of reports appears to be in Wales, the East Midlands,

and North East, with neighbouring regions also having a higher proportion of mentions. For

anxiety/depression (Figure 4.8c), there appear to be more reports in Scotland, London and Wales,

with fewer reports in the South West, North West and Northern Ireland. This indicates that, for

the BHPS analysis too, geographies should be included in the modelling strategy.
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(a) Health Status, Quantiles, boundary data [ONS, 2019; OS, 2020]

(b) Problems with the Limbs or Muscles, Quantiles,
boundary data [ONS, 2019; OS, 2020]

(c) Problems relating to Anxiety/Depression, Quantiles,
boundary data [ONS, 2019; OS, 2020]

Figure 4.8: Health outcomes in the BHPS data
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4.5. Methods of Analysis

The outcome variables for all datasets are binary and categorical response variables, and as such,

logistic regression is the appropriate modelling approach. Logistic regression is a transformation

of the linear regression model in order to achieve a better model fit for dichotomous outcomes

(Equation 4.1).

The logistic regression model can be expressed similarly to the linear regression model

[Armitage et al., 2002]:

Logit(pi) = β0 +β1X1 +β2X2 + . . .+βiXi + e

pi = pr{Yi = 1}
(4.1)

The parameters of the equation are e, the random error; βi, the regression coefficients

relating to the covariates Xi. Logit refers to the natural log transformation of pi (the probability)

to the logged odds that Yi, the outcome, will be equal to 1 [Armitage et al., 2002].

Linear regression is not appropriate for a dichotomous outcome, as a linear regression has

no upper or lower limit. Given ‘yes’ and ‘no,’ as it is not possible to have something be more

than yes or less than no, therefore a modification of the linear model is required. Furthermore,

“[t]he linear relationship still understates the actual relationships in the middle and overstates

the relationship at the extremes” [Pampel, 2000, pg7]. Logistic regression also allows for the

Bernoulli distribution inherent in the outcome variable (as it can only have two values). This

would otherwise break the normality and heteroskedasticity assumptions of linear regression.

The coefficients of a logistic regression are calculated as logged odds ratios: the odds create the

lower limit (since all odds are positive) and logging them creates the upper limit (since unlikely

events have odds between 0 and 1 with negative logarithms, and likely events have odds above

1 with positive logarithms). This constrains the shape of the outcome function [Pampel, 2000],

making the predicted probability of the outcome well-behaved. Odds ratios can be generated

from the log odds, which are easier to interpret substantively, as they represent the increased (or

decreased) odds of an outcome happening. Therefore, the data for both the EWCS and BHPS

datasets will be modelled using single level logistic regression models first in Chapters 5 and 6.

While logistic regression allows for a nonlinear relationship between the probabilities

of the outcomes and the covariates, it still assumes that observations are independent. This

assumption is violated by the nature of the datasets being used: in the EWCS data people are

surveyed in countries in years and classified by occupation types. In the BHPS data, individuals

are surveyed at the wave time-points, who work in occupations, and live within particular

regions. Clearly, in neither dataset are the observations fully independent of one another, as

the data are hierarchical and structured. To mitigate this issue, multilevel logistic regression

models (MLR) can be used. MLRs consider the impact of the statistical dependency a given

person may be subject to based on their membership in a higher level (e.g., living in a country

or in a particular time, working in a particular occupation, Merlo et al. [2006]). Equations 4.2
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and 4.3 show the two- and three-level logistic regression equations respectively [Armitage et al.,

2002]. The parameters are similar to those in Equation 4.1: u j is the level 2 random part of the

model, and ei j is the level 1 random part of the model. βm are the regression coefficients relating

to the covariates Xi. Logit refers to the natural log transformation of pi (the probability) to the

logged odds that Yi, the outcome, will be equal to 1, i.e., it will occur. For Equation 4.3, the only

difference is the addition of the vk term, i.e., the level 3 random part of the model. Further terms

can be added to add subsequent levels to the model.

Logit(pi j) = β0 +β1X1i j +β2X2 j + . . .+βmXmi j +u j + ei j

pi = pr{Yi = 1}
(4.2)

Logit
(

pijk
)
= β0 +β1X1i jk +β2X2i jk + . . .+βmXmi jk + vk +u jk + ei jk

pi = pr{Yi = 1}
(4.3)

A multilevel model is statistically, theoretically, and substantively desirable for the

structure of the data. Further, it helps approximate the structural elements of the worksome,

which are presented in Chapter 3. Estimation is improved, and MLRs allow for the quantification

of the relative importance of higher-level structures like occupation or country, which may

be difficult to model in a single level model [Larsen and Merlo, 2005]. This difficulty could

occur through poorer estimation due to an increased amount of dummy parameters, and those

parameters could be collinear. Furthermore, referring back to the research questions and

objectives, in order to truly understand the impact and variation of geographies, time, and

occupation type on a given individual response (‘my work affects my health’), a multilevel

structure allows for the simultaneous modelling of both random and fixed effects, and

heterogeneity between levels can be modelled explicitly [Deeming and Jones, 2015; Duncan

and Jones, 2000]. Each level can be assessed separately or in relation to one another.

Null models only including the constant (β0), known as variance component models, are

employed initially for several reasons: First, they allow for the discovery of where residual

variance lies in the data. Second, they can help determine whether multilevel models can produce

better models than single level ones. Third, variance components models can also determine

the structure of future multilevel models. Seven model structures were tested using variance

components models on the EWCS data to determine which was most appropriate for the data.

The variance-partitioning coefficient (VPC), which in this case is the same as the intraclass

correlation coefficient, or ICC (see equation 4.4), and the median odds ratio (MOR, see equation

4.5) were calculated for each model [Merlo et al., 2006]. For Equation 4.4, the VPC, 3.29

represents the individual variance. For the MOR in Equation 4.5, VA is the area level variance,

and 0.6745 represents the 75th centile of the cumulative distribution function of the normal

distribution, with a mean of 0, and a variance of one.

V PC =
VA

(VA +3.29)
(4.4)
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MOR = exp
[√

(2×VA)×0.6745] (4.5)

The latent variable approach to VPC accommodates some of the technical difficulties of the

logistic model, assuming that the propensity for having a given health outcome is a ”continuous

latent variable underlying [the] binary response” [Merlo et al., 2006, pg292]. The VPC is not

directly comparable between models, as in the logistic case it doesn’t inform about between-

cluster variation, and is difficult to juxtapose with the fixed effects, which are reported in terms

of odds ratios [Larsen and Merlo, 2005]. The MOR, though, is, as it is reported as an odds ratio,

therefore in the same ‘unit’ as the fixed model coefficients [Merlo et al., 2006]. The MOR is

the increased risk, on average, resulting from changing between a lower to a higher risk group,

such as a country, if the two countries in question are chosen randomly from a distribution of the

estimated variance at that level, and is expressed on the odds ratio scale Merlo et al. [2006]. An

MOR of close to 1 implies that there is little change in the odds of moving between groups, i.e.

less variation between groups. An MOR of less than one would therefore indicate a reduction in

the odds, and therefore the risk of moving between low and high risk groups. This is important

as it answers one of the research questions (RQ5), whether occupational differences between

types are more important, or those within. The most appropriate structure will be chosen based

on the VPC and MOR empirically, and theoretically by following the worksome framework.

After the structure has been determined, the occupational categories will be examined

using 60 single level logistic regression models using a Markov Chain Monte Carlo (MCMC)

Bayesian framework [Browne, 2019]. There are 12 health outcomes for 5 classification systems,

described in Chapter 6. In terms of the specifics of MCMC estimation we followed the good-

practice recommendation of Draper [2008]. Thus, we use likelihood approach to estimate an

initial model, specify default priors to impose as little information as possible on the estimates,

a burn-in of 500 simulations to get away from these initial (potentially poor) estimates, and a

monitoring chain of some further 5000 simulations to characterise the parameter estimates and

calculate the Deviance Information Criterion (DIC, equation 4.6). The DIC is a measure of

predictive accuracy. In Equation 4.6, D̄ is the deviance, a measure of model fit, and pD is the

effective number of parameters, a measure of the complexity of a model [Spiegelhalter et al.,

2002].

DIC = D̄+ pD (4.6)

This allows for the most accurate model to be chosen regardless of the number of

parameters (or categories in this case), as the DIC penalises model complexity. The DIC

is an ideal procedure for comparing models with different specifications involving different

classifications. The DIC can be compared within the same health measures, but not between

health measures, i.e., the DIC for the NS-SEC for skin problems cannot be compared to the DIC

for backache for the ISCO 1-digit system.

Having determined the appropriate model structure with the variance components models,
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and the appropriate covariates with the single level models, multilevel models of the EWCS and

BHPS data will be analysed. The occupational categories determined using the DIC will be

placed at the second level of the specified multilevel structure. The covariates determined in the

single-level modelling stage will be included and the models assessed in multilevel form using

the DIC. Finally, the models will be repeated for each health outcome in each dataset.

There will be five results chapters: the single level logistic regression models for each

dataset, examined for reasons of parsimony; the variance components chapter, which examines

which model structure might be the most appropriate, and, finally, the multilevel logistic

regression models for each dataset, which allow for the examination of the clustering in the

data. Firstly, the single level logistic regression models for each dataset will be examined in

separate chapters.
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Chapter 5

Results: EWCS Single Level Logistic
Regression Models

5.1. Introduction

This chapter looks to meet research objectives 1 and 2 and their respective research questions,

RQ1 and RQ2: to identify and confirm the relationship between work and health (RO1), and

determine which specific working conditions underlie this relationship (RO2). As [Box, 1976,

pg792] wrote, a scientist “should seek an economical description” of what is being modelled,

and so emphasised the statistical principle of parsimony. And so, in the interest of parsimony,

single level models for each of the outcomes have been generated and their results presented in

this chapter. Simpler models are also easier to understand and implement, so if they answer the

research questions as well as the multilevel ones, it is therefore more appropriate to use these

models. The models were implemented in Stata versions 14 and 15 using the logit command.

The results are presented as odds ratios, interpreted as the increased (or decreased) odds of the

occurrence of an outcome. The outcomes and covariates can be seen in table 1. The covariates

were added one by one to the models in the order presented in table 5.1, resulting in 11 models

for each outcome, including the null model (intercept only). The outcomes are binary, either as

yes/no or mentioned/not mentioned, and were self-declared by the individual in the survey. There

are 175,206 total observations in the model. The final models will be discussed and presented

here. The full set of intermediate models can be found in Appendix A.
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Table 5.1: Outcomes and Covariates for all Models

Outcomes
Covariates

• Work-effect on health

• In the last 12 months...

– Skin problems

– Hearing problems

– Backache

– Lower Muscular Pain

– Upper Muscular Pain
(inclusive of shoulders, neck,
and/or upper limbs)

– Anxiety

– Fatigue

– Headache and/or Eyestrain

– Injury(ies)

• Sex (ref:male)

• Age (15-65)

• Has tertiary education (ref: no
tertiary education)

• Nights worked per month

• Works shifts (ref: no)

• Hours per week worked

• Working time arrangement (ref:
set by company, coded as 1)

– Choice between several fixed
schedules (2)

– Adaptable within limits (3)

– Entirely self-determined (4)

• Skill-demand match (ref: they
match, coded as 2)

– Demands too low (1)

– Demands too high (3)

• Paid appropriately (ref: neither
agree nor disagree, coded as 1)

– Disagree (0)

– Agree (2)

• Satisfaction with working
conditions (ref: very satisfied,
coded as 4)

– Not at all satisfied (1)

– Not very satisfied (2)

– Satisfied (3)
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5.2. Correlations

Correlation analysis provides an initial means to explore associations and relationships between

the variables in the data. Correlations of 0 indicate no relationship, and as the correlation

coefficient approaches +1 or -1, the strength of the relationship increases [Gogtay and Thatte,

2017]. Correlation coefficients of around +/- 0.5 are considered reasonably strong evidence of

an association [Gogtay and Thatte, 2017]. Correlations between the variables were examined,

in order to check for multicollinearity, and to preliminarily examine the relationships between

the variables (see table 5.2). Multicollinearity is the phenomenon when some of the covariates

are highly correlated, which can lead to large standard errors and uninterpretable regression

coefficients [Armitage et al., 2002]. Checking the correlation matrix is a common method to

detect multicollinearity [Armitage et al., 2002].

Only three variables had correlations above 0.2 or below -0.2, ordered here from most

to least correlated: appropriate pay with satisfaction with working conditions (0.398); nights

worked per month with shift work (0.266); and weekly hours and sex (-0.240). None of the

correlations appear sufficiently strong to cause multicollinearity, and the subsequent logistic

regression models specified well. The correlations also make sense substantively. Whether a job

pays appropriately likely has an impact on whether any given individual is satisfied with a job;

night work tends to be structured as shift work. As discussed in the literature review 2, women

tend to work more flexibly due to their multiple social, productive, and reproductive roles; this is

also reflected on the higher correlation with shift work (i.e., women tend to work more shifts than

men), and by women’s relative lack of control in time arrangements. Following this exploratory

analysis, the variables are unlikely to be collinear, and therefore single-level logistic regression

models were calculated. The results of these models are discussed in the subsequent sections for

each outcome variable in the EWCS data.
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5.3. Model Results

The following sections present the results of the single level logistic regression models, organised

by outcome.

5.3.1. The Work-Health Effect

The work-health effect, which was when respondents were asked whether they thought their

work affected their health, is taken here to be a measure of self-rated health associated with work.

Table 5.3 shows the final model for this outcome. It would appear from the table that the majority

of the odds ratios (ORs) indicate a small effect size, with some odds ratios below 1, namely

the effect of being female rather than male (OR 0.924, 95% Confidence Interval (CI): 0.899-

0.950), the choice between several fixed working schedules rather than a standard arrangement

(OR 0.951, CI: 0.901-1.004), and agreeing that the job is paid appropriately rather than neither

agreeing nor disagreeing (OR 0.982, CI 0.948-1.018). It is worth noting that the only statistically

significant effect amongst the three is sex. However, the agree effect with respect to appropriate

pay follows the expected direction, particularly considering the effort-reward imbalance model

[Siegrist, 1996]. This is particularly relative to the other measured effect disagree, which is

statistically significant, both in relation to agreeing nor disagreeing that one is paid appropriately.

The same holds for the variable identifying working time arrangements. Indeed, a properly

fitted model should have some insignificant variables; to exclude variables based solely on their

statistical significance would produce a similar result to a stepwise regression, a technique that

very often engenders overfitting and poorly specified models [Babyak, 2004]. Further, even if

a variable is not statistically significant, it may still have substantive significance, especially if

it is part of a dummy variable, and, again referring to [Box, 1976, pg792], science should not

just involve ‘fall[ing] in love with [their] model,” but iteratively developing theory and practice

together.

Demographic variables are patterned in a way one might expect, given the literature where

older, female individuals appear to be more impacted [Ala-Mursula, 2004; Braveman et al.,

2005; Geyer et al., 2006]. Being older has a small but significant effect on whether work affects

health with a very narrow confidence interval: an OR of 1.014 with a confidence interval of

1.013-1.016. Having a tertiary education (e.g., a Bachelor’s degree or above) appears to have

increased odds of reporting that work affects health (OR 1.087, CI: 1.057-1.118).

Factors relating to the duration of work time are also in line with the literature. In terms of

the amount of time worked, factors generally suggest a dose-response relationship: more work

means that a respondent’s work will likely affect their health. The effect of number of nights

worked is small, but significantly associated with the work-health effect (OR 1.027, CI: 1.024-

1.031). Further, the cumulative effect of working five nights is substantial: in this case the OR

would increase to 5.135. In terms of weekly hours worked, the effect is again small, likely as

the unit of measure is hours, but it does have a very tight confidence interval: OR 1.011, CI

1.01-1.012. For every hour worked per week, there is a 1.1% increase in the likelihood of work
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affecting health.

In terms of work configuration, results are more mixed. The effect of working shifts is

1.293 (CI 1.248-1.340), so someone working shifts is 29.3% more likely to report that their work

affects their health. As for working time arrangements, relative to those set by the company,

the effect of choosing between several schedules is slightly negative, but since the confidence

interval crosses 1, this effect is not statistically significant (OR 0.951, CI 0.901-1.004). The

other two schemes (adaptable and self-determined schedules) have a slightly increased and

similar effect size on reporting that their work affects their health: adaptable within limits has an

OR of 1.057 (CI 1.018-1.098) and entirely self-determined has an OR of 1.056 (CI 1.015-1.098),

suggesting that increased flexibility rather than a particular scheme may have an effect on health.

In terms of the skill-demand match, having too low or too high demands appears to both

cause an increase in the work-health effect, but high demands have a much higher effect: an

odds ratio of 1.471 (CI: 1.412-1.533), whereas the effect of low demands is much smaller: 1.081

(CI: 1.049-1.114). This suggests that the match between skills and demand is important, but it is

more damaging to health to have a job whose demands seriously outpace one’s skills.

As for being paid appropriately, it is relatively unsurprising that those who disagree that

they are paid appropriately have an increased effect of their work affecting their health of 57.4%

(OR 1.574, CI 1.518-1.632), relative to those who neither agree nor disagree. In addition, those

who agree that they are paid appropriately have no significant increase in work-health effect (OR

0.982, CI 0.948-1.018) Finally, those who are not at all satisfied with their working conditions

are much more likely to report that their work affects their health (OR 5.531, CI: 5.076-6.026),

though the confidence interval is fairly wide for this variable, though it narrows as the reference

category is approached (a difference of almost 1 for not at all satisfied to a difference of around

0.1 for satisfied).

It would seem, then, that perceived health status and work’s impact on it, with respect

to demographic and working conditions is as the literature argued: lower control and higher

flexibility, with less compensation can impact on the health of individuals in these occupations.
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Table 5.3: Final Single Level Logistic Regression Model for the Work-Health Effect

Y: Work-health effect OR 95% CI p

Intercept 0.122 0.113 0.133 0.000
Sex (ref: male) 0.924 0.899 0.950 0.000
Age 1.014 1.013 1.016 0.000
Has Tertiary Education (ref: no tertiary) 1.087 1.057 1.118 0.000
Nights worked per month 1.027 1.024 1.031 0.000
Works shifts (ref: no) 1.293 1.248 1.340 0.000
Hours per week worked 1.011 1.010 1.012 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.951 0.901 1.004 0.068
Adaptable within limits 1.057 1.018 1.098 0.004
Entirely self-determined 1.056 1.015 1.098 0.006
Skill-demand match (ref: they match)
Demands too low 1.081 1.049 1.114 0.000
Demands too high 1.471 1.412 1.533 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.574 1.518 1.632 0.000
Agree 0.982 0.948 1.018 0.321
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 5.531 5.076 6.026 0.000
Not very satisfied 2.959 2.823 3.101 0.000
Satisfied 1.298 1.255 1.343 0.000

Log Likelihood: -63007.68

5.3.2. Skin Problems

As for reporting skin problems in the last 12 months, several of the variables were not statistically

significant. Table 5.4 reports the final model for skin problems. Tertiary education was negative,

but not significant (OR 0.960, CI 0.914-1.008). Hours worked per week was not significant,

and further, its effect was an OR of 1, which indicates no effect on skin problems (OR 1.000,

CI 0.999-1.002). The time arrangement dummy for choice between several fixed schedules was

also not significant, and its confidence interval was fairly wide (OR 1.076, CI 0.982-1.179); the

dummy for entirely self-determined was also on the borderline for statistical significance, with an

OR similar to the fixed schedule choice (OR 1.072, CI 1.000-1.148), but its confidence interval

not quite crossing 1. Finally, agreement with appropriate pay (relative to neither agreeing nor

disagreeing) had an OR of 1.003, but a confidence interval of 0.939-1.071, and a p value of

0.931, perhaps indicating that having appropriate pay has very little to do with reporting skin

problems in the last 12 months, though not having it may do: an OR for disagree of 1.453 (CI

1.364-1.548) is one of the strongest effect sizes in the model.

Skin problems appear to be more prevalent among female workers rather than male (OR

1.298, CI 1.238-1.362), and decrease in older people with each year of age (OR 0.995, CI 0.993-

0.997). This may be due to women working in specific occupations that may be more likely to

influence skin problems, and single level analysis does not account for this. Working nights has

a small but significant effect (OR 1.015, CI 1.010-1.021), and working shifts has a larger effect

(OR 1.158, CI 1.092-1.227). Flexible working time arrangements, like adaptable within limits,
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show an increased effect on skin problems, with the limited flexible scheme having a larger

effect (OR 1.335, CI 1.254-1.422). Again, the skill-demand match follows a similar pattern

to the work-health effect, with both showing an increase in skin problems, but the effect of

higher demands being larger than that of lower ones (an OR of 1.395, CI 1.304-1.492 for higher

demands to an OR of 1.140, CI 1.084-1.200 for lower demands). The importance of having

a job where your skillset matches its demands seems clear. Being satisfied with the working

conditions also remains important, with those who are not at all satisfied having much higher

likelihood of having skin problems than those who are very satisfied, and this follows a linear

pattern (with increasing satisfaction, the OR of having skin problems decreases). It appears that

stressful conditions increase the likelihood of reporting skin problems, and it is not necessarily

dependent on education or hours worked, meaning that it may transcend occupation types and

be more an issue of imbalance between risk and reward, so it is worth investigating the impact

of occupations directly with multilevel models.

Table 5.4: Final Single Level Logistic Regression Model for Skin Problems in the
last 12 months

Y: Skin problems OR 95% CI p

Intercept 0.046 0.040 0.053 0.000
Sex (ref: male) 1.298 1.238 1.362 0.000
Age 0.995 0.993 0.997 0.000
Has Tertiary Education (ref: no tertiary) 0.96 0.914 1.008 0.098
Nights worked per month 1.015 1.010 1.021 0.000
Works shifts (ref: no) 1.158 1.092 1.227 0.000
Hours per week worked 1.000 0.999 1.002 0.675
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.076 0.982 1.179 0.114
Adaptable within limits 1.335 1.254 1.422 0.000
Entirely self-determined 1.072 1.000 1.148 0.05
Skill-demand match (ref: they match)
Demands too low 1.14 1.084 1.200 0.000
Demands too high 1.395 1.305 1.492 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.453 1.364 1.548 0.000
Agree 1.003 0.939 1.071 0.931
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 3.179 2.855 3.540 0.000
Not very satisfied 2.11 1.949 2.285 0.000
Satisfied 1.278 1.197 1.364 0.000

Log Likelihood -27674.20

5.3.3. Hearing Problems

Hearing problems in the last 12 months have a different pattern (see table 5.11). Women are

much less likely than men to report hearing problems, and the effect is quite large (OR 0.578, CI

0.548-0.610), and older people are slightly more likely to report hearing problems (OR 1.034,

CI 1.032-1.036). It is possible that men are more likely to work in jobs with loud environments,

such as primary or manufacturing industries, but this is not accounted for in single level analysis.
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Those without tertiary education are also more likely to report hearing problems (OR 0.852, CI

0.806-0.901). It appears that there may be some structural factors at play: perhaps the types of

jobs that older men who did not attend tertiary education hold are more likely to contribute to

hearing problems. Nights continues to hold a small but significant effect (OR 1.018, CI: 1.012-

1.024), and it should be considered too that someone could work up to 31 nights per month.

Working shifts also appears to influence an increase in hearing problems (OR 1.245, CI 1.67-

1.327). Hours worked per week effectively has no effect, with an OR of 0.998, and a confidence

interval of 0.996-1.000, making the variable not statistically significant.

Working time arrangements appear to follow a slightly different pattern. While the choice

between several fixed schedules dummy remains statistically insignificant, those individuals

with that characteristic, and those who self-determine their working time (which is statistically

significant) show a negative relationship with hearing problems: the OR for the choice of fixed

schedule is 0.921 (CI 0.828-1.024), and that of the self-determined workers is 0.814 (CI 0.753-

0.879). It seems with hearing problems that some degree of choice or other in working time

arrangements is relevant, though those whose schedules are adaptable within limits have higher

odds of hearing problems (OR 1.114, CI 1.037-1.195). In terms of the skill-demand match, the

ORs follow a similar arrangement to those for other outcomes, though the demands being too

low are not statistically significant (OR 1.043, CI 0.985-1.104). Those who identify as having

demands too high are 40.9% more likely to report hearing problems. Those disagreeing that

they were paid appropriately have higher odds of hearing problems (OR 1.412, CI 1.316-1.515)

than those who neither agreed nor disagreed, but those who agreed they were paid appropriately

also had slightly higher odds of hearing problems (OR 1.062, CI 0.988-1.141), but this was not

statistically significant. It is possible that these are working conditions characteristic of jobs with

exposures that may engender hearing problems, like those with loud environments, which will

be accounted for in the multilevel models in Chapter 8. Finally, those who are less than very

satisfied with their working conditions all have higher odds of hearing problems, though these

odds are lower than the same variable for other outcomes (not at all satisfied: OR 2.673, CI

2.367-3.019; not very satisfied: OR 1.879, CI 1.719-2.054; satisfied 1.277, CI 1.189-1.372).

5.3.4. Backache

Table 5.6 shows the model for backache in the last 12 months. The first apparent effect, or

perhaps lack thereof, is that of working time arrangements. While a small effect is nonetheless

still important, the confidence intervals for each dummy overlap 1 by a large margin, and the

p values are all above 0.40, so it may be that working time arrangements have very little to do

with the odds of reporting backache in the last 12 months. Women have higher odds of reporting

backache than men (OR 1.190, CI 1.159-1.223), and older people also show higher odds, with a

small, but importantly significant effect, with a narrow confidence interval (OR 1.020, CI 1.019-

1.021). It is possible that the types of occupations that women and older have are more likely

to be ergonomically compromised or to have strain on the back. Having a tertiary education

reduced the odds of reporting backache (OR 0.724, CI 0.704-0.744), which may reflect the
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Table 5.5: Final Single Level Logistic Regression Model for Hearing Problems in
the last 12 months

Y: Hearing problems OR 95% CI p

Intercept 0.013 0.011 0.016 0.000
Sex (ref: male) 0.578 0.548 0.610 0.000
Age 1.034 1.032 1.036 0.000
Has Tertiary Education (ref: no tertiary) 0.852 0.806 0.901 0.000
Nights worked per month 1.018 1.012 1.024 0.000
Works shifts (ref: no) 1.245 1.167 1.327 0.000
Hours per week worked 0.998 0.996 1.000 0.111
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.921 0.828 1.024 0.129
Adaptable within limits 1.114 1.037 1.195 0.003
Entirely self-determined 0.814 0.753 0.879 0.000
Skill-demand match (ref: they match)
Demands too low 1.043 0.985 1.104 0.147
Demands too high 1.409 1.308 1.519 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.412 1.316 1.515 0.000
Agree 1.062 0.988 1.141 0.102
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 2.673 2.367 3.019 0.000
Not very satisfied 1.879 1.719 2.054 0.000
Satisfied 1.277 1.189 1.372 0.000

Log Likelihood -23480.672

types of employment those with tertiary education take and have access to, though this model

cannot speak to that. Nights worked per month also had a small but significant effect (OR

1.010, CI 1.006-1.013), and hours worked per week had an even smaller but still significant

effect (OR 1.006, CI 1.005-1.007). Working shifts also, as in the majority of outcome models,

has a significant effect (OR 1.136, CI 1.098-1.176). The skill-demand match difference does

not appear to hold as much here, as the effect sizes are much closer (too low OR: 1.029, CI

0.999-1.059; too high OR 1.094, CI 1.050-1.139). Being paid appropriately appears to have

a larger effect size, with those disagreeing that they are paid appropriately being 33% more

likely to report backache than those that neither agree or disagree, and those that agree they are

paid appropriately have lower odds of reporting backache (OR 0.930, CI 0.899-0.962). Perhaps

the tradeoff between risk and reward is more pertinent for backache. Satisfaction with working

conditions follows a similar pattern to the other outcomes, with increasing satisfaction leading to

decreased odds of reporting backache, though the confidence intervals are much narrower than

in other models, such as the work-health effect, for example.
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Table 5.6: Final Single Level Logistic Regression Model for Backache in the last 12
months

Y: Backache OR 95% CI p

Intercept 0.133 0.123 0.144 0.000
Sex (ref: male) 1.190 1.159 1.223 0.000
Age 1.020 1.019 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.724 0.704 0.744 0.000
Nights worked per month 1.010 1.006 1.013 0.000
Works shifts (ref: no) 1.136 1.098 1.176 0.000
Hours per week worked 1.006 1.005 1.007 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.020 0.969 1.074 0.453
Adaptable within limits 0.996 0.960 1.033 0.812
Entirely self-determined 1.024 0.986 1.064 0.218
Skill-demand match (ref: they match)
Demands too low 1.029 0.999 1.059 0.000
Demands too high 1.094 1.050 1.139 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.330 1.284 1.378 0.000
Agree 0.930 0.899 0.962 0.000
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 3.595 3.326 3.885 0.000
Not very satisfied 2.786 2.660 2.918 0.000
Satisfied 1.611 1.558 1.666 0.000

Log Likelihood -66012.507

5.3.5. Lower Muscular Pain

Table 5.7 reports the muscular pain in the lower limbs, i.e., lower muscular pain, reported in

the last 12 months model. Women have higher odds of reporting lower muscular pain than

men (OR 1.1156, CI 1.124-1.190), and age still has a small but significant effect with a tight

confidence interval (OR 1.020, CI 1.019-1.021). Having tertiary education reduces the odds of

reporting lower muscular pain by around 44% (OR 0.663, CI 0.644-0.683). This is possibly

due to occupational differences in those with and those without tertiary education, which are not

included in this model. Nights per month and hours worked per week continue to have small but

significant effects (ORs 1.011, CI 1.008-1.015; 1.007, CI 1.005-1.008). Shift work has a slightly

larger effect, with an OR of 1.202 (CI 1.1160-1.246). Working time arrangements, relative to

fixed time set by the company, appear to either show a slight decrease in odds (choice between

several fixed schedules OR 0.918, CI 0.868-0.971; adaptable within limits OR 0.927, CI 0.891-

0.965), or an increase in odds in those with self-determined time arrangements (OR 1.083, CI

1.040-1.127). This is possibly due to those with flexible schedules working in jobs with tasks that

are less risky in terms of lower muscular pain, though time arrangement was not significant for

backache, and for upper muscular pain (table 5.8), the opposite effect was found. Skill-demand

match with demands which are too high are not statistically significant, with a p of 0.905, and a

relatively wide confidence interval around the OR of 1.003 (CI: 0.960-1.048). Low demand also

shows a slight increase in odds, with an OR of 1.068 (CI 1.036-1.101). Agreeing that one is paid

appropriately shows a 13% decrease in the odds of reporting lower muscular pain relative to those
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that neither agree nor disagree, and those who disagree show an increase in the odds of reporting

lower muscular pain (OR 1.341, CI 1.292-1.391). Finally, satisfaction with working conditions

follows the expected pattern, found by Virtanen et al. [2003], with those not at all satisfied

having odds of 4.150 (CI 3.839-4.487), those not very satisfied having odds of 2.827 (2.693-

2.968), and those who are satisfied having odds of 1.589 (CI 1.530-1.649), of course relative to

those who are very satisfied. It is possible that lower muscular pain (and to some extent, the

other two ’muscular’ outcomes, backache and upper muscular pain) is less dependent on the

social exposures or working conditions than on the tasks themselves in particular occupations,

and therefore occupation must be included in the multilevel models.

Table 5.7: Final Single Level Logistic Regression Model for Lower Muscular Pain
in the last 12 months

Y: Lower Muscular Pain OR 95% CI p

Intercept 0.079 0.072 0.086 0.000
Sex (ref: male) 1.156 1.124 1.190 0.000
Age 1.023 1.022 1.025 0.000
Has Tertiary Education (ref: no tertiary) 0.663 0.644 0.683 0.000
Nights worked per month 1.011 1.008 1.015 0.000
Works shifts (ref: no) 1.202 1.160 1.246 0.000
Hours per week worked 1.007 1.005 1.008 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.918 0.868 0.971 0.003
Adaptable within limits 0.927 0.891 0.965 0.000
Entirely self-determined 1.083 1.040 1.127 0.000
Skill-demand match (ref: they match)
Demands too low 1.068 1.036 1.101 0.000
Demands too high 1.003 0.960 1.048 0.905
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.341 1.292 1.391 0.000
Agree 0.870 0.839 0.903 0.000
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 4.150 3.839 4.487 0.000
Not very satisfied 2.827 2.693 2.968 0.000
Satisfied 1.589 1.530 1.649 0.000

Log Likelihood -60063.632
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5.3.6. Upper Muscular Pain

Table 5.8 shows the final single level logistic regression model for muscular pains in shoulder,

neck, and/or upper limbs, i.e., upper muscular pain, in the last 12 months. Women show higher

odds of reporting upper muscular pain (OR 1.292, CI 1.257-1.327), and older people have a

significant but small effect (OR (1.021, 1.020-1.022). Having completed some form of university

means that an individual has lower odds of reporting upper muscular pain (OR 0.788, CI 0.767-

0.810). Nights worked per month shows a small increase in odds, as does hours per week worked

(odds of 1.008 and 1.007 respectively, with CIs of 1.004-1.011 and 1.005-1.008 respectively).

While small, these effects are nonetheless substantively important. Shift work shows an increase

in odds of reporting upper muscular pain as well, with an OR of 1.109 (CI 1.071-1.147). Working

time arrangements have some effect, but more with respect to the more flexible arrangements.

Having a choice between several fixed schedules is not statistically significant, with an OR

of 1.003 (CI 0.952-1.057), with a p value of 0.908. Due to its wide confidence interval, this

small effect is likely to be mostly irrelevant. However, having working time arrangements that

are adaptable within limits and those which are entirely self-determined show an increase in

odds (1.176, CI 1.134-1.220 and 1.070, CI 1.030-1.111 respectively), meaning those in more

flexible situations are more likely to report upper muscular pain. For skill-demand match, there

is a smaller gap between high and low demand individuals, with those with higher demands

relative to those whose skills and demands match having slightly higher odds (1.095, CI 1.052-

1.141) than those with lower demands (OR 1.039, CI 1.10-1.070), though it should be noted

that their confidence intervals overlap slightly. Perhaps, then, having a mismatch is the more

relevant characteristic, rather than whether this mismatch is more or less demanding. Being

paid appropriately again follows a similar pattern, with those who disagree relative to those

who neither disagree or agree having much higher odds (1.412, CI 1.363-1.463) than those

who agree, who show a decrease in odds (OR 0.956, CI 0.924-0.989). Being satisfied with

the working conditions in one’s job again shows its importance, with those who are not at all

satisfied being much more likely to report upper muscular pain (OR 3.637, CI 3.365-3.931) than

those who were not very satisfied (OR 2.611, CI 2.493-2.734) and those who were satisfied (OR

1.572, CI 1.520-1.626), relative to those who were very satisfied. It is worth pausing here to

reflect on the three ‘muscular’ types of health outcome: backache, lower muscular pain, and

upper muscular pain. They follow similar patterns in their covariates, so it could be there is

something unaccounted for in the analysis, most likely clusters in the data, i.e. occupational

differences which are not accounted for solely by demogrpahic or working conditions, or other

structural concerns.
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Table 5.8: Final Single Level Logistic Regression Model for Upper Muscular Pain
in the last 12 months

Y: Upper Muscular Pain OR 95% CI p

Intercept 0.111 0.102 0.120 0.000
Sex (ref: male) 1.292 1.257 1.327 0.000
Age 1.021 1.020 1.022 0.000
Has Tertiary Education (ref: no tertiary) 0.788 0.767 0.810 0.000
Nights worked per month 1.008 1.004 1.011 0.000
Works shifts (ref: no) 1.109 1.071 1.147 0.000
Hours per week worked 1.007 1.005 1.008 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.003 0.952 1.057 0.908
Adaptable within limits 1.176 1.134 1.220 0.000
Entirely self-determined 1.070 1.030 1.111 0.001
Skill-demand match (ref: they match)
Demands too low 1.039 1.010 1.070 0.009
Demands too high 1.095 1.052 1.141 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.412 1.363 1.463 0.000
Agree 0.956 0.924 0.989 0.009
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 3.637 3.365 3.931 0.000
Not very satisfied 2.611 2.493 2.734 0.000
Satisfied 1.572 1.520 1.626 0.000

Log Likelihood -65903.885

5.3.7. Anxiety

Table 9 shows the final single level logistic regression model of anxiety in the last 12 months.

Women are 40.9% more likely to report anxiety in the last 12 months than men, and older people

tend to have slightly higher odds of anxiety (OR 1.011, CI 1.009-1.012). Those with tertiary

education show a similar OR to women, with an OR of 1.402 (CI 1.348-1.458), showing a pattern

opposite to the ‘muscular’ outcomes. It seems possible then, that those with tertiary education

are clustered in occupations that provoke anxiety. Hours worked per week and nights worked

per month remain constant in their pattern, with ORs of 1.005 (CI 1.003-1.006) and 1.021 (CI

1.016-1.025) respectively. The effect of shift work has become statistically insignificant, as its

confidence interval crosses 1 (OR 1.040, CI 0.990-1.092). Working time arrangements show a

small increase in OR between adaptable within limits and entirely self-determined (ORs 1.132,

CI 1.074-1.193 to 1.172, CI 1.110-1.237), though the confidence intervals do overlap, which may

mean, again, that it is the increase in flexibility on a whole that increases the odds of anxiety,

rather than the form of flexibility. Those with a choice between several fixed schedules do not

show a significant change in odds, though it shows a small decrease in odds, the confidence

intervals overlap 1 (OR 0.955, CI 0.884-1.032). For the skill-demand match, the pattern of the

non-muscular outcomes returns, with both showing an increase in odds, but the lower demands’

increase being smaller relative to the higher demands (OR 1.043, CI 1.00-1.088 to 1.435, CI

1.359-1.515 respectively). More demanding jobs increase the prevalence of anxiety. Being

paid inappropriately also appears to increase the odds of anxiety (OR 1.510, CI 1.434-1.589),

86



CHAPTER 5.

which, substantively makes sense, as financial insecurity has been shown to increase anxiety (see

Chapter 2). Being paid appropriately does not appear to have a significant effect. Satisfaction

with working conditions appears to follow the same pattern, but the confidence intervals have

widened relative to the ‘muscular’ outcomes.

Table 5.9: Final Single Level Logistic Regression Model for Anxiety in the last 12
months

Y: Anxiety OR 95% CI p

Intercept 0.025 0.022 0.028 0.000
Sex (ref: male) 1.409 1.355 1.465 0.000
Age 1.011 1.009 1.012 0.000
Has Tertiary Education (ref: no tertiary) 1.402 1.348 1.458 0.000
Nights worked per month 1.021 1.016 1.025 0.000
Works shifts (ref: no) 1.040 0.990 1.092 0.118
Hours per week worked 1.005 1.003 1.006 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.955 0.884 1.032 0.242
Adaptable within limits 1.132 1.074 1.193 0.000
Entirely self-determined 1.172 1.110 1.237 0.000
Skill-demand match (ref: they match)
Demands too low 1.043 1.000 1.088 0.050
Demands too high 1.435 1.359 1.515 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.510 1.434 1.589 0.000
Agree 0.996 0.944 1.050 0.880
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 5.438 4.974 5.946 0.000
Not very satisfied 3.033 2.840 3.239 0.000
Satisfied 1.523 1.442 1.608 0.000

Log Likelihood -37695.197
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5.3.8. Fatigue

The final single level logistic regression model of fatigue in the last 12 months is shown on table

5.10. Women have higher odds of reporting fatigue in the last 12 months than men (OR 1.338,

CI 1.302-1.376), and age, nights worked per month, and hours worked per week continue to have

small but significant effects. Having a tertiary education also has a small but significant effect on

fatigue (OR 1.089, CI 1.059-1.120), as with shift work (OR 1.076, CI 1.039-1.114). Fatigue does

not appear to have a particularly strong pattern with respect to the covariates. Time arrangement

shows that having some choice is better than having entirely self-determined working time,

perhaps indicating that those who have more control may fatigue themselves more easily (OR

1.037, CI 0.998-1.079). Those with a choice between several fixed schedules and those with a

time arrangement that is adaptable within limits both show decreased and very similar odds of

reporting fatigue (OR 0.896, CI 0.850-0.946 and 0.899, CI 0.865-0.933 respectively). Perhaps

some structure is necessary to avoid fatigue. Those with low demands in terms of skill-demand

match show a small and statistically insignificant effect (OR 1.008, CI 0.979-1.038), but those

with high demands show an increased OR of 1.133 (1.087-1.180). Being paid appropriately

follows the pattern theorised by Siegrist [1996]: disagreeing one is paid appropriately leads to

increased odds of reporting fatigue (OR 1.380, CI 1.331-1.430), whereas agreeing one is being

paid appropriately leads to a slight decrease in odds of reporting fatigue (OR 0.912, CI 0.881-

0.944). Being not at all satisfied with working conditions shows very high odds of reporting

fatigue (4.960, CI 4.581-5.369), similarly for being not very satisfied (OR 3.384, CI 3.227-

3.546), and finally being satisfied shows increased odds (OR 1.716, CI 1.657-1.777) relative to

being very satisfied with working conditions. Examining fatigue in the context of geography and

occupation may be more effective in pulling out the patterning in the covariates.
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Table 5.10: Final Single Level Logistic Regression Model for Fatigue in the last 12
months

Y: Fatigue OR 95% CI p

Intercept 0.108 0.100 0.118 0.000
Sex (ref: male) 1.338 1.302 1.376 0.000
Age 1.006 1.004 1.007 0.000
Has Tertiary Education (ref: no tertiary) 1.089 1.059 1.120 0.000
Nights worked per month 1.017 1.013 1.020 0.000
Works shifts (ref: no) 1.076 1.039 1.114 0.000
Hours per week worked 1.016 1.015 1.017 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.896 0.850 0.946 0.000
Adaptable within limits 0.899 0.865 0.933 0.000
Entirely self-determined 1.037 0.998 1.079 0.064
Skill-demand match (ref: they match)
Demands too low 1.008 0.979 1.038 0.604
Demands too high 1.133 1.087 1.180 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.380 1.331 1.430 0.000
Agree 0.912 0.881 0.944 0.000
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 4.960 4.581 5.369 0.000
Not very satisfied 3.383 3.227 3.546 0.000
Satisfied 1.716 1.657 1.777 0.000

Log Likelihood -64066.166

5.3.9. Headache and/or Eyestrain

Table 5.11 shows the final single level logistic regression model for headache and/or eyestrain

in the last 12 months. Women show higher odds than men for headache and/or eyestrain (OR

1.687, CI 1.641-1.734). Age, nights worked per month, and hours worked per week show very

similar small but significant effects to other models (ORs 1.003, CI 1.001-1.004; 1.008, CI

1.005-1.012; 1.010, CI 1.009-1.011 respectively). Having tertiary education has an increased

odds of headache and/or eyestrain (OR 1.171, CI 1.139-1.204), perhaps due to the types of

jobs taken by those with university education, which may involve more computer work. The

effect of shift work is so small as to be insignificant, as the confidence interval overlaps 1 (OR

1.033, CI 0.998-1.070). Working time arrangements show similarly small effect sizes, with

only adaptable within limits confidence intervals not overlapping 1 (OR 1.043, CI 1.004-1.082).

Having demands which are too low relative to one’s skill is also statistically insignificant, with

a p value of 0.882, and an effect size very, very close to 1 (OR 0.998, CI 0.969-1.028). Having

high demands, though, shows increased odds (1.234, CI 1.185-1.285), as with disagreeing one is

being paid appropriately (OR 1.275, CI 1.230-1.322). Agreeing one is being paid appropriately

appears to have little effect on headache and/or eyestrain, with an OR of 0.969 (CI 0.935-1.003).

Indeed, even satisfaction with working conditions does not show as large effect sizes as the other

outcomes, though the effect sizes are still quite large, and significant, perhaps indicating there is

not something captured with this model, or that headache and/or eyestrain are difficult to model.

Accounting for occupation and other group factors may improve the model.
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Table 5.11: Final Single Level Logistic Regression Model for Headache and/or
Eyestrain in the last 12 months

Y: Headache and/or Eyestrain OR 95% CI p

Intercept 0.143 0.132 0.155 0.000
Sex (ref: male) 1.687 1.641 1.734 0.000
Age 1.003 1.001 1.004 0.000
Has Tertiary Education (ref: no tertiary) 1.171 1.139 1.204 0.000
Nights worked per month 1.008 1.005 1.012 0.000
Works shifts (ref: no) 1.033 0.998 1.070 0.068
Hours per week worked 1.010 1.009 1.011 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.016 0.964 1.072 0.545
Adaptable within limits 1.043 1.004 1.082 0.028
Entirely self-determined 0.964 0.927 1.002 0.064
Skill-demand match (ref: they match)
Demands too low 0.998 0.969 1.028 0.882
Demands too high 1.234 1.185 1.285 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.275 1.230 1.322 0.000
Agree 0.969 0.935 1.003 0.077
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 2.866 2.657 3.091 0.000
Not very satisfied 2.212 2.111 2.318 0.000
Satisfied 1.424 1.376 1.474 0.000

Log Likelihood -64045.915

5.3.10. Injury(ies)

Table 5.12 shows the final single level logistic regression model for injury(ies) in the last 12

months, the final health outcome. Women have much lower odds of reporting injury(ies) than

men (OR 0.522, CI 0.498-0.548), and older people also have slightly lower odds (0.992, CI

0.990-0.993). Those with tertiary education also have decreased odds of injury(ies) (OR 0.673,

CI 0.640-0.708); these characteristics indicate perhaps a certain type of person who is prone

to injury, and there may be structural factors explaining why this is so, that we cannot capture

adequately with a single level model. It is also possible that particular occupations may be more

injury-prone than others, and those groups that are more likely to be injured cluster in those

occupations. Nights per month and hours per week continue to have a small but significant

increase in odds. Working shifts increases the odds of reporting injury(ies) with an OR of

1.191 (CI 1.126-1.260). Working time arrangements appear to follow no clear pattern, with

the choice between several fixed schedules and entirely self-determined arrangements having

small and statistically insignificant effects due to their confidence intervals crossing 1, whereas

those with time arrangements that are adaptable within limits have slightly increased odds of

reporting injury(ies) (OR 1.103, CI 1.033-1.177). The skill-demand match variable follows a

similar pattern to the other outcomes, but the odds are closer together, though the confidence

intervals do not overlap. Those with lower demands have increased odds of 1.133 (CI 1.078-

1.191) relative to those whose demands and skills match, whereas those with higher demands

have odds of 1.251 (CI 1.168-1.339). Disagreeing one is being paid appropriately has increased
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odds of injury(ies) (OR 1.322, CI 1.244-1.404), versus agreeing one is being paid appropriately,

the confidence interval of which crosses 1, meaning it is insignificant (OR 0.948, CI 0.891-

1.009). Like headache and/or eyestrain, the satisfaction with working conditions follows a

similar pattern to all of the other outcomes, but the effect size is much smaller than in the other

models, in some cases, half of what the ORs are.

Table 5.12: Final Single Level Logistic Regression Model for Injury(ies) in the last
12 months

Y: Injury(ies) OR 95% CI p

Intercept 0.143 0.132 0.155 0.000
Sex (ref: male) 0.522 0.498 0.548 0.000
Age 0.992 0.990 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.673 0.640 0.708 0.000
Nights worked per month 1.012 1.006 1.017 0.000
Works shifts (ref: no) 1.191 1.126 1.260 0.068
Hours per week worked 1.004 1.002 1.006 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.082 0.989 1.184 0.087
Adaptable within limits 1.103 1.033 1.177 0.004
Entirely self-determined 1.060 0.993 1.131 0.079
Skill-demand match (ref: they match)
Demands too low 1.133 1.078 1.191 0.000
Demands too high 1.251 1.168 1.339 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.322 1.244 1.404 0.000
Agree 0.948 0.891 1.009 0.095
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 2.987 2.686 3.320 0.000
Not very satisfied 2.088 1.931 2.259 0.000
Satisfied 1.273 1.193 1.358 0.000

Log Likelihood -28408.503

5.4. Conclusions

These models appear to perform reasonably well with most effects being statistically significant,

having narrow confidence intervals. They show patterns relative to outcome types, i.e.

‘muscular’ outcomes differ from those more related to mental health. Models around muscular

health outcomes tend to skew male, older, and generally the effect of education is to decrease

the odds of the outcome; satisfaction, while still important, has a smaller magnitude of effect

than on the mental health-related outcomes, such as anxiety. They tend towards the opposite

(female, with tertiary education). This means that certain working conditions relate more to

specific outcomes than others, meaning it is important to examine the outcomes individually.

The models are fairly parsimonious; the relationships between the covariates and the

outcomes essentially show that working conditions and arrangements thought of to be negative,

such as working nights or shifts, have an impact on reporting of the various health outcomes.

Indeed, the models reinforce the notion that flexible working conditions are of detriment to an

individual’s health (see Chapter 2). However, some aspects of the relationship between working
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conditions and health are not captured, namely the structural aspects of the data, be it the country

from which the individual hails, the year they answered the survey, or, most importantly, the

occupation in which they work. People with particular demographic characteristics, such as men,

may cluster in particular occupations, and this should be accounted for in the models. Further,

without this information, the models do not fit into the worksome framework, as they only

examine the individual as independent of all other individuals, and of the other geocontextual

factors as unimportant.

Even from a data-driven standpoint, multilevel analysis is necessary, as the data are

clustered. However, these single-level models provide part of the groundwork for multilevel

models. Examining them first permits the possibility of simpler models being the most

appropriate, which is desirable as they are easier to interpret and reproduce ([Box, 1976].

Multilevel models allow for the capture all of this information, and the examination of the

variation between and within these clusters without compromising the logistic regression

structure. The following chapter describes the British Household Panel Survey (BHPS) single-

level logistic regression models, conducted in the same manner as the models in this chapter.

This will be followed by Chapter 7, which lays the other part of the groundwork for the multilevel

models, by determining what structure the random part, or the levels of the multilevel, should

take.
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Results: BHPS Single Level Logistic
Regression Models

6.1. Introduction

Following on from Chapter 5, single level logistic regression models were generated for the

outcomes from the British Household Panel Survey (BHPS) data. Chapter 5 revealed patterns

relative to outcome types, i.e. that certain working conditions relate more to specific outcomes

than others. The approach used to answer research objectives 1 and 2, and research questions

1 and 2 was based on an international dataset which was useful for national level comparisons,

but which did not allow the exploration of individual level differences. In this chapter that

issue is addressed by using the BHPS data, which is a national panel survey with 18 waves.

Specifically,the corresponding working conditions variables and health outcomes are explored

in the BHPS data using single level logistic regression models, implemented in the same way

as the EWCS models (see Chapter 5). In short, the covariates were added one by one to the

models, producing the final models presented in tables 6.3-6.5, and the intermediate models can

be found in Appendix B. There were 115,171 total observations. The purpose of this chapter is

also to determine whether simpler single-level multivariate logistic regression models will suffice

to explain how working conditions might affect health, and whether they can demonstrate the

influence of the various scales discussed in the worksome.

Three outcomes were examined: health status in the last 12 months (dichotomised to

poor/good), health problems in the arms, legs, hands (etc.), i.e., muscular or limb problems, and

health problems relating to anxiety/depression. The latter two are operationalised as a binary

outcome (mentioned/not mentioned). Both the BHPS and EWCS data use the mentioned/not

mentioned dichotomy for specific health outcomes. Health status, in this case (self-declared)

was chosen as it is a powerful measure of global health, as argued in the literature review

(Chapter 2). The two specific health problem outcomes relating to health conditions were

examined as they cover both physical and mental health and correspond to outcomes examined

93



CHAPTER 6.

in the EWCS dataset. Specifically, the health problems in the limbs corresponds to the muscular

pain related outcomes in the EWCS. The EWCS dataset has more muscular pain outcomes,

for example, separating backache from upper body and lower body muscular pain. The BHPS

anxiety/depression outcome corresponds to the EWCS anxiety one. They will be discussed in

turn, and in the conclusion, then related to one another and the EWCS models. Eight covariates

were also selected to correspond to variables used in the EWCS analysis (as discussed in Chapter

4). All of the variables can be seen in table 6.1 below.

Table 6.1: Outcomes and Covariates for all Models

Outcomes
Covariates

• Health status in the last 12
months

• In the last 12 months...

– Health problems in the arms,
legs, hands
(etc.), i.e., problems with the
muscles or limbs

– Health problems relating to
anxiety/depression

• Sex (ref:male)

• Age (15-65)

• Has tertiary education (ref: no
tertiary education)

• Gross monthly pay (GBP)

• Job hours per week

• Works flexitime (ref: Not
mentioned)

• Job satisfaction: Total pay (ref:
Neither satisfied nor dissatisfied,
coded as 3)

– Not satisfied (1)

– Not very satisfied (2)

– Satisfied (4)

– Very Satisfied (5)

• Job satisfaction: Overall (ref:
Neither satisfied nor dissatisfied,
coded as 3)

– Not satisfied (1)

– Not very satisfied (2)

– Satisfied (4)

– Very Satisfied (5)
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6.2. Correlations

As before, correlation analysis provides the means to explore the relationships between the

variables in the data. Before the models were analysed, the correlations between the variables

were examined to check for multicollinearity, and to preliminarily examine the relationships

between the variables (see table 6.2). Examining the correlation matrix is a common way to

check for multicollinearity [Armitage et al., 2002]. No correlation pair was higher than 0.43.

Monthly gross pay was correlated most strongly (0.401) with job hours per week, which is

unsurprising: it shows that the more hours you work, the more pay you will receive. It is further

correlated with having tertiary education (0.31), and negatively correlated with female sex (-

0.31). Sex is also negatively correlated with job hours per week (-0.39), which indicates a

potential relationship between sex, job hours per week, and monthly gross pay. As revealed in

Chapter 5, this could reflect women’s higher levels of flexible and part-time working, due to their

multiple social roles. Overall job satisfaction was also correlated with the ‘total pay’ dimension

of job satisfaction (0.42). However, as no correlation is high, the variables are unlikely to be

collinear. Of note, monthly gross pay and job satisfaction with total pay are not very correlated

(0.13), meaning that these variables may not be totally related.
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6.3. Model Results

The following sections present the results of the single level logistic regression models, organised

by outcome.

6.3.1. Health Status

Health status in the last 12 months, which was dichotomised to poor (fair/poor, 0) or good

(good/very good/excellent, 1), is a measure of self-rated health. Unlike the previous EWCS data,

the measure in the BHPS is not necessarily directly associated with their actual work: the EWCS

respondents were asked whether they thought their work affected their health (see Chapter 4 for

a description of this data, and Chapter 5 for the single level models analogous to these). Table

6.3 shows the results for the final model, which includes all the covariates. Most of the effect

sizes are close to 1, which indicates a small effect size. These include sex, age, gross monthly

pay, job hours per week, and flexitime. Women are less likely than men to report good health

(OR 0.921, CI 0.894-0.949). Older people also are less likely to report good health, year on

year (OR 0.991, CI 0.990-0.992). Interestingly, gross monthly pay shows an OR of 1.00016

(CI 1.000141-1.000178). This effect appears small as it is per single British pound: for every

pound increase in gross monthly pay, there is a 0.016% increase in the odds of reporting good

health. For the mean gross monthly pay of £1150, this is therefore an 18.4% increase in the

odds. This even held through the models before accounting for satisfaction with total pay. Job

hours per week shows that for each hour increase in time worked, there is a 0.3% decrease in the

odds of reporting good health – a small, but significant effect. The effect of working flexitime

is inconclusive, as the OR has a confidence interval overlapping one, meaning the effect is not

statistically significant at this confidence level.

Individuals with higher levels of education (as identified by the presence of tertiary

education) are 23.7% more likely to report good health than those who do not have tertiary

education. Being not satisfied or not very satisfied with the total pay from your job relative

to being neither satisfied nor dissatisfied showed a decrease in reporting good health (11.4%

and 2.9% respectively), though the not very satisfied category was not statistically significant

(OR 0.971, CI 0.920-1.024, p 0.278). As might be expected, being satisfied and very satisfied

increased the odds of reporting good health by 8.7% and 13.5% respectively, evidenced by

Chapter 5, and Virtanen et al. [2003]. Finally, overall job satisfaction followed a similar pattern,

but with stronger effects than satisfaction with total pay. Not satisfied and not very satisfied

showed decreases in the odds relative to neither satisfied nor dissatisfied by 21.6% and 13.5%

respectively. Being satisfied or very satisfied with your job overall showed increases in the odds

of reporting good health of 37.5 and 52.7% respectively.
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Table 6.3: Final Single Level Logistic Regression Model for Health Status. Gross
monthly pay is reported with a larger number of significant digits than the other
covariates due to its small effect size.

Y: Health status in the last 12 months OR 95% CI p

Intercept 2.683 2.464 2.922 0.000
Sex (ref: male) 0.921 0.894 0.949 0.000
Age 0.991 0.990 0.992 0.000
Has Tertiary Education (ref: no tertiary) 1.237 1.187 1.289 0.000
Gross monthly pay (GBP) 1.00016 1.000141 1.000178 0.000
Job hours per week 0.997 0.995 0.998 0.000
Works flexitime (ref: Not mentioned) 0.971 0.934 1.010 0.146
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 0.886 0.820 0.958 0.002
Not very satisfied 0.971 0.920 1.024 0.278
Satisfied 1.087 1.035 1.141 0.001
Very Satisfied 1.135 1.062 1.214 0.000
Job satisfaction: Overall (ref: Neither satisfied nor dissatisfied)
Not satisfied 0.784 0.702 0.875 0.000
Not very satisfied 0.865 0.814 0.920 0.321
Satisfied 1.375 1.308 1.445 0.000
Very Satisfied 1.527 1.434 1.626 0.000

Log Likelihood -65143.5

Compared to the EWCS data, specifically the work-health effect, a dichotomised outcome

of ‘does your work affect your health?’, similar patterns can be observed in the coefficients of

the covariates which correspond. It should be noted that these particular outcomes in the BHPS

and EWCS data have opposing codings, in that good health here in the BHPS is coded as 1, and

yes, i.e., ‘my work affects my health’ is coded as 1 in the EWCS. Older people, for example are

more likely to report their work affects their health in the EWCS analysis and are less likely to

report good health in the BHPS analysis. Job hours per week show a similar pattern to age, as

does working in flexible time arrangements, though in the EWCS data it is a categorical variable

with several arrangement types. As for satisfaction with pay in the BHPS, its patterning matches

that of the ‘appropriate pay’ variable in the EWCS, in that those less satisfied or who disagree

that they are paid appropriately report either poorer health, or that their work affects their health.

Overall satisfaction for both shows the same pattern. This means that, on the whole, the patterns

of how the demographic and working conditions covariates match between the EWCS and BHPS

analysis, and therefore similar conclusions around the research questions can be drawn. Namely,

that work, and its conditions do affect health, and this varies by working condition, meeting

research objectives 1 and 2, and answering research questions 1 and 2.

6.3.2. Specific health problems with the limbs or muscles

The second outcome of interest from the BHPS are health problems which related to muscular

or other issues often found in the arms, legs, hands, and so on. In the survey respondents either

mentioned (1) or did not mention (0) this outcome. Table 6.4 shows the model results. Women

relative to men (OR 1.082, CI 1.044-1.122) and older people (OR 1.051, CI 1.049-1.052) were
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more likely to mention muscular problems. Having a tertiary education decreased the odds of

reporting muscular problems by 19.7%. Again, gross monthly pay had a small effect, due to

it being per single British pound, showing a slight decrease (0.016%) in the odds of reporting

muscular problems. The effect of job hours per week was small (a 0.1% increase in the odds for

each additional hour worked), and further, statistically insignificant (p 0.085). Working flexitime

increased the odds of mentioning a muscular problem by 5.6%, though, without accounting for

occupation, it may be difficult to know potential causes or causal direction for this effect.

Satisfaction with total pay showed a similar pattern to health status, in that those who are

more satisfied tend to be healthier – those who were satisfied or very satisfied tended to have

lower odds of mentioning a muscular problem relative to those who were neither satisfied nor

dissatisfied. Conversely, those who were not satisfied or not very satisfied showed increases in

the odds, though only the strongest sentiment categories (not satisfied and very satisfied) had

statistically significant effects. Overall, the effects of job satisfaction were all significant, and

showed the same pattern as the health status results, with stronger effects. Relative to those

who were neither satisfied or dissatisfied, those who were satisfied or very satisfied showed a

19.2% and 22.1% decrease in the odds of reporting muscular problems, and those who were not

very satisfied or not satisfied showed an 11.6% and 42.9% increase in the odds of mentioning

muscular problems.

Table 6.4: Final Single Level Logistic Regression Model for Health Problems with
the Limbs or Muscles. Gross monthly pay is reported with a larger number of
significant digits than the other covariates due to its small effect size.

Y: Health problems with the limbs or muscles OR 95% CI p

Intercept 0.033 0.030 0.037 0
Sex (ref: male) 1.082 1.044 1.122 0
Age 1.051 1.049 1.052 0
Has Tertiary Education (no tertiary) 0.803 0.764 0.844 0
Gross monthly pay (GBP) 0.999919 0.999898 0.999939 0
Job hours per week 1.001 1.000 1.003 0.085
Works flexitime (ref: Not mentioned) 1.056 1.008 1.106 0.023
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 1.161 1.056 1.275 0.002
Not very satisfied 1.065 0.997 1.137 0.062
Satisfied 0.941 0.886 0.999 0.046
Very Satisfied 0.944 0.871 1.023 0.162
Job satisfaction: Overall (ref: Neither satisfied nor dissatisfied)
Not satisfied 1.429 1.256 1.625 0
Not very satisfied 1.116 1.035 1.203 0.004
Satisfied 0.859 0.808 0.913 0
Very Satisfied 0.779 0.721 0.841 0

Log Likelihood -48810.1

The analogous EWCS outcomes are lower muscular pain (LM) and upper muscular pain

(UM), where the variables are also coded as not mentioned (0) and mentioned (1). The effect

of sex was larger in the EWCS analysis (OR LM 1.156, CI 1.124-1.190; OR UM 1.292, CI

1.257-1.327) compared to the BHPS analysis (OR 1.082, CI 1.044-1.122). It is possible that the
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unaccounted for variation within or between the scales, i.e., the occupation, geography, or time

levels, could account for why the EWCS data show a larger effect than the BHPS, as the EWCS

data covers a diverse range of European countries. The effect of having tertiary education rather

than not was similar for both, showing a decrease in the odds of reporting muscular issues in both

the BHPS and EWCS analyses. Both the BHPS and EWCS analysis showed a slight increase in

the odds of reporting muscular problems with increasing hours per week worked. Satisfaction

with total pay (and its analogous variable ‘appropriate pay’ in the EWCS) and satisfaction overall

both showed a decrease in the odds of reporting muscular problems with increasing satisfaction.

6.3.3. Specific health problems: anxiety or depression

The final outcome of interest from the BHPS is the reporting of anxiety and depression as health

problems, which are operationalised as not mentioned (0) or mentioned (1). Table 6.5 shows the

results of the final model. Overall women are far more likely to mention anxiety or depression

than men: have an 125% increase in odds (OR 2.250, CI 2.106-2.404). Older people’s odds

of mentioning anxiety or depression increase by 1.7% for each additional year. Unlike the

previous two outcomes, health status and muscular health problems, the presence of tertiary

education was not significant in the case of anxiety and depression. Gross monthly pay has a

small effect size, due to being per single British pound, with a 0.01% decrease in the odds of

reporting anxiety/depression. Job hours per week worked decreases the odds of reporting anxiety

or depression, and though the confidence interval is reasonably narrow and does not overlap 1,

the p-value implies that the effect is not statistically significant.

As for satisfaction with total pay, only one of the categories is statistically significant – not

being satisfied with your total pay increases your likelihood of mental health problems related to

anxiety or depression (OR 1.215, CI 1.046-1.411). Relative to neither satisfied nor dissatisfied,

being satisfied or very satisfied with total pay have no strong relationship with health problems

due to anxiety or depression. Overall job satisfaction does have an apparent and statistically

significant pattern across the satisfaction levels – as overall job satisfaction decreases the odds of

reporting anxiety and depression increases. Relative to being neither satisfied nor dissatisfied,

being not satisfied or not very satisfied means a 122.8% and 56.3% increase in the odds of

mentioning anxiety or depression respectively. Being satisfied or very satisfied with the job

overall shows a 33.5% and 48.4% decrease in the odds respectively.

The analogous EWCS outcome is the reporting of anxiety, coded as not mentioned (0)

and mentioned (1). Sex, i.e. being a woman rather than a man, has a much larger effect in

the BHPS data, with a difference in ORs of 0.841. This could be due to some UK-specific

characteristic of work itself or working conditions that could lead to more women reporting

anxiety/depression. This could be accounted for by including the scales and domains argued

for by the worksome, so including occupation, geography, and time in the model through a

multilevel structure could account for this difference between the two. Age, working flexitime,

and the two satisfaction variables all had similar effect sizes to their analogous EWCS covariates.

Having tertiary education rather than not has a larger effect size in the EWCS analysis, and it is
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Table 6.5: Final Single Level Logistic Regression Model for Health Problems
relating to Anxiety/Depression. Gross monthly pay is reported with a larger number
of significant digits than the other covariates due to its small effect size.

Y: Health problems anxiety/depression OR 95% CI p

Intercept 0.028 0.023 0.034 0.000
Sex (ref: male) 2.250 2.106 2.404 0.000
Age 1.017 1.015 1.019 0.000
Has Tertiary Education (ref: no tertiary) 1.059 0.975 1.149 0.172
Gross monthly pay (GBP) 0.999868 0.999826 0.99991 0.000
Job hours per week 0.994 0.991 0.997 0.000
Works flexitime (ref: Not mentioned) 1.100 1.017 1.189 0.017
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 1.215 1.046 1.411 0.011
Not very satisfied 1.107 0.989 1.239 0.076
Satisfied 1.013 0.912 1.125 0.816
Very Satisfied 1.063 0.924 1.222 0.394
Job satisfaction: Overall (ref: Neither satisfied nor dissatisfied)
Not satisfied 2.228 1.870 2.655 0.000
Not very satisfied 1.563 1.392 1.754 0.000
Satisfied 0.665 0.601 0.736 0.000
Very Satisfied 0.516 0.452 0.589 0.000

Log Likelihood -21118.7

not statistically significant in the BHPS one. Job hours per week showed a decrease in the odds

of reporting anxiety/depression in the BHPS analysis, but showed an increase in the odds in the

EWCS one. The effect size is small, but similar to the difference in sex, it may be accounted for

with the multilevel models.

6.4. Conclusions

This section examined single-level multivariate logistic regression models to estimate the impact

of demographic information and working conditions variables, such as overall job satisfaction,

on self-rated health status, as well as two mental and physical health outcomes. The findings

from these models are largely consistent with one another in terms of the direction of effect for

each of the variables, with few exceptions. They are also largely consistent with the EWCS

models detailed in Chapter 5. Overall, they show a gendered pattern, where women tend to be

less healthy. While age shows smaller effect sizes, it tends to show poorer health and increased

reporting of both muscular health problems and anxiety/depression. Having tertiary education

appears a bit more unclear, especially for anxiety and depression. Gross monthly pay has a small

effect for all of the models, partly due to being scaled on a single GBP. These two dimensions

are often used as a proxy for class, and it was found by Geyer et al. [2006] that they show

strong independent effects on health. This likely means that further exploration of the data via

multilevel models is required to account for the structure of the data. Specifically, the data

contains repeated measures of individuals, in times, in places; ignoring this structure is likely

to ignore the influences of those scales substantively, and theoretically, does not fit in with the

conceptualisation of the worksome. Furthermore, as the observations in the data are time-points
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within individuals, the standard errors may be underestimated due to within-individual temporal

autocorrelation, i.e. non-independent observations over time.

In addition, it is likely that the occupational components of the relationship are not well

captured just by individual level working conditions but also require a multilevel structure.

For example, having a tertiary education decreased the odds of reporting muscular problems.

However, tertiary education also increased the odds of reporting anxiety or depression (though

statistically insignificant), which signals there may be an occupation-specific component related

to educational attainment’s impact on health. Accounting for the structure of the data with

multilevel models may help improve the confidence bounds and shrink the estimate, especially

for tertiary education, which is likely unevenly distributed through the occupation types.

Moreover, geography should also be accounted for – there are region-specific differences in the

distribution of occupations in England, and therefore they are important to model. The single

level models provide a base for the multilevel models, which will capture more information about

the relationship between working conditions, health, occupation, and geography. The following

chapter will chart out the necessary multilevel structure for the data.
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Chapter 7

Variance Components Models

1

7.1. Introduction

There is a relationship between work and health, as the previous chapters have confirmed, and

this holds through a variety of health outcomes and working conditions. However, although

single level models produce useful results, one of their underlying assumptions is independence

of observations, which therefore may not be most appropriate approach given the datasets

in question. In the European Working Conditions Survey (EWCS), people work in specific

occupations in particular countries with particular welfare regimes existing at particular points

in time. Similarly, in the British Household Panel Survey (BHPS) data, wave-observations (i.e.,

time points) are clustered in individuals, who work in specific occupations, in particular UK

regions. As a result, the single level models cannot capture the context or structure of interactions

between people, who, by nature, are not independent of one another. Single level models assume

a ‘universal,’ constant relationship between certain working conditions and health outcomes; it

is not possible to account for differences between countries or time points [Duncan and Jones,

2000]. In this case, multilevel models are appropriate because of the hierarchy present in the

data and the commonalities shared between those within countries, occupations, time periods,

and welfare regimes. Multilevel models are also appropriate theoretically, in the sense that they

can mirror the interactive scales within the worksome.

In essence, the EWCS and BHPS data are nested and clustered. They are nested in that,

for example, occupations and individuals exist within countries. They are clustered, in that

individuals live in specific countries in specific times. According to [Hox, 2010, p3], ignoring

clustering in the data may produce misleading significance tests that can lead to ’spurious’

conclusions. Both random and fixed effects can be modelled simultaneously, allowing for the

effects of these to be examined separately [Deeming and Jones, 2015]. Heterogeneity between

1The final section of this chapter on the differences between occupational classification systems has already been
published in Social Science and Medicine Eyles et al. [2019]
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levels in the models can be described explicitly [Duncan and Jones, 2000]. This chapter will test

whether multilevel models are empirically necessary using the EWCS data, and then determine

which structure is most appropriate for creating the final models. As the single level results

were broadly similar between Chapters 5 and 6, the BHPS data were not used in the exploratory

variance components models.

The EWCS dataset contains individuals classified into a number of groups. First, as the

data are repeated cross-sectional, individuals are in survey years: 1991, 1995, 2000, 2005, 2010,

and 2015. The years 2000 and 2001 were combined as they are part of the same survey wave,

and they are mutually exclusive, i.e., data were collected as part of the same initiative in 2000

or 2001. In total there are 36 countries, although not all countries were surveyed in every year.

Some were added in later waves either as they became EU member candidates, EU members, or

EEA members. Individuals were not asked what their specific workplace was, but rather what

occupation they worked in, so therefore occupation will be examined in its place. For exploratory

modelling, the countries have been classified into six welfare regimes adapted from [Bambra,

2007], see table 4.1). Further, country-year and welfare-regime-year variables were also created.

In essence, these represent a specific survey year in a specific country or welfare regime: spatio-

temporal context. This was done to examine whether it may be better to examine them together

as welfare regimes rather than separately due to sample size, though each country in the end had

sufficient observations and statistical significance. According to Clarke [2008], who used Monte

Carlo simulations to test group size for sparse data, reliable multilevel estimation is possible with

five observations per group

.

7.2. Examining Geography and Time

Seven multilevel logistic regression models were created as variance components models, which

are null models that reveal at which level the variance lies in the data, and additionally, whether a

multilevel structure may produce a better model than the single level approach. Table 7.1 shows

the structure of the seven models which have been produced using MLwiN 3.01. Models 1, 2,

4, 5, and 7 are two-level models. A two-level model has a less complicated structure, which

is simpler, therefore computationally less resource intensive, and further, is substantively easier

to interpret. Models 3 and 6 are three-level models, used to determine where the variance lies

with respect to country-years and welfare-regime years. Occupation was deemed substantively

important, and therefore the final models with covariates will include it as the level directly

above the individual. In all the variance components models, the individual is at the first level

and the outcome variable is the binary ‘Does your work effect your health?’ which is answered

by yes or no (No: 60.8%).

Table 7.2 shows the results of all seven models. There are also caterpillar plots, i.e., ranked

residual plots (see figures 7.1-7.9) with confidence intervals, to examine the degree of clustering

in the data. The variance partitioning coefficient (VPC), also known as the intraclass correlation
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Table 7.1: Model Structure, with number of units in parentheses.

Model
1

Model
2

Model
3

Model
4

Model
5

Model
6

Model
7

Level 3 Country
(36)

Welfare
Regime
(6)

Level 2 Country
(36)

Year
(6)

Year
(154)

Country-
Year
(154)

Welfare
Regime
(6)

Year
(32)

Welfare
Regime-
Year
(32)

Level 1 Individual
(175206)

(ICC) for each higher level is shown, as well as the median odds ratio (MOR). The MOR is

shown as the VPC is not directly comparable for logistic multilevel models, where as the MOR

is [Merlo et al., 2006]. The MOR is the increased risk, on average, of arriving to a higher risk

group from a lower risk one, when the two areas are randomly selected from the distribution of

the estimated variance at that level [Merlo et al., 2006].
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CHAPTER 7.

Model 1 reveals that there is a strong geographic component to the data through country-

level clustering. The country-level residuals are well-dispersed around the zero line, (see figure

7.1). The VPC is 3.8%, and the between-country variance is 0.129 (se 0.031). The MOR is

1.409. Model 2 examines the year level, where clustering also appears to occur. The between-

year variance is 0.138 (se 0.081), and the VPC is 4%. The MOR is 1.425, meaning moving

between certain years can increase the likelihood of reporting that work effects health.

Figure 7.1: Ranked Residuals for Model 1, country

The year-level residuals for model 2 (see figure 7.2), which are reasonably well-dispersed

around the zero line, though the standard errors overlap in several cases, also show clustering,

though perhaps with some noisiness. This could be due to the country-level clustering indicated

in model 1, thereby indicating that both countries and years should be included in the multilevel

structure.
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Figure 7.2: Ranked Residuals for Model 2, year

Model 3 shows how country-years are comprised in terms of the division of variance. The

between-country variance itself appears to drop when years are included at level 2, at 0.064 (se

0.031), with a high standard error; the between-year variance rises compared to model 2 to 0.266

(se 0.035). Years appear to soak up more of the variance than countries in this respect. The VPC

for year (level 2) is 7.5% and for countries (level 3), it is 1.9%. The MOR for years is 1.636

and for countries it is 1.272. Moving between years therefore appears to be riskier than moving

between countries, i.e., there is less comparability over time than over places. Figure 7.3 shows

the level 2 ranked residuals for year, effectively country-year in this case. Clustering is shown

with well-dispersed residuals. The ranked residuals for country (figure 7.4, level 3), compared

with those in figure 7.1, for example, show a decrease in the intensity of country-level clustering,

with the residuals both closer together, and the standard error bars overlapping for a majority of

the countries, meaning the variance of time has been properly accounted for.
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Figure 7.3: Ranked Residuals for Model 3, level 2, country-years

Figure 7.4: Ranked Residuals for Model 3, level 3, country

Models 3 and 4 are country-year models, with the primary difference being that model 3 is

a three-level model with country at level 3 and year at level 2, and model 4 is a two-level model

with country-years (a single variable) at level 2. The between country-year variance is 0.332

(se 0.039). The VPC is 9.2%, with a MOR of 1.733. The standard errors in the 2-level model
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are lower than those in model 3, implying that this model is a more parsimonious execution of

the country-year than the 3-level version. The ranked residuals for country-years in model 4

(see figure 7.5 show clustering due to the dispersal of the residuals around the zero line, with

reasonably small standard errors (especially compared to figure 7.3). However, it is substantively

desirable to examine the effect of country and the effect of year separately, so proceeding with

geography and time as separate levels appears to be the way forward. A large number of groups,

though, may not be preferable in terms of describing the results and contextualising them, and

welfare regimes are commonly used in similar research, so the possibility was explored [Kim

et al., 2012; Virtanen et al., 2005a].

Figure 7.5: Ranked Residuals for Model 4, country-years

Model 5 is a two-level model using welfare regimes as level 2. The VPC is 3.8% and the

MOR is 1.410, with a between welfare-regime variance of 0.13 (se 0.076). There is clustering

evident in figure 7.6 though the standard errors do overlap in some places. This clustering, then,

may be less relevant than that of country or country-years. This could be due to the fact that

not all welfare regimes exist in the data across all years. By including years into the next set of

models, this issue can be further examined.

Models 6 and 7 are analogous to models 3 and 4, in that they are welfare-regime years

in 3- and 2- level form. For model 6, the third level between welfare-regime variance has

dropped compared to model 5, to 0.082 (se 0.072), with a high standard error. The between-
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Figure 7.6: Ranked Residuals for Model 5, welfare regime

year (effectively welfare-regime year) variance is 0.211 (se 0.059). The VPC for welfare regime

is 2.4% with an MOR of 1.314. For year (level 2), the VPC is 6.0%, with an MOR of 1.548.

Figure 7.8 shows the ranked residuals for level 2, year (essentially welfare-regime year), which

are well distributed, with overlaps in the middle of the ranks, showing clustering at that level.

The welfare regime ranked residuals (figure ??, level 3), are also distributed around 0, but like

in model 3, the higher level has large, overlapping standard errors.

Figure 7.7: Ranked Residuals for Model 6, level 2, welfare regime-year
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Figure 7.8: Ranked Residuals for Model 6, level 2, welfare regime

Model 7 is the 2-level version of model 6, combining welfare regimes and years to create

a single variable. The between welfare-regime-year variance is 0.295 (se 0.074). The VPC

is 8.2%, and the MOR is 1.679. These values are slightly lower than those for country-year,

meaning that country-years are more variable than welfare-regime years, which may be expected,

as the welfare regimes encompass a lot of the variation between countries. The standard errors

for model 7 are lower compared to model 6, indicating a better fit for the 2-level model, similar

to models 3 and 4. Figure 7.9 shows the ranked residuals for welfare-regime years, which are

well-distributed around the 0 line, with small standard errors, showing clustering at the welfare-

regime-year level.

So what structure should be used for the analysis? Substantively, as discussed in the

context of the country-year models, it will provide more information to analyse geography and

year separately. Welfare regimes may provide more parsimonious models, however, they may

not account well for local between, and indeed, within, country differences. Macintyre et al.

[2003] warns too of looking for empirical advantages over substantive or theoretical relevance:

individual countries provide a more diverse set of units of analysis. The last thing to do is to bring

in occupational categories, which are included for theoretically important reasons, described in

Chapter 3. Ideally, we would have people in workplaces, however, we assume here that those

in the same occupational category have similar workplace experiences. The EWCS and BHPS

datasets do not have individuals in workplaces, only in occupations. This is something that can be

teased out through multilevel modelling – is there more variation within or between occupational

categories? The first thing that we need to do, though, is test which type of categories explain

the health outcomes the best, which is what the next section explores.
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Figure 7.9: Ranked Residuals for Model 7, welfare regime-year

7.3. Which Occupational Categories Best Predict the Various
Health Outcomes?

Fifty-five Logistic regression models were run using MLWiN 3.01. Separate models for

each health outcome as the independent variable (n = 11) with each classification system

(n = 5) as dependent variables were analysed using a Markov Chain Monte Carlo (MCMC)

Bayesian framework [Browne, 2019]. This provides a Deviance Information Criterion (DIC),

a measure of predictive accuracy that is the badness of fit between the observed and modelled

measures penalised for model complexity [Spiegelhalter et al., 2002]. The DIC privileges model

parsimony. Indeed, Box [1976] emphasises the importance of parsimony in modelling any

phenomenon, due to simplicity of interpretation. Note that the DIC can be compared within

the same health outcomes, but not between health outcomes, i.e., the DIC for the NS-SEC for

skin problems cannot be compared to the DIC for backache for the ISCO 1-digit system.

Figure 7.10 presents only the DIC of all 55 models, by question or health measure and the

classification scheme. Only the DIC for each model measure/classification pair is reported. Each

outcome has the individual classification models sorted by DIC, so that the classification system

with the most parsimony (lowest DIC) is on the left. The colour on the graph is consistent for

each system of classification. The y-axes of the graphs are different due to the varying outcomes,

as each has a difference range of DIC, but the comparison of classification systems can and

should be considered within outcomes rather than between outcomes. It is not the specific value

of DIC which is important, but which has the lowest DIC within an outcome.

The ISCO 2-digit schema best predicts whether an individual’s work may affect their
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Figure 7.10: The DIC of 55 logistic regression models examining which
occupational classification system works best for each health outcome. The DICs
are comparable within, but not between outcomes.

health. Indeed, the ISCO 2008 2-digit classification has the highest predictive accuracy for all

health outcomes across the data, not only for those questions which referred to the work-health

relationship specifically. The 2-digit NACE classification outperformed the 1-digit ISCO 2008

for some outcomes, though for self-rated health, backache, lower muscular pain, upper muscular

pain, and injury it was surpassed by the 1-digit ISCO. The 1-digit ISCO, therefore, did not

always perform as consistently as the 2-digit version of the classification. The NS-SEC in this

study borrows some predictive power from the ISCO 2-digit classification in this dataset as it is

partially derived from it, and this may be why NS-SEC showed higher predictive accuracy than

both the 1- and 2-digit NACE classifications for backache and lower muscular pain, as well as

over the 1-digit version of the NACE for upper muscular pain and injury. The NS-SEC also had

somewhat higher predictive accuracy over the 1-digit ISCO and 1-digit NACE in terms of fatigue.

It seems then, that the NS-SEC may be slightly better at predicting outcomes relating to general

or muscular health than the NACE. Nonetheless, the ISCO 2-digit classification remains the
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most empirically appropriate for predicting health outcomes in the EWCS dataset, as it had the

lowest DIC for all health measures. Theoretically, this indicates that work should be considered

separately from class when examining health outcomes, and reinforces the worksome (Chapter

3) as an appropriate model for enquiry into this relationship.

Empirically, the analysis in this chapter has shown that for examining the health of

workers (through EWCS), occupational classifications such as the ISCO are generally the most

appropriate. The more detailed 2-digit level provides better predictive accuracy, whereas the

1-digit levels may be more practical for certain analyses, particularly when sample sizes within

the groups are smaller. However, some issues remain with the 1-digit ISCO when it comes to

predictive accuracy for certain health measures, where it is outperformed by the NACE 2-digit

classification. In some cases, the NS-SEC did not have the least predictive accuracy compared

to the other systems, primarily the NACE. One reason for this could be that the SOC2010,

used to derive the NS-SEC, in the case of this data, was derived itself from the ISCO 2008

2-digit version, and therefore could have borrowed some statistical power from that system.

Another could be that the NACE is a classification of industries or economic activities rather

than occupations and may not be completely suited to this sort of analysis. The NACE, though,

is formed so as not to distinguish by the ownership, legality, modes of operation, or formality

of economic activities [Eurostat, 2020b]. This may be nonetheless helpful, as the EMCONET.

[2007] research agenda includes non-standard forms of work beyond precarious or flexible work,

including informal work and slavery. The worksome too allows for non-standard forms of work.

The ISCO, for example, does not necessarily have provisions for these, so in those cases, the

NACE may be more appropriate depending on the nature of the work. The ISCO 2008 2-digit

version nonetheless does allow for the vast majority of occupations to be classified as it does

not discriminate by conditions, so therefore flexible and modern working conditions can be

accounted for as long as they are acknowledged explicitly in the study.

7.4. Conclusions

Multilevel models are necessary due to the nested, clustered structure of the EWCS and BHPS

data, and due to the relationships, which we are interested in: the linkage between working

conditions and health outcomes. Furthermore, the single level models did not appear to capture

all relevant information (Chapters 5 and 6). It is worth pausing for a moment and disregarding the

dataset itself. In doing so we can return to the theoretical framework of the worksome (Chapter

3). This has a strong focus on the interactions of the between and within various contexts

and/or scales (in other words on nested or clustered contextual structures). The multilevel model

structure can be used to empirically demonstrate the existence and usefulness of the worksome.

In this chapter, the MOR was used to compare variance components models generated, to

see which structure has the most clustering in terms of the increased risk, in order to lay the

structure for answering research questions and objectives around geographic, temporal, and

occupational variation (Chapter 1.2). This chapter also compared occupational classifications

and their predictive accuracy for the specific health outcomes in the EWCS data, in order to
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select the most appropriate for this structure. This was done using only the EWCS data, as the

BHPS data in the single level models (Chapter 6) largely followed the same patterns in their

results.

For the overall structure, It is apparent that the country-years are the most distinct. Welfare-

regime years follow closely in terms of MOR and VPC, however, countries are of more

substantive interest. Furthermore, welfare regimes are missing in particular years, as many of

the post-Communist countries joined the EU, and therefore the survey, in later waves. Finally,

the separate effects of both country and year are of interest, as time represents the life-course

approach in the worksome, and countries one of the geocontextual scales. Models 3 and 6

allow for the partitioning of the variance between years and countries and years and welfare-

regimes specifically. In these models it becomes apparent that time (as measured here using

years) must be included as time appears to account for some of the variability. Moreover, there

is greater variability in terms of time than places. Ultimately, this leads to the identification

of country-years, as the most computationally appropriate way of capturing the most residual

variance than using countries or years alone or welfare-regimes (and welfare-regime years). As

occupation was always an important theoretical element of the model, only the classification

system was examined, and the 2 digit ISCO-08 performed better than the others in terms of

accuracy in predicting health outcomes. Therefore, the final model structure will be individuals

in occupations, measured by the 2 digit ISCO-08, in years in countries.
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Results: EWCS Multilevel Logistic
Regression Models

8.1. Introduction

This chapter presents the results of the multilevel models. The structure of these models was first

determined by the analogous single level models presented in Chapter 5. Due to the hierarchical

structure of the data, there was some unexplained information in the single level models. Since

the variance components models indicate significant heterogeneity between hierarchies, it is

reasonable to investigate a full multilevel logistic model specification. As discussed before,

accuracy can change significantly when data structure is accounted for, so there are compelling

substantive reasons for taking this approach. Furthermore, there are theoretically compelling

reasons, as the worksome encourages the explicit inclusion of these scales and domains, such

as occupation or geography. Therefore, the modelling strategy for the multilevel models was

broadly similar to that of the single level models in Chapters 5 and 9. The same covariates

were used in the multilevel models as the single level models, and the same outcomes were

used (10 covariates plus one intercept, 10 outcomes; see table 5.1). 110 four level Bayesian

logistic regression models were ran using the runmlwin command [Leckie and Charlton, 2013]

in Stata 14 and 15. The covariates were added one by one. Bayesian models provide credible

intervals rather than confidence intervals, and account for prior evidence. The prior values for the

Bayesian models were generated as multilevel logistic regression models with the same structure,

estimated using iterative generalized least squares (IGLS). Table 8.1 presents the group structure

of the multilevel models. The data are suitable for multilevel analysis following Clarke [2008]

who suggested that at least 5 observations per group was required for reliable estimation. This

structure is supported by the variance components analysis of the data (see Chapter 7). As

discussed, country and year are separated here for substantive purposes. Welfare regimes were

not chosen, as the effects of the individual countries themselves are of interest as they show

local variation more effectively. It allows for the examination of the random effect of country

and year separately, and is more intuitively understandable separately than, for example, making
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Table 8.1: Group Structure

Observations per group

Group Number of groups Minimum Mean Maximum
Country 36 826 2,859.80 6840
Year 3 26,195 34,317 38,568
Occupation (ISCO-88 2 digit) 28 316 3,676.80 10,446
Individual 102,951

comparisons between, for example, Belgium in 2005 and Ireland in 2015.

Table 8.2 shows the direction of the effect of the odds ratios for all the final models for all

outcomes. The outcomes include the work-health effect, and then problems in the last 12 months

with: the skin, hearing, backache, lower muscular pain, upper muscular pain, anxiety, fatigue,

headache and eyestrain and injury(ies). Similar patterns can be seen as the single level models

(Chapter 5), though the multilevel structure allows for the examination of the structures which

individuals relate to and exist in. It was apparent that most of the variation was at the first level,

or the level of individuals, however, in the multilevel structure most of the variation was found

at the country level, with occupation not far behind. The final model structure was the preferable

model for all of the outcomes, having a lower deviance information criterion (DIC, see Chapters

4, 6) than all previous models. The DIC is a Bayesian measure of predictive accuracy, penalised

for model complexity. Tables 8.3-8.12 show the final models for all of the outcomes, presented

as mean odds ratios. The intermediate models can be found in Appendix 3.
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Table 8.2: Direction of Effect for Each Final Model. A: Work-health effect; B: Skin;
C: Hearing; D: Backache; E: Lower Muscular Pain; F: Upper Muscular Pain; G:
Anxiety; H: Fatigue; I: Headache and Eyestrain; J: Injury(ies). Light red represents a
decrease in the likelihood of the outcome and light blue represents an increase in the
likelihood

A B C D E F G H I J

Intercept - - - - - - - - - -
Sex (ref: male) - + - + + + + + + -
Age + - + + + + + + + -
Has Tertiary Education (ref: up to secondary) + - - - - - + + + -
Nights worked per month + + + + + + + + + +
Works shifts (ref: no) + + + + + + + + + +
Hours per week worked + + + + + + + + + +
Working time arrangement (ref: set by company)
Choice between several fixed schedules - + - + - + + + + +
Adaptable within limits + + + + + + + + + +
Entirely self-determined + + + + + + + + + +
Skill-demand match (ref: they match)
Demands too low + + + + + + + + + +
Demands too high + + + + + + + + + +
Paid appropriately (ref: Neither agree nor disagree)
Disagree + + + + + + + + + +
Agree - - - + - - - - - -
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied + + + + + + + + + +
Not very satisfied + + + + + + + + + +
Satisfied + + + + + + + + + +
Random Part

MOR Country Level + + + + + + + + + +
MOR Year Level - + + + + + + + + -
MOR Occupation Level + + + - + + - - - +
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8.2. Model Results

The following sections present the results of the multilevel logistic regression models, organised

by outcome.

8.2.1. The Work-Health Effect

The work-health effect model has almost exactly the same coefficients as the single level model

(see table 8.3). Women have lower odds of reporting their work affects their health than men (OR

0.924, CI 0.899-0.950). Older people have slightly raised odds of having their work affecting

their health (OR 1.014, CI 1.013-1.016), as well as people with tertiary education (OR 1.087 CI

1.057-1.118). Nights per month (OR 1.027, CI 1.024-1.031) and hours per week worked (OR

1.011, CI 1.010-1.012) both have small positive effects on the odds. Working shifts relative to

not working shifts has increased odds of the work health effect (OR 1.293, CI 1.248-1.340).

Working time arrangements show that a choice between several fixed schedules relative to being

set one by the company has a slightly negative effect on the odds (OR 0.951, CI 0.901-1.004),

whereas the two categories which are more flexible (adaptable within limits and entirely self-

determined) have coefficients which are almost exactly the same, only off by 0.001, showing

an increase in the odds of reporting that work affects health. It seems that flexibility itself is

the driver of this covariate, with respect to the more flexible categories. High demands cause

an increase in odds, and same with low demands, both relative to matching skills and demands

(ORs 1.081 CI 1.049-1.114 (low); 1.471 CI 1.412-1.533). A respondent who agrees that they are

paid appropriately relative to neither agreeing nor disagreeing appears to have a negative effect

on the odds (0.982, CI 0.938-1.018), though the credible interval indicates that perhaps this is

less certain than the positive effect of disagreeing that you are paid appropriately (OR 1.574, CI

1.518-1.632). Satisfaction with working conditions shows that the odds ratio increases with a

lack of satisfaction relative to being very satisfied.

As indicated earlier, these effects follow the single level model very closely, and as it

is more parsimonious, it could be a better model. However, the random part of the model

reveals what the single level model cannot: the partitioning of the variance between levels in

the hierarchy, and therefore the scales of the worksome. Countries show the most variation

(variance 0.183), with an MOR of 1.210, meaning that the differences between countries are

highly relevant, similar to the odds ratio for working shifts (1.293, CI 1.248-1.340). They

account for 4.8% of the variation. This means that the effect of geography is important with

respect to reporting that work affects health, The MOR of years (variance 0.078) has reduced

odds – 0.863, and years account for only 0.8% of the variation in the data. Finally, occupations

slightly vary (variance 0.087), with an MOR of 1.049, similar to the effect of working nights (OR

1.027, CI 1.024-1.031) or having tertiary education (OR 1.087, CI 1.057-1.118), accounting for

2.7% of the variation. Therefore some occupations affect health more than others. It can be

inferred that 91.7% of the total variation in the work-health effect is attributable to the individual

level.
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Table 8.3: Final Multilevel Logistic Regression Model for the Work-Health Effect

OR 95% CI p

Intercept 0.122 0.113 0.133 0.000
Sex (ref: male) 0.924 0.899 0.950 0.000
Age 1.014 1.013 1.016 0.000
Has Tertiary Education (ref: no tertiary) 1.087 1.057 1.118 0.000
Nights worked per month 1.027 1.024 1.031 0.000
Works shifts (ref: no) 1.293 1.248 1.340 0.000
Hours per week worked 1.011 1.010 1.012 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.951 0.901 1.004 0.068
Adaptable within limits 1.057 1.018 1.098 0.004
Entirely self-determined 1.056 1.015 1.098 0.006
Skill-demand match (ref: they match)
Demands too low 1.081 1.049 1.114 0.000
Demands too high 1.471 1.412 1.533 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.574 1.518 1.632 0.000
Agree 0.982 0.948 1.018 0.321
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 5.531 5.076 6.026 0.000
Not very satisfied 2.959 2.823 3.101 0.000
Satisfied 1.298 1.255 1.343 0.000
DIC 121032.97
pD 79.63
Random Part Mean 95% CI SD

Country variance 0.171 0.106 0.273 0.044
Year variance 0.030 0.002 0.169 0.186
Occupation variance (ISCO 88 2 digit) 0.097 0.056 0.167 0.029
MOR Country Level 1.210
ICC Country Level 0.048
MOR Year Level 0.863
ICC Year Level 0.008
MOR Occupation Level 1.049
ICC Occupation Level 0.027
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8.2.2. Skin Problems

Table 8.4 shows the final model for skin problems in the last twelve months. In this model,

the coefficients do differ from the single level model. The effect of sex is larger than in the

work-health effect model (OR 1.426, CI 1.348-1.505), so women are more likely to report skin

problems than men. Older people are less likely to report skin problems (OR 0.993, CI 0.932-

0.995), as are those without tertiary education, and the credible interval overlaps 1, which means

this effect is less certain (OR 0.990, CI 0.932-1.049). Nights worked per month and hours

worked per week have small but significant effects on the likelihood to report skin problems.

Working shifts has a reasonable positive effect on the odds ratio for skin problems (OR 1.143,

CI 1.069-1.214). Working time arrangements demonstrate that being adaptable within certain

limits (OR 1.192, CI 1.112-1.275), has a stronger effect than having a choice between fixed

schedules or being entirely self-determined. It seems that flexibility induces the reporting of skin

problems, regardless of scheme. Skill-demand match shows that both too low (OR 1.176, CI

1.118-1.240) and too high demands increase the odds of skin problems, but the effect of high

demands is larger (OR 1.365, CI 1.274-1.457). Disagreeing that pay is appropriate relative to

neither agreeing or disagreeing has a positive effect on the odds of skin problems (OR 1.373, CI

1.291-1.458), while the credible interval of the effect of agreeing crosses 1, leaving uncertainty

around its direction. Increasing dissatisfaction with working conditions increases the odds of

skin problems as well. The random part of the model demonstrates again that countries account

for 5% of the variation, with an MOR of 1.235, similar to the effect of being satisfied with

working conditions (relative to being very satisfied). Years account for 2.1% of the variation in

skin problems, however, the MOR is 1.001, so moving between years, i.e., through time has very

little effect on the risk of reporting skin problems. Occupations account for 2.4% of the variation,

and its MOR is 1.023, so the between-occupation risk is similar to the effect of working nights.

The individual level accounts for 90.5% of the variation.
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Table 8.4: Final Multilevel Logistic Regression Model for Skin Problems in the last
12 months

OR 95% CI p

Intercept 0.036 0.025 0.046 0.000
Sex (ref: male) 1.426 1.348 1.505 0.000
Age 0.993 0.991 0.995 0.000
Has Tertiary Education (ref: no tertiary) 0.990 0.932 1.049 0.376
Nights worked per month 1.015 1.010 1.021 0.000
Works shifts (ref: no) 1.143 1.069 1.214 0.000
Hours per week worked 1.003 1.002 1.005 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.051 0.954 1.153 0.149
Adaptable within limits 1.192 1.112 1.275 0.000
Entirely self-determined 1.081 0.999 1.164 0.026
Skill-demand match (ref: they match)
Demands too low 1.176 1.118 1.240 0.000
Demands too high 1.365 1.274 1.457 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.373 1.291 1.458 0.000
Agree 0.977 0.912 1.045 0.243
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 3.480 3.117 3.851 0.000
Not very satisfied 2.234 2.062 2.413 0.000
Satisfied 1.300 1.221 1.391 0.000
DIC 54086.01
pD 77.26
Random Part Mean 95% CI SD

Country variance 0.183 0.108 0.299 0.049
Year variance 0.078 0.001 0.544 0.327
Occupation variance (ISCO 88 2 digit) 0.087 0.047 0.153 0.027
MOR Country Level 1.235
ICC Country Level 0.050
MOR Year Level 1.001
ICC Year Level 0.021
MOR Occupation Level 1.023
ICC Occupation Level 0.024
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8.2.3. Hearing Problems

Table 8.11 shows the final model for hearing problems. It does differ from the single level

version. The effect of being a woman shows a reduced odds of hearing problems relative to being

a man (OR 0.738, CI 0.694-0.782). Older people have an increased odds of hearing problems,

and those with tertiary education have a reduced odds of hearing problems (OR 0.851, CI 0.790-

0.916). Nights worked per month has a small but significant effect (OR 1.019, CI 1.013-1.025).

Working shifts increases the odds of hearing problems (OR 1.305, CI 1.215-1.396). Hours per

week worked has very little effect if at all on hearing problems. The working time arrangements

also have an unclear effect, relative to standard arrangements: the choice between several fixed

schedules and adaptable within limits dummies both have wider credible intervals that cross over

1; the effect of self-determined time arrangement has a narrower credible interval that does not

cross 1, and reduces the odds of hearing problems (OR 0.910, CI 0.831-0.991). It seems that

flexibility is less relevant when it comes to hearing problems. The skill-demand match faces a

similar issue: demands being too high (OR 1.407, CI 1.299-1.514) increases the odds of hearing

problems, but too low demands are not significant. Agreeing that pay is appropriate relative to

neither agreeing or disagreeing also has an unclear effect (OR 1.033, CI 0.955-1.114), whereas

disagreeing that one is paid appropriately has a larger, significant effect on the odds of hearing

problems (OR 1.348, CI 1.250-1.461). The magnitude of the effect of satisfaction with working

conditions is smaller than the other models, but it follows the same pattern (the more satisfied

you are, the lower the odds of hearing problems).

For the random part of the model, occupations and countries account for almost equal

amounts of the variation (5.0% and 5.1% respectively). The MOR of countries is 1.253, and

for occupations is 1.247, which are close to the effect of working shifts. This means that the

between-country and between-occupation effects are similar, so the differences between these

are what is important. Years account for less variation at 2.7%, with an MOR of 1.062, which

is close to the effect of age. 87.2% of the variation is at the individual level, suggesting that

variation is reasonably systematic.
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Table 8.5: Final Multilevel Logistic Regression Model for Hearing Problems in the
last 12 months

OR 95% CI p

Intercept 0.010 0.008 0.012 0.000
Sex (ref: male) 0.738 0.694 0.782 0.000
Age 1.033 1.031 1.036 0.000
Has Tertiary Education (ref: up to secondary) 0.851 0.790 0.916 0.000
Nights worked per month 1.019 1.013 1.025 0.000
Works shifts (ref: no) 1.305 1.215 1.396 0.000
Hours per week worked 1.001 0.999 1.003 0.144
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.958 0.857 1.071 0.215
Adaptable within limits 1.010 0.943 1.091 0.406
Entirely self-determined 0.910 0.831 0.991 0.016
Skill-demand match (ref: they match)
Demands too low 1.058 0.996 1.122 0.037
Demands too high 1.407 1.299 1.514 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.348 1.250 1.461 0.000
Agree 1.033 0.955 1.114 0.206
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 2.932 2.567 3.318 0.000
Not very satisfied 2.028 1.848 2.225 0.000
Satisfied 1.302 1.209 1.398 0.000
DIC 45116.03
pD 78.410
Random Part Mean 95% CI SD

Country variance 0.192 0.114 0.318 0.053
Year variance 0.103 0.008 0.493 0.457
Occupation variance (ISCO 88 2 digit) 0.189 0.105 0.330 0.058
MOR Country Level 1.253
ICC Country Level 0.051
MOR Year Level 1.062
ICC Year Level 0.027
MOR Occupation Level 1.247
ICC Occupation Level 0.05
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8.2.4. Backache

Table 8.6 shows the final model for backache in the last twelve months. Women are more likely

to report backache than men (OR 1.373, CI 1.332-1.416), as are older people (OR 1.019, CI

1.017-1.020). Having tertiary education decreases the odds of reporting backache (OR 0.835, CI

0.808-0.865). Nights worked per month (OR 1.012, CI 1.008-1.016) and hours per week worked

(OR 1.007, CI 1.006-1.009) have small but significant effects on the odds of backache. Working

shifts also increases the odds of backache (OR 1.105, CI 1.063-1.148). In terms of working time

arrangement, all of the confidence intervals of the dummy variables overlap, and the effect sizes

are not particularly different, ranging from ORs of 1.064-1.079, in increasing independence. It

may be that flexibility is relevant to backache, but it is unclear what sort of effect the differing

categories have. The skill-demand match shows that high demand increases the odds more than

low demand, but both increase the odds relative to matching skills and demands. Agreeing

one is paid appropriately reduces the odds of backache (OR 0.909, CI 0.879-0.939), whereas

disagreeing increases the odds of backache relative to neither agreeing nor disagreeing (OR

1.317, CI 1.273-1.363). Satisfaction with working conditions, as in all of the models, is the

largest group of effects.

For backache, years account for the most variation in the outcome, at 17%, with an MOR

of 2.225, meaning between-year, or, moving through time, is increasingly risky, of similar

magnitude to being not very satisfied with working conditions (OR 2.810, CI 2.674-2.958). As

the data are repeated cross-sectional, this means that in the years the data have been collected that

there must have been changes over time in relation to backache. Countries account for 2.4% of

the variation, and the MOR of 1.053 is roughly equivalent to the effect of having demands which

are too low (1.066, CI 1.034-1.097). Occupations have very little effect, accounting for 1.8% of

the variation and having a reduction in odds with respect to the MOR of 0.998, which is fairly

close to 1. This means that there is little variation between occupations, and that perhaps within-

occupation characteristics may be more relevant for backache. Individual variation accounts for

78.8% of the outcome variance, which indicates that systematic factors may come into play far

more for backache.
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Table 8.6: Final Multilevel Logistic Regression Model for Backache in the last 12
months

OR 95% CI p

Intercept 0.141 0.116 0.165 0.000
Sex (ref: male) 1.373 1.332 1.416 0.000
Age 1.019 1.017 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.835 0.808 0.865 0.000
Nights worked per month 1.012 1.008 1.016 0.000
Works shifts (ref: no) 1.105 1.063 1.148 0.000
Hours per week worked 1.007 1.006 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.063 1.007 1.121 0.013
Adaptable within limits 1.073 1.032 1.118 0.000
Entirely self-determined 1.079 1.033 1.124 0.000
Skill-demand match (ref: they match)
Demands too low 1.066 1.034 1.097 0.000
Demands too high 1.120 1.073 1.163 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.317 1.273 1.363 0.000
Agree 0.909 0.879 0.939 0.000
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 3.791 3.500 4.090 0.000
Not very satisfied 2.810 2.674 2.958 0.000
Satisfied 1.572 1.520 1.627 0.000
DIC 126822.580
pD 79.300
Random Part Mean 95% CI SD

Country variance 0.099 0.060 0.160 0.026
Year variance 0.712 0.072 3.274 4.171
Occupation variance (ISCO 88 2 digit) 0.077 0.043 0.134 0.024
MOR Country Level 1.053
ICC Country Level 0.024
MOR Year Level 2.225
ICC Year Level 0.170
MOR Occupation Level 0.998
ICC Occupation Level 0.018
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8.2.5. Lower Muscular Pain

Table 8.7 shows the final model for muscular pains in the lower limbs in the last 12 months.

Being female increases the odds of reporting lower limb pain relative to being male (OR 1.318,

CI 1.272-1.361), as does being older (OR 1.024, CI 1.023-1.026), and less educated (tertiary

education OR 0.831, CI 0.773-0.0831). Nights worked per month and hours per week worked

both have a small but significant increase in the odds of lower limb pain. Working shifts also

produces increased odds of reporting muscular pain in the lower limbs (OR 1.162, CI 1.118-

1.205). Working time arrangements are largely unclear: the direction of the effect is uncertain,

and, indeed, there is no clear pattern to the results as the credible intervals also overlap each

other. The skill-demand match shows that having demands which are too low produce slightly

higher odds, though, again, the credible intervals of the two categories overlap, so there is some

uncertainty. Agreeing one is being paid appropriately reduces the odds of reporting lower limb

pain (OR 0.866, CI 0.834-0.901), and disagreeing one is being paid appropriately, following

what was found in Section 5.7, increases the odds (OR 1.297, CI 1.252-1.348), both relative

to neither agreeing nor disagreeing that one is paid appropriately. Satisfaction with working

conditions follows the same pattern as the other models, but follows more similarly the models

for backache and upper muscular pain.

The random part of the model shows that countries only account for 2.0% of the variation,

and, their MOR is 0.987, similar to the effect of having tertiary education. Years account for

2.4% of the variation, and have an MOR of 1.024, similar to the effect of monthly nights worked

(OR 1.013, CI 1.010-1.017). Occupations account for slightly more variation at 3.3%, with an

MOR of 1.096, roughly similar to the effect of having demands which are too low relative to

one’s skill (OR 1.094, CI 1.060-1.131). It would appear then that the impact of all of the clusters

are relatively small in comparison to some of the fixed effects covariates, but nonetheless must

be included due to the structure of the data, and the theoretical requirements of the worksome.

128



CHAPTER 8.

Table 8.7: Final Multilevel Logistic Regression Model for Lower Muscular Pain in
the last 12 months

OR 95% CI p

Intercept 0.066 0.055 0.076 0.000
Sex (ref: male) 1.318 1.272 1.361 0.000
Age 1.024 1.023 1.026 0.000
Has Tertiary Education (ref: no tertiary) 0.801 0.773 0.831 0.000
Nights worked per month 1.013 1.010 1.017 0.000
Works shifts (ref: no) 1.162 1.118 1.205 0.000
Hours per week worked 1.006 1.005 1.007 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.981 0.925 1.040 0.266
Adaptable within limits 1.011 0.971 1.055 0.303
Entirely self-determined 1.043 0.997 1.090 0.031
Skill-demand match (ref: they match)
Demands too low 1.094 1.060 1.131 0.000
Demands too high 1.076 1.026 1.125 0.002
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.297 1.252 1.348 0.000
Agree 0.866 0.834 0.901 0.000
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 3.804 3.517 4.129 0.000
Not very satisfied 2.628 2.502 2.758 0.000
Satisfied 1.532 1.475 1.591 0.000
DIC 117034.840
pD 78.880
Random Part Mean 95% CI SD

Country variance 0.072 0.044 0.117 0.019
Year variance 0.087 0.008 0.457 0.291
Occupation variance (ISCO 88 2 digit) 0.118 0.066 0.205 0.037
MOR Country Level 0.987
ICC Country Level 0.020
MOR Year Level 1.024
ICC Year Level 0.024
MOR Occupation Level 1.096
ICC Occupation Level 0.033
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8.2.6. Upper Muscular Pain

Table 8.8 shows the final model for muscular pains in the shoulders, neck, and/or upper limbs in

the last 12 months. Being female rather than male increases the odds of reporting upper muscular

pain (OR 1.555, CI 1.509-1.606), as well as being older, though the effect of age is fairly small

(OR 1.020, CI 1.018-1.021). Having tertiary education decreases the odds of reporting upper

muscular pain (OR 0.868, CI 0.838-0.896). Nights worked per month and hours worked per

week have similar effect sizes: nights have an OR of 1.010 (CI 1.006-1.014), and hours per week

have an OR of 1.008 (CI 1.007-1.010). Working shifts increases the odds of reporting upper

muscular pain (OR 1.106, CI 1.064-1.146). Working time arrangements have one insignificant

dummy, the choice between fixed schedules. Those whose arrangements are adaptable within

limits have a higher OR than those whose hours are entirely self-determined (OR 1.132, CI

1087-1.182 vs OR 1.060, CI 1.017-1.105) have higher odds of reporting upper muscular pain,

reinforcing flexibility as a driver of health problems or outcomes. The skill-demand match shows

that not having a match in general increases the odds, but, having demands which are too high

increases the odds a fair bit more than having demands which are too low (OR 1.156, CI 1.106-

1.208 vs OR 1.094, CI 1.062-1.129). Agreeing one is being paid appropriately reduces the odds

of reporting upper muscular pain (OR 0.897, CI 0.867-0.930), whereas disagreeing that one

is paid appropriately increases them (OR 1.356, CI 1.307-1.408). Satisfaction with working

conditions follows a similar pattern to other ‘muscular’ (backache and lower muscular pain)

outcomes, with increased odds for all categories relative to very satisfied in descending order.

As for the random part of the model, years account for the most variation (12.9%), with

an MOR of 1.871, meaning that the difference between years is quite important. Countries

account for the next most variation, accounting for 3.2% of variation, with an MOR of 1.118,

similar to the effect of those whose time arrangements are adaptable within limits. Occupations

account for 2.3% of the variation, with an MOR of 1.038, similar to the effect of those whose

time arrangements are entirely self-determined. The between-country and between-occupation

effects show that those differences are highly relevant. Individual level variation accounts for

81.6% of the variation.
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Table 8.8: Final Multilevel Logistic Regression Model for Upper Muscular Pain in
the last 12 months

OR 95% CI p

Intercept 0.082 0.065 0.121 0.000
Sex (ref: male) 1.555 1.509 1.606 0.000
Age 1.020 1.018 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.868 0.838 0.896 0.000
Nights worked per month 1.010 1.006 1.014 0.000
Works shifts (ref: no) 1.106 1.064 1.146 0.000
Hours per week worked 1.008 1.007 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.030 0.972 1.086 0.165
Adaptable within limits 1.132 1.087 1.182 0.000
Entirely self-determined 1.060 1.017 1.105 0.004
Skill-demand match (ref: they match)
Demands too low 1.094 1.062 1.129 0.000
Demands too high 1.156 1.106 1.208 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.356 1.307 1.408 0.000
Agree 0.897 0.867 0.930 0.000
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 3.851 3.521 4.175 0.000
Not very satisfied 2.725 2.591 2.864 0.000
Satisfied 1.580 1.522 1.636 0.000
DIC 125730.400
pD 79.790
Random Part Mean 95% CI SD

Country variance 0.128 0.077 0.210 0.034
Year variance 0.520 0.058 2.515 1.284
Occupation variance (ISCO 88 2 digit) 0.093 0.053 0.165 0.030
MOR Country Level 1.118
ICC Country Level 0.032
MOR Year Level 1.871
ICC Year Level 0.129
MOR Occupation Level 1.038
ICC Occupation Level 0.023

131



CHAPTER 8.

8.2.7. Anxiety

Table 8.9 shows the final model for anxiety in the last 12 months. Women relative to men

have higher odds of reporting anxiety in 12 months (OR 1.407, CI 1.340-1.472), as do older

people (OR 1.017, CI 1.008-1.012). Those with tertiary education also have increased odds

of reporting anxiety (OR 1.137, CI 1.083-1.192). Nights worked per month have increased

odds (OR 1.019 CI 1.014-1.024) and hours per week have slightly increased odds of reporting

anxiety (OR 1.006 CI 1.004-1.008). Working shifts has an increased odds of reporting anxiety

(OR 1.086, CI 1.032-1.142). Working time arrangements appear to have similar effects for two

of the categories: adaptable within limits and entirely self-determined time arrangements have

nearly identical effect sizes with overlapping credible intervals (OR 1.204, CI 1.137-1.271 and

OR 1.207, CI 1.135-1.281 respectively). This indicates that it may be flexibility itself rather

than the type of flexibility that impacts on anxiety. The choice between several fixed schedules

category does not have a significant effect. The skill-demand match had an effect relative to

matching. Demands which were too low had slightly increased odds of reporting anxiety (OR

1.066, CI 1.019-1.116), whereas demands being too high had a larger effect (OR 1.522, CI 1.422-

1.613). Higher demands relative to skill appear to engender anxiety. Disagreeing one is being

paid appropriately had a similarly sized effect on the odds (OR 1.496, CI 1.365-1.516), whereas

agreeing one is being paid appropriately had a decrease in the odds relative to neither agreeing

nor disagreeing that one is paid appropriately (OR 0.929, CI 0.877-0.980). The risk-reward

trade-off appears to be highly relevant in the case of anxiety. Finally, the effect of satisfaction

with working conditions has a similar pattern to the other outcomes, but the effect of being not

at all satisfied has a much higher order of magnitude (OR 6.448, CI 5.879-7.096) compared to

the other effects.

As for the random part of the model, countries account for 11.3% of the variation, with

an MOR of 1.763. This means that the differences between countries are relevant to anxiety, so

perhaps there are some regulatory differences that may account for this. Years account for the

next largest amount of variation at 7.8%, with an MOR of 1.501, similar to the effect of working

a job with demands too high relative to an individual’s skills. Finally, occupations account for

almost none of the variation in the model (0.6%), with a very low variance (0.023), and an MOR

which shows decreasing odds of reporting anxiety from one occupation to another. Individual

level variation accounts for 80.3% of variation.
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Table 8.9: Final Multilevel Logistic Regression Model for Anxiety in the last 12
months

OR 95% CI p

Intercept 0.018 0.013 0.023 0.000
Sex (ref: male) 1.407 1.340 1.472 0.000
Age 1.010 1.008 1.012 0.000
Has Tertiary Education (ref: no tertiary) 1.137 1.083 1.192 0.000
Nights worked per month 1.019 1.014 1.024 0.000
Works shifts (ref: no) 1.086 1.032 1.142 0.001
Hours per week worked 1.006 1.004 1.008 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.020 0.940 1.106 0.325
Adaptable within limits 1.204 1.137 1.271 0.000
Entirely self-determined 1.207 1.135 1.281 0.000
Skill-demand match (ref: they match)
Demands too low 1.066 1.019 1.116 0.002
Demands too high 1.522 1.442 1.613 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.436 1.365 1.516 0.000
Agree 0.929 0.877 0.980 0.004
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 6.448 5.879 7.096 0.000
Not very satisfied 3.335 3.089 3.567 0.000
Satisfied 1.591 1.499 1.684 0.000
DIC 70921.180
pD 75.720
Random Part Mean 95% CI SD

Country variance 0.465 0.289 0.752 0.121
Year variance 0.320 0.026 1.687 1.095
Occupation variance (ISCO 88 2 digit) 0.023 0.011 0.045 0.009
MOR Country Level 1.769
ICC Country Level 0.113
MOR Year Level 1.501
ICC Year Level 0.078
MOR Occupation Level 0.837
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8.2.8. Fatigue

Table 8.10 shows the final model for fatigue in the last 12 months. Women have increased

odds of reporting fatigue relative to men (OR 1.447, CI 1.400-1.496), as well as older people,

though the effect is small (OR 1.007, CI 1.005-1.008). Those with a tertiary education also

have increased odds of fatigue (OR 1.026, CI 0.991-1.061), though its credible interval crosses

1 and therefore may not be significant. Nights worked per month has a similar effect size (OR

1.023, CI 1.019-1.027). Hours per week worked also has a relatively small but important effect

on the odds of reporting fatigue (OR 1.013, CI 1.012-1.014). Working shifts as opposed to not

produces increased odds of fatigue (OR 1.115, CI 1.072-1.158). Working time arrangements

all showed increased odds relative to fixed schedules, though the credible interval for a choice

between several fixed schedules overlapped 1.Relative to fixed schedules, both adaptable within

limits and entirely self-determined working time arrangements had increased odds of reporting

fatigue. As for the skill-demand match, relative to matching skills and demand, both too low and

too high demands have increased odds of reporting fatigue, though demands which are too high

have a higher odds ratio (OR 1.227, CI 1.173-1.281). Agreeing one is being paid appropriately

decreases the odds of reporting fatigue (OR 0.908, CI 0.874-0.943), and disagreeing one is

being paid appropriately increases the odds of reporting fatigue (OR 1.389, CI 1.340-1.444).

The satisfaction with working conditions categories all had increased odds relative to being very

satisfied and these odds increased with dissatisfaction.

As for the random part of the model, countries and years both accounted for similar

amounts of the variation (10.2% and 10.0% respectively), with MORs of 1.692 and 1.673

respectively, similar to the effect size of being satisfied with working conditions relative to being

very satisfied. The differences between countries and years are therefore highly relevant for

fatigue, which may be indicative of changing policy with respect to working conditions that may

impact on fatigue. Occupations, similar to anxiety, were not very variable (variance: 0.013),

accounting for 0.3% of variation, with an MOR showing decreased odds of reporting fatigue

(0.794). Individual variance then accounts for only 79.5% of variation.
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Table 8.10: Final Multilevel Logistic Regression Model for Fatigue in the last 12
months

OR 95% CI p

Intercept 0.087 0.067 0.109 0.000
Sex (ref: male) 1.447 1.400 1.496 0.000
Age 1.007 1.005 1.008 0.000
Has Tertiary Education (ref: no tertiary) 1.026 0.991 1.061 0.081
Nights worked per month 1.023 1.019 1.027 0.000
Works shifts (ref: no) 1.115 1.072 1.158 0.000
Hours per week worked 1.013 1.012 1.014 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.044 0.988 1.103 0.062
Adaptable within limits 1.183 1.135 1.237 0.000
Entirely self-determined 1.083 1.036 1.130 0.000
Skill-demand match (ref: they match)
Demands too low 1.044 1.013 1.076 0.004
Demands too high 1.227 1.173 1.281 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.389 1.340 1.444 0.000
Agree 0.908 0.874 0.943 0.000
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 4.758 4.353 5.183 0.000
Not very satisfied 3.192 3.036 3.362 0.000
Satisfied 1.634 1.571 1.689 0.000
DIC 119064.450
pD 76.590
Random Part Mean 95% CI SD

Country variance 0.423 0.262 0.687 0.109
Year variance 0.413 0.046 1.814 1.361
Occupation variance (ISCO 88 2 digit) 0.013 0.007 0.024 0.004
MOR Country Level 1.692
ICC Country Level 0.102
MOR Year Level 1.673
ICC Year Level 0.100
MOR Occupation Level 0.794
ICC Occupation Level 0.003
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8.2.9. Headache and/or Eyestrain

Table 8.11 shows the final model for headache and eyestrain in the last 12 months. Women have

a much higher odds of reporting headache and/or eye problems than men (OR 1.741, CI 1.689-

1.801), an effect larger than all of the other covariates bar two: the not very satisfied (OR 2.230,

CI 2.117-2.344) and not at all satisfied (OR 3.048, CI 2.811-3.299) categories for satisfaction

with working conditions relative to very satisfied. This could be due to within-occupation related

differences in the tasks men and women are assigned, as occupation is accounted for in the

model. The effect of age is very small – the credible interval does not cross 1, but it includes

it, and it is very narrow (OR 1.001, CI 1.000-1.002). Having a tertiary education rather than

not increases the odds of reporting headache and eyestrain (OR 1.073, CI 1.036-1.111). Nights

worked per month has a small but significant effect (OR 1.015, CI 1,011-1,019), and working

shifts rather than not also shows an increase in the odds (OR 1.055, CI 1.015-1.094). Hours

per week worked also has a small effect, but with a very narrow credible interval (OR 1.008,

CI 1.007-1.009). The patterning of working time arrangements is somewhat unclear: entirely

self-determined arrangements have a credible interval overlapping 1, as does a choice between

several fixed schedules, though its interval is narrower. Adaptable within limits shows an increase

in odds (OR 1.099, CI 1.053-1.144). It seems that flexibility in time arrangements is less relevant

to headache and/or eyestrain. Skill-demand match shows that a lack of match in either direction

increases the odds of headache and/or eyestrain, though the effect of high demands is, following

the other outcomes, higher (OR 1.255, CI 1.19-1.309; OR of low demand 1.049, CI 1.01-1.081).

Agreeing one is being paid appropriately shows a decrease in the odds of reporting headache

and/or eyestrain (OR 0.945, CI 0.911-0.979), while disagreeing one is being paid appropriately

increases the odds by a fair bit (OR 1.303, CI 1.253-1.354). Satisfaction with working conditions

follows the same patterning as the other EWCS outcomes: with increasing satisfaction, there are

lower odds of reporting headache and/or eyestrain.

The random part of the model shows that years are the most variable, accounting for 24.6%

of variation, with an MOR of 2.987, close in effect to being not at all satisfied with working

conditions. This may be related to changes over time in technologies used at work. Countries

account for 2.0% of variation and have an MOR of 1.030, similar to the effect of working shifts.

Between country differences therefore are relevant, but the impact of them is smaller than the

other two clusters. Occupations account for only 0.4% of the variation, and have an MOR that

shows a decrease in risk, of 0.822. 73% of variation lies at the individual level.
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Table 8.11: Final Multilevel Logistic Regression Model for Headache and/or
Eyestrain in the last 12 months

OR 95% CI p

Intercept 0.164 0.122 0.250 0.000
Sex (ref: male) 1.741 1.689 1.801 0.000
Age 1.001 1.000 1.002 0.023
Has Tertiary Education (ref: up to secondary) 1.073 1.036 1.111 0.000
Nights worked per month 1.015 1.011 1.019 0.000
Works shifts (ref: no) 1.055 1.015 1.094 0.007
Hours per week worked 1.008 1.007 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.057 0.998 1.115 0.029
Adaptable within limits 1.099 1.053 1.144 0.000
Entirely self-determined 1.016 0.972 1.058 0.243
Skill-demand match (ref: they match)
Demands too low 1.049 1.018 1.081 0.000
Demands too high 1.255 1.198 1.309 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.303 1.253 1.354 0.000
Agree 0.945 0.911 0.979 0.002
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 3.048 2.811 3.299 0.000
Not very satisfied 2.230 2.117 2.344 0.000
Satisfied 1.394 1.340 1.450 0.000
DIC 121791.64
pD 76.85
Random Part Mean 95% CI SD

Country variance 0.090 0.054 0.147 0.024
Year variance 1.107 0.100 5.143 9.319
Occupation variance (ISCO 88 2 digit) 0.019 0.010 0.035 0.006
MOR Country Level 1.030
ICC Country Level 0.020
MOR Year Level 2.987
ICC Year Level 0.246
MOR Occupation Level 0.822
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8.2.10. Injury(ies)

Table 8.12 shows the final model for injury(ies) in the last 12 months. Women were less likely

to report injury(ies) than men (OR 0.624, CI 0.590-0.658). Older people also have decreased

odds of reporting injury (OR 0.991, CI 0.989-0.992), as well as those with tertiary education

(OR 0.800, CI 0.753-0.850). This is perhaps due to differences in the work itself performed

by these groups within the occupations. Nights worked per month (OR 1.013, CI 1.007-1.018)

and hours per week worked (OR 1.007, CI 1.005-1.009) had relatively small but significant

effects. Working shifts rather than not creates an increase in the odds of reporting injury(ies)

(OR 1.220, CI 1.144-1.296). Perhaps there is some aspect of shift work that relates to injury(ies)

- unfavourable shifts may lead to a higher rate of injury(ies) perhaps due to fatigue. Some of the

working time arrangement categories have credible intervals overlapping 1, but the patterning

of it overall shows that a choice between several fixed schedules and entirely self-determined

arrangements have increased odds which are lower than adaptable within limits (OR 1.092, CI

1.018-1.166). Flexibility remains relevant then to reporting injury(ies). As for the skill-demand

match, the magnitude of difference between demands being too low and too high is lower than

for other outcomes, though higher demands still have a higher odds ratio (OR 1.235, CI 1.151-

1.317; low demand OR 1.144, CI 1.088-1.207). As injury(ies) as an event are unexpected,

and usually accidental, it makes sense that the magnitude of difference between them is lower.

Agreeing one is being paid appropriately reduces the odds of reporting injury(ies) slightly (OR

0.935, CI 0.873-0.997), whereas disagreeing one is being paid appropriately increases the odds

ratio similar to working shifts (OR 1.266, CI 1.192-1.343). Satisfaction with working conditions

followed a similar pattern to the other outcomes (relative to very satisfied), the odds of reporting

injury(ies) increased), however the magnitude of difference between the categories is reduced.

This suggests that injury(ies) have an element of randomness to them that is not necessarily tied

to working conditions.

As for the random part of the model, countries and occupations account for 5.0% and

4.7% of the variation, and years 1.2%. The MOR for countries is 1.238, similar to the effect of

working shifts or being paid inappropriately. The MOR for years is 0.903, similar to the effect

of age. The MOR for occupations is 1.213, again, similar to the MOR for countries. This means

that between occupation differences are more relevant to injury(ies) than those within, which

means injury(ies) cluster in particular occupations. The individual level accounts for 89.1% of

the variation.
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Table 8.12: Final Multilevel Logistic Regression Model for Injury(ies) in the last 12
months

OR 95% CI p

Intercept 0.077 0.062 0.094 0.000
Sex (ref: male) 0.624 0.590 0.658 0.000
Age 0.991 0.989 0.992 0.000
Has Tertiary Education (ref: up to secondary) 0.800 0.753 0.850 0.000
Nights worked per month 1.013 1.007 1.018 0.000
Works shifts (ref: no) 1.220 1.144 1.296 0.000
Hours per week worked 1.007 1.005 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.085 0.990 1.183 0.037
Adaptable within limits 1.092 1.018 1.166 0.006
Entirely self-determined 1.064 0.986 1.140 0.058
Skill-demand match (ref: they match)
Demands too low 1.144 1.088 1.207 0.000
Demands too high 1.235 1.151 1.317 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.266 1.192 1.343 0.000
Agree 0.935 0.873 0.997 0.021
Satisfaction with working conditions (ref: Very Satisfied)
Not at all satisfied 2.960 2.652 3.311 0.000
Not very satisfied 2.066 1.899 2.257 0.000
Satisfied 1.231 1.147 1.316 0.000
DIC 54884.77
pD 78.43
Random Part Mean 95% CI SD

Country variance 0.184 0.112 0.301 0.049
Year variance 0.042 0.004 0.203 0.165
Occupation variance (ISCO 88 2 digit) 0.172 0.096 0.301 0.056
MOR Country Level 1.238
ICC Country Level 0.050
MOR Year Level 0.903
ICC Year Level 0.012
MOR Occupation Level 1.213
ICC Occupation Level 0.047

8.3. Conclusions

For all outcomes the intercept showed that the average person in the data was less than likely

to report them. Sex, age, having tertiary education, the choice between several fixed schedules,

being paid appropriately, and the MORs for year and occupation all show, for some outcomes, a

decrease in the odds of reporting them. This can be seen in table 8.2.

All other variables for all other outcomes showed an increase in the odds of reporting them.

Women and older people are more vulnerable, and those without tertiary education are more

likely to report physical outcomes, whereas for non-muscular health outcomes (anxiety, fatigue,

headache/eyestrain, and the work-health effect), those with tertiary education are more likely

to report them. Working non-standard types of hours, i.e., at night, or shiftwork, or working

a larger number of hours per week also show an increase in the odds for all outcomes. Time
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arrangement types appear to show that more flexibility tends to cause an increase in the odds

of reporting outcomes relative to fixed company hours. Having a job where your skills and the

demands of the job do not match properly, whether it is less or more demanding all showed an

increase in the odds of reporting the outcomes, though sometimes the difference between the two

ORs was larger or smaller. Satisfaction with working conditions followed the pattern that might

be expected for all outcomes following what was found in the single level models in Chapter 5,

in that, relative to being very satisfied, all other categories had higher odds, and in the case of

‘not very satisfied,’ extremely high odds relative to the other variables.

In conclusion, the patterning of the covariates reinforces the conclusions drawn from

the single level models (Chapter 5). However, the random parts of the multilevel models are

necessary, as it can be seen that scales of exposure and the contexts of these exposures, as

well as the variation between and within them, are relevant to all of the health outcomes. The

following chapter will examine similar models using longitudinal data, the British Household

Panel Survey.
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Results: BHPS Multilevel Logistic
Regression Models

9.1. Introduction

Carrying forward from the EWCS models in the previous chapter, examining the same type of

model on a different, finer-grained dataset was a logical continuation, in order to explore the

research objectives and questions at a subnational level, using longitudinal data, and to confirm

the conclusions drawn from that analysis. Furthermore, it emphasises reproducibility, in that,

similar conclusions are drawn about the BHPS analysis as in the EWCS analysis. This is

important to reinforce empirically the worksome and its emphasis on the scales and domains

of exposure. This chapter details the multilevel models analysing the British Household Panel

Survey (BHPS) data. The rationale for using multilevel models here is similar to that for

the EWCS models. The structure of the groups and models is described, followed by the

models for each outcome. The models examine self-rated health status, and two specific health

problems - problems with arms legs hands etc.., i.e., problems with the muscles or limbs, and

anxiety/depression. The models were implemented as four level Bayesian logistic regression

models, specified using the runmlwin command (Leckie and Charlton 2013) in Stata 15. The

same covariates were used in the multilevel models as the single level models as reported in

Chapter 6 (see table 6.1). The modelling strategy and rationale is further elaborated on in Chapter

4.

Table 9.1: Group Structure

Observations per group
Group Number of groups Minimum Mean Maximum
Region 13 1 8,859.30 18905
Occupation 116 1 992.9 6536
Individual 19508 1 5.9 18
Observations 115,171
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Table 9.1 presents the group structure of the multilevel models. The lowest level are the

observations, which nest into individuals, who in turn are nested in ISCO-classified occupations,

which are finally nested in regions. There are a sufficient number of observations per group,

even at the individual level (see table 9.1). This is supported by Clarke [2008], who concluded

through a simulation study that 5 observations per group was enough for reliable analysis.

This structure is supported empirically by the exploratory variance components analysis of the

EWCS data, where the ISCO classification was found to be the most appropriate for examining

working conditions and health (Chapter 7, also [Eyles et al., 2019]). Furthermore, this structure

is theoretically supported by the worksome, as the influence of each domain (e.g., geography)

can be examined separately.

Table 9.2 shows a summary of the direction of effect for each of the model covariates

for each outcome: firstly for self-rated health status, secondly health problems with arms, legs,

and hands, or muscular and limb problems, and thirdly, health problems relating to anxiety

and depression. The outcomes follow similar patterns to the single level models (Chapter 6),

though some of the covariates that were not statistically significant in the simpler models became

significant in the multilevel ones. It was apparent that most of the variation was at level 2, the

individual level, for all outcomes, meaning individuals themselves vary more over time than

occupations or regions. The final models were preferable to the previous models, as they had a

lower deviance information criterion (DIC, see chapters 4, 7), a Bayesian measure of predictive

accuracy which is penalised for model complexity (pD, shown in the results tables 9.3-9.5). The

models will be discussed first on their own, and then in relation to one another in the conclusion.
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Table 9.2: Direction of Effect for each Final Model. Light red represents a decrease
in the likelihood of the outcome and light blue represents an increase in the
likelihood. Grey represents an OR of 1

Health Status
(0 - fair, poor;
1 - good, very

good, excellent)

Health
problems with

muscles or
limbs (0- not

mentioned; 1-
mentioned)

Health
problems anxi-
ety/depression
(0- not men-

tioned; 1-
mentioned)

Intercept + - -
Sex (ref: male) - + +

Age - + +
Has Tertiary Education
(ref: up to secondary)

+ - -

Gross monthly pay (GBP) + - -
Job hours per week + 1 -

Works flexitime
(ref: Not mentioned)

- + +

Job satisfaction: Total
pay (ref: Neither

satisfied nor dissatisfied)
Not satisfied - + -

Not very satisfied - + -
Satisfied + - -

Very Satisfied + - -
Job satisfaction: Overall

(ref: Neither satisfied
nor dissatisfied)

Not satisfied - + +
Not very satisfied - - +

Satisfied + - +
Very Satisfied + - -
Random Part

MOR Region Level - + -
MOR Occupation Level - - -
MOR Individual Level + + +
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9.2. Model Results

The following sections present the results of the multilevel logistic regression models, organised

by outcome. The overall results of all models will be compared to the analogous EWCS models

from Chapter 8 in section 9.3, the conclusions.

9.2.1. Health Status

Health status in the last 12 months was dichotomised to poor (fair/poo0 as 0) or good (good/very

good/excellent as 1) and was used as a measure of self-rated health. It is a strong, well-

validated measure of actual health status (see Chapter 2). This section will describe the Bayesian

multilevel logistic regression model of this outcome. Table 9.3 shows the final model, which

includes all covariates. Female respondents are less likely to report good health than men (OR

0.873, CI 0.822-0.928). Age has a small effect, where older people are more likely to report

poor health for each additional year (OR 0.988, CI 0.986-0.990). Those with a tertiary education

relative to those who do not are 37.5% more likely to report good health.

Moving on to the variables specifically related to work, pay has an incredibly small effect

in the model, due to being per single British Pound, with an OR of 1.000136 (CI 1.000112-

1.000165), reflecting the similar finding in the single level BHPS models (see Chapter 6). For

every single GBP pay increases, the odds of reporting good health increases by 0.013%. This

was true even in models where job satisfaction with total pay was excluded. Job hours per week

has a very small effect (OR 0.997, CI 0.995-0.999), where the more hours you work, the more

likely you are to report poor health. Working flexitime, which was not statistically significant in

the single level model, is significant in the multilevel one (OR 0.921, CI 0.878-0.970), showing

the importance of including the group structure in the models. Those working flexitime appear

to be less likely to report good health, which reinforces what was found in the literature review

(Chapter 2). As discussed above, ignoring the heterogeneity among groups has obscured this

effect in the single-level case, but the multilevel model adequately accounts for this. This is of

substantive importance, since flexitime is one element of the new flexible employment regime,

which can vary by occupation and does vary over time as was described in the literature review.

Overall job satisfaction followed a similar pattern to the single level models in Chapter 6:

relative to being neither satisfied nor dissatisfied, those satisfied with their jobs showed a higher

odds of reporting good health, with 31.2% and 51.9% increases for satisfied and very satisfied,

and 15.4% and 23.8% decreases in the odds of reporting good health for not very satisfied and not

satisfied. Satisfaction with total pay showed a similar pattern, but with smaller effects (OR not

satisfied 0.908, CI 0.820-0.999; OR not very satisfied 0.949, CI 0.888-1.006; OR satisfied 1.036,

CI 0.976-1.090; OR very satisfied 1.124, CI 1.033-1.212). It seems, as in the EWCS models, that

satisfaction is one of the most important elements of working conditions with respect to health.

The random part of the model also is of interest. Like the EWCS multilevel models

in Chapter 8, much of the variation is attributable to the individual level (level 2), with an
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intraclass correlation (ICC) of 31.2%. By comparison UK regions (level 4 in the model) have

a substantially smaller ICC (1.3%) and occupations (level 3) only 0.1%. It can be inferred that

67.4% of the variation is attributable to the observations within an individual over time. Indeed,

individuals show the most variance (1.521), compared to variances of 0.063 and 0.007 for regions

and occupations respectively. The median odds ratios (MORs) provide further detail in this

analysis. Moving randomly between individuals gives us an increase in the odds of reporting

good health (MOR 3.860), whereas moving randomly between occupations (MOR 0.758) or

regions (MOR 0.962) shows a decrease in the odds of reporting good health. This means

that differences between individuals are more risky than those between different occupations

or regions, though there is likely to still be variation within those occupations and regions.

Aronsson and Blom [2010] discuss the difficulty of examining good health rather than illness,

but health status is a self-reported measure and does not ask specifically about illness. Further,

Idler and Benyamini [1997] argue that self-reported health status is a robust measure of overall

healthiness, which varies little even when the question obtaining it is asked differently.

Table 9.3: Final Multilevel Logistic Regression Model for Health Status. Gross
monthly pay is reported with a larger number of significant digits than the other
covariates due to its small effect size.

OR 95% CI p
Intercept 4.473 3.774 5.34 0.000
Sex (ref: male) 0.873 0.822 0.928 0.000
Age 0.988 0.986 0.990 0.000
Has Tertiary Education (ref: no tertiary) 1.375 1.281 1.478 0.000
Gross monthly pay (GBP) 1.000136 1.000112 1.000165 0.000
Job hours per week 0.997 0.995 0.999 0.002
Works flexitime (ref: Not mentioned) 0.921 0.878 0.97 0.000
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 0.908 0.82 0.999 0.023
Not very satisfied 0.949 0.888 1.006 0.037
Satisfied 1.036 0.976 1.09 0.109
Very Satisfied 1.124 1.033 1.212 0.003
Job satisfaction: Overall (ref: Neither satisfied nor dissatisfied)
Not satisfied 0.762 0.663 0.866 0.000
Not very satisfied 0.846 0.788 0.91 0.000
Satisfied 1.312 1.243 1.391 0.000
Very Satisfied 1.519 1.413 1.64 0.000
DIC 115327.03
pD 9139.56
Random Part Mean 95% CI SD
Region Variance 0.063 0.025 0.146 0.032
Occupation Variance 0.007 0.003 0.013 0.003
Individual Variance 1.521 1.453 1.593 0.035
Region MOR 0.962
Region ICC 0.013
Occupation MOR 0.758
Occupation ICC 0.001
Individual MOR 3.86
Individual ICC 0.312
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9.2.2. Specific Health Problems with the Limbs or Muscles

Health problems relating to muscular issues found in arms, legs, hands, and so forth, was the

second outcome of interest. In the survey respondents either mentioned (1) or did not mention

(0) these problems. Table 9.4 shows the final Bayesian multilevel logistic regression model,

which includes all covariates. Women are more likely to report these sorts of muscular problems

than men (OR 1.148, CI 1.020-1.268). As age increases, so do the odds of reporting muscular

(OR 1.094, CI 1.090-1.098). Having tertiary education, as opposed to having up to secondary

education reduces the odds of mentioning muscular or limb health problems by 31.5%.

As with the muscular health single level model, and with the health status model above, pay

has a small effect, as it is per single British pound (OR 0.9999331, CI 0.9998996- 0.9999654).

Job hours per week also had no effect, but the reported credible interval is wider (CI 0.997-

1.002) and was statistically insignificant (p 0.405). For those individuals working flexitime

there is a slightly increased odds of reporting these health problems compared to individuals

not working flexitime (OR 1.064, CI 0.985-1.146) though the p value falls just short of the 95%

credible threshold (p 0.052). Satisfaction with total pay only had statistically significant effects

for the satisfied and very satisfied categories, with a 7.8% and 11% reduction in the odds of

reporting these problems respectively, meaning that perhaps the relationship between effort and

reward is stronger when reward is larger than effort. As for overall job satisfaction, it followed

a gradient relative to neither satisfied nor dissatisfied, with being not satisfied and not very

satisfied increasing the odds of reporting problems with muscles or limbs by 42.5% and 10.8%

respectively. Being satisfied or very satisfied in the job overall was associated with an 8.1 and

21% reduction in the odds of reporting these problems respectively.

The random part of this health problems model performs similarly to the health status

model. Most variance is attributable to the individual level (variance 5.897) with an ICC of

62.3%. The region level (variance 0.284) ICC is 3%, and the occupation ICC is 0, meaning that

most occupational variation is within rather than between occupations (occupational variance

0.002). This means that 34.7% of the variation lies between the observations of each individual.

This is again reflected in the MORs, which substantively express the odds of reporting a given

outcome when moving randomly between groups. For individuals, an increase in the odds of

reporting muscular or limb health problems is shown with a MOR of 20.916. Relative to all other

effects in the model, this is by far the largest, which suggests that individual-level heterogeneity

dominates the observed effects. Regions also show an increase in the odds with an MOR of

1.433, similar to the effect of overall job satisfaction being ‘not satisfied.’ Finally, the occupation

MOR of 0.722 shows a decrease in the odds of reporting these health problems when moving

randomly between different occupations.
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Table 9.4: Final Multilevel Logistic Regression Model for Health Problems with the
Limbs or Muscles. Gross monthly pay is reported with a larger number of significant
digits than the other covariates due to its small effect size.

OR 95% CI p
Intercept 0.003 0.002 0.006 0.000
Sex (ref: male) 1.148 1.020 1.268 0.013
Age 1.094 1.090 1.098 0.000
Has Tertiary Education (ref: up to secondary) 0.685 0.602 0.782 0.000
Gross monthly pay (GBP) 0.9999331 0.9998996 0.9999654 0.000
Job hours per week 1.000 0.997 1.002 0.405
Works flexitime (ref: Not mentioned) 1.064 0.985 1.146 0.052
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 1.004 0.870 1.156 0.493
Not very satisfied 1.004 0.915 1.102 0.485
Satisfied 0.922 0.838 1.012 0.044
Very Satisfied 0.890 0.784 1.001 0.026
Job satisfaction: Overall (ref: Neither satisfied nor dissatisfied)
Not satisfied 1.425 1.158 1.724 0.000
Not very satisfied 1.108 0.994 1.228 0.033
Satisfied 0.919 0.840 1.002 0.026
Very Satisfied 0.790 0.696 0.878 0.000
DIC 66879.79
pD 8331.99
Random Part Mean 95% CI SD
Region Variance 0.284 0.033 1.485 0.42
Occupation Variance 0.002 0 0.008 0.002
Individual Variance 5.897 5.602 6.2 0.158
Region MOR 1.433
Region ICC 0.030
Occupation MOR 0.722
Occupation ICC 0.000
Individual MOR 20.916
Individual ICC 0.623
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9.2.3. Specific Health Problems relating to Anxiety/Depression

The final outcome of interest from the BHPS data is self-reported health problems relating to

anxiety/depression. In the survey, respondents either mentioned (1) or did not mention (0)

experience of anxiety and/or depression. Table 9.5 shows the final model, which includes all

covariates. The largest covariate effect by far in the model is the effect of being female, with

women being 280% more likely to report anxiety and depression than men (OR 3.802, CI 3.192-

4.479). Being older also increases the odds of reporting anxiety/depression by 3.6% for each

additional year of age. Having tertiary education is not statistically significant, with a credible

interval overlapping 1 (OR 0.959, CI 0.797-1.147). Gross monthly pay (scaled to single GBP)

had no significant effect, and unlike the other models, and the corresponding single level model

for the same outcome, the effect is not statistically significant to the 95% credible level (p 0.089).

Job hours per week slightly decrease the odds of reporting anxiety/depression, with a 0.5%

reduction in the odds for every extra hour worked per week. This is perhaps due to the social

aspects of the work environment, or an increase in time spend productively. Working flexitime

is associated with a 10.3% increase in the odds of reporting anxiety and depression, though

the credible interval overlaps 1 (CI 0.976-1.231) and therefore it is not a significant contributor

to the outcome. The pattern for job satisfaction with total pay is somewhat unclear. The only

statistically significant odds ratio is for not satisfied which indicates an increase in anxiety and/or

depression (OR 1.211, CI 0.978-1.497) while the other categories all show an increase but with

confidence intervals overlapping zero. As for overall job satisfaction, being not satisfied or not

very satisfied relative to being neither satisfied nor dissatisfied are associated with 138.1% and

67.6% increases in the odds of reporting anxiety/depression. Being satisfied or very satisfied

were associated with 27.6% and 39.9% decreases in the odds of reporting anxiety or depression.

The clusters also have an interesting pattern. Individuals (variance 7.508) account for

the most variance, with an ICC of 69.2%, followed by regions (variance 0.029) at 0.3%, and

occupations (variance 0.015) at 0.1%. Therefore around 30.4% of the variance lies at the level of

the observations within the individuals, i.e., the same person at different time points. The MOR

at the individual level is 32.500, which means the ‘riskiness’ of randomly changing between

individuals is very high. The MORs for region and occupation are of similar size, showing a

decrease in the odds of reporting anxiety/depression moving randomly between groups (MOR

0.857 and 0.804 respectively).
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Table 9.5: Final Multilevel Logistic
Regression Model relating to Anxiety/Depression. Gross monthly pay is reported
with a larger number of significant digits than the other covariates due to its small
effect size.

OR 95% CI p
Intercept 0.001 0.001 0.001 0.000
Sex (ref: male) 3.802 3.192 4.479 0.000
Age 1.036 1.031 1.041 0.000
Has Tertiary Education (ref: up to secondary) 0.959 0.797 1.147 0.321
Gross monthly pay (GBP) 0.999957 0.9998932 1.000016 0.089
Job hours per week 0.995 0.991 0.999 0.004
Works flexitime (ref: Not mentioned) 1.103 0.976 1.231 0.051
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 1.211 0.978 1.497 0.040
Not very satisfied 1.104 0.943 1.317 0.127
Satisfied 1.106 0.960 1.29 0.115
Very Satisfied 1.035 0.848 1.272 0.406
Job satisfaction: Overall (ref: Neither satisfied nor dissatisfied)
Not satisfied 2.381 1.846 3.089 0.000
Not very satisfied 1.676 1.445 1.943 0.000
Satisfied 0.724 0.630 0.818 0.000
Very Satisfied 0.601 0.505 0.706 0.000
DIC 28442.9
pD 4217.76
Random Part Mean 95% CI SD
Region Variance 0.029 0.004 0.09 0.023
Occupation Variance 0.015 0.002 0.037 0.009
Individual Variance 7.508 6.866 8.134 0.326
Region MOR 0.857
Region ICC 0.003
Occupation MOR 0.804
Occupation ICC 0.001
Individual MOR 32.500
Individual ICC 0.692

9.3. Conclusions

This chapter described the BHPS Bayesian multilevel logistic regression models, which

examined self-rated health status, and two specific health problems. The two specific health

problems were problems with the muscles or limbs and anxiety/depression. The final models

presented in this chapter had the best fit measured using to the DIC, which is a penalised

Bayesian measure of predictive accuracy. The patterning of the effects was similar to many

of the EWCS models in Chapter 8 (see table 8.2 for the EWCS data, and 9.2 for the BHPS data),

and as such provides a confirmatory analysis to reinforce the worksome. Through multilevel

models, the structures and scales of the relationships between working conditions, demographic

variables, and a set of health outcomes can be explored.

Women are more likely to report poor health than men, as well more likely to report

both health problems. The same pattern applies with age: for every year increase in age, for

health status there is a 1.2% increase in the odds of reporting poor health, 9.4% increase in the
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odds of reporting health problems with the limbs, and a 3.6% increase in the odds of reporting

anxiety/depression. Having a tertiary education increases the odds of reporting good health

status and decreases the odds of reporting both health problems.

An effect that carried through from the single level BHPS models was that gross monthly

pay, in units of a single GBP, has a small effect on the health outcomes. This is a potentially

important result as Geyer et al. [2006] indicated its importance in understanding health and

employment outcomes. It is also important to note that these results held even in the

initial models without the covariates controlling for other characteristics (see Appendix D

for intermediate models). This finding also has important implications for the analysis with

the EWCS data as gross pay is not available within that dataset and, based on the previous

literature that could be considered a serious limitation. The findings here point to it being a less

serious omission. Ultimately, perhaps this means that after accounting for working conditions,

pay is relatively unimportant. Job hours per week had a small effect for health status and

anxiety/depression: the more job hours worked, the higher the odds of reporting good general

health, however, the lower the odds of reporting anxiety/depression.

Another important finding is about working flexitime. Working flexitime rather than not

shows an increase in the odds of reporting poor health, muscular or limb health problems, and

anxiety/depression. This demonstrates the negative effects described in the literature of flexible

employment. Flexible employment is characterised by insecurity and uncertainty, due to the

erosion or removal of labour rights and unions. Working conditions become less favourable

and more tenuous, with changing expectations of, for example, more work in fewer hours

[McNamara et al., 2011]. As for satisfaction with total pay, there was no consistent pattern

for anxiety/depression, and effects were statistically insignificant. For health problems relating

to muscles or limbs, dissatisfaction with total pay increased the odds of reporting problems

relative to being neither satisfied nor dissatisfied. Similarly, for health status, dissatisfaction led

to higher odds of reporting poor general health. As for overall job satisfaction, similar patterns

were found for all three outcomes. Being in one of the two satisfied categories relative to being

neither satisfied nor dissatisfied showed higher odds of not reporting health problems with the

limbs or anxiety and depression, and higher odds of reporting good general health.

Finally, looking at the MORs for the random part of the model, the individual level for

each outcome showed that a large part of the risk was contained at this level, especially with the

large size of the MOR. MORs are advantageous as they are directly comparable to the model

ORs, and for the individual level, for example, for anxiety/depression, the MOR for individuals

was almost 10 times higher than then next largest OR, which was for sex. The occupation level

MORs showed a decrease in risk moving between the differing occupations, which means a large

part of the occupation-level risk is within rather than between occupations. This may be due to

unobserved occupation-related covariates, and, in theory, in the worksome, occupation acts as

a stand-in for workplace. Therefore, it could be that within-workplace variation is responsible

for this effect. For example, tasks could be assigned differently based on gender, even within

the same occupation in the same workplace. This was seen in the ‘anxiety’ outcome for the
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EWCS data, where occupation showed the same direction of effect for its MOR (other outcomes

from the EWCS data showing a decrease in the odds of the occupation MOR were backache,

fatigue, and headache/eyestrain). As for the region level MOR, it showed decreases in the

odds for health status and anxiety/depression, but an increase in the odds for health problems

with the limbs. Therefore, it is likely that the differences between geographies are important

for muscular health problems, but the differences within geographies are more important for

general health and anxiety/depression. As argued in the worksome chapter (Chapter 3), the

domains at differing scales relating to time in an individual and otherwise, individuals within

occupations, and those occupations contextualised within geographies are important with respect

to the results. The multilevel models have shown both in this chapter, and the previous one

with the EWCS data, that the worksome is not only theoretically important but also empirically

relevant. The multilevel models reveal more about the impact of the working conditions on the

outcomes, with more precise estimates that truly account for the differing scales and levels in the

data, and, indeed, the existence of those scales in reality.

This chapter presented the results of three Bayesian multilevel logistic regression models

analysed on the BHPS data. The most important working condition with respect to all outcomes

is overall job satisfaction, mirroring what was found in the EWCS multilevel analysis (Chapter

8). Most of the variation lies between individuals. The following chapter will further situate both

the results from this chapter about the BHPS and the results about the EWCS into the context of

the worksome and literature review.
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Chapter 10

Discussion

10.1. Introduction

This thesis has explored the relationship between work and health. This chapter will summarize

the empirical work, both alone and in relation to the worksome. In general, employment

conditions that would be expected to negatively impact health – for example being paid badly,

or being very dissatisfied, or having a job which does not match your skills – do indeed show

negative impacts on health, although there is some substantial variation with respect to different

health outcomes, seen especially in the EWCS analysis, and reinforced by the BHPS one.

This is particularly apparent in the multilevel analysis chapters, which include a modelling

structure that is both substantively (the data are clustered) and theoretically (the worksome

framework) informed. The multilevel structure allows for the explicit modelling of the scales

of the worksome. Whilst the analytical chapters have explored a set of national and international

work-related health outcomes, what they did not do is put the work into a wider context or discuss

the outcomes in detail in relation to the literature review, the worksome framework, and each

other. For the majority of the models, both those using the European Working Conditions Survey

(EWCS) and those deploying the British Household Panel Survey (BHPS), the relationships

found tend to be as expected. That is to say, that working conditions considered poor are, in

general, bad for your health.

The multilevel models give apparently similar overall results to the single level models for

both datasets (Chapters 5, 6), and for the work-health effect from EWCS (i.e., a measure of self-

rated health associated with work), and even the coefficients of the fixed part of the multilevel

model are virtually identical to the single level model. For the BHPS dataset, this also held for

most models, but some effects gained statistical significance. So, a natural question arises:

Multilevel models are more complex, and therefore difficult to interpret, so why are the

multilevel models more appropriate for both datasets, if a simple model may do?

This could be for several reasons. The first reason is related to the requirements of

statistical analysis in that the structure of the data violates some of the assumptions of single
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level regression analysis. In other words, the observations are not independent of one another

but clustered geographically, temporally and within occupations. In the BHPS data, there

are also observations clustered in individuals, i.e., time in individuals. The importance of

these clusterings cannot be ignored, and is reflected in the results, particularly in the variance

components models (see Chapter 7) where the structure of the models is determined, as well

as in the random effects of the final multilevel models in Chapters 8 and 9. Further, multilevel

models allow for the understanding of the effect of these clusters in the data.

The second reason refers back to the worksome chapter and the framework that it proposed.

The worksome includes a variety of domains and scales (see figure 10.1), and proposes that

exposures (i.e., working conditions) along the social-physical gradient and interactions within

and between these domains are highly relevant to health outcomes along the life course. In order

to incorporate the crucial element of geographical and temporal scales and domains, a multilevel

structure, or an approximation of the structural domains of the worksome, should be included in

any modelling strategy, to facilitate the examination of both the individual and contextual effects

both within and between scales [Kim et al., 2012]. The worksome structure also allows for

the integration of a variety of explanatory variables, and for the efficient planning of multilevel

analysis.

Figure 10.1: The worksome, published in [Eyles et al., 2019]

Finally, multilevel models can capture the heterogeneity of working conditions and

arrangements (primarily through the ‘occupation’ level), through their partitioning of the

variance. While there are scenarios in which a single level model may be preferable due to
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the structure of the data, i.e., in a study of a single workplace at a single point in time, the

vast majority of the time a multilevel structure better approximates the data. People do not live

in a vacuum – they live through time, in places, and work in workplaces, and the worksome

framework promotes the capture of these rich context in which lives are lived. In doing so,

it may be possible to provide a better understanding of how work (or employment) influences

health and explore the heterogeneity in work outcomes observed: any work may be good for

health compared to unemployment, but not all work is good work.

10.2. Overview of the Analysis

A selection of working conditions was chosen to represent the heterogeneous aspects of the

contemporary employment landscape. Sex, age, and education were included as demographic

variables to be controlled for, reflecting common practice within the literature and most

population-level studies [Kirkwood and Sterne, 2002]. Covariates about specific working

conditions were also included that related to working time, skills and demand, pay, and job

satisfaction. The random part of the model provided the structural context to these working

conditions. Looking at the coefficients in more detail across the outcomes in the EWCS

analysis, it is instructive to group them together when they follow similar patterns. The first

group consisting of anxiety, fatigue, and headache/eyestrain and all appear to be similar to

the ‘muscular’ conditions, such as backache, upper muscular pain, and lower muscular pain.

Although the second group of injury(ies), skin problems, and hearing problems also seem to be

similar to the ‘muscular’ conditions, there are some notable differences, such as women being

less likely to report skin problems and injury(ies) than men. As for the BHPS outcomes, i.e.

health status, health problems with the limbs or muscles, and anxiety/depression, they largely

followed the same pattern as the EWCS variables for the fixed effects, and any differences will

be discussed in the sections below.

10.2.1. Demographic Variables

Demographic variables were included as they are highly relevant to the individual in question,

and, in the case of age and sex, can be relevant to the ‘internal’ domain of the worksome, as well

as an individual’s interactions with others and with their context across the life course. The first

group and ‘muscular’ conditions in the EWCS are characterised by, in general, women having

increased odds of reporting those outcomes than men. This could reflect women’s distinct social

roles, which may put an increased burden on their health and levels of stress [Ala-Mursula,

2004]. However, injury(ies) and hearing problems affect men more than women, which may

be due to unmodeled differences in job roles within occupations, which may be gendered. For

instance, a male worker in a factory may have the same ‘occupation,’ as a female counterpart but

perhaps work in a more dangerous or louder part of the factory. Men and women may cluster in

different sorts of occupation. For example, Barbulescu and Bidwell [2012] found that men and

women tend to apply for different types of jobs based on perceived gender roles, which influence

whether they identify with particular occupations. This is why including the multilevel part of
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the model is important, to account, in part, for these structural differences. The BHPS analysis,

similar to the EWCS analysis, showed that women tended to have lower odds of reporting good

health, and higher odds of reporting the two health problem outcomes, which were muscular

problems with the limbs and anxiety/depression.

Older people, for all EWCS outcomes apart from injury(ies) and skin problems, have an

increased likelihood of reporting these health outcomes, although for most all this effect size was

fairly small, but significant (as the credible interval around the odds ratios were very narrow).

This pattern carries through to the BHPS analysis, where older people were more likely to report

both muscular problems with the limbs, and anxiety/depression, as well as less likely to report

good health status. Older people tend to report more health problems and have poorer health

than younger people in general, so this pattern is as expected [McMurdo, 2000].

Having a tertiary education rather than not in the EWCS analysis had a protective effect

for the ‘muscular’ outcomes as well as for hearing problems, injury(ies), and skin problems,

even when occupation is accounted for in the model. This pattern also holds for the BHPS

analysis, where those with tertiary education have higher odds of reporting good health status,

and fewer reported muscular problems with the limbs. For the work-health effect (i.e., ‘Does

your work effect your health?’), anxiety, fatigue, and headache/eyestrain, in the EWCS, having

a tertiary education rather than not actually increases the likelihood of reporting these outcomes.

This indicates that there is something particular to these health issues related to educational

attainment. This is especially true for anxiety. Perhaps this is to do with the types of work

associated with having a tertiary education, or perhaps the job market for those with a higher

education is less secure, with more flexible employment terms. However, in the BHPS analysis,

those who had tertiary education were less likely to report anxiety/depression, though the effect

size was not statistically significant.

10.2.2. Time-related Working Conditions

Working nights, shift work, and hours worked per week were included in the EWCS analysis

as they were theorised and empirically indicated to be related to the health of those working

[Bambra et al., 2008a; Erren et al., 2008; Kleiner and Pavalko, 2013]. Within the BHPS analysis

it was only possible to include working hours as the other variables were unavailable. Working

time arrangements were included, despite being related to the working time variables, because

they are a proxy for a person’s sense of control or security in work. This was expected to

be especially true as employment becomes increasingly flexible, with ambiguous benefits to

workers [Benach et al., 2014; Peck, 1996; Standing, 2011]. However, this work makes it

apparent that, contrary to the literature, worker control over working time (or lack thereof) had no

systematic effect on health. In the EWCS analysis, working time arrangements were represented

by a time arrangement variable which several types of arrangement, oriented towards the level

of control a given individual had. In the BHPS analysis the information was less detailed than

in the EWCS, and as a result the concept was represented by whether an individual worked

flexitime. Time-related variables also represent well the social-physical gradient of exposure in
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the worksome, as they are both physical (working time is physical presence at the workplace)

but also social (working time and arrangements are socially mediated, and often controlled by

the workplace).

The number of nights worked per month has a similar effect across all EWCS outcomes:

working at night, and working increasing numbers of nights, is not good for health outcomes;

the odds of reporting all of them are raised. Working at night has been found to increase the

risk of breast cancer in Danish women aged 30-54 [Hansen, 2001]. Wong et al. [2011] found

that the injury rate for night shift workers did not decline compared to other workplace injuries

over a 10-year period. Working at night, or working shifts causes disruptions to the circadian

rhythm, which can affect health negatively [Erren et al., 2008]. Working shifts compared to more

regular patterns of work increases the likelihood of reporting negatively for all outcomes, with

the lowest effect being that of headache/eyestrain. It seems that working shifts has no health

promoting behaviour for any of the outcomes, and it is likely due to the constant disruption of

the circadian rhythms of those working such patterns [Knutsson, 2003].

Hours worked per week consistently increased the likelihood for reporting all EWCS

outcomes. Similar to age, the effect was very small, likely due to the number of potential

hours that could be worked in any given week. This is most likely to be dependent on working

arrangements, such as whether a self-employed person considers all of their time ‘work time,’ or

those who work many shifts across a given week. The ORs for hours worked per week all had

narrow credible intervals, suggesting that the effect is significant. For the BHPS analysis, job

hours per week followed the same pattern, whereby the effect sizes were fairly small, with more

hours worked making the odds of reporting good health status lower, and the odds of reporting

anxiety/depression higher. This is possibly due to the upper limit of hours that can be worked

per week, which is often dependent on working time arrangements.

Working time arrangements are measured in the EWCS through four categories. The

reference category was that schedules were fixed by the company. Relative to this category,

almost all of the more flexible options showed an increase in the odds of reporting the outcomes,

other than the choice between several fixed schedules, which showed a decrease in the odds

for the work-health effect, hearing, and lower muscular pain. For the BHPS analysis, the

binary variable of working flexitime (either it being mentioned or not) was found to increase

the odds of reporting muscular problems with the limbs and anxiety/depression, and decrease

the odds of reporting good health. It seems that flexibility, as theorised in the literature review

(Chapter 2), both constrains and liberates labour; as Ross [2009] discusses, the capitalism of

today seeks to actively decompose working conditions and employment, as it allows for more

profits, it erodes labour’s control over working practices, and normalises insecure conditions

which become endemic to the labour market [Bardasi and Francesconi, 2004; Bourdieu, 1998;

Canaan, 1999]. The increasing demands on labour can obscure the effects of working conditions,

as insecurities are experienced even by those in standard working arrangements [Scott-Marshall

and Tompa, 2011].
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10.2.3. Skill-Demand Match

The skill-demand match in the EWCS analysis, for example, reflects the job-demand control

model developed by Karasek and Theorell [1990]. Whether or not the skills one has attained can

meet the demands of a job is important, as well as being able to develop those skills [D’Souza

et al., 2003]. The reference category here was that skills and demands of a job match; they could

either have demands which are too low, or demands which are too high. It is important to an

individual to be able to control outcomes which are important to them. Having demands which

do not match skills increased the odds of reporting all outcomes, for both low and high demand

jobs. However, the effect is larger when demands are larger. This is reasonable: higher demands

may include a higher pace of work, whereas lower demands may engender a sense of ennui or a

lack of fulfilment.

10.2.4. Pay-related Covariates

The trade-off between compensation and risk is also key within the worksome and builds on the

effort-reward imbalance model by Siegrist [1996]. Being paid appropriately was selected for

the EWCS analysis for several reasons. Firstly, the EWCS contains data from many different

countries within which there are a wide variety of different national pay structures and levels.

Thus, whether or not pay is appropriate within the national context represents a better measure

of the material well-being aspect of income rather than reporting a monetary income itself. It

is also important to note that the EWCS data do not capture income well across waves, and it

is difficult to reconcile the individual income variables. Secondly, being paid appropriately also

reflects feelings of acceptance of working conditions and feelings of control and self-efficacy,

which the literature has shown are important for individual well-being and health [Bourdieu,

1998; Canaan, 1999; Peck, 1996; Ross, 2009]. Indeed, the effort-reward imbalance model of the

work-health relationship is based on the trade-off between compensation, usually pay, and the

risks taken in a given occupation [Siegrist, 1996]. The feeling of being paid appropriately then,

implies a certain protective effect, which is also indicative of a sense of security.

Being paid appropriately is a useful measure as it can proxy insecurity, and whether or not

other less satisfactory working conditions may become tolerable. In the BHPS analysis, this was

measured using satisfaction with overall pay. For the EWCS analysis, agreeing that one is paid

appropriately (relative to neither agreeing nor disagreeing) reduces the likelihood of reporting

any of the outcomes. Backache is the only outcome which does not follow the trend for being

paid appropriately in the EWCS. Perhaps backache can occur regardless of the level of pay,

due to ergonomics or other workplace conditions that aren’t. Similarly, in the BHPS analysis,

anxiety/depression do not show a clear pattern relative to being neither satisfied nor dissatisfied

with pay, though many of the effects are statistically insignificant. Indeed, disagreeing that

one is paid appropriately in the EWCS relative to neither agreeing nor disagreeing, shows an

increase in all of the health outcomes. Similar patterns are seen for satisfaction in the BHPS

data: being satisfied with total pay shows higher odds of reporting good health status, and lower
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odds of reporting muscular problems with the limbs. Being paid badly demonstrates a certain

insecurity; most people have a rough idea of what pay a given occupation may realistically

command. If a disconnect occurs, similarly to the skill-demand match variable, then negative

health effects can occur. Pay appropriateness also is a way of measuring the material well-being

and income generated by work, especially for the EWCS, given the large differences between

wages in European countries (400 euros in Portugal is much different to 400 euros in Finland,

for example). Monthly gross pay was considered in the BHPS analysis, as the BHPS data are

solely taken in the UK, but (like hours worked) the effect size was very small for all outcomes,

in part due to the scale (per British pound).

Recall that in the BHPS analysis, two pay-related variables were chosen. When using

the BHPS, the international component of the analysis was omitted – the differences in the

economies and therefore the wages between the states making up the UK were less of a concern

than in the EWCS dataset. As such, the other pay variable used was monthly gross pay (in

pounds, GBP). The gross monthly pay variable had very little (on the magnitude of 4 decimal

places) effect, due to the scale (per British pound). However, job satisfaction with total pay

had reasonably clear effects for health status (being more satisfied led to better reported health)

and problems with the limbs (being more satisfied led to less report of these health problems).

However, it was unclear for anxiety/depression, where most of the effects were statistically

insignificant, and while a pattern was somewhat apparent, with those less satisfied being more

likely to report this outcome, all the satisfaction covariates showed an increase in the odds of

reporting anxiety/depression. This indicates that anxiety/depression may be related to more

than just satisfaction, but perhaps other social exposures at the workplace or in other domains.

These variables measure the disconnections between expected reward and expected risk [Siegrist,

1996].

10.2.5. Satisfaction with Working Conditions

Satisfaction with working conditions was included in the analysis more as a control variable,

similar to the demographic ones, to examine if the other relationships found in the model held

when it was included. It encompasses the workplace domain of the worksome, in that it is a

measure of an individual’s sentiment about all exposures or conditions of their occupation. The

relationships of the other working conditions and demographic variables do hold, though the

odds ratios for satisfaction are much larger than all of the other coefficients, for most all the

models, both single and multilevel, for all of the outcomes. This was also true for the similar

variable in the BHPS analysis, overall job satisfaction. Insecurity can lead to reduced satisfaction

[Richter et al., 2013], and thereby increase the risk of negative health effects, but insecurity itself

is also linked to negative health effects. The very large odds ratios relative to the other effects

found in all of the outcomes in both studies confirms that the models are indeed accounting for

the confounding effect of satisfaction. While satisfaction may appear to have a large influence, it

is “not a direct measure of health status” [Benavides et al., 2000](Benavides et al 2000), and the

other aspects of working conditions are nonetheless important despite their smaller effect sizes.
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Together, the set of variables measure the context of an individual, but it is the multilevel models

which best account for and measure the influence of these contexts.

10.2.6. Why Multilevel Models?

The multilevel analyses allowed insight into the worksome framework at multiple scales. These

differences are important and reveal how different health outcomes vary across Europe, and

within regions. The multilevel models allow for the explicit inclusion of geography, time, and

occupational structures. This is crucial for approximating the domains and scales within the

worksome. Multilevel models account for the influences of these elements deliberately and

allow for the examination of how much each domain or scale of a particular domain varies, and

whether it varies more within each individual group, or between groups. This has consequences

for policy: by more accurately specifying not only which working conditions impact health, but

at which scale they vary most, policymakers can better target their interventions.

The EU is varied and diverse in terms of regulatory and welfare regime, labour markets,

and workplace practices and cultures. Especially for the EWCS data, accounting for country

specific geography is therefore very important. The median odds ratios (MORs) provide a way

of measuring the effect of a given level of the model hierarchy and are therefore a useful tool

in accounting for and understanding risk of an outcome between or within clusters. MORs

above 1 can be interpreted as the increased risk in the outcome when moving randomly between

groups. MORs close to 1 can be interpreted as little change in those odds when moving randomly

between groups. MORs below 1 indicate a reduction in the odds of the outcome when moving

randomly between groups. In all EWCS models, bar the upper muscular pain outcome, the

median odds ratio for the country level is above 1, meaning that a fair amount of the risk of

the outcomes in question is consistently to be found between countries at the geographic level,

even when including time and occupation. As noted above, the BHPS is restricted to a single

national setting – at least in terms of the regulatory framework for employment – and it would

be expected that there is less variation within a country but between regions and states (e.g.

Scotland vs England) than between nations. Indeed, the models demonstrate this to be the case

– the regional MOR is below 1, which indicates a reduction in risk when moving randomly

between regions, as opposed to moving between times within individuals.

To look more specifically at the health outcomes, for the EWCS, all of the levels have

at least one MOR for one outcome showing a reduction in the odds when moving randomly

between groups, i.e., an MOR below 1. For countries, this is just for lower muscular pain,

so the risk of moving from one cluster to another is reduced by around 13%. This also could

mean that more variability exists within the country level than between the different countries.

For all other outcomes, the MORs shows an increase in risk moving between countries. The

MORs for anxiety and fatigue are particularly high. This could indicate that countries vary a

fair amount from one another; perhaps some countries’ regulatory and labour market contexts

engender more fatigue and anxiety than others. The work-health effect, injury, skin problems,

and hearing problems all have similar MORs, around the effect size of working shifts rather
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than not for most of those outcomes. Upper muscular pain has a slightly lower MOR relative to

those outcomes, as well as backache and headache/eyestrain, but the risk is still increased when

moving between any given country to another random country.

For region, the corresponding geographic level in the BHPS analysis, the MORs for general

health status and anxiety/depression were below 1, meaning moving randomly between regions

shows a reduction in the odds of these outcomes. This makes sense, as the regulatory regime

and policy environment around employment should be largely consistent within the UK (see

section 2.6). The opposite is true for the muscular problems with the limbs, which showed an

increase in the odds, meaning the differences between regions are of importance. As occupations

were accounted for, this is not necessarily due to a difference in the distribution of occupations

between the regions, but perhaps to unaccounted for region-level characteristics. Therefore,

as the geographies for both the EWCS and BHPS analyses are highly relevant, the worksome

framework, specifically the geocontextual domain, is conceptually reinforced.

The other levels for the EWCS analysis, survey years and occupation, show much more

heterogeneity with respect to the different outcomes in terms of how they vary, especially

occupation. For the BHPS analysis, the other levels are occupation, and the individual, with

observations at the wave timepoints as the lowest level. In the BHPS analysis, most of the

variation was concentrated at the individual level, i.e., the differences within individuals between

time was most pertinent. Nonetheless, the empirical part of the work reinforces the theoretical,

i.e., the worksome: geography, scales, and contexts matter, and so taking a life course approach

to examine health outcomes over time is appropriate.

Within the nation states in the EWCS analysis, observations were nested by years. Within

the worksome framework we would expect the year effects to be relatively stable – certainly

there would be less variation temporally than there was nationally, and we observed a variety

of patterns in its MORs. The work-health effect, i.e., whether one’s work effects one’s health,

and injury show a decreased risk moving between years. Skin problems show practically no

cluster effect. Hearing problems and lower muscular pain have very small effect sizes for

their MORs, whereas backache, headache/eyestrain, and upper muscular pain have very large

MORs, meaning risk increases between years, especially for headache/eyestrain. This could

be reflective of changes to working practices and conditions over time, such as the increasing

expectation of flexibility discussed in the literature review, or perhaps due to the increase in the

use of technology at work. Anxiety and fatigue have reasonably large MORs, similar to those

for the country level, meaning the risk around time and the risk with respect to geographies is

very similar for those outcomes.

The effect of occupation is varied as well in the EWCS analysis. The work-health effect,

i.e., whether one’s work affects one’s health, skin problems, upper muscular pain, and lower

muscular pain all have similar effect sizes for their MORs: for example, if someone changes

occupations, the risk of reporting these outcomes is increased, but it is not as risky as it is for

other outcomes. Hearing problems and injury show the largest difference between occupations.

161



CHAPTER 10.

These problems cluster in particular occupations, given the variety of working practices, safety

schemes, and how variable conditions that may cause these are (factory versus office work, for

example). Finally, backache, anxiety, fatigue, and headache/eyestrain all show decreased odds,

meaning that they vary more within particular occupations than between them.

The BHPS occupation level MORs for all outcomes showed a decrease in risk between

occupations as well, therefore a substantial part of the occupation-level risk lies within

occupational groups rather than between them. Perhaps the differences between occupations

are less important as to whether someone may report those outcomes than the conditions within

the particular occupation or workplace themselves. There also could be omitted occupation-

level factors, such as workplace-specific organisational regimes or the social environment

and relationships between colleagues and managers. Perhaps the commonality in these may

also be less related to specific work environments or practices and more so other lifestyle

factors (neighbourhood perhaps), which are not necessarily available in the datasets used, but

nonetheless included in the worksome framework.

Finally, the individual level was the lowest level in the EWCS analysis and the second

level in the BHPS analysis. The lowest level in the BHPS analysis were observations at the

various waves within individuals. A large part of the risk was contained at the individual level

for both the EWCS and BHPS analysis. In the case of the EWCS, for many of the outcomes the

individual level accounts for around 90% or more of the variance. For the BHPS, the individuals

themselves accounted for 31.2% of the variance for health status, and then 62.3% and 69.2%

for muscular problems with the limbs and anxiety/depression respectively. Interestingly, this

indicates that for general health, the differences over time for individuals account for the most

variation, so within individual, between time differences are most relevant. This shows the

importance of the passage of time, or, the life course, to an individual’s general health and how

it may vary. However, for the specific health outcomes, the difference between individuals in

and of themselves, rather than the differences within individuals between different time points,

are more important. This indicates that the conditions under which people live, and importantly

to this thesis, work, are highly relevant to specific health outcomes. The variety of different

occupations, and importantly, workplaces, and whether or not their conditions are more similar

within or between them is also not always clear, so the worksome allows for this to be accounted

for.

10.3. Contextualising the Results

But what does this mean, substantively? In general, the models all show that irregular working

patterns (e.g., at night or shifts) or working excessively (e.g., hours per week) impact health

negatively. This is something intuitive, but to discover a consistent empirical effect that remains

no matter what outcome or dataset is being examined is important. This indicates, too, that the

results are likely to be less biased, especially in terms of reverse causality. This is particularly

so for the BHPS, as it followed individuals over time, and, as Martikainen and Valkonen [1999]
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found, the ’healthy worker effect’ wore off with increasing duration of follow-up. As Marmot

and Bell [2016] note, what lies beyond the immediate causes of poor health must be understood.

Therefore, what is also apparent is that with increasing uncertainty about conditions or security

come increases in the likelihood of negative health impacts, and this persists and may even

accumulate over time. For example, while flexible working arrangements may seem to allow a

given person to plan their life more freely, this is actually accompanied by an increase in the odds

of reporting some sort of ill health. Flexible conditions of work may suit some, and benefit some,

but overall it undermines stable working conditions for all. Having set hours is more certain, and

flexible arrangements are not always without constraint [Daykin, 1999]; [Peck, 1996, pg23-24]

cites “a fragile balance between control and consent.” Control and certainty seem to come hand

in hand. These conditions are also not always a choice, in the sense that for some, only a limited

range of occupations are available, and thus cannot necessarily be modified at an individual level.

The results of the analyses presented here indicate that labour policy change is required to

reduce insecurity and uncertainty for workers; the practices around flexible work appear to lack

consistency. The social determinants of health, like work and working conditions, and, further,

health inequalities, are after all, considered to be modifiable [Dahlgren and Whitehead, 2006;

Wilkinson, 2005]. It is the role of policy to reform or replace structures and law in welfare

states [Eikemo and Bambra, 2008]. Work and its conditions have changed over time, and across

geographies, and while social and health inequalities persist across these contexts, variations in

the slope of the gradients of these inequalities implies that policy and can reduce them [Marmot

et al., 2008].

For example, policymakers should approach the issue of flexible work cautiously, as some

aspects of it are desirable, such as the ability to set working hours around other pursuits in life.

The moves to zero-hour contracts provide security in some circumstances but can also introduce

instability and uncertainty in others [Koumenta and Williams, 2019]. However, overall, well

executed flexibility can assist with the goal of creating a framework for working that both enables

firms to be more mobile, but also engenders a sense of certainty within workers. Individuals

should feel that outcomes which are important to them are to some extent in their control, even

if in reality determining contextual factors may not be [Kawachi, 2002; Niedhammer et al.,

2004; Siegrist and Marmot, 2004]. The effect of working nights or shifts can, to some extent,

be mediated by the idea of having control, or indeed being paid appropriately for the work

undertaken. Pay schemes even within the same occupation can differ, depending on employee

status, tenure, and other characteristics, which is why accounting for both differing working

conditions and contexts is important [Connelly et al., 2016].

The empirical results also reinforce the worksome framework (see figure 10.1). The

worksome framework includes several domains and scales which link together to examine

the impacts of exposures, or working conditions, along the social-physical gradient. The

geocontextual domain includes several scales, of which the workplace was pulled out into its

own explicit domain to emphasise its importance in determining the health of individuals. The

social determinants of health sit in these domains [Eyles et al., 2019; Wild, 2012], and allow for
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the examination of the health inequalities they may engender. Further, the life course approach,

which highlights time as highly important underlies the entire worksome framework. Health

inequalities have been shown to persist over time [Corna, 2013], and researching them using the

worksome will allow for the unpacking of the less immediate causes of poor health [Marmot and

Bell, 2016] or negative health outcomes.

It is apparent from the random part of the models that scales of exposure and contexts

(both geographic, occupational, and temporal) are highly relevant to the health outcomes, and

therefore the individual. This is important with respect to country differences, but also relevant

to the characteristics within any given geography, as was shown for region in the BHPS analysis.

The analysis demonstrated that the relationship between health and work are dependent on the

scale at which the analysis takes place, and the country level relationship is not necessarily

replicated at lower spatial scales. For example, the temporal scale is more important for the

specific health outcomes and conditions of the BHPS analysis, but less so for the general health

status outcome.

The social-physical aspects of exposure were explored well in the EWCS models, through

measures like working at night, or time arrangements [Dembe et al., 2005; Kivimäki et al., 2015].

Working time is an intangible sort of exposure that exists within the grey area of the physical-

social gradient. Occupation was used in the models as a proxy for workplace as both sets of data

were at a national or regional level, and therefore individuals were not grouped into workplaces.

The assumption was therefore made that those within the same occupation may have similar

roles and workplaces; further that they have perhaps some impact on the conditions therein. Both

individual and context effects can be analysed through the worksome due to its multifacetedness,

despite individual employment experiences (and even contexts) being heterogeneous and in some

respects difficult to measure. The complexities of the relationships between the geocontextual

and its varying scales and social determinants of health, as well as time, with their influence on

the individual are made easier to understand through the worksome framework. The worksome

redirects how the relationships between occupation and health are understood, with its emphasis

on the interactions between and within all of these elements. Occupation is therefore a social

determinant of health in its own right, and is worth examining, as discussed in Chapter 3. The

worksome was developed to provide a transferable, reproducible theoretical framework that

will remain consistent over time, as advocated by Kim and colleagues (2012), to allow for and

develop better linkages between disparate research projects into work and health.

It must be recalled, however, that having a job – working – in general has a protective health

effect compared to being unemployed [Dodu, 2005; Smith, 1985]. This study has made it clearer

which aspects of work are of detriment to health and which promote it. Feelings of control over

one’s own destiny, a secure, certain position, and constraints which feel appropriate seem to be

key to the work-health relationship. The potential impact of work on the individual is substantial

as for most adults a very large proportion of their time there, hence the emphasis of the worksome

on a life course approach. It is rarely, though increasingly, studied as a wider determinant of

health. Historically it has been examined in and of itself (occupational health), with a focus
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on physical exposures, rather than in a wider context. Geography and time are important too,

as discussed. For some occupations, individuals vary more within them than between differing

occupations, and the system of classification is important. Occupations should be examined in

and of themselves rather than as (poor) proxies of social class, using a system which imposes

a set of social values on them, limiting the transferability between contexts. In essence, while

occupations may be distributed unequally in society, unlike social class, the divisions themselves

between particular types of occupation are not a constructed hierarchy that may indeed reinforce

social inequalities. Further, occupation is a more stable measure than social class, which changes

significantly over time [Corna, 2013; Liberatos et al., 1988]. This is because social class is based

in what has social value at the time of its creation, as well as, in some cases, the class divisions

themselves are based on creating a smooth mortality gradient, as Scott [2002] argues. As many

social class measures are based on occupational ones, survey data often will have data items

for both. The theoretical and empirical parts of this work have shown that survey data can be

used under the worksome paradigm to expand knowledge around the linkages between working

conditions and contextual conditions at different scales and health [Brunekreef, 2013].

The current work has addressed some of Kim et al. [2012] arguments that empirical studies

around work and health are inconsistent and lack a reasonable framework for interpretation

which can understand differing contexts and realities at different levels. Through the worksome,

a framework has been provided, and the empirical portion of the research in this thesis both

augments and advances the worksome, using a variety of contextual and individual-level

variables. The next and final chapter will orient this thesis in the context of the research questions

and objectives and make suggestions for future directions for research.
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Conclusions and Future Directions

11.1. Revisiting the Rationale and Context

This thesis has examined the widening gap in health inequalities, specifically relating to

occupation, a social determinant of health. While occupation has been studied extensively,

especially with respect to unemployment [Bartley and Ferrie, 2001], Kim et al. [2012] claimed

that there was a lack of clear-cut results with respect to the employment-health relationship, due

to several factors, including what Kauskamp et al. [2013] describe as heterogeneity in research,

often due to context, differing measures, or sample composition. This can be mitigated with

what [Kim et al., 2012, pg100] describe as ”a sound interpretative framework that is capable of

facilitating an understanding of different social and employment realities.” Indeed, the overall

aim of this thesis was to examine working conditions and their relationship with health, and to

develop a theoretical framework which will allow the unification of disparate research in this

area.

The worksome was developed with this overarching aim in mind: uniting disparate

research into work and health under a readily understandable framework. The worksome

was developed out of the exposome, a life-course [Ben-Shlomo and Kuh, 2002] approach to

examining exposure developed by Wild [2005, 2012]. The worksome was seen as necessary as

the exposome itself does little to account for social determinants of health [Wild, 2012]. Work

is also relevant to how the public lives even away from the workplace [Kleiner and Pavalko,

2013]. Most people work for at least part of their lives. In the UK, for example, around 88.7%

of individuals 16-74 are employed [ONS, 2011], and work as an aspect of life persists through

the majority of the life course, and accounts for a large proportion of time. Work is important

not only for material subsistence, but also holds a key place in the social-cultural fabric of most

societies [Bambra, 2011; Payne, 1999; Peck, 1996]. Sustained employment is essential in most

communities [van der Noordt et al., 2014]. While there have been several models proposed

of work and health, such as Siegrist [1996]’s effort-reward imbalance model, or Karasek and

Theorell [1990]’s job-demand control model, the labour market, the workplace, and geographical

contexts are changing so quickly, that they may no longer be entirely applicable [Richter et al.,
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2013]. The worksome allows for shifting contexts and interactions between them, as well as for

a variety of exposure types on the social-physical gradient.

Recent attention has been paid to specific rather than general conditions in the workplace

([Siegrist et al., 2010], for research on general working conditions [Benach et al., 2002;

Braveman et al., 2005; Cheng et al., 2000; Lewchuk et al., 2003; Siegrist, 1996]. A fair amount of

work on health outcomes relating to work focuses chiefly on exposure to physical hazards ([Arif

and Delclos, 2012]. ‘Social’ working conditions can also be operationalised as exposures, such

as working time [Dembe et al., 2005; Kivimäki et al., 2015]. Working time is both a social and

a physical exposure; the time worked itself is physical, but how that time is arranged is social.

Indeed, [Kleiner and Pavalko, 2013, pg985] argue that “[w]ork time poses a unique challenge,

theoretically and methodologically, because it can potentially channel several health-relevant

mechanisms.” This complexity is captured through the social-physical gradient of exposure

described in the worksome. Tangible and intangible exposures are both important, and while

most tangible exposures are characterised in the risk literature as involuntary [Smith, 2013],

intangible exposures may appear to be taken voluntarily, and social or financial constraints may

make them involuntary. This is likely because the distribution of occupations and the conditions

therein throughout society is irregular, and often across various axes, such as gender, age, and

education [Benach et al., 2012]. Therefore, occupational specificity is important; research often

focuses on one particular occupation type, or one particular geography, but rarely manages to

compare health outcomes and working conditions across a variety of occupations and industries.

This is in part due to a dearth of data that allows for these types of questions to be posed, but

also perhaps a general focus in the research environment on finer grained questions.

The worksome consists of a wide array of exposures and pathways that are shaped by

and contribute to social inequalities in health. A physical-social gradient will feature in the

worksome. Changes in working conditions may originate in one industry or occupational type

and spread to other fields, so addressing the temporal element is important [Benach et al.,

2014]. The concept of the worksome will be expanded on through the theoretical framework

and reinforced with empirical analysis of survey data. This therefore provides the ‘sound

interpretive framework’ that Kim et al. [2012] called for. The framework was supported by

the empirical part of this thesis, using the European Working Conditions Survey (EWCS) and

the British Household Panel Survey (BHPS). The EWCS is a repeated cross-sectional sample

and was taken over 25 years in a series of waves. Since each country took a sample, individuals

can be grouped by time, country, and occupation. There is also information on specific health

outcomes, and many questions were asked on specific working conditions. This allows for the

empirical models to provide a broad, international picture of the relationships between work and

health. The BHPS was chosen as it is a longitudinal panel survey, taken over 18 years in the

United Kingdom, at around the same time as the EWCS. Observations at the wave time-points

are grouped into individuals, who are grouped in occupations and regions. There are a few

health outcomes which carry through all waves, and a set of analogous working condition and

demographic variables chosen to match the EWCS data. The same analytic approach was chosen
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for both datasets, so that their results would be easily comparable. Logistic regression was

chosen as the outcome variables were binary. As the individuals in the sample were clustered in

groups, a multilevel approach was taken. First, single level models were run, in order to examine

whether simpler models were appropriate, despite the data being clustered, and the worksome

theoretical framework emphasising the importance of accounting for the structure of the scales

at which exposures occur. While the coefficients for the multilevel models were broadly similar

to those in the single level models, the random parts of the multilevel models answer many of

the research questions and objectives.

11.2. A Review of the Research Questions and Objectives

Here the research questions and objectives will be reviewed, primarily in the context of the

chapter structure.

11.2.1. Research Objectives

1. Investigate and confirm the relationship between work and health

Establishing the relationship between work and health in the EWCS and BHPS datasets

was important to proceeding with the rest of the thesis. The literature review (Chapter 2)

provided background information on the relationship between work and health and described

gaps in the current research. The data and methods chapter (Chapter 4) described the outcomes

and selected working conditions, providing the rationale for the logistic regression models

presented in Chapters 5-9. The discussion (Chapter 10) situated the results in the literature.

The relationship between work and health was therefore confirmed in the context of those in

work: certain working conditions increased the odds of the set of health outcomes.

2. Determine which specific working conditions underlie this relationship

As the relationship between work and health was established, it was crucial to expand

on the work described in the literature review (Chapter 2), much of which went into detail on

specific working conditions, and forward a broader picture of the relationship between work and

health. The data and methods chapter (Chapter 4) provided descriptive statistics and graphics

about the specific working conditions within the EWCS dataset. The single level models

(Chapter 5,6) showed that the specific working conditions did have a relationship with a variety

of health outcomes in both datasets, and discussed the correlations between those conditions.

The multilevel models (Chapters 8,9) extended the single level models, and while in some

cases had very similar coefficients, were nonetheless necessary due to objective 3, and research

questions 3-6, which emphasised the importance of describing the relevance and effect of these

clusters. The discussion (Chapter 10) located the results about specific working conditions in the

context of the literature and of the theoretical framework, the worksome.
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3. Examine and explore the geographies of these relationships

The relationships between work and health did vary geographically, as was proposed. The

literature review (Chapter 2) provided a view of a variety of conclusions drawn from work around

the world. The variance components chapter (Chapter 7) explicitly explored the geographies

of the work-health relationship, and even described the countries in terms of welfare regimes.

The multilevel chapters (Chapter 8,9) spotlighted the geographies of the relationship not only

between work and health, but on the specific working conditions and various health outcomes.

In the EWCS analysis in Chapter 8, for outcomes grouped as ‘muscular’ geography mattered far

less than for, for example, anxiety or fatigue. In the latter, geography accounted for more than

10% of variation, as opposed to under 3% for ‘muscular’ outcomes. In the BHPS analysis in

Chapter 9, regional geography accounted for far less of the variation across all outcomes, often

less than 1%. The discussion (Chapter 10) positioned the geographical parts of the multilevel

model both in the context of the research landscape, but also as an empirical reinforcement of

the worksome framework.

4. Develop a transferable conceptual framework, the ‘worksome,’ and apply it to the
empirical examples

The worksome framework was largely developed in Chapter 3, large parts of which were

taken from a paper previously published in Social Science and Medicine [Eyles et al., 2019].

The framework was designed to be transferable to many different research contexts, and to allow

for the linkages of disparate research into health and work, the main aim of this thesis. The

multilevel models (Chapters 8,9) empirically augmented the worksome, particularly through the

random part of the models, which shows that for all outcomes, scale and group clustering were

highly relevant. The discussion (Chapter 10) focused on linking the empirical part of the thesis

to the theoretical framework both via the results and via the information provided in the literature

review (Chapter 2).

11.2.2. Specific Research Questions

1. What is the relationship between work and health?

It has been well established that working is generally better for one’s health than not

[Bambra, 2010; Norstrom and Gronqvist, 2015; Smith, 1985]. The relationships examined in

this thesis between working conditions and health showed those conditions had an impact on

all of the health outcomes (see Chapters 5,6), reinforcing the literature (see Chapter 2). The

discussion (Chapter 10) expanded on the results and explained these relationships.

2. Which specific working conditions impact on this relationship? How do they vary across
individuals (i.e. by gender, age, and so on)?
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The literature review (Chapter 2) discussed which conditions have been examined already,

and to some extent how they vary across individuals. The data and methods chapter (Chapter

4) described the EWCS and BHPS datasets and the selected working conditions, as well as the

rationale for selecting those variables. The single level and multilevel model chapters (Chapters

5 and 6, then Chapters 8 and 9) analysed the specific working conditions in the context of a series

of health outcomes across two datasets, finding that most conditions thought to be detrimental to

health, such as shift work, or working nights, increased the likelihood of reporting those health

outcomes. The discussion (Chapter 10) situated these results within the context of the research

environment.

3. What is the impact of geography - in this case varying EU countries and UK regions?
Does this vary by time?

Geography indeed showed an impact on health outcomes, even in models accounting for

working conditions (Chapters 7,8,9). Even in graphs of the proportion reporting various health

outcomes, geographic differences were apparent (Chapter 4). Time also had an effect, though for

certain health outcomes, specifically the work-health effect and injury(ies), it showed a decrease

in the likelihood of reporting them, measured by the median odds ratio (MOR, see Chapter 8).

Chapter 9 showed that there is more variation within regions in the UK rather than between them,

however, so it is possible that international differences are more important than subnational ones

with respect to working conditions and health. The discussion (Chapter 10) further elaborates

on the impact of geography.

4. How do responses change over time, and is this related to geography?

The literature review (Chapter 2) discussed how employment has become increasingly

precarious through time, and that industries have become geographically dispersed over time

[Benach et al., 2014]. Despite the occurrence of delocalisation [Bourdieu, 1998], the impact of

time nonetheless has varied geographically (Chapters 7-9). Chapter 9 showed that general health

in the BHPS survey varied the most across individuals through time. The discussion (Chapter 10)

described how the outcomes varied over time and through geographies in detail. This research

question is closely related to research question 3.

5. How might the impact on health vary across occupation types?

• Do individuals vary more within the same occupation type or between occupation types?

• What is the geography and temporality of this?

• Does the system of occupational classification matter (e.g. either the Nomenclature of

Economic Activities (NACE) or the International Standard Classification of Occupations

(ISCO)?
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The literature review identified a gap in the research (Chapter 2): most research focuses

on specific occupations (often due to data constraints) or does not include occupation as a unit

of analysis in any capacity. The parts of the variance components chapter (Chapter 7) taken

from the paper in Social Science and Medicine [Eyles et al., 2019] showed that the system of

classification is important, and a system using just occupational rather than industrial or class

classifications is preferable for examining health outcomes. This was theoretically reinforced

in Chapter 10. Occupations vary across countries (Chapter 8), and sometimes the differences

are more within occupation than without, given the MORs below 1 for backache, anxiety,

fatigue, and headache/eyestrain. As for the BHPS analysis (Chapter 9), between-occupation

variation was small, meaning the differences within occupations were more important at the UK

subnational level.

6. What is the relationship between work, working conditions, and specific health outcomes
such as backache or anxiety? Does this vary by occupation type, geography, and/or time?

Specific health outcomes had varying relationships with working conditions. The literature

review discussed this in some detail (Chapter 2), and the single level models (Chapter 5) showed

that the relationships differed by outcome, though some can be grouped together by the patterns

in those relationships, such as the ‘muscular’ health outcomes. The multilevel models (Chapters

8,9), while the coefficients were similar to the single level models, showed that these outcomes

and their relationships to working conditions vary across occupation, geography, and time.

Some effects became statistically significant in the multilevel models. The discussion (Chapter

10) situated these results within the theoretical framework, i.e. the worksome, and within the

literature.

11.3. Strengths and Limitations

There are many strengths to this work. The EWCS data themselves are well validated and

collected through an EU initiative, the European Foundation for the Improvement of Living and

Working Conditions (Chapter 4), with sufficient information to perform an analysis including

contexts and scales. The BHPS data, similarly, are robust and commonly used to answer a variety

of research questions (Chapter 4). As similar empirical effects were found in both sets of models,

it is unlikely that the effects occurred due to chance. The methods used are appropriate to the

data and to the theoretical aims of the research, namely empirically reinforcing the worksome

framework. Crucially, multilevel models approximate the scale aspect of the worksome. This

approach also is strong as concepts are operationalised discretely and unambiguously in a

language that a lay or policymaking audience can understand. Risk is quantified in terms of

odds ratios, which are commonly understood, and a quantitative approach is also preferable for

policymakers.

One limitation is that the fluid or interactive nature of scale was not explored via cross-

classified models, as they would not work with the structure of the data. Further, both the
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EWCS and BHPS data are not grouped by workplace due to how the sample was taken (a

random national sample), so occupation was used to approximate it. Individual conditions

were examined due to the heterogeneity of results around status and employment contract types

[Bardasi and Francesconi, 2004; McNamara et al., 2011; Scott-Marshall and Tompa, 2011].

There was also missingness in both the EWCS and BHPS data. In the EWCS data, this appeared

to be largely at random, but in the BHPS data, it is possible that particular time points in given

individuals were excluded when they were unemployed. This may lead to bias, and though this

study’s population of interest was the employed, episodes of unemployment may nonetheless be

relevant. Furthermore, the EWCS data were repeated cross-sectional rather than longitudinal,

so a true life-course approach could not be taken. This limitation was mitigated by analysing

the BHPS data. Reverse causation may also occur, in that it is possible that individuals working

atypical jobs are already unhealthy, and the characteristics of those jobs may not necessarily

lead to negative health impacts [Bardasi and Francesconi, 2004; Carpenter, 1987; Muntaner

et al., 2010; Payne, 1999]. Further, wellbeing or health promoting characteristics were not

necessarily easy to examine as the survey focused on negative health impacts. And, as indicated

by Clougherty et al. [2010] it may be difficult to see what health-promoting aspects work may

have, apart from income or material benefit. Work is a large part of life, and the worksome,

like the exposome, prioritises a life course approach. This matters because the presence of good

health is not just the absence of poor health.

Another limitation to this thesis is its purely quantitative approach. Taking the worksome

as a holistic framework, it requires further engagement with a host of approaches to elicit

a better understanding. For instance, a mixed methods approach, and, indeed, qualitative

work would help reinforce and build on the worksome framework, especially the idea of the

levels and interactions between scales, something which is difficult to capture with quantitative

data. This PhD establishes the worksome framework as a concept by conducting an initial

quantitative investigation to explore major issues relating to work and health. As a PhD funded

via the Advanced Quantitative Methods (AQM) route of the ESRC SWDTP, qualitative work

was precluded but there are clear benefits to undertaking such research in future. A mixed

methods study would likely examine the scales and how they interact, potentially by interviewing

individuals within workplaces, and linking this to research on relationships between firms within

and between industries, and across jurisdictional geographies. It would also explore the meaning

of work in the context of everyday life.

11.4. Directions for Future Research

Future research could further reinforce the worksome concept. Including lifestyle factors or

neighbourhood variables, for example, which exist outside of the workplace, may be worth

pursuing, in order to account for information that was unavailable in the analysis conducted in

this thesis. Cross-classified and more complex multilevel model structures could also be pursued.

Data with objective measures of health or that in other, non-European geographies could be used

to reproduce this work and further it by employing the worksome framework in other contexts.
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If possible, future work should examine specific workplaces rather than occupation types, but it

is difficult to do this as the data may not exist, or it may be too expensive to be practicable to

collect sufficient data.

Both qualitative and quantitative forms of research are key to forming a better picture of

the work-health relationship. Within the quantitative approaches, this thesis employed multilevel

models to approximate the proposed domains and interactions between them [Hox, 2010]. For

qualitative research, which this thesis did not undertake, the effects people have on systems and

scales and how they are affected by them could be elucidated through interviews, or participatory

work where the participants guide the research journey.

11.5. Final Conclusions

[Kim et al., 2012, pg100] argued that there was a dearth of ‘precise conclusions’ on the

relationships between working conditions and health, mentioning

“some inconsistent results in the majority of empirical studies, the lack of a sound

interpretative framework that is capable of facilitating an understanding of different social and

employment realities; and limited contextual and labour market-related variables that interact

with individual employment situations.”

This thesis aimed to, and has provided a theoretical framework in the worksome, which

is capable of uniting the disparate research on work and health, and further, it has empirically

reinforced this framework by examining working conditions and their relationships with health

using two robust datasets: a repeated cross-sectional European dataset and a longitudinal British

panel survey.
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Appendix A

EWCS Single Level Intermediate
Models

Table A.1: Intermediate Models for the Work-Health Effect

Model 0

Parameter OR 95% CI p
Intercept 0.669 0.660 0.677 0.000
Log Likelihood -67568.038

Model 1

Parameter OR 95% CI p
Intercept 0.716 0.704 0.729 0.000
Sex (ref: male) 0.870 0.848 0.892 0.000
Log Likelihood -67509.846

Model 2

Parameter OR 95% CI p
Intercept 0.446 0.425 0.469 0.000
Sex (ref: male) 0.868 0.847 0.891 0.000
Age 1.012 1.010 1.013 0.000
Log Likelihood -67297.545

Model 3

Parameter OR 95% CI p
Intercept 0.455 0.433 0.478 0.000
Sex (ref: male) 0.872 0.850 0.895 0.000
Age 1.011 1.010 1.013 0.000
Has Tertiary Education (ref: no tertiary) 0.947 0.923 0.973 0.000
Log Likelihood -67289.396

Model 4

Parameter OR 95% CI p
Intercept 0.407 0.387 0.428 0.000
Sex (ref: male) 0.906 0.883 0.929 0.000
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Age 1.012 1.011 1.013 0.000
Has Tertiary Education (ref: no tertiary) 0.960 0.935 0.986 0.002
Nights worked per month 1.045 1.042 1.049 0.000
Log Likelihood -66930.412

Model 5

Parameter OR 95% CI p
Intercept 0.376 0.387 0.396 0.000
Sex (ref: male) 0.892 0.883 0.915 0.000
Age 1.013 1.012 1.014 0.000
Has Tertiary Education (ref: no tertiary) 0.980 0.954 1.006 0.130
Nights worked per month 1.036 1.033 1.040 0.000
Works shifts (ref: no) 1.366 1.321 1.412 0.000
Log Likelihood -66760.985

Model 6

Parameter OR 95% CI p
Intercept 0.213 0.387 0.228 0.000
Sex (ref: male) 0.962 0.937 0.988 0.005
Age 1.013 1.012 1.014 0.000
Has Tertiary Education (ref: no tertiary) 0.989 0.963 1.015 0.397
Nights worked per month 1.030 1.026 1.033 0.000
Works shifts (ref: no) 1.374 1.330 1.421 0.000
Hours per week worked 1.014 1.013 1.015 0.000
Log Likelihood -66443.060

Model 7

Parameter OR 95% CI p
Intercept 0.217 0.203 0.233 0.000
Sex (ref: male) 0.963 0.937 0.989 0.005
Age 1.013 1.012 1.014 0.000
Has Tertiary Education (ref: no tertiary) 0.994 0.968 1.021 0.657
Nights worked per month 1.030 1.026 1.033 0.000
Works shifts (ref: no) 1.376 1.330 1.423 0.000
Hours per week worked 1.013 1.012 1.015 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.885 0.840 0.932 0.000
Adaptable within limits 0.956 0.922 0.992 0.016
Entirely self-determined 0.987 0.951 1.025 0.492
Log Likelihood -66430.737

Model 8

Parameter OR 95% CI p
Intercept 0.192 0.179 0.206 0.000
Sex (ref: male) 0.966 0.941 0.992 0.011
Age 1.014 1.013 1.015 0.000
Has Tertiary Education (ref: no tertiary) 0.970 0.944 0.996 0.250
Nights worked per month 1.030 1.026 1.033 0.000
Works shifts (ref: no) 1.377 1.331 1.425 0.000
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Hours per week worked 1.013 1.012 1.015 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.881 0.837 0.929 0.000
Adaptable within limits 0.950 0.916 0.985 0.006
Entirely self-determined 0.985 0.949 1.023 0.430
Skill-demand match (ref: they match)
Demands too low 1.151 1.119 1.184 0.000
Demands too high 1.500 1.441 1.561 0.000
Log Likelihood -66222.831

Model 9

Parameter OR 95% CI p
Intercept 0.178 0.165 0.192 0.000
Sex (ref: male) 0.908 0.883 0.933 0.011
Age 1.013 1.012 1.014 0.000
Has Tertiary Education (ref: no tertiary) 1.025 0.997 1.053 0.081
Nights worked per month 1.028 1.024 1.032 0.000
Works shifts (ref: no) 1.329 1.284 1.376 0.000
Hours per week worked 1.012 1.011 1.013 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.921 0.874 0.972 0.002
Adaptable within limits 1.013 0.976 1.051 0.500
Entirely self-determined 1.038 1.000 1.079 0.053
Skill-demand match (ref: they match)
Demands too low 1.116 1.084 1.149 0.000
Demands too high 1.466 1.407 1.526 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.946 1.879 2.015 0.000
Agree 0.860 0.832 0.890 0.000
Log Likelihood -64690.230

Table A.2: Intermediate Models for Skin Problems in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.086 0.084 0.088 0.000
Log Likelihood -28540.357

Model 1

Parameter OR 95% CI p
Intercept 0.076 0.074 0.079 0.000
Sex (ref: male) 1.268 1.212 1.327 0.000
Log Likelihood -28487.565

Model 2

Parameter OR 95% CI p
Intercept 0.097 0.089 0.105 0.000
Sex (ref: male) 1.270 1.213 1.329 0.000
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Age 0.994 0.992 0.996 0.000
Log Likelihood -28470.435

Model 3

Parameter OR 95% CI p
Intercept 0.100 0.092 0.109 0.000
Sex (ref: male) 1.281 1.224 1.341 0.000
Age 0.994 0.992 0.996 0.000
Has Tertiary Education (ref: no tertiary) 0.902 0.860 0.946 0.000
Log Likelihood -28461.215

Model 4

Parameter OR 95% CI p
Intercept 0.094 0.086 0.102 0.000
Sex (ref: male) 1.311 1.253 1.373 0.000
Age 0.994 0.993 0.996 0.000
Has Tertiary Education (ref: no tertiary) 0.909 0.867 0.953 0.000
Nights worked per month 1.024 1.019 1.030 0.000
Log Likelihood -28421.626

Model 5

Parameter OR 95% CI p
Intercept 0.089 0.082 0.098 0.000
Sex (ref: male) 1.300 1.242 1.362 0.000
Age 0.995 0.993 0.997 0.000
Has Tertiary Education (ref: no tertiary) 0.921 0.878 0.965 0.001
Nights worked per month 1.020 1.014 1.025 0.000
Works shifts (ref: no) 1.204 1.138 1.273 0.000
Log Likelihood -28400.969

Model 6

Parameter OR 95% CI p
Intercept 0.078 0.070 0.088 0.000
Sex (ref: male) 1.323 1.262 1.387 0.000
Age 0.995 0.993 0.997 0.000
Has Tertiary Education (ref: no tertiary) 0.922 0.880 0.967 0.001
Nights worked per month 1.018 1.013 1.024 0.000
Works shifts (ref: no) 1.205 1.139 1.274 0.000
Hours per week worked 1.003 1.001 1.005 0.001
Log Likelihood -28395.409

Model 7

Parameter OR 95% CI p
Intercept 0.076 0.067 0.085 0.000
Sex (ref: male) 1.327 1.265 1.391 0.000
Age 0.995 0.993 0.997 0.000
Has Tertiary Education (ref: no tertiary) 0.903 0.861 0.948 0.000
Nights worked per month 1.019 1.013 1.024 0.000
Works shifts (ref: no) 1.230 1.161 1.302 0.000
Hours per week worked 1.003 1.001 1.005 0.000
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Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.008 0.921 1.104 0.861
Adaptable within limits 1.225 1.152 1.303 0.000
Entirely self-determined 1.019 0.952 1.091 0.582
Log Likelihood -28374.655

Model 8

Parameter OR 95% CI p
Intercept 0.066 0.059 0.075 0.000
Sex (ref: male) 1.334 1.272 1.398 0.000
Age 0.996 0.994 0.997 0.000
Has Tertiary Education (ref: no tertiary) 0.881 0.840 0.925 0.000
Nights worked per month 1.018 1.013 1.024 0.000
Works shifts (ref: no) 1.229 1.161 1.302 0.000
Hours per week worked 1.003 1.001 1.005 0.001
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.006 0.919 1.102 0.889
Adaptable within limits 1.219 1.146 1.297 0.000
Entirely self-determined 1.015 0.948 1.087 0.663
Skill-demand match (ref: they match)
Demands too low 1.208 1.148 1.270 0.000
Demands too high 1.435 1.343 1.534 0.000
Log Likelihood -28310.032

Model 9

Parameter OR 95% CI p
Intercept 0.062 0.054 0.070 0.000
Sex (ref: male) 1.273 1.214 1.335 0.000
Age 0.994 0.992 0.996 0.000
Has Tertiary Education (ref: no tertiary) 0.917 0.874 0.963 0.001
Nights worked per month 1.017 1.011 1.022 0.000
Works shifts (ref: no) 1.186 1.120 1.256 0.000
Hours per week worked 1.002 1.000 1.004 0.036
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.046 0.955 1.145 0.334
Adaptable within limits 1.284 1.207 1.367 0.000
Entirely self-determined 1.060 0.990 1.136 0.094
Skill-demand match (ref: they match)
Demands too low 1.175 1.117 1.236 0.000
Demands too high 1.398 1.307 1.494 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.720 1.618 1.829 0.000
Agree 0.906 0.850 0.966 0.003
Log Likelihood -27982.407

Table A.3: Intermediate Models for Hearing Problems in the last 12 months

Model 0
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Parameter OR 95% CI p
Intercept 0.069 0.067 0.071 0.000
Log Likelihood -24611.591

Model 1

Parameter OR 95% CI p
Intercept 0.087 0.085 0.090 0.000
Sex (ref: male) 0.586 0.557 0.617 0.000
Log Likelihood -24396.807

Model 2

Parameter OR 95% CI p
Intercept 0.023 0.021 0.026 0.000
Sex (ref: male) 0.584 0.554 0.614 0.000
Age 1.031 1.029 1.033 0.000
Log Likelihood -24012.829

Model 3

Parameter OR 95% CI p
Intercept 0.025 0.023 0.028 0.000
Sex (ref: male) 0.594 0.564 0.625 0.000
Age 1.031 1.029 1.033 0.000
Has Tertiary Education (ref: no tertiary) 0.795 0.753 0.838 0.000
Log Likelihood -23976.757

Model 4

Parameter OR 95% CI p
Intercept 0.023 0.021 0.026 0.000
Sex (ref: male) 0.608 0.577 0.640 0.000
Age 1.032 1.029 1.034 0.000
Has Tertiary Education (ref: no tertiary) 0.803 0.761 0.847 0.000
Nights worked per month 1.026 1.021 1.031 0.000
Log Likelihood -23936.341

Model 5

Parameter OR 95% CI p
Intercept 0.021 0.019 0.024 0.000
Sex (ref: male) 0.600 0.569 0.632 0.000
Age 1.032 1.030 1.035 0.000
Has Tertiary Education (ref: no tertiary) 0.820 0.777 0.865 0.000
Nights worked per month 1.019 1.013 1.025 0.000
Works shifts (ref: no) 1.343 1.262 1.428 0.000
Log Likelihood -23894.245

Model 6

Parameter OR 95% CI p
Intercept 0.022 0.019 0.025 0.000
Sex (ref: male) 0.599 0.568 0.631 0.000
Age 1.032 1.030 1.035 0.000
Has Tertiary Education (ref: no tertiary) 0.819 0.776 0.865 0.000
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Nights worked per month 1.019 1.013 1.025 0.000
Works shifts (ref: no) 1.342 1.262 1.428 0.000
Hours per week worked 1.000 0.998 1.002 0.738
Log Likelihood -23894.189

Model 7

Parameter OR 95% CI p
Intercept 0.021 0.019 0.025 0.000
Sex (ref: male) 0.595 0.564 0.628 0.000
Age 1.033 1.031 1.035 0.000
Has Tertiary Education (ref: no tertiary) 0.814 0.770 0.859 0.000
Nights worked per month 1.020 1.014 1.026 0.000
Works shifts (ref: no) 1.307 1.226 1.393 0.000
Hours per week worked 1.001 0.998 1.003 0.579
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.878 0.790 0.976 0.016
Adaptable within limits 1.046 0.975 1.122 0.210
Entirely self-determined 0.786 0.728 0.848 0.000
Log Likelihood -23868.312

Model 8

Parameter OR 95% CI p
Intercept 0.019 0.017 0.022 0.000
Sex (ref: male) 0.596 0.565 0.629 0.000
Age 1.034 1.031 1.036 0.000
Has Tertiary Education (ref: no tertiary) 0.795 0.752 0.840 0.000
Nights worked per month 1.020 1.014 1.026 0.000
Works shifts (ref: no) 1.305 1.224 1.391 0.000
Hours per week worked 1.001 0.998 1.003 0.624
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.873 0.786 0.971 0.012
Adaptable within limits 1.038 0.967 1.113 0.303
Entirely self-determined 0.785 0.728 0.848 0.000
Skill-demand match (ref: they match)
Demands too low 1.089 1.029 1.152 0.003
Demands too high 1.444 1.341 1.556 0.000
Log Likelihood -23823.793

Model 9

Parameter OR 95% CI p
Intercept 0.017 0.015 0.020 0.000
Sex (ref: male) 0.571 0.541 0.602 0.011
Age 1.033 1.031 1.036 0.000
Has Tertiary Education (ref: no tertiary) 1.019 0.777 0.868 0.000
Nights worked per month 1.019 1.013 1.025 0.000
Works shifts (ref: no) 1.270 1.192 1.354 0.000
Hours per week worked 1.000 0.997 1.002 0.686
Working time arrangement (ref: set by company)
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Choice between several fixed schedules 0.903 0.812 1.004 0.060
Adaptable within limits 1.082 1.008 1.161 0.030
Entirely self-determined 0.807 0.747 0.871 0.000
Skill-demand match (ref: they match)
Demands too low 1.064 1.005 1.126 0.000
Demands too high 1.412 1.311 1.521 0.393
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.613 1.507 1.728 0.000
Agree 0.970 0.904 1.040 0.000
Log Likelihood -23646.673

Table A.4: Intermediate Models for Backache in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.687 0.679 0.696 0.000
Log Likelihood -69581.688

Model 1

Parameter OR 95% CI p
Intercept 0.653 0.642 0.665 0.000
Sex (ref: male) 1.106 1.079 1.134 0.000
Log Likelihood -69550.124

Model 3

Parameter OR 95% CI p
Intercept 0.353 0.336 0.371 0.000
Sex (ref: male) 1.147 1.118 1.176 0.000
Age 1.018 1.017 1.019 0.000
Has Tertiary Education (ref: no tertiary) 0.651 0.634 0.668 0.000

Model 4

Parameter OR 95% CI p
Intercept 0.335 0.318 0.352 0.000
Sex (ref: male) 1.169 1.140 1.199 0.000
Age 1.019 1.018 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.655 0.638 0.672 0.000
Nights worked per month 1.022 1.019 1.026 0.000
Log Likelihood -68396.405

Model 5

Parameter OR 95% CI p
Intercept 0.318 0.302 0.335 0.000
Sex (ref: male) 1.158 1.129 1.188 0.000
Age 1.019 1.018 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.663 0.646 0.681 0.000
Nights worked per month 1.017 1.013 1.020 0.000
Works shifts (ref: no) 1.224 1.185 1.265 0.000
Log Likelihood -68323.324
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Model 6

Parameter OR 95% CI p
Intercept 0.022 0.019 0.025 0.000
Sex (ref: male) 0.599 0.568 0.631 0.000
Age 1.032 1.030 1.035 0.000
Has Tertiary Education (ref: no tertiary) 0.819 0.776 0.865 0.000
Nights worked per month 1.019 1.013 1.025 0.000
Works shifts (ref: no) 1.342 1.262 1.428 0.000
Hours per week worked 1.000 0.998 1.002 0.738
Log Likelihood -68185.965

Model 7

Parameter OR 95% CI p
Intercept 0.225 0.210 0.240 0.000
Sex (ref: male) 1.215 1.183 1.247 0.000
Age 1.019 1.018 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.672 0.654 0.690 0.000
Nights worked per month 1.012 1.009 1.016 0.000
Works shifts (ref: no) 1.212 1.172 1.253 0.000
Hours per week worked 1.009 1.008 1.010 0.000
Working time arrangement (ref: set by company) 0.225 0.210 0.240 0.000
Choice between several fixed schedules 1.215 1.183 1.247 0.000
Adaptable within limits 1.019 1.018 1.020 0.000
Entirely self-determined 0.672 0.654 0.690 0.000
Log Likelihood -68170.552

Model 8

Parameter OR 95% CI p
Intercept 0.215 0.201 0.231 0.000
Sex (ref: male) 1.217 1.185 1.249 0.000
Age 1.020 1.018 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.667 0.649 0.685 0.000
Nights worked per month 1.012 1.009 1.016 0.000
Works shifts (ref: no) 1.212 1.172 1.253 0.000
Hours per week worked 1.009 1.008 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.958 0.910 1.008 0.097
Adaptable within limits 0.908 0.876 0.941 0.000
Entirely self-determined 0.946 0.912 0.982 0.003
Skill-demand match (ref: they match)
Demands too low 1.073 1.043 1.104 0.000
Demands too high 1.116 1.072 1.161 0.000
Log Likelihood -68149.488

Model 9

Parameter OR 95% CI p
Intercept 0.219 0.203 0.235 0.000
Sex (ref: male) 1.164 1.134 1.196 0.000
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Age 1.019 1.018 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.694 0.675 0.713 0.000
Nights worked per month 1.011 1.007 1.014 0.000
Works shifts (ref: no) 1.174 1.135 1.215 0.000
Hours per week worked 1.008 1.007 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.994 0.945 1.047 0.826
Adaptable within limits 0.957 0.923 0.993 0.018
Entirely self-determined 0.985 0.949 1.023 0.443
Skill-demand match (ref: they match)
Demands too low 1.046 1.017 1.077 0.002
Demands too high 1.091 1.048 1.135 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.552 1.500 1.605 0.000
Agree 0.806 0.780 0.833 0.000
Log Likelihood -67181.389

Table A.5: Intermediate Models for Lower Muscular Pain in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.462 0.456 0.468 0.000
Log Likelihood -64212.197

Model 1

Parameter OR 95% CI p
Intercept 0.448 0.440 0.457 0.000
Sex (ref: male) 1.060 1.032 1.088 0.000
Log Likelihood -64202.858

Model 2

Parameter OR 95% CI p
Intercept 0.186 0.177 0.196 0.000
Sex (ref: male) 1.058 1.030 1.086 0.000
Age 1.021 1.020 1.022 0.000
Log Likelihood -63550.322

Model 3

Parameter OR 95% CI p
Intercept 0.220 0.209 0.232 0.000
Sex (ref: male) 1.107 1.078 1.137 0.000
Age 1.021 1.020 1.022 0.000
Has Tertiary Education (ref: no tertiary) 0.582 0.565 0.598 0.000
Log Likelihood -62829.401

Model 4

Parameter OR 95% CI p
Intercept 0.206 0.195 0.217 0.000
Sex (ref: male) 1.133 1.103 1.164 0.000
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Age 1.022 1.021 1.023 0.000
Has Tertiary Education (ref: no tertiary) 0.586 0.569 0.602 0.000
Nights worked per month 1.026 1.023 1.029 0.000
Log Likelihood -62712.932

Model 5

Parameter OR 95% CI p
Intercept 0.193 0.182 0.203 0.000
Sex (ref: male) 1.120 1.090 1.151 0.000
Age 1.022 1.021 1.023 0.000
Has Tertiary Education (ref: no tertiary) 0.595 0.578 0.612 0.000
Nights worked per month 1.019 1.016 1.023 0.000
Works shifts (ref: no) 1.285 1.242 1.330 0.000
Log Likelihood -62610.193

Model 6

Parameter OR 95% CI p
Intercept 0.126 0.117 0.136 0.000
Sex (ref: male) 1.186 1.153 1.219 0.000
Age 1.022 1.021 1.024 0.000
Has Tertiary Education (ref: no tertiary) 0.598 0.581 0.615 0.001
Nights worked per month 1.014 1.011 1.018 0.000
Works shifts (ref: no) 1.291 1.248 1.336 0.000
Hours per week worked 1.010 1.009 1.011 0.000
Log Likelihood -62448.301

Model 7

Parameter OR 95% CI p
Intercept 0.132 0.123 0.142 0.000
Sex (ref: male) 1.186 1.153 1.220 0.000
Age 1.023 1.021 1.024 0.000
Has Tertiary Education (ref: no tertiary) 0.609 0.592 0.627 0.000
Nights worked per month 1.014 1.010 1.017 0.000
Works shifts (ref: no) 1.284 1.239 1.329 0.000
Hours per week worked 1.010 1.009 1.011 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.857 0.811 0.905 0.000
Adaptable within limits 0.837 0.805 0.870 0.000
Entirely self-determined 1.003 0.964 1.042 0.897
Log Likelihood -62394.827

Model 8

Parameter OR 95% CI p
Intercept 0.126 0.117 0.136 0.000
Sex (ref: male) 1.189 1.157 1.223 0.000
Age 1.023 1.021 1.024 0.000
Has Tertiary Education (ref: no tertiary) 0.606 0.589 0.624 0.000
Nights worked per month 1.014 1.010 1.017 0.000
Works shifts (ref: no) 1.283 1.239 1.329 0.000
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Hours per week worked 1.010 1.009 1.011 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.857 0.812 0.906 0.000
Adaptable within limits 0.838 0.806 0.871 0.000
Entirely self-determined 0.998 0.960 1.038 0.935
Skill-demand match (ref: they match)
Demands too low 1.121 1.088 1.155 0.000
Demands too high 1.030 0.987 1.075 0.179
Log Likelihood -62366.481

Model 9

Parameter OR 95% CI p
Intercept 0.131 0.121 0.141 0.000
Sex (ref: male) 1.129 1.098 1.162 0.000
Age 1.022 1.021 1.023 0.000
Has Tertiary Education (ref: no tertiary) 0.634 0.616 0.653 0.000
Nights worked per month 1.012 1.009 1.016 0.000
Works shifts (ref: no) 1.240 1.197 1.285 0.000
Hours per week worked 1.008 1.007 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.894 0.846 0.945 0.000
Adaptable within limits 0.889 0.855 0.925 0.000
Entirely self-determined 1.047 1.006 1.089 0.023
Skill-demand match (ref: they match)
Demands too low 1.091 1.058 1.124 0.000
Demands too high 1.003 0.960 1.047 0.897
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.594 1.538 1.651 0.000
Agree 0.753 0.727 0.781 0.000
Log Likelihood -61240.108

Table A.6: Intermediate Models for Upper Muscular Pain in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.669 0.661 0.678 0.000
Log Likelihood -69328.211

Model 1

Parameter OR 95% CI p
Intercept 0.610 0.599 0.621 0.000
Sex (ref: male) 1.202 1.172 1.232 0.000
Log Likelihood -69224.050

Model 2

Parameter OR 95% CI p
Intercept 0.275 0.262 0.289 0.000
Sex (ref: male) 1.201 1.171 1.231 0.000
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Age 1.019 1.018 1.020 0.000
Log Likelihood -68620.548

Model 3

Parameter OR 95% CI p
Intercept 0.306 0.291 0.321 0.000
Sex (ref: male) 1.236 1.205 1.268 0.000
Age 1.019 1.018 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.721 0.703 0.740 0.000
Log Likelihood -68320.444

Model 4

Parameter OR 95% CI p
Intercept 0.292 0.277 0.307 0.000
Sex (ref: male) 1.257 1.225 1.289 0.000
Age 1.020 1.019 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.725 0.706 0.744 0.000
Nights worked per month 1.019 1.016 1.022 0.000
Log Likelihood -68253.608

Model 5

Parameter OR 95% CI p
Intercept 0.281 0.267 0.295 0.000
Sex (ref: male) 1.248 1.216 1.280 0.000
Age 1.020 1.019 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.732 0.713 0.752 0.000
Nights worked per month 1.015 1.011 1.018 0.000
Works shifts (ref: no) 1.170 1.132 1.209 0.000
Log Likelihood -68323.324

Model 6

Parameter OR 95% CI p
Intercept 0.191 0.178 0.204 0.000
Sex (ref: male) 1.315 1.281 1.350 0.000
Age 1.020 1.019 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.736 0.717 0.756 0.001
Nights worked per month 1.010 1.007 1.014 0.000
Works shifts (ref: no) 1.174 1.136 1.213 0.000
Hours per week worked 1.009 1.008 1.010 0.000
Log Likelihood -68058.731

Model 7

Parameter OR 95% CI p
Intercept 0.190 0.177 0.203 0.000
Sex (ref: male) 1.316 1.282 1.352 0.000
Age 1.020 1.019 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.731 0.712 0.751 0.000
Nights worked per month 1.010 1.007 1.014 0.000
Works shifts (ref: no) 1.183 1.144 1.223 0.000
Hours per week worked 1.009 1.008 1.010 0.000
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Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.942 0.895 0.992 0.023
Adaptable within limits 1.069 1.031 1.107 0.000
Entirely self-determined 0.990 0.954 1.028 0.603
Log Likelihood -68047.495

Model 8

Parameter OR 95% CI p
Intercept 0.181 0.169 0.194 0.000
Sex (ref: male) 1.319 1.285 1.355 0.000
Age 1.020 1.019 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.725 0.706 0.745 0.000
Nights worked per month 1.010 1.007 1.014 0.000
Works shifts (ref: no) 1.183 1.143 1.223 0.000
Hours per week worked 1.009 1.008 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.942 0.895 0.991 0.022
Adaptable within limits 1.067 1.030 1.106 0.000
Entirely self-determined 0.988 0.952 1.025 0.525
Skill-demand match (ref: they match)
Demands too low 1.086 1.055 1.117 0.000
Demands too high 1.121 1.077 1.166 0.000
Log Likelihood -68022.130

Model 9

Parameter OR 95% CI p
Intercept 0.178 0.165 0.191 0.000
Sex (ref: male) 1.263 1.229 1.297 0.000
Age 1.020 1.019 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.755 0.735 0.776 0.000
Nights worked per month 1.008 1.005 1.012 0.000
Works shifts (ref: no) 1.144 1.106 1.183 0.000
Hours per week worked 1.008 1.007 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.979 0.929 1.031 0.415
Adaptable within limits 1.129 1.089 1.171 0.000
Entirely self-determined 1.031 0.993 1.070 0.109
Skill-demand match (ref: they match)
Demands too low 1.057 1.027 1.088 0.000
Demands too high 1.093 1.050 1.138 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.639 1.584 1.696 0.000
Agree 0.835 0.807 0.863 0.000
Log Likelihood -66978.575

Table A.7: Intermediate Models for Anxiety in the last 12 months

Model 0
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Parameter OR 95% CI p
Intercept 0.151 0.148 0.153 0.000
Log Likelihood -39971.158

Model 1

Parameter OR 95% CI p
Intercept 0.128 0.125 0.132 0.000
Sex (ref: male) 1.353 1.305 1.404 0.000
Log Likelihood -39837.967

Model 2

Parameter OR 95% CI p
Intercept 0.088 0.082 0.095 0.000
Sex (ref: male) 1.352 1.304 1.403 0.000
Age 1.009 1.007 1.011 0.000
Log Likelihood -39775.057

Model 3

Parameter OR 95% CI p
Intercept 0.082 0.076 0.088 0.000
Sex (ref: male) 1.329 1.282 1.379 0.000
Age 1.009 1.008 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.224 1.180 1.270 0.000
Log Likelihood -39717.800

Model 4

Parameter OR 95% CI p
Intercept 0.075 0.070 0.081 0.000
Sex (ref: male) 1.370 1.320 1.421 0.000
Age 1.010 1.008 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.238 1.193 1.284 0.000
Nights worked per month 1.032 1.027 1.036 0.000
Log Likelihood -39617.461

Model 5

Parameter OR 95% CI p
Intercept 0.073 0.068 0.079 0.000
Sex (ref: male) 1.364 1.314 1.415 0.000
Age 1.010 1.008 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.246 1.201 1.293 0.000
Nights worked per month 1.029 1.025 1.034 0.000
Works shifts (ref: no) 1.105 1.055 1.157 0.000
Log Likelihood -39608.665

Model 6

Parameter OR 95% CI p
Intercept 0.050 0.045 0.055 0.000
Sex (ref: male) 1.433 1.380 1.489 0.000
Age 1.010 1.008 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.254 1.208 1.302 0.000

210



APPENDIX A.

Nights worked per month 1.024 1.020 1.028 0.000
Works shifts (ref: no) 1.110 1.060 1.163 0.000
Hours per week worked 1.009 1.008 1.011 0.000
Log Likelihood -39537.236

Model 7

Parameter OR 95% CI p
Intercept 0.051 0.046 0.056 0.000
Sex (ref: male) 1.440 1.386 1.495 0.000
Age 1.010 1.008 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.256 1.209 1.304 0.000
Nights worked per month 1.024 1.019 1.028 0.000
Works shifts (ref: no) 1.132 1.080 1.187 0.000
Hours per week worked 1.009 1.007 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.881 0.816 0.950 0.001
Adaptable within limits 1.012 0.961 1.065 0.657
Entirely self-determined 1.078 1.023 1.137 0.005
Log Likelihood -39526.494

Model 8

Parameter OR 95% CI p
Intercept 0.045 0.041 0.050 0.000
Sex (ref: male) 1.445 1.391 1.501 0.000
Age 1.010 1.009 1.012 0.000
Has Tertiary Education (ref: no tertiary) 1.224 1.179 1.272 0.000
Nights worked per month 1.024 1.019 1.028 0.000
Works shifts (ref: no) 1.132 1.080 1.187 0.000
Hours per week worked 1.009 1.007 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.877 0.813 0.947 0.001
Adaptable within limits 1.005 0.955 1.058 0.840
Entirely self-determined 1.078 1.022 1.136 0.005
Skill-demand match (ref: they match)
Demands too low 1.123 1.078 1.170 0.000
Demands too high 1.480 1.404 1.561 0.000
Log Likelihood -39425.229

Model 9

Parameter OR 95% CI p
Intercept 0.042 0.038 0.047 0.000
Sex (ref: male) 1.363 1.312 1.417 0.000
Age 1.009 1.008 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.298 1.249 1.348 0.000
Nights worked per month 1.022 1.017 1.026 0.000
Works shifts (ref: no) 1.081 1.031 1.134 0.001
Hours per week worked 1.007 1.005 1.009 0.000
Working time arrangement (ref: set by company)
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Choice between several fixed schedules 0.918 0.850 0.991 0.029
Adaptable within limits 1.073 1.019 1.130 0.008
Entirely self-determined 1.141 1.082 1.203 0.000
Skill-demand match (ref: they match)
Demands too low 1.086 1.042 1.132 0.000
Demands too high 1.435 1.360 1.514 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.897 1.806 1.993 0.000
Agree 0.854 0.811 0.899 0.000
Log Likelihood -38661.953

Table A.8: Intermediate Models for Fatigue in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.602 0.594 0.609 0.000
Log Likelihood -68146.475

Model 1

Parameter OR 95% CI p
Intercept 0.551 0.542 0.561 0.000
Sex (ref: male) 1.189 1.160 1.220 0.000
Log Likelihood -68055.896

Model 2

Parameter OR 95% CI p
Intercept 0.462 0.440 0.485 0.000
Sex (ref: male) 1.189 1.159 1.219 0.000
Age 1.004 1.003 1.005 0.000
Log Likelihood -68026.166

Model 3

Parameter OR 95% CI p
Intercept 0.474 0.451 0.498 0.000
Sex (ref: male) 1.197 1.167 1.227 0.000
Age 1.004 1.003 1.005 0.000
Has Tertiary Education (ref: no tertiary) 0.926 0.902 0.951 0.000
Log Likelihood -68009.567

Model 4
Parameter OR 95% CI p
Intercept 0.437 0.416 0.460 0.000
Sex (ref: male) 1.232 1.201 1.264 0.000
Age 1.005 1.004 1.006 0.000
Has Tertiary Education (ref: no tertiary) 0.935 0.911 0.960 0.000
Nights worked per month 1.033 1.030 1.036 0.000
Log Likelihood -67810.752

Model 5

Parameter OR 95% CI p
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Intercept 0.420 0.400 0.442 0.000
Sex (ref: male) 1.223 1.192 1.254 0.000
Age 1.005 1.004 1.006 0.000
Has Tertiary Education (ref: no tertiary) 0.945 0.920 0.970 0.000
Nights worked per month 1.029 1.025 1.032 0.000
Works shifts (ref: no) 1.172 1.134 1.211 0.000
Log Likelihood -67766.280

Model 6

Parameter OR 95% CI p
Intercept 0.190 0.177 0.204 0.000
Sex (ref: male) 1.363 1.327 1.400 0.000
Age 1.005 1.004 1.006 0.000
Has Tertiary Education (ref: no tertiary) 0.956 0.931 0.982 0.001
Nights worked per month 1.019 1.016 1.023 0.000
Works shifts (ref: no) 1.182 1.143 1.221 0.000
Hours per week worked 1.019 1.018 1.020 0.000
Log Likelihood -67144.302

Model 7

Parameter OR 95% CI p
Intercept 0.200 0.186 0.214 0.000
Sex (ref: male) 1.360 1.325 1.397 0.000
Age 1.005 1.004 1.006 0.000
Has Tertiary Education (ref: no tertiary) 0.977 0.951 1.004 0.090
Nights worked per month 1.019 1.016 1.023 0.000
Works shifts (ref: no) 1.163 1.125 1.203 0.000
Hours per week worked 1.019 1.018 1.020 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.838 0.795 0.882 0.000
Adaptable within limits 0.812 0.783 0.843 0.000
Entirely self-determined 0.946 0.912 0.982 0.004
Log Likelihood -67068.038

Model 8

Parameter OR 95% CI p
Intercept 0.190 0.177 0.204 0.000
Sex (ref: male) 1.363 1.327 1.400 0.000
Age 1.006 1.005 1.007 0.000
Has Tertiary Education (ref: no tertiary) 0.968 0.942 0.994 0.018
Nights worked per month 1.019 1.016 1.023 0.000
Works shifts (ref: no) 1.163 1.125 1.203 0.000
Hours per week worked 1.019 1.018 1.020 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.837 0.794 0.881 0.000
Adaptable within limits 0.810 0.781 0.841 0.000
Entirely self-determined 0.945 0.910 0.981 0.003
Skill-demand match (ref: they match)
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Demands too low 1.064 1.034 1.095 0.000
Demands too high 1.159 1.114 1.206 0.000
Log Likelihood -67038.726

Model 9

Parameter OR 95% CI p
Intercept 0.194 0.180 0.209 0.000
Sex (ref: male) 1.297 1.263 1.333 0.000
Age 1.005 1.004 1.006 0.000
Has Tertiary Education (ref: no tertiary) 1.023 0.995 1.051 0.107
Nights worked per month 1.017 1.014 1.021 0.000
Works shifts (ref: no) 1.120 1.082 1.159 0.000
Hours per week worked 1.018 1.017 1.019 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.871 0.826 0.918 0.000
Adaptable within limits 0.860 0.829 0.893 0.000
Entirely self-determined 0.994 0.957 1.032 0.745
Skill-demand match (ref: they match)
Demands too low 1.033 1.003 1.063 0.028
Demands too high 1.130 1.085 1.176 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.668 1.612 1.726 0.000
Agree 0.773 0.747 0.799 0.000
Log Likelihood -65731.661

Table A.9: Intermediate Models for Headache and/or Eyestrain in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.528 0.521 0.534 0.000
Log Likelihood -66355.226

Model 1

Parameter OR 95% CI p
Intercept 0.416 0.408 0.424 0.000
Sex (ref: male) 1.586 1.545 1.627 0.000
Log Likelihood -65742.131

Model 2

Parameter OR 95% CI p
Intercept 0.389 0.370 0.409 0.000
Sex (ref: male) 1.585 1.545 1.627 0.000
Age 1.002 1.001 1.003 0.004
Log Likelihood -65738.087

Model 3

Parameter OR 95% CI p
Intercept 0.379 0.360 0.399 0.000
Sex (ref: male) 1.576 1.535 1.617 0.000
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Age 1.002 1.001 1.003 0.004
Has Tertiary Education (ref: no tertiary) 1.074 1.046 1.103 0.000
Log Likelihood -65724.152

Model 4

Parameter OR 95% CI p
Intercept 0.362 0.344 0.381 0.000
Sex (ref: male) 1.602 1.561 1.645 0.000
Age 1.002 1.001 1.003 0.001
Has Tertiary Education (ref: no tertiary) 1.080 1.052 1.110 0.000
Nights worked per month 1.019 1.016 1.022 0.000
Log Likelihood -65661.669

Model 5

Parameter OR 95% CI p
Intercept 0.353 0.335 0.372 0.000
Sex (ref: male) 1.595 1.554 1.638 0.000
Age 1.002 1.001 1.003 0.000
Has Tertiary Education (ref: no tertiary) 1.087 1.059 1.117 0.000
Nights worked per month 1.016 1.013 1.020 0.000
Works shifts (ref: no) 1.103 1.067 1.141 0.000
Log Likelihood -65645.389

Model 6

Parameter OR 95% CI p
Intercept 0.217 0.202 0.232 0.000
Sex (ref: male) 1.707 1.662 1.754 0.000
Age 1.002 1.001 1.003 0.000
Has Tertiary Education (ref: no tertiary) 1.096 1.067 1.125 0.000
Nights worked per month 1.010 1.007 1.014 0.000
Works shifts (ref: no) 1.108 1.071 1.146 0.000
Hours per week worked 1.012 1.011 1.013 0.000
Log Likelihood -65410.801

Model 7

Parameter OR 95% CI p
Intercept 0.217 0.202 0.233 0.000
Sex (ref: male) 1.702 1.656 1.748 0.000
Age 1.002 1.001 1.003 0.000
Has Tertiary Education (ref: no tertiary) 1.097 1.068 1.127 0.000
Nights worked per month 1.010 1.007 1.014 0.000
Works shifts (ref: no) 1.092 1.055 1.130 0.000
Hours per week worked 1.012 1.011 1.013 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.969 0.919 1.020 0.230
Adaptable within limits 0.973 0.938 1.009 0.145
Entirely self-determined 0.907 0.873 0.943 0.000
Log Likelihood -65398.174
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Model 8

Parameter OR 95% CI p
Intercept 0.206 0.192 0.221 0.000
Sex (ref: male) 1.704 1.659 1.751 0.000
Age 1.003 1.002 1.004 0.000
Has Tertiary Education (ref: no tertiary) 1.083 1.054 1.113 0.000
Nights worked per month 1.010 1.007 1.014 0.000
Works shifts (ref: no) 1.092 1.055 1.130 0.000
Hours per week worked 1.012 1.011 1.013 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.967 0.918 1.018 0.202
Adaptable within limits 0.969 0.934 1.005 0.094
Entirely self-determined 0.907 0.873 0.943 0.000
Skill-demand match (ref: they match)
Demands too low 1.036 1.006 1.067 0.017
Demands too high 1.254 1.204 1.305 0.000
Log Likelihood -65337.685

Model 9

Parameter OR 95% CI p
Intercept 0.206 0.191 0.222 0.000
Sex (ref: male) 1.651 1.606 1.696 0.000
Age 1.002 1.001 1.003 0.000
Has Tertiary Education (ref: no tertiary) 1.123 1.093 1.155 0.000
Nights worked per month 1.009 1.006 1.013 0.000
Works shifts (ref: no) 1.062 1.026 1.099 0.001
Hours per week worked 1.011 1.010 1.012 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.995 0.944 1.049 0.857
Adaptable within limits 1.010 0.974 1.048 0.587
Entirely self-determined 0.938 0.902 0.975 0.001
Skill-demand match (ref: they match)
Demands too low 1.015 0.985 1.045 0.336
Demands too high 1.231 1.182 1.282 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.453 1.403 1.505 0.000
Agree 0.868 0.839 0.898 0.000
Log Likelihood -64758.298

Table A.10: Intermediate Models for Injury(ies) in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.093 0.091 0.095 0.000
Log Likelihood -29861.541

Model 1
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Parameter OR 95% CI p
Intercept 0.125 0.122 0.129 0.000
Sex (ref: male) 0.492 0.470 0.515 0.000
Log Likelihood -29383.568

Model 2

Parameter OR 95% CI p
Intercept 0.185 0.171 0.201 0.000
Sex (ref: male) 0.493 0.471 0.516 0.000
Age 0.990 0.989 0.992 0.000
Log Likelihood -29334.056

Model 3

Parameter OR 95% CI p
Intercept 0.212 0.195 0.230 0.000
Sex (ref: male) 0.512 0.489 0.537 0.000
Age 0.991 0.989 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.612 0.582 0.643 0.000
Log Likelihood -29133.249

Model 4

Parameter OR 95% CI p
Intercept 0.200 0.184 0.217 0.000
Sex (ref: male) 0.524 0.500 0.548 0.000
Age 0.991 0.989 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.617 0.587 0.648 0.000
Nights worked per month 1.023 1.018 1.028 0.000
Log Likelihood -29091.440

Model 5

Parameter OR 95% CI p
Intercept 0.189 0.174 0.205 0.000
Sex (ref: male) 0.518 0.494 0.543 0.000
Age 0.991 0.990 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.626 0.596 0.658 0.000
Nights worked per month 1.018 1.013 1.023 0.000
Works shifts (ref: no) 1.238 1.172 1.307 0.000
Log Likelihood -29062.645

Model 6

Parameter OR 95% CI p
Intercept 0.141 0.126 0.158 0.000
Sex (ref: male) 0.539 0.514 0.565 0.000
Age 0.991 0.989 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.630 0.600 0.662 0.000
Nights worked per month 1.014 1.009 1.019 0.000
Works shifts (ref: no) 1.247 1.181 1.317 0.000
Hours per week worked 1.007 1.005 1.009 0.000
Log Likelihood -29031.824
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Model 7

Parameter OR 95% CI p
Intercept 0.141 0.126 0.158 0.000
Sex (ref: male) 0.539 0.514 0.565 0.000
Age 0.991 0.989 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.629 0.598 0.662 0.000
Nights worked per month 1.014 1.009 1.019 0.000
Works shifts (ref: no) 1.251 1.183 1.322 0.000
Hours per week worked 1.007 1.005 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.019 0.932 1.114 0.677
Adaptable within limits 1.014 0.951 1.082 0.664
Entirely self-determined 1.016 0.953 1.083 0.628
Log Likelihood -29031.597

Model 8

Parameter OR 95% CI p
Intercept 0.127 0.113 0.142 0.000
Sex (ref: male) 0.541 0.516 0.567 0.000
Age 0.992 0.990 0.994 0.000
Has Tertiary Education (ref: no tertiary) 0.618 0.588 0.650 0.000
Nights worked per month 1.014 1.009 1.019 0.000
Works shifts (ref: no) 1.249 1.181 1.321 0.000
Hours per week worked 1.007 1.005 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.967 1.018 0.931 0.702
Adaptable within limits 0.969 1.010 0.946 0.764
Entirely self-determined 0.907 1.011 0.948 0.742
Skill-demand match (ref: they match)
Demands too low 1.190 1.133 1.250 0.000
Demands too high 1.278 1.195 1.367 0.000
Log Likelihood -28993.317

Model 9

Parameter OR 95% CI p
Intercept 0.124 0.110 0.141 0.000
Sex (ref: male) 0.516 0.492 0.541 0.000
Age 0.991 0.989 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.645 0.613 0.678 0.000
Nights worked per month 1.012 1.007 1.018 0.000
Works shifts (ref: no) 1.215 1.148 1.285 0.001
Hours per week worked 1.006 1.004 1.008 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.056 0.965 1.155 0.238
Adaptable within limits 1.063 0.996 1.135 0.065
Entirely self-determined 1.049 0.984 1.119 0.146
Skill-demand match (ref: they match)
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Demands too low 1.162 1.106 1.221 0.000
Demands too high 1.252 1.170 1.340 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.565 1.476 1.659 0.000
Agree 0.853 0.803 0.907 0.000
Log Likelihood -28706.716
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Appendix B

BHPS Single Level Intermediate
Models

Table B.1: Intermediate Models for Health Status

Model 0

OR 95% CI p
Intercept 2.832 2.795 2.869 0.000
Log Likelihood -66118.007

Model 1

OR 95% CI p
Intercept 3.015 2.957 3.074 0.000
Sex (ref: male) 0.888 0.894 0.949 0.000
Log Likelihood -66079.092

Model 2

OR 95% CI p
Intercept 3.811 3.642 3.988 0.000
Sex (ref: male) 0.888 0.865 0.912 0.000
Age 0.994 0.993 0.995 0.000
Log Likelihood -66015.778

Model 3

OR 95% CI p
Intercept 3.591 3.431 3.759 0.000
Sex (ref: male) 0.891 0.868 0.915 0.000
Age 0.994 0.993 0.995 0.000
Has Tertiary Education (ref: no tertiary) 1.401 1.349 1.455 0.000
Log Likelihood -65857.233

Model 4

OR 95% CI p
Intercept 3.058 2.914 3.210 0.000
Sex (ref: male) 0.987 0.959 1.015 0.351
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Age 0.992 0.991 0.993 0.000
Has Tertiary Education (ref: no tertiary) 1.219 1.171 1.270 0.000
Gross monthly pay (GBP) 1.000156 1.00014 1.000173 0.000
Log Likelihood -65668.783

Model 5

OR 95% CI p
Intercept 3.637 3.410 3.880 0.000
Sex (ref: male) 0.955 0.927 0.984 0.002
Age 0.992 0.991 0.993 0.000
Has Tertiary Education (ref: no tertiary) 1.201 1.153 1.251 0.000
Gross monthly pay (GBP) 1.000185 1.000167 1.000204 0.000
Job hours per week 0.995 0.993 0.996 0.000
Log Likelihood -65636.614

Model 6

OR 95% CI p
Intercept 3.647 3.418 3.891 0.000
Sex (ref: male) 0.956 0.928 0.984 0.003
Age 0.992 0.991 0.993 0.000
Has Tertiary Education (ref: no tertiary) 1.202 1.154 1.252 0.000
Gross monthly pay (GBP) 1.000186 1.000168 1.000204 0.000
Job hours per week 0.995 0.993 0.996 0.000
Works flexitime (ref: Not mentioned) 0.976 0.938 1.015 0.218
Log Likelihood -65635.859

Model 7

OR 95% CI p
Intercept 3.304 0.910 0.965 0.000
Sex (ref: male) 0.937 0.991 0.993 0.000
Age 0.992 0.99 0.992 0.000
Has Tertiary Education (ref: no tertiary) 1.223 1.174 1.274 0.000
Gross monthly pay (GBP) 1.000149 1.000131 1.000167 0.000
Job hours per week 0.996 0.995 0.998 0.000
Works flexitime (ref: Not mentioned) 0.973 0.936 1.012 0.168
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 0.764 0.709 0.824 0.000
Not very satisfied 0.919 0.872 0.969 0.002
Satisfied 1.183 1.127 1.241 0.000
Very Satisfied 1.311 1.231 1.396 0.000
Log Likelihood -65435.446

Table B.2: Intermediate Models for Health Problems with the Limbs or Muscles

Model 0

OR 95% CI p
Intercept 0.199 0.196 0.202 0.000
Log Likelihood -51767.204
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Model 1

OR 95% CI p
Intercept 0.189 0.185 0.193 0.000
Sex (ref: male) 1.102 1.068 1.137 0.000
Log Likelihood -51748.576

Model 2

OR 95% CI p
Intercept 0.027 0.026 0.029 0.000
Sex (ref: male) 1.108 1.073 1.144 0.000
Age 1.049 1.048 1.051 0.000
Log Likelihood -49112.354

Model 3

OR 95% CI p
Intercept 0.029 0.027 0.031 0.000
Sex (ref: male) 1.103 1.068 1.139 0.000
Age 1.049 1.048 1.050 0.000
Has Tertiary Education (ref: no tertiary) 0.748 0.714 0.784 0.000
Log Likelihood -49034.168

Model 4

OR 95% CI p
Intercept 0.032 0.030 0.035 0.000
Sex (ref: male) 1.037 1.001 1.073 0.041
Age 1.050 1.048 1.051 0.000
Has Tertiary Education (ref: no tertiary) 0.812 0.773 0.853 0.000
Gross monthly pay (GBP) 0.999914 0.9998955 0.9999324 0.000
Log Likelihood -48989.043

Model 5

OR 95% CI p
Intercept 0.029 0.027 0.032 0.000
Sex (ref: male) 1.058 1.020 1.096 0.002
Age 1.050 1.049 1.051 0.000
Has Tertiary Education (ref: no tertiary) 0.820 0.780 0.861 0.000
Gross monthly pay (GBP) 0.9999001 0.99988 0.9999201 0.000
Job hours per week 1.003 1.001 1.005 0.000
Log Likelihood -48982.202

Model 6

OR 95% CI p
Intercept 0.029 0.027 0.032 0.000
Sex (ref: male) 1.056 1.019 1.095 0.003
Age 1.050 1.049 1.051 0.000
Has Tertiary Education (ref: no tertiary) 0.818 0.778 0.860 0.000
Gross monthly pay (GBP) 0.999899 0.9998789 0.9999191 0.000
Job hours per week 1.003 1.001 1.005 0.000
Works flexitime (ref: Not mentioned) 1.052 1.005 1.103 0.031
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Log Likelihood -48979.903
Model 7

OR 95% CI p
Intercept 0.030 0.028 0.034 0.000
Sex (ref: male) 1.072 1.034 1.112 0.000
Age 1.050 1.049 1.052 0.000
Has Tertiary Education (ref: no tertiary) 0.809 0.770 0.850 0.000
Gross monthly pay (GBP) 0.9999247 0.9999046 0.9999449 0.000
Job hours per week 1.002 1.000 1.003 0.040
Works flexitime (ref: Not mentioned) 1.055 1.007 1.105 0.024
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 1.302 1.188 1.426 0.000
Not very satisfied 1.103 1.033 1.177 0.003
Satisfied 0.898 0.846 0.952 0.000
Very Satisfied 0.858 0.795 0.925 0.000
Log Likelihood -48894.029

Table B.3: Intermediate Models for Health Problems relating to Anxiety/Depression

Model 0

OR 95% CI p
Intercept 0.050 0.049 0.052 0.000
Log Likelihood -22095.716

Model 1

OR 95% CI p
Intercept 0.029 0.028 0.031 0.000
Sex (ref: male) 2.417 2.277 2.566 0.000
Log Likelihood -21636.989

Model 2

OR 95% CI p
Intercept 0.017 0.015 0.018 0.000
Sex (ref: male) 2.420 2.279 2.569 0.000
Age 1.015 1.012 1.017 0.000
Log Likelihood -21555.888

Model 3

OR 95% CI p
Intercept 0.017 0.015 0.019 0.000
Sex (ref: male) 2.419 2.278 2.568 0.000
Age 1.015 1.012 1.017 0.000
Has Tertiary Education (ref: no tertiary) 0.968 0.898 1.043 0.391
Log Likelihood -21555.518

Model 4

OR 95% CI p
Intercept 0.021 0.018 0.023 0.000
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Sex (ref: male) 2.159 2.024 2.301 0.000
Age 1.016 1.014 1.018 0.000
Has Tertiary Education (ref: no tertiary) 1.128 1.040 1.224 0.004
Gross monthly pay (GBP) 0.9998258 0.9997888 0.9998627 0.000
Log Likelihood -21508.502

Model 5

OR 95% CI p
Intercept 0.022 0.019 0.025 0.000
Sex (ref: male) 2.130 1.995 2.275 0.000
Age 1.016 1.014 1.018 0.000
Has Tertiary Education (ref: no tertiary) 1.119 1.031 1.214 0.007
Gross monthly pay (GBP) 0.9998426 0.9998016 0.9998836 0
Job hours per week 0.998 0.995 1.000 0.076
Log Likelihood -21506.935

Model 6

OR 95% CI p
Intercept 0.022 0.019 0.025 0.000
Sex (ref: male) 2.125 1.990 2.269 0.000
Age 1.016 1.014 1.018 0.000
Has Tertiary Education (ref: no tertiary) 1.116 1.029 1.211 0.008
Gross monthly pay (GBP) 0.9998399 0.9997987 0.999881 0
Job hours per week 0.998 0.995 1.000 0.083
Works flexitime (ref: Not mentioned) 1.094 1.012 1.182 0.024
Log Likelihood -21504.427

Model 7

OR 95% CI p
Intercept 0.023 0.019 0.027 0.000
Sex (ref: male) 2.178 2.040 2.327 0.000
Age 1.016 1.014 1.018 0.000
Has Tertiary Education (ref: no tertiary) 1.089 1.004 1.182 0.041
Gross monthly pay (GBP) 0.9998932 0.9998523 0.999934 0
Job hours per week 0.995 0.992 0.997 0.000
Works flexitime (ref: Not mentioned) 1.100 1.017 1.189 0.017
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 1.705 1.477 1.969 0.000
Not very satisfied 1.249 1.118 1.396 0.000
Satisfied 0.878 0.793 0.973 0.013
Very Satisfied 0.811 0.711 0.925 0.002
Log Likelihood -21406.552
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EWCS Multilevel Intermediate Models

Table C.1: Intermediate Models for Health Status

Model 0

Parameter OR 95% CI p
Intercept 0.699 0.585 0.865 0.000
DIC 128846.000
pD 64.350
Random part Mean 95% CI SD
Country variance 0.164 0.100 0.260 0.042
Year variance 0.023 0.002 0.108 0.093
Occupation variance (ISCO 88 2 digit) 0.144 0.080 0.251 0.045
MOR Country Level 1.196
ICC Country Level 0.045
MOR Year Level 0.834
ICC Year Level 0.006
MOR Occupation Level 1.153
ICC Occupation Level 0.040

Model 1

Parameter OR 95% CI p
Intercept 0.813 0.652 1.030 0.032
Sex (ref: male) 1.013 0.985 1.042 0.187
DIC 128845.910
pD 64.830
Random part Mean 95% CI SD
Country variance 0.165 0.103 0.263 0.042
Year variance 0.028 0.002 0.143 0.086
Occupation variance (ISCO 88 2 digit) 0.140 0.079 0.244 0.043
MOR Country Level 1.197
ICC Country Level 0.045
MOR Year Level 0.855
ICC Year Level 0.008
MOR Occupation Level 1.145
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ICC Occupation Level 0.039
Model 2

Parameter OR 95% CI p
Intercept 0.515 0.437 0.597 0.000
Sex (ref: male) 1.013 0.982 1.042 0.194
Age 1.010 1.009 1.011 0.000
DIC 128562.490
pD 66.020
Random part Mean 95% CI SD
Country variance 0.164 0.102 0.269 0.043
Year variance 0.026 0.002 0.121 0.131
Occupation variance (ISCO 88 2 digit) 0.133 0.076 0.229 0.040
MOR Country Level 1.196
ICC Country Level 0.045
MOR Year Level 0.847
ICC Year Level 0.007
MOR Occupation Level 1.131
ICC Occupation Level 0.037

Model 3

Parameter OR 95% CI p
Intercept 0.481 0.418 0.543 0.000
Sex (ref: male) 1.013 0.983 1.044 0.214
Age 1.010 1.009 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.013 0.980 1.047 0.220
DIC 128563.700
pD 66.920
Random Part Mean 95% CI SD
Country variance 0.162 0.101 0.257 0.040
Year variance 0.029 0.002 0.158 0.093
Occupation variance (ISCO 88 2 digit) 0.135 0.077 0.237 0.041
MOR Country Level 1.191
ICC Country Level 0.045
MOR Year Level 0.857
ICC Year Level 0.008
MOR Occupation Level 1.134
ICC Occupation Level 0.037

Model 4

Parameter OR 95% CI p
Intercept 0.407 0.387 0.428 0.000
Sex (ref: male) 0.906 0.883 0.929 0.000
Age 1.012 1.011 1.013 0.000
Has Tertiary Education (ref: no tertiary) 0.960 0.935 0.986 0.002
Nights worked per month 1.045 1.042 1.049 0.000
DIC 127968.670
pD 68.460
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Random Part Mean 95% CI SD
Country variance 0.165 0.103 0.264 0.042
Year variance 0.027 0.002 0.138 0.115
Occupation variance (ISCO 88 2 digit) 0.133 0.075 0.230 0.040
MOR Country Level 1.198
ICC Country Level 0.046
MOR Year Level 0.852
ICC Year Level 0.008
MOR Occupation Level 1.130
ICC Occupation Level 0.037

Model 5

Parameter OR 95% CI p
Intercept 0.376 0.387 0.396 0.000
Sex (ref: male) 0.892 0.883 0.915 0.000
Age 1.013 1.012 1.014 0.000
Has Tertiary Education (ref: no tertiary) 0.980 0.954 1.006 0.130
Nights worked per month 1.036 1.033 1.040 0.000
Works shifts (ref: no) 1.366 1.321 1.412 0.000
DIC 127783.040
pD 69.080
Random Part Mean 95% CI SD
Country variance 0.158 0.098 0.256 0.041
Year variance 0.033 0.002 0.189 0.190
Occupation variance (ISCO 88 2 digit) 0.128 0.073 0.221 0.038
MOR Country Level 1.183
ICC Country Level 0.044
MOR Year Level 0.872
ICC Year Level 0.009
MOR Occupation Level 1.120
ICC Occupation Level 0.036

Model 6

Parameter OR 95% CI p
Intercept 0.213 0.387 0.228 0.000
Sex (ref: male) 0.962 0.937 0.988 0.005
Age 1.013 1.012 1.014 0.000
Has Tertiary Education (ref: no tertiary) 0.989 0.963 1.015 0.397
Nights worked per month 1.030 1.026 1.033 0.000
Works shifts (ref: no) 1.374 1.330 1.421 0.000
Hours per week worked 1.014 1.013 1.015 0.000
DIC 127252.690
pD 70.030
Random Part Mean 95% CI SD
Country variance 0.157 0.096 0.251 0.041
Year variance 0.023 0.002 0.109 0.124
Occupation variance (ISCO 88 2 digit) 0.131 0.074 0.228 0.040
MOR Country Level 1.181
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ICC Country Level 0.044
MOR Year Level 0.837
ICC Year Level 0.006
MOR Occupation Level 1.126
ICC Occupation Level 0.037

Model 7

Parameter OR 95% CI p
Intercept 0.217 0.203 0.233 0.000
Sex (ref: male) 0.963 0.937 0.989 0.005
Age 1.013 1.012 1.014 0.000
Has Tertiary Education (ref: no tertiary) 0.994 0.968 1.021 0.657
Nights worked per month 1.030 1.026 1.033 0.000
Works shifts (ref: no) 1.376 1.330 1.423 0.000
Hours per week worked 1.013 1.012 1.015 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.885 0.840 0.932 0.000
Adaptable within limits 0.956 0.922 0.992 0.016
Entirely self-determined 0.987 0.951 1.025 0.492
DIC 127256.040
pD 72.650
Random part Mean 95% CI SD
Country variance 0.159 0.097 0.254 0.041
Year variance 0.019 0.002 0.090 0.062
Occupation variance (ISCO 88 2 digit) 0.133 0.076 0.228 0.040
MOR Country Level 1.185
ICC Country Level 0.044
MOR Year Level 0.820
ICC Year Level 0.005
MOR Occupation Level 1.130
ICC Occupation Level 0.037

Model 8

Parameter OR 95% CI p
Intercept 0.192 0.179 0.206 0.000
Sex (ref: male) 0.966 0.941 0.992 0.011
Age 1.014 1.013 1.015 0.000
Has Tertiary Education (ref: no tertiary) 0.970 0.944 0.996 0.250
Nights worked per month 1.030 1.026 1.033 0.000
Works shifts (ref: no) 1.377 1.331 1.425 0.000
Hours per week worked 1.013 1.012 1.015 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.881 0.837 0.929 0.000
Adaptable within limits 0.950 0.916 0.985 0.006
Entirely self-determined 0.985 0.949 1.023 0.430
Skill-demand match (ref: they match)
Demands too low 1.151 1.119 1.184 0.000
Demands too high 1.500 1.441 1.561 0.000
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DIC 126838.900
pD 74.780
Random Part Mean 95% CI SD
Country variance 0.155 0.096 0.246 0.039
Year variance 0.020 0.002 0.096 0.096
Occupation variance (ISCO 88 2 digit) 0.136 0.077 0.230 0.041
MOR Country Level 1.177
ICC Country Level 0.043
MOR Year Level 0.823
ICC Year Level 0.006
MOR Occupation Level 1.135
ICC Occupation Level 0.038

Model 9

Parameter OR 95% CI p
Intercept 0.178 0.165 0.192 0.000
Sex (ref: male) 0.908 0.883 0.933 0.011
Age 1.013 1.012 1.014 0.000
Has Tertiary Education (ref: no tertiary) 1.025 0.997 1.053 0.081
Nights worked per month 1.028 1.024 1.032 0.000
Works shifts (ref: no) 1.329 1.284 1.376 0.000
Hours per week worked 1.012 1.011 1.013 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.921 0.874 0.972 0.002
Adaptable within limits 1.013 0.976 1.051 0.500
Entirely self-determined 1.038 1.000 1.079 0.053
Skill-demand match (ref: they match)
Demands too low 1.116 1.084 1.149 0.000
Demands too high 1.466 1.407 1.526 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.946 1.879 2.015 0.000
Agree 0.860 0.832 0.890 0.000
DIC 124309.850
pD 76.620
Random Part Mean 95%CI SD
Country variance 0.153 0.094 0.244 0.039
Year variance 0.023 0.002 0.107 0.126
Occupation variance (ISCO 88 2 digit) 0.114 0.066 0.199 0.035
MOR Country Level 1.172
ICC Country Level 0.043
MOR Year Level 0.837
ICC Year Level 0.007
MOR Occupation Level 1.088
ICC Occupation Level 0.032

Table C.2: Intermediate Models for Skin Problems in the last 12 months
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Model 0

Parameter OR 95% CI p
Intercept 0.080 0.069 0.096 0.000
DIC 55743.480
pD 60.930
Random part Mean 95% CI SD
Country variance 0.151 0.090 0.246 0.040
Year variance 0.017 0.001 0.088 0.051
Occupation variance (ISCO 88 2 digit) 0.099 0.054 0.175 0.031
MOR Country Level 1.169
ICC Country Level 0.043
MOR Year Level 0.809
ICC Year Level 0.005
MOR Occupation Level 1.052
ICC Occupation Level 0.028

Model 1

Parameter OR 95% CI p
Intercept 0.066 0.055 0.083 0.000
Sex (ref: male) 1.403 1.331 1.477 0.000
DIC 55591.510
pD 62.930
Random part Mean 95% CI SD
Country variance 0.147 0.087 0.241 0.040
Year variance 0.032 0.001 0.178 0.276
Occupation variance (ISCO 88 2 digit) 0.114 0.063 0.199 0.036
MOR Country Level 1.160
ICC Country Level 0.041
MOR Year Level 0.870
ICC Year Level 0.009
MOR Occupation Level 1.088
ICC Occupation Level 0.032

Model 2

Parameter OR 95% CI p
Intercept 0.092 0.073 0.109 0.000
Sex (ref: male) 1.408 1.331 1.485 0.000
Age 0.993 0.990 0.995 0.000
DIC 55539.680
pD 63.710
Random part Mean 95% CI SD
Country variance 0.149 0.089 0.245 0.040
Year variance 0.015 0.001 0.080 0.042
Occupation variance (ISCO 88 2 digit) 0.115 0.064 0.198 0.035
MOR Country Level 1.164
ICC Country Level 0.042
MOR Year Level 0.801
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ICC Year Level 0.004
MOR Occupation Level 1.090
ICC Occupation Level 0.032

Model 3

Parameter OR 95% CI p
Intercept 0.097 0.076 0.115 0.000
Sex (ref: male) 1.406 1.334 1.482 0.000
Age 0.993 0.991 0.995 0.000
Has Tertiary Education (ref: no tertiary) 0.988 0.932 1.046 0.333
DIC 55541.110
pD 64.300
Random Part Mean 95% CI SD
Country variance 0.151 0.091 0.248 0.041
Year variance 0.020 0.001 0.105 0.118
Occupation variance (ISCO 88 2 digit) 0.113 0.062 0.198 0.036
MOR Country Level 1.169
ICC Country Level 0.042
MOR Year Level 0.824
ICC Year Level 0.006
MOR Occupation Level 1.085
ICC Occupation Level 0.032

Model 4

Parameter OR 95% CI p
Intercept 0.083 0.070 0.105 0.000
Sex (ref: male) 1.445 1.370 1.527 0.000
Age 0.993 0.991 0.994 0.000
Has Tertiary Education (ref: no tertiary) 0.994 0.936 1.053 0.422
Nights worked per month 1.025 1.020 1.031 0.000
DIC 55464.120
pD 65.240
Random Part Mean 95% CI SD
Country variance 0.151 0.089 0.250 0.041
Year variance 0.016 0.001 0.081 0.080
Occupation variance (ISCO 88 2 digit) 0.114 0.062 0.204 0.037
MOR Country Level 1.168
ICC Country Level 0.042
MOR Year Level 0.808
ICC Year Level 0.005
MOR Occupation Level 1.088
ICC Occupation Level 0.032

Model 5

Parameter OR 95% CI p
Intercept 0.085 0.075 0.101 0.000
Sex (ref: male) 1.441 1.363 1.525 0.000
Age 0.993 0.992 0.995 0.000
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Has Tertiary Education (ref: no tertiary) 0.995 0.937 1.052 0.432
Nights worked per month 1.021 1.016 1.027 0.000
Works shifts (ref: no) 1.199 1.126 1.272 0.000
DIC 55433.390
pD 66.060
Random Part Mean 95% CI SD
Country variance 0.151 0.091 0.244 0.040
Year variance 0.019 0.001 0.101 0.068
Occupation variance (ISCO 88 2 digit) 0.107 0.059 0.187 0.033
MOR Country Level 1.168
ICC Country Level 0.042
MOR Year Level 0.818
ICC Year Level 0.005
MOR Occupation Level 1.072
ICC Occupation Level 0.030

Model 6

Parameter OR 95% CI p
Intercept 0.067 0.057 0.078 0.000
Sex (ref: male) 1.467 1.390 1.544 0.000
Age 0.993 0.991 0.995 0.000
Has Tertiary Education (ref: no tertiary) 0.995 0.937 1.052 0.437
Nights worked per month 1.019 1.013 1.025 0.000
Works shifts (ref: no) 1.198 1.128 1.269 0.000
Hours per week worked 1.005 1.003 1.007 0.000
DIC 55410.430
pD 67.410
Random Part Mean 95% CI SD
Country variance 0.157 0.094 0.257 0.042
Year variance 0.022 0.001 0.098 0.212
Occupation variance (ISCO 88 2 digit) 0.110 0.060 0.199 0.036
MOR Country Level 1.181
ICC Country Level 0.044
MOR Year Level 0.832
ICC Year Level 0.006
MOR Occupation Level 1.079
ICC Occupation Level 0.031

Model 7

Parameter OR 95% CI p
Intercept 0.066 0.048 0.080 0.000
Sex (ref: male) 1.469 1.394 1.549 0.000
Age 0.993 0.991 0.995 0.000
Has Tertiary Education (ref: no tertiary) 0.983 0.923 1.037 0.280
Nights worked per month 1.019 1.014 1.025 0.000
Works shifts (ref: no) 1.206 1.132 1.275 0.000
Hours per week worked 1.005 1.003 1.007 0.000
Working time arrangement (ref: set by company)
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Choice between several fixed schedules 1.013 0.928 1.098 0.400
Adaptable within limits 1.138 1.066 1.213 0.001
Entirely self-determined 0.999 0.930 1.073 0.504
DIC 55399.190
pD 69.630
Random Part Mean 95% CI SD
Country variance 0.157 0.093 0.264 0.041
Year variance 0.021 0.001 0.115 0.062
Occupation variance (ISCO 88 2 digit) 0.113 0.062 0.202 0.040
MOR Country Level 1.181
ICC Country Level 0.044
MOR Year Level 0.827
ICC Year Level 0.006
MOR Occupation Level 1.085
ICC Occupation Level 0.032

Model 8

Parameter OR 95% CI p
Intercept 0.054 0.041 0.065 0.000
Sex (ref: male) 1.483 1.406 1.557 0.000
Age 0.994 0.992 0.996 0.000
Has Tertiary Education (ref: no tertiary) 0.970 0.916 1.031 0.151
Nights worked per month 1.019 1.013 1.025 0.000
Works shifts (ref: no) 1.207 1.138 1.279 0.000
Hours per week worked 1.005 1.003 1.007 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.012 0.917 1.106 0.396
Adaptable within limits 1.139 1.066 1.218 0.000
Entirely self-determined 0.993 0.920 1.069 0.432
Skill-demand match (ref: they match)
Demands too low 1.242 1.178 1.313 0.000
Demands too high 1.436 1.341 1.537 0.000
DIC 55268.810
pD 72.500
Random Part Mean 95% CI SD
Country variance 0.149 0.090 0.248 0.040
Year variance 0.019 0.001 0.089 0.140
Occupation variance (ISCO 88 2 digit) 0.116 0.064 0.201 0.035
MOR Country Level 1.164
ICC Country Level 0.042
MOR Year Level 0.819
ICC Year Level 0.005
MOR Occupation Level 1.092
ICC Occupation Level 0.032

Model 9

Parameter OR 95% CI p
Intercept 0.051 0.041 0.065 0.000
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Sex (ref: male) 1.424 1.348 1.507 0.000
Age 0.993 0.991 0.995 0.000
Has Tertiary Education (ref: no tertiary) 0.988 0.930 1.048 0.343
Nights worked per month 1.018 1.012 1.024 0.000
Works shifts (ref: no) 1.175 1.101 1.242 0.000
Hours per week worked 1.004 1.002 1.006 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.038 0.949 1.141 0.220
Adaptable within limits 1.173 1.095 1.257 0.000
Entirely self-determined 1.039 0.963 1.120 0.147
Skill-demand match (ref: they match)
Demands too low 1.212 1.148 1.275 0.000
Demands too high 1.389 1.297 1.487 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.633 1.532 1.739 0.000
Agree 0.896 0.836 0.957 0.001
DIC 54750.130
pD 75.140
Random Part Mean 95%CI SD
Country variance 0.147 0.088 0.242 0.039
Year variance 0.016 0.001 0.086 0.063
Occupation variance (ISCO 88 2 digit) 0.103 0.056 0.184 0.033
MOR Country Level 1.160
ICC Country Level 0.041
MOR Year Level 0.806
ICC Year Level 0.004
MOR Occupation Level 1.061
ICC Occupation Level 0.029

Table C.3: Intermediate Models for Hearing Problems in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.067 0.050 0.085 0.000
DIC 46871.410
pD 62.560
Random part Mean 95% CI SD
Country variance 0.154 0.093 0.252 0.042
Year variance 0.077 0.007 0.369 0.227
Occupation variance (ISCO 88 2 digit) 0.293 0.167 0.503 0.088
MOR Country Level 1.174
ICC Country Level 0.040
MOR Year Level 0.999
ICC Year Level 0.020
MOR Occupation Level 1.451
ICC Occupation Level 0.077
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Model 1

Parameter OR 95% CI p
Intercept 0.076 0.056 0.111 0.000
Sex (ref: male) 0.747 0.703 0.794 0.000
DIC 46785.560
pD 62.990
Random part Mean 95% CI SD
Country variance 0.158 0.093 0.258 0.043
Year variance 0.104 0.007 0.580 0.473
Occupation variance (ISCO 88 2 digit) 0.236 0.132 0.417 0.073
MOR Country Level 1.183
ICC Country Level 0.042
MOR Year Level 1.063
ICC Year Level 0.027
MOR Occupation Level 1.341
ICC Occupation Level 0.062

Model 2

Parameter OR 95% CI p
Intercept 0.019 0.014 0.025 0.000
Sex (ref: male) 0.742 0.697 0.787 0.000
Age 1.031 1.029 1.033 0.000
DIC 46073.210
pD 63.680
Random part Mean 95% CI SD
Country variance 0.145 0.087 0.238 0.039
Year variance 0.110 0.011 0.572 0.325
Occupation variance (ISCO 88 2 digit) 0.243 0.137 0.419 0.075
MOR Country Level 1.155
ICC Country Level 0.038
MOR Year Level 1.078
ICC Year Level 0.029
MOR Occupation Level 1.355
ICC Occupation Level 0.064

Model 3

Parameter OR 95% CI p
Intercept 0.019 0.016 0.025 0.000
Sex (ref: male) 0.740 0.698 0.788 0.000
Age 1.031 1.029 1.033 0.000
Has Tertiary Education (ref: no tertiary) 0.835 0.781 0.890 0.000
DIC 46048.970
pD 64.310
Random Part Mean 95% CI SD
Country variance 0.148 0.089 0.243 0.040
Year variance 0.129 0.010 0.662 0.546
Occupation variance (ISCO 88 2 digit) 0.214 0.119 0.370 0.065
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MOR Country Level 1.162
ICC Country Level 0.039
MOR Year Level 1.120
ICC Year Level 0.034
MOR Occupation Level 1.297
ICC Occupation Level 0.056

Model 4

Parameter OR 95% CI p
Intercept 0.019 0.016 0.024 0.000
Sex (ref: male) 0.765 0.720 0.814 0.000
Age 1.031 1.029 1.034 0.000
Has Tertiary Education (ref: no tertiary) 0.836 0.781 0.893 0.000
Nights worked per month 1.029 1.024 1.036 0.000
DIC 45959.980
pD 65.950
Random Part Mean 95% CI SD
Country variance 0.151 0.090 0.243 0.040
Year variance 0.106 0.010 0.513 0.400
Occupation variance (ISCO 88 2 digit) 0.212 0.119 0.361 0.064
MOR Country Level 1.168
ICC Country Level 0.040
MOR Year Level 1.069
ICC Year Level 0.028
MOR Occupation Level 1.294
ICC Occupation Level 0.057

Model 5

Parameter OR 95% CI p
Intercept 0.019 0.015 0.025 0.000
Sex (ref: male) 0.759 0.713 0.807 0.000
Age 1.032 1.030 1.034 0.000
Has Tertiary Education (ref: no tertiary) 0.847 0.789 0.903 0.000
Nights worked per month 1.022 1.016 1.028 0.000
Works shifts (ref: no) 1.380 1.290 1.476 0.000
DIC 45875.480
pD 66.870
Random Part Mean 95% CI SD
Country variance 0.155 0.093 0.256 0.043
Year variance 0.121 0.011 0.566 0.699
Occupation variance (ISCO 88 2 digit) 0.207 0.117 0.356 0.063
MOR Country Level 1.176
ICC Country Level 0.041
MOR Year Level 1.103
ICC Year Level 0.032
MOR Occupation Level 1.283
ICC Occupation Level 0.055
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Model 6

Parameter OR 95% CI p
Intercept 0.039 0.024 0.061 0.000
Sex (ref: male) 0.767 0.724 0.815 0.000
Age 1.032 1.030 1.035 0.000
Has Tertiary Education (ref: no tertiary) 0.842 0.785 0.903 0.000
Nights worked per month 1.021 1.015 1.027 0.000
Works shifts (ref: no) 1.382 1.294 1.479 0.000
Hours per week worked 1.002 1.000 1.004 0.020
DIC 45871.990
pD 67.510
Random Part Mean 95% CI SD
Country variance 0.156 0.094 0.255 0.042
Year variance 2.223 0.176 11.018 9.648
Occupation variance (ISCO 88 2 digit) 0.211 0.116 0.370 0.066
MOR Country Level 1.179
ICC Country Level 0.027
MOR Year Level 5.556
ICC Year Level 0.378
MOR Occupation Level 1.291
ICC Occupation Level 0.036

Model 7

Parameter OR 95% CI p
Intercept 0.017 0.012 0.021 0.000
Sex (ref: male) 0.765 0.720 0.811 0.000
Age 1.033 1.030 1.035 0.000
Has Tertiary Education (ref: no tertiary) 0.846 0.788 0.907 0.000
Nights worked per month 1.021 1.015 1.028 0.000
Works shifts (ref: no) 1.359 1.271 1.456 0.000
Hours per week worked 1.003 1.001 1.005 0.005
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.935 0.838 1.036 0.108
Adaptable within limits 0.981 0.909 1.059 0.313
Entirely self-determined 0.854 0.784 0.929 0.000
DIC 45863.910
pD 70.840
Random Part Mean 95% CI SD
Country variance 0.156 0.093 0.261 0.041
Year variance 0.113 0.010 0.600 0.062
Occupation variance (ISCO 88 2 digit) 0.205 0.115 0.360 0.040
MOR Country Level 1.179
ICC Country Level 0.041
MOR Year Level 1.086
ICC Year Level 0.030
MOR Occupation Level 1.280
ICC Occupation Level 0.055
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Model 8

Parameter OR 95% CI p
Intercept 0.016 0.010 0.023 0.000
Sex (ref: male) 0.766 0.719 0.814 0.000
Age 1.034 1.031 1.036 0.000
Has Tertiary Education (ref: no tertiary) 0.836 0.783 0.898 0.000
Nights worked per month 1.022 1.015 1.027 0.000
Works shifts (ref: no) 1.355 1.266 1.445 0.000
Hours per week worked 1.003 1.000 1.005 0.018
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.931 0.837 1.031 0.085
Adaptable within limits 0.977 0.904 1.053 0.270
Entirely self-determined 0.849 0.781 0.918 0.000
Skill-demand match (ref: they match)
Demands too low 1.107 1.042 1.174 0.000
Demands too high 1.472 1.366 1.586 0.000
DIC 45774.780
pD 72.990
Random Part Mean 95% CI SD
Country variance 0.153 0.092 0.250 0.041
Year variance 0.183 0.011 0.842 1.164
Occupation variance (ISCO 88 2 digit) 0.209 0.118 0.368 0.065
MOR Country Level 1.174
ICC Country Level 0.040
MOR Year Level 1.236
ICC Year Level 0.048
MOR Occupation Level 1.288
ICC Occupation Level 0.055

Model 9

Parameter OR 95% CI p
Intercept 0.010 0.007 0.013 0.000
Sex (ref: male) 0.741 0.697 0.786 0.000
Age 1.033 1.031 1.036 0.000
Has Tertiary Education (ref: no tertiary) 0.851 0.792 0.914 0.000
Nights worked per month 1.021 1.014 1.027 0.000
Works shifts (ref: no) 1.335 1.250 1.423 0.000
Hours per week worked 1.002 0.999 1.004 0.063
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.953 0.851 1.057 0.174
Adaptable within limits 1.000 0.921 1.080 0.496
Entirely self-determined 0.877 0.808 0.949 0.001
Skill-demand match (ref: they match)
Demands too low 1.080 1.020 1.146 0.005
Demands too high 1.429 1.318 1.547 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.547 1.441 1.656 0.000
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Agree 0.953 0.887 1.019 0.095
DIC 45488.230
pD 74.220
Random Part Mean 95%CI SD
Country variance 0.155 0.092 0.257 0.042
Year variance 0.456 0.013 2.299 3.057
Occupation variance (ISCO 88 2 digit) 0.206 0.114 0.359 0.063
MOR Country Level 1.176
ICC Country Level 0.038
MOR Year Level 1.753
ICC Year Level 0.111
MOR Occupation Level 1.281
ICC Occupation Level 0.050

Table C.4: Intermediate Models for Backache in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.465 0.326 0.731 0.000
DIC 132677.270
pD 63.720
Random part Mean 95% CI SD
Country variance 0.103 0.063 0.164 0.026
Year variance 0.866 0.061 4.697 3.126
Occupation variance (ISCO 88 2 digit) 0.131 0.075 0.222 0.039
MOR Country Level 1.061
ICC Country Level 0.023
MOR Year Level 2.515
ICC Year Level 0.197
MOR Occupation Level 1.126
ICC Occupation Level 0.030

Model 1

Parameter OR 95% CI p
Intercept 0.879 0.669 1.199 0.204
Sex (ref: male) 1.334 1.294 1.375 0.000
DIC 132318.140
pD 64.630
Random part Mean 95% CI SD
Country variance 0.098 0.060 0.159 0.026
Year variance 1.199 0.097 5.940 4.980
Occupation variance (ISCO 88 2 digit) 0.160 0.092 0.285 0.049
MOR Country Level 1.051
ICC Country Level 0.021
MOR Year Level 3.174
ICC Year Level 0.253
MOR Occupation Level 1.188
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ICC Occupation Level 0.034
Model 2

Parameter OR 95% CI p
Intercept 0.323 0.267 0.392 0.000
Sex (ref: male) 1.329 1.287 1.367 0.000
Age 1.018 1.017 1.019 0.000
DIC 131365.960
pD 66.000
Random part Mean 95% CI SD
Country variance 0.096 0.059 0.152 0.024
Year variance 0.406 0.048 2.029 0.942
Occupation variance (ISCO 88 2 digit) 0.148 0.086 0.254 0.045
MOR Country Level 1.044
ICC Country Level 0.024
MOR Year Level 1.662
ICC Year Level 0.103
MOR Occupation Level 1.163
ICC Occupation Level 0.038

Model 3

Parameter OR 95% CI p
Intercept 0.257 0.212 0.326 0.000
Sex (ref: male) 1.331 1.292 1.369 0.000
Age 1.018 1.017 1.019 0.000
Has Tertiary Education (ref: no tertiary) 0.823 0.797 0.849 0.000
DIC 131241.600
pD 67.070
Random Part Mean 95% CI SD
Country variance 0.097 0.060 0.156 0.025
Year variance 0.367 0.044 1.737 1.038
Occupation variance (ISCO 88 2 digit) 0.116 0.067 0.198 0.034
MOR Country Level 1.047
ICC Country Level 0.025
MOR Year Level 1.589
ICC Year Level 0.095
MOR Occupation Level 1.091
ICC Occupation Level 0.030

Model 4

Parameter OR 95% CI p
Intercept 0.352 0.278 0.489 0.000
Sex (ref: male) 1.364 1.324 1.408 0.000
Age 1.018 1.017 1.019 0.000
Has Tertiary Education (ref: no tertiary) 0.825 0.796 0.852 0.000
Nights worked per month 1.024 1.020 1.027 0.000
DIC 131058.020
pD 67.690
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Random Part Mean 95% CI SD
Country variance 0.096 0.059 0.155 0.025
Year variance 0.691 0.051 3.635 3.585
Occupation variance (ISCO 88 2 digit) 0.115 0.065 0.199 0.035
MOR Country Level 1.046
ICC Country Level 0.023
MOR Year Level 2.185
ICC Year Level 0.165
MOR Occupation Level 1.090
ICC Occupation Level 0.027

Model 5

Parameter OR 95% CI p
Intercept 0.297 0.252 0.359 0.000
Sex (ref: male) 1.363 1.321 1.406 0.000
Age 1.019 1.017 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.829 0.803 0.857 0.000
Nights worked per month 1.020 1.016 1.024 0.000
Works shifts (ref: no) 1.167 1.128 1.211 0.000
DIC 130989.490
pD 69.120
Random Part Mean 95% CI SD
Country variance 0.094 0.057 0.152 0.024
Year variance 0.415 0.045 1.984 1.536
Occupation variance (ISCO 88 2 digit) 0.120 0.066 0.211 0.037
MOR Country Level 1.039
ICC Country Level 0.024
MOR Year Level 1.677
ICC Year Level 0.106
MOR Occupation Level 1.100
ICC Occupation Level 0.031

Model 6

Parameter OR 95% CI p
Intercept 0.285 0.203 0.385 0.000
Sex (ref: male) 1.409 1.367 1.453 0.000
Age 1.018 1.017 1.019 0.000
Has Tertiary Education (ref: no tertiary) 0.824 0.798 0.851 0.000
Nights worked per month 1.016 1.012 1.019 0.000
Works shifts (ref: no) 1.166 1.126 1.208 0.000
Hours per week worked 1.009 1.008 1.010 0.000
DIC 130763.400
pD 69.700
Random Part Mean 95% CI SD
Country variance 0.093 0.057 0.151 0.024
Year variance 0.908 0.075 3.877 5.782
Occupation variance (ISCO 88 2 digit) 0.115 0.065 0.198 0.035
MOR Country Level 1.038
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ICC Country Level 0.021
MOR Year Level 2.596
ICC Year Level 0.206
MOR Occupation Level 1.089
ICC Occupation Level 0.026

Model 7

Parameter OR 95% CI p
Intercept 0.326 0.259 0.390 0.000
Sex (ref: male) 1.410 1.368 1.454 0.000
Age 1.018 1.017 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.823 0.795 0.853 0.000
Nights worked per month 1.016 1.012 1.019 0.000
Works shifts (ref: no) 1.166 1.126 1.206 0.000
Hours per week worked 1.009 1.008 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.030 0.976 1.084 0.136
Adaptable within limits 1.032 0.994 1.072 0.060
Entirely self-determined 0.989 0.950 1.029 0.303
DIC 130764.900
pD 72.770
Random Part Mean 95% CI SD
Country variance 0.091 0.055 0.149 0.024
Year variance 1.594 0.133 7.769 8.569
Occupation variance (ISCO 88 2 digit) 0.117 0.067 0.200 0.035
MOR Country Level 1.034
ICC Country Level 0.018
MOR Year Level 4.022
ICC Year Level 0.313
MOR Occupation Level 1.095
ICC Occupation Level 0.023

Model 8

Parameter OR 95% CI p
Intercept 0.034 0.236 0.367 0.000
Sex (ref: male) 0.024 1.367 1.460 0.000
Age 0.001 1.018 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.014 0.791 0.846 0.000
Nights worked per month 0.002 1.012 1.019 0.000
Works shifts (ref: no) 0.021 1.127 1.210 0.000
Hours per week worked 0.001 1.007 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.028 0.974 1.084 0.160
Adaptable within limits 1.030 0.989 1.072 0.067
Entirely self-determined 0.984 0.943 1.028 0.227
Skill-demand match (ref: they match)
Demands too low 1.107 1.076 1.139 0.000
Demands too high 1.167 1.121 1.213 0.000
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DIC 130689.510
pD 74.870
Random Part Mean 95% CI SD
Country variance 0.090 0.055 0.145 0.023
Year variance 1.635 0.103 6.299 23.891
Occupation variance (ISCO 88 2 digit) 0.119 0.068 0.205 0.035
MOR Country Level 1.032
ICC Country Level 0.018
MOR Year Level 4.115
ICC Year Level 0.318
MOR Occupation Level 1.098
ICC Occupation Level 0.023

Model 9

Parameter OR 95% CI p
Intercept 0.379 0.296 0.521 0.000
Sex (ref: male) 1.365 1.322 1.410 0.000
Age 1.018 1.017 1.019 0.000
Has Tertiary Education (ref: no tertiary) 0.833 0.805 0.860 0.000
Nights worked per month 1.014 1.011 1.018 0.000
Works shifts (ref: no) 1.138 1.096 1.180 0.000
Hours per week worked 1.008 1.007 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.052 0.999 1.110 0.029
Adaptable within limits 1.060 1.020 1.101 0.004
Entirely self-determined 1.024 0.979 1.068 0.146
Skill-demand match (ref: they match)
Demands too low 1.082 1.048 1.114 0.000
Demands too high 1.132 1.083 1.183 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.542 1.489 1.596 0.000
Agree 0.804 0.777 0.833 0.000
DIC 128984.380
pD 76.770
Random Part Mean 95%CI SD
Country variance 0.084 0.051 0.136 0.022
Year variance 1.924 0.181 9.261 5.902
Occupation variance (ISCO 88 2 digit) 0.100 0.057 0.171 0.031
MOR Country Level 1.016
ICC Country Level 0.016
MOR Year Level 4.796
ICC Year Level 0.356
MOR Occupation Level 1.054
ICC Occupation Level 0.018

Table C.5: Intermediate Models for Lower Muscular Pain in the last 12 months
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Model 0

Parameter OR 95% CI p
Intercept 0.503 0.375 0.654 0.000
DIC 122927.060
pD 63.790
Random part Mean 95% CI SD
Country variance 0.096 0.059 0.157 0.030
Year variance 0.105 0.007 0.545 1.334
Occupation variance (ISCO 88 2 digit) 0.209 0.122 0.360 0.040
MOR Country Level 1.045
ICC Country Level 0.026
MOR Year Level 1.068
ICC Year Level 0.028
MOR Occupation Level 1.288
ICC Occupation Level 0.056

Model 1

Parameter OR 95% CI p
Intercept 0.431 0.381 0.499 0.000
Sex (ref: male) 1.290 1.247 1.332 0.000
DIC 122674.570
pD 64.500
Random part Mean 95% CI SD
Country variance 0.093 0.057 0.150 0.024
Year variance 0.129 0.007 0.585 1.223
Occupation variance (ISCO 88 2 digit) 0.231 0.132 0.392 0.067
MOR Country Level 1.038
ICC Country Level 0.025
MOR Year Level 1.121
ICC Year Level 0.034
MOR Occupation Level 1.330
ICC Occupation Level 0.062

Model 2

Parameter OR 95% CI p
Intercept 0.143 0.116 0.174 0.000
Sex (ref: male) 1.285 1.246 1.328 0.000
Age 1.023 1.022 1.025 0.000
DIC 130403.390
pD 65.590
Random part Mean 95% CI SD
Country variance 0.102 0.062 0.165 0.027
Year variance 0.049 0.005 0.247 0.184
Occupation variance (ISCO 88 2 digit) 0.229 0.128 0.395 0.069
MOR Country Level 1.060
ICC Country Level 0.028
MOR Year Level 0.922
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ICC Year Level 0.013
MOR Occupation Level 1.328
ICC Occupation Level 0.062

Model 3

Parameter OR 95% CI p
Intercept 0.164 0.141 0.194 0.000
Sex (ref: male) 1.287 1.248 1.328 0.000
Age 1.023 1.022 1.024 0.000
Has Tertiary Education (ref: no tertiary) 0.785 0.757 0.813 0.000
DIC 121095.520
pD 66.600
Random Part Mean 95% CI SD
Country variance 0.105 0.063 0.173 0.028
Year variance 0.055 0.005 0.246 0.390
Occupation variance (ISCO 88 2 digit) 0.170 0.096 0.288 0.050
MOR Country Level 1.066
ICC Country Level 0.029
MOR Year Level 0.939
ICC Year Level 0.015
MOR Occupation Level 1.207
ICC Occupation Level 0.047

Model 4

Parameter OR 95% CI p
Intercept 0.168 0.135 0.195 0.000
Sex (ref: male) 1.319 1.277 1.361 0.000
Age 1.023 1.022 1.024 0.000
Has Tertiary Education (ref: no tertiary) 0.786 0.759 0.815 0.000
Nights worked per month 1.025 1.022 1.029 0.000
DIC 120899.700
pD 67.670
Random Part Mean 95% CI SD
Country variance 0.104 0.063 0.168 0.027
Year variance 0.075 0.005 0.290 1.248
Occupation variance (ISCO 88 2 digit) 0.166 0.094 0.286 0.050
MOR Country Level 1.063
ICC Country Level 0.029
MOR Year Level 0.994
ICC Year Level 0.021
MOR Occupation Level 1.201
ICC Occupation Level 0.046

Model 5

Parameter OR 95% CI p
Intercept 0.158 0.108 0.199 0.000
Sex (ref: male) 1.318 1.277 1.362 0.000
Age 1.024 1.022 1.025 0.000
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Has Tertiary Education (ref: no tertiary) 0.791 0.762 0.820 0.000
Nights worked per month 1.020 1.017 1.024 0.000
Works shifts (ref: no) 1.223 1.180 1.266 0.000
DIC 120789.790
pD 69.310
Random Part Mean 95% CI SD
Country variance 0.102 0.062 0.164 0.026
Year variance 0.121 0.006 0.665 0.513
Occupation variance (ISCO 88 2 digit) 0.168 0.095 0.292 0.051
MOR Country Level 1.060
ICC Country Level 0.028
MOR Year Level 1.103
ICC Year Level 0.033
MOR Occupation Level 1.205
ICC Occupation Level 0.046

Model 6

Parameter OR 95% CI p
Intercept 0.117 0.103 0.137 0.000
Sex (ref: male) 1.354 1.311 1.398 0.000
Age 1.024 1.022 1.025 0.000
Has Tertiary Education (ref: no tertiary) 0.787 0.761 0.816 0.000
Nights worked per month 1.017 1.013 1.021 0.000
Works shifts (ref: no) 1.223 1.181 1.269 0.000
Hours per week worked 1.007 1.006 1.008 0.000
DIC 120657.650
pD 70.000
Random Part Mean 95% CI SD
Country variance 0.094 0.058 0.152 0.024
Year variance 0.048 0.005 0.259 0.127
Occupation variance (ISCO 88 2 digit) 0.168 0.096 0.291 0.051
MOR Country Level 1.040
ICC Country Level 0.026
MOR Year Level 0.920
ICC Year Level 0.013
MOR Occupation Level 1.205
ICC Occupation Level 0.047

Model 7

Parameter OR 95% CI p
Intercept 0.099 0.085 0.117 0.000
Sex (ref: male) 1.355 1.314 1.396 0.000
Age 1.024 1.023 1.025 0.000
Has Tertiary Education (ref: no tertiary) 0.791 0.763 0.819 0.000
Nights worked per month 1.017 1.014 1.021 0.000
Works shifts (ref: no) 1.220 1.176 1.265 0.000
Hours per week worked 1.007 1.006 1.009 0.000
Working time arrangement (ref: set by company)
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Choice between several fixed schedules 0.949 0.894 1.006 0.041
Adaptable within limits 0.971 0.932 1.013 0.089
Entirely self-determined 0.961 0.919 1.004 0.036
DIC 120658.900
pD 73.670
Random Part Mean 95% CI SD
Country variance 0.092 0.056 0.144 0.024
Year variance 0.063 0.005 0.335 0.193
Occupation variance (ISCO 88 2 digit) 0.170 0.096 0.296 0.052
MOR Country Level 1.035
ICC Country Level 0.025
MOR Year Level 0.963
ICC Year Level 0.018
MOR Occupation Level 1.208
ICC Occupation Level 0.047

Model 8

Parameter OR 95% CI p
Intercept 0.115 0.096 0.155 0.000
Sex (ref: male) 1.354 1.308 1.396 0.000
Age 1.024 1.023 1.025 0.000
Has Tertiary Education (ref: no tertiary) 0.781 0.754 0.810 0.000
Nights worked per month 1.017 1.013 1.021 0.000
Works shifts (ref: no) 1.218 1.172 1.263 0.000
Hours per week worked 1.007 1.006 1.008 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.949 0.897 1.003 0.032
Adaptable within limits 0.968 0.927 1.012 0.072
Entirely self-determined 0.956 0.911 0.999 0.022
Skill-demand match (ref: they match)
Demands too low 1.136 1.102 1.169 0.000
Demands too high 1.124 1.075 1.174 0.000
DIC 120583.330
pD 74.900
Random Part Mean 95% CI SD
Country variance 0.095 0.058 0.154 0.025
Year variance 0.080 0.006 0.410 0.538
Occupation variance (ISCO 88 2 digit) 0.166 0.095 0.286 0.049
MOR Country Level 1.042
ICC Country Level 0.026
MOR Year Level 1.006
ICC Year Level 0.022
MOR Occupation Level 1.201
ICC Occupation Level 0.046

Model 9

Parameter OR 95% CI p
Intercept 0.119 0.095 0.143 0.000
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Sex (ref: male) 1.309 1.267 1.350 0.000
Age 1.023 1.022 1.025 0.000
Has Tertiary Education (ref: no tertiary) 0.798 0.771 0.828 0.000
Nights worked per month 1.015 1.012 1.019 0.000
Works shifts (ref: no) 1.192 1.149 1.240 0.000
Hours per week worked 1.006 1.005 1.007 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.974 0.920 1.031 0.178
Adaptable within limits 1.000 0.959 1.045 0.491
Entirely self-determined 0.997 0.952 1.040 0.455
Skill-demand match (ref: they match)
Demands too low 1.113 1.077 1.148 0.000
Demands too high 1.090 1.041 1.143 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.523 1.471 1.580 0.000
Agree 0.772 0.744 0.800 0.000
DIC 118898.860
pD 76.320
Random Part Mean 95%CI SD
Country variance 0.082 0.050 0.135 0.022
Year variance 0.119 0.007 0.620 0.533
Occupation variance (ISCO 88 2 digit) 0.145 0.081 0.252 0.045
MOR Country Level 1.012
ICC Country Level 0.023
MOR Year Level 1.099
ICC Year Level 0.033
MOR Occupation Level 1.155
ICC Occupation Level 0.040

Table C.6: Intermediate Models for Upper Muscular Pain in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.567 0.495 0.657 0.000
DIC 132134.700
pD 63.700
Random part Mean 95% CI SD
Country variance 0.117 0.072 0.184 0.030
Year variance 0.452 0.053 2.110 1.334
Occupation variance (ISCO 88 2 digit) 0.131 0.075 0.230 0.040
MOR Country Level 1.094
ICC Country Level 0.029
MOR Year Level 1.745
ICC Year Level 0.113
MOR Occupation Level 1.125
ICC Occupation Level 0.033
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Model 1

Parameter OR 95% CI p
Intercept 0.551 0.436 0.667 0.000
Sex (ref: male) 1.498 1.456 1.540 0.000
DIC 131421.470
pD 63.970
Random part Mean 95% CI SD
Country variance 0.110 0.068 0.177 0.028
Year variance 0.476 0.052 2.626 1.266
Occupation variance (ISCO 88 2 digit) 0.162 0.093 0.280 0.048
MOR Country Level 1.079
ICC Country Level 0.027
MOR Year Level 1.790
ICC Year Level 0.118
MOR Occupation Level 1.192
ICC Occupation Level 0.040

Model 2
Parameter OR 95% CI p
Intercept 0.240 0.216 0.264 0.000
Sex (ref: male) 1.498 1.453 1.545 0.000
Age 1.019 1.018 1.020 0.000
DIC 130403.390
pD 65.590
Random part Mean 95% CI SD
Country variance 0.109 0.068 0.179 0.028
Year variance 0.387 0.046 1.771 1.475
Occupation variance (ISCO 88 2 digit) 0.156 0.090 0.267 0.046
MOR Country Level 1.076
ICC Country Level 0.028
MOR Year Level 1.625
ICC Year Level 0.098
MOR Occupation Level 1.179
ICC Occupation Level 0.040

Model 3

Parameter OR 95% CI p
Intercept 0.297 0.249 0.336 0.000
Sex (ref: male) 1.499 1.453 1.546 0.000
Age 1.019 1.017 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.857 0.829 0.885 0.000
DIC 130328.710
pD 66.920
Random Part Mean 95% CI SD
Country variance 0.113 0.070 0.183 0.029
Year variance 0.461 0.051 2.195 1.198
Occupation variance (ISCO 88 2 digit) 0.129 0.074 0.220 0.038
MOR Country Level 1.085
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ICC Country Level 0.028
MOR Year Level 1.761
ICC Year Level 0.115
MOR Occupation Level 1.121
ICC Occupation Level 0.032

Model 4

Parameter OR 95% CI p
Intercept 0.266 0.227 0.317 0.000
Sex (ref: male) 1.533 1.484 1.582 0.000
Age 1.019 1.018 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.860 0.832 0.889 0.000
Nights worked per month 1.022 1.019 1.026 0.000
DIC 130168.590
pD 67.860
Random Part Mean 95% CI SD
Country variance 0.113 0.069 0.182 0.029
Year variance 0.395 0.048 2.026 1.141
Occupation variance (ISCO 88 2 digit) 0.134 0.077 0.240 0.042
MOR Country Level 1.085
ICC Country Level 0.029
MOR Year Level 1.640
ICC Year Level 0.100
MOR Occupation Level 1.132
ICC Occupation Level 0.034

Model 5

Parameter OR 95% CI p
Intercept 0.416 0.333 0.565 0.000
Sex (ref: male) 1.534 1.488 1.581 0.000
Age 1.019 1.018 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.864 0.835 0.891 0.000
Nights worked per month 1.019 1.015 1.022 0.000
Works shifts (ref: no) 1.164 1.123 1.208 0.000
DIC 130989.490
pD 69.120
Random Part Mean 95% CI SD
Country variance 0.112 0.068 0.181 0.029
Year variance 1.220 0.113 5.772 3.600
Occupation variance (ISCO 88 2 digit) 0.132 0.076 0.228 0.039
MOR Country Level 1.082
ICC Country Level 0.024
MOR Year Level 3.216
ICC Year Level 0.257
MOR Occupation Level 1.128
ICC Occupation Level 0.028

Model 6
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Parameter OR 95% CI p
Intercept 0.217 0.177 0.258 0.000
Sex (ref: male) 1.593 1.547 1.639 0.000
Age 1.019 1.018 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.859 0.831 0.888 0.000
Nights worked per month 1.014 1.010 1.017 0.000
Works shifts (ref: no) 1.164 1.121 1.206 0.000
Hours per week worked 1.010 1.009 1.011 0.000
DIC 129830.720
pD 69.360
Random Part Mean 95% CI SD
Country variance 0.113 0.069 0.181 0.029
Year variance 0.737 0.083 3.591 2.020
Occupation variance (ISCO 88 2 digit) 0.129 0.074 0.225 0.040
MOR Country Level 1.084
ICC Country Level 0.026
MOR Year Level 2.272
ICC Year Level 0.173
MOR Occupation Level 1.122
ICC Occupation Level 0.030

Model 7

Parameter OR 95% CI p
Intercept 0.175 0.146 0.217 0.000
Sex (ref: male) 1.594 1.545 1.646 0.000
Age 1.019 1.018 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.856 0.829 0.884 0.000
Nights worked per month 1.014 1.011 1.018 0.000
Works shifts (ref: no) 1.167 1.128 1.211 0.000
Hours per week worked 1.010 1.008 1.011 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.999 0.948 1.054 0.464
Adaptable within limits 1.086 1.044 1.129 0.000
Entirely self-determined 0.972 0.933 1.012 0.078
DIC 129813.480
pD 72.520
Random Part Mean 95% CI SD
Country variance 0.111 0.069 0.178 0.028
Year variance 0.501 0.051 2.183 1.977
Occupation variance (ISCO 88 2 digit) 0.134 0.076 0.228 0.040
MOR Country Level 1.081
ICC Country Level 0.028
MOR Year Level 1.835
ICC Year Level 0.124
MOR Occupation Level 1.131
ICC Occupation Level 0.033

Model 8
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Parameter OR 95% CI p
Intercept 0.338 0.250 0.462 0.000
Sex (ref: male) 1.599 1.547 1.651 0.000
Age 1.020 1.019 1.021 0.000
Has Tertiary Education (ref: no tertiary) 0.848 0.819 0.877 0.000
Nights worked per month 1.014 1.010 1.018 0.000
Works shifts (ref: no) 1.168 1.126 1.211 0.000
Hours per week worked 1.010 1.009 1.011 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.999 0.947 1.051 0.481
Adaptable within limits 1.085 1.046 1.129 0.000
Entirely self-determined 0.966 0.924 1.007 0.052
Skill-demand match (ref: they match)
Demands too low 1.137 1.104 1.171 0.000
Demands too high 1.205 1.158 1.255 0.000
DIC 129698.250
pD 75.330
Random Part Mean 95% CI SD
Country variance 0.114 0.070 0.184 0.029
Year variance 2.648 0.248 12.222 10.123
Occupation variance (ISCO 88 2 digit) 0.137 0.078 0.236 0.041
MOR Country Level 1.086
ICC Country Level 0.018
MOR Year Level 6.737
ICC Year Level 0.428
MOR Occupation Level 1.139
ICC Occupation Level 0.022

Model 9

Parameter OR 95% CI p
Intercept 0.214 0.165 0.263 0.000
Sex (ref: male) 1.548 1.500 1.597 0.000
Age 1.019 1.018 1.020 0.000
Has Tertiary Education (ref: no tertiary) 0.866 0.837 0.897 0.000
Nights worked per month 1.012 1.009 1.016 0.000
Works shifts (ref: no) 1.140 1.099 1.185 0.000
Hours per week worked 1.009 1.008 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.023 0.968 1.082 0.223
Adaptable within limits 1.121 1.078 1.167 0.000
Entirely self-determined 1.009 0.967 1.050 0.340
Skill-demand match (ref: they match)
Demands too low 1.111 1.078 1.145 0.000
Demands too high 1.169 1.121 1.218 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.583 1.526 1.637 0.000
Agree 0.796 0.770 0.823 0.000
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DIC 127810.300
pD 76.950
Random Part Mean 95%CI SD
Country variance 0.111 0.068 0.178 0.028
Year variance 1.072 0.092 4.960 5.928
Occupation variance (ISCO 88 2 digit) 0.117 0.066 0.201 0.035
MOR Country Level 1.080
ICC Country Level 0.024
MOR Year Level 2.918
ICC Year Level 0.234
MOR Occupation Level 1.095
ICC Occupation Level 0.026

Table C.7: Intermediate Models for Anxiety in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.126 0.108 0.149 0.000
DIC 75289.500
pD 60.070
Random part Mean 95% CI SD
Country variance 0.459 0.286 0.744 0.116
Year variance 0.150 0.017 0.708 0.457
Occupation variance (ISCO 88 2 digit) 0.022 0.011 0.040 0.008
MOR Country Level 1.758
ICC Country Level 0.117
MOR Year Level 1.167
ICC Year Level 0.038
MOR Occupation Level 0.832
ICC Occupation Level 0.006

Model 1

Parameter OR 95% CI p
Intercept 0.147 0.071 0.215 0.000
Sex (ref: male) 1.355 1.299 1.412 0.000
DIC 75103.990
pD 57.720
Random part Mean 95% CI SD
Country variance 0.470 0.287 0.766 0.124
Year variance 0.501 0.021 2.779 2.262
Occupation variance (ISCO 88 2 digit) 0.010 0.004 0.020 0.004
MOR Country Level 1.778
ICC Country Level 0.110
MOR Year Level 1.836
ICC Year Level 0.117
MOR Occupation Level 0.778
ICC Occupation Level 0.002
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Model 2

Parameter OR 95% CI p
Intercept 0.091 0.067 0.128 0.000
Sex (ref: male) 1.360 1.303 1.420 0.000
Age 1.009 1.007 1.011 0.000
DIC 74998.140
pD 57.970
Random part Mean 95% CI SD
Country variance 0.454 0.282 0.721 0.114
Year variance 0.338 0.019 1.748 1.168
Occupation variance (ISCO 88 2 digit) 0.009 0.004 0.018 0.004
MOR Country Level 1.749
ICC Country Level 0.111
MOR Year Level 1.536
ICC Year Level 0.083
MOR Occupation Level 0.772
ICC Occupation Level 0.002

Model 3

Parameter OR 95% CI p
Intercept 0.092 0.064 0.142 0.000
Sex (ref: male) 1.359 1.303 1.419 0.000
Age 1.009 1.008 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.098 1.050 1.144 0.000
DIC 74988.560
pD 57.600
Random Part Mean 95% CI SD
Country variance 0.457 0.283 0.729 0.118
Year variance 0.385 0.019 1.998 1.780
Occupation variance (ISCO 88 2 digit) 0.007 0.002 0.014 0.003
MOR Country Level 1.754
ICC Country Level 0.110
MOR Year Level 1.621
ICC Year Level 0.093
MOR Occupation Level 0.756
ICC Occupation Level 0.002

Model 4

Parameter OR 95% CI p
Intercept 0.048 0.034 0.080 0.000
Sex (ref: male) 1.404 1.344 1.464 0.000
Age 1.010 1.008 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.112 1.063 1.161 0.000
Nights worked per month 1.031 1.026 1.035 0.000
DIC 74814.880
pD 56.430
Random Part Mean 95% CI SD
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Country variance 0.454 0.283 0.730 0.116
Year variance 0.419 0.024 2.156 1.507
Occupation variance (ISCO 88 2 digit) 0.005 0.002 0.010 0.002
MOR Country Level 1.750
ICC Country Level 0.109
MOR Year Level 1.685
ICC Year Level 0.101
MOR Occupation Level 0.744
ICC Occupation Level 0.001

Model 5

Parameter OR 95% CI p
Intercept 0.081 0.052 0.099 0.000
Sex (ref: male) 1.398 1.339 1.456 0.000
Age 1.010 1.008 1.012 0.000
Has Tertiary Education (ref: no tertiary) 1.113 1.062 1.164 0.000
Nights worked per month 1.028 1.023 1.033 0.000
Works shifts (ref: no) 1.143 1.089 1.198 0.000
DIC 74789.010
pD 58.510
Random Part Mean 95% CI SD
Country variance 0.450 0.278 0.707 0.113
Year variance 0.368 0.022 2.176 1.001
Occupation variance (ISCO 88 2 digit) 0.006 0.002 0.012 0.003
MOR Country Level 1.742
ICC Country Level 0.109
MOR Year Level 1.591
ICC Year Level 0.090
MOR Occupation Level 0.749
ICC Occupation Level 0.001

Model 6

Parameter OR 95% CI p
Intercept 0.060 0.044 0.074 0.000
Sex (ref: male) 1.442 1.386 1.501 0.000
Age 1.010 1.008 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.110 1.058 1.161 0.000
Nights worked per month 1.024 1.019 1.028 0.000
Works shifts (ref: no) 1.144 1.086 1.199 0.000
Hours per week worked 1.008 1.007 1.010 0.000
DIC 74688.920
pD 60.030
Random Part Mean 95% CI SD
Country variance 0.455 0.279 0.732 0.116
Year variance 0.234 0.019 1.279 0.728
Occupation variance (ISCO 88 2 digit) 0.006 0.002 0.013 0.003
MOR Country Level 1.751
ICC Country Level 0.114
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MOR Year Level 1.336
ICC Year Level 0.059
MOR Occupation Level 0.752
ICC Occupation Level 0.001

Model 7

Parameter OR 95% CI p
Intercept 0.048 0.039 0.056 0.000
Sex (ref: male) 1.448 1.385 1.507 0.000
Age 1.009 1.008 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.102 1.053 1.153 0.000
Nights worked per month 1.024 1.019 1.028 0.000
Works shifts (ref: no) 1.166 1.110 1.223 0.000
Hours per week worked 1.008 1.006 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.969 0.895 1.044 0.216
Adaptable within limits 1.138 1.076 1.204 0.000
Entirely self-determined 1.085 1.026 1.147 0.003
DIC 74668.310
pD 62.990
Random Part Mean 95% CI SD
Country variance 0.455 0.280 0.740 0.118
Year variance 0.153 0.015 0.645 0.942
Occupation variance (ISCO 88 2 digit) 0.006 0.002 0.013 0.003
MOR Country Level 1.752
ICC Country Level 0.117
MOR Year Level 1.173
ICC Year Level 0.039
MOR Occupation Level 0.754
ICC Occupation Level 0.002

Model 8

Parameter OR 95% CI p
Intercept 0.084 0.069 0.103 0.000
Sex (ref: male) 1.464 1.408 1.522 0.000
Age 1.010 1.009 1.012 0.000
Has Tertiary Education (ref: no tertiary) 1.083 1.034 1.129 0.000
Nights worked per month 1.024 1.019 1.028 0.000
Works shifts (ref: no) 1.164 1.106 1.220 0.000
Hours per week worked 1.008 1.006 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.966 0.892 1.043 0.184
Adaptable within limits 1.130 1.070 1.196 0.000
Entirely self-determined 1.083 1.019 1.148 0.008
Skill-demand match (ref: they match)
Demands too low 1.137 1.092 1.183 0.000
Demands too high 1.620 1.535 1.706 0.000
DIC 74394.110
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pD 62.840
Random Part Mean 95% CI SD
Country variance 0.477 0.293 0.759 0.123
Year variance 2.150 0.172 8.349 28.406
Occupation variance (ISCO 88 2 digit) 0.005 0.002 0.010 0.002
MOR Country Level 1.792
ICC Country Level 0.081
MOR Year Level 5.366
ICC Year Level 0.363
MOR Occupation Level 0.743
ICC Occupation Level 0.001

Model 9

Parameter OR 95% CI p
Intercept 0.101 0.072 0.141 0.000
Sex (ref: male) 1.396 1.340 1.459 0.000
Age 1.009 1.007 1.011 0.000
Has Tertiary Education (ref: no tertiary) 1.129 1.078 1.183 0.000
Nights worked per month 1.021 1.016 1.026 0.000
Works shifts (ref: no) 1.125 1.072 1.184 0.000
Hours per week worked 1.007 1.005 1.009 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 0.996 0.918 1.074 0.452
Adaptable within limits 1.178 1.111 1.244 0.000
Entirely self-determined 1.135 1.068 1.201 0.000
Skill-demand match (ref: they match)
Demands too low 1.100 1.050 1.148 0.000
Demands too high 1.550 1.462 1.639 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.825 1.740 1.907 0.000
Agree 0.807 0.767 0.847 0.000
DIC 72987.960
pD 67.970
Random Part Mean 95%CI SD
Country variance 0.446 0.279 0.710 0.112
Year variance 2.796 0.198 13.205 23.167
Occupation variance (ISCO 88 2 digit) 0.007 0.003 0.015 0.003
MOR Country Level 1.734
ICC Country Level 0.068
MOR Year Level 7.179
ICC Year Level 0.428
MOR Occupation Level 0.760
ICC Occupation Level 0.001

Table C.8: Intermediate Models for Fatigue in the last 12 months

Model 0
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Parameter OR 95% CI p
Intercept 0.711 0.622 0.815 0.000
DIC 125550.900
pD 61.540
Random part Mean 95% CI SD
Country variance 0.480 0.297 0.760 0.120
Year variance 0.568 0.045 2.603 2.846
Occupation variance (ISCO 88 2 digit) 0.019 0.010 0.034 0.006
MOR Country Level 1.797
ICC Country Level 0.110
MOR Year Level 1.959
ICC Year Level 0.130
MOR Occupation Level 0.819
ICC Occupation Level 0.004

Model 1

Parameter OR 95% CI p
Intercept 0.566 0.468 0.728 0.000
Sex (ref: male) 1.354 1.314 1.393 0.000
DIC 125168.070
pD 63.250
Random part Mean 95% CI SD
Country variance 0.478 0.301 0.761 0.120
Year variance 0.392 0.036 1.870 2.117
Occupation variance (ISCO 88 2 digit) 0.025 0.014 0.045 0.008
MOR Country Level 1.793
ICC Country Level 0.114
MOR Year Level 1.636
ICC Year Level 0.094
MOR Occupation Level 0.843
ICC Occupation Level 0.006

Model 2

Parameter OR 95% CI p
0 Intercept 0.443 0.347 0.509 0.000
1 Sex (ref: male) 1.351 1.310 1.391 0.000
2 Age 1.006 1.005 1.007 0.000
DIC 125068.690
pD 65.050
Random part Mean 95% CI SD
Country variance 0.487 0.304 0.776 0.125
Year variance 0.321 0.036 1.500 0.885
Occupation variance (ISCO 88 2 digit) 0.023 0.013 0.042 0.007
MOR Country Level 1.809
ICC Country Level 0.118
MOR Year Level 1.504
ICC Year Level 0.078
MOR Occupation Level 0.837
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ICC Occupation Level 0.006
Model 3

Parameter OR 95% CI p
Intercept 0.489 0.400 0.542 0.000
Sex (ref: male) 1.354 1.311 1.395 0.000
Age 1.006 1.005 1.007 0.000
Has Tertiary Education (ref: no tertiary) 0.991 0.958 1.026 0.278
DIC 125068.410
pD 64.820
Random Part Mean 95% CI SD
Country variance 0.483 0.299 0.780 0.124
Year variance 0.492 0.049 2.185 2.500
Occupation variance (ISCO 88 2 digit) 0.023 0.012 0.040 0.007
MOR Country Level 1.803
ICC Country Level 0.113
MOR Year Level 1.818
ICC Year Level 0.115
MOR Occupation Level 0.834
ICC Occupation Level 0.005

Model 4

Parameter OR 95% CI p
Intercept 0.450 0.363 0.536 0.000
Sex (ref: male) 1.405 1.362 1.446 0.000
Age 1.007 1.006 1.008 0.000
Has Tertiary Education (ref: no tertiary) 0.996 0.963 1.029 0.409
Nights worked per month 1.037 1.034 1.041 0.000
DIC 124638.430
pD 65.380
Random Part Mean 95% CI SD
Country variance 0.480 0.301 0.768 0.123
Year variance 0.498 0.052 2.279 1.862
Occupation variance (ISCO 88 2 digit) 0.022 0.012 0.039 0.007
MOR Country Level 1.797
ICC Country Level 0.112
MOR Year Level 1.831
ICC Year Level 0.116
MOR Occupation Level 0.832
ICC Occupation Level 0.005

Model 5

Parameter OR 95% CI p
Intercept 0.289 0.214 0.365 0.000
Sex (ref: male) 1.403 1.357 1.445 0.000
Age 1.007 1.006 1.008 0.000
Has Tertiary Education (ref: no tertiary) 0.999 0.967 1.033 0.461
Nights worked per month 1.033 1.030 1.037 0.000
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Works shifts (ref: no) 1.177 1.134 1.221 0.000
DIC 124566.430
pD 67.060
Random Part Mean 95% CI SD
Country variance 0.495 0.308 0.800 0.127
Year variance 0.377 0.041 1.892 1.343
Occupation variance (ISCO 88 2 digit) 0.022 0.012 0.039 0.007
MOR Country Level 1.824
ICC Country Level 0.118
MOR Year Level 1.607
ICC Year Level 0.090
MOR Occupation Level 0.832
ICC Occupation Level 0.005

Model 6

Parameter OR 95% CI p
Intercept 0.182 0.140 0.223 0.000
Sex (ref: male) 1.481 1.434 1.529 0.000
Age 1.007 1.006 1.008 0.000
Has Tertiary Education (ref: no tertiary) 0.996 0.963 1.028 0.403
Nights worked per month 1.027 1.023 1.030 0.000
Works shifts (ref: no) 1.178 1.137 1.221 0.000
Hours per week worked 1.014 1.013 1.015 0.000
DIC 124012.870
pD 67.550
Random Part Mean 95% CI SD
Country variance 0.457 0.284 0.741 0.118
Year variance 0.370 0.035 1.546 3.437
Occupation variance (ISCO 88 2 digit) 0.023 0.012 0.041 0.007
MOR Country Level 1.755
ICC Country Level 0.110
MOR Year Level 1.595
ICC Year Level 0.089
MOR Occupation Level 0.835
ICC Occupation Level 0.006

Model 7

Parameter OR 95% CI p
Intercept 0.037 0.210 0.322 0.000
Sex (ref: male) 0.024 1.437 1.530 0.000
Age 0.001 1.005 1.008 0.000
Has Tertiary Education (ref: no tertiary) 0.017 0.957 1.025 0.278
Nights worked per month 0.002 1.023 1.031 0.000
Works shifts (ref: no) 0.023 1.138 1.226 0.000
Hours per week worked 0.001 1.013 1.015 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.000 0.946 1.058 0.474
Adaptable within limits 1.128 1.084 1.172 0.000
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Entirely self-determined 0.983 0.943 1.030 0.210
DIC 123978.670
pD 70.990
Random Part Mean 95% CI SD
Country variance 0.466 0.292 0.740 0.118
Year variance 0.654 0.054 3.458 2.162
Occupation variance (ISCO 88 2 digit) 0.024 0.013 0.044 0.008
MOR Country Level 1.771
ICC Country Level 0.105
MOR Year Level 2.117
ICC Year Level 0.148
MOR Occupation Level 0.840
ICC Occupation Level 0.005

Model 8

Parameter OR 95% CI p
Intercept 0.197 0.177 0.222 0.000
Sex (ref: male) 1.488 1.443 1.535 0.000
Age 1.007 1.006 1.009 0.000
Has Tertiary Education (ref: no tertiary) 0.981 0.948 1.015 0.141
Nights worked per month 1.027 1.023 1.030 0.000
Works shifts (ref: no) 1.185 1.142 1.228 0.000
Hours per week worked 1.014 1.013 1.015 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.004 0.947 1.057 0.472
Adaptable within limits 1.126 1.080 1.171 0.000
Entirely self-determined 0.981 0.940 1.024 0.197
Skill-demand match (ref: they match)
Demands too low 1.092 1.060 1.126 0.000
Demands too high 1.286 1.229 1.343 0.000
DIC 123840.000
pD 73.010
Random Part Mean 95% CI SD
Country variance 0.475 0.291 0.764 0.120
Year variance 0.417 0.040 2.027 1.212
Occupation variance (ISCO 88 2 digit) 0.025 0.014 0.045 0.008
MOR Country Level 1.788
ICC Country Level 0.113
MOR Year Level 1.682
ICC Year Level 0.099
MOR Occupation Level 0.845
ICC Occupation Level 0.006

Model 9

Parameter OR 95% CI p
Intercept 0.198 0.159 0.247 0.000
Sex (ref: male) 1.432 1.386 1.477 0.000
Age 1.006 1.005 1.007 0.000
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Has Tertiary Education (ref: no tertiary) 1.010 0.977 1.043 0.268
Nights worked per month 1.025 1.021 1.029 0.000
Works shifts (ref: no) 1.152 1.108 1.197 0.000
Hours per week worked 1.013 1.012 1.015 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.030 0.972 1.088 0.155
Adaptable within limits 1.167 1.120 1.218 0.000
Entirely self-determined 1.026 0.980 1.070 0.129
Skill-demand match (ref: they match)
Demands too low 1.064 1.031 1.096 0.000
Demands too high 1.242 1.191 1.297 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.667 1.609 1.729 0.000
Agree 0.793 0.766 0.820 0.000
DIC 121724.470
pD 73.660
Random Part Mean 95%CI SD
Country variance 0.452 0.280 0.723 0.115
Year variance 0.482 0.042 1.963 2.802
Occupation variance (ISCO 88 2 digit) 0.018 0.009 0.032 0.006
MOR Country Level 1.745
ICC Country Level 0.106
MOR Year Level 1.800
ICC Year Level 0.114
MOR Occupation Level 0.814
ICC Occupation Level 0.004

Table C.9: Intermediate Models for Headache and/or Eyestrain in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.825 0.662 0.973 0.008
DIC 125985.870
pD 61.820
Random part Mean 95% CI SD
Country variance 0.125 0.078 0.200 0.031
Year variance 1.900 0.194 9.625 7.207
Occupation variance (ISCO 88 2 digit) 0.028 0.015 0.049 0.009
MOR Country Level 1.112
ICC Country Level 0.023
MOR Year Level 4.738
ICC Year Level 0.356
MOR Occupation Level 0.853
ICC Occupation Level 0.005

Model 1

Parameter OR 95% CI p

262



APPENDIX C.

Intercept 0.388 0.288 0.516 0.000
Sex (ref: male) 1.666 1.616 1.716 0.000
DIC 124924.360
pD 59.950
Random part Mean 95% CI SD
Country variance 0.122 0.076 0.199 0.032
Year variance 0.865 0.091 4.399 3.041
Occupation variance (ISCO 88 2 digit) 0.010 0.005 0.019 0.004
MOR Country Level 1.106
ICC Country Level 0.028
MOR Year Level 2.514
ICC Year Level 0.202
MOR Occupation Level 0.780
ICC Occupation Level 0.002

Model 2

Parameter OR 95% CI p
Intercept 0.293 0.181 0.391 0.000
Sex (ref: male) 1.666 1.615 1.716 0.000
Age 1.001 1.000 1.002 0.047
DIC 130403.390
pD 65.590
Random part Mean 95% CI SD
Country variance 0.122 0.075 0.198 0.031
Year variance 0.879 0.089 4.289 2.400
Occupation variance (ISCO 88 2 digit) 0.010 0.005 0.019 0.004
MOR Country Level 1.106
ICC Country Level 0.028
MOR Year Level 2.540
ICC Year Level 0.204
MOR Occupation Level 0.779
ICC Occupation Level 0.002

Model 3

Parameter OR 95% CI p
Intercept 0.359 0.304 0.436 0.000
Sex (ref: male) 1.664 1.612 1.718 0.000
Age 1.001 1.000 1.002 0.082
Has Tertiary Education (ref: no tertiary) 1.050 1.017 1.087 0.001
DIC 124921.800
pD 62.140
Random Part Mean 95% CI SD
Country variance 0.120 0.074 0.194 0.031
Year variance 0.721 0.084 3.351 2.530
Occupation variance (ISCO 88 2 digit) 0.009 0.005 0.016 0.003
MOR Country Level 1.102
ICC Country Level 0.029
MOR Year Level 2.241
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ICC Year Level 0.174
MOR Occupation Level 0.771
ICC Occupation Level 0.002

Model 4

Parameter OR 95% CI p
Intercept 0.318 0.243 0.387 0.000
Sex (ref: male) 1.711 1.664 1.759 0.000
Age 1.001 1.000 1.003 0.008
Has Tertiary Education (ref: no tertiary) 1.056 1.017 1.093 0.004
Nights worked per month 1.025 1.021 1.029 0.000
DIC 124729.540
pD 63.440
Random Part Mean 95% CI SD
Country variance 0.122 0.074 0.199 0.032
Year variance 0.718 0.083 3.615 2.135
Occupation variance (ISCO 88 2 digit) 0.010 0.005 0.018 0.003
MOR Country Level 1.104
ICC Country Level 0.029
MOR Year Level 2.236
ICC Year Level 0.174
MOR Occupation Level 0.775
ICC Occupation Level 0.002

Model 5

Parameter OR 95% CI p
Intercept 0.410 0.352 0.484 0.000
Sex (ref: male) 1.705 1.655 1.754 0.000
Age 1.001 1.000 1.003 0.006
Has Tertiary Education (ref: no tertiary) 1.055 1.022 1.089 0.000
Nights worked per month 1.023 1.019 1.026 0.000
Works shifts (ref: no) 1.105 1.064 1.146 0.000
DIC 124699.710
pD 64.340
Random Part Mean 95% CI SD
Country variance 0.121 0.074 0.196 0.032
Year variance 1.300 0.093 3.945 30.888
Occupation variance (ISCO 88 2 digit) 0.011 0.005 0.020 0.004
MOR Country Level 1.104
ICC Country Level 0.026
MOR Year Level 3.384
ICC Year Level 0.275
MOR Occupation Level 0.781
ICC Occupation Level 0.002

Model 6

Parameter OR 95% CI p
Intercept 0.287 0.249 0.334 0.000

264



APPENDIX C.

Sex (ref: male) 1.763 1.705 1.818 0.000
Age 1.001 1.000 1.002 0.034
Has Tertiary Education (ref: no tertiary) 1.054 1.020 1.089 0.000
Nights worked per month 1.018 1.015 1.022 0.000
Works shifts (ref: no) 1.107 1.067 1.148 0.000
Hours per week worked 1.009 1.008 1.010 0.000
DIC 124484.950
pD 65.900
Random Part Mean 95% CI SD
Country variance 0.108 0.066 0.176 0.028
Year variance 0.928 0.103 4.609 2.455
Occupation variance (ISCO 88 2 digit) 0.011 0.006 0.020 0.004
MOR Country Level 1.075
ICC Country Level 0.025
MOR Year Level 2.633
ICC Year Level 0.214
MOR Occupation Level 0.785
ICC Occupation Level 0.003

Model 8

Parameter OR 95% CI p
Intercept 0.281 0.230 0.371 0.000
Sex (ref: male) 1.769 1.715 1.825 0.000
Age 1.002 1.001 1.003 0.000
Has Tertiary Education (ref: no tertiary) 1.041 1.007 1.077 0.010
Nights worked per month 1.018 1.015 1.022 0.000
Works shifts (ref: no) 1.104 1.062 1.147 0.000
Hours per week worked 1.009 1.008 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.027 0.975 1.082 0.155
Adaptable within limits 1.065 1.023 1.107 0.001
Entirely self-determined 0.947 0.906 0.988 0.006
Skill-demand match (ref: they match)
Demands too low 1.084 1.053 1.118 0.000
Demands too high 1.299 1.245 1.354 0.000
DIC 124321.810
pD 70.330
Random Part Mean 95% CI SD
Country variance 0.112 0.068 0.182 0.029
Year variance 1.185 0.109 5.287 7.228
Occupation variance (ISCO 88 2 digit) 0.010 0.005 0.019 0.003
MOR Country Level 1.082
ICC Country Level 0.024
MOR Year Level 3.144
ICC Year Level 0.258
MOR Occupation Level 0.777
ICC Occupation Level 0.002
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Model 9

Parameter OR 95% CI p
Intercept 0.253 0.169 0.324 0.000
Sex (ref: male) 1.726 1.670 1.786 0.000
Age 1.001 1.000 1.002 0.034
Has Tertiary Education (ref: no tertiary) 1.063 1.030 1.097 0.000
Nights worked per month 1.017 1.013 1.021 0.000
Works shifts (ref: no) 1.082 1.041 1.123 0.000
Hours per week worked 1.008 1.007 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.049 0.995 1.107 0.041
Adaptable within limits 1.091 1.046 1.138 0.000
Entirely self-determined 0.979 0.938 1.022 0.181
Skill-demand match (ref: they match)
Demands too low 1.066 1.035 1.100 0.000
Demands too high 1.268 1.218 1.323 0.000
Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.492 1.439 1.549 0.000
Agree 0.859 0.826 0.890 0.000
DIC 123140.640
pD 73.880
Random Part Mean 95%CI SD
Country variance 0.102 0.061 0.166 0.027
Year variance 1.167 0.108 5.476 5.122
Occupation variance (ISCO 88 2 digit) 0.013 0.007 0.024 0.004
MOR Country Level 1.060
ICC Country Level 0.022
MOR Year Level 3.108
ICC Year Level 0.255
MOR Occupation Level 0.794
ICC Occupation Level 0.003

Table C.10: Intermediate Models for Injury(ies) in the last 12 months

Model 0

Parameter OR 95% CI p
Intercept 0.097 0.069 0.126 0.000
DIC 56631.060
pD 62.590
Random part Mean 95% CI SD
Country variance 0.134 0.081 0.222 0.031
Year variance 0.127 0.008 0.738 7.207
Occupation variance (ISCO 88 2 digit) 0.337 0.192 0.587 0.009
MOR Country Level 1.133
ICC Country Level 0.035
MOR Year Level 1.116

266



APPENDIX C.

ICC Year Level 0.033
MOR Occupation Level 1.533
ICC Occupation Level 0.087

Model 1

Parameter OR 95% CI p
Intercept 0.101 0.078 0.126 0.000
Sex (ref: male) 0.610 0.578 0.643 0.000
DIC 56309.700
pD 64.030
Random part Mean 95% CI SD
Country variance 0.142 0.086 0.234 0.038
Year variance 0.118 0.007 0.389 2.687
Occupation variance (ISCO 88 2 digit) 0.266 0.149 0.471 0.082
MOR Country Level 1.150
ICC Country Level 0.037
MOR Year Level 1.097
ICC Year Level 0.031
MOR Occupation Level 1.399
ICC Occupation Level 0.070

Model 2

Parameter OR 95% CI p
Intercept 0.159 0.132 0.195 0.000
Sex (ref: male) 0.613 0.582 0.647 0.000
Age 0.991 0.989 0.993 0.000
DIC 56222.930
pD 65.080
Random part Mean 95% CI SD
Country variance 0.146 0.086 0.242 0.040
Year variance 0.072 0.006 0.325 0.814
Occupation variance (ISCO 88 2 digit) 0.268 0.150 0.479 0.084
MOR Country Level 1.158
ICC Country Level 0.039
MOR Year Level 0.985
ICC Year Level 0.019
MOR Occupation Level 1.402
ICC Occupation Level 0.071

Model 3

Parameter OR 95% CI p
Intercept 0.156 0.119 0.211 0.000
Sex (ref: male) 0.613 0.580 0.648 0.000
Age 0.991 0.988 0.992 0.000
Has Tertiary Education (ref: no tertiary) 0.794 0.746 0.841 0.000
DIC 56170.930
pD 65.590
Random Part Mean 95% CI SD
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Country variance 0.150 0.090 0.243 0.040
Year variance 0.096 0.007 0.503 0.464
Occupation variance (ISCO 88 2 digit) 0.219 0.123 0.374 0.067
MOR Country Level 1.165
ICC Country Level 0.040
MOR Year Level 1.046
ICC Year Level 0.026
MOR Occupation Level 1.308
ICC Occupation Level 0.058

Model 4

Parameter OR 95% CI p
Intercept 0.130 0.096 0.172 0.000
Sex (ref: male) 0.632 0.600 0.666 0.000
Age 0.991 0.989 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.796 0.750 0.845 0.000
Nights worked per month 1.026 1.021 1.030 0.000
DIC 56078.210
pD 66.200
Random Part Mean 95% CI SD
Country variance 0.156 0.092 0.264 0.044
Year variance 0.104 0.007 0.583 0.436
Occupation variance (ISCO 88 2 digit) 0.222 0.122 0.401 0.072
MOR Country Level 1.180
ICC Country Level 0.041
MOR Year Level 1.063
ICC Year Level 0.027
MOR Occupation Level 1.314
ICC Occupation Level 0.059

Model 5

Parameter OR 95% CI p
Intercept 0.114 0.080 0.166 0.000
Sex (ref: male) 0.629 0.596 0.664 0.000
Age 0.991 0.989 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.801 0.756 0.849 0.000
Nights worked per month 1.021 1.015 1.026 0.000
Works shifts (ref: no) 1.273 1.197 1.351 0.000
DIC 56019.760
pD 67.580
Random Part Mean 95% CI SD
Country variance 0.152 0.090 0.252 0.042
Year variance 0.352 0.010 1.815 2.130
Occupation variance (ISCO 88 2 digit) 0.209 0.119 0.359 0.063
MOR Country Level 1.171
ICC Country Level 0.038
MOR Year Level 1.561
ICC Year Level 0.088
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MOR Occupation Level 1.289
ICC Occupation Level 0.052

Model 6

Parameter OR 95% CI p
Intercept 0.096 0.076 0.123 0.000
Sex (ref: male) 0.651 0.616 0.688 0.000
Age 0.991 0.989 0.992 0.000
Has Tertiary Education (ref: no tertiary) 0.798 0.752 0.847 0.000
Nights worked per month 1.016 1.010 1.021 0.000
Works shifts (ref: no) 1.274 1.201 1.348 0.000
Hours per week worked 1.009 1.007 1.011 0.000
DIC 55940.680
pD 68.140
Random Part Mean 95% CI SD
Country variance 0.162 0.096 0.265 0.044
Year variance 0.089 0.006 0.439 0.561
Occupation variance (ISCO 88 2 digit) 0.211 0.119 0.363 0.063
MOR Country Level 1.191
ICC Country Level 0.043
MOR Year Level 1.028
ICC Year Level 0.024
MOR Occupation Level 1.291
ICC Occupation Level 0.056

Model 7

Parameter OR 95% CI p
Intercept 0.100 0.073 0.129 0.000
Sex (ref: male) 0.649 0.615 0.684 0.000
Age 0.991 0.989 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.797 0.748 0.850 0.000
Nights worked per month 1.016 1.011 1.021 0.000
Works shifts (ref: no) 1.273 1.204 1.345 0.000
Hours per week worked 1.009 1.007 1.011 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.052 0.949 1.148 0.152
Adaptable within limits 1.053 0.979 1.132 0.085
Entirely Self-determined 0.998 0.925 1.073 0.468
DIC 55945.320
pD 72.190
Random Part Mean 95% CI SD
Country variance 0.159 0.096 0.257 0.043
Year variance 0.099 0.006 0.458 0.597
Occupation variance (ISCO 88 2 digit) 0.211 0.117 0.373 0.065
MOR Country Level 1.185
ICC Country Level 0.042
MOR Year Level 1.052
ICC Year Level 0.026
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MOR Occupation Level 1.292
ICC Occupation Level 0.056

Model 8

Parameter OR 95% CI p
Intercept 0.090 0.073 0.115 0.000
Sex (ref: male) 0.652 0.618 0.688 0.000
Age 0.992 0.990 0.993 0.000
Has Tertiary Education (ref: no tertiary) 0.783 0.736 0.834 0.000
Nights worked per month 1.016 1.010 1.021 0.000
Works shifts (ref: no) 1.274 1.207 1.346 0.000
Hours per week worked 1.009 1.007 1.011 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.052 0.957 1.157 0.145
Adaptable within limits 1.051 0.981 1.127 0.076
Entirely self-determined 0.992 0.924 1.068 0.401
Skill-demand match (ref: they match)
Demands too low 1.197 1.142 1.255 0.000
Demands too high 1.289 1.207 1.382 0.000
DIC 55871.250
pD 73.750
Random Part Mean 95% CI SD
Country variance 0.159 0.095 0.263 0.044
Year variance 0.070 0.006 0.372 0.233
Occupation variance (ISCO 88 2 digit) 0.216 0.122 0.381 0.067
MOR Country Level 1.186
ICC Country Level 0.043
MOR Year Level 0.982
ICC Year Level 0.019
MOR Occupation Level 1.301
ICC Occupation Level 0.058

Model 9

Parameter OR 95% CI p
Intercept 0.085 0.065 0.109 0.000
Sex (ref: male) 0.629 0.597 0.665 0.000
Age 0.991 0.989 0.992 0.000
Has Tertiary Education (ref: no tertiary) 0.800 0.753 0.847 0.000
Nights worked per month 1.015 1.010 1.020 0.000
Works shifts (ref: no) 1.249 1.181 1.321 0.000
Hours per week worked 1.008 1.006 1.010 0.000
Working time arrangement (ref: set by company)
Choice between several fixed schedules 1.081 0.986 1.183 0.051
Adaptable within limits 1.083 1.013 1.158 0.009
Entirely self-determined 1.031 0.956 1.105 0.204
Skill-demand match (ref: they match)
Demands too low 1.171 1.116 1.233 0.000
Demands too high 1.251 1.166 1.343 0.000
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Paid appropriately (ref: Neither agree nor disagree)
Disagree 1.492 1.404 1.577 0.000
Agree 0.858 0.809 0.912 0.000
DIC 55443.620
pD 75.200
Random Part Mean 95%CI SD
Country variance 0.156 0.093 0.257 0.042
Year variance 0.055 0.005 0.275 0.226
Occupation variance (ISCO 88 2 digit) 0.195 0.110 0.339 0.060
MOR Country Level 1.180
ICC Country Level 0.042
MOR Year Level 0.941
ICC Year Level 0.015
MOR Occupation Level 1.260
ICC Occupation Level 0.053
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BHPS Multilevel Intermediate Models

Table D.1: Intermediate Models for Health Status

Model 0

OR 95% CI p
Intercept 3.783 3.290 4.229 0.000
DIC 115883.010
pD 9366.570
Random Part Mean 95% CI SD
Region Variance 0.065 0.027 0.151 0.033
Occupation Variance 0.019 0.011 0.03 0.005
Individual Variance 1.599 1.527 1.677 0.039
Region MOR 0.967
Region ICC 0.013
Occupation MOR 0.820
Occupation ICC 0.004
Individual MOR 4.032
Individual ICC 0.322

Model 1

OR 95% CI p
Intercept 4.121 3.696 4.655 0.000
Sex (ref: male) 0.852 0.806 0.899 0.013
DIC 115882.070
pD 9359.290
Random Part Mean 95% CI SD
Region Variance 0.065 0.027 0.153 0.034
Occupation Variance 0.018 0.01 0.03 0.005
Individual Variance 1.594 1.514 1.671 0.040
Region MOR 0.968
Region ICC 0.013
Occupation MOR 0.816
Occupation ICC 0.004
Individual MOR 4.021
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Individual ICC 0.321
Model 2

OR 95% CI p
Intercept 6.099 5.392 7.097 0.000
Sex (ref: male) 0.851 0.802 0.903 0.000
Age 0.991 0.989 0.992 0.000
DIC 115797.180
pD 9320.310
Random Part Mean 95% CI SD
Region Variance 0.072 0.039 0.028 0.176
Occupation Variance 0.021 0.006 0.011 0.034
Individual Variance 1.590 0.036 1.152 1.661
Region MOR 0.985
Region ICC 0.014
Occupation MOR 0.827
Occupation ICC 0.004
Individual MOR 4.012
Individual ICC 0.320

Model 3

OR 95% CI p
Intercept 5.444 4.738 6.639 0.000
Sex (ref: male) 0.855 0.810 0.902 0.000
Age 0.991 0.989 0.993 0.000
Has Tertiary Education (ref: up to secondary) 1.471 1.372 1.575 0.000
DIC 115737.790
pD 9287.750
Random Part Mean 95% CI SD
Region Variance 0.067 0.027 0.161 0.035
Occupation Variance 0.012 0.006 0.02 0.004
Individual Variance 1.580 1.503 1.655 0.039
Region MOR 0.974
Region ICC 0.014
Occupation MOR 0.786
Occupation ICC 0.002
Individual MOR 3.990
Individual ICC 0.319

Model 4

OR 95% CI p
Intercept 4.778 4.099 5.607 0.000
Sex (ref: male) 0.919 0.867 0.975 0.000
Age 0.988 0.987 0.991 0.000
Has Tertiary Education (ref: up to secondary) 1.345 1.238 1.450 0.000
Gross monthly pay (GBP) 1.000132 1.000104 1.00016 0.000
DIC 115688.550
pD 9259.860
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Random Part Mean 95% CI SD
Region Variance 0.065 0.026 0.153 0.034
Occupation Variance 0.007 0.002 0.013 0.003
Individual Variance 1.569 1.497 1.645 0.037
Region MOR 0.968
Region ICC 0.013
Occupation MOR 0.757
Occupation ICC 0.001
Individual MOR 3.965
Individual ICC 0.318

Model 5

OR 95% CI p
Intercept 5.677 4.938 6.497 0.000
Sex (ref: male) 0.893 0.843 0.943 0.000
Age 0.988 0.986 0.990 0.000
Has Tertiary Education (ref: up to secondary) 1.334 1.242 1.434 0.000
Gross monthly pay (GBP) 1.000151 1.000124 1.000178 0.000
Job hours per week 0.996 0.994 0.997 0.405
DIC 115678.01
pD 9245.290
Random Part Mean 95% CI SD
Region Variance 0.065 0.026 0.153 0.035
Occupation Variance 0.007 0.003 0.013 0.003
Individual Variance 1.563 1.495 1.642 0.038
Region MOR 0.967
Region ICC 0.013
Occupation MOR 0.760
Occupation ICC 0.001
Individual MOR 3.951
Individual ICC 0.317

Model 6

OR 95% CI p
Intercept 5.695 4.855 6.663 0.000
Sex (ref: male) 0.892 0.846 0.944 0.000
Age 0.988 0.986 0.989 0.000
Has Tertiary Education (ref: up to secondary) 1.341 1.244 1.443 0.000
Gross monthly pay (GBP) 1.000151 1.000124 1.000176 0.000
Job hours per week 0.995 0.994 0.997 0.000
Works flexitime (ref: Not mentioned) 0.928 0.878 0.980 0.000
DIC 115670.28
pD 9255.820
Random Part Mean 95% CI SD
Region Variance 0.067 0.027 0.156 0.035
Occupation Variance 0.007 0.002 0.013 0.003
Individual Variance 1.567 1.493 1.646 0.038
Region MOR 0.972
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Region ICC 0.014
Occupation MOR 0.758
Occupation ICC 0.001
Individual MOR 3.962
Individual ICC 0.318

Model 7

OR 95% CI p
Intercept 5.270 4.272 6.633 0.000
Sex (ref: male) 0.879 0.820 0.932 0.000
Age 0.988 0.986 0.990 0.000
Has Tertiary Education (ref: up to secondary) 1.358 1.262 1.457 0.000
Gross monthly pay (GBP) 1.000127 1.000101 1.000154 0.000
Job hours per week 0.997 0.995 0.999 0.000
Works flexitime (ref: Not mentioned) 0.925 0.882 0.971 0.001
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 0.796 0.724 0.874 0.000
Not very satisfied 0.905 0.850 0.961 0.000
Satisfied 1.114 1.053 1.174 0.000
Very Satisfied 1.297 1.197 1.398 0.000
DIC 115585.600
pD 9188.89
Random Part Mean 95% CI SD
Region Variance 0.070 0.279 0.161 0.036
Occupation Variance 0.007 0.003 0.012 0.002
Individual Variance 1.539 1.474 1.611 0.036
Region MOR 0.980
Region ICC 0.014
Occupation MOR 0.757
Occupation ICC 0.001
Individual MOR 3.898
Individual ICC 0.314

Table D.2: Intermediate Models for Health Problems with the Limbs or Muscles

Model 0

OR 95% CI p
Intercept 0.048 0.042 0.057 0.000
DIC 69028.630
pD 8898.240
Random Part Mean 95% CI SD
Region Variance 0.083 0.029 0.212 0.048
Occupation Variance 0.016 0.007 0.308 0.006
Individual Variance 6.397 6.064 6.745 0.178
Region MOR 1.013
Region ICC 0.008
Occupation MOR 0.807
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Occupation ICC 0.002
Individual MOR 24.119
Individual ICC 0.654

Model 1

OR 95% CI p
Intercept 0.042 0.033 0.052 0.000
Sex (ref: male) 1.225 1.114 1.346 0.000
DIC 68979.890
pD 8884.190
Random Part Mean 95% CI SD
Region Variance 0.089 0.032 0.153 0.053
Occupation Variance 0.018 0.009 0.033 0.006
Individual Variance 6.421 6.052 6.801 0.189
Region MOR 1.029
Region ICC 0.009
Occupation MOR 0.816
Occupation ICC 0.002
Individual MOR 24.284
Individual ICC 0.654

Model 2

OR 95% CI p
Intercept 0.002 0.001 0.002 0.000
Sex (ref: male) 1.180 1.068 1.298 0.000
Age 1.092 1.089 1.097 0.000
DIC 66916.100
pD 8353.050
Random Part Mean 95% CI SD
Region Variance 0.121 0.039 0.372 0.095
Occupation Variance 0.004 0.001 0.011 0.003
Individual Variance 5.993 5.676 6.303 0.165
Region MOR 1.102
Region ICC 0.013
Occupation MOR 0.740
Occupation ICC 4.535E-04
Individual MOR 21.504
Individual ICC 0.637

Model 3

OR 95% CI p
Intercept 0.002 0.001 0.003 0.001
Sex (ref: male) 1.171 1.064 1.301 0.000
Age 1.091 1.088 1.094 0.000
Has Tertiary Education (ref: up to secondary) 0.653 0.576 0.739 0.000
DIC 66931.460
pD 8342.800
Random Part Mean 95% CI SD
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Region Variance 0.127 0.096 0.037 0.377
Occupation Variance 0.003 0.003 0.001 0.011
Individual Variance 5.927 0.156 5.623 6.239
Region MOR 1.117
Region ICC 0.733
Occupation MOR 0.014
Occupation ICC 3.673E-04
Individual MOR 21.099
Individual ICC 0.634

Model 4

OR 95% CI p
Intercept 0.002 0.001 0.002 0.000
Sex (ref: male) 1.122 1.022 1.228 0.013
Age 1.094 1.090 1.098 0.000
Has Tertiary Education (ref: up to secondary) 0.709 0.630 0.810 0.000
Gross monthly pay (GBP) 0.9999238 0.9998892 0.9999594 0.000
DIC 66882.860
pD 8334.470
Random Part Mean 95% CI SD
Region Variance 0.089 0.032 0.214 0.049
Occupation Variance 0.003 3.00E-04 0.013 0.002
Individual Variance 5.968 5.667 6.255 0.149
Region MOR 1.027
Region ICC 0.009
Occupation MOR 0.727
Occupation ICC 2.990E-04
Individual MOR 21.350
Individual ICC 0.638

Model 5

OR 95% CI p
Intercept 0.002 0.001 0.002 0.000
Sex (ref: male) 1.142 1.018 1.277 0.010
Age 1.095 1.092 1.098 0.000
Has Tertiary Education (ref: up to secondary) 0.704 0.619 0.796 0.000
Gross monthly pay (GBP) 0.9999209 0.9998791 0.9999607 0.000
Job hours per week 1.001 0.998 1.004 0.180
DIC 66877.5
pD 8337.190
Random Part Mean 95% CI SD
Region Variance 0.087 0.031 0.204 0.046
Occupation Variance 0.003 5.00E-04 0.008 0.002
Individual Variance 5.991 5.712 6.263 0.144
Region MOR 1.024
Region ICC 0.009
Occupation MOR 0.725
Occupation ICC 2.817E-04
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Individual MOR 21.493
Individual ICC 0.639

Model 6

OR 95% CI p
Intercept 0.002 0.001 0.006 0.000
Sex (ref: male) 1.109 0.994 1.231 0.033
Age 1.095 1.091 1.098 0.000
Has Tertiary Education (ref: up to secondary) 0.696 0.616 0.786 0.000
Gross monthly pay (GBP) 0.9999211 0.9998809 0.9999591 0.000
Job hours per week 1.000 0.997 1.003 0.454
Works flexitime (ref: Not mentioned) 1.063 0.988 1.142 0.051
DIC 66891.7
pD 8338.480
Random Part Mean 95% CI SD
Region Variance 0.365 0.039 1.866 0.507
Occupation Variance 0.002 4.00E-04 0.007 0.002
Individual Variance 5.967 5.692 6.281 0.148
Region MOR 1.584
Region ICC 0.038
Occupation MOR 0.723
Occupation ICC 2.467E-04
Individual MOR 21.343
Individual ICC 0.620

Model 7

OR 95% CI p
Intercept 0.002 0.002 0.002 0.000
Sex (ref: male) 1.131 1.022 1.271 0.005
Age 1.094 1.090 1.098 0.000
Has Tertiary Education (ref: up to secondary) 0.694 0.606 0.792 0.000
Gross monthly pay (GBP) 0.9999383 0.9999039 0.9999719 0.000
Job hours per week 1.000 0.997 1.002 0.443
Works flexitime (ref: Not mentioned) 1.061 0.987 1.136 0.057
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 1.094 0.964 1.243 0.092
Not very satisfied 1.031 0.944 1.121 0.253
Satisfied 0.897 0.828 0.965 0.000
Very Satisfied 0.813 0.725 0.910 0.000
DIC 66902.240
pD 8329.880
Random Part Mean 95% CI SD
Region Variance 0.094 0.034 0.233 0.052
Occupation Variance 0.002 0.003 0.007 0.002
Individual Variance 5.908 5.599 6.245 0.162
Region MOR 1.040
Region ICC 0.010
Occupation MOR 0.723
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Occupation ICC 2.616E-04
Individual MOR 20.983
Individual ICC 0.636

Table D.3: Intermediate Models for Health Problems relating to Anxiety/Depression

Model 0

OR 95% CI p
Intercept 0.004 0.003 0.005 0.000
DIC 28940.020
pD 4344.520
Random Part Mean 95% CI SD
Region Variance 0.024 0.003 0.075 0.019
Occupation Variance 0.101 0.054 0.167 0.029
Individual Variance 7.723 7.240 6.745 8.182
Region MOR 0.840
Region ICC 0.002
Occupation MOR 1.056
Occupation ICC 0.009
Individual MOR 34.342
Individual ICC 0.693

Model 1

OR 95% CI p
Intercept 0.002 0.002 0.003 0.000
Sex (ref: male) 3.744 3.202 4.336 0.000
DIC 28876.930
pD 4275.210
Random Part Mean 95% CI SD
Region Variance 0.027 0.003 0.088 0.023
Occupation Variance 0.020 0.006 0.043 0.010
Individual Variance 7.377 6.927 7.891 0.248
Region MOR 0.851
Region ICC 0.003
Occupation MOR 0.824
Occupation ICC 0.002
Individual MOR 31.413
Individual ICC 0.689

Model 2

OR 95% CI p
Intercept 0.001 0.000 0.001 0.000
Sex (ref: male) 3.947 3.364 4.566 0.000
Age 1.035 1.029 1.041 0.000
DIC 28550.430
pD 4228.600
Random Part Mean 95% CI SD
Region Variance 0.031 0.039 0.372 0.026
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Occupation Variance 0.012 0.001 0.011 0.009
Individual Variance 7.838 5.676 6.303 0.314
Region MOR 0.865
Region ICC 0.003
Occupation MOR 0.786
Occupation ICC 0.001
Individual MOR 35.354
Individual ICC 0.702

Model 3

OR 95% CI p
Intercept 0.001 0.000 0.001 0.000
Sex (ref: male) 3.855 3.262 4.428 0.000
Age 1.033 1.028 1.038 0.000
Has Tertiary Education (ref: up to secondary) 0.947 0.781 1.123 0.258
DIC 28593.630
pD 4234.780
Random Part Mean 95% CI SD
Region Variance 0.031 0.005 0.09 0.025
Occupation Variance 0.012 0.003 0.033 0.008
Individual Variance 7.732 7.011 8.372 0.325
Region MOR 0.864
Region ICC 0.003
Occupation MOR 0.788
Occupation ICC 0.001
Individual MOR 34.423
Individual ICC 0.699

Model 4

OR 95% CI p
Intercept 0.001 0.000 0.001 0.000
Sex (ref: male) 3.659 3.123 4.227 0.000
Age 1.034 1.029 1.039 0.000
Has Tertiary Education (ref: up to secondary) 1.004 0.820 1.193 0.501
Gross monthly pay (GBP) 0.9999349 0.9998733 0.9999983 0.023
DIC 28623.920
pD 4238.690
Random Part Mean 95% CI SD
Region Variance 0.038 0.004 0.135 0.054
Occupation Variance 0.012 0.003 0.029 0.007
Individual Variance 7.668 7.019 8.345 0.329
Region MOR 0.890
Region ICC 0.003
Occupation MOR 0.785
Occupation ICC 0.001
Individual MOR 33.861
Individual ICC 0.697
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Model 5

OR 95% CI p
Intercept 0.001 0.000 0.001 0.000
Sex (ref: male) 3.650 3.169 4.241 0.000
Age 1.035 1.029 1.040 0.000
Has Tertiary Education (ref: up to secondary) 1.000 0.841 1.193 0.484
Gross monthly pay (GBP) 0.9999474 0.9998819 1.000005 0.04
Job hours per week 0.997 0.993 1.001 0.069
DIC 28586.44
pD 4233.750
Random Part Mean 95% CI SD
Region Variance 0.030 0.004 0.093 0.024
Occupation Variance 0.011 0.001 0.031 0.008
Individual Variance 7.771 7.295 8.319 0.264
Region MOR 0.863
Region ICC 0.003
Occupation MOR 0.780
Occupation ICC 0.001
Individual MOR 34.761
Individual ICC 0.700

Model 6

OR 95% CI p
Intercept 0.001 0.000 0.001 0.000
Sex (ref: male) 3.612 3.088 4.179 0.000
Age 1.033 1.028 1.038 0.000
Has Tertiary Education (ref: up to secondary) 0.999 0.824 1.230 0.465
Gross monthly pay (GBP) 0.9999481 0.9998802 1.000004 0.039
Job hours per week 0.996 0.992 1.001 0.074
Works flexitime (ref: Not mentioned) 1.091 0.971 1.219 0.069
DIC 28612.860
pD 4234.550
Random Part Mean 95% CI SD
Region Variance 0.031 0.004 0.918 0.024
Occupation Variance 0.014 0.003 0.035 0.008
Individual Variance 7.669 7.166 8.283 0.279
Region MOR 0.867
Region ICC 0.003
Occupation MOR 0.796
Occupation ICC 0.001
Individual MOR 33.876
Individual ICC 0.697

Model 7

OR 95% CI p
Intercept 0.001 0.000 0.001 0.000
Sex (ref: male) 3.732 3.157 4.337 0.000
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Age 1.034 1.028 1.039 0.000
Has Tertiary Education (ref: up to secondary) 0.976 0.801 1.171 0.387
Gross monthly pay (GBP) 0.9999773 0.9999117 1.000027 0.235
Job hours per week 0.996 0.992 1.000 0.032
Works flexitime (ref: Not mentioned) 1.095 0.974 1.232 0.065
Job satisfaction: Total pay (ref: Neither satisfied nor dissatisfied)
Not satisfied 1.641 1.318 2.016 0.000
Not very satisfied 1.224 1.054 1.415 0.008
Satisfied 0.996 0.861 1.155 0.470
Very Satisfied 0.847 0.701 1.017 0.041
DIC 28603.55
pD 4232.610
Random Part Mean 95% CI SD
Region Variance 0.032 0.005 0.09 0.023
Occupation Variance 0.014 0.003 0.033 0.008
Individual Variance 7.641 7.067 8.231 0.308
Region MOR 0.868
Region ICC 0.003
Occupation MOR 0.797
Occupation ICC 0.001
Individual MOR 33.632
Individual ICC 0.696
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