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Abstract   
  

Personalised medicine is a medical approach that emphasises the customisation of healthcare, with 

all decisions and practices being tailored to individual patients.   

  

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing condition of the lungs with a median 

survival of 2-3 years from diagnosis. There is however vast heterogeneity in terms of presenting 

features, severity and disease course. Individual survival varies greatly as a result, leading to difficulties 

for patients and clinicians in terms of end-of-life discussions, treatment choices and conduct of clinical 

trials.   

Clinicians would benefit from tools that would help to better predict clinical progression or track 

response to therapy. Several prognostic tools have been used in IPF with variable success. 

CardioPulmonary Exercise Testing (CPET) has been proposed as a potentially effective tool for the early 

detection of gas exchange abnormalities in lung diseases but its prognostic value remains uncertain. 

There are limited data available on the use of CPET as a predictive tool for disease progression in the 

setting of IPF, with a weak correlation between CPET and mortality reported in small cohorts. The 

predictive value of CPET in determining future disease progression and its relationship with Quality of 

Life (QoL) measurements and lung physiology is not known.   

This thesis aims to test the hypothesis that CPET would be feasible in a population of mild to moderate 

IPF patients and more sensitive to change in patient’s health status than 6 Minute Walk Test (6MWT), 

Forced Vital Capacity (FVC) or Transfer factor for carbon monoxide (TLCO), the routine clinical tests 

used globally today.  
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Chapter 1. Introduction  
  

The Interstitial Lung Diseases (ILDs) also known as the Diffuse Parenchymal Lung Diseases (DPLD) are 

a group of over 200 heterogeneous acute and chronic lung disorders. Whilst some of these lung 

disorders may be triggered by an underlying autoimmune condition, or occur secondary to a 

hazardous chemical such as asbestos, among these disorders are the Idiopathic Interstitial 

Pneumonias (IIPs), all with an unknown aetiology and include Idiopathic Pulmonary Fibrosis (IPF) 

(Figure 1.1) (Demedts and Costabel 2002).  

 

Figure 1.1. Classification of ILD. Adapted from ATS/ERS international multidisciplinary consensus classification of the idiopathic interstitial 
pneumonias. (Demedts and Costabel 2002)  
1.1. Idiopathic Pulmonary Fibrosis  

IPF is a progressive and in most cases fatal pulmonary disease of unknown cause, affecting gaseous 

exchange at the lung parenchyma. Although the causal pathology for disease onset is uncertain and 

discussed later in this chapter, it is apparent the body’s repair cascade malfunctions leading to 

aberrant wound healing, irreversible epithelial remodelling and the formation of scar tissue (Figure 

1.2) (Chambers 2008).   

  
Figure 1.2. Graphical description of the thickening of alveoli walls in pathogenesis of IPF. Copied with permission from PulmonaryFibrosis.org 

(Foundation 2020).  
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1.1.2. Epidemiology  

Whilst classified as a rare disease (this is defined by the European Medicines Agency (EMA) as a disease 

affecting fewer than 5 in 10,000 across the European Union) there are an estimated 32,500 patients 

living in the UK with IPF, with approximately 6000 new cases per year. IPF largely affects patients over 

the age of 60 and is significantly more prevalent in males than females (Snell, Strachan and Hubbard 

2016), although there is no evidence to suggest a difference of IPF incidence based on race, ethnic 

group or social environment (Meltzer and Noble 2008). In the US, due to a rising number & aging 

population, it is thought there will be a doubling of IPF cases between 2005 and 2030 (Fernández Pérez 

et al. 2010).   

1.1.3. Proposed Risk Factors for disease development  

The origin of the initial epithelial injury, thought to be the triggering factor of this disease is largely 

unknown (idiopathic), however a number of exposures have been suggested as risk factors for 

development of IPF. The most common of these being a history of smoking and older age (Bellou et 

al. 2017) although no direct causal association has been established for either of these and estimates 

of effect vary between studies depending on study design and case definition (Ryu et al. 2001).  

Occupational exposures, such as farm workers, vets, gardeners and metal or steel industry workers 

have an independent association with the development of the high-resolution computed tomography 

(HRCT) pattern associated with but not definitive for IPF, usual interstitial pneumonia (UIP). Further 

work from Baumgartner and colleagues suggested raising birds, hairdressing and exposure to 

vegetable or animal dust were significantly associated with a diagnosis of IPF when compared to 

agematched controls (odds ratio for all, in excess of 4.0) (Baumgartner et al. 2000).   

Furthermore, one study suggested up to 87% of IPF patients report the symptom of gastrooesophageal 

reflux disease (GORD), leading to the hypothesis that micro-aspiration of acid into the lungs is a 

significant initiating factor for this disease (Raghu et al. 2006a). Support for this hypothesis has grown 

by evidence linking GORD and the presence of hiatus hernia (Fein et al. 1999), suggesting that hiatus 

hernia may be a co-factor in not only the pathogenesis of IPF, but also the subsequent disease 

progression (Mackintosh et al. 2019).  

Other potential risk factors for development of IPF include diabetes (Gribbin, Hubbard and Smith 2009)  

and viral infection. Whilst some evidence exists pointing towards a role of viruses in acute 

exacerbations of IPF (AE-IPF), including Epstein Barr virus (EBV) & Hepatitis C (HCV) (ATS/ERS Statement 

2000) their exact role remains uncertain. The propensity of both virus’ and bacterial infection to cause 

alveolar-epithelial cell injury has been well documented, however their role in pathogenesis of the 
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disease is little understood (Yin et al. 2020).  A recent paper from the UK has also examined a causal 

effect of telomere shortening as a mechanism for pathogenesis that is unique to IPF and is not seen in 

other chronic lung diseases, such as COPD (Duckworth et al. 2020). Finally, the role of genetics has 

been long explored as a cause of IPF, with one estimation that up to 20% of IPF cases could have a 

genetic foundation (García-Sancho et al. 2011). Whilst numerous studies have investigated the role of 

individual genes in IPF pathogenesis, a gain of function MUC5B gene polymorphism appears to be the 

strongest genetic risk factor and effect size for IPF (Evans et al. 2016) (Figure 1.3) and has been 

implicated in familial forms (Yang et al. 2015). Animal models observing the overexpression of this gene 

have suggested impaired mucus clearance, leading to the initiation of fibrosis as a plausible scientific 

pathway, although further research on this continues (Hancock et al.  

2018).   

  

  

 Fig 1.3. Relationship between allele frequency and penetrance of the risk allele. Adapted from Figure 1 (Antonarakis et al. 2010)  

  

Genetic profiling as a potential prognostic tool has to date been little explored. An earlier age of onset 

of familial IPF (f-IPF) is associated with a more aggressive disease course (Krauss et al. 2019) and an 

ERS taskforce is due to publish a consensus paper on genetic involvement in progressive fibrosis within 

the coming twelve months (Borie and Van Moorsel 2021).  

1.2. Pathogenesis of IPF  

There remains no clear consensus on the pathogenesis of IPF. Generalised inflammation progressing 

to widespread parenchymal fibrosis was an historical paradigm (Kim, Collard and King 2006) that has 

become less popular over the last decade and increasingly it is considered, that repetitive epithelial 

injury and activation of fibroblasts are critical early events. This in turn triggers a cascade eventually 

leading to reorganisation of pulmonary tissue where fibrosis is believed to predominate over 

inflammation (Selman and Pardo 2014). The alveolar wall, the site of gaseous exchange between the 
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lungs and the bloodstream, is made largely of two types of Alveolar Epithelial cells (AECs), type I and 

type II, with the former covering up to 95% of the alveolar epithelial surface (McElroy and Kasper 

2004). Type I cells increase the surface area of the alveolar wall and facilitate gaseous exchange. Type 

II AEC’s secrete surfactant in order to lower surface tension and prevent alveolar atelectasis. Upon 

injury, type II AECs are stimulated to proliferate and then differentiate, to facilitate replacement of 

type I AECs. This process is known as re-epithelialisation and such a wound healing process is essential 

to restore the barrier integrity. An aberrant response to repeated injury of this surface is now thought 

to be the primary mechanism of IPF (Herzog et al. 2008).  

Damage to the alveolar capillary membrane is a triggering event that mediates a down-stream 

cascade resulting in epithelial-mesenchymal transition (EMT) whereby epithelial cells undertake 

molecular changes gaining a mesenchymal phenotype.  A subsequent increase in fibroblast 

differentiation, activation of the coagulation cascade, fibroblast/myofibroblast differentiation and 

recruitment to sites of injury with deposition of extracellular matrix, and disruption of normal lung 

architecture results in scar tissue formation.  This can be seen as the characteristic usual interstitial 

pneumonia (UIP) scarring pattern observed on high-resolution computed tomography (HRCT) in IPF 

patients. Such a radiological finding may not be conclusive of an IPF diagnosis but is highly suggestive 

given an absence of other clinical or serological history (Figure 1.4) (Paolocci et al. 2018).  

  

   
Figure 1.4. Patient with diagnosed IPF with HRCT pattern consistent with UIP. Reticulation with honeycombing     .  Picture shown with 
permission from Bristol ILD Service MDT.  
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1.3. Clinical Course of IPF  

The most frequent symptom patients will report to their healthcare professional is breathlessness, 

with which many patients will have experienced a progressive worsening over >6-month period 

(ATS/ERS Statement 2000) .A non-productive cough is another common symptom at presentation, 

whilst on examination, lower lobe, bibasilar ‘velcro-like’ crackles are present in approximately 80% of 

IPF patients. Although less common, finger clubbing is reported in 30-50% of patients at initial 

presentation (Nakamura and Suda 2015).  

The clinical course varies greatly between patients and is very difficult to predict (Ley, Collard and King 

2011, Raghu et al. 2011), (Kim et al. 2006) as seen graphically in figure 1.5 (Kim, Perlman and Tomic 

2015). Whilst some patients rapidly deteriorate within months, others may have a much slower 

disease progression. At any point in the disease trajectory, acute deteriorations may be experienced. 

Traditionally, this acute worsening (including new radiographic abnormalities on HRCT), accompanied 

by the absence of specific cause for this disease change, is known as an Acute Exacerbation of IPF 

(AEIPF). More recent thinking from an international expert panel following a literature review in to 

these often catastrophic events, has suggested AE-IPF share many clinical features with patients 

experiencing Acute Lung Injury (ALI) from a known cause (e.g. Infection) and such events should be 

labelled as ‘triggered’ or ‘idiopathic’, with an awareness that outcome can often be similar (Collard et 

al. 2016).  After an AE-IPF, in hospital mortality rates are extremely high with a mortality rate up to 

85% and mean survival rate of 3-13 days (Collard et al. 2016). This disease heterogeneity makes it 

difficult for clinicians to give an accurate prognosis at presentation and poses challenges with regards 

to timing of lung transplantation and palliative care. Understanding an individual’s risk of rapid 

progression or susceptibility to AE-IPF, may allow clinicians to increase observation and provide an 

improved personal care plan.  

 
  

Figure 1.5. Natural history of idiopathic pulmonary fibrosis. Adapted from (Kim et al. 2015).  
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1.4. Diagnosis  

Within the UK, specialist tertiary referral centres have been introduced alongside a National Institute 

for Health and Care Excellence (NICE) clinical guideline to support the diagnosis and management of 

IPF (2017). As outlined in the recently updated International consensus diagnosis guidelines agreed 

by the American Thoracic Society (ATS), European Thoracic Society (ERS), Japanese Respiratory 

Society (JRS) and the Latin American Thoracic Society (ALAT), the gold standard of IPF diagnosis is 

through multi-disciplinary team (MDT) discussion, with the clinical team, radiologist and when 

applicable, pathologist (Raghu et al. 2018). In the context of a classical radiological pattern 

associated with IPF and no clear alternative cause, a diagnosis of IPF can be made by MDT consensus 

without the need for lung biopsy.   

These International diagnostic guidelines suggest biopsies should be performed where diagnosis 

remains uncertain from HRCT. However, this is a cause of debate internationally given the high 30-day 

post-operative complication rate and 3-4% mortality (Kaarteenaho 2013) following video-assisted 

thoracoscopic (VATS) biopsy. There is an increasing use of transbronchial lung cryobiopsy (TBLC), with 

a reduced complication and mortality rate. Producing smaller sample yields, its diagnostic use across 

all ILDs remains uncertain, however in UIP specifically, results are suggestive of being similar to those 

gained via VATS (Zaizen et al. 2019). The first set of guidelines for the use of cryobiopsy in ILD have 

recently been published by expert panel agreement (Maldonado et al. 2020).  

Average life expectancy for an IPF patient is 2-3 years (Ley et al. 2011) and whilst respiratory failure, 

often due to an acute worsening of the disease with an exacerbation of the disease (AE-IPF) is the 

leading course of death, up to 35% of deaths may be unrelated to respiratory failure (cardiac or 

noncardiopulmonary) (Daniels, Yi and Ryu 2008). This prognosis for IPF patients is significantly worse 

than many cancer outcomes with a review in America suggesting a 5-year life expectancy around 20%  

(Kim et al. 2006) (see Figure 1.6).   
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Fig 1.6. Life expectancy of patients with IPF vs different cancers. Adapted from (Kim et al. 2015).  

  

To date, there remains no cure for this condition; two anti-fibrotic medications have been approved 

for the treatment of IPF (nintedanib and pirfenidone) and have both been shown to slow down lung 

function decline in large scale clinical trials and real-world data (Richeldi et al. 2014), (King et al. 2014, 

Rodríguez-Portal 2018). Care should focus on holistic supportive management with involvement of 

Pulmonary Rehabilitation (PR), Oxygen services, symptom control, early referral to lung transplant 

where appropriate and palliative care (Shaw et al. 2017).   

As well as the extensive mortality and morbidity an IPF diagnosis presents, the healthcare costs are 

disparate to the disease prevalence. A Medicare analysis of an over 65-year-old population in the USA 

showed the healthcare costs both pre and post IPF diagnosis to be almost double that of an age 

matched non IPF cohort, with increased outpatient and emergency department visits (Morrow 2019).    

  

1.5. CURRENT PROGNOSTIC TOOLS IN IPF  

1.5.1 Health related quality of life (HRQoL) assessments in IPF  

Until recently, few quality of life measurement questionnaires or disease specific instruments have 

been available to a treating physician to gain an accurate understanding of an individual’s perception 

of their disease severity, how this can impact a patient’s psychological wellbeing and also their ability 

to exercise or perform usual activities of daily living. The relationship between such measures and the 

standard functional testing used for disease severity (FVC, DLCO) is also largely unexplored. In 2004, a 

systematic review by Swigris et al. (Swigris et al. 2005) concluded the variability between study 
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subjects was not fully explained by the patient’s breathlessness or lung function results and an 

individual’s QoL scores may provide unique information aside from clinical measurements.   

The most widely used assessment of QoL in IPF patients to date is the St. Georges Respiratory 

Questionnaire (SGRQ). Developed in 1991 and containing a total of 50 items, the questions are specific 

to the measurement of impact of obstructive airways disease, especially Chronic Obstructive 

Pulmonary Disease (COPD). The utility of SGRQ with IPF patients remains questionable and a review 

of its use in this population concluded further research was needed with regards its validity in IPF, 

(Swigris et al. 2014) although a small retrospective study undertaken in Japan has suggested a score 

>30 has an independent mortality prognosis in patients with IPF (Furukawa et al. 2017).   

To overcome the inherent problems of the lack of disease specificity of SGRQ, 20 years after its first 

iteration, the original authors created an IPF specific SGRQ-I. The item number was reduced to 34 with 

different scales and weightings to the original and the removal of airways particular effects (such as 

wheeze). However, the prospective validation of this questionnaire remains unclear and its use 

globally within clinical trials or in daily clinic use is limited (Yorke, Jones and Swigris 2010).  

More recently, Patel et al. developed an ILD specific questionnaire named King’s Brief Interstitial Lung 

Disease Health Status Questionnaire (K-BILD) (Patel et al. 2012). With a much-reduced item burden, 

comprising 15 questions across 3 domains (breathlessness and activity, chest symptoms and 

psychological), this questionnaire has been validated across several ILD cohorts (Wapenaar et al. 

2017), including large numbers of IPF patients. The condensed question load and time consumption 

allows its use across multiple clinical settings for quick assessment of a patients’ own perspective on 

their disease. In 2019, K-BILD was used for the first time in a large phase III clinical study for a wider 

ILD cohort (Flaherty et al. 2019) and appears to now be the gold standard across fibrosing lung 

conditions with validated minimal clinically important differences (MCIDs) now established across 

different ILD cohorts (Sinha et al. 2019) for total and individual domain scores.  

Finally, and as yet un-validated questionnaire across larger cohorts, is the Idiopathic Pulmonary 

Fibrosis - Patient Reported Outcome Measure (IPF-PROM). This set of questions has been further 

refined to just 13 questions across 4 domains (physical experience of breathlessness, psychological 

experience of breathlessness, emotional well-being and energy) (Russell 2017). This questionnaire 

remains the only IPF specific tool available for patient reported outcomes and assessment of health 

status and may add to our clinical knowledge of an individual’s disease perception and potential 

course. Both questionnaires can be seen within the appendices (see appendix A and B).  
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1.5.2 Static measurements  

As has been highlighted, predicting the prognosis to individual patients is extremely challenging. As 

such, a number of prediction tools have been designed and are proposed. Forced Vital Capacity (FVC), 

the amount of air a patient can exhale in a single breath (measured in ml) and specifically a decline in 

a patient’s expected percent predicted FVC is now widely accepted in larger phase II and phase III 

clinical trials as a surrogate marker for mortality (Karimi-Shah and Chowdhury 2015). The magnitude 

of change measured in FVC over a period of time, to be suggestive of a poorer outcome, however, still 

causes debate today. Richeldi and colleagues have concluded a ≥10% decline in FVC over 12 months, 

not only signals a clinically meaningful change to an individual’s lung capacity but also maintains 

prognostic accuracy (Richeldi et al. 2012). A further physiological test measuring the ability of the lungs 

to transfer gases across the alveolar:blood stream barrier, routinely performed by IPF patients is that 

of diffusion capacity (or Transfer factor) of the lungs for carbon monoxide (TLCO). A number of studies 

have alluded to the idea that this measurement is more accurate than FVC at a given point in the 

patient’s disease, and can predict with greater accuracy, the severity of IPF. Sharpe et al suggested 

TLCO outperformed FVC % predicted when considering 12- and 24-month survival (Sharp, Adamali and 

Millar 2017) however, data from a patient registry in the US (Snyder et al. 2019) has proposed that a 

low FVC % predicted has similar prognostic predictive accuracy as a low TLCO % predicted. Furthermore, 

the difficulty in the reproducibility of this test and the inability of some patients to perform the breath 

hold needed to undertake the measurement has meant TLCO alone, is rarely used to predict survival.  

A number of composite mortality prediction tools have been designed with the most widely used being 

the gender, age, physiology model (GAP). With a simple scoring system, this combines a patient’s 

gender, age and certain physiological scores and places them in to three stages (I – III) to predict a 

survival probability (in months) (Ley et al. 2012) (Figure 1.7). Accurate on a population level, its 

accuracy for individual predication is naturally variable and has greatly limited its routine use with 

patients.  
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Figure 1.7. Longitudinal GAP staging score and probability of survival by stage. Adapted from (Ley et al. 2012).  

One recent addition to the traditional GAP scoring, was suggested by Mikolasch et al (Mikolasch, 

Sahota and Garthwaite 2018). The tallying of the standard GAP score, in addition to the Neutrophil: 

Lymphocyte ratio (NLR), previously shown to be prognostic in certain cancers (Ren et al. 2019), may 

provide improved projective accuracy across a broad IPF patient spectrum with a high NLR predictive 

of earlier mortality (Figure 1.8).  

  

Figure 1.8. GAP stage NLR stratified Cox proportional hazard survival curves. Shown with permission (Mikolasch et al. 2018).  
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In this small study (n=75), the authors concluded a high NLR in IPF patients doubled the possibility of 

death in the follow up period. This was independent of GAP score, but it is suggested this biomarker 

ratio, in conjunction with the GAP scoring can refine and add accuracy to prediction of an individual’s 

prognosis.  

Largely now superseded by the arrival of CPI (described below), the clinical–radiographic–physiologic 

(CRP) scoring system uses seven variables (dyspnoea, chest HRCT, spirometry, lung volume, TLCO, 

resting alveolar-arterial PO2, and exercise O2 saturation). This score was initially devised to assess the 

severity of disease and suitability for transplant whereby each variable was graded in to between 2 – 

9 levels of severity (dependant on the range of data available). The variables were subsequently 

weighted to ensure equivalence across each (Watters et al. 1986). The CRP has more recently been 

adapted and evaluated to predict patient survival (King et al. 2001) although remains little used in 

clinical or research practice.  

The Composite Physiological Index (CPI) (Wells et al. 2003) is a second relatively simple prognostic 

scoring system, which may have greater accuracy than GAP staging when comparing mortality data to 

three years (Lee et al. 2018). The CPI not only includes physiology results but also those from HRCT, 

importantly taking in to account the co-existence of emphysema and fits disease extent against 

pulmonary function testing, providing a more accurate prognostic assessment that pulmonary 

function tests alone (Figure 1.9).   

  

The formula for the CPI was as follows: 
extent of disease on CT = 91.0 - (0.65 x 
percent predicted diffusing capacity for 
carbon monoxide [DLCO]) - (0.53 x percent 
predicted FVC) + (0.34 x percent predicted 
FEV1).  

  

Figure 1.9. Composite Physiologic Index relationship to Disease Extent Observed by Computed Tomography. Shown with permission (Wells 
et al. 2003).  
  

  

The final and most recently published tool for IPF prognosis is a staging instrument developed by 

Torrisi et al.; the Torvan Index (Torrisi et al. 2019). The calculation of a scoring system assigned to pre-

existing comorbidities in addition to the standard GAP scores, as seen in figure 1.11 below, has 
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provided significantly improved accuracy of performance across two independent cohorts although 

its validation & use in large scale clinical trials remains uncertain.   

  

  

Figure 1.10. Torvan scoring system and staging. With permission (Torrisi et al. 2019).  

  

Although relatively quick and easy to perform, the true prognostic value given to these static 

measurements remains unclear and it is likely an individual’s dynamic longitudinal changes, for 

example dyspnoea, HRCT changes and physiological changes over a given time period, will allow a 

much greater accuracy of a likely survival estimate (Kolb and Collard 2014). Furthermore, whilst there 

remains no consensus globally as to the preferred predictive tool of choice, clinicians will be making 

their individual choice for preference and communication of such information to patients will remain 

variable.  

  

1.5.3 Dynamic measurements  

A small number of dynamic exercise tests have been utilised to assess IPF outcomes including 

Cardiopulmonary Exercise testing (CPET) (Fell et al. 2009), 4 metre gait speed (4MGS) (Nolan et al. 

2019) and the Six Minute Walk Test (6MWT) (du Bois et al. 2011). Routinely used around the world, 

patients undertaking the 6MWT are asked to shuttle walk as far as they can within a six-minute period. 

Total distance covered (in metres) and also change in distance over time are two outcomes shown to 

have good prediction of mortality. Du Bois et al showed a reduction of 50m over a 24-week period to 

have a 4-fold increase in death within a 12-month period (du Bois et al. 2011), whereas Caminati and 
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colleagues showed patients walking less than 212m in 6 minutes had a poorer outcome (Caminati et 

al. 2009). Whilst this test has a number of potential benefits in that it has widespread availability, is 

easily reproducible and inexpensive with limited experience needed from the physiologist perspective, 

there are a number of potential pit falls. Patient variability in terms of test effort will have a significant 

effect on the outcome results; fragility, age, gender and a patient’s cognitive function can all provide 

limitations to its usefulness (Heresi and Dweik 2011).   

A more recently explained dynamic test is the 4 MGS. Awaiting further validation, early data whereby 

the time of an individual to walk a 4-meter distance is recorded has suggested 4MGS correlated 

significantly with 6MWT and total KBILD although its prognostic use is unexplored.  

Cardiopulmonary exercise testing has been extensively utilised within secondary care settings but to 

date, there is limited knowledge of its use in the IPF setting. The test itself allows assessment and 

causes of limitations to exercise to be identified via numerous gaseous exchange measurements 

during exercise stress to the ventilatory, circulatory and muscular systems. In addition to conventional 

exercise testing, CPET allows for the measurements of breathing (ventilation) and gas volumes, both 

inhaled (oxygen) and exhaled (carbon dioxide) to be measured. This provides the clinician with a multi 

organ view of the transport and delivery of oxygen to the muscles (mitochondria) and its use during 

activity (Figure 1.12).   

  

   
Figure 1.11. Gas exchange and O2 utilisation during CPET testing (Wasserman 2012).   

  

CPET has been performed for over 50 years (Schraufnagel and Agostoni 2017) although for much of 

this time, only in adults with single disease to aid the evaluation of dyspnoea. Today it is routinely 

used to assess a much more heterogeneous population, from young to old and fit to frail across 

numerous disease states and those with multiple comorbidities. Its use within the field of cardiology 

is perhaps the most widely explored for evaluation of prognosis, diagnosis and assessment of risk in 
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patient known to have cardiac disease (Albouaini et al. 2007, Akinpelu 2018). However, its reach 

extends well beyond assessment of the heart and it is now widely used in the pre-operative 

assessment to aid peri-operative planning and assess a patient’s suitability and potential survival of 

surgery for organ transplant, especially of the heart (Ong et al. 2000) and lung (Dudley and El-Chemaly 

2012). The standardisation of procedures, including COPD, cystic fibrosis, Exercise Induced 

Bronchospasm (EIB) and Lung Volume Reduction Surgery (LVRS) among others were outlined in 

International guidelines published jointly by the American Thoracic Society (ATS) and American 

College of Chest Physicians as far back as 2002 (Society and Society 2002). More recently in 2019, the 

European Respiratory Society published an updated standardisation of CPET with a greater focus on 

the procedural aspect across all chronic lung diseases (Radtke et al. 2019).  

Over the course of a CPET, usually lasting between 8-12 minutes, thousands of measurements will be 

taken from each breath and heartbeat which will be averaged out over a short period of time (often 

30 seconds) and plotted and presented on a 9-panel plot (Figure 1.13) which can essentially be split in 

to four categories:   

1) Work rate (Watts)  

2) Gas exchange (including O2 consumption VO2, CO2 production VCO2 and the output of VCO2 / VO2 

known as the Respiratory Exchange Ratio or RER)  

3) Ventilatory Assessment (including ventilation rate VE, ventilatory equivalents for O2 and CO2 - VE/VO2 

and VE/VCO2 and oxygen saturation)  

4) Cardiac Assessment (including Heart rate, blood pressure and ECG changes)  



 

27  
  

  
Figure 1.12. Example of 9-panel plot in a healthy individual. This presentation of outputs was described by Wasserman and colleagues in 
2012 (Wasserman 2012) with 30-second averaging of data. Panels 2 and 3 present circulatory parameters, panels 5 and 9 represent 
ventilatory parameters whilst 4, 6 And 7 represent ventilatory efficiency. Panel 8 (RER) shows metabolic changes. AT is most easily 
calculated in panel 3 with the divergence of VCO2 against VO2.  
  
Experience of using such data presentation will lead a physiologist or clinician to have focus on these 

different plots dependent upon the measurement they have an emphasis on. Generally, panels 2,3 

and 5 represent the cardiac outputs, the ventilatory system is shown in plots 1, 4 and 7 whilst the 

remaining graphs (6, 8 and 9), represent the ventilation-perfusion relationship.  

As the work requirements increase with load, so do the muscles energy needs, initiating the use of 

anaerobic metabolism as the oxygen supply cannot meet the muscles metabolic demands. This causes 

a rise in blood lactate concentrations alongside metabolic acidosis. The resulting hydrogen ion 

generation in the cells (from lactic acid dissociation) are buffered by bicarbonate resulting in a sharp 

rise in VCO2 when compared to VO2 (which until this point will rise at a similar rate). This point, which 

is most clearly seen in panel 3 in figure 1.12 utilising the VCO2 versus VO2 is known as the Anaerobic 

Threshold (AT) and is often observed at 50-60% of VO2 peak. This method of calculation is the V Slope 

method and is utilised in our study. This point is important as it can be representative of an individual’s 
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cardiovascular fitness and its observation (or lack of) can often distinguish between the cause of 

exercise limitation being cardiac or ventilatory associated (Albouaini et al. 2007).  

Essential to the interpretation of CPET results is the patient’s attainment of a maximal effort test and 

the parameters to assess this are outlined later in the thesis. The test itself can take place on a 

treadmill with the patient walking/running or on a cycle ergometer. Often the use of a treadmill can 

provide greater VO2 peak values, simply by the greater muscle volume being worked, but it may not 

be suitable for all. The choice of each is often made by the physiologist and may be dependent on 

patient preference or indeed ability/fragility.   

Despite the abundance of data derived from CPET it does come with potential issues when compared 

to more widely used functional tests. Costs in an ever increasing financially restricted health service, 

including both equipment and staffing per test are well in excess of 6MWT and standard LFTs.  

Although serious adverse events during CPETs are rare, this must still be considered on an individual 

basis. In a large Korean retrospective cohort of nearly 1500 elderly patients, serious cardiovascular 

complications occurred in 0.2% (Kim et al. 2019). Finally, and more pertinent to the current day, 

infection control and associated time and costs is a consideration.   

Previous studies with the use of CPET across all ILD subtypes have identified declining functional 

capacity and muscle weakness as strongly predictive of disease progression and increased mortality 

(Panagiotou, Polychronopoulos and Strange 2016), whilst measures of gas exchange may be more 

valuable predictors of outcome than measures of lung mechanics (Lederer et al. 2006, Flaherty et al. 

2006, Ley et al. 2011). Nevertheless, further efforts to develop definitive prediction models are 

required for clinical practice (Kolb and Collard 2014, Ley et al. 2011). Our current knowledge on the 

prognostic use of CPET in IPF patients is further explored in Chapter 2.  

  

  

  

  

  

     
  

  
Chapter 2: CPET in IPF, our current understanding  
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2.1 Introduction  

As discussed in section 1.5.3, cardio-pulmonary exercise testing (CPET) provides a comprehensive 

assessment of the physiological changes in the respiratory, cardiovascular, and musculoskeletal 

systems in a controlled laboratory environment (Layton et al. 2017), that has shown promise in terms 

of prognostic value in a number of chronic respiratory conditions (Ferrazza et al. 2009, Arena and 

Sietsema 2011). My hypothesis that CPET variables could be more sensitive to change in patient’s 

health status than the more traditional lung function parameters (FVC, TLCO or 6MWT) arose from the 

volume of data suggesting other potentially useful markers for example, progression of fibrosis on CT 

bare no correlation with these traditional (and globally accepted) lung function measurements 

(Clukers et al. 2018), (Hayton et al. 2019). Furthermore, patient reported outcomes within larger IPF 

cohort studies has shown no correlation to lung physiology measurements (Richeldi et al. 2014, King 

et al. 2014, Noble et al. 2011). Whilst CPET has been widely used across other disease states to predict 

clinical outcomes and prognosis, especially among cardiology, oncology and suitability for 

transplantation (Patel et al. 2019, Kleber and Köln 2018, Ney et al. 2016), relatively little is known 

about its role in IPF. I was keen to confirm a belief that not only such a test was safely achievable in 

an IPF patient population but also, that relationships between CPET outcomes, patient’s prognosis and 

self-perceived QoL existed.  

To provide a detailed understanding of the currently available data on the longitudinal use of CPET as 

a prognostic tool in IPF patients and in order to gain insight in to difficulties previously encountered 

by research teams around the world in such study cohorts, a formal systematic review was undertaken 

to better inform the study protocols. The primary objective of this search was two-fold. Firstly, to 

better comprehend the safety of this test in our likely cohort, enabling the formulation of the inclusion 

and exclusion criteria and understand the feasibility of recruitment in a mild to moderate population. 

Secondly, to gain an insight in the current knowledge gaps in the prognostic use of CPET in both IPF 

and the wider ILD umbrella diseases and evaluate the current understanding of CPET in predicting 

disease-specific outcomes in long term follow up of ILD populations. The outcomes of this review were 

utilised to formulate a clear understanding of published data, inform our hypothesis and ultimately 

finalise the study design. Should the hypothesis be correct and a prognostic role for CPET be 

confirmed, it could be used to guide earlier intervention for at-risk patients, support cohort 

enrichment for ILD clinical trials and allay anxiety and unnecessary monitoring amongst patients with 

stable ILD.   

 A brief online non-systematic search of the literature suggested small numbers of studies in IPF and 

thus the decision was made to include all ILDs and not just IPF to broaden the potential reader interest 

of the review.  
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To explore the data available, we undertook a full literature review of all studies where CPET variables 

had been used to estimate prognosis across all ILDs. The study selection (according to PRISMA 

statement) can be seen in appendix C, however, of the 946 articles identified by the search criteria 

and subsequent reduction to 658 after duplication extraction, only 18 papers went through to full 

review. By far the dominant reason for rejection was the inclusion criteria not being met, but other 

reasons included the lack of longitudinal data, congress abstracts, and the primary disease state being 

studied was not ILD, see figure 2.1.  

  
Figure 2.1. Study selection flow diagram presented according to PRISMA statement.   
  
  
After full review of 18 papers and exclusion of a further 5 studies due again, to the lack of a longitudinal 

component to the research, only 13 studies remained. Of the studies included, 8 were specifically 

focussed on IPF patients although only 2 provided prospective analysis. The full published article of 

this review, including data from non-IPF cohorts can be seen in appendix D.  

  

  

  
2.2. Materials and methods  

The protocol for this review was prepared in accordance with Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines (Shamseer et al. 2015) and registered in the 
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International Prospective Register of Systematic Reviews (PROSPERO 110198/2018). The benefits of 

utilising PRISMA provides a standardised structure to the writing, allowing critical review of the 

strengths and weakness’, allowing direct replication of the methods undertaken at a future point in 

time. Furthermore, is indicative of the quality of the work undertaken (Moher et al. 2009). Prospective 

registration of the review on PROSPERO gives a published record of the planned work to be 

undertaken, potentially reducing the risk of bias and importantly, avoiding duplication of work 

(Stewart, Moher and Shekelle 2012). In line with PROSPERO registration and the need with our initial 

findings on the limited data available for IPF populations alone, the review team made an amendment 

to the protocol to include the term ‘ILD’ rather than ‘IPF’, furthermore, the allowance of non-English 

language publications was accepted to incorporate all available data.  

2.2.1 Eligibility criteria   

Studies that reported the relationship between CPET assessment and disease progression, prognosis 

or the presence/emergence of specific clinical outcomes of ILD were included.   

Using the PICO framework outlined below, we evaluated publications that fulfilled the following 

criteria:   

Population   

Adults (18 years or older) with a diagnosis of ILD (including but not limited to idiopathic pulmonary 

fibrosis, CTD-related ILD and sarcoid-related ILD).  

Intervention  

Studies reporting the outcome of CPET assessment as a prognostic factor. All available methods of 1) 

performing formal CPET and 2) reporting CPET results were included.   

Comparison  

Patients with/who developed relevant outcomes (see below) were compared with those who did not, 

using CPET testing at baseline in both groups.    

  

  
Outcome measures  

The primary objective was to evaluate the prognostic value of CPET in predicting disease course and 

outcomes in longitudinal (retrospective or prospective) studies of ILD. The relationship between CPET 

results and a number of clinically relevant outcomes including, but not limited to, relevant clinical 



 

32  
  

phenotype and disease demographics (e.g. disease duration, gender, age, lung physiology), disease 

outcomes (e.g. death, hospitalisation), surrogates of disease severity (including, but not limited to lung 

physiology, circulating biomarkers etc.), health-related quality of life (HRQoL) and functional status, 

were examined.    

2.2.2. Study design  

Eligible studies included cohort (retrospective or prospective) and observational longitudinal studies, 

that reported outcomes at a time point distinct from the baseline CPET (i.e. were of an appropriate 

design to evaluate prognostic value). The following types of studies were excluded: 1) animal studies 

2) studies including patients with lung disease where an ILD cohort was not described and reported 

separately 3) studies designed to develop or validate health measurement scales 4) randomized 

controlled trials 5) case reports 6) qualitative research 7) non-original research publications (i.e., 

editorials, reviews) 8) abbreviated reports (e.g. letters to editors) and conference proceedings.  

2.2.3. Search strategy   

The search criteria were developed in accordance with search recommendations for systematic 

reviews of evaluations of prognostic variables (Altman et al. 2000). Electronic searches were 

performed in Medline and EMBASE, with no publication date or language restrictions.  Full details of 

the specific search criteria can be seen in figure 2.2.  

((Cardiopulmonary exercise test*) OR (cardiopulmonary exercise) OR (exercise test*)) AND 
((idiopathic pulmonary fibrosis) OR (pulmonary fibrosis) OR (interstitial lung disease) OR 
(idiopathic interstitial pneumonia) OR (Cryptogenic fibrosing alveolitis) OR (fibrosing 
alveolitis) OR (Connective tissue disease-related interstitial lung disease) OR (Connective 
tissue disease-associated interstitial lung disease) OR (rheumatoid lung) OR (systemic 
sclerosis) OR (scleroderma) OR (polymyositis) OR (myositis)) AND ((cohort studies) OR 
(longitudinal studies) OR (case-control studies) OR (follow-up studies) OR (retrospective 
studies) OR (prospective studies) OR (incidence) OR (mortality) OR (follow-up studies) OR 
(prognos*) OR (predict*) OR (course) OR (prognostic) OR (prognosis) OR (progression) OR 
(future) OR (development) OR (outcome) OR (treatment outcome) OR (disease-free 
survival) OR (treatment failure) OR (morbidity) OR (mortality) OR (survival rate) OR (survival) 
OR (cause of death) OR (survival analysis)).  
  

Figure 2.2. Specific search criteria performed in Medline and EMBASE.  

  
All titles and abstracts generated by the search criteria were screened independently by myself and a 

second independent reviewer, identifying those studies relevant and eligible for full text review. 

Agreement between reviewers in the study selection process was assessed using Cohen’s Kappa 
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statistics (Cohen 1968). This methodology used to assess reliability between those rating variables 

within data is now more widely used than assigning an arbitrary percentage score previously utilised, 

as it accounts for the possibility of chance agreement. The kappa score has a range from -1 to +1 

although there is some disagreement on its agreement values in health studies, given a value of 0.41 

is suggestive of assessor agreement (McHugh 2012).  

Any discrepancies/disagreements within our review were resolved by discussion between reviewers 

and included a third party where necessary. Discussions between reviewers resolved any 

discrepancies at each stage of the study selection process. Review articles or editorials focussing on 

the “prognostic aspects of cardiopulmonary exercise testing in Interstitial Lung Disease” were also 

reviewed, to facilitate a grey search of cited manuscripts within these reviews.   

2.2.4. Data extraction   

A standardised form was used to independently extract relevant study details from each of the 

selected studies that included: date of publication, journal or publication source, study design, initial 

population of the study, study inclusion criteria, study exclusion criteria, CPET method, CPET analysis 

endpoints, disease outcomes assessed and a summary of key findings. Study corresponding authors 

were contacted when clarification was required. See Appendix C.  

2.2.5. Risk of bias assessment  

The QUIPS (Quality in Prognosis Study) risk of bias tool was used to assess the risk of bias within every 

included study (Huguet et al. 2013), see figure 2.3. Assessment in this way, scored across 6 domains 

places a high (red), medium (amber) or low (green) risk against the various categories to interpret the 

interrater agreement across the reviewed papers.  
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Figure 2.3. QUIPS tool assessment of bias.  

  

2.3. Results   

Study selection  

Initial simultaneous searches in EMBASE (n=573) and Medline (n=373), performed in early 2019, 

identified a total of 946 articles. After removal of duplicates (n=288), 658 articles generated by the 

search were screened for eligibility and exclusion criteria based on titles and abstract review. There 

was moderate initial agreement between the two reviewers (Cohen’s kappa 0.462 – see appendix E), 

with discordance in 20 abstracts, that was easily resolved through discussion. Eighteen articles 

proceeded to full text review and this led exclusion of a further 5 studies. A total of 13 studies were 

deemed eligible for inclusion. The full study selection process is detailed in figure 2.1.   

2.3.1. Geographical participation and date of publication  

Five studies were undertaken in Europe (5/13, 38%)(Triantafillidou et al. 2013, van der Plas et al. 2014, 

Gläser et al. 2013, Wallaert et al. 2011, Kollert et al. 2011), five in USA (5/13, 38%)(Fell et al. 2009, 

Kawut et al. 2005, Layton et al. 2017, Swigris et al. 2009, King et al. 2001) and the remainder in Israel 

(Vainshelboim et al. 2016), Japan (Miki et al. 2003) and Brazil (Lopes et al. 2012). The majority of 

studies were published in the last 10 years (10/13, 77%)(Layton et al. 2017, Triantafillidou et al. 2013, 

van der Plas et al. 2014, Gläser et al. 2013, Vainshelboim et al. 2016, Lopes et al. 2012, Wallaert et al. 

2011, Swigris et al. 2009, King et al. 2001, Kollert et al. 2011) and only three studies published in the 

years preceding 2009 (Miki et al. 2003, Fell et al. 2009, Kawut et al. 2005).  

2.3.2. Study characteristics  

Most studies were retrospective cohort analyses (11/13, 85%), with variable follow-up periods (range 

23 days (Kawut et al. 2005) - 20 years (Swigris et al. 2009)). The majority of retrospective studies 

evaluated independent risk factors for survival or mortality outcomes in ILD (9/11, 82%) and had an 

average follow up time of between 1-4 years (Gläser et al. 2013, Kawut et al. 2005, Layton et al. 2017, 

van der Plas et al. 2014, Miki et al. 2003, Vainshelboim et al. 2016, Triantafillidou et al. 2013, Wallaert 

et al. 2011, King et al. 2001). The longest planned follow up was in a study examining a non- IPF cohort 

(of systemic sclerosis ILD patients) which was truncated at 20 years (Swigris et al. 2009).   

There were two prospective studies (Triantafillidou et al. 2013, Vainshelboim et al. 2016). One 

investigating the relationship between CPET and survival characteristics in IPF had a variable duration 

of follow up between 9-64 months (Triantafillidou et al. 2013). The other prospective study used CPET 
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as part of a wider investigation into the role of exercise testing in the prognostication of ILD and 

followed patients up for a fixed period of 40 months (Vainshelboim et al. 2016).   

2.3.3. Study populations  

Of the studies identified, 8/13 (62%) exclusively recruited patients with IPF, two recruited only 

sarcoidosis patients (Lopes et al. 2012, Kollert et al. 2011), and one study systemic-sclerosis associated 

ILD (Swigris et al. 2009). The remaining studies (2/13, 15%) evaluated more heterogeneous cohorts of 

ILD patients referred for lung transplantation assessment (Kawut et al. 2005, Layton et al. 2017).   

The prognostic value of CPET has been retrospectively reported in a total of 703 patients with IPF, and 

prospectively in a further 59 patients in 2 small, single centre studies (n=25 (Triantafillidou et al. 2013) 

and n=34 (Vainshelboim et al. 2016)).  Patients were recruited to studies according to consensus 

statements on the diagnosis of IPF available at the time of enrolment; the 2000 American Thoracic  

Society (ATS) international consensus statement for the diagnosis of IPF (Miki et al. 2003, 

Triantafillidou et al. 2013, van der Plas et al. 2014, Fell et al. 2009, King et al. 2001, ATS/ERS Statement 

2000) and the later 2002 ATS/ERS International consensus classification of the idiopathic interstitial 

pneumonias (including IPF) (Wallaert et al. 2011, Kawut et al. 2005, Society and Society 2002). The 

updated 2011 ATS/ERS/JRS/ALAT evidence based guidelines for the diagnosis of IPF (Raghu et al. 2011) 

were applied in all (Triantafillidou et al. 2013, Gläser et al. 2013, Layton et al. 2017, Vainshelboim et 

al. 2016) but one of the studies (van der Plas et al. 2014) published after 2011 (the latter was a 

retrospective study that may have recruited patients prior to the publication of the 2011 guidelines).   

We identified two retrospective studies that examined the role of CPET in predicting outcomes in 

mixed populations of ILD patients (Layton et al. 2017, Kawut et al. 2005). Cumulative patient numbers 

were small (a heterogeneous group of connective tissue disorders n=28, HP n=8, unclassifiable ILD 

n=7, sarcoid n=15, IIP n=21 (NSIP n=18, COP, DIP, COP). Whilst the cohorts could be considered to be 

representative of mixed ILD cohorts, patient numbers for each subtype were too small to consider 

each subgroup separately.  

With regards to the study participant populations, the QUIPS risk of bias was considered to be low for 

only 3/13 (23%) studies (Triantafillidou et al. 2013, Wallaert et al. 2011, Vainshelboim et al. 2016), 

with the majority regarded as having a moderate (6/13, 46%) or high (4/13, 31%) (Miki et al. 2003, 

Layton et al. 2017, Kawut et al. 2005, Kollert et al. 2011) risk of bias. The generalisability of one study 

was potentially limited by the reported high diagnostic lung biopsy rate for IPF patients (64% (75/117) 

(Fell et al. 2009), as previously alluded to, a condition that can often be confidently diagnosed without 

biopsy in the presence of typical radiological findings and by consensus agreement in the 

multidisciplinary team setting (Walsh et al. 2016) and thus raising concerns as to whether this cohort 
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was representative of IPF populations in the ‘real world’. Two studies examined disease outcomes that 

necessitated a particular baseline clinical phenotype e.g. recruitment from source populations 

referred for lung transplant evaluation and thus by definition only analysed selected cohorts of 

advanced ILD patients (Layton et al. 2017, Kawut et al. 2005). Others incorporated a priori patient 

grouping, for example the presence of pulmonary hypertension (Gläser et al. 2013), to enrich 

populations with patients at high risk of developing outcomes of interest, or required the active 

exclusion of patients with a relevant phenotype e.g. those that died from a cause other than 

respiratory failure (Miki et al. 2003).   

Study attrition was generally reported to be low, which may reflect the retrospective nature of the 

majority of the studies identified. The QUIPS risk of bias for study attrition was reported to be high in 

two studies, increasing the potential for selection bias;  >25% patients identified were excluded from 

the analysis by Lopes et al.(Lopes et al. 2012), whilst in the study by King et al. (King et al. 2001), 34% 

(80/238) of the originally identified population were excluded from inclusion in the final analysis 

because of  incomplete data sets.   

2.3.4. Prognostic factor measurement  

CPET was the sole prognostic factor for the majority of studies 8/13 (62%), with a minority using CPET 

as part of a broader repertoire of exploratory physiological tests including 6MWT (Kawut et al. 2005, 

Triantafillidou et al. 2013, Layton et al. 2017) or lung function parameters (Gläser et al. 2013). One 

study used CPET in conjunction with clinical, radiological and resting physiological tests to devise a 

scoring system to predict survival in newly diagnosed cases of IPF (the CRP score: Clinical Radiological 

Physiological score) (King et al. 2001).  

In two studies, CPET was used as the principal method to achieve a standardised form of maximal 

exercise (Kollert et al. 2011, Swigris et al. 2009) where upon arterial blood gas sampling or peripheral 

oxygenation measurements were taken to determine the effect of exercise on gas exchange. In both 

of these studies, typical CPET measures, such as maximal oxygen consumption (VO2max) were not 

recorded.   

Across all studies, the bias rating for prognostic factor measurement using the QUIPS tool was 

considered low-to-moderate (figure 2.3), with the majority of studies reporting a standardised 

approach to CPET and analysis that would be easily reproducible and less amenable to bias. Most 

studies provided a sufficient description of the CPET protocol used, adhering to the 2003 American  

Thoracic Society statement on cardiopulmonary exercise testing (Society and Physicians 2003) (6/10, 

60%)(Kawut et al. 2005, Wallaert et al. 2011, van der Plas et al. 2014, Layton et al. 2017, Triantafillidou 

et al. 2013, Gläser et al. 2013). Others used the European Respiratory Society 1997 (Miki et al. 2003) 
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and updated 2007 (Vainshelboim et al. 2016, Palange et al. 2007) recommendations. In others 

important details were missing e.g. if oxygenation was measured during CPET (van der Plas et al. 2014). 

Variation in the methodological approach to CPET was also observed. For example, in one study, 

oxygen usage during CPET was an inclusion criteria (Layton et al. 2017), whilst in another, 

supplemental oxygen during exercise was supplied variably to participants depending on a pre-study 

requirement for home oxygen or saturation on room air <90% (Kawut et al. 2005). In 7/13 (54%)  

studies, blood gas analysis was used to assess the adequacy of gas exchange during exercise (Fell et 

al. 2009, Miki et al. 2003, Lopes et al. 2012, Wallaert et al. 2011, Kollert et al. 2011, Swigris et al. 2009, 

King et al. 2001), whilst the remainder used pulse oximetry, considered by some experts to be a 

suboptimal substitute (Society and Physicians 2003). A broad range of quantitative CPET parameters 

were presented/analysed raising the possibility of reporting bias (see later).  

All but one study used cycle ergometry. Treadmill exercise testing was used as the method of CPET in 

the remaining study; in which exercise increments were chosen for participants based on patient’s 

daily activities and parameters of resting pulmonary function, raising concerns whether a standardised 

approach had been adopted (Miki et al. 2003). Additionally, non-uniform speed increases, often 

inherent to treadmill testing, results in nonlinear metabolic rate increases and fundamental difficulties 

in calculating an accurate external work rate and an estimation of peak VO2. Thus, direct comparisons 

of peak VO2 obtained during treadmill testing studies cannot be compared with those obtained from 

cycle ergometry studies.   

  

  
2.3.5. Outcome measurement  

The most commonly reported outcome was mortality/survival 11/13 (85%). The majority of these 

studies that used survival/mortality as an outcome measurement (10/11, 91%) examined all-cause 

mortality, considering death or lung transplantation as composite endpoint. One study used an 

outcome measurement that was restricted to respiratory deaths only (Miki et al. 2003) and another 

study assessed the discriminatory ability of CPET to identify patients who would die on the lung 

transplant list before receiving transplantation (Kawut et al. 2005). Other outcomes included 

interceding pulmonary hypertension (PH) (Gläser et al. 2013) and decline in pulmonary function (FVC 

and DLCO) or duration of immunosuppressive therapy in two non-IPF cohorts with sarcoidosis (Lopes 

et al. 2012, Kollert et al. 2011).  

Using the QUIPS tool, the risk of bias in the approach to outcome measure assessment was considered 

low-to-moderate, in all studies.   
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2.4 Reported prognostic associations of CPET in the IPF cohorts  

All studies reported at least 1 positive association between CPET and clinical outcomes, raising the 

possibility of positive reporting bias. Significant heterogeneity in study design, study populations (and 

classification criteria adopted), CPET protocols, CPET endpoints and defined endpoints precluded any 

useful attempt at meta-analysis.  

The prognostic role of peak VO2 has been examined across several studies of IPF. Fell et al. (Fell et al. 

2009) retrospectively suggested a baseline threshold of peak VO2 8.3ml/kg/min predicted survival in 

117 patients with IPF (peak VO2 <8.3ml/kg/min HR 3.24, CI 1.10-9.56, p=0.03). Patient numbers in the 

subgroup with peak VO2 < 8.3ml/kg/min were small however (n=8, 7%), compared to the 46% patients 

that actually died, suggesting that the threshold sensitivity was not high. In another study, 

Triantafillidou et al. (Triantafillidou et al. 2013) prospectively identified a threshold of 14.2ml/kg/min 

for survival in 25 patients with moderate IPF (mean FVC 77.5 ±21.8), whilst Vainshelboim et al. 

(Vainshelboim et al. 2016) suggested VO2 <13.8 ml/kg/min as one of 5 CPET parameter thresholds 

(peak work rate, tidal volume reserve, VE/VO2 nadir and VE/VCO2 at AT) predicting survival in a 

prospective cohort study of 34 patients with IPF. Finally, Gläser et al. (Gläser et al. 2013) identified 

that the presence of PH (invasively assessed by right heart catheter) and peak VO2 % predicted were 

the only variables independently predictive of survival in a retrospective cohort of 133 patients, and 

application of % predicted values showed statically significant superiority to absolute data values. 

These results contrast with the findings of other studies where no independent association between 

survival in IPF and peak VO2 has been demonstrated (Wallaert et al. 2011, Miki et al. 2003). 

Heterogeneity in terms of disease severity, follow-up periods and accompanying disease co-morbidity 

may have impacted on results of these studies and larger prospective studies are required to ascertain 

the prognostic role of peak VO2 in predicting IPF survival.   

Gläser et al. found that the development of interceding PH in IPF was best predicted by reductions in 

ventilatory efficiency, the VE/VCO2 slopepred (cut off of ≥152.4, AUC 0.938; CI 0.892-0.984), with a 

sensitivity of 87.2% and specificity of 88.4%, but analysis of PH subgroup alone did not identify any 

CPET parameters that provided independent prognostic information.  VE/VCO2 at AT has also been 

shown to be a discriminating factor to determine the presence of PH across a cohort of IPF patients 

(adjusted OR 1.182; CI 1.029-1.384, p=0.021, n=81), but once again the prognostic value of this 

parameter has not been determined (Boutou et al. 2011).   

The prognostic value of an alternative measure of ventilatory efficiency, the ventilatory equivalent for 

carbon dioxide at AT (VE/VCO2 at AT), in predicting survival in IPF has also been examined (van der Plas 
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et al. 2014). In a retrospective study of 38 IPF patients, those with VE/VCO2 at AT >45 had a significantly 

worse survival compared to patients with VE/VCO2 at AT ≤ 45 (HR 4.58, p=0.001), and this parameter 

remained a strong predictor even after correcting for functional severity of ILD, highlighting its 

possible use in the early detection of vascular impairment. Furthermore, the ventilator equivalent for 

oxygen at AT (VE/VO2 at AT) >45 was reported to be an independent poor predictor of 3 year-survival 

in a cohort of 63 IPF patients (Wallaert et al. 2011), findings consistent with the univariate analysis of 

Miki et al. (Miki et al. 2003). Results suggest that the magnitude of hyperventilation at ventilatory 

threshold may be determining prognostic value, but further prospective studies are required to 

confirm the value of these parameters of ventilatory efficiency in the prognostication of IPF.   

Exercise induce hypoxaemia was also considered as a potential prognostic factor in IPF. Miki et al (Miki 

et al. 2003) found that only two factors, age and PaO2 slope (defined as change in arterial oxygen 

pressure in mmHg / change in VO2 uptake during exercise (∆PaO2/∆VO2)), provided independent 

prognostic information in a cohort of 41 IPF patients (HR 1.096, CI 1.012-1.187, p=0.025 and HR 0.841, 

CI 0.731-0.967, p=0.015 respectively) and stratification of patients according to this slope 

(≤60mmHg/l/min or >-60mmHg/l/min) identified significant differences in median survival (1.6 years 

vs 4.5 years respectively). Measurement of this parameter does however, require invasive arterial 

blood gas analysis during exercise testing, that is unavailable in the many clinical exercise laboratories. 

In the study by King et al. (King et al. 2001), PaO2 at the end of maximal exercise was the only CPET 

derived parameter included in their comprehensive clinical-radiologic-physiologic scoring model to 

predict survival in IPF, and when weighted, accounted for as much as 10.5% of the maximum score in 

the complete model. Nevertheless, there were methodological limitations in this latter study; only 

158/238 patients performed exercise testing and patients received supplemental oxygen when 

significant hypoxaemia ensued.   

As a consequence of the utilisation of numerous different CPET parameters, CPET cut‐off values, and 

timing of mortality evaluation, it was not possible to determine definitive thresholds for mortality or 

the development of pulmonary hypertension based on the analysed data.   

  

2.5. Study confounders, statistical analysis and reporting across all studies  

The majority of studies were considered to be at ‘high’ risk of bias due to inadequate account of 

potential confounding factors or methods of statistical analysis/reporting (figure 2.3).    

The data used in the majority of studies was obtained from existing databases and/or case note review 

(n=11, 85%). As the data was not collected as part of a designed study, several potential confounders 

variables were not recorded, for example the presence of co-morbid disease (Wallaert et al. 2011, Fell 
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et al. 2009, Miki et al. 2003, Gläser et al. 2013, Lopes et al. 2012, Swigris et al. 2009), body mass index 

(Triantafillidou et al. 2013, Fell et al. 2009, Miki et al. 2003, Kawut et al. 2005, van der Plas et al. 2014, 

Lopes et al. 2012) and smoking status (Wallaert et al. 2011, Kawut et al. 2005, Gläser et al. 2013, Lopes 

et al. 2012).   

The most important potential confounder was baseline ‘disease severity’ which was only specifically 

addressed as a confounder in one study; through the inclusion of lung function parameters and a 

composite physiological index (as markers of disease severity) into the Cox regression model used for 

analysis (van der Plas et al. 2014). This same study also stratified patients in an attempt to control for 

other potential confounders. Patients were sub-grouped into those with a systolic pulmonary artery 

pressure greater than or less than 40mmHg, in an attempt to control for interceding pulmonary 

hypertension, but this reduced subgroup sample sizes and thus may have reduced the statistical power 

to detect an effect.   

 Eligibility criteria were used to increase uniformity of study participants and reduce potential 

confounders. For example, two studies used participants referred for transplantation and thus by 

definition analysed distinct cohorts of more advanced patients but this selection bias reduced the 

generalisability of results (van der Plas et al. 2014, Layton et al. 2017). Other studies focused on 

healthier populations of ILD patients who did not need supplemental oxygen during CPET testing, but 

this, unsurprisingly, resulted in low mortality rates (n<10) leading to reporting bias (Vainshelboim et 

al. 2016, Fell et al. 2009, Triantafillidou et al. 2013).   

Multiple regression analysis was the dominant statistical methodology used to determine the 

relationship between CPET parameters and clinical outcomes in ILD. Whilst this approach is generally 

considered to be one of the better statistical approaches to minimise unknown confounders, many of 

the studies reported on sample sizes much smaller than the minimum requirement for multiple logistic 

regression analysis as determined by Bujang et al. (Bujang, Sa’at and Sidik 2017). Furthermore, of all 

of the studies examined, only one detailed an a priori power calculation (Vainshelboim et al. 2016) 

and important consideration taken forward to the design of this study to better prove my hypothesis. 

Many studies were likely to be underpowered to detect the outcomes proposed. This research 

remains a feasibility study but may go some way to predict expected outcomes in future trials and aid 

such power calculations.  

Stepwise multiple regression was used by some studies to determine the optimal model parameters 

to predict increased mortality (Triantafillidou et al. 2013, King et al. 2001). One criticism of this 

statistical approach is that model selection is conducted through parameter inference, which may lead 

to over-fitting of some parameters or exclusion of confounders that are not statistically significant 
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(Whittingham et al. 2006). Furthermore, the order of parameter entry (or deletion) and the number 

of parameters, can also affect the selected model (Derksen and Keselman 1992), whilst the multiple 

hypotheses tests, performed as part of this analysis, increases the probability of Type I error 

(Whittingham et al. 2006). The authors of one study did however attempt to overcome some of these 

limitations by checking for consistency between forward selection and backward elimination 

algorithms (Triantafillidou et al. 2013).   

  

2.6. Discussion  

Maximum oxygen consumption (VO2max) is a measurement of the capacity for aerobic exercise and is 

determined by variables that define oxygen delivery by the Fick equation (Society and Physicians 

2003); thus gas exchange across the lung, oxygen content of blood, oxygen delivery to tissues and 

oxygen uptake in the tissues can all affect the VO2max. In healthy individuals, constraints of the 

cardiovascular system are most responsible for limiting VO2max (Wagner 1996, Stickland et al. 2012). 

In patients with ILD, limitation to exercise may generally occur as a consequence of one of more of: 1) 

ventilatory mechanical limitation (unable to increase tidal volume (VT) sufficiently and may reach their 

maximal predicted minute ventilation (% pred VEmax)), 2) abnormal gas exchange (or reduction in 

ventilatory efficiency, indicated by variables such as the increment in minute ventilation (VE) relative 

to carbon dioxide production (CO2; VE/VCO2) 3) and/or diffusion limitation (indicated by variables such 

as reduction in oxygenation ≥ 4% or hypoxia at anaerobic threshold (AT)/peak exercise).    

To my knowledge, this is the first study to systematically review and critically appraise studies that 

have reported the prognostic value of CPET in ILD. This field has gained recent attention with the 

majority of studies published within the last 8 years. Thirteen studies were identified that examined 

the prognostic value of CPET in ILD, all of which reported a prognostic role for CPET parameters in 

predicting clinical outcomes in ILD, with survival being the principle clinical outcome measured. Issues 

with study quality (relating primarily to the inherent problems of retrospective studies, patient 

selection and presentation of numerous CPET parameters), limits the strength of conclusions that can 

be drawn from the studies reviewed and thus whilst the associations presented shed important light 

to the potential role of CPET in disease prognostication in ILD, there is insufficient evidence at the 

moment to support its use in facilitating ‘real-world’ clinical decisions.   

The exclusion of unpublished studies (e.g. conference abstracts) and abbreviated reports from this 

review may also increase the potential for publication bias, although this priori decision was taken to 
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ensure sufficient information was available to enable detailed data extraction from each study and aid 

this study design.    

One published article was identified that described the prognostic value of CPET in IPF that was not 

originally eligible for inclusion in our study analysis due to the full text being published in French 

(Wallaert et al. 2011). As touched on, the decision was taken to amend our published protocol to 

include this study as the subject of the study was deemed to be important by independent reviewers.    

This work has identified several considerations for future prognostic studies of CPET in ILD, including 

my research. Common to many human diseases, the disease progression in ILD is likely influenced by 

a complex interplay of patient, genetic, environmental and treatment factors. As such, a multivariable 

approach to the design and analysis of any future prognostic studies of ILD is essential if we are to 

confirm a specific role for CPET in routine monitoring. In contrast to randomised controlled trials, there 

are no robust standards defining the need to register or publish protocols for prognostic research and 

as such it is not always transparent whether statistical analysis were part of a priori plan (Hemingway, 

Riley and Altman 2009). Almost all studies in this review examined multiple prognostic CPET variables 

and as such there is potential for selective reporting bias that I intend to overcome by more stringent 

protocol registration with pre-specified outcomes of interest. A confounder overcome within my study 

by pre-identified CPET variables for evaluation.  

  
2.7. Conclusion  

The quality of existing studies on the role of CPET in the prognostication of ILD limits the conclusions 

that can be drawn from such work. Larger prospective studies are needed to establish the role of CPET 

in the longitudinal assessment of ILD in the future.   

The review has however guided my study development and provided additional knowledge to the 

protocol. From the data available, CPET has been performed in a similar IPF cohort to the planned 

patient group from the Bristol ILD service. The team gained confidence in its safety in a moderate 

patient group (as defined by an FVC % predicted between 50-80%) and as a result, extended the 

inclusion criteria to include such patients. Unsure of the likely decline in exercise capacity of the more 

moderate group, the decision was made to only repeat CPET in the mild cohort and to enrich for this 

patient group (30 mild: 20 moderate) to reduce potential loss to follow up.   

Whilst the majority of the studies are retrospective, and therefore open to suggestion of bias, the 

enrolment will be prospective in order to reduce this chance. Furthermore, this study will have 

predefined CPET parameters to avoid the previously mentioned selection bias of CPET outcomes. The 

use of patient reported QoL measures is limited throughout the literature review and to make this 
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study more focused on patient outcomes, the decision was made to include two different IPF specific 

questionnaires and assess the relationships of how the patient perceives their disease against clinical 

outcomes, making this study unique to those previously reported. Whilst many of the studies primary 

endpoints include mortality or time to transplantation, my initial discussions focused on correlations 

with the commonly used lung function outcomes of FVC and DLCO % predicted. The former being widely 

accepted by international licensing authorities as an acceptable marker for mortality. As outlined in 

chapter 1, a great volume of data exists on the prognostic use of declines in these PFT measurements 

and initial thoughts were that a 12 month follow up may provide sufficient evidence for a confident 

prediction on the prognostic markers of CPET. However, the follow up times throughout this evidence 

base suggested this may not be long enough due to the heterogeneity of IPF. As a result of this, the 

decision was to increase to the total follow up to a maximum of five years to gain a better 

understanding of prognostic use of these outcomes.  

  

  

  

  
Chapter 3: Feasibility of CPET in a mild to moderate IPF population  
  

3.1. Introduction:   

Hypothesis: CPET is feasible in a population of mild to moderate IPF patients and more sensitive to 

change in patient’s health status than 6 Minute Walk Test (6MWT), Forced Vital Capacity (FVC) or 

Transfer factor for carbon monoxide (TLCO), the routine clinical tests used globally today.  

Hypothesis Generation: Whilst the use of exercise for the purposes of prognostication has been well 

explored in various IPF cohorts, this has very much focused on the use of a 6MWT, utilising either the 

patient’s total distance or distance as a % predicted, as discussed in chapter 1. After initial discussion 

with the NBT physiology team, it was clear that, at the time, CPET was rarely used in the wider 

respiratory department and few, if any IPF patients were assessed in this way. At this point I initiated 

a literature review of all the evidence for the use of CPET as a prognostic tool in IPF and as seen in the 

previous chapter, ‘The quality of existing studies on the role of CPET in the prognostication of ILD limits 

the conclusions that can be drawn from such work’. Having been guided by the review and with 

questions outstanding from the initial hypothesis, the decision was made to proceed with a 

prospective feasibility study to gain a greater understanding of both the safety of a maximal exercise 
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test in this population as well as explore pre-determined parameters CPET can provide as to their 

discrete prognostic value for a disease inherently difficult to predict individual outcomes.  

Secondary to the exercise testing was the addition of health status questionnaires. Numerous 

questionnaires have been used across the globe within IPF studies although to date, these have not 

been designed specifically for ILD or IPF patients. Permission was obtained from the authors of both 

K-BILD (Kings College Hospital NHS Trust) and IPF-PROM (Imperial College Healthcare NHS Trust) to 

better understand the relationship between exercise outcomes and an individual’s perception of their 

quality of life and health status. The validity of K-BILD has been documented and indeed, the 

questionnaire is now widely used across numerous late phase ILD studies, however the same cannot 

be said of IPF-PROM. This study has been listed by the author (A.M Russell) as part of its validation 

and the hope is, with its increasing use in different IPF cohorts that longitudinal MCIDs can be attained 

for total and domain scores to better understand its meaning.  

Research question: In order to test this hypothesis, the study set out to investigate the feasibility and 

safety of CPET in a population of mild to moderate IPF patients, a test previously not routinely 

considered for such patients and one for which a relatively small amount of data exists for its safety 

and outcomes. Secondly, with longitudinal follow up, the outcomes will provide a greater 

understanding and answer questions on the relationship of CPET parameters to more sensitive 

changes in patient’s own perceived health status and allow comparisons to 6 Minute Walk Test 

(6MWT), Forced Vital Capacity (FVC) or Transfer factor for carbon monoxide (TLCO), the routine clinical 

tests used globally today.  

3.2 Methods  

This prospective observational follow-up study was conducted at the North Bristol ILD Service located 

at Southmead Hospital, Bristol. Written informed consent was obtained from each of the study 

participants prior to enrolment and study participation. Subjects were recruited between June 2019 

and May 2020 from the outpatient clinic environment and all have a multidisciplinary team meeting 

consensus diagnosis of IPF based upon the ATS/ERS/JRC/ALAT 2011 guidelines (Raghu et al. 2011). The 

reasons for this enrolment timeline were two-fold. Firstly, the deadlines given by the sponsor for study 

and MSc data collection completion, but also, from a retrospective search of IPF patient numbers 

attending clinics at Southmead Hospital and the author’s personal time allowance for this study, it was 

felt 11 months would be necessary for successful enrolment of the planned numbers.    

Due to the previously discussed data including IPF patients undertaking CPET, seen in Chapter 2, a 

cautious approach to patient enrolment to this study was undertaken to maximise patient safety. A 

high threshold of >50% TLCO was included for entry to the study and resulted in a mean TLCO % of 61% 
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at baseline. This was with the knowledge that non-exercise, interventional studies of IPF patients 

entering large phase III global trials have a mean TLCO % between 40-50% (Richeldi et al. 2014, King et 

al. 2014, Noble et al. 2011). Results derived from this patient cohort may provide evidence of safety 

to allow more inclusive criteria when considering lung function parameters, especially TLCO and could 

allow for the study of a more moderate to severe IPF population potentially providing results across a 

wider heterogeneity of patient types.  

Two major amendments were submitted to the REC and subsequently approved for changes to the 

study protocol during the recruitment and subsequent follow up stages. Evidence became available 

(Thomas et al. 2019) that the aging lung can differ in speed in its functional decline. Given the average 

age of this cohort being greater than 70, this influenced the study recruitment. Considering this, the 

strict use of the FEV1/FVC ratio cut off being above 0.7 (as a determining measurement of obstructive 

vs restrictive disease) was changed. The decision was made to alter the exclusion criteria to read ‘<70% 

unless within normal range for age (pre bronchodilator)’. Although two individuals had been screen 

failed prior to this change, it did allow inclusion beyond this accepted change (Table 3.1).  

The second, and increasingly important adjustment to the protocol, was the study follow up time 

period. This major study amendment permitted follow up time for lung function and vital status to be 

observed for a period of up to 5 years. This decision was made given the heterogeneity of our study 

subjects disease course as previously discussed. Although always progressive, the disease path over 

12 months, in this milder cohort may not provide the evidence of progression needed to make any 

firm conclusions on the many CPET variables available. The aim of an extended observation period will 

allow assessment of continued lung function testing (as part of standard clinical care) against the 

parameters of CPET tested at baseline and 12-month follow-up (where applicable). Given these results 

over an extended period, the aim is for this feasibility study to aid power calculations and application 

for a larger future study.   

3.2.1 Study Population  

Dependant up on an individual’s FVC% predicted being above or below 80%, patients were sub divided 
in to a ‘mild’ or ‘moderate’ category. Although evidence for such staging based solely on % predicted 
FVC is limited, it is likely for accuracy, additional variables should be utilised (Kolb and Collard 2014), 
this provided an additional safety measure for follow up.  Those patients with a milder disease would 
undertake both a baseline and repeat CPET at the 12 months follow up. Due to the uncertainty of the 
ability of those with reduced lung function to perform a maximal exercise test, the decision was made 
to take only baseline measurements from CPET at the start of the study. Key exclusion criteria were 
also primarily in place for reasons of safety and in line with ATS/ACCP guidelines (Society and 
Physicians 2003): Patients requiring oxygen treatment (due to the deficiency of safety evidence of 
undertaking CPET in this patient cohort), history of infarction within 6 months or unstable angina 
within 1 month, unstable cardiac disease & mobility issues that would impair exercise performance 
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resulting in a non-maximal test. The indications for exercise termination included acute myocardial 
infarction (MI) or suspicion of MI, onset of moderate-severe angina, serious dysrhythmias & at the 
request of the subject.   

Key Inclusion Criteria  Key Exclusion criteria  

Male or female aged ≥ 40yrs  Cognitive behaviour/Inability to perform CPET  
Multidisciplinary team meeting consensus diagnosis of IPF based 
upon the ATS/ERS/JRC/ALAT 2011 guidelines  

Mobility issues  

Chest high resolution computed tomography (HRCT) and, if 
available, surgical lung biopsy pattern consistent with diagnosis 
of IPF  

• History of myocardial infarction (MI) within 6 months or 

unstable angina within 1 month.  
• Severe or untreated arterial hypertension (>200mmHg 
systolic at rest, >120mmHg diastolic  

FVC ≥ 50% and <80% predicted (Moderate) or ≥80% predicted  

 

FEV1/FVC < 0.7 unless within normal range for age 
(prebronchodilator)  

 Patients using O2 treatment  

     

Table 3.1. Key study inclusion/exclusion criteria.  

Patients were followed up at 12 months ± 3 weeks from the initial exercise test, with a further 4 years 

of scheduled follow up to planned. This 12 month initial period of follow-up was chosen given the 

acceptance by global licensing authorities including the US Food and Drug Administration (FDA) and 

the European Medicines Agency (EMA) among others that the key lung function comparator (FVC) is 

a suitable marker of decline in IPF patients (Collard et al. 2003, Behr et al. 2015) and can be prognostic 

of mortality in this population over such a period of time (Zappala et al. 2010). Figure 3.1 below 

highlights the patient journey through the study protocol.  

  

 

  

Figure 3.1. Patient flow for study involvement from initial approach in clinic visit to extended follow up to 5 years.  

Initial patient  
approach in clinic 
• Study Explantion and  
Patient Information  
Sheet (PIS) given  

• Consent gained same  
day OR follow up at 1  
week 

Baseline CPET  
arranged  ± 3  weeks 

• ± PFT (if not  
previously taken) 

• K - BILD / IPF - PROM /  
VAS questionnaires 

12  months follow  
up 
• Mild group  repeat  

CPET 
• PFT 
• K - BILD / IPF - PROM /    

VAS questionnaires 
• Up to 5 year PFT  

follow up 
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3.3. Ethics  

The study was sponsored by the University of Bristol and was reviewed by the Bristol Interstitial Lung 

Disease clinical team at Southmead hospital, the research and Innovation department at North Bristol 

NHS Trust, The Health Research Authority (IRAS 223450), an independent research ethics committee 

and the Academic Respiratory Unit, University of Bristol. Following a major amendment to the study 

protocol to allow ≤ 5-year follow-up of data from routine clinical lung function appointments, all 

patients were asked for further written consent.  

Potential participants were initially approached by members of their clinical care team, to brief them 

on the purpose of this research. At this time, all patients were reassured that there was no 

requirement to participate and decline for participation would not change their individual care plan. 

Following this and after an initial interest in study participation, a PIS was provided to each individual 

and a carer should it be requested, explaining the purposes of the research and the details of their 

study involvement. Each participant was provided the opportunity to discuss the study with a member 

of the clinical or research team should they wish. Should any of the patients at this point feel 

sufficiently informed and motivated to sign the consent form, they could do so. Otherwise, all were 

given opportunity to consider the study further. Those indicating interest in participating were given 

the opportunity to go away and consider their options further and contact the research team at a later 

stage should they be willing to participate (given maximum of 2 weeks). A member of the research 

team undertook a follow up phone call at one week after the initial approach. Consent was taken at 

the clinical trials unit or outpatients department on the Southmead Hospital site, by a member of the 

research team, for those that did not consent at the initial screening visit.  

No patients were enrolled into the study that were (or had been in the previous 4 months) involved in 

an interventional study, including Clinical Trials of Investigational Medicinal Products (CTIMPs) of any 

description. Patients could partake if they were involved in questionnaire-based studies.  

All data will be stored securely for a period of 5 years. Participants consented for their information to 

be stored in its anonymised form for this length of time. The cross-referencing list and data will be 

stored electronically on a Bristol University protected computer for a period of 5 years also. Beyond 

this date a new ethics application would be sought should it be required.  
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3.4. Lung Function Tests  

3.4.1. Pulmonary Function Tests   

Pulmonary function tests were undertaken by all patients ± 3 weeks from the date of CPET. All tests 

were performed in accordance with ATS/ERS guidelines (Graham et al. 2019) and repeat 

measurements taken after 12-months.   

Included in the measurements recorded during pulmonary function testing were forced expiratory 

volume during first second of expiration (FEV1), forced vital capacity (FVC), total lung capacity (TLC) 

and single breath transfer factor for carbon monoxide (TLCO) measured by an nSpire HDpft (nSpire 

Health GmbH, Germany). These chosen measurements make up the standard data set for routine 

clinical lung function tests within the hospital and can reliably be replicated over the full follow-up 

period.  

Measured parameters were presented as actual values (litres) as well as percent predicted values of 

the European Community for Coal and Steel reference values.  

All patients were asked to score their self-perceived breathlessness during their activities of daily living 

according to the Medical Research Council (MRC) dyspnoea scale (see Figure 3.2).  

  

Fig 3.2. The MRC breathlessness scale (adapted from (Fletcher 1952).  

3.4.2. 6-Minute Walk Test  

Study participants undertook a baseline and follow-up 6 MWT with a member of the Trust physiology 

team conducted in accordance with the American Thoracic Society guidelines (Laboratories 2002) in a 

15m corridor at the hospital’s respiratory outpatient unit.  Measurements utilised for the purposes of 

this study were total distance achieved (m), % of theoretical distance walked alongside oxygen 

saturation at initiation of test and minimum saturation level during.  

3.4.3. Cardio-Pulmonary Exercise Test:  
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All patients underwent a symptom limiting CPET that was performed and assessed by the respiratory 

physiology team at North Bristol Trust in line with the guidelines of the ATS/ACCP (Society and 

Physicians 2003), (ergoselect 100, ergoline GmbH, Germany).   

Workload was determined primarily by reviewing the patient’s normal intensities of exercise and 

previous levels of activity (with increases between 5W & 15W) but also additional factors including 

gender and body size in order to ensure a maximal effort was achieved within 8-12 minutes. Despite 

a recent ERS CPET standardisation statement suggesting a respiratory exchange ratio (RER) >1.05 

(Radtke et al. 2019) is indicative of a maximal effort test, this has been contradicted by Thomas et al 

(Thomas et al. 2019, Thomas and Sylvester 2020). To be certain of a successful test, the team’s decision 

was an RER ≥1.1 was required, although this also needed to be accompanied by at least one of the 

following markers (as determined by the physiologist) to confirm a maximum effort; maximum heart 

rate (HR max) > 80% of maximum predicted HR which was calculated by the sum of 220 – patient age, 

maximum minute ventilation during exercise >85% predicted based on maximum voluntary 

ventilation (MVV) at rest, and finally a plateau in VO2 with an increased workload.   

A decision for this study was made by the clinical and physiology team to use a cycle ergometer. This 

choice was based upon the perceived higher safety in this vulnerable patient group over a treadmill, 

although as suggested by Alessandro Mezzani (Mezzani 2017) in a recent published seminar, a number 

of other benefits may also be present (Figure 3.3).  

  
Figure 3.3. Advantages/ disadvantages of treadmill versus cycle ergometer for CPET.  

  

Data collection and analysis were made by nSpire Zan 600 USB system (nSpire Health GmbH, 

Germany). The test could be discontinued at the discretion of the attending physiologist although no 

minimum Sp02 was pre-defined.   

The protocol included a seated rest period for 3 minutes to allow the patient familiarisation with the 

equipment and apparatus (facemask and ECG probes), followed by unweighted peddling for the same 

time, allowing baseline VO2 measurements to be attained. Subjects were asked to maintain a rate of 

60 revolutions per minute throughout the exercise period. Anaerobic Threshold (AT) was calculated 

by the v slope method (VCO2 vs VO2).  
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Following cessation of the test, the subject remained seated with unweighted peddling and reduced 

cadence for a recovery period for a further 2 minutes (see Figure 3.4.)  

  

 

Fig 3.4. CPET ramp protocol with a target of 10 minutes to patient exhaustion.  

Continuous measurements for the following pre-defined variables were made during the exercise 

period:  

· Peak oxygen consumption (VO2 peak, ml/kg/min),  

· Peak oxygen consumption at anaerobic threshold (AT)  

· Carbon dioxide production (VCO2)  

· Peak minute ventilation (VE peak) - (marker of ventilatory function during exercise),  

· VE/VCO2 slope as derived from the above values - (reflects changes in ventilatory drive)  

· Peripheral capillary oxygen saturation SpO2 - (marker of hypoxaemia indicating possible ventilatory 
limitation to exercise)  

· Peak power output (W) - (marker of musculoskeletal function)  

· Heart rate (HR) - (marker of cardiac function during exercise), · 

Breathing reserve (BR) - (potential indicator of ventilatory defect)   

3.4.4. Questionnaires:  

All patients completed two Visual Analogue Scores (VAS) namely a standardised day/night cough score 

and the Bristol VAS (measuring breathlessness and fatigue) (Yates et al. 2018a) as well as two ILD 

specific Quality of Life questionnaires (QoL), Kings Brief ILD (K-BILD) (Patel et al. 2012) & IPF-Patient 

Reported Outcome Measures (IPF-PROM) (Russell 2017). These were all repeated at the 12 months 

follow up, with the patients blinded to their baseline answers. Due to the lockdown of hospitals due 

  
Time (minutes) 

CPET ramp protocol 

Rest   and unweighted  
peddling   

10  +/ -  minutes 2   Recovery  
(2 -  mins ) 3   
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to COVID-19, those patients unable to attend study appointments for follow up, were asked to 

complete the questionnaires at home and return by post.   

  

3.5. Primary & Secondary outcomes  

Given the limited data of use of CPET in such an IPF cohort, this feasibility study was aimed to gain 

insights on the practicality of undertaking CPET in this mild to moderate group of patients, understand 

the likely attrition rates of study participants as well as the safety of such a strenuous exercise test in 

this study population. Secondary endpoints, gained from insights of previous analysis on the use of 

CPET prognostication in IPF, included the change from baseline at 12 months for CPET variables, 

correlation between CPET parameters and lung function changes as well as changes to health status 

(using questionnaires) over a 1-year period.  

3.6. Statistical Analysis  

Categorical variables are reported as absolute numbers and percentages. Normality of continuous 

data was initially verified using D’Agostino and Pearson normality test. Mean and standard deviation 

(SD) were used to describe parametric data; median and interquartile range (IQR, in brackets) for 

nonparametric data. Differences between two groups were verified by t-test with Welch’s correction 

(continuous data), χ2-tests (categorical data) and paired t-tests for comparison in variables from 

baseline to 12 months. Pearson’s correlation was used to determine correlations between parametric 

variables. Data were analysed using GraphPad Prism version 8.0. A P value of <0.05 was considered 

statistically significant.  

  

3.7. Discussion  

Ethics approval: ‘Always allow longer than you expect’ would be a take home message having been 

through the process. Although the IRAS application itself has been relatively straight forward, ensuring 

timely approval from both the sponsor and NHS centre was at times difficult and ultimately led to an 

approximate 6-month delay in study initiation. The author’s presentation to the REC, including 

numerous questions from both lay members and healthcare professionals on the committee, 

surrounding employment within a pharmaceutical company was of particular interest, highlighting the 

high degree of cynicism of the industry as a whole.   

One final delay in study initiation came as a result of the required Research Passport needed by both 

the sponsor and North Bristol NHS Trust to allow the investigator to undertake such research within 
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Southmead Hospital. The process for this remains unclear and is ill-defined. Thanks must go to 

individuals across many university sites who pointed me in a direction to someone who ‘may know’.   

Personal key learnings from the methodology have however been the initial hypothesis generation, 

functionality of the integrated research application system (IRAS) and local Regional Ethics Committee 

(REC) presentation. All of which were unknown at the start of this research.  

3.7.1. Challenges of study design:   

Study Funding: Although student study time was funded for the period of data collection, this was 

limited, and the hope was to gain approval for a National Institute for Health Research (NIHR) Clinical 

Research Network (CRN) funding to provide some additional nursing support from the academic 

research team. Whilst the precedent for such an exercise study in a similar patient cohort although 

lacking a longitudinal component had previously been set, our application was declined. A subsequent 

review was requested and despite approval for an amount of funds being awarded by the national 

respiratory CRN lead, this was later overturned. Although not essential to the setup of the study, it did 

place further pressure on timelines for the trawl of outpatient clinic appointments, patient interaction 

and introduction of the study and gaining of consent, resulting ultimately in an additional delay in 

patient recruitment.  

Study Administration: Taking a large proportion of workload throughout the study period, the 

administration needed has provided great learning simply in the time allowance. Ranging from initial 

study documents (Patient Information Sheet (PIS), consent forms), ethics approval, Clinical Research 

Folder (CRF) through to the search of clinic appointments & naturally exercise appointments with the 

physiology team. The teamwork needed for larger studies has been very evident and whilst single 

handed management has been sustainable for such a feasibility study, it would not be recommended 

for anything much larger.  

COVID-19 pandemic: Like every study ongoing around the globe, this research has been hugely 

disrupted by the virus. Due to study timelines and follow up, the last patient out was due in May 2020, 

with almost a third of repeat CPET test due between February and May 2020. Whilst the investigator 

was able to remotely contact all outstanding patients at the initiation of lockdown, enabling 

completion of questionnaires by post, there remains an amount of missing data. As can be seen from 

figure 3.1 and as will be discussed further in the next chapter, five patients in total (4 mild and 1 

moderate) were lost to the study due to COVID-19. As a result of the temporary closure of all lung 

physiology testing and the subsequent capacity reduction upon reinstatement (due to the need to 

ventilate rooms post patient and requirement for PPE), routine lung function data was able to be 

collected in subsequent months with the median time in months (IQR) quoted. It was not possible to 
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undertake further CPET testing after the initial lockdown in early 2020. Study continuation was sought 

by the sponsor to enable the 5-year follow up amendment to take place (beyond its planned closure 

in May 2020). This delay in approval, due to the sponsors workload with COVID-19 and allowance of 

reconsent via email or post, led sadly to the loss of three patients to this extended follow up, who 

deceased in this interim period. One further deceased patient had given previous reconsent at 1 year 

follow up.  

  

  

  
Chapter 4: Results  

  
A total of 74 consecutive IPF patients were prospectively assessed for eligibility and subsequently 

approached for entry to the study. Screen failure and decline to partake excluded 32 patients, leading 

to enrolment and consent gained for 42 patients. Prior to study commencement and baseline testing, 

a further 4 patients withdrew consent, 5 patients developed exclusions (2 newly planned surgery, 2 

undiagnosed cardiac arrhythmia and 1 frailty leading to inability to perform CPET). A further patient 

died prior to study initiation, see figure 4.1.   

  

Figure 4.1. Study enrolment.   

A total of 31 patients (23 moderate and 9 mild) underwent baseline testing, however due to the impact 

of COVID-19 previously discussed, a further 5 patients (4 mild and 1 moderate) were lost to follow-up, 

leaving a final population cohort of 27 patients (19 mild and 8 moderate). This patient group was 
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similar to those observed across other IPF study populations, with a male predominance (n=22, 82%) 

and a mean age of 75 years (SD ± 1.5 years). Although symptomatic at baseline, with a median Medical 

Research Council (MRC) breathlessness score of 2 (IQR 2-3), indicating that individuals feel ‘short of 

breath when hurrying on a level or when walking up a slight hill’, lung function was relatively well 

preserved with an FVC % predicted of 91% and gas transfer (TLCO) of 61%. Approximately one third 

(33%, n=9) of the final study population (5 mild and 4 moderate) received antifibrotics during the 

12month observational period. The most common comorbidities included gastro-oesophageal reflux 

disease (GORD), hypertension and coronary artery disease, with over half the patients (52%) having 

>1 comorbidity. At completion of 1 year follow up, all patients remained alive. See table 4.1.  

  
Characteristic   Overall n=27  Mild n=19  Moderate n=8  P value  
Age (yrs) mean (SD)  75 (+/- 1.5)  75 (+/- 1.5)  74 (+/- 1.5)  0.440  
Gender (male n, %)  22, 82%  14, 74%  8, 100%  0.280  
Smoking history (n, %)  
Current  
Never  
Ex-smoker  

  
0, 0%  
10, 37%  
17, 63%  

  
0, 0%  
9, 47%  
10, 53%  

  
0, 0%  
1, 12.5%  
7, 87.5%  

  
0.552  

BMI (kg/m)  28.5 (+/- 0.86)  28.9 (+/-1.2)  27.7 (+/- 1.0)  0.585  
MRC (median, IQR)  2 (2-3)  2 (2-3)  2 (2-3)  0.964  
Antifibrotics (n,%)  9, 33%  5, 26%  4, 50%  0.375  
Co-morbidities        n/s  
Gastro-oesophageal reflux  
Hypertension  
Coronary artery disease  
Diabetes  

11  
10  
10  
3  

6  
7  
4  
1  

5  
3  
6  
2  

  

Lung function parameters           
FVC (L)  
FVC (% predicted)  

2.96 (+/- 0.14)  3.11 (+/- 0.18)  2.61 (+/- 0.16)  0.050  
91 (+/- 3.1)  99 (+/- 2.3)  70 (+/- 1.8)  <0.0001  

FEV1/FVC ratio  78 (+/-1.5)  76 (+/- 1.8)  82 (+/- 2.6)  0.080  
TLCO % predicted  61 (+/- 1.7)  63 (+/- 2.2)  57 (+/- 2.2)  0.055  
6MWT   n=25  n=18  n=7    
Distance achieved (m)  
% theoretical distance (m)  

350 (+/- 12.7)  
78 (+/- 3.3)  

349 (+/- 15.7)  
78 (+/- 3.9)  

354 (+/- 22.1)  
76 (+/- 6.4)  

0.827  
0.821  

CPET   n=27  n=19  n=8    
VO2 peak/kg (ml/kg/min)  20.9 (+/- 0.75)  20.6 (+/- 0.97)  21.7 (+/- 1.11)  0.489  
VO2/kg  at AT (ml/kg/min)  13.6 (+/- 0.67)  13.8 (+/- 0.83)  13.0 (1.13)  0.585  
VE peak (L/min)  69.9 (+/- 4.07)  69.0 (+/- 5.00)  72.1 (+/- 7.38)  0.731  
VE peak (% predicted)  74.5 (+/- 2.8)  71.0 (+/- 3.2)  82.9 (+/- 4.4)  0.045  
VE/VCO2 at AT   28.2 (+/- 0.59)  28.7 (+/- 0.76)  27.2 (+/- 0.83)  0.201  
Minimum O2 saturation during CPET (%)  91 (+/- 0.9)  91 (+/- 1.2)  92 (+/- 1.0)  0.723  
Peak work rate (W)  104.8 (+/- 5.08)  103.6 (+/- 6.74)  107.6 (+/- 6.62)  0.673  
Peak work (% predicted)  44 (+/- 1.7)  44 (+/- 2.2)  43 +/- 2.2)  0.565  
HR (bpm)  141 (+/- 4.2)  141 (+/- 4.9)  139 (+/- 8.7)  0.793  
HR (% predicted)  97 (+/- 2.9)  98 (+/- 3.4)  95 (+/- 5.7)  0.711  
BR max (L/min); median (IQR)  26.5 (18.4-32.5)  28.8 (18.8-33.3)   0.083  

K-BILD questionnaire   n=27  n=19  
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Total   
Psychological domain  
Breathlessness and activity domain   
Chest symptoms domain  

65 (+/- 2)   
69 (+/- 3)  
56 (+/- 2)  
78 (+/- 3)  

64 (+/- 2)  
69 (+/- 4)  
52 (+/- 3)  
76 (+/- 4)  

61 (+/- 3)  
52 (+/- 3)  
71 (+/- 5)  

0.058 
0.128 
0.267  
0.133  

IPF-PROM questionnaire   n=27  n=19  n=8    
Total   
Physical breathlessness  
Psychological breathlessness  
Well-being   
Energy  

20 (+/- 5)  
5 (+/- 0.3)  
5 (+/- 0.3)  
5 (+/- 0.4)  
5 (+/- 0.3)  

20 (+/- 1.05)  
5 (+/- 0.3)  
5 (+/- 0.3)  
5 (+/- 0.5)  
5 (+/- 0.4)  

21 (+/- 1)  
5 (+/- 0.5)  
6 (+/- 0.5)  
5 (+/- 0.4)  
5 (+/- 0.3)  

0.337 
0.264 
0.121 
0.662  
0.565  

VAS Cough (cm) (median, (IQR))  1.7 (0.8-2.8)  1.5 (0.2-2.6)  2.3 (1.4-3.0)  0.135  
Bristol VAS breathlessness (cm)   1.9 (0.8-3.3)  1.8 (0.8-3.4)  2.4 (1.1-4.7)  0.630  
Bristol VAS fatigue (cm)  3.7 (1.1-5.1)  3.7 (1.1-5.1)  3.8 (1.4-6.3)  0.457  

  
  
Table 4.1. Baseline characteristics of IPF participants All data shown as mean with standard deviation (SD) unless otherwise stated. All 
questionnaire results and visual analogue scores presented as median with interquartile range (IQR). A p<0.05 was considered statistically 
significant.  
  

  
Reasons for exercise cessation across the mild and moderate cohort fell into two categories, namely 

breathlessness and muscle (leg) fatigue (n=10, 37% and n=17, 63% respectively). Within the mild 

patient group who were undertaking repeat CPET at 12 months, this was more evenly split, with 

breathlessness being the cause of discontinuation in 9 patients (47%) and leg fatigue in 10 (53%).  

Across the whole cohort, the percentage of patients stating they undertake regular exercise was 56% 

(n=15) although no reasons were given as to why the remaining patients chose not to exercise 

routinely and no difference between the mild and moderate groups for those undertaking exercise 

routinely was observed (58% vs 50% respectively) (p>0.05).  

One patient described dizziness related to his breathlessness during CPET, but no other adverse events 

were recorded. There were no serious adverse events  

  

4.1. Baseline measurement comparisons between mild and moderate groups:  

From table 1, it can be seen baseline demographics between the mild and moderate IPF groups were 

statistically comparable. As per the study inclusion and subgroup definitions, participants in the 

moderate IPF group had a statistically lower baseline FVC% predicted when compared to those in the 

milder group (moderate 70% ± 1.8 vs mild 99% ± 2.3, p<0.0001). Furthermore, although not reaching 

statistical significance, there was a trend towards a reduced TLCO in those patients within the more 

advanced disease moderate subgroup (moderate 57% ± 2.2 vs mild 63% ± 2.2, p= 0.055). No difference 

was seen in either of the 6MWT parameters of distance achieved or % of theoretical distance.  
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Baseline QoL questionnaires showed lower scores (indicating a reduced patient perceived QoL) for the 

patients with moderate disease for total K-BILD score (moderate 60 ±2 vs mild 64 ±2, p= 0.058) as well 

as a similar trend in the individual domains of chest symptoms and psychological when compared to 

those with mild disease, although these values were not statistically significant. When comparing the 

results within the IPF-PROM total and domain scores, where a higher score is indicative of a reduced 

quality of life, no significant differences were seen. Study patients showed an increase in psychological 

experience of breathlessness (moderate 6± 0.5 vs mild 5± 0.3, p= 0.121) although again, this was not 

statistically meaningful.  

No differences were observed in the Visual Analogue Scores (VAS) for cough, breathlessness or fatigue 

between the two groups.  

Participants across both groups achieved the anaerobic threshold (AT) during baseline testing and a 

respiratory exchange ratio (RER) of >1.10 allowing an expectation of a maximal effort test. No tests 

were stopped prematurely. Baseline CPET values were all within expected published ranges for age 

(Society and Physicians 2003) being relatively well preserved, not unexpected given the milder disease 

nature of this patient population. Of note, was a significant difference between groups in % predicated 

peak minute ventilation (moderate 82.9% ± 4.4 vs mild 71.0% ± 3.2, p= 0.045) likely indicating the 

increased necessity for oxygen uptake in this patient group although no evidence is published to 

suggest any prognostic use for this difference.  

Our initial baseline data analysis correlating CPET variables with QoL scores resulted in acceptance of 

two posters at national and international congress (Winter British Thoracic Society 2019 and American 

Thoracic Society 2020), see appendix F and G. From this initial data of CPET variables measured, some 

significant correlations to both questionnaires were observed. At anaerobic threshold (AT), VO2 

peak/kg positively correlated with K-BILD total scores (r=0.42, p=0.03), breathlessness/activity (r=0.47, 

P=0.014) and chest domains (r=0.44, p=0.002) (Pearson’s correlation). Similarly, IPF-PROM total score 

and wellbeing domains significantly correlated with VO2 peak (r=-0.43, p=0.02 and r=-0.44, p=0.02) 

with a trend towards statistical significance for total IPF-PROM and VO2 peak at AT (p=0.06). The 

ventilatory equivalents for oxygen (VE/VO2) at AT also strongly correlated with total K-BILD score 

(r=0.39, p=0.001) although there were no significant correlations with the individual domains of either 

questionnaire.   

  
Baseline Variable  Correlation 

coefficient  
P value  
(Spearman’s  

Peak VO2/kg/min at AT      
K-BILD      
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    vs Breathlessness and Activity domain  0.47  0.014  

    vs Chest domain  0.44  0.002  
    vs Total   0.42  0.03  
IPF-PROM      
    vs Total score  -0.36  0.06  
Peak VO2      
K-BILD      
    vs Chest domain  0.42  0.03  
IPF-PROM      
    vs Total score  -0.43  0.02  
    vs wellbeing domain  -0.44  0.02  
FVC % predicted      
    vs Total K-BILD    0.14  
    vs Total IPF-PROM    0.50  
TLCO % predicted      
    vs Total K-BILD    0.16  
    vs Total IPF-PROM    0.32  

  
Table 4.2. Baseline CPET parameter correlation to QOL scores and pulmonary function testing.  

With regards the more widely performed exercise test of 6MWT and total questionnaire scores, total 

scores for both K-BILD and IPF-PROM significantly correlated with 6MWT distance (K-BILD r=0.44, 

p=0.03 and IPF-PROM r=-0.43, p=0.03). The expected difference between groups in distance walked 

was not observed, possibly due to the inherent difficulties of this test, with regards individual 

motivation, baseline fitness and mobility issues affecting movement. Baseline and minimum SpO2 

results from 6MWT did not show significant correlations (Total K-BILD p=0.25 and p=0.32 respectively, 

Total IPF-PROM p=0.53 and p=0.55 respectively). Considering the results from the lung functions 

parameters, again no significant correlations were observed (FVC % predicted: Total K-BILD, p=0.14; 

Total IPF-PROM p=0.50 and TLCO % predicted: Total K-BILD, p=0.16; Total IPF-PROM, p=0.32).   

No significant correlation between baseline CPET parameters and VAS scores were seen (p>0.05).  

  

4.2. Measurements at 1 year follow up  

Total study cohort  

Previous work undertaken by Collard et al. (Collard et al. 2003) have described the utility of % FVC 

decline as a surrogate marker of survival in IPF patients. Their work has shown, over a similar 12 month 

follow up period, a drop of 10% FVC % predicted will significantly reduce expected mortality versus a 

stable or improving IPF population (with regards FVC % predicted). In our study cohort, at one year 
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follow up, the mean reduction in FVC % predicted for the whole study group (n=27) was -3.56% (± 

1.37, p=0.04). Whilst statistics dictate this to be significant, it is likely to be below those deemed 

clinically meaningful. Similarly, with TLCO % predicted, data from recent Czech registry data (Doubková 

et al. 2018), confirmed a 12 month drop of 15% TLCO predicted conferred a worse overall survival. Our 

study group had a mean decline of 3.23% (± 1.47, p=0.04), again statistically significant but well below 

the data evidence for clinical significance.   

For the 6MWT parameters, there was no statistically significant reduction in either distance achieved 

(-4.8m ± 6.9, p=0.50) or in the % theoretical distance 0.15% (±1.6, p=0.92).  

Within the K-BILD questionnaire, there was a statistically significant reduction in the breathlessness 

and activity domain from baseline to follow up of 4.81 points (±1.96, p=0.02). This drop in score is 

suggestive of a worsening health status, although it is difficult to predict the clinical significance. 

Published data (Sinha et al. 2019) has suggested a minimum clinically important difference (MCID) of 

a 7-point reduction for this domain, although this was assessed from an ILD cohort of only 57 patients, 

of which 17 were IPF. As a reduction in activity and inability to perform the usual daily activities is 

often an early effect mentioned by IPF patients, such a 5-point drop could potentially hold some merit 

in disease development and QoL.     

Parameter  Change at one year follow up (n=27)  P 
value  
  

Lung function /walk test  Mean % change (+/- SD)    
FVC % predicted  -3.6 (+/- 1.4)  0.015  
TLCO % predicted  -3.2 (+/- 1.5)  0.037  
6MWT distance % theoretical distance   -0.16 (+/- 1.6)  0.920  
K-BILD questionnaire  Mean unit change (+/- SD)     
Total   
Psychological domain  
Breathlessness and activity domain   
Chest symptoms domain  

-2.30 (+/- 1.73)  
-1.71 (+/- 3.13)  
-4.81 (+/-1.96)  
-2.15 (+/- 2.77)  

0.194  
0.590  
0.021  
0.447  

IPF-PROM      
Total   
Physical breathlessness  
Psychological breathlessness  
Well-being   
Energy  

0.52 (+/- 0.75) 0.11 
(+/- 0.25)  
0.33 (+/- 0.27)  
-0.33 (+/- 0.23)  
0.37 (+/- 0.21)  

0.408 
0.663 
0.232 
0.164  
0.086  

VAS Cough (cm) median  -0.21  0.601  
Bristol VAS breathlessness (cm) median  0.0  0.876  
Bristol VAS fatigue (cm) median  -0.10  0.925  
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Table 4.3. Total cohort change in Lung function, K-BILD, IPF-PROM and Visual analogue scores of patients at 1 year follow up. Paired t-test or 
Wilcoxon paired signed rank test.   

  

There were no statistically significant differences in the VAS scores for cough, breathlessness and 

fatigue or in the IPF-PROM from baseline to 12 months (p>0.05).  

4.2.1. Mild group repeat CPET follow up  

Aside from the 4 mild patients lost to follow up, a further 6 were unable to attend their planned test 

date due to the impact of the coronavirus COVID-19 pandemic and prohibited the return of these 

patients to the hospital for non-emergency care. This left a total of thirteen patients who returned for 

repeat CPET at 1 year.   

As can be seen in table 4.4, several CPET parameters saw a statistically significant decline over the 

12month period. Perhaps the most studied variable within CPET testing, that of VO2 peak declined by 

an average of 2.5 ml/kg/min across this small subset of patients (21.58 ml/kg/min ± 0.8 vs 19.08 ± 0.8, 

p=0.017). According to a German registry of over 10,000 health volunteers undertaking CPET, this peak 

figure would place our study patients in the bottom 10% with age matched healthy individuals (Rapp 

et al. 2018). Although as alluded to in earlier chapters, this follow up measurement is well above the 

suggested threshold by Fell et al. of a peak VO2 <8.3ml/kg/min (HR 3.24, CI 1.10-9.56, p=0.03) being 

prognostic for early mortality (Fell et al. 2009). In the absence of minimally clinically important 

differences (MCID) being established for CPET variables in any IPF population, interpretation of such 

a decline in this mild group is difficult to quantify. Mezzani (Mezzani 2017) stated an average 

individual, after the age of 30 years will decrease their VO2 peak by approximately 10% per decade 

due to numerous factors including stroke volume and the muscular ability to utilise oxygen with 

increasing age. This being the case, our cohort exhibit an accelerated decline in this output. One 

patient did not reach AT at follow up and this data was removed from the CPET follow up comparisons 

seen in table 4.4.  

Several other physiological parameters resulting from CPET provided statistically significant 
differences from baseline to follow up (see table 4.4), including;  

• VO2 peak at AT (14.12 ml/kg/min ± 0.92 vs 11.82 ± 0.5, p=0.044  

• Minute ventilation (VE) peak (75.31 L/min ± 5.8 vs 66.08 ± 6.0, p=0.007)  

• Peak work (106W ± 7.3 VS 90.77 ± 7.2, p=0.022)  

• Heart rate (HR) (142.3 bpm ± 6.7 vs 133.0 ± 6.2, p=0.040)  

• Breathing reserve (BR max) at AT (21.8 (12.4-34.2) vs 33.8 (20.2-55.7), p=0.0002)  

  
CPET parameters  Baseline (n=13)  Follow up (n=12)  P value  
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VO2 peak (ml/kg/min)  21.58 ± 0.8  19.08 ± 0.8  0.017  
VO2 peak at AT (ml/kg/min)  14.19 ± 0.9  11.83 ± 0.5, n=12  0.044  
VE peak (L/min)  75.31 ± 5.8  66.08 ± 6.0  0.007  
VE peak % pred  75.54 ± 3.7  65.88 ± 3.4  0.007  
VE/VCO2 at AT  29.68 ± 0.9  31 ± 1.3, n=12  0.353  
Minimum O2 saturation during CPET 
(%)  

91.46 ± 1.5  
  

87.92 ± 1.9, n=12  
  

0.182  

Peak Work (W)  106.9 ± 7.3  90.77 ± 7.2  0.022  
Peak Work (% predicted)  44.31 ± 1.1  37.69 ± 2.4  0.002  
HR (bpm)  142.3 ± 6.7  133 ± 6.2  0.040  
HR (% predicted)  98.69 ± 4.7  91.77 ± 4.7  0.022  
BR max (median, (IQR))  21.8 (12.4-34.2)  33.8 (20.2-55.7)  0.0002  
6MWT        
Distance achieved (m)  346.9 ± 20.5  340.8 ± 20.1  0.563  
% theoretical distance (m)  76.38 ± 5.1  76 ± 4.7  0.872  
Lung function         
FVC % predicted  98.77 ± 2.4  93.38 ± 2.9  0.010  
TLCO % predicted  62.31 ± 2.7  59.31 ± 3.3  0.161  

  

Table 4.4. Baseline and 1 year follow up data for patients within mild group (those with matched tests).  

  

As within the overall study population, there was a significant reduction in FVC% predicted at 12 

months although again, the mean percent predicted decline was <10% (baseline FVC 98.77% ± 2.44 vs 

follow up FVC 93.88% ± 2.9, P=0.01). Whilst Zappala et.al (Zappala et al. 2010), described an 

association of a more marginal FVC % decline (5–10%) and overall mortality, this was considered 

significant over a 6 month follow up, so interpretation of such a decline over a year is more difficult.  

In this same mild cohort of patients, statistically significant reductions were observed in both the 

domains of breathlessness & activity (-7.21 ± -2.98, p=0.033) and chest (-9.59 ± -4.15, p=0.040) with  

a trend towards significance in the total score (-5.57 ± -2.88, p=0.077) at follow up. Notably, these 

mean unit changes of total K-BILD score (-5.57) and breathlessness and activity domain (-7.21) exceed 

the MCID reported by the questionnaire authors (5 and 7 unit change respectively) (Sinha et al. 2019).  

When relating this significance to actual patient numbers, a total of 5/13 reached the MCID for total 

score and 8/13 for the breathlessness domain. Furthermore, the reduction of >-9 units is approaching 

the estimated MCID of -11 unit decline for chest symptoms.      
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The second questionnaire, IPF-PROM, showed a statistically significant worsening in the psychological 

experience of breathlessness (0.76 ± 0.34, p=0.044). To date, no unit MCID for changes in domain 

score have been published and therefore the clinical significance of such a change is unknown.   

  

K-BILD questionnaire  Unit change  
(mean, SD) n=13  

P value  

Total   
Psychological domain  
Breathlessness and activity domain   
Chest symptoms domain  

-5.57 (+/-2.88)  
-5.17 (+/- 5.2)  
-7.21 (+/- 2.98)  
-9.59 (+/- 4.15)  

0.077  
0.304  
0.033  
0.040  

IPF-PROM      
Total   
Physical breathlessness  
Psychological breathlessness  
Well-being   
Energy  

1.54 (+/- 0.89) 
0.54 (+/- 0.39)  
0.77 (+/- 0.34)  
-0.15 (+/- 0.34)  
0.39 (+/- 0.39)  

0.109  
0.189  
0.044  
0.656  
0.337  

VAS Cough (cm) median  -1.6   0.391  
Bristol VAS breathlessness (cm) median  0.0   0.716  
Bristol VAS fatigue (cm) median  -0.1   0.956  

  

Table 4.5. Change in K-BILD, IPF-PROM and Visual analogue scores of mild IPF patients with repeat CPET at 1 year follow up. Results shown 
as mean change in questionnaire score with standard deviation (SD), unless otherwise stated. Paired t-test used for parametric data and 
Wilcoxon matched pairs signed rank test for non-parametric data.   

  

No statistical significance was seen for the VAS scores for cough, breathlessness or fatigue from 

baseline to one year (p>0.05).  

Finally, we explored the correlation between the changes of K-BILD at 12 months and the CPET 

variables at baseline to better understand how exercise testing may reflect the patients experience of 

their disease. Of interest, a lower VO2 peak/ml/min at anaerobic threshold correlated with greater 

declines in total K-BILD score (r=-0.62, p=0.024) and the psychological domain at follow up (r=-0.63, 

p=0.022). No other CPET parameters significantly correlated to changes in K-BILD score.  

As seen previously, the results of the baseline FVC% predicted and TLCO% predicted showed no 

significant correlation to the changes in K-BILD over the 12 months follow up (p=0.70 and p=0.62 

respectively).  

When considering the reasons for CPET discontinuation in the follow up tests, seven patients cited 

breathlessness as the cause to stop (54%) whilst 5 patients complained of muscle fatigue (38%). A 
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single patient suggested a dry mouth was their reason for ending the test. No serious adverse events 

were reported.  

  

4.3 Discussion  

Whilst CPET remains the gold standard for pulmonary exercise testing (Ferrazza et al. 2009), given its 

unique assessment of any ventilatory, cardiac and metabolic limitations to exercise and the safety of 

such a test is well documented across multiple morbidities (Patel et al. 2019, Kleber and Köln 2018, 

Ney et al. 2016), its utility in the IPF clinical setting is minimal, perhaps due to the lack of evidence to 

support its use either as a marker of current disease state or indeed as a prognostic tool. This data 

deficiency was highlighted in our systematic review, seen in chapter 2. The heterogeneity of IPF 

disease course allied to the retrospective nature of the majority of published studies has greatly 

limited conclusions that could be drawn. Furthermore, whilst estimates of MCID have been given for 

the QoL questionnaire, K-BILD, suggestive that a patient’s perception of their own illness may be 

indicative of the disease state, this is not the case for CPET parameters in our patient cohort, where 

MCID’s are yet to be established.  

This small feasibility study has provided strong evidence that CPET can be undertaken in a mild to 

moderate IPF population successfully. Whilst side effects of the test were minimal and transient (slight 

dizziness and dry mouth both n=1), study attrition was high with just under two thirds (64%) of those 

enrolled completing the protocol. This can somewhat be explained in the latter end of the study by 

the effects of COVID-19 and patient isolation, however a significant number were unable to initiate 

the study after giving consent (10 patients, 24%). This is largely due to the patient demographics and 

comorbidities (frailty & undiagnosed cardiac disease) and will go some way to aiding power calculation 

for larger similar studies.  

Interpretation of the CPET data suggests peak VO2 is associated with a clinically meaningful 

patientperceived reduction in health status despite only a limited change and relative stability of lung 

function parameters (<10% decline in FVC and <15% decline in TLCO). Whilst a similar correlation 

between VO2 peak and QoL scores has been seen before, notably El Naggar (El Naggar 2017), who 

concluded a negative correlation (r=-0.35) between VO2 peak performance and a non-IPF specific 

health questionnaire (Saint Georges Respiratory Questionnaire, SGRQ), no longitudinal measurements 

were explored. Interestingly, the same study noted a correlation between VO2 and TLCO (r=-0.53), a 

result not replicated in our study. In our cohort, VO2 peak correlated with patient reported outcome 

measures at baseline. This correlation remained over the 12 months of follow up with significant 

declines in both measurements. The extent to which VO2 peak is a useful predictive marker in IPF 

patients is unclear with conflicting data from different study populations. Values of peak VO2 ranging 
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from <8.3 to <14.2 ml/kg/min (Fell et al. 2009, Triantafillidou et al. 2013, Vainshelboim et al. 2016), 

have reported to predict mortality, whilst others have failed to identify a significant association 

(Wallaert et al. 2011, Miki et al. 2003). Extended follow up of our prospective cohort may shed further 

evidence as to the true impact of this measurement on the long-term outcomes in IPF patients.   

When considering the milder population and specifically their follow up results, the decline in exercise 

performance from baseline to one year is marked. Whilst a limited reduction in FVC% predicted is 

observed and expected, this is accompanied with a reduced minute ventilation (VE) and an increased 

breathing reserve (BR). A BR >20% is suggestive that this cohort is not adversely affected by ventilatory 

limitation. Assessment of baseline and follow up activity levels of participants does not suggest a 

significant change of habits, with 42% and 46% taking regular exercise at baseline and follow up 

respectively. Patients did not report cardiac or pulmonary vascular dysfunction and test instructions 

were identical on each occasion. One possible explanation for such a decline may lie in the patient’s 

perception of disease, specifically breathlessness. We have seen the MCID for the K-BILD 

breathlessness and activity domain was surpassed (>7-unit reduction) over the follow up period. The 

hypothesis for the reduced exercise performance is the self-imposed deconditioning of participants 

who fear exercise will lead to a breathless episode.  As with any population, healthy or not, reduced 

activity levels will lead to a reduction in exercise tolerance. Vainshelboim (Vainshelboim 2016) has 

previously described a similar phenomenon, studying the benefits of exercise training in IPF patients 

(figure 5.1) and whether such deconditioning can be reversed. No specific exercise routine was 

dictated within this study and therefore it is not possible to speculate if this could have affected our 

results.  
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Figure 5.1. Suspected mechanism for patient deconditioning and reversal with exercise training.  

   

Examining other outputs of our mild group CPET follow up results, a large number of variables showed 

a statistically significant decline over 1 year although interpretation of their clinical meaning is difficult 

given the lack of data for MCID in such a patient population. Layton et al (Layton et al. 2017) explored 

the prognostic use of CPET outputs for a more severe ILD cohort awaiting transplantation. Of note, 

was the workload % predicted cut off of 35% (HR = 4.71, 95% CI = 2.64–8.38) being an independent 

predictor of mortality or the need to consider transplantation. Whilst Leyton’s study did not look at 

longitudinal changes, the decline in our mild group mean did approach this value (37.69% ± 2.4) and 

further follow up over time may again provide greater knowledge to the importance of this 

measurement.  

Consideration of the 6MWT results for this same population suggests this to be a less specific test for 

measurement of exercise decline. Du Bois et al (du Bois et al. 2011) have previously described an MCID 

of >50m over a 24-week period being predictive of a fourfold increase in risk of death at 1 year. This 

parameter, alongside the % distance predicted remained stable in our cohort with no significant 

difference between baseline and follow up, contradictory to the exercise reduction observed on CPET. 

One possible explanation for this could be the reduced baseline achievements of our group (mean= 

350m vs 392m) potentially meaning maximum distanced was not attained, or simply that the outputs 

of CPET provide greater insight across cardiovascular, pulmonary and skeletal muscle systems and may 

be more explicit in determining functional changes.   

The use, for the first time in an exercise study, of two IPF specific patient reported health 

questionnaires has provide an interesting insight into an individual’s perception of their own disease 

and exercise capabilities. As touched upon already, it appears that a number of baseline parameters 

across both K-BILD and IPF-PROM correlate with the outputs of CPET, including those more closely 

related to an exercise challenge test, namely the chest and breathlessness domains of K-BILD and the 

energy domain of IPF-PROM as well as the total scores across both. The period of extended follow up 

of our patient group may again shed more light on the importance of these scores from a prognostic 

perspective. From our 12-month data in the mild cohort, it is of interest to see where the statistically 

significant declines are seen, similar to above, the chest and breathlessness domains of K-BILD and the 

psychological experience of breathlessness in IPF-PROM. Whilst K-BILD has been more widely used 

and is validated across multiple study populations, the increase in this IPF-PROM domain (0.77 (+/- 

0.34), p=0.044) remains unclear given the lack of MCID values. However, this finding could support 

the psychological aspect and an individual’s fear of hypoxia leading to patient deconditioning, given 

the physical experience of breathlessness remained stable at 1 year follow up.   



 

65  
  

Finally, despite previous studies undertaken within the Bristol ILD service (Yates et al. 2018a)  

confirming the validity of visual analogue scales (VAS) across dyspnoea and fatigue and its correlation 

to changes in total K-BILD score, this was not seen in this study group, with little or no change in scores 

from baseline to 12 months. Results for the cough VAS were however in line with this same study, 

finding no significant changes over the year.  

Questions remain over the utility of FVC% and TLCO% predicated as either a marker of current disease 

or indeed future progression. We found no correlations either at baseline or follow up between any 

of the CPET outputs or questionnaires. Whilst some reports outlined in chapter 2 suggest a correlation 

of VO2 and DLCO, it is possible the milder disease state of this cohort did not allow sufficient 

deterioration over this initial 12 months follow up. This can potentially be confirmed over subsequent 

years and repeat lung function testing. Furthermore, despite our total cohort FVC% decline over the 

12 months follow up being statistically significant with a loss of -3.6% (± 1.4), this was only marginally 

greater than that seen in a general population study of over 60 year olds, giving an annual expected 

FVC% decline of −2.46% (−3.07–−1.85) (Luoto et al. 2019). It is probable these standard PFT 

measurements will provide greater prognostic utility when used in conjunction with other dynamic 

measurements of an individual’s health status.   

  

  

  
4.3.1. Limitations  

Several limitations of this study exist making interpretation difficult to assess across a wider IPF 

population. Firstly, and perhaps most importantly, the study participants were a relatively small and 

homogenous sample of patients. Whilst there is no standardised definition for the severity of IPF 

disease, according to the pulmonary function parameters currently used in clinical trials, patients with 

a FVC >50–55% of predicted and a TLCO >35–40% of predicted are typically diagnosed as having mildto-

moderate disease, while patients with severe or advanced disease present with FVC and TLCO values 

lower than the abovementioned thresholds (Caminati et al. 2017). With our inclusion criteria meaning 

all patients needed both FVC% predicted and TLCO % predicted >50%, suggestive of a milder cohort, 

patients in our moderate cohort did seem to be more impaired in terms of exercise limitations and 

desaturation. Such inclusion may limit the overall utility of results, particularly in terms of feasibility 

of CPET across IPF phenotypes; for example, those with exercise induced pulmonary hypertension 

versus those with relatively normal pulmonary vascular response to exercise, and the risk of Type II 

error may be relatively high. Whilst our preference would be to have had a broader range of 

symptomatic patients, safety evidence to support CPET in more severe patient was very limited and 
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recruiting patients with a higher MRC score could have led to early completion of testing, before the 

limit of the pulmonary and cardiovascular systems had been reached, adversely influencing the 

results. It may be possible to utilise other outcomes of CPET not requiring a maximal effort, for 

example an Oxygen Uptake Efficiency Slope (OUES), although this measurement was not available at 

the time of initiation of this study on the analysis dataset provided. Our knowledge gained of the 

performance and safety of the test of those patients classified as moderate in this study (FVC % 

predicted <80%) would give more confidence to allow a follow up CPET test at the 12-month review 

period and potentially expand the inclusion criteria below the 50% thresholds.  

Almost a quarter of patients who gave consent for entry in the study developed exclusions or were 

lost to follow up. Part of this can be explained by the unforeseen COVID-19 pandemic, during which 

this group of patients were classified as ‘extremely vulnerable’ and asked to isolate making a follow 

up CPET test impossible. Whilst this may play an important role to inform power calculations for future 

studies involving CPET as an outcome measure by utilising the expected mean changes across CPET 

variables and lung function parameters from this study population, it again limits the generalisability 

of our outcomes due to resulting smaller sample size.   

This study adds confidence and supports the feasibility of IPF patients undertaking repeated CPET in a 

mild to moderate population. Some ad-hoc patient feedback has suggested a positive outlook towards 

their individual exercise tolerance as most have self-imposed ‘restrictions’ on exercise due to the fear 

of breathlessness and none of the study population had undertaken a maximal exercise effort since a 

diagnosis of IPF.   

  

4.3.2. Conclusion   

The study outcomes provide some evidence that CPET could be a useful tool to assess the change in 

an individual’s health status over time and may add to the armoury of clinicians when faced with the 

difficult patient discussions around disease progression and prognosis.  

Future work should look to confirm the results of this study in a larger, more heterogenous IPF 

population. This study has provided strong evidence of the safety of CPET in a mild to moderate cohort 

and furthermore, patients are willing to partake in such a test in a longitudinal study. Inclusion of a 

more severe patient group likely measured by FVC and/or DLCO % predicted can be combined with the 

patient’s own assessment of their functional ability (e.g. K-BILD). Establishing MCID for longitudinal 

measurements derived from CPET will provide a significant move forward in our knowledge and in 

turn, utility of the test. Furthermore, exploration of relationships between CPET outputs and other 
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assessment tools, potentially quantitative fibrosis CT- derived measures, individual comorbidities, 

drug treatments and QoL scores provide a more accurate estimation of a patient’s expected disease 

course.  

Sadly, since the study closure, four patients have deceased. Next steps will be to continue observations 

of the twenty-three patients through routine clinical physiology appointments and a hope to add to 

our knowledge of the usefulness of CPET longitudinal data and prognostic accuracy and its potential 

for wider use in the clinical setting, akin to the 6MWT. With data from this increased timeframe, the 

team anticipate presenting the most comprehensive prospective follow up of IPF patients undertaking 

CPET to date. With ongoing surveillance of participant lung function, and improved knowledge of 

morbidity and mortality in this group of patients, the aim is to accurately predict study numbers for a 

larger, multi-site study for the use of CPET in IPF patients. To utilise our knowledge gained to inform 

inclusion and exclusion criteria and importantly, secure funding to fully answer the questions only 

partially answered on the prognostic use of CPET in IPF.  

  

  

  

  
Chapter 5: Personal review and learnings  
  

Study reflections  

Despite the numerous challenges posted over the last 3 ½ years, since the inception of the idea of 

undertaking a research MSc, it is with a significantly greater understanding of clinical research that I 

am writing now. Whilst much of the research process can be controlled, from hypothesis to endpoints, 

recruitment to follow up, the ‘known unknowns’, for me, ethics approval provided a steep learning 

curve. Resulting in a very early extension to the study timelines (and University fees), undertaking the 

completion of the IRAS form, presentation to the Regional Ethics Committee (REC) and subsequent 

major amendments were an eye opener. Accompanied by this and touched on earlier is the sheer 

volume of administration needed prior and during the study, both in electronic and paper form and a 

necessity for the sponsor and NHS research alike. If there was an ability to turn back time, or pass 

learnings to future students, a few changes could save many months of process:  

Research Passport – a requirement to undertake research on the NHS premises, this 

littleknown approval process remains confused. There is a necessity to streamline this process, agree 

the timelines for application and better understand where such approval comes from.  
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Short courses – Offered across the Medical School, attendance of several courses over the 

study period has been essential. From statistics through to paper and thesis writing, these days have 

added greatly to undertaking research and such opportunities should be maximised.   

Funding – Whilst not always possible or even available, I would be keen to secure funding to 

aid additional nurse support for such studies. The part time nature of this MSc has at times led to 

difficulties in my person clinic attendance, primarily during recruitment but also follow up. It is 

important to recognise the additional work the clinical research team undertook on numerous 

occasions, to gain consent, undertake questionnaire and ensure the clinical research folder was up to 

date. Furthermore, the amazing work of the physiology team over the study period to ensure patient 

testing was on time according to study protocol and minimise travel of patients to the hospital for 

multiple appointments.  

With the benefit of hindsight and a better understanding of the safety of CPET in IPF patients, this 

study would undoubtably benefit from a wider inclusion criteria. Our knowledge gained from this and 

other ongoing research in this field would likely allow us to revise downwards the lower limits of lung 

function parameters and permit a repeat of exercise testing of all participants. Given the acceptance 

of this study group to repeat CPET after 12 months, it could also add value to continue annual exercise 

testing alongside their routine clinical lung function to better understand the changes within individual 

CPET parameters and the longitudinal importance of each in predictions of prognosis.  

The near future presents opportunities for publication of this data and presentation across physiology 

and respiratory conferences. Longer term data will aid our understanding of the importance of 

individual outcomes across all the tested parameters (CPET, PFTs, questionnaires) and armed with this 

information, allied to our improved understanding of safety, the hope would be to initiate a large scale 

study to validate such findings and the prognostic use of CPET itself.  

One of the greatest rewards from the last couple of years has been the direct interaction with patients. 

Having worked in the therapy area for more than 10 years from early phase drug discovery through to 

large global phase III studies from within a pharmaceutical setting, whilst patients remain front of 

mind, they are often of sight. It has been clear throughout how enthusiastic this group of patients are 

to support and add to our understanding of the disease they are living with on a daily basis. In the 

knowledge results of such studies may not benefit them directly, it was important to all, anything they 

could do to benefit others was a ‘must’. It was a privilege to meet each of them, often with carers, 

who share a common goal in one day finding a cure for IPF.  

The arrival of an unprecedented global pandemic undoubtably adversely affected our desired 

outcomes, reducing follow up numbers and the availability of clinical data (PFTs) due to the advice for 
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all study participants to shield for many months due to their vulnerability to the virus. Teamwork and 

support of the sponsor meant we were able to maximise our data return via postal questionnaires and 

e mail reconsent. Whilst only emergency visits were allowed into hospital and clinic appointments 

moving online, routine lung function testing was halted for a period towards the close of the study. 

Any patients with an outstanding test (for study purposes) were contacted by the physiology team to 

arrange the earliest possible appointment on the re-opening of the department.   

On a personal note, the undertaking of this study has given me insight into set up, delivery and 

interpretation of clinical research. From hypothesis generation, study design, presenting to a REC and 

patient enrolment through to the outputs of data presentation and publication. A revised paper of 

this study has been submitted to BMC Pulmonary Medicine which can be seen in Appendix H. A first 

for me was to present my own generated data at a national respiratory congress alongside experts in 

the field of ILD. The work undertaken in this study and within the literature review has been cited at 

subsequent pulmonary congresses and stands Bristol ILD service in good shape for future 

collaborations within the field of exercise and ILD.  

Most of all, it has provided me an unparalleled opportunity to engage with such an enthusiastic and 

willing group of patients.   

My hope is, this data will add something to the multitude of ongoing work globally in IPF prognosis, to 

allow clinicians to better answer their most important question of what this diagnosis means to each 

individual.  
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Appendices :  
  

Appendix A: K-BILD Questionnaire   

King’s Brief ILD Questionnaire           

(K-BILD)  

  
  
This questionnaire is designed to assess the impact of your lung disease on 

various aspects of your everyday life. Read each question carefully and 

answer by SELECTING the response that best applies to you. Please answer  

ALL questions, as honestly as you can.    

  
  
  

PATIENT INFORMATION:  
  
  
Patient Identifier: ................................................  
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Date: .....................  
  
  
  
  
 Copyright..K-BILD.  King’s College Hospital NHS Trust 2010. Dr SS Birring   
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Appendix B: IPF-PROM Questionnaire  

  

Patient Identifier :  

Date:  
  

This questionnaire is designed to help us learn more about how Idiopathic Pulmonary 
Fibrosis affects your life   

The information and the answers you give will be treated with the utmost confidentiality   

There are no right or wrong answers   

Please read each item and place an ‘X’ in the box that best matches your experience over 
the last two weeks  

If you do not experience an item put an ‘X’ in the 'none' box.   

Please respond to all items.  

We would like to thank you very much for taking the time to answer these questions and 
help us with our research   

This research was supported by a research fellowship from the National Institute of Health Research,  
UK  

  

  

  

  

  

  
  
  
  
  
  
© 2016 Royal Brompton & Harefield NHS Foundation Trust. All rights reserved. No part of this publication 
may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, 
or other electronic or mechanical methods, without the prior written permission of the Royal Brompton & 
Harefield NHS Foundation Trust (RBHT). For permission requests, write to RBHT, addressed “Attention:  
Anne-Marie Russell” at Research Office Royal Brompton & Harefield NHS Foundation Trust, Sydney street, 
London SW3 6NP  
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During the last two weeks how would you rate your overall quality of life?  

Excellent                            Good                                 Fair                             Poor                      Very Poor  

       
  

During the last two weeks, because of IPF, how much of the time have you ……………..  

1. Felt that your breathing difficulties have affected your quality of life?  
 None of the time  A little of the time   Most of the time  All of the time   

                        
  

During the last two weeks, because of IPF, how much of the time have you ……………..  

2. Felt that your fear of getting out of breath has limited your daily life?  
 None of the time  A little of the time   Most of the time  All of the time   

                         
  

During the last two weeks, because of IPF, how much of the time have you ……………..  

3. Stopped you doing any of the things you like to do?  
 None of the time  A little of the time   Most of the time  All of the time   

                        
  

Please make sure you have put an ‘X’ in one box for each question before moving on to the next 
page………………….  

    

  

  

  



During the last two weeks 

All of the time   

86  
  

, because of IPF, how much of the time have you……………..  

4. Felt breathless with gentle physical exercise?  
   None of the time  A little of the time   Most of the time  

                        
  

During the last two weeks, because of IPF, how much of the time have you ……………..  

5. Stopped for breath when walking at your own pace on the flat level (e.g. along the pavement; 
at home)  

 None of the time   A little of the time   Most of the time  All of the time   

                        
  

During the last two weeks, because of IPF, how much of the time have you ……………..  

6. Felt breathless with any of your everyday activities?  
 None of the time  A little of the time   Most of the time  All of the time   

                        
  

Please make sure you have put an ‘X’ in one box for each question before moving on to the next 
page………………….  

  

  

  

  

  

  

  

  

  

  

  



During the last two weeks 

All of the time   
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, how much of the time have you ……………..  

7. Felt that IPF has brought worry to your life?   
 None of the time  A little of the time   Most of the time  

                        
  

During the last two weeks, because of IPF, how much of the time have you ……………..  
8. Felt frightened about the future?    

 None of the time  A little of the time   Most of the time  All of the time   

                       
  

During the last two weeks, how much of the time ……………..  

9. Has it been difficult to manage the uncertainty of living with IPF?  
  

 None of the time  A little of the time   Most of the time  

 

All of the time   

                        
  

Please make sure you have put an ‘X’ in one box for each question before moving on to the next 
page………………….  

  

  

  

  

  

  

  

  

  



During the last two weeks 

All of the time   
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, because of IPF, how much of the time have you ……………..  

10. Felt lethargic?   
 None of the time  A little of the time   Most of the time  

                        
  

During the last two weeks, because of IPF, how much of the time have you ……………..  

11. Felt too tired to do your usual everyday activities?   
 None of the time  A little of the time   Most of the time  All of the time   

                        
  

During the last two weeks, because of IPF, how much of the time have you ……………..  

12. Felt frustrated by being too tired to do the things you like to do?  
 None of the time  A little of the time   Most of the time  All of the time   

                        
  

Please make sure you have put an ‘X’ in one box for each question   

Thank you for completing 
this questionnaire  

  

  

  

  

  

  



During the last two weeks 

All of the time   
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Appendix C: Literature review study selection  
  

  
  
Author, Date  
& Origin  

  
  
  
  
  
Description  

  
  
  
  
  
Study 
population &  
attrition  
  

  
  
  
  
  
CPET method and CPET 
parameters  

  
  
  
  
  
Exclusion  

  
  
  
  
  
Disease 
outcomes  

  
  
  
  
  
Statistical methods to investigate CPET & 
outcome  

  
  
  
  
  
Summary of key reported outcomes   

  
  
  
  
  
Comments  

King et al. 2001  
USA  Retrospective 

analysis of clinical, 
radiological and 
physiological 
parameters 
predicting survival 
in IPF. Median 
follow up 20 months 
(maximum  
14.8 years).  

238 IPF pts 
with 
histological 
UIP.   
  
80 pts excluded  
from the final 
model 
derivation.  

Cycle ergometer, blood gas 
analysis.   
P (A-a)O2 corrected for 
FiO2, VD/VT, VO2, maximal 
work load  

CTD, left ventricular 
failure, occupational 
and environmental 
exposure, or history of 
drug exposure known to 
cause pulmonary 
fibrosis. Incomplete 
case records.   

Survival 
(defined as 
death or time 
of censoring: 
Censored if 
still alive at  
last contact 
n=79, 
received 
single LTx 
n=11, 
double LTx 
n=1, or 
heart and 
LTx n=1 or 
e) died 
from other 
cause than  
IPF n=12).   

Kaplan-Meier survival curves developed for 
group as whole and stratified by sex, age and 
smoking status. Univariate Cox proportional 
hazards regression analysis (adjusted for age and 
smoking) for each variable. Variables with 
p<0.25 included in multivariate analysis. 
Pearson's correlation to avoid multicollinearity. 
Forward elimination process used to develop 
preliminary model. mulitvariable influential 
points removed. Composite scoring system 
developed, weighting categories according to p 
values and HR, and using Akaike's Information 
criteria .    

155 D (125 IPF, 19 other causes, 11 unknown and attributed 
to IPF).    
105 patients censored (n=79 alive at time of analysis, n=13 
LTx, n=12 non-IPF deaths, n=1 lost to follow up).  
Composite scoring model developed to predict survival in 
IPF which included age, smoking history, clubbing,  
extent of profusion of interstitial opacities,  
presence/absence of PH on CXR, % predicted TLC and 
PaO2 at the end of maximal exercise.  Exercise PaO2 only 
exercise variable included in the model, accounting  for 
10.5% of score (PaO2 maximal exercise HR 0.74, CI 
0.67-0.82, p<0.0001).  

CPET performed in study as part of wider analysis of predictive factors in IPF.   
  
Histological UIP increased potential  selection bias of a  less severe IPF population. 
The radiological component of the scoring system used CXR rather than HRCT  
(HRCT not obtained during early years of the study).   
Only 158/238 (66%) of the original cohort were used to derive the complete model 
and thus possibility for selection bias.   

Miki et al. 2003 
Japan  Retrospective 

study: Evaluation 
of the predictive 
value of CPET for 
IPF respiratory 
deaths.  Mean 
follow up 2.7 years 
(7.2 months - 9.0 
years).  

41 IPF pts.  Exercise treadmill (Sheffield 
protocol). PaO2, PaCO2, 
HR, respiratory frequency (f), 
Vt, VE, peak VO2, VE/VO2, 
VE/VCO2, VO2/HR, AaDO2 
& PaO2-slope.   

CTD, Sarcoid, OP, EP, 
HP, Cardiac disease, 
anaemia, primary 
cardiac disease, 
anaemia, PVD, cancer, 
pleural/chest wall 
disorders including 
respiratory muscle 
weakness. Steroid or 
immunosuppressive 
treatment prior to 
study entry. Death 
from a non-respiratory 
cause during followup.  
  
  

Respiratory 
death  Exercise parameters (between groups split by 

PaO2-slope) compared using Mann-Whitney. 
Univariate Cox proportional hazards model to 
compare initial parameters then entered into 
multiple regression analysis using stepwise 
evaluation. Relationship between Pao2 slope 
and other variables were analysed by linear 
regression with stepwise technique. Survival 
times compared using Kaplan Meier curves 
and statistical significance determined by log 
rank test.   

23 respiratory deaths. Median survival 2.9 years. In 
univariate analysis,  VO2 max (HR 0.997, 0.995-0.999 CI, 
p=0.012), VO2/HRR max) (HR 0.69, 0.51-0.93 CI, p=  
0.014), PaO2 slope (HR 0.68, 0.51-0.89 CI,  p=0.006),   
VE/VCO2 (HR 1.04, 1.006-1.07 CI,  p=0.020) & age (HR  
1.1, 1.02-1.18 CI, p=0.014) associated with survival in  
IPF.  On multiple regression,  PaO2 slope (HR 0.84, 
0.730.97 CI, p=0.015) and age (HR 1.096, 1.01-1.19 CI, 
p=0.025) independently related to survival. PaO2 at rest and 
during maximum exercise did not influence survival. When 
PaO2 slope was divided into steep (≤- 
60mmHg/l/min) and gentle (>-60mmHg/l/min), median 
survival time after CPET significantly shorter in steep group 
(1.6 vs 4.5 yrs).   

Retrospective, single centre cohort.   
  
Large number of exclusion criteria .   
  
Outcomes limited to respiratory deaths.   
  
PaO2 slope (as an indicator of exercise induced hypoxaemia) had the greatest 
correlation with survival.  

Kawut et al. 2005, 
USA  Retrospective 

study of CPET and 
6MWTD variables 
associated with 
survival in pts 
referred for lung 
transplant. Median 
follow up 271 days 
(23-983).  

51 pts with IIP 
or DPLD of 
known cause 
(e.g. drugs, 
occupational or 
environmental 
exposures, CTD) 
referred for lung 
transplant.   

Cycle ergometer. Pulse 
oximetry. SaO2 (unloaded, 
peak, recovery), Peak VO2/kg, 
VO2/HR peak, VCO2 
unloaded, VE unloaded.  

Pts evaluated at another 
lung transplantation 
centre. Other forms of 
DPLD e.g. LAM, 
pulmonary Langerhans' 
cell 
histiocytosis/histiocyt 
osis X, EP .and 
granulomatous DPLD  
e.g. sarcoidosis.  

All-cause 
mortality. 
Death on the 
lung 
transplantat 
ion waiting 
list.  

Cox proportional hazards regression to identify 
predictors of time-to-death. Individual models 
were constructed using LTx as a timedependant 
covariate to 'control' for receiving a LTx. ROC 
curve analysis was used to define cut-off for 
variables associated with dying on the 
transplantation list.   

7 lung transplantations and 17 deaths (1 
posttransplantation). 28/51 (55%) UIP/IPF, CTD-UIP 
(n=4), NSIP (n=6), HP (n=2), DIP (n=1), COP (n=1), LIP 
(n=1) and unclassifiable ILD (n=7).  A 6MWTD <350m 
(HR 4.6, 1.5-14.2 CI, p=0.009), peak VO2/kg (HR 0.88, 
0.790.99 CI, p=0.039) (no threshold determined) and  
VE/VCO2 >46 (p=0.05) (non-proportional and increased 
over time so could not be estimated with a single HR) 
were each associated with increased risk of death. Sp02 
<95% during unloaded exercise had 75% chance of dying 
on transplantation list (sensitivity 86%, specificity 89%).  
67% chance of death if 6MWTD <350m.   

Retrospective single centre cohort.   
  
Only half pts reached AT which limited analysis (low number of endpoints).   
Additional oxygen use during CPET was variable. Generalisability questionable  
As highly selected cohort of severe ILD. Source population, patterns of referral to 
transplant centre, waiting times and cohort characteristics may differ from other  
transplant programs.  
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Swigris et al. 2009, 
USA  Retrospective 

study exploring 
prognostic role of 
SpO2 and SaO2 at 
rest and during 
maximal exercise 
in SSc-ILD 
exercise.  Median 
follow up 7.1 
years.  

83 patients with 
SSc-ILD  Cycle ergometer. Blood gas 

analysis and pulse oximetry. 
SpO2 and SaO2 at rest and 
during maximal exercise (SpO2 
max). VO2 max measured but 
not reported.  

Pulmonary 
hypertension, overlap 
syndromes.  

Mortality   Cox proportional hazard models were used to 
examine the prognostic capabilities of SpO2, 
dichotomised by <89% or ≥ 89% and also as 
continuous variables. Kaplan Meier survival 
curves were generated.   

39 deaths (number of transplantations not recorded). In 
Cox proportional hazards models, SpO2 predicted 
mortality; SpO2max < 89% (HR 2.4, 95% CI 1.2 to 4.9, p 
=0.02), SpO2max fall >4%  from baseline (HR 2.4, 95% 
CI 1.1 to 5.0, p = 0.02), alongside ∆Sp02 (HR 1.08, 95% 
CI 1.03 to 1.14, p = 0.002). Controlling for FVC%, the 
∆Sp02 remained a significant predictor of mortality (HR 
1.07, 95% CI 1.01 to 1.14, p = 0.02). No other CPET 
variables reported.   

No other CPET variables described in analysis and thus potential for reporting 
bias.    

 
Fell et al. 2009,  
USA  study evaluating 

prognostic value of 
CPET in IPF. 
Mean follow up 
not reported.  

117 IPF pts. 10 
pts excluded from 
survival analysis 
as  
VO2 max 
changed 
between baseline 
and 6 months.    

Cycle ergometer. Blood gas 
analysis. Peak VO2/kg  Patients with CTD, 

occupational or 
environmental 
exposure, histological 
pattern other than UIP  

Survival  Multivariate Cox proportional hazard models 
studied the predictive value of peak VO2 
adjusting for age, gender, smoking status, 
baseline FVC % and baseline DLCO%. 
Resulting HR were plotted against peak VO2 to 
determine thresholds. Survival thresholds 
examined with Kaplan Meier survival curves, 
log-rank tests and Multivariate Cox 
proportional hazard models.  

Peak VO2/kg examined as a continuous variable did not 
predict survival HR 0.969 (p=0.55). However, a  baseline 
threshold peak VO2 <8.3ml/kg/min was associated with 
an increased risk of death (n=8; HR 3.24 1.10-9.56 CI, 
p=0.03).   
  
No other CPET variables reported.   

Retrospective, single centre study.   
Number of deaths in each group not reported. Analysis was not by a priori plan. 
Small number pts below VO2 max threshold in analysis. Caution in interpreting  
generalisability to IPF population as  64% (75/117) required a surgical lung biopsy 
for diagnosis. No other CPET outcomes reported.   

Wallaert et al. 2011, 
France  Retrospective 

multicentre study 
evaluating 
prognostic role of 
CPET in determining 
3-year survival in 
IPF.   

63 IPF patients   Cycle ergometer.  Blood gas 
analysis. Peak VO2/kg, 
VE/VO2 at ventilatory 
threshold, VE/CO2, 
(VO2/HRR), P(A-a)O2, 
ventilatory reserve and lactate.  

Non-IPF associated 
ILD. Pts in which 
blood gas analysis had 
not been performed.   

3-year survival 
(absence of  
D or LTx).   

Demographic data, resting pulmonary function 
and CPET parameters in the survivors were 
compared to the those who died/received lung 
transplantation by univariate survival analysis. 
Multivariate logistic regression analysis 
explored prognosis at 3 years. Kaplan Meier 
curve and log-rank test was performed, with 
model validation by ROC curve analysis.    

19 patients: D (n=14) or LTx (n=5) at 3 years.  
Multivariate logistic regression analysis highlighted four 
parameters to be independently correlated with mortality: 
TLC (% pred), VE/VO2 at ventilatory threshold, FVC (% 
pred) and P(A-a)O2. The most appropriate logistic 
regression model incorporated two variables, with the 
lowest 3 year survival when TLC (<65%) and VE/VO2 at 
ventilatory threshold (>45) (AUC 0.811, sensitivity was 
98%, specificity 50%, positive predictive value 80% and the 
negative predictive value 64%).    

Retrospective study.   
  
Presence of PH not studied.   
  
Inadequate description of exclusion criteria.   

Kollert et al.  
2011, Germany  Retrospective 

study evaluating 
whether gas 
exchange during 
CPET reflects 
disease activity 
and clinical course 
in sarcoidosis. 2 
year follow up  

149 
histologically 
confirmed 
sarcoidosis. 
Analysis of 102 
patients (47 
incomplete notes)   

Cycle ergometer, capillary 
blood gas analysis.   
  
P (A-a)O2  

Patients who could not 
complete CPET > 6 
minutes, in the 
absence of 
extracardiopulmonary 
limitations. Patients 
with clinical signs of 
acute infection. For the 
longitudinal subgroup 
analysis: Patients with 
incomplete records   
  
  

Longitudina 
l component: 
Duration of 
immunosup 
pressive 
therapy (no 
treatment, 
treatment ≤ 1 
year, 
treatment >  
1 year)  

Associations between sarcoidosis clinical parameters 
(including the need for prolonged 
immunosuppressive therapy > 1 year) and P(A- 
a)O2 during exercise were assessed by analysis 
of variance statistical methodology.   
Univariate then multivariate backward binary 
logistic regression analysis used to assess 
clinical variables independently associated 
with need for prolonged immunosuppression.  

Multivariate regression analysis suggested that FVC (OR  
0.954, 0.917-0.992 CI, p =0.009) and P(A-a)O2 (OR 1.098, 
1.039-1.160 CI, p<0.0001) during exercise were 
independently associated with a need for prolonged 
immunosuppressive treatment.   
  
Unable to determine exact clinical characteristics of this 
longitudinal cohort from the data presented. No other 
CPET variables reported.   

No other CPET variables described in analysis and thus potential for reporting bias.    

Lopes et al.  
2012, Brazil  Retrospective 

study to identify 
CPET measures 
that predict FVC 
and DLco 
progression over 5 
years in patients 
with thoracic 
sarcoidosis.  

42 pts with 
histologically 
confirmed 
sarcoidosis.   

Cycle ergometer, blood gas 
analysis. Peak VO2 (% pred), 
% peak VO2 at lactate 
threshold,VCO2/VO2, 
VO2/HRR,  maximum  
respiratory rate, breathing 
reserve, HRR, P(A-a)O2, 
∆Sp02, ∆lactate.  

History of smoking. 
Mycobacterial 
infection, exposure to 
aero-contaminants or 
medications known to 
cause granulomatous 
disorders.  Those with 
known medical history  
or laboratory diagnosis 
of concomitant 
respiratory, cardiac or 
neuromuscular 
disease.   

Decline  
FVC% and  
DLco%  

FVC/DLCO variation over study period 
evaluated by Wilcoxon signed rank test. 
Correlations between CPET measures and  
FVC/DLCO variation over 5years used 
Spearman's rank correlation (except breathing 
reserve and relative variations of FVC). ROC 
curve analysis used to determine cut offs for 
CPET measurements are predictors for lung 
function decline. Multiple logistic regression 
used to identify factors independently related to 
decreased lung function.   

Statistically significant reductions in FVC (relative 
variation -5.1% (-23.1% - 0%) and DLCO (relative 
variation -2.5% (-44.4% - 0.93%) at 5 years follow up. 
Peak VO2 (% pred), breathing reserve, maximum RR, 
P(A-a)O2 and ∆Sp02 correlated with FVC and DLCO 
values that had declined >10% from the initial values 
measured (p<0.0001 for all parameters). P(A-a)O2 
>22mmHg (RR 70.0 p=0.001) and breathing reserve <40% 
(RR 20.8, p=0.014) independently predicted lung function 
decline (FVC % pred and DLCO% pred).  

Retrospective, single centre study.   
  
Potential for selection bias (tertiary centre for sarcoid –  
more likely to have severe patients). Small number of patients resulting in high  RR 
values.  
Cardiac circulatory status not determined.   
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Triantafillidou 
et al. 2013,  
Greece  

Prospective, study 
evaluating 
prognostic role of  
6MWT and CPET  
in IPF. Follow up 9-64 
months.   

25 pts with IPF  Cycle ergometer, pulse 
oximetry. VE/VCO2 slope, 
VO2 peak/kg, VE/VCO2 ratio 
at AT.  

Significant PH  
(PASP>45mmHg on  
ECHO), pts taking 
beta blockers. 
Pulmonary fibrosis 
due to environmental 
and occupational 
exposure, drug toxicity 
or  
autoimmune 
rheumatological disease  

Survival  Parameters of study were evaluated by Wald 
test, likelihood ratio test and the score (log rank) 
tests with Bonferroni correction. Parameters 
achieving statistical significance were then 
evaluated in a multiple regression Cox 
proportional hazard model with a stepwise 
model selection.    

8 D by end of the observation period. 21 patients reached 
the AT. VE/VCO2 slope, VO2 peak/kg & VE/VCO2 at 
AT were significant survival predictors. Optimal model 
for mortality risk estimation combined VO2 peak/kg with  
DLCO (P<0.0001). Per 1 unit increase in VO2 peak/kg 
(1mL/kg min) and DLCO% (1%), mortality rate is reduced 
by 32% and 13% respectively. VO2 peak threshold of 
14.2mL/min/kg was associated with an increased mortality 
risk.  

Prospective study with  low mortality rate in small numbers of pts.  Data 
generated from sub-analysis of RCT.  
  

 
Gläser et al.  
2013, Germany  study evaluating  

predictive value of 
CPET measures  
for the presence of 
PH in IPF. 
Investigate 
diagnostic and 
prognostic use of 
gas exchange during 
CPET in pts 
with/out PH.  
Follow up 2 years.  

135 pts (73 with 
PH) IPF.   
  
No follow up 
data for 2 pts, 
reducing cohort 
to 133.  

Cycle ergometer, pulse 
oximetry. Peak VO2, VO2 at 
AT (ml/min), VE/MVV, VE 
vs VCO2 slope, VE  max, Vt 
max, Vt max/ IC, VE/MVV.  

Pts with left heart 
disease (ECHO ± 
PWP>14mmHg by 
RHC), non-IPF 
pulmonary fibrosis 
and/or PH resulting in a 
life expectancy <24 
months, inability to 
perform CPET due to 
orthopaedic or 
neurological 
impairment.   

Interceding 
pulmonary 
hypertensio 
n. Survival 
(death and 
lung 
transplantat 
ion 
combined 
endpoint)  

Mann-Whitney or X-test used for comparison of 
IPF pts with/without PH.   
  
Cox proportional hazards analysis used for 
pulmonary variables and end point. Kaplan 
Meier survival plots constructed with 
differences in survival analysed by log-rank test. 
Cut off values for best discrimination 
determined using ROC curve analysis.  

37 D and 6 LTx during follow up. The presence of PH is 
best predicted by gas exchange efficiency during exercise 
and peak oxygen uptake (VE vsVO2 slope pred (≥ 152.4,  
AUC 0.938, 0.892-0.984 CI) and VO2 peak pred (≤ 56.3, 
AUC 0.832, 0.753-0.911 CI)).  By univariate analysis, the 
presence of PH as determined by RHC was the most 
powerful prognosticator in IPF (whole group) (mPAP HR 
1.07, 1.04-1.11 CI), with CPET outcomes of peak VO2 
pred (HR 0.96 p=0.001) and VO2 at AT pred (HR 0.97 
P=0.017) also being statistically significant.  In multivariate 
analysis, invasively measured PH and peak  
VO2 pred were independent predictors for survival.  

Retrospective multicentre study.   
  
Potential recruitment bias due to selected cohort (specialist centres,  excluded 
left heart disease).  

Van der Plas et al. 
2014,  
Netherlands  

Retrospective 
study exploring 
predictive value of  
CPET and ECHO  
parameters for survival 
in IPF.  
Mean follow-up 
42.3+/- 42.2 
months.   

38 pts with IPF. 
Follow up for 3 
pts who 
received 
transplantation 
was censored at 
date of 
transplantation.  

Cycle ergometer. Peak workload 
(% predicted), VO2 peak (% 
pred), VE peak (% pred), 
breathing reserve (%),  
HRR peak (% pred), VE/  
VCO2 ratio at AT,  
VO2/HRR (% pred), ETCO2  
at max (kPa)  

Non -IPF ILD. Pts 
where CPET and 
ECHO were 
performed more than 2 
weeks apart.  

Survival  
Pearson's correlation coefficients were calculated 
for sPAP & CPET parameters. Patients were 
grouped into those with/without sPAP≥ 
40mmHg and differences in exercise parameters 
analysed with unpaired t-test or chisquare test.  
ROC curve analysis was used to determine 
variables that predict sPAP≥ 40mmHg. Kaplan-
Meier survival curves then evaluated the 
prognostic value of these parameters on survival. 
HRs were calculated using multivariate Cox 
proportional hazard models (with FVC and CPI 
included in the model to correct for functional 
severity of IPF) to determine predictive value of 
parameters on survival.   

24 D and 3 LTx during follow up. 29/38 (765) had a 
reduced VO2 peak (ie. <84% predicted). Mean peak VO2 
5.5ml/min/kg; 66.6% predicted). VE/VCO2 at AT was 
significantly higher in patients with sPAP ≥ 40mmHg 
(n=11) compared to those with sPAP≤ 40mmHg (n=27), 
(54.0±21.9 vs 37.9±7.5, p=0.021). VE/VCO2 at AT was 
shown to be a good predictor of sPAP ≥ 40mmHg by 
ROC curve analysis but only VE/VCO2 at AT and not 
sPAP ≥ 40mmHg was shown to predict survival. Pts with 
VE/VCO2 at AT ≤ 45 (n=24) had a significantly better 
prognosis that those with VE/VCO2 ≥ 45 (n=14),   
81.3±14.1  vs 21.0±4.9 months respectively; HR 4.58, 
p=0.001. Parameters reflecting functional severity of IPF 
did not add to the predictive value of VE/VCO2 at AT for 
survival.      

Retrospective analysis of prospective database. Single centre.  

Vainshelboim  
et al. 2016,  
Israel  

Prospective, 
observational study 
evaluating role of 
12 week exercise 
training program 
on survival at 40 
months follow up.  
Evaluation of the 
role of CPET 
variables in the 
prognostication of 
IPF.   

34 pts with IPF  Cycle ergometer, pulse 
oximetry. Peak VO2/kg, peak 
work rate, VE/VO2 nadir , 
VE/VCO2 ratio at AT, tidal 
volume reserve.  

Non-IPF ILD.  
Clinically unstable in 
preceding 3-6 months, 
severe co-morbid 
illness, unstable 
cardiac disease and any 
orthopaedic or 
neurological 
contraindications to 
CPET.  

Mortality or 
transplantat 
ion  

ROC curve analysis was used to determine cut 
off points of CPET variables for mortality. Cox 
regression analysis for survival analysis and 
comparison between significant cut-off points 
(log rank test). HR for death or LTx (Wald 
test).  

9 deaths and 2 LTx  (considered fatalities in statistical 
analysis).Poorer survival and significant increased risk of 
mortality associated with cut off points for: peak work 
rate<62 watts (AUC 0.854, 0.73-0.98 CI, p=0.005), peak 
VO2 <13.8mL/kg/min (AUC 0.731, 0.56-0.9, p=0.031), 
tidal volume reserve <0.48 L/breath (AUC 0.810, 
0.660.96, p=0.01), VE/VCO2 at AT >34 (AUC 0.783, 
0.60.96, p=0.02) & VE/VO2 nadir >34 (AUC 0.736, 
0.560.9, p=0.002). Bivariate analysis of these cut offs 
(above and below the threshold) revealed HRs as follows: 
Peak work rate 9.2 (1.9-42.6), Peak VO2 4.4 (0.94-20.3), 
Tidal volume reserve 7.6 (1.6-35.2), VE/VO2 nadir 8.3 
(2.231.6), VE/VO2 at AT 4.6(1.2-17.3). Non survivors 
were characterised by higher dyspnoea levels, the presence 
of PH (assessed by ECHO sPAP>35mmHg), and CPET 
markers of reduced ventilatory efficiency (VE/VO2 nadir 
p=0.039, VE/VCO2 at AT p=0.008) and reduced exercise 
capacity (Peak work rate p=0.01, Peak VO2 p=0.02).  
Exercise training intervention had no survival benefit over 
standard care. Higher prevalence of PH in non survivors.  

Prospective observational study analysis as part of a  wider single centre RCT.   
  
Underpowered to detect survival differences between groups. Small sample size.    
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Layton et al. 2017, 
USA  study evaluating  

predictive value of 
CPET for one-year 
transplant free 
survival in a 
population of ILD 
patients 
undergoing lung 
transplant 
evaluation.   

192 pts had CPET 
was performed on 
oxygen. Four 
tests terminated 
due to oxygen 
desaturation 
(nadir SpO2 <  
80% despite  
30% FiO2). 3 tests 
terminated early 
due to  
low ETCO2 
(<18mmHg) or 
elevated  
ETCO2  
(>60mmHg),  
reducing cohort to 
185 pts.  

Cycle ergometer, pulse 
oximetry. Peak VO2 
(ml/kg/min, % predicted) , 
workload (watts, % 
predicted), VE/VCO2 slope 
(% predicted), ETCO2 mmHg 
& O2 pulse.  

Pts not being 
evaluated for lung 
transplant, those that 
did not require oxygen 
with exercise, no 
follow up data 
available at 1 year 
post CPET.   

Survival 
without the 
need for 
transplantat 
ion (at one 
year).   

79 deaths/transplantations during follow up 
period. Comparison of variables between those 
who died /transplanted (D/LTx) and those who 
survived transplant free were compared using 2-
sample independent t test. Survival was calculated 
by Kaplan-Meier method, with univariable Cox 
regression analysis  to identify predictors of 1yr 
transplant free survival. Multivariable cox model 
with forward stepwise elimination method to 
identify prediction of transplant free survival (and 
to predict survival excluding those transplanted. 
ROC used to test thresholds of these predictors.  

Mixed cohort of ILD patients analysed: IPF n=135 (70%) 
, sarcoidosis n=15 (8%), HP n=6 (3%), NSIP n=12 (6%),  
ILD with mixed connective tissue disorder n=24 (13%). 
113/192 (59%) survived transplant free. More patients 
with sarcoidosis in the survival transplant free group then 
the D/LTx group and more patients with NSIP in the 
D/LTx group  (p=0.028).  Multivariable cox regression 
identified CPET variables of  peak workload <35% 
predicted  (HR 4.71, 2.64-8.38 CI and AUC =0.740) and 
nadir CPET SpO2 <86% despite 30% FiO2 (HR 2.27, 
1.41-3.68 CI, AUC=0.645) as discriminatory parameters 
predicting one-year mortality or need for transplant, 
alongside FVC% predicted <45% (HR 1.82, 1.15-2.87 CI 
AUC 0.624). Notably the presence of PH (present in 50% 
pts determined by combination of RHC or ECHO) was 
not an independent predictor of prognosis in this study.   

Retrospective, single centre cohort. Potential for selection bias, unidentified  
confounding and missing co-variate data. Generalisability to general ILD patients 
questionable as highly selected cohort of advanced ILD patients.   
Source population , patterns of referral transplant, waiting times and cohort  
characteristics may differ from other transplant programs.  

  
Table 1: Study characteristics of papers selected for full data extraction.   
Abbreviations: Pts, patients; IPF, idiopathic pulmonary fibrosis; ILD, interstitial lung disease; NSIP, non-specific interstitial pneumonia; HP, hypersensitivity pneumonitis; CTD, connective tissue disease; SSc, systemic sclerosis; COP, cryptogenic organising pneumonia; UIP, usual interstitial pneumonia; DPLD, diffuse parenchymal lung disease;  
LAM, lymphangioleiomyomatosis; EP, eosinophilic pneumonia; 6MWTD, 6-minute walk test distance;  CPET, cardiopulmonary exercise testing; AaDO2, alveolar-arterial oxygen pressure difference; FiO2, fraction of inspired oxygen; VD/VT, physiological dead space/tidal volume ratio; VO2, oxygen uptake, VCO2, carbon dioxide production; 
PaO2, partial pressure of oxygen; PaCO2, partial pressure of carbon dioxide; VT, ventilatory threshold (highest VO2 sustained without lactic acidosis); AT, anaerobic threshold; Vt, tidal volume; tidal volume reserve, Vt max-Vt resting; IC, inspiratory capacity; VE, minute ventilation; breathing reserve, VE/MVV during exercise; VE/VO2, peak 
oxygen uptake; VE/VCO2, ventilatory efficiency; kg, kilograms; OR, odds ratio; HR, hazards ratio; HRR, heart rate; SaO2, oxygen saturation of arterial blood; SpO2, oxygen saturations measured by pulse oximetry; max, maximal; MVV, maximum voluntary ventilation (can be measured or estimated as FEV1 X 41) ; ∆, change in; VO2 slope, 
PaO2 plotted against VO2; VO2/HRR max or oxygen pulse, oxygen delivery per heartbeat; ETCO2, end tidal carbon dioxide; D, died/deaths; LTx, lung transplantation, sPAP, systolic pulmonary artery pressure, ROC, receiver operating characteristic curve; FVC, forced vital capacity; CPI, composite physiologic index; TLC, total lung capacity; 
DLCO, diffusion capacity of lungs for carbon dioxide; RHC; right heart catheter; ECHO, echocardiogram; PH, pulmonary hypertension; PWP, pulmonary capillary wedge pressure; AUC, area under the curve; RCT, randomised controlled trial; CI, confidence interval; pred, predicted; %, percentage; P(A-a)O2, alveolar-arterial oxygen pressure 
gradient at peak exercise; ∆Sp02, difference between peak and resting oxygen saturation, CXR, chest X-ray; PVD; peripheral vascular disease, HRCT, high resolution computed tomography; RR, respiratory rate.   
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Appendix D: Published literature review- ERJ Open Research: August 2020  

  

The prognostic value of cardiopulmonary exercise testing in interstitial lung disease: A systematic 

literature review  

  
  
Shaney L. Barratt 1,2, Richard Davis1, Charles Sharp3, John D. Pauling 4,5   

1Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, UK 2Bristol 
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3Gloucestershire Hospitals NHS Foundation Trust, Gloucestershire, UK.  
4Department of Pharmacy and Pharmacology, University of Bath, Bath, UK  
5Royal National Hospital for Rheumatic Diseases, Royal United Hospitals NHS Foundation Trust, Bath, UK.   

  
  
  
Abstract  
  
Background  

Interstitial lung disease (ILD) heterogeneity poses challenges in terms of prognostication; including 

end of life discussions and optimal timing for transplantation. Efforts are required to develop definitive 

prediction models for use in clinical practice. Cardio-Pulmonary Exercise Testing (CPET) provides a 

comprehensive assessment of the physiological changes in the respiratory, cardiovascular, and 

musculoskeletal systems in a controlled laboratory environment, that has shown promise in terms of 

prognostic value in a number of chronic respiratory conditions.   

  
  
  
  
  
  
  
  
Methods  

We conducted a systematic review to identify CPET variables that predicted longitudinal outcomes in 

ILD. Two databases were searched to identify all studies reporting prognostic value of CPET in 

predicting disease-specific outcomes in longitudinal studies of ILD. Two authors independently 

reviewed and extracted data from acceptable studies.   
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Results  

The initial search identified 658 unique citations. Thirteen studies were identified that examined the 

prognostic value of CPET in ILD, all of which reported a prognostic role for CPET parameters in 

predicting clinical outcomes in ILD, with survival being the principle clinical outcome measured. Issues 

with study quality (relating primarily to the inherent problems of retrospective studies, patient 

selection and presentation of numerous CPET parameters), limits the strength of conclusions that can 

be drawn from the studies reviewed.  

Conclusions  

There is insufficient evidence to support its use in facilitating ‘real-world’ clinical decisions. Additional 

prospective studies are required to validate these preliminary findings.   

  
Introduction   
  
The Interstitial Lung Diseases (ILD) are a group of heterogeneous diseases characterised by alveolar 

and interstitial damage, varying degrees of inflammation and/or fibrosis, architectural distortion and 

impaired gas exchange. ILD may be attributed to a known cause (e.g. drugs, connective tissue disease 

or inhalation of dusts or organic antigens) or unknown cause, such as Idiopathic pulmonary fibrosis 

(IPF) (2000). The prognosis is often poor, particularly for IPF which is typically progressive with a 

median survival of 2-5 years from diagnosis (Ley et al. 2011). ILD is also the leading cause of disease 

related mortality in connective tissue diseases (CTD) such as systemic sclerosis (SSc) (Steen and 

Medsger 2007) and myositis (Johnson et al. 2016). There is however vast heterogeneity in terms of 

presenting features, severity, disease course, treatment response and individual survival (Bellaye and 

Kolb 2015). This leads to challenges for patients and clinicians in terms of end of life discussions 

(Schroedl et al. 2014), treatment choices, optimal timing for transplantation (Mura et al. 2012) and 

conduct of clinical trials (Albera 2011, Gordon and Domsic 2016).   

  

Previous studies of ILD have identified declining functional capacity and muscle weakness as strongly 

predictive of disease progression and increased mortality(Panagiotou et al. 2016), whilst measures of 

gas exchange may be more valuable predictors of outcome than measures of lung mechanics (Lederer 

et al. 2006, Flaherty et al. 2006, Ley et al. 2011). Hypoxia after 6-minute walk test (6MWT) and a history 

of arthritis appear to predict progression in SSc-ILD (Wu et al. 2018). Nevertheless, further efforts to 

develop definitive prediction models are required for clinical practice (Kolb and Collard 2014, Ley et 

al. 2011).   
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Cardio-Pulmonary Exercise Testing (CPET) provides a comprehensive assessment of the physiological 

changes in the respiratory, cardiovascular, and musculoskeletal systems in a controlled laboratory 

environment (Layton et al. 2017), that has shown promise in terms of prognostic value in a number of 

chronic respiratory conditions (Ferrazza et al. 2009, Arena and Sietsema 2011).    

  

The primary objective of this systematic literature review was to evaluate the prognostic value of CPET 

in predicting disease-specific outcomes in longitudinal studies of ILD. If a prognostic role for CPET were 

confirmed, it could be used to guide earlier intervention for at-risk patients, support cohort 

enrichment for ILD clinical trials and allay anxiety and unnecessary monitoring amongst patients with 

stable ILD.   

  
  
Materials and methods  
  
  
Reporting of protocol and review registration  

The study protocol was prepared in accordance with Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines (Shamseer et al. 2015) and registered in the International 

Prospective Register of Systematic Reviews (PROSPERO 110198/2018).   

  

Eligibility criteria   

Studies that reported the relationship between CPET assessment and disease progression, prognosis or 

the presence/emergence of specific clinical outcomes of ILD were included.   

  

Using the PICO framework, we evaluated publications that fulfilled the following criteria:   

Population   

Adults (18 years or older) with a diagnosis of ILD (including but not limited to idiopathic pulmonary 

fibrosis, CTD-related ILD and sarcoid-related ILD).  

Intervention  

  
Studies reporting the outcome of CPET assessment as a prognostic factor. All available methods of 1) 

performing formal CPET and 2) reporting CPET results were included.   

Comparison  

Patients with/who developed relevant outcomes (see below) were compared with those who did not, 

using CPET testing at baseline in both groups.    
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Outcome measures  

The primary objective was to evaluate the prognostic value of CPET in predicting disease course and 

outcomes in longitudinal (retrospective or prospective) studies of ILD. The relationship between CPET 

results and a number of clinically relevant outcomes including, but not limited to, relevant clinical 

phenotype and disease demographics (e.g. disease duration, gender, age, lung physiology), disease 

outcomes (e.g. death, hospitalisation), surrogates of disease severity (including, but not limited to lung 

physiology, circulating biomarkers etc.), health-related quality of life (HRQOL) and functional status, 

were examined.    

  

Study design  

Eligible studies included cohort (retrospective or prospective) and observational longitudinal studies, 

that reported outcomes at a time point distinct from the baseline CPET (i.e. were of an appropriate 

design to evaluate prognostic value). The following types of studies were excluded: 1) animal studies 

2) studies including patients with lung disease where an ILD cohort was not described and reported 

separately 3) studies designed to develop or validate health measurement scales 4) randomized 

controlled trials 5) case reports 6) qualitative research 7) non-original research publications (i.e., 

editorials, reviews) 8) abbreviated reports (e.g. letters to editors) and conference proceedings. An 

amendment to our originally registered protocol (English language articles only) was made to enable 

the inclusion of a relevant non-English (French) publication.  

  

Search strategy   

The search criteria were developed in accordance with search recommendations for systematic 

reviews of evaluations of prognostic variables (Altman et al. 2000). Electronic searches were 

performed in Medline and EMBASE, with no publication date or language restrictions.  Full details of 

the specific search criteria applied are detailed in the supplementary material (Supplementary 

material 1). All titles and abstracts generated by the search criteria were screened independently by 

two review authors (R.D. and C.S.) identifying those studies relevant and eligible for full text review. 

Agreement between reviewers in the study selection process was assessed using Cohen’s Kappa 

statistics (Cohen 1968).  Any discrepancies/disagreements were resolved by discussion between 

reviewers and included a third party (SLB) if necessary. Discussions between reviewers resolved any 

discrepancies at each stage of the study selection process. Review articles or editorials focussing on 

the “prognostic aspects of cardiopulmonary exercise testing in Interstitial Lung Disease” were also 

reviewed, to facilitate a grey search of cited manuscripts within these reviews.   
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Data extraction   

A standardised form was used (initially by RS and CS, with subsequent verification by SB) to 

independently extract relevant study details from each of the selected studies that included: date of 

publication, journal or publication source, study design, initial population of the study, study inclusion 

criteria, study exclusion criteria, CPET method, CPET analysis endpoints, disease outcomes assessed 

and a summary of key findings. Study corresponding authors were contacted when clarification was 

required.   

  

Data synthesis  

Formal meta-analysis was planned if appropriate and feasible. In anticipation of wide heterogeneity 

in design, CPET methods and CPET analysis, a narrative, qualitative synthesis of results was planned if 

quantitative analysis was not possible.  

  

Risk of bias assessment  

The QUIPS (Quality in Prognosis Study) risk of bias tool was used to assess the risk of bias within every 

included study (Huguet et al. 2013). Kappa statistics were applied to assess preliminary agreement 

between reviewers for bias assessment. Discussions between reviewers were undertaken to achieve 

consensus where discordance existed in the preliminary bias assessment for any domain 

(Supplementary material 2).  

  

Results  Study selection  

Initial simultaneous searches in EMBASE (n=573) and Medline (n=373), performed on 13th April 2019, 

identified a total of 946 articles. After removal of duplicates (n=288), 658 articles generated by the 

search were screened for eligibility and exclusion criteria based on titles and abstract review. There 

was moderate initial agreement between the two reviewers (Cohen’s kappa 0.462 – see 

Supplementary material 3), with discordance in 20 abstracts, that was easily resolved through 

discussion. Eighteen articles proceeded to full text review and this led exclusion of a further 5 studies. 

A total of 13 studies were deemed eligible for inclusion. The full study selection process is detailed in 

Figure 1. Table 1 summarises the study design and reported findings of the thirteen papers that 

proceeded to full data extraction.   
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Geographical participation and date of publication  

Three studies were undertaken in Europe (5/13, 38%)(Triantafillidou et al. 2013, van der Plas et al. 

2014, Gläser et al. 2013, Wallaert et al. 2011, Kollert et al. 2011), four in USA (5/13, 38%)(Fell et al. 

2009, Kawut et al. 2005, Layton et al. 2017, Swigris et al. 2009, King et al. 2001) and the remainder in 

Israel (Vainshelboim et al. 2016), Japan (Miki et al. 2003) and Brazil (Lopes et al. 2012). The majority 

of studies were published in the last 10 years (10/13, 70%)(Layton et al. 2017, Triantafillidou et al. 

2013, van der Plas et al. 2014, Gläser et al. 2013, Vainshelboim et al. 2016, Lopes et al. 2012, Wallaert 

et al. 2011, Swigris et al. 2009, King et al. 2001, Kollert et al. 2011) and only three studies published in 

the years preceding 2009 (Miki et al. 2003, Fell et al. 2009, Kawut et al. 2005).  

  

Study characteristics  

Most studies were retrospective cohort analyses (11/13, 85%), with variable follow-up periods (range 

23 days(Kawut et al. 2005) - 20 years(Swigris et al. 2009)). The majority of retrospective studies 

evaluated independent risk factors for survival or mortality outcomes in ILD (9/11, 82%) and had an 

average follow up time of between 1-4 years (Gläser et al. 2013, Kawut et al. 2005, Layton et al. 2017, 

van der Plas et al. 2014, Miki et al. 2003, Vainshelboim et al. 2016, Triantafillidou et al. 2013, Wallaert 

et al. 2011, King et al. 2001). The longest planned follow up was in a study examining a cohort of 

systemic sclerosis ILD patients (truncated at 20 years) (Swigris et al. 2009).   

  

There were two prospective studies (Triantafillidou et al. 2013, Vainshelboim et al. 2016). One 

investigating the relationship between CPET and survival characteristics in IPF had a variable duration 

of follow up between 9-64 months (Triantafillidou et al. 2013). The other prospective study used CPET 

as part of a wider investigation into the role of exercise testing in the prognostication of ILD and 

followed patients up for a fixed period of 40 months (Vainshelboim et al. 2016).   

  

Study populations  

Of the studies identified, 8/13 (62%) exclusively recruited patients with IPF, two recruited only 

sarcoidosis patients (Lopes et al. 2012, Kollert et al. 2011), and one study systemic-sclerosis associated 

ILD (Swigris et al. 2009). The remaining studies (2/13, 15%) evaluated more heterogeneous cohorts of 

ILD patients referred for lung transplantation assessment (Kawut et al. 2005, Layton et al. 2017).   

  

The prognostic value of CPET has been retrospectively reported in a total of 703 patients with IPF, and 

prospectively in a further 59 patients in 2 small, single centre studies (n=25 (Triantafillidou et al. 2013) 

and n=34 (Vainshelboim et al. 2016) respectively).  Patients were recruited to studies according to 

consensus statements on the diagnosis of IPF available at the time of enrolment; the 2000 American 



 

100  
  

Thoracic Society (ATS) international consensus statement for the diagnosis of IPF(2000, Miki et al. 2003, 

Triantafillidou et al. 2013, van der Plas et al. 2014, Fell et al. 2009, King et al. 2001) and the later 2002 

ATS/ERS (European Respiratory Society) international consensus classification of the idiopathic 

interstitial pneumonias (including IPF) (Wallaert et al. 2011, Kawut et al. 2005, Society and Society 2002). 

The updated 2011 ATS/ERS/JRS/ALAT evidence based guidelines for the diagnosis of IPF (Raghu et al. 

2011) were applied in all (Triantafillidou et al. 2013, Gläser et al. 2013, Layton et al. 2017, Vainshelboim 

et al. 2016) but one of the studies (van der Plas et al. 2014) published after 2011 (the latter was a 

retrospective study that may have recruited patients prior to the publication of the 2011 guidelines).   

  

The prognostic role of CPET in outcomes of secondary causes of ILD (such as connective tissue disease 

(CTD), drug-induced ILD, occupational causes of ILD and hypersensitivity pneumonitis (HP)) in 

granulomatous disease or in other forms of idiopathic interstitial pneumonias (IIP) has not been 

extensively reported. No prospective studies were identified. Only one retrospective study was 

identified that examined the prognostic role of measures obtained during CPET in a cohort of SSc 

associated ILD patients (n=83) (Swigris et al. 2009). Patients with SSc met diagnostic criteria adopted 

by the 1980 American Rheumatology Association and those with SSc sine scleroderma met criteria 

proposed by Poormoghim and colleagues (Poormoghim et al. 2000). A diagnosis of ILD was based on 

chest radiography in n=60 patients (Swigris et al. 2009).   

  

Two additional retrospective studies have explored the role of CPET in predicting longitudinal 

outcomes in a total of 144 histologically confirmed sarcoidosis patients (Lopes et al. 2012, Kollert et 

al. 2011), representing Scadding disease stages 1-4 (SCADDING 1961).   

  

We identified two retrospective studies that examined the role of CPET in predicting outcomes in 

mixed populations of ILD patients (Layton et al. 2017, Kawut et al. 2005). Cumulative patient numbers 

were small (a heterogeneous group of connective tissue disorders n=28, HP n=8, unclassifiable ILD n=7, 

sarcoid n=15, IIP n=21 (NSIP n=18, COP, DIP, COP). Whilst the cohorts could be considered to be 

representative of mixed ILD cohorts, patient numbers for each subtype were too small to consider each 

subgroup separately.   

  
With regards to the study participant populations, the QUIPS risk of bias was considered to be low for 

only 3/13 (23%) studies (Triantafillidou et al. 2013, Wallaert et al. 2011, Vainshelboim et al. 2016), 

with the majority regarded as having a moderate (6/13, 46%) or high (4/13, 31%) (Miki et al. 2003, 

Layton et al. 2017, Kawut et al. 2005, Kollert et al. 2011) risk of bias. The generalisability of one study 

was potentially limited by the reported high diagnostic lung biopsy rate for IPF patients (64% (75/117) 
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(Fell et al. 2009), a condition that can often be confidently diagnosed without biopsy in the presence 

of typical radiological findings and by consensus agreement in the multidisciplinary team setting 

(Walsh et al. 2016) and thus raising concerns as to whether this cohort was representative of IPF 

populations in the ‘real world’. The generalisability of a further study that assessed the extent to which 

gas exchange measurements could predict the need for prolonged immunosuppressive therapy in 

sarcoidosis, was limited by the lack of clearly defined clinical characteristics e.g Scadding disease stage, 

in the subset of patients followed longitudinally (102/149)(Kollert et al. 2011). Two studies examined 

disease outcomes that necessitated a particular baseline clinical phenotype e.g. recruitment from 

source populations referred for lung transplant evaluation and thus by definition only analysed 

selected cohorts of advanced ILD patients (Layton et al. 2017, Kawut et al. 2005). Others incorporated 

a priori patient grouping, for example the presence of pulmonary hypertension (Gläser et al. 2013), to 

enrich populations with patients at high risk of developing outcomes of interest, or required the active 

exclusion of patients with a relevant phenotype e.g. those that died from a cause other than 

respiratory failure (Miki et al. 2003).   

  

Study attrition was generally reported to be low, which may reflect the retrospective nature of the 

majority of the studies identified. The QUIPS risk of bias for study attrition was reported to be high in 

two studies, increasing the potential for selection bias;  >25% patients identified were excluded from 

the analysis by Lopes et al.(Lopes et al. 2012) (15 pts excluded: smoking history (n=10), concomitant 

respiratory disease (n=2), cardiac disease (n=2), neuromuscular disease (n=1), reducing final cohort to 

42 pts), whilst in the study by King et al. (King et al. 2001), 34% (80/238) of the originally identified 

population were excluded from inclusion in the final analysis because of  incomplete data sets.   

  

  

  

Prognostic factor measurement  

CPET was the sole prognostic factor for the majority of studies 8/13 (62%), with a minority using CPET 

as part of a broader repertoire of exploratory physiological tests including 6MWT (Kawut et al. 2005, 

Triantafillidou et al. 2013, Layton et al. 2017) or lung function parameters (Gläser et al. 2013). One 

study used CPET in conjunction with clinical, radiological and resting physiological tests to devise a 

scoring system to predict survival in newly diagnosed cases of IPF (the CRP score: Clinical Radiological 

Physiological score) (King et al. 2001).  

  

In two studies, CPET was used as the principle method to achieve a standardised form of maximal 

exercise (Kollert et al. 2011, Swigris et al. 2009) where upon arterial blood gas sampling or peripheral 
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oxygenation measurements were taken to determine the effect of exercise on gas exchange. In both 

of these studies, typical CPET measures, such as maximal oxygen consumption (VO2max) were not 

recorded.   

  

Across all studies, the bias rating for prognostic factor measurement using the QUIPS tool was 

considered low-to-moderate (Table 2), with the majority of studies reporting a standardised approach 

to CPET and analysis that would be easily reproducible and less amenable to bias. Most studies 

provided a sufficient description of the CPET protocol used, adhering to the 2003 American Thoracic 

Society statement on cardiopulmonary exercise testing (Society and Physicians 2003) (6/10, 

60%)(Kawut et al. 2005, Wallaert et al. 2011, van der Plas et al. 2014, Layton et al. 2017, Triantafillidou 

et al. 2013, Gläser et al. 2013). Others used the European Respiratory Society 1997 (Miki et al. 2003) 

and updated 2007 (Vainshelboim et al. 2016, Palange et al. 2007) recommendations. In others 

important details were missing e.g. if oxygenation was measured during CPET (van der Plas et al. 2014). 

Variation in the methodological approach to CPET was also observed. For example, in one study, 

oxygen usage during CPET was an inclusion criteria (Layton et al. 2017), whilst in another, supplemental 

oxygen during exercise was supplied variably to participants depending on a pre-study requirement 

for home oxygen or saturation on room air <90% (Kawut et al. 2005). In 7/13 (54%)  studies, blood gas 

analysis was used to assess the adequacy of gas exchange during exercise (Fell et al. 2009, Miki et al. 

2003, Lopes et al. 2012, Wallaert et al. 2011, Kollert et al. 2011, Swigris et al. 2009, King et al. 2001), 

whilst the remainder used pulse oximetry, considered by some experts to be a suboptimal substitute 

(Society and Physicians 2003). A broad range of quantitative CPET parameters were 

presented/analysed (summarised in Table 1), raising the possibility of reporting bias (see later).  

  

All but one study used cycle ergometry. Treadmill exercise testing was used as the method of CPET in 

the remaining study; in which exercise increments were chosen for participants based on patient’s 

daily activities and parameters of resting pulmonary function, raising concerns whether a standardised 

approach had been adopted (Miki et al. 2003). Additionally, non-uniform speed increases, often 

inherent to treadmill testing, results in nonlinear metabolic rate increases and fundamental difficulties 

in calculating an accurate external work rate and an estimation of peak VO2. Thus direct comparisons 

of peak VO2 obtained during treadmill testing studies cannot be compared with those obtained from 

cycle ergometry studies.   

  

Outcome measurement  

The most commonly reported outcome was mortality/survival 11/13 (85%). The majority of these 

studies that used survival/mortality as an outcome measurement (10/11, 91%) examined all-cause 
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mortality, considering death or lung transplantation as composite end-point. One study used an 

outcome measurement that was restricted to respiratory deaths only (Miki et al. 2003) and another 

study assessed the discriminatory ability of CPET to identify patients who would die on the lung 

transplant list before receiving transplantation (Kawut et al. 2005). Other outcomes included 

interceding pulmonary hypertension (PH) (Gläser et al. 2013) and decline in pulmonary function (FVC 

and DLCO) or duration of immunosuppressive therapy in sarcoidosis (Lopes et al. 2012, Kollert et al.  

2011).  

  

Using the QUIPS tool, the risk of bias in the approach to outcome measure assessment was considered 

low-to-moderate, in all studies.   

  

Reported prognostic associations of CPET in ILD   

  

All studies reported at least 1 positive association between CPET and clinical outcomes, raising the 

possibility of positive reporting bias (Table 1). Significant heterogeneity in study design, study 

populations (and classification criteria adopted), CPET protocols, CPET endpoints and defined 

endpoints precluded any useful attempt at meta-analysis.  

  

Idiopathic pulmonary fibrosis  

The prognostic role of peak VO2 has been examined across several studies of IPF. Fell et al. (Fell et al. 

2009) retrospectively suggested a baseline threshold of peak VO2 8.3ml/kg/min predicted survival in 

117 patients with IPF (peak VO2 <8.3ml/kg/min HR 3.24, CI 1.10-9.56, p=0.03). Patient numbers in the 

subgroup with peak VO2 < 8.3ml/kg/min were small however (n=8, 7%), compared to the 46% patients 

that actually died, suggesting that the threshold sensitivity was not high. In another study, 

Triantafillidou et al. (Triantafillidou et al. 2013) prospectively identified a threshold of 14.2ml/kg/min 

for survival in 25 patients with moderate IPF (mean FVC 77.5 ± 21.8), whilst Vainshelboim et al. 

(Vainshelboim et al. 2016) suggested VO2 <13.8 ml/kg/min as one of 5 CPET parameter thresholds 

(peak work rate, tidal volume reserve, VE/VO2 nadir and VE/VCO2 at AT) predicting survival in a 

prospective cohort study of 34 patients with IPF. Finally, Gläser et al. identified that the presence of 

PH (invasively assessed by right heart catheter) and peak VO2 % predicted were the only variables 

independently predictive of survival in a retrospective cohort of 133 patients, and application of % 

predicted values showed statically significant superiority to absolute data values. These results 

contrast with the findings of other studies where no independent association between survival in IPF 

and peak VO2 has been demonstrated (Wallaert et al. 2011, Miki et al. 2003). Heterogeneity in terms 
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of disease severity, follow-up periods and accompanying disease co-morbidity may have impacted on 

results of these studies and larger prospective studies are required to ascertain the prognostic role of 

peak VO2 in predicting IPF survival.   

  

Gläser et al. found that the development of interceding PH in IPF was best predicted by reductions in 

ventilatory efficiency, the VE/VCO2 slopepred (cut off of ≥152.4, AUC 0.938; CI 0.892-0.984), with a 

sensitivity of 87.2% and specificity of 88.4%, but analysis of PH subgroup alone did not identify any 

CPET parameters that provided independent prognostic information.  VE/VCO2 at AT has also been 

shown to be discriminating factor to determine the presence of PH across a cohort of IPF patients 

(adjusted OR 1.182; CI 1.029-1.384, p=0.021, n=81), but once again the prognostic value of this 

parameter has not been determined (Boutou et al. 2011).   

  

The prognostic value of an alternative measures of ventilatory efficiency, the ventilatory equivalent 

for carbon dioxide at AT (VE/VCO2 at AT), in predicting survival in IPF has also been examined (van der 

Plas et al. 2014). In a retrospective study of 38 IPF patients, those with VE/VCO2 at AT >45 had a 

significantly worse survival compared to patients with VE/VCO2 at AT ≤ 45 (HR 4.58, p=0.001), and this 

parameter remained a strong predictor even after correcting for functional severity of ILD, highlighting 

its possible use in the early detection of vascular impairment. Furthermore, the ventilator equivalent 

for oxygen at AT (VE/VO2 at AT) >45 was reported to be an independent poor predictor of 3 yearsurvival 

in a cohort of 63 IPF patients (Wallaert et al. 2011), findings consistent with the univariate analysis of 

Miki et al. (Miki et al. 2003). Results suggest that the magnitude of hyperventilation at ventilatory 

threshold may be determining prognostic value, but further prospective studies are required to 

confirm the value of these parameters of ventilatory efficiency in the prognostication of  

IPF.   

  

Exercise induce hypoxaemia was also considered as a potential prognostic factor in IPF. Miki et al (Miki 

et al. 2003) found that only two factors, age and PaO2 slope (defined as change in arterial oxygen 

pressure in mmHg / change in VO2 uptake during exercise (∆PaO2/∆VO2)), provided independent 

prognostic information in a cohort of 41 IPF patients (HR 1.096, CI 1.012-1.187, p=0.025 and HR 0.841, 

CI 0.731-0.967, p=0.015 respectively) and stratification of patients according to this slope 

(≤60mmHg/l/min or >-60mmHg/l/min) identified significant differences in median survival (1.6 years 

vs 4.5 years respectively). Measurement of this parameter does however, require invasive arterial 

blood gas analysis during exercise testing, that is unavailable in the many clinical exercise laboratories. 

In the study by King et al. (King et al. 2001), PaO2 at the end of maximal exercise was the only CPET 
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derived parameter included in their comprehensive clinical-radiologic-physiologic scoring model to 

predict survival in IPF, and when weighted, accounted for as much as 10.5% of the maximum score in 

the complete model. Nevertheless, there were methodological limitations in this latter study; only 

158/238 patients performed exercise testing and patients received supplemental oxygen when 

significant hypoxaemia ensued.   

  

As a consequence of the utilisation of numerous different CPET parameters, CPET cut‐off values, and 

timing of mortality evaluation, it was not possible to determine definitive thresholds for mortality or 

the development of pulmonary hypertension based on the analysed data.   

  

Non-IPF Interstitial Lung Disease   

In mixed populations of ILD patients with advanced disease and referred for lung transplantation 

(Layton et al. 2017, Kawut et al. 2005), oxygen saturations during CPET exercise were amongst the 

variables that were predictive of lung transplantation or death.  Layton et al. (Layton et al. 2017) 

demonstrated a workload threshold during CPET <35%, nadir CPET SpO2 <86% and FVC <45% were 

predictive of lung transplantation or death within 1 year of their CPET, with HR of 4.71 (CI 2.64-8.38, 

p<0.001) and HR 2.27 (1.41-3.68, p=0.001) and HR 1.82 (1.15-2.87, p=0.01), respectively. Kawut et al. 

(Kawut et al. 2005) identified more than 15 different variables, including at least 6 CPET variables (SaO2 

unloaded, peak and recovery, VO2/kg peak, VO2/Heart rate, carbon dioxide production, minute 

ventilation, and VE/VCO2) that predicted all-cause mortality in this patient population, with worse 

survival for patients with SaO2 <95% during unloaded exercise (Kaplan Meier log rank test p=0.0025) 

or low six minute walk test distance (6MWTD) <350m (p=0.001). The authors went on to study factors 

that might predict death on the transplantation list and identified that desaturation during exercise or 

6MWTD <350m, were again associated with poor outcomes; for a patient with SaO2 <95% during 

unloaded exercise, there was a 75% chance of dying on the list.    

  
Across the two studies that examined longitudinal outcomes in sarcoidosis, the alveolar-arterial 

oxygen pressure gradient during exercise P(A-a)O2, a measure of arterial desaturation during exercise, 

was independently associated with both the need for prolonged immunosuppressive therapy (>1 year) 

(odds ratio (OR) 1.098 (CI 1.039-1.160, p<0.001)(Kollert et al. 2011) and decline in pulmonary function 

at 5 years (>10% decline in FVC or DLCO from baseline)(with P(A-a)O2 >22mmHg Relative Risk (RR) 70.0 

(CI 3.03-161.3, p<0.001)(Lopes et al. 2012).   
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Only one study specifically examined the role of CPET in predicting survival in SSc-ILD (Swigris et al. 

2009). Whilst typical CPET measurements e.g. VO2max were recorded, attempts to correlate these with 

survival were not described. In similarity to the studies in sarcoidosis and IPF, diffusion limitation, 

measured in this study as the change in peripheral pulse oximetry during CPET exercise (SpO2), 

correlated with survival. The risk of death was 2.4 times greater in SSc-ILD individuals whose SpO2max 

fell <89% (Hazards Ratio (HR) 2.4, CI 1.2-4.9, p=0.02), and 2.4 times greater for subjects whose SpO2 

max fell >4% from baseline (HR 2.4, CI 1.1-5.0, p=0.02).  

  

Further interpretation of the prognostic value of CPET parameters in ILD is limited by moderate-tohigh 

risk of bias across domains the QUIPS tool, with a ‘high’ risk of bias rating present in at least one QUIP 

domain in 9/10 (90%) studies. The main issues with study quality were related to confounding and 

statistical domains (see Table 2) and are discussed in more detail in following sections.   

  

Study confounders, statistical analysis and reporting  

The majority of studies were considered to be at ‘high’ risk of bias due to inadequate account of potential 

confounding factors or methods of statistical analysis/reporting (Table 2).    

  

The data used in the majority of studies was obtained from existing databases and/or case note review 

(85%, n=11). As the data was not collected as part of a designed study, several potential confounders 

variables were not recorded, for example the presence of co-morbid disease (Wallaert et al. 2011, Fell 

et al. 2009, Miki et al. 2003, Gläser et al. 2013, Lopes et al. 2012, Swigris et al. 2009), body mass index 

(Triantafillidou et al. 2013, Fell et al. 2009, Miki et al. 2003, Kawut et al. 2005, van der Plas et al. 2014, 

Lopes et al. 2012) and smoking status (Wallaert et al. 2011, Kawut et al. 2005, Gläser et al. 2013, Lopes 

et al. 2012).   

  

The most important potential confounder was baseline ‘disease severity’ which was only specifically 

addressed as a confounder in one study; through the inclusion of lung function parameters and a 

composite physiological index (as markers of disease severity) into the Cox regression model used for 

analysis (van der Plas et al. 2014). This same study also stratified patients in an attempt to control for 

other potential confounders. Patients were sub-grouped into those with a systolic pulmonary artery 

pressure greater than or less than 40mmHg, in an attempt to control for interceding pulmonary 

hypertension, but this reduced subgroup sample sizes and thus may have reduced the statistical power 

to detect an effect.   
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 Eligibility criteria were used to increase uniformity of study participants and reduce potential 

confounders. For example two studies used participants referred for transplantation and thus by 

definition analysed distinct cohorts of more advanced patients but this selection bias reduced the 

generalisability of results (van der Plas et al. 2014, Layton et al. 2017). Other studies focused on 

healthier populations of ILD patients who did not need supplemental oxygen during CPET testing, but 

this, unsurprisingly,  resulted in low mortality rates (n<10) leading to reporting bias (Vainshelboim et 

al. 2016, Fell et al. 2009, Triantafillidou et al. 2013).   

  

Multiple regression analysis was the dominant statistical methodology used to determine the 

relationship between CPET parameters and clinical outcomes in ILD. Whilst this approach is generally 

considered to be one of the better statistical approaches to minimise unknown confounders, many of 

the studies reported on sample sizes much smaller than the minimum requirement for multiple logistic 

regression analysis as determined by Bujang et al. (Bujang et al. 2017). Furthermore, of all of the 

studies examined, only one detailed an a priori power calculation (Vainshelboim et al. 2016).  Many 

studies were likely to be underpowered to detect the outcomes proposed.   

Stepwise multiple regression was used by some studies to determine the optimal model parameters 

to predict increased mortality (Triantafillidou et al. 2013, King et al. 2001). One criticism of this 

statistical approach is that model selection is conducted through parameter inference, which may lead 

to over-fitting of some parameters or exclusion of confounders that are not statistically significant 

(Whittingham et al. 2006). Furthermore, the order of parameter entry (or deletion) and the number 

of parameters, can also affect the selected model (Derksen and Keselman 1992), whilst the multiple 

hypotheses tests, performed as part of this analysis, increases the probability of Type I error 

(Whittingham et al. 2006). The authors of one study did however attempt to overcome some of these 

limitations by checking for consistency between forward selection and backward elimination 

algorithms (Triantafillidou et al. 2013).   

Only one study specifically attempted to reduce multicollinearity between parameters considered for 

inclusion into the multiple regression analysis (King et al. 2001). Multicollinearity is more common in 

observational studies and if ignored may lead to unreliable estimates of regression coefficients, 

inclusion of redundant variables  and increased type II error (S, A and B 2000). King et al. (King et al. 

2001) used Pearson’s correlation coefficient to detect variables that were highly correlated; for 

example PaO2 at maximal exercise and resting PaO2, entering only the most statistically significant 

variables into the multivariable model.   
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Discussion  

Maximum oxygen consumption (VO2max) is a measurement of the capacity for aerobic exercise and is 

determined by variables that define oxygen delivery by the Fick equation (Society and Physicians 2003); 

thus gas exchange across the lung, oxygen content of blood, oxygen delivery to tissues and oxygen 

uptake in the tissues can all affect the VO2max. In healthy individuals, constraints of the cardiovascular 

system are most responsible for limiting VO2max (Wagner 1996, Stickland et al. 2012). In patients with 

ILD, limitation to exercise may generally occur as a consequence of one of more of: 1) ventilatory 

mechanical limitation (unable to increase tidal volume (VT) sufficiently and may reach their maximal 

predicted minute ventilation (% pred VEmax)), 2) abnormal gas exchange (or reduction in ventilatory 

efficiency, indicated by variables such as the increment in minute ventilation (VE) relative to carbon 

dioxide production (CO2; VE/VCO2) 3) and/or diffusion limitation (indicated by variables such as 

reduction in oxygenation ≥ 4% or hypoxia at anaerobic threshold (AT)/peak exercise).    

  

To our knowledge, this is the first study to systematically review and critically appraise studies that 

have reported the prognostic value of CPET in ILD. This field has gained recent attention with the 

majority of studies published within the last 8 years. Thirteen studies were identified that examined 

the prognostic value of CPET in ILD, all of which reported a prognostic role for CPET parameters in 

predicting clinical outcomes in ILD, with survival being the principle clinical outcome measured. Issues 

with study quality (relating primarily to the inherent problems of retrospective studies, patient 

selection and presentation of numerous CPET parameters), limits the strength of conclusions that can 

be drawn from the studies reviewed and thus whilst the associations presented shed important light 

to the potential role of CPET in disease prognostication in ILD, there is insufficient evidence at the 

moment to support its use in facilitating ‘real-world’ clinical decisions.   

  
The exclusion of unpublished studies (e.g. conference abstracts) and abbreviated reports from this 

review may also increase the potential for publication bias, although this priori decision was taken to 

ensure sufficient information was available to enable detailed data extraction from each study.    

  

We identified one study that described the prognostic value of CPET in IPF that was not originally 

eligible for inclusion in our study analysis due to the full text being published in French (Wallaert et al. 

2011). The decision was taken to amend our published protocol to include this study as the subject of 

the study was deemed to be important by independent reviewers.    

  

This work has identified a number of considerations for future prognostic studies of CPET in ILD. 

Common to many human diseases, the disease progression in ILD is likely influenced by a complex 
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interplay of patient, genetic, environmental and treatment factors. As such, a multivariable approach 

to the design and analysis of future prognostic studies of ILD is essential if we are to confirm a specific 

role for CPET in routine monitoring. In contrast to randomised controlled trials, there are no robust 

standards defining the need to register or publish protocols for prognostic research and as such it is 

not always transparent whether statistical analysis were part of a priori plan (Hemingway et al. 2009). 

Almost all studies in this review examined multiple prognostic CPET variables and as such there is 

potential for selective reporting bias that could be largely overcome by more stringent protocol 

registration with pre-specified outcomes of interest.   

  

Conclusion  

The quality of existing studies on the role of CPET in the prognostication of ILD limits the conclusions 

that can be drawn from such work. Larger prospective studies are needed to establish the role of CPET 

in the longitudinal assessment of ILD in the future.   

  
  
  
  
  
  
  
  
  
  
  
  
  

  
  

Appendix E: Details of inter-reviewer agreement during initial title and abstract review for 
eligible articles  

  

Details of agreement between reviewers for the title and abstract review  
  

    Reviewer 2      

Reviewer 1     Include  Exclude  Totals  
Include  9  20  29  
Exclude  0  629  629  

Totals    9  649  658  
  
Number of observed agreements: 638 (97.0% of the observations)   
Number of agreements expected by chance: 620.8 (94.35% of the observations)  
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Kappa = 0.462 (95% confidence interval 0.267-0.658)   
SE of kappa= 0.100  
The strength of agreement is considered to be ‘moderate’.   
  
Of the 20 citations for which there was disagreement, 9 papers were included in full text analysis. 
This resulted in a total of 18 papers proceeding to full text review.   
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The use of cardiopulmonary exercise testing in Idiopathic Pulmonary Fibrosis: Feasibility and correlation with 

quality of life measures.   

  

Davis R1, Viner J2, Dixon C2, Morley A1, Adamali H3, Maskell N1, Barratt SL1,3  

  

1. Academic Respiratory Unit, University of Bristol, Bristol, UK  

2. Respiratory Physiology, North Bristol NHS Trust, Bristol, UK  

3. Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol, UK  

  

Introduction:  



 

111  
  

The heterogeneity of idiopathic pulmonary fibrosis (IPF) in terms of disease course and treatment response leads 

to challenges for patients and clinicians in terms of optimal timing for transplantation(Mura et al. 2012) and/or 

end of life discussions (Schroedl et al. 2014). The use of cardiopulmonary exercise testing (CPET) in IPF 

prognostication remains largely unexplored.   

  

Objectives:    

1) To explore the feasibility of undertaking CPET in this population  

2) To explore the correlation between baseline CPET variables, physiological variables and quality 

of life (QOL) scores.   

  

Methods:   

Consecutive IPF patients (n=74) were approached, with prospective recruitment of 42 participants to the study.  

Patients with FVC <50% and/or DLCO <50% were excluded. King’s Brief ILD (K-BILD) questionnaire assessed QOL.  

Patients undertook incremental exercise testing to maximal exertion using a cycle ergometer, with 

contemporaneous physiological testing (FVC, DLCO).  

  

Results  

32 patients were excluded from the study (22 screening failures, 10 declined), with study attrition of an 

additional 10 patients (n=4 withdrew consent, n=1 death prior to testing, n=5 developed exclusions). Thirty-two 

patients (23 mild IPF with FVC>80%, 9 moderate IPF with FVC 50-80%), 26M:6F and median age (IQR) 75 years 

(71-79), underwent CPET. One patient failed to reach anaerobic threshold (AT) and was excluded from the 

analysis. Median (IQR) pulmonary and exercise results were: FVC 92% (75-102), DLCO 62% (54-69), minimum 

SpO2 93%  

(88-95), VO2 peak/kg 21 (17.4-23.8) mL.kg-1.min-1 and VE/VCO2 27.2 (25.4-30.5). Median (IQR) QOL scores for 
each domain were: total K-BILD 64.4 (58.1-68.7), psychological 68.3 (56.9-80.9), breathlessness/activity (B/A) 
50.2 (48- 

62.7) and chest symptoms 85.2 (85.2-100).   

  

VO2 peak/kg correlated with chest (r=0.36, p=0.049) and B/A (r=0.43, p=0.016) domains of the K-BILD 

questionnaire. VO2 peak/kg at AT also correlated with total K-BILD scores r=0.37, p=0.039 and chest domains 

(r=0.535, p=0.002). Total KBILD scores did not correlate with %FVC (r=0.26, p=0.15), %DLCO predicted (r=0.11, 

p=0.544) or SpO2 (r=0.01, p=0.959) (Spearman’s).  

  

Conclusions   

Initial results suggest CPET is a feasible method of testing in mild-moderate IPF. Whilst QOL did not correlate 

with baseline FVC and DLCO, the relationship between oxygen consumption and QOL measures, requires further 
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exploration. Longitudinal data will hopefully provide further information on the usefulness of CPET as a 

prognostic marker.   
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Davis R1, Viner J2, Dixon C2, Morley A1, Adamali H3, Maskell N1, Barratt SL1,3  

  

1. Academic Respiratory Unit, University of Bristol, Bristol, UK  
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2. Respiratory Physiology, North Bristol NHS Trust, Bristol, UK  

3. Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol, UK  

  

Rationale:  

The heterogeneity of idiopathic pulmonary fibrosis (IPF) in terms of disease course and treatment response leads 

to challenges for patients and clinicians in terms of optimal timing for transplantation and/or end of life 

discussions. The use of cardiopulmonary exercise testing (CPET) in IPF prognostication remains largely 

unexplored. We report on the preliminary baseline data obtained from a study evaluating the role of CPET as a 

prognostic tool in patients with IPF.   

  

Objectives:    

To explore the correlation between baseline CPET variables, physiological variables and quality of life (QOL) 

scores.   

  

Methods:   

Consecutive IPF patients (n=74) were approached, with prospective recruitment of 42 participants to the study.  

Patients with FVC <50% and/or DLCO <50% were excluded. King’s Brief ILD (K-BILD) and IPF-Patient Reported 

Outcome Measure (IPF-PROM) questionnaires assessed QOL. Patients undertook incremental exercise testing to 

maximal exhaustion using a cycle ergometer, with contemporaneous physiological testing (FVC, DLCO).   

  

Results  

32 patients were excluded from the study (22 screening failures, 10 declined), with study attrition of an 

additional 10 patients (n=4 withdrew consent, n=1 death prior to testing, n=5 developed exclusions). Thirty-two 

patients (23 mild IPF with FVC>80%, 9 moderate IPF with FVC 50-80%), 26M:6F and median age (IQR) 75 years 

(71-79), underwent CPET. One patient failed to reach anaerobic threshold (AT) and was excluded from the 

analysis. Median (IQR) pulmonary and exercise results were: FVC 92% (75-102), DLCO 62% (54-69), minimum 

SpO2 93% (88-95), VO2 peak/kg 21 (17.4-23.8) mL.kg-1.min-1 and VE/VCO2 27.2 (25.4-30.5).   

  
  

VO2 peak/kg correlated with chest (r=0.36, p=0.049) and B/A (r=0.43, p=0.016) domains of the K-BILD 

questionnaire, in addition to total (r = -0.46, p=0.009) and energy (r= -0.45, p=0.012) domains of the IPF-PROM. 

VO2 peak/kg at AT also correlated with total K-BILD scores r=0.37, p=0.039 and chest domains (r=0.535, p=0.002), 

but only the energy domain (r= -0.38, p=0.036) of IPF-PROM. Total K-BILD and IPF-PROM scores did not correlate 

with baseline FVC % predicted, DLCO % predicted or minimum SpO2 (Spearman’s rank).  

  

Conclusions   
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In this cohort of mild-moderate IPF patients, baseline physiological testing did not correlate with patient QOL 

measures.  The relationship between oxygen consumption during CPET and QOL measures, requires further 

exploration. Longitudinal data will hopefully provide further information on the usefulness of CPET as a 

prognostic marker.   
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1Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, UK  

2Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol, UK   

  

Abstract   

Introduction  

There is limited data available on the use of CPET as a predictive tool for disease outcomes in the 

setting of IPF. We investigated the feasibility of undertaking CPET and the relationship between CPET 

and quality of life measurements in a well-defined population of mild and moderate IPF patients.  

  

  

Methods  

A prospective, single-centre observational study.  

Results  

Thirty-two IPF patients (mild n=23, moderate n=9) participated in the study, n=13 mild patients 

attended for repeat CPET testing at 12 months.  At baseline, total K-BILD scores and total IPF-PROM 

scores significantly correlated with 6MWT distance, but not with baseline FVC % predicted, TLCO % 

predicted, baseline or minimum SpO2.  VO2 peak/kg at AT positively correlated with total scores, 

breathlessness/activity and chest domains of the K-BILD questionnaire (p<0.05). VO2 peak significantly 

correlated with total IPF PROM scores and wellbeing domains (p<0.05), with a trend towards statistical 

significance for total IPF-PROM and VO2 peak/kg at anaerobic threshold (p=0.06).  

There was a statistically significant reduction in FVC% predicted at 12 months follow up, although the 

mean absolute decline was <10% (p<0.05). During this period VO2 peak significantly reduced (21.6 

ml/kg/min±2.9 vs 19.1±2.8; p=0.017), with corresponding reductions in total K-BILD and 

breathlessness/activity domains that exceeded the MCID for responsiveness. Lower baseline VO2 

peak/kg at anaerobic threshold correlated with greater declines in total K-BILD scores (r = -0.62, 0.024) 

at 12 months. Whilst baseline FVC% predicted or TLCO % predicted did not predict change in health 

status,    

Conclusion   

We have shown that it is feasible to undertake CPET in patients with mild to moderate IPF.  
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CPET measures of VO2 peak correlated with both baseline and change in K-BILD measurements at 1 

year, despite relatively stable standard lung function (declines of <10% in FVC), suggesting its potential 

sensitivity to detect physiological changes underlying health status.   

  

  

Introduction   

Idiopathic Pulmonary Fibrosis (IPF) is a progressive fibrosing lung disease of increasing 

prevalence(Navaratnam et al. 2011), associated with median survival of only 3-5 years from diagnosis 

(Raghu et al. 2006b, Ley et al. 2011).  Disease heterogeneity continues to present challenges for 

clinicians with regards to prognostication and optimal timings for lung transplantation and/or 

advanced care planning (Mura et al. 2012, Schroedl et al. 2014). In the setting of large-scale clinical 

trials, a decline in forced vital capacity (FVC) has been used as a primary outcome measure(Richeldi et 

al. 2014, King et al. 2014) and as a surrogate for mortality, although this has not been universally 

endorsed(Wells et al. 2012, King et al. 2005).   

  

Cardiopulmonary exercise testing (CPET) is the considered the gold standard for evaluating 

maximal/symptom-limited exercise tolerance, encompassing respiratory, cardiovascular and 

musculoskeletal assessments, in a controlled laboratory environment(Layton et al. 2017, Sue and 

Wasserman 1991, Palange et al. 2007).    

  
However, there is limited data available on the use of CPET as a predictive tool for disease outcomes 

in the setting of IPF. A recent systematic review identified only two small-scale prospective studies 

that investigated the role of CPET in the prognostication in IPF (Triantafillidou et al. 2013, 

Vainshelboim et al. 2016) and concluded that there was insufficient evidence to support its use in 

facilitating ‘real world’ clinical decisions at the current time.   

  

We have investigated the feasibility of undertaking CPET in a population of mild and moderate IPF 

patients in terms of the attrition of participants, information on safety data, and willingness to engage 

with the study protocol. Secondary end-points included: the change in CPET parameters over a 1 year 

period and the correlation between baseline CPET parameters and change in lung function, 6MWT 

and health status at 1 year.   
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We hypothesised that CPET would be feasible in population of mild to moderate IPF patients and more 

sensitive to change in patient’s health status than 6MWT, FVC or TLCO.   

  

Methods  

Study design  

This was a prospective, single-centre observational study undertaken at a large secondary care 

institution in the UK, providing secondary and tertiary care to patients with Interstitial Lung disease 

(ILD) within the South-West of England. The study was approved by the Health Research Authority 

and Research Ethics Committees (IRAS 223450).   

  

Study Subjects  

Patients with a multidisciplinary team (MDT) diagnosis of IPF, based upon the American Thoracic 

Society/European Respiratory Society 2018 guidelines(Raghu et al. 2018), were prospectively 

recruited to the study between June 2018 and May 2019. Written informed consent was obtained 

from each patient.   

  
Patients were divided into a ‘mild’ or ‘moderate’ category dependent on their baseline Forced Vital 

Capacity (FVC ≥ 50% - <80%: moderate; FVC  ≥ 80% mild).  Those patients in the ‘mild’ disease group 

would undertake both a baseline and repeat CPET at 12 months. It was decided by the study 

committee, due to the uncertainty of the ability of those with reduced lung function to perform a 

maximal exercise test, that those in the ‘moderate’ disease group would undertake only a baseline 

CPET test.   

  

Inclusion and exclusion criteria   

Inclusion criteria were an MDT consensus diagnosis of IPF, male or female aged ≥ 40yrs, TLCO ≥ 50% 

predicted and FVC ≥50% with written informed consent for study participation.   
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Key exclusion criteria were: FEV1/FVC ratio < the lower limit of normal, mobility issues preventing the 

participant to undertake cycle ergometry, history of myocardial infarction (MI) within 6 months or 

unstable angina within 1 month, uncontrolled arrhythmias causing symptoms or haemodynamic 

compromise, history of recent syncope (within last 6 months), acute thrombosis within previous 6 

months, cognitive impairment/ inability to perform CPET, severe or untreated arterial hypertension 

(>200mmHg systolic at rest, >120mmHg diastolic) and patients using oxygen treatment.  

  

Participant testing   

Pulmonary function testing  

Pulmonary function tests were performed in accordance with ATS/ERS guidelines(Graham et al. 2019), 

using the European Community of Coal and Steel (ECCS) reference equations(Quanjer et al. 1993). 

Forced expiratory volume during first second of expiration (FEV1), forced vital capacity (FVC), and 

transfer factor for carbon monoxide (TLCO) were undertaken at baseline (within 4 weeks of CPET) and 

at 12 months (± 4 weeks) (nSpire HDpft, nSpire Health GmbH, Germany). The MRC score, age (years), 

height (meters), and body weight of the patients (kilograms) were also recorded.   

  

6-minute walking test (6MWT)  

A 6MWT was performed at baseline (and within 3 months of CPET) according to ATS 

guidelines(Laboratories 2002), using the Enright reference equation(Enright and Sherrill 1998). The 

following data were collected and analysed: distance achieved (metres), oxygen saturation at the 

initiation of the test, the minimum saturation level, percentage of theoretical distance achieved and at 

the end of the test.   

  

Cardiopulmonary Exercise Testing (CPET)   

CPET was performed using a standardized protocol in accordance with the American Thoracic 

Society/American College of Chest Physicians (ATS/ACCP) statement(Society and Physicians 2003), 

using Wasserman(Wasserman et al. 1994) and Jones(Jones et al. 1985) reference equations. All 

patients underwent a symptom-limited CPET to exhaustion or intolerability with an 

electromagnetically braked cycle ergometer (Ergoselect 100, ergoline GmbH, Germany) using a ramp 

protocol over 8-12 minutes. The protocol included 3 min of rest, 2 min of unloaded cycling (at 60 

revolutions per min), followed by a progressively increasing work rate in a ramp fashion, and a 
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recovery period (patient dependent). The work rate increment for each ramped exercise test was 

selected depending on the patient’s level of daily activity (either 5 or 10 watt/min ramp).  

  

Subjects were asked to maintain a rate of 60 revolutions per minute throughout the exercise period. 

Several markers were used to determine if a maximal effort test was performed; a respiratory 

exchange ratio (RER; VCO2/VO2) ≥1.1, maximum heart rate (HR max) > 80% of maximum predicted HR 

(220-age), maximum minute ventilation during exercise >85% predicted based on MVV at rest 

(maximum voluntary ventilation) and a plateau in VO2 with an increased workload. CPET could be 

discontinued at the discretion of the supervising attendant if clinically indicated.   

  

Cardiopulmonary data were collected and analysed with nSpire Zan 600 USB system (nSpire Health 

GmbH, Germany).   

  

The following parameters were recorded:   

• Peak oxygen consumption (VO2 peak, ml/kg/min),   

• Oxygen consumption at anaerobic threshold  

• Carbon dioxide production (VCO2)  

• Peak minute ventilation (VE peak)(marker of ventilatory function during exercise),  

• VE/VCO2  slope as derived from the above values (reflects changes in ventilatory drive)  

• Peripheral capillary oxygen saturation SpO2 (marker of hypoxaemia indicating possible 

ventilatory limitation to exercise)   

• Peak power output (W)(marker of musculoskeletal function)   

• Heart rate (HR) (marker of cardiac function during exercise),   Breathing reserve (BR)   

  

Anaerobic threshold was determined noninvasively through the plot of VCO2 versus VO2 (V-slope 

method). Predicted minute ventilation was automatically calculated by the software as a function of 

maximal voluntary ventilation (MVV), where MVV = FEV1 L x 40. The BR was automatically calculated 

from the software as the difference between the maximum voluntary ventilation at rest and the peak 

ventilation. The % predicted VO2 peak and % theoretical VO2 peak at AT were not determined in this 

study as it was felt that populations deriving existing reference equations and normal standards were 
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not representative of the male predominant and elderly population, characteristic of IPF 

patients/populations.   

  

Health status questionnaires and patient-reported outcomes  

Patients were asked to complete the King’s Brief ILD questionnaire (K-BILD)(Patel et al. 2013) and 

IPF-Patient reported outcome measure (IPF-PROM) (Russell A et al. 2018), in addition to the 

Leicester Cough visual analogue scale (VAS) for cough (Key et al. 2010) and Bristol VAS for 

breathlessness and fatigue (Yates et al. 2018b), at baseline and at 12 months.  

  

The K-BILD is a self-completed health status questionnaire that comprises 15 items in three domains 

of psychological, breathlessness and activities and chest symptoms. The K-BILD scoring system 

implements logit transformation of raw item response scores to provide total score ranges of 0–100, 

where 100 represents best health status. The minimally important clinical difference (MCID) for the 

logit version of the K-BILD questionnaire is 5 for total K-BILD, 6 for Psychological, 7 for Breathlessness 

and activities and 11 for Chest symptoms (Sinha et al. 2019).   

  

The IPF-PROM(Russell A et al. 2018) is a self-completed 12 item health status questionnaire that 

measures the physical and psychological experience of breathlessness; emotional well-being and fatigue. 

The questionnaire has been validated in terms of face and content validity. The scores range from 12-48, 

where 48 indicates worst health status.   

  

Outcomes  

We wished to study the feasibility of undertaking CPET in a population of mild and moderate IPF 

patients: the attrition of participants, information on safety data, and willingness to engage with the 

study protocol. Secondary end-points included: the change in CPET parameters over a 1 year period 

and the correlation between baseline CPET parameters and change in lung function, 6MWT and health 

status at 1 year.   
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Statistical analysis  

Categorical variables are reported as absolute numbers and percentages. Normality of continuous 

data was initially verified using D’Agostino and Pearson normality test. Mean and standard deviations 

(SD) were used to describe parametric data; median and interquartile range (IQR, in brackets) for 

nonparametric data. Differences among two groups were verified by t-test with Welch’s correction 

(continuous data), χ2-tests (categorical data) and paired t-tests for comparison in variables from 

baseline to 12 months. Pearson’s correlation was used to determine correlations between parametric 

variables. Data were analysed using GraphPad Prism version 8.0. A p value of <0.05 was considered 

statistically significant.   

  

  

Results  

Study population   

Forty-two consecutive IPF patients were prospectively enrolled to the study. Four patients 

subsequently withdrew consent, 1 patient died and 5 patients developed exclusion criteria prior to 

commencement of the study. A further 5 patients did not complete the study and were lost to follow 

up (4 mild, 1 moderate). The final population studied thus consisted of 27 patients (mild n=19 and 

moderate n=8) (Figure 1). Patients were predominantly male (n=22, 82%) with a mean age of 75 years 

(±6.0 years) and were symptomatic at baseline with a median MRC breathlessness score of 2 (IQR 23). 

Approximately one third (33%, n=9) of patients (mild n=5, moderate n=4) received antifibrotics during 

the observational period. At completion of 1 year follow up, all patients remained alive.   

  

Feasibility  

There was excellent willingness to engage with the study protocol.  

  

All patients achieved a RER > 1.1 and the vast majority of patients also achieved >80% of their maximal 

predicted heart rate (25/27, 93%) and /or had limited breathing reserve, providing corroboration that 

patients performed at maximal effort.  
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At baseline, all participants achieved the anaerobic threshold during testing and at 1 year follow up only 

one patient failed to achieve the anaerobic threshold.   

  

Breathlessness and fatigue were the most commonly cited reasons for terminating CPET. Of patients 

completing the study (n=27; 19 mild and 9 moderate IPF), baseline CPET was terminated due to 

breathlessness in 37% (10/27), the majority of which had mild IPF (90%, 9/10). Leg/muscle fatigue was 

cited as a reason for terminating CPET in 63% patients (17/27), of which 59% (10/17) had mild disease. 

There were no significant differences in the reasons for terminating CPET between those that 

completed and did not complete follow-up.   

  

At 1 year repeat CPET, 54% (7/13) described breathlessness as the reason for stopping and 38% (5/13) 

muscle fatigue. A dry mouth was cited as the main contributing reason for stopping in one patient.    

  

One patient described dizziness related to his breathlessness during CPET but no other adverse events 

were recorded. There were no serious adverse events.   

  

  

  
Baseline measurements between mild and moderate IPF groups  

Baseline demographics between mild and moderate IPF groups were statistically comparable (Table 

1). As per a priori subgroup definitions, participants in the moderate IPF group had a statistically lower 

baseline FVC % predicted compared to those in the mild IPF group (mild 99% predicted ±10.0, range 

85-125% predicted) vs moderate 70% predicted ±5.1, range 62-75% predicted, p<0.0001). In keeping 

with these findings there was a trend towards a lower TLco in those within the moderate IPF group 

(mild 63% predicted ±9.5), range 50-83 % predicted vs moderate 57% predicted ±6.2, range 50-65% 

predicted, p=0.055). No significant difference in the 6MWT distance measured between mild and 

moderate groups was observed.   

  

Patients with moderate disease had numerically lower total K-BILD, chest symptom and psychological 

domain scores compared to those with mild disease, although values were not statistically different 
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(total K-BILD mild disease 67 (±10.3) vs moderate disease 60 (±6.6), p=0.058).  There were no 

significant differences in VAS scores of cough, breathlessness or fatigue between mild and moderate 

IPF groups or IPF-PROM measurements.    

  

Whilst baseline CPET values were all within ‘normal’ published ranges (Society and Physicians 2003), 

peak minute ventilation (% predicted) was significantly higher for those with moderate IPF compared 

to those with mild disease (mild 71.0% (±13.9) vs moderate 82.9% (±12.4, p=0.045) (Table 1).  

  

Of the baseline CPET parameters measured, VO2 peak/kg at anaerobic threshold positively correlated 

with total scores (r=0.42, p=0.03), breathlessness/activity (r=0.47, p=0.014) and chest domains (r=0.44, 

p=0.02) of the K-BILD questionnaire (Pearson’s correlation). Similarly, total IPF PROM scores and 

wellbeing domains significantly correlated with VO2 peak (r=-0.43, p=0.02 and r=-0.44, p=0.02), with a 

trend towards statistical significance for total IPF-PROM and VO2 peak/kg at anaerobic threshold 

(p=0.06). VE/VCO2 at anaerobic threshold also correlated with total K-BILD score (r=0.39; p=0.001) at 

baseline, although there were no significant correlations with the individual domains of the 

questionnaire or IPF-PROM.   

  

Total K-BILD scores (r=0.44, p=0.03) and total IPF-PROM scores (r=-0.43, p=0.03) both significantly 

correlated with 6MWT distance, but not with baseline FVC % predicted (Total K-BILD, p=0.14; Total IPF-

PROM p=0.50), TLCO % predicted (Total K-BILD p=0.16; Total IPF-PROM p=0.32), baseline or minimum 

SpO2 (Total K-BILD p=0.25 and p=0.32, respectively, Total IPF PROM p=0.53 and p=0.55, respectively). 

There were no significant correlations between baseline CPET parameters and VAS scores (p>0.05).   

  

Measurements at 1 year follow up  

Total IPF cohort  

At one year of follow up, the mean reduction in FVC and TLCO % predicted for the whole IPF  cohort 

(n=27) was -3.6% (±7.1, p=0.02) and -3.2% (±7.5, p=0.04) respectively (Supplementary Table 1). Whilst 

statistically significant, values were below those deemed clinically significant (Collard et al. 2003, 

Flaherty et al. 2006). There was no significant reduction in 6MWT distance achieved (mean reduction  

4.8m±34.7, p=0.50; mean reduction in 6MWT distance as % theoretical distance 0.2% (±7.9, p=0.92). 

There was a statistically significant reduction in the breathlessness and activity domain scores of the 
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K-BILD questionnaire from baseline to 1 year, suggesting worse health status (-4.8±10.2, p=0.02), 

although this did not reach the published MCID for responsiveness for this domain (Sinha et al. 2019). 

There were no statistically significant differences in the VAS scores for cough, breathlessness and 

fatigue or in the IPF-PROM from baseline to one year (p>0.05).   

Follow up of mild IPF group with repeat CPET  

Thirteen patients from the mild IPF group returned for repeat CPET at 1 year; the coronavirus COVID19 

pandemic prohibited the return of the remaining six patients at the one year follow-up time point as 

planned. All but one patient achieved anaerobic threshold.   

  

Upon repeat CPET testing there were statistically significant declines in the VO2 peak  (21.6 

ml/kg/min±2.9 vs 19.1±2.8; p=0.017), VO2 peak at AT (14.2 ml/kg/min±3.2 vs 11.8±1.6, p=0.044) VE 

peak (75.3 L/min ±20.9 vs 66.1±21.6; p=0.007), peak work (106.9 W±26.3 vs 90.8±25.9; p=0.022) heart 

rate response (142.3 bpm±24.0 vs 133±22.3; p=0.040) and increased breathing reserve at anaerobic 

threshold (BRmax) (21.8 L/min (12.4-34.2) vs 33.8 (20.2-55.7); p=0.0002), compared to baseline values 

(Table 2).   

  

There was a statistically significant reduction in FVC% predicted at 12 months, although the mean 

absolute decline was <10% (baseline FVC 98.8% predicted±8.5 vs follow up FVC 93.4% predicted±10.3, 

p=0.01). In these same patients, statistically significant reductions in breathlessness/activity (-7.2±10.8; 

p=0.033) and chest (-9.6±-15.0; p=0.040) domain scores of the K-BILD questionnaire were observed, with 

a trend towards statistical significance for reduction in the total B-ILD score (-5.6±-10.4; p=0.077) at 

follow up. Notably, the mean unit change of total K-BILD and breathlessness/activity domain scores 

exceeded the minimally clinically important difference previously reported (5 and 7 unit change 

respectively)(Sinha et al. 2019), with 5/13 patients achieving the MCID for total K-BILD score and 8/13 

for the breathlessness/activity domains (Table 3).    

  

There were no statistically significant differences in the VAS scores for cough, breathlessness or fatigue 

VAS score from baseline to one year (p>0.05). There was statistically significant worsening in the 

psychological experience of breathlessness as reported by the IPF-PROM (0.8±1.2, p=0.044), although 

the clinical significance of this small statistical change is not clear.   
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Reductions in K-BILD scores observed at 12 months were correlated with baseline CPET measurements. 

Lower baseline VO2 peak/kg at anaerobic threshold correlated with greater declines in total K-BILD 

scores (r = -0.62, 0.024) and psychological domains of the K-BILD at follow up (r= -0.63, p=0.022). No 

other baseline CPET parameters significantly correlated with change in K-BILD score in this small 

cohort, including peak work rate. Furthermore, there was no significant correlation with the baseline 

FVC% predicted (p=0.70) or TLCO% predicted (p=0.62) and change in K-BILD score (Pearson’s 

correlation).   

  

Discussion  

CPET is considered the gold standard for evaluating exertional dyspnoea and exercise intolerance in 

patients with cardiorespiratory conditions (Molgat-Seon et al. 2020), yet currently lacks a defined role  

in the management of ILD (Raghu et al. 2011, Molgat-Seon et al. 2020). A recent systematic review by 

our group highlighted the insufficient available evidence to support the use of CPET in disease 

prognostication in ILD, emphasising that heterogeneity in terms of the ILD populations studied and 

the retrospective nature of the majority of published studies limited the conclusions that could be 

drawn (Barratt et al. 2020). Furthermore, the minimally clinically important differences for CPET 

parameters in ILD have not been established.  

  
Our study has shown that CPET can be undertaken in both mild and moderate populations of IPF 

patients, without any significant adverse events, although study attrition was high and complicated 

by COVID-19 restrictions, such that only 64% patients completing the protocol.    

  

Our prospective data suggests that baseline CPET VO2 peak is associated with clinically meaningful 

patient-perceived reduction in health status at 1 year, in spite of comparatively stable lung function 

parameters (<10% decline in FVC and <15% decline in TLco). VO2 peak is an integrated measure of 

respiratory, cardiovascular and neuromuscular function (Society and Physicians 2003). In a progressive 

disease such as IPF, the finding of reduced exercise performance at one year was not a surprising one. 

However, results suggest that this reduction was not as a consequence of ventilatory limitation. There 

was no change in the CPET ventilatory mode and the development of cardiac +/- pulmonary vascular 

dysfunction was not apparent. One possible explanation might be that patients became more 

deconditioned with reduced activity levels in response to their perceived worsening of breathlessness. 

El Naggar et al (El Naggar. 2017) have previously shown that VO2 peak correlated with health status of 

IPF patients at baseline as determined by the St Georges questionnaire but longitudinal changes in 
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CPET parameters and associated health status were not explored. In our cohort, VO2 peak during 

exercise correlated with patient reported outcome measures at baseline, it significantly declined at 

12 months and also correlated with the change in patient reported health status at 12 months.   

  

Existing literature conflicts as to whether VO2 peak might predict disease outcomes in IPF; peak VO2 

thresholds ranging from <8.3 to <14.2ml/kg/min (Triantafillidou et al. 2013, Fell et al. 2009, 

Vainshelboim et al. 2016) have been reported to predict mortality in IPF, whilst others studies have 

failed to identify any significant association (Wallaert et al. 2011, Miki et al. 2003, van der Plas et al. 

2014). Ongoing follow up of our prospective cohort will be used to further study the use of baseline 

CPET parameters to predict longer-term outcomes in these patients.   

  

It is recognised that this study has limitations. Firstly, and perhaps most importantly, the study was 

conducted on a relatively small and homogenous sample of patients. This limits the overall 

generalisability of results, particularly in terms of feasibility of CPET across IPF phenotypes; for 

example those with exercise induced pulmonary hypertension versus those with relatively normal 

pulmonary vascular response to exercise, and the risk of Type II error may be relatively high.   

The vast majority of patients had mild IPF (72%) with a median MRC score of 2; again limiting the 

generalisability of results. Whilst it would have been preferable to have a broader range of 

symptomatic patients, exercise in patients with high MRC scores would be very restricted leading to 

early completion of tests before the limit of pulmonary and cardiovascular systems had been reached 

(O'Donnell et al. 2009) and thus negatively influencing the results. A further limitation of the study 

was that almost a quarter of patients enrolled in the study developed exclusions to CPET or were lost 

to follow up; a factor that will be helpful to inform power calculations for future studies involving CPET 

as an outcome measure. It was decided by the study committee in the planning of the protocol that 

due to the uncertainty of the ability and the safety of those with reduced lung function to perform a 

maximal exercise test, those in the ‘moderate’ disease group would undertake only a baseline CPET 

test. In retrospect, it would have been more valuable to undertake repeat CPET on all enrolled 

participants. With the experience gained from this study, this is something that could explored in the 

future. Finally, the COVID-19 pandemic adversely affected the ability to perform follow-up CPET 

testing, particularly in this highly vulnerable group of individuals; consequently the resulting sample 

size was small.   
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Conclusion   

In conclusion, our study provides the initial data to support the feasibility of CPET in at least 

mildmoderate populations of IPF and the ability of repeated CPET to assess the change in health status 

over time. This may be clinically applied in the future to assess the response to pharmacological or 

non-pharmacological interventions from the patient’s perspective. Future work should concentrate 

on examining the relationship between CPET parameters, lung function and CT-derived measures of 

disease, establishing the MCID for longitudinal change in CPET in ILD.    
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