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Abstract 
 

 

Floods are the costliest and most deadly class of natural disaster each year, and this 

situation is not expected to change in the future. Furthermore, the study of floods is 

relevant for a wide variety of applications ranging from nature conservancy to urban 

planning and rapid disaster response. Generally, the nature of floods at continental 

scale has been studied using streamflow data from gauge stations or satellite imagery. 

Although these approaches can characterise past floods quite well, they do not cover 

all the locations of interest and do not directly estimate hazards to people and assets. 

Alternatively, hydrodynamic models specifically designed to capture floodplain hy-

draulics are an effective option to simulate floods. At continental scale, hydrodynamic 

models have successfully been able to estimate the risk associated with floods at very 

high resolutions (i.e. <100 m), however, limited research has been devoted to the un-

derstand the evolution of floods over time. This thesis presents new developments in 

continental sale flood modelling to characterise floods in a multi-decal time window. 

Firstly, an open-source software package to automatise the input data processing 

needed for continental scale modelling was developed. Then, a new flood modelling 

framework that couples streamflow data from a hydrological model with a flood in-

undation model is presented. The framework was able to predict flood depths over 

time at continental scale in an efficient way, an approach that to date has not been done 

before with an inundation model but a routing model. The framework was used to 

build a European Flood Hindcast where floods hydraulics for 298 basins were mapped 

over 26 years (1990-2016). The data generated in Europe showed that among the larg-

est basins the Danube, Rhine, Rhone and Elbe were the ones hit the most by floods. 

Conversely, the least impacted basins in the same period were the Douro, Ebro, Gua-

diana and Tagus. Building the modelling framework from scratch helped to uncover 

potential source of errors in the modelling chain, one of which was poor geolocation 

of rivers. To substantially improve river geolocation, a new data set of river stream-

lines was generated for the contiguous US based on national high-quality data. 
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CHAPTER 1 

 

Introduction 

 

 

 

 

 

1.1. Background 

 

Floods are the costliest and most deadly class of natural disaster each year and studies 

predict that the situation is not going to change in the future (Winsemius et al., 2016; 

Alfieri et al., 2017). Hirabasyashi et al., 2013 reports that between 1970 and 2000 the 

total number of people exposed to flooding globally was up to ~5 million. This number 

is expected to rise in the future where by 2070-2100 ~15 million people will be exposed 

to floods under a RCP2.6 scenario or ~70 million under a RCP8.5 scenario. This nega-

tive outcome is also reported by other studies (Winsemius et al., 2016; Dottori et al., 

2018; Koks et al., 2019; Bloschl et al., 2019). The study of floods is relevant for a wide 

variety of sectors ranging from insurers, multi-national corporations, NGOs and na-

tional governments to tackle problems such as rapid flood disaster response, urban 

planning and climate change adaptation. 

Generally, the nature of floods is investigated in three different ways. First, using data 

collected from river gauge stations where time series of discharge or stage provides 

information of high flows or water levels, respectively (e.g. Bloschl et al., 2019). Sec-

ondly, using remote sensing techniques over satellite imagery to depict inundated ar-

eas (e.g. Brakenridge et al., 2018). And third, using computational simulations of river 

hydrodynamics (i.e. flood modelling) (e.g. Smith et al., 2018). Whilst river gauge sta-

tions and satellite imagery can characterise floods, providing information on flood oc-

currence and inundated area respectively, they lack the ability to reveal information 

on inundation depth during a flood event. Additionally, these approaches are local-

ised in the sense that they cannot always be applied to cover all areas of interest, for 

example an entire continent. In lieu of these approaches, flood modelling is an alter-

native method that can be employed to tackle this issue, in particular 2D flood model-

ling which is the main topic of this thesis. 
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The past 15 years have seen the emergence of two-dimensional flood models capable 

of simulating flood wave dynamics at reach scale with decimetres of accuracy for wa-

ter level prediction under certain conditions (Hunter et al., 2008). The models solve 

variants of the Shallow Water Equations using efficient numerical schemes (e.g. Bates 

et al., 2010; Moulinec et al., 2011; Sanders et al., 2019). This computational and numer-

ical efficiency has led to the expansion of flood modelling studies from reach to conti-

nental scale. At continental scale, flood models are generally driven by terrain eleva-

tions data sets derived from space-borne satellites (e.g. Farr et al., 2007; Tadono et al., 

2015; Yamazaki et al., 2017; Rizzoli et al., 2017, Wessel et al., 2018). Yet, better predic-

tions are achievable by representing river channel geometries at sub-grid level (Neat 

et al., 2012). The sub-grid approach uses geolocated river centrelines, widths and 

depths to calculate in-channel hydrodynamics. Therefore, the more accurate these var-

iables are the better the prediction is. From space-borne satellites, river geolocation 

data sets (e.g. Lehner et al., 2008; Yamazaki et al., 2019) and river width data sets (e.g. 

Andreadis et al., 2013; Yamazaki et al., 2014; Allen and Pavelsky, 2018) have been de-

rived. Nonetheless, space-borne satellites cannot penetrate water surfaces, and this 

means river depths have to be approximated, for example using a simple power law 

formulation (e.g. Leopold and Maddock, 1953; Neal et al., 2012) or the Manning’s equa-

tion (e.g. Sampson et al., 2015). 

Flood modelling is still a field in active development where flood footprint (i.e. inun-

dated area, flood extent) accuracy is a key factor in disaster risk management, urban 

planning, insurance market pricing and climate change adaptation (e.g. Schuman et 

al., 2018). As a result, producing accurate flood maps has become an important ele-

ment in flood modelling (Schumann and Bates, 2018). 

The primary research aim of this thesis is to improve our understanding of methods 

for continental-scale flood modelling. To this end, this thesis has identified three spe-

cific problems which are the principal subjects of the work. The problems identified 

are as follows: 

First, deploying a flood model can be time-consuming since input data needs to be 

processed from a variety of different sources. Commonly, pre-processing input data 

for flood models is carried out in software packages such as ArcGIS or QGIS (e.g. 

Seenath et al., 2016; Hutanu et al., 2020; Shen, 2020). However, pre-processing tasks 

are constrained to local-scale problems (i.e. a few tributaries in a river basin) due to 

lack of computational memory. At continental scales, there is still a need for a general-

purpose set of tools to deploy in flood studies to be able to process large amounts of 
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data without running into memory problems. The set of tools must include common 

operations such as DEM resampling, bank height estimation, riverbed estimation, in-

channel bed elevation smoothing in a single software package. This will facilitate the 

deployment of studies for different flood study applications. The fundamental diffi-

culty of processing the data is that it is not uniform: the grid resolution, data format, 

data geographical projection differs from each data set.  A user therefore usually 

spends a considerable amount of time in pre-processing steps, so the software should 

be able to deal with these constraints as well. 

Second, most of the continental scale flood modelling efforts to date have been ori-

ented toward hazard prediction, or the estimation of flood depths for a particular re-

turn period (or recurrence interval) in Europe (Alfieri et al., 2014; Paprotny et al., 2017), 

the US (Wing et al., 2017), Africa (Trigg et al., 2016) and globally (Winsemius et al., 

2013; Dottori et al., 2016; Sampson et al., 2015). However, the limited literature and 

formal methodology have delayed the progress towards flood depth time series at 

continental-scale. Schumann et al., (2016) produced the first continental level flood 

hindcast for the Australian continent. The study used a small number of gauge stations 

coupled to a 2D flood model to create a multi-decal set of flood depth times series in 

the most important river basins. The study had some limitations, for example, gauged 

tributaries were not considered, and flood defences were not taken into account. The 

problem of ungauged tributaries can be treated by adopting a hydrological model to 

generate simulated streamflows, however, coupling several hundreds to thousands of 

inflows to a hydrodynamic model in a multi-decal simulation has been a limited to 

basin-scale problems only (e.g. Grimaldi et al., 2019). 

Third, a better representation of in-channel hydrodynamics results in better floodplain 

hydrodynamic predictions (Neal et al., 2012). In this context, accurately geolocated 

river centrelines are a key component for flood models. Most continental studies use 

space-borne derived hydrography to obtain this variable (e.g. HydroSHEDS Lehner et 

al., 2008; MERIT Hydro Yamazaki et al., 2019) and whilst current hydrography data 

sets have helped to build flood modelling studies at continental scales, data-rich coun-

tries are not advantaged as better quality terrain elevations are available along with 

curated river centrelines data sets. A framework to produce a hydrography from local 

sources of data in particular a high resolution DEM and a database of river centrelines 

is the main subject of the last results chapter of this thesis. 

This thesis presents three main objectives along with research questions to address 

these gaps. 
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1.2. Research objectives 

 

Objective 1 

Develop an open-source software package to automatically pre-process input data for 

hydraulic models in a computationally efficient manner. 

• Is there any way to facilitate and automatise the deployment of flood inunda-

tion studies at local, continental and global scales? 

Objective 2 

Develop a framework to build a European Flood Hindcast by means of simulated 

streamflows from a hydrological model. 

• Is there any parametrization or methodology that can improve the representa-

tion of rivers depths and flood defences in continental scale flood inundation 

studies? 

• Is there any effective way to facilitate the coupling between hydrologic and a 

hydrodynamic model in continental scale studies? 

• What is the best approach to handle continental scale hydrodynamic simula-

tions at high resolutions (100 m)? 

• What is the feasibility to create a European wide flood inundation hindcast by 

means of a hydrological model output and taking into account flood defences 

interaction? 

Objective 3 

Develop a framework to generate a new hydrography from a high-quality national 

DEM (the National Elevation Dataset) and a high-quality survey-based hydrography 

(National Hydrography Dataset) 

• Can hydrographic estimates be improved by using high quality and high-reso-

lution national data sets instead of global ones? 

• Is it possible to generate raster-based hydrographic estimates based on vector-

based river network maps accurately? 

The objectives and research questions detailed above will be explored within three 

results chapters. Details of these chapters are given below: 
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Results for Objective 1, Chapter 3 

A toolbox to quickly prepare flood inundation models for LISFLOOD-FP simulations 

This chapter presents the development of LFPtools http://github.com/jsosa/lfptools, 

an open-source Python package which encompasses the most commonly used meth-

ods to prepare input data for large scale flood inundation studies.  The tool has been 

developed for use with the LISFLOOD-FP hydrodynamic model, but the functions are 

generic and could be used for any grid-based hydrodynamic code and even for non-

hydrodynamics applications. 

Results for Objective 2, Chapter 4 

A flood inundation hindcast for Europe based on 26-year simulated river discharge 

This chapter introduces a semi-automated modelling framework to produce a multi-

decal flood depth time series (or flood hindcast) for Europe at ~90 m resolution. The 

framework uses free globally available sources of river width, flood protection stand-

ards, terrain information and hydrography to represent river geometries explicitly. 

The framework uses daily river discharge simulated by a large-scale hydrology model 

coupled to a 2D flood model to map flood patterns over 26 years (1990-2016) in 298 

European river basins. 

Results for Objective 3, Chapter 5 

On the extraction of a precise river hydrography in the contiguous US 

This chapter presents a new hydrography for the contiguous US. The new hydrogra-

phy was built on the National Elevation Dataset (NED) and the National Hydroraphy 

Dataset Plus (NHDPlus). The data set extends the coverage of NHDPlus providing 

estimates of flow accumulation and flow direction with better accuracy than global 

hydrography data sets (e.g. HydroSHEDS Lehner et al., 2008; MERIT Hydro Yamazaki 

et al., 2019) and extents the current coverage of NHDPlus. Unlike NHDPlus, the new 

hydrography provides a raster-based river network suitable for models based on com-

putational grid to carry out computations. 

 

 

 

 



 6 

1.3. Chapter summary 

 

There is still the need to develop novel methods and tools to continue improving flood 

inundation maps, especially at continental scale. Three important problems that still 

need attention are i) how to quickly build accurate flood inundation models to boost 

continental-scale floods studies? ii) which insights can we get from a complete long 

catalogue of historical flood events at continental scale? and iii) can hydrographic es-

timates be improved by using high quality and high-resolution national data sets in-

stead of global ones? These are important questions in flood modelling and are the 

main subject of thesis. 

This thesis will detail new developments in flood modelling at continental-scale. In 

particular, an open-source project and Python package that was developed to easily 

assist the fast-growing non-experienced and experienced flood modellers to build 

flood inundation models globally at any scale. Additionally, this study will explore 

concepts such as large-scale hydrodynamic modelling, hydrologic-hydrodynamic 

coupling, long time period simulations and flood defences interactions by analysing 

these components in a European flood hindcast. Lastly, this thesis will present the de-

velopment of a new hydrography for the contiguous US, the new hydrography is 

based on the National Elevation Dataset (NED) and the National Hydrography Da-

taset Plus (NHDPlus). 

 

1.4. Overview of the thesis 

 

Chapter 2 summarises main concepts in continental-scale flood modelling. Chapter 3 

details the development of an open-source project and Python package to quickly 

build flood inundation models everywhere at any scale. Chapter 4 describes the de-

velopment of a European flood hindcast based on a continues simulation of river hy-

drodynamics. Chapter 5 presents the development of a new hydrography for the con-

tiguous US. Chapter 6 ends this thesis summarising conclusions and future research 

lines of this work. 

 

1.5. Peer-Reviewed Work 

 

Material in this thesis has been presented in peer-reviewed journals and at academic 

conferences. All of which are my own work and are detailed below 
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CHAPTER 2 

 

Flood modelling at continental-scale 

 

 

 

 

 

This chapter begins with an introduction to hydrodynamic modelling. Model govern-

ing equations, and the advantages and disadvantages of 1D and 2D hydrodynamic 

models are discussed later. The chapter presents the 2D hydrodynamic model 

LISFLOOD-FP, a model that is capable of predicting floodplain inundation at local to 

continental scales. The chapter continues by detailing data requirements for hydrody-

namic models at continental scale and concludes by outlining recent developments in 

the field. 

 

2.1. Introduction 

 

A flood is defined as a body of water under movement characterised by a large and 

low amplitude wave. The phenomenon is a consequence of unusual high stage or flow 

which exceeds the channel’s capacity and as a result inundates low-lying floodplains 

adjacent to the river channel. The phenomenon has been modelled using a number of 

different approaches. First, using hydrologic and geomorphic relationships, flooding 

can be predicted with methods such as the Rapid Flood Spreading Method (RFSM) 

(L’homme et al., 2008) which discretise floodplains in small areas representing terrain 

depressions. Later, flood volumes are spread over those areas using filling and spill-

ing mechanisms. Another popular method based on hydrogeomorphic relationship is 

the Height Above the Nearest Drainage (HAND) (Renno et al., 2008) that normalizes 

the topography according to the local relative heights found along the drainage net-

work and determines nearby flood inundation extent by selecting the surrounding 

cells whose HAND values are less than the known water depth in the stream. Other 

methods that use a similar approach are (Manfreda et al., 2011; Degiorgis et al., 2012; 

Samela et al., 2017). At continental scales, the use of hydrogeomorphic relationships 
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provide sensible results for a rapid flood damage assessment, however, these are not 

a preferable method for flood risk management or water resources planning as they 

lack any linkage with basin hydraulics since the physical process of inundation is not 

simulated, but rather based on simplified hydraulic concepts (Teng et al., 2017). 

As opposed to the hydrogeomorphic approach, hydrodynamic modelling is an alter-

native method that has been widely used to model floods (Bates and De Roo, 2000). 

The fundamental idea is to solve variants of the Shallow Water Equations (SWE). The 

SWE describe the motion of fluids under two main assumptions i) the horizontal 

length scale is greater than the vertical length scale and ii) vertical pressure gradients 

are hydrostatic. The Saint-Venant Equations (SVE) are a variant of the shallow water 

equations that describe transient open-channel flow. Computational techniques exist 

to solve the SVE, in particular formulations based on finite difference, finite volume 

and finite element with the time discretised either in an explicit or implicit way. For 

example, TELEMAC 2D (Moulinec et al., 2011) is a code that implements both finite 

element and volume formulations, with time discretised in an implicit or explicit way. 

TRENT (Villanueva and Wright, 2006) solves the SVE using an explicit finite volume 

approach and LISFLOOD-FP (Bates et al., 2010) uses an explicit finite difference ap-

proach. Unlike hydrogeomorphic approaches, hydrodynamic modelling provides 

physically-based outputs aligned with real fluid motion behaviour. 

At continental scales, hydrodynamic models are driven with data sets derived primar-

ily from space-borne satellites with spatial resolutions varying from ~30 m to ~90 m. 

Continental-scale flood modelling became more available after the release of near-

global digital elevation data through the Shuttle Radar Topography Mission (Farr et 

al., 2007). Most recently, the Landsat imagery inventory has provided a new era for 

flood modelling. For example, by using remote sensing techniques, it has been possi-

ble to measure river widths (Allen and Pavelsky, 2018) and map long-term changes in 

flood areas (Pekel et al., 2016) for rivers wider than ~30 m globally. 

In summary, the three components that boost the generation of flood inundation maps 

at high spatial resolutions (from 1 km to 30 m) are i) the development of efficient nu-

merical schemes to solve the SVE ii) the emergence of satellite data sets for public 

access and iii) the progress in hardware. These components have driven flood inun-

dation maps in places where it was not able before. 
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In the next sections, 1D and 2D hydrodynamic models are described in detail, a de-

scription of data requirements for continental-scale flood modelling is presented next 

and recent developments in the field are explained at the end of the chapter. 3D hy-

drodynamic models are not considered in this section as this type of model are com-

putationally expensive as this type of model requires more input data. Additionally, 

3D models present problems representing the water free surface, high-order turbu-

lence and transient flood shoreline (Hunter et al., 2007). These constraints in 3D mod-

els are main reason why large scale flood modelling have been treated predominantly 

with 1D or 2D approaches. 

 

2.2. Hydrodynamic models 

 

This section describes two types of flood models 1D and 2D, and the governing set of 

equations in each case in addition to its advantages and disadvantages. 

 

2.2.1. 1D models 

 

One way to predict hydrodynamics variables in floodplains is the use of a 1D hydro-

dynamic model. This type of model calculates hydraulics along the centre line of the 

river discretised by segments Δ𝑥	using the Saint-Venant Equations Equations 2.1 and 

2.2 which describe transient open-channel flow: 

 

Conservation of mass 
!"
!# +

!$
!% = 0  (2.1) 

 

Conservation of momentum 
&
$
!"
!% +

&
$
!'!"

#
(

!# − 𝑔&𝑆) − 𝑆*( = 0 (2.2) 

 

where 𝑄 is the flow discharge, 𝑡 is the time, ℎ is the water depth, 𝑔 is gravity, 𝑆! is the 

friction slope, 𝑆" is the channel bed slope and 𝐴 is the cross-section area. 

 

1D models are computationally more efficient than 2D models, however they are un-

able to capture the lateral diffusion effect of the flood wave and underrepresent flood-

plain terrain as they have to discretise it as cross-sections. 2D models, on the other 
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hand, discretise a flood inundation problem in a 2D grid rather than cross-sections 

allowing wave spreading according to topographic and hydraulic gradients across 

shallow gradient floodplains to be more correctly represented. Some hydrodynamic 

models in this category are MASCARET (Goutal et al., 2012), HEC-RAS 

(USACE,2016), SOBEK (Deltares, 2019) or MIKE 11 (DHI, 2017). 

 

2.2.2. 2D models 

 

2D models have also been used to predict floodplain hydrodynamics in the two di-

mensional spatial domain (e.g. 𝑥 and 𝑦). By assuming that the third dimension (i.e. 

water depth) is shallow compared to the other two the depth-averaged Navier-Stokes 

equations result in Equations 2.3, 2.4 and 2.5: 

 

Conservation of mass: 

 

+,
+% +

+(,.)
+# + +(,0)

+1 = 0  (2.3) 

 

Conservation of momentum: 

 

2(,.)
2%)

local	acceleration
+ 2(,.")

2#*+,
convective	acceleration

+ 2(,.0)
21*+,

water	slope
+ 𝑔 &

A
2(,")
2#*-+-,

friction	slope
= 0  (2.4) 

 

2(,0)
2% + 2(,0")

21 + 2(,.0)
2# + 𝑔 &

A
2(,")
21 = 0  (2.5) 

 

here the horizonal velocity is given by the vector (𝑢, 𝑣) which is averaged over the 

vertical column. The spatial representation in this type of models can be on a rectan-

gular grid (structured mesh), triangular grid (unstructured mesh) or flexible mesh. 

 

Simplifications to the shallow water equations can reduce the complexity and run time 

of the computation. Thus, by neglecting terms in the Saint-Venant Equations different 

approximations can be achieved. For example, the diffusive wave approximation ne-

glects the inertial terms (i.e. the local and convective accelerations) and is used where 
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the flow is in a subcritical condition, with low Froude values (Hunter et al., 2005). The 

kinematic wave approximation assumes a uniform flow where the friction slope ap-

proximates the slope of the channel (Hunter et al., 2007). These approximations lead 

to computationally efficient models and paved the way to the first large area  flood-

plain inundation predictions for a section of the central Amazon floodplain in Brazil 

(Wilson et al., 2007), and Ob river in Western Siberia (Biancamaria et al., 2009). 

 

Both the kinematic and diffusive approximations are suitable approximations for 

larger length scales (i.e. long reaches using grid resolutions of  the order of >100) as 

bed friction dominates over convective acceleration leading to relative small errors for 

not including the acceleration term. The inertial wave approximation neglects only 

the advection term (also known as the convective acceleration) (Bates et al., 2010). In-

cluding the advection term is relevant for small scale studies with supercritical flow 

as these types of forces generate significant velocity derivatives. Additionally, the in-

ertial approximation is faster than the diffusive approximation. Bates et al., (2010) 

found that the computational speed can increase from 1-3 times, nonetheless it is 

highly dependent on the grid resolution. This local inertial approximation has been 

used to simulate continental scale studies in sensible amount of time. For example, the 

local Inertial approximation has been successfully solved to: (a) estimate global hazard 

at ~90 m resolution for catchments larger than 50 km2 (Sampson et al., 2015); (b) pro-

duce a continental scale flood hindcast for Australia for rivers larger than 10,000 km2 

and ~90 m resolution (Schumann et al., 2016); and most recently (c) to estimate flood 

hazard under changing climate conditions in the Ganges–Brahmaputra–Meghna ba-

sin in south Asia (Uhe et al., 2019). 

 

2D models are computationally more expensive than 1D models, however, are the 

preferable choice for flood hydraulics. The main reason is 2D models are capable of 

representing hydraulic processes induced by the floodplain topography. Addition-

ally, advances in remote sensing techniques along with increasing publicly availabil-

ity of satellite data have been important to consider 2D models as the way for flood-

plain inundation prediction. Satellite data can be used to validate 2D floodplain mod-

els (Schumann et al., 2018), but also helped to estimate Digital Elevation Models 

(DEM) at global scale (e.g. SRTM Farr et al., 2007). Some codes within this category 

are TUFLOW (Syme, 1991), JFLOW (Bradbrook et al., 2004), TRENT (Villanueva and 

Wright, 2006), LISFLOOD-FP (Bates et al., 2010) or PRIMO (Sanders et al., 2019). 
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For a more detailed comparison between hydrodynamic models the reader is advised 

to consult Teng et al., (2017) 

 

2.3. Hydrodynamic model selection 

 

In order to fulfil the objectives of this thesis, a 2D hydrodynamic model able to solve 

for flood hydraulics at continental scales and high resolutions (<100 m) is needed. As 

mentioned before, solving the full version of Saint Venant Equations (SVE) is an inef-

fective option as at large scales (i.e. hundreds of kilometres of river reaches) flood hy-

draulics are mostly driven by bed friction rather than inertial processes. In this con-

text, using the kinematic or the diffusive wave approximation to solve for the hydrau-

lics is an effective way as these approximations reduce the computational time com-

pared to the full version of SVE. The inertial formulation where only the advection 

term is neglected from the full SVE provides flood inundation predictions very similar 

to the diffusive wave model (Hunter et al., 2008), but at a significantly reduced com-

putational cost (1-3 orders of magnitude faster). This is due to the minimum stable 

time step scales with ∆𝑥, rather than with (1/∆𝑥)# as would be the case for a purely 

diffusive scheme. 

 

In order to build a flood hindcast at continental scales, it is important to select the 

fastest approximation (in terms of computational) able to simulate water dynamics. In 

this view, the inertial formulation was selected as the best option. One of the codes 

that implements this approximation is LISFLOOD-FP, an open-source model for re-

search purposes that has a novel structure suitable for continental scale applications 

and has been largely validated. More details about the LISFLOOD-FP model are given 

in the following subsection. 

 

2.3.1. LISFLOOD-FP 

 

LISFLOOD-FP (Bates et al., 2010; Bates et al., 2013) is a 2D hydrodynamic model that 

solves the Saint-Venant Equations (SVE) using the inertial wave approximation (i.e. 

neglecting the advection term from the SVE). This approximation provides accurate 

results for flows in the lower range of subcritical flow (0 > 𝐹𝑟 > 0.5) when compared 
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to solutions of the full SVE. Most floodplains and lowland rivers behave within this 

subcritical flow range. In the upper range of the subcritical flow regime (0.5 < 𝐹𝑟 < 1) 

the local inertial approximation provides accurate results only under mild depth gra-

dients. The approximation presents less accuracy for 𝐹𝑟 values close to 1 with large 

depth gradients (e.g. mountain rivers), to accurately obtain water depths in these type 

of rivers the full set of SVE must be used instead (de Almeida and Bates, 2013). 

 

LISFLOOD-FP simulates water depths in each grid cell and at each time step thereby 

simulating the dynamic propagation of flood waves over fluvial, coastal and estuarine 

floodplains. The model calculates the hydrodynamics in the floodplain using a stag-

gered grid so that whilst the solution is first order in time it has some of the properties 

of a second order solution in space (Shaw et al., 2020). The model is decoupled in 𝑥 

and 𝑦 (i.e. it treats 2D flow by computing the 1D flows through each of the four cell 

faces). 

 

For each cell the continuity equation over time step Δ𝑡 is: 

 

hC,EFGHF = hC,EF + Δt
I$,&'(/",*+,-+ JI$,&,(/",*+,-+ GI.,&,*'(/"+,-+ JI.,&,*,(/"+,-+

K&,*   (2.6) 

 

where Q is the flow between cell, ℎ is the water depth at the centre of each cell, 𝐴 is 

the water surface/cell area, and subscripts 𝑖 and 𝑗 are cell spatial indices in 𝑥 and 𝑦 

directions, respectively. The momentum equation to calculate flow 𝑄 between two 

cells in the 𝑥 direction is described by: 

 

𝑄LG&/A%GH% = N/,(/"0 JO,flow 

0 H%P/,(/"0

Q&GOH%R"SN/,(/"0 S/T,
flow 

0 U1/2VΔ𝑥   (2.7) 

 

where Δ𝑥 is the cell width, 𝑔 is the acceleration due to gravity, 𝑞$ is the low from the 

previous time step 𝑄$ divided by cell width Δ𝑥, 𝑆 is the water surface slope between 

cells, 𝑛 is the Manning’s roughness coefficient, and ℎ!%"& is the depth between cells 

through which water can flow, defined from the water depths and cell elevations 𝑧 as: 
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ℎflow% = max(ℎL% + 𝑧L , ℎLG&% + 𝑧LG&) − max(𝑧L , 𝑧LG&)  (2.8) 

 

and the water surface slope 𝑆 as: 

 

𝑆LG&/A% = T,/0GW/UJT,/,(0 GW/,(U
H#   (2.9) 

 

To maintain stability the model, time step must be limited to: 

 

Δ𝑡 = 𝛼 #
XYZ[(,0)O  (2.10) 

 

where 𝛼 is a stability coefficient typically set around 0.7 for most floodplains and 

𝑚𝑎𝑥(ℎ$) is the maximum water depth in the model domain. This time-stepping equa-

tion is based on the Courant-Friedrichs-Lewy condition (Courant et al., 1928). 

 

LISFLOOD-FP Sub-grid (Neal et al., 2012) extends the basic structure of LISFLOOD-

FP to make it easier to simulate large area applications. It uses the formulation of Bates 

et al., 2010 to calculate flow in floodplain and the equations of Neal et al., 2012 to 

estimate flow in channels. Thus, water surface slope in the channel follows: 

 

𝑆LG&/A% = T,/0GW3,/UJT,/,(0 GW3,/,(U
).]T#3G#3,/,(U   (2.11) 

 

where 𝑧' is the channel bed elevation and 𝑥' is the length of the flow (Δ𝑥). Depth of 

flow ℎ',!%"&
$  is calculated similarly to Equation 2.8, but using channel bed elevations 

instead: 

 

ℎ^,*_`a% = max&ℎL% + 𝑧^,L , ℎLG&% + 𝑧^,LG&( − max&𝑧^,L , 𝑧^,LG&(  (2.12) 

  

Channel flow is calculated using the momentum equation employing the same ap-

proach as Bates et al., 2010: 
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𝑄%̂GH% = "30JO$3,	fiow	0 H%P30
b&GOH%R3"c"30c/QTd3,	flow	0 U:/2$3,	flow	0 Ve  (2.13) 

 

where the hydraulic radius 𝑅'$ is derived for a more general case as the flow in chan-

nels is usually narrow and deep: 

 

𝑅%̂ = $3,	flow	0

a3GA,3,	flow	0   (2.14) 

 

with channel flow area obtained from the channel width C𝑤',!%"&E and channel water 

depth Cℎ',!%"&
$ E according to: 

 

𝐴^,	flow	% = 𝑤^,	flow	ℎ^,	flow	%   (2.15) 

 

The model has been widely used for different applications at small and large scales 

(e.g. Wilson et al., 2007; Biancamaria et al., 2009; Neal et al., 2012; Schumann et al., 

2013, 2016; Alfieri et al., 2014; Sampson et al., 2015; Wing et al., 2018) due its compu-

tational efficiency, which is mainly given by neglecting the flow advection in the shal-

low water equation but also by employing a highly efficient finite difference numeri-

cal solution scheme (de Almeida et al., 2012; de Almeida and Bates, 2013). The source 

code of the model has been parallelized to take advantage of HPC clusters, bringing 

additional speed ups in computation time under both CPU (Neal et al., 2018) and GPU 

architectures (Shaw et al., 2020). 

 

2.4. Data requirements 

 

Data requirements for 2D hydrodynamic models is reviewed in this section. Hydro-

dynamic models are driven by different variables in order to produce water depth, 

velocity and consequently flood extent. The quality of the input data largely dictates 

the quality of the prediction, and thus extensive research has been done in this area. 

A number of these data sets have been derived using remote sensing techniques ap-

plied to satellites orbiting the Earth (e.g. SRTM, GRWL), but also numerical modelling 

of rainfall-runoff processes (e.g. EFAS, GloFAS). Figure 2.1 shows a diagram of the 

data requirements for 2D hydrodynamic models applied at a continental-scale. 
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Figure 2.1 Diagram of data requirements in flood modelling at continental-scale 

 

In this section, the most commonly used data sets for continental-scale flood model-

ling are discussed in detail. 

 

2.4.1. Digital elevation models 

 

Several fields in geosciences need a precise representation of global terrain to carry 

out their studies, for example earthquake motion assessment (Hough et al., 2010), 

flood inundation modelling (Sampson et al., 2015; Yamazaki et al., 2014b), global wet-

land carbon dynamics (Laudon et al., 2011), soil erosion and sediment yield prediction 

(de Vente et al., 2013), and water mapping by remote sensing (Pekel et al., 2016). How-

ever, only developed countries are able to undertake projects whose main goal is to 

obtain high-accuracy digital elevation models (DEM) (e.g. Austria, Australia, Den-

mark, Norway, Spain, Japan, The UK, The US, The Netherlands). Developing coun-

tries still rely on spaceborne DEMs to undertake geosciences studies.  Examples of 

spaceborne DEMs which have facilitated geoscience research are: the Shuttle Radar 

Topography Mission (SRTM) which measured land elevations using radar interfer-

ometry and provides a near-global DEM at 1″ and 3″ resolution (i.e. ~30 and ~90 m at 

the equator) (Farr et al., 2007), ASTER GDEM (Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer-Global DEM) (Tachikawa et al., 2011), AW3DDEM 

(ALOS: Advanced Land Observing Satellite, World 3D-DEM) (Tadono et al., 2015) and 

the TanDEM-X DEM (Rizzoli et al., 2017). Note that DEMs derived from spaceborne 

satellites contain height errors which may be significantly problematic in flood mod-

elling studies. These errors are classified as speckle noise, stripe noise, absolute bias 

and positive bias due to tree canopies in forested areas (Farr et al., 2007; O’Loughlin 
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et al., 2016). The speckle noise is caused by the variability of surface reflectance over 

flat areas resulting in a random height error in addition to instrument noise (Rodri-

guez et al., 2006; Takaku et al., 2015). The stripe noise is characterised by a regular 

height undulation, which in the case of SRTM it has a wavelength of 500 m to 100 km 

(Gallant and Read, 2009; Crippen et al., 2016). The absolute error is evident when there 

is shift in the average elevation over a large domain (~20 km) (Takaku et al., 2015; 

Crippen et al., 2016). Finally, the positive bias due to vegetation canopies is caused as 

both radar interferometry and stereo viewing are not able to measure elevations be-

neath forests (O’Loughlin et al., 2016; Carabajal and Harding, 2006). Yamazaki et al., 

2017 developed the Multi-Error-Removed Improved-Terrain (MERIT) data set, a very 

accurate mapping of global terrain elevations achieved by correcting errors mentioned 

before in a fused DEM data set. 

 

2.4.2. Water bodies 

 

Mapping global surface water is key for many geoscience studies. Delineating the spa-

tial and temporal distribution of rivers and lakes is important for understanding the 

water, energy and carbon cycles, both at local and global scales (Downing et al., 2012, 

2014; Allen and Pavelsky, 2018). In flood modelling, hydrodynamic models use this 

information to identify permanent water bodies and map them directly in the flood 

inundation output. Water bodies are also useful in hydrographic studies such as Hy-

droSHEDS (Lehner et al., 2008) or MERIT Hydro (Yamazaki et al., 2019) which use 

water body data to identify the largest river locations. Several data sets which map 

water bodies have been produced to date, for example the SRTM Water Body Data 

(SWBD) (NASA/NGA, 2003) was one of the first databases to document surface water 

bodies at high spatial resolution (~30 m). It is a very accurate high-resolution data set 

derived from the SRTM mission; however, it does not cover the entire globe (coverage 

is between N60°–S54°). Subsequent studies improved the coverage, but lack the ability 

to distinguish between temporary and permanent waters or water occurrence (e.g. 

GLCF MODIS Carroll et al., 2009; GLCF GIW Feng et al., 2016; GLOWABO Verpooter 

et al., 2014). Thanks to public release of Landsat imagery in particular, water occur-

rence was able to be depicted (e.g. GLWD Lehner and Döll 2004; GIEMS Papa et al., 

2010; GIEMS-D15 Fluet-Chouinard et al. 2015; G3WBM Yamazaki et al., 2015). Most 

recently, the Global Surface Water Occurrence (GSWO) (Pekel et al., 2016) has been 

produced and is considered the most complete database of water bodies to account 
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for occurrence. It used ~three million images from the Landsat inventory to map 32 

years of water surface change globally. 

 

2.4.3. Hydrography 

 

In addition to DEMs which determine the terrain elevation of floodplains, the location 

of rivers is also needed when simulating river hydrodynamics at continental-scales. 

To date, three global hydrography data sets exist which have helped to identify very 

accurately and with enough resolution (102 – 103 m) main rivers and channels at global 

scale: HYDRO1K (USGS, 2001), HydroSHEDS (Lehner et al., 2008) and more recently 

MERIT Hydro (Yamazaki et al., 2019). These hydrography data sets were developed 

using DEMs as a proxy. The procedure is as follows; the DEM is used to derive a flow 

direction map or a map consisting of drainage directions (e.g. north, northeast, north-

west, south, etc.) in every cell of the DEM. Then, the direction map is used to calculate 

the number of upstream cells within the drainage basin. However, as seen in Section 

4.2.1 DEMs can contain errors which could lead to inconsistent river flow patterns. 

One way to tackle this problem is overlaying additional sources of river location data, 

for example the water-related features of OpenStreetMaps (www.openstreetmap.org) 

or water body datasets (e.g. GSWO Pekel et al., 2016). Alternatively, if local data 

sources of river centrelines along with high quality terrain elevations are available 

then the hydrography can see substantial improvement. Chapter 5 presents a compu-

tational framework to calculate hydrography data sets using as case study the contig-

uous US. 

 

2.4.4. River width 

 

Accurate simulations of river hydrodynamics require river width to be known before-

hand. Models typically need to know the width of rivers when these flow is at mean 

or bankfull discharge. Andreadis et al., (2013) developed one of the first such data sets 

with global coverage of river width at ~500 m spatial resolution. Andreadis et al., used 

hydraulic geometry relationships (Leopold and Maddock, 1953) to estimate river 

width in rivers and channels from the HydroSHEDS data set. The hydraulic relation-

ships employed bankfull flow estimated from streamflow information in the Global 

Runoff Data Center archive (GRDC) (www.bafg.de/GRDC). Yamazaki et al., 2014a 
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continued this line of development and instead of employing hydraulic relationships 

used observed water bodies from the SRTM Water Body Data (SWBD) to derive river 

width estimates thereby generating the Global Width Database for Large Rivers (GW-

DLR), a river width database at ~90 m spatial resolution. The observed water bodies 

mask used in GW-DLR considerably improved river width estimates and unlike pre-

vious studies is based on empirical data. To date, the best estimate of river width is 

obtained through the Global River Width from Landsat (GRWL) product (Allen and 

Pavelsky, 2018), a database of river widths derived from the Landsat inventory. Sim-

ilar to GW-DLR, this new database estimates river widths based on water masks at 

~30 m spatial resolution from 7,376 Landsat images. 

 

2.4.5. Hydrological data 

 

Inflow boundary conditions in the form of discharge (e.g. m3/s) or water level (e.g. 

meters) are needed to calculate hydrodynamics for every time step within the compu-

tational grid. At global scale, discharge data are available for long periods of time (>50 

years). For example, with more than 9,500 gauge stations all over the world the Global 

Runoff Data Base (GRDC) (GRDC, 2007) keeps record of observed discharge data 

since 1980. This data set has contributed extensively to improved flood inundation 

modelling. It helped to build one of the first river width database at global scale 

(Andreadis et al., 2013), it was used to estimate river flow magnitude for a given prob-

ability using regional flood frequency analysis (RFFA) (Smith et al., 2015), or as a use-

ful validation database for hydrological models. It is worth noting that river discharge 

data can be subject to uncertainty, primarily caused by changes in channel shape due 

to weed growth, sedimentation, erosion, measurement collection and the presence of 

a bypassing flow. Several different methods exist to deal with this issue, including 

traditional statistical methods (Petersen-Øverleir and Reitan, 2005) where uncertainty 

is estimated from the residual variance of a regression function, and Bayesian meth-

ods (Juston et al., 2014) where hydraulic knowledge is incorporated prior to the rating-

curve and non-parametric regression methods. For the Bayesian methods, temporal 

changes in the rating curves are used to pool groups of stage-discharge measurements 

and rating curves are fitted using a multi-sectional approach (Coxon et al., 2015).  

 

Discharge data can be also simulated via hydrological models from local to global 

scales (e.g. Doll et al., 2003; Lane et al., 2019). At continental scales, there are two 
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popular public services that have contributed to monitor and predict floods i) the Eu-

ropean Flood Awareness System (EFAS) (Thielen et al., 2009) and ii) the Global Flood 

Awareness System (GLOFAS) (Alfieri et al., 2013). Both are part of the European Com-

mission Copernicus Emergency Management Service and have provide useful infor-

mation on flood monitoring and forecasting using simulated discharge data. Other 

continental to global scale simulated discharge data sets include Cama-Flood (Yama-

zaki et al., 2011, 2012), PCR-GLOBWB (PCRaster Global Water Balance van Beek et al., 

2011; Sutanudjaja et al., 2018) and more not mentioned here. Simulated discharge data 

have been largely used in flood modelling. Indeed, cascading from rainfall to flood-

plain dynamics is a pivotal component of any flood forecast and flood risk analysis 

(e.g. Bonnifait et al., 2009; Grimaldi et al., 2019; Komi et al., 2017; Pappenberger et al., 

2005). 

 

 

 

2.4.6. Flood protection standards 

 

At continental scale, it is still very difficult to obtain detailed information about flood 

protection infrastructure in main rivers and channels. This information is critical to 

produce accurate flood hazard maps at any scale. The reason is because typically 

countries have flood protections in place for the most frequent return periods (i.e. 1 in 

5 yrs., 1 in 10 yrs.) preventing flood inundation of events of such magnitudes. If flood 

defences are not taken into account, the modelling framework will overestimate the 

hazard. Most countries do not release flood defence data publicly, with some excep-

tions (e.g. The UK and US). Thus, most studies have made estimates of flood protec-

tion standards using other types of data as a proxy. Sampson et al., (2015) detailed a 

methodology to develop estimates of flood protection standards based on GDP per 

capita or population density. Jongman et al., (2014) used instead catchment level de-

scriptors based on potential losses from an insurance database. At global scale, 

Scussolini et al., (2016) presented FLOPROS, which is a global database that contains 

empirical information about the ‘actual’ standard of existing protection already in 

place, the standard protection based on policy regulations and for countries where 

this information is not available the data set includes a modelled standard of protec-

tion. The modelled standard of protections was calculated using a combination of 

GDP per capita along with simulated flood risk from the GLOFRIS framework (Ward 
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et al., 2013; Winsemius et al., 2013). Most recently, flood defences have been extracted 

from high resolution DEMs such the case of National Elevation Dataset (NED) where 

resolution can go up to 3 m in some places. Wing et al., 2019 developed an automatic 

algorithm to extract flood defences using a machine learning based approach. In this 

approach, defences from known places are used to train a machine learning model 

that can be used to help detect location of flood defences elsewhere. 

 

 

 

 

 

2.5. Recent developments 

 

Most of the continental to global scale flood modelling studies can fit within two broad 

categories. First, flood modelling to map the hazard associated with a given probabil-

ity (or return period, recurrence interval). Second, flood modelling to map the evolu-

tion of inundated areas over long periods of time (i.e. hindcasts of flood inundtion). 

In the first type of modelling boundary conditions are given typically in the form of 

flows for a given probability. For this, a regional flood frequency analysis approach 

can be carried out (Smith et al., 2015). Alternatively, an approach that involves cas-

cading a climate reanalysis dataset cascaded through atmospheric and land surface 

models is possible (e.g. Pappenberger et al., 2012; Winsemius et al., 2013; Yamazaki et 

al., 2011). For the second problem, flood modelling simulation over long periods of 

time uses as boundary conditions a continuous time series of flow estimates, usually 

provided by in-situ gauge stations (e.g. Global Runoff Database GRDC) or a rainfall-

runoff models (e.g. Global Flood Awareness System GloFAS www.globalfloods.eu, 

European Flood Awareness System EFAS www.efas.eu) 

Flood hazard modelling has received significant attention during the last decade. Sev-

eral contributions have marked pivotal achievements for continental-scale flood mod-

elling at high resolution (grid cell <1 km). For example, Winsemius et al., (2013) pre-

sented a global river flood risk framework that maps flood hazard by combining a 

hydrological model for boundary conditions, a flood-routing model to simulate chan-

nel hydrodynamics and an inundation downscaling routine to predict flood depths at 

~1 km spatial resolution. Alfieri et al., (2014) introduced a higher resolution flood 
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hazard model (~100 m) limited to Europe only, which similarly used a hydrological 

model to obtain boundary conditions.  However, in this study inundated area was 

calculated using a 2D hydrodynamic model although river channels were not explic-

itly represented. Sampson et al., (2015) used a 2D hydrodynamic model which directly 

represented river channels as sub-grid scale features that substantially improved 

channel hydrodynamics to produce estimates of global flood hazard for a variety of 

return periods at ~90 m resolution. Dottori et al., (2016) presented another global 

model using a 2D hydrodynamic model that solves the Saint-Venant Equations using 

the formulation implemented in LISFLOOD-FP, but following a cellular-automaton 

finite volume approach. Despite the emergence of a large number of continental mod-

els, Trigg et al., 2016 showed that their output flood extent only agreed by between 

30% - 40% when several models were compared in Africa. The disagreement can be 

attributed to differences in the structure of modelling framework (e.g. resolution, 

treatment of vegetation, process to treat river channels) and the methodology applied. 

For example, some frameworks used a series of discharge gauging stations within a 

regional flood frequency approach to obtain boundary conditions, others instead used 

climate model reanalysis followed by a hydrological model to obtain boundary con-

ditions. 

Data availability has been central to the creation of high resolutions models. As the 

resolution increases, additional data can be ingested in modelling frameworks to im-

prove the representation of modelled inundated areas. Such is the case in the US 

where a vast amount of data is available, including a consistent source of DEM, a great 

collection of gauges stations and a levees database. Wing et al., (2017) created a flood 

hazard model for the contiguous US at 30 m by including in the framework additional 

water control structures such as levees. The resolution of the model was high enough 

to depict the population exposed to flooding (Wing et al., 2018). 

Flood modelling simulation over time has received less attention. Progress here has 

been delayed by the lack of boundary condition data in the form of consistent, long 

term discharge time series and formal modelling frameworks. Schumann et al., (2016) 

introduced a framework that maps daily flood inundation in Australia at 90 m reso-

lution. The study used 40 stream gauges coupled to a hydrodynamic model to create 

40 years of flood depth times series in 13 river basins. The study had some limitations, 

for example, ungauged tributaries were not considered, and flood defences were not 

taken into account. 
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This is only a brief summary of recent developments in the field, more progress is 

introduced in Chapter 3, 4 and 5. 

 

2.6. Chapter Summary 

 

This chapter presents an overall view of continental-scale flood modelling. Section 2.1 

presents an introduction of the subject. Section 2.2 discusses two types of hydrody-

namic models used in these studies and their governing equations. Sections 2.3 details 

the 2D hydrodynamic model LISFLOOD-FP and its numerical scheme. Section 2.4 

briefly describes data sets used in continental-scale flood modelling and Section 2.5 

reviews recent developments in continental-scale flood studies. The next three chap-

ters present results chapters to address the objectives and research questions from 

Section 1.2. 
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CHAPTER 3 

 

A toolbox to quickly prepare flood 

inundation models for LISFLOOD-FP 

simulations 
 

 

 

 

 

As noted in the Chapter 1, there is still a need to streamline the deployment of conti-

nental-scale flood studies in a fast, simple and methodology-consistent way. This 

chapter introduces a new software package that helps to accomplish this. The main 

problem arises as the data input for flood models comes in a variety of forms (i.e. grid 

resolution, data format, geographical projection). Despite the fact that data can be 

shaped to the user’s problem using GUI interfaces such QGIS or ArcGIS, this is only 

achievable after several hours of manual editing, an even harder task if the problem 

is at continental scales. In this chapter the development of LFPtools is presented, an 

open-source Python package which encompasses most commonly used methods to 

prepare input data for continental scale flood studies and automatise data preparation 

for the LISFLOOD-FP hydrodynamic model. 

This chapter consists of a paper published in Environmental Modelling & Software. 

All the source code development and original idea was carried out by the lead author. 

Christopher Sampson and Andrew Smith contributed suggestions for some methods. 

All co-authors provided text suggestions to improve the final manuscript. 

Peer-reviewed article associated with this chapter: 

Sosa, J., Sampson, C., Smith, A., Neal, J., Bates, P. (2019). A toolbox to quickly prepare 

flood inundation models for LISFLOOD-FP simulations. Environmental Modelling & 

Software, 104561. doi.org/10.1016/j.envsoft.2019.104561. Source code: 

http://github.com/jsosa/lfptools 
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3.1 Introduction 

 

Hydrodynamic models designed to simulate floodplain inundation have been popu-

lar for many years and are widely used in engineering applications. These models, 

such as TUFLOW (Syme, 1991), JFLOW (Bradbrook et al., 2004), TRENT (Villanueva 

and Wright, 2006), LISFLOOD-FP (Bates et al., 2010), TELEMAC-2D (Moulinec et al., 

2011) or PRIMO (Sanders and Schubert, 2019) route water through channels and 

floodplains following shallow water flow theory. 

Global to continental scale flood studies are being used for insurers, multi-national 

corporations, NGOs and national governments. They have been made possible as a 

result of the appearance of global coverage datasets of terrain elevation (Farr et al., 

2007; Tadono et al., 2015; Yamazaki et al., 2017; Rizzoli et al., 2017, Wessel et al., 2018), 

hydrography (Lehner et al., 2008; Yamazaki et al., 2019) and river width based on sim-

ple hydraulic geometry equations (Andreadis et al., 2013) or based on the analysis of 

the Landsat repository (Yamazaki et al., 2014; Allen and Pavelsky, 2018). These data 

sets, coupled with the parallel development of efficient two-dimensional flood models 

such as LISFLOOD-FP or TELEMAC-2D and advances in computational power (Neal 

et al., 2018; Lamb et al., 2009), have led to the implementation of flood inundation 

studies in data-sparse areas around the world at very high resolutions (102-103 m). As 

consequence, a variety of applications involving flood hydrodynamic variables (e.g., 

flood extent, water depth, flow velocity, flow discharge) have been explored. These 

applications range from flood risk assessment (see e.g. Wing et al., 2018; Winsemius 

et al., 2013), early warning systems (see e.g. Dottori et al., 2017), climate change sce-

narios (see e.g. Alfieri et al., 2018), hind-cast simulations (see e.g. Schumann et al., 

2016) to biogeochemistry (see e.g. Lu et al., 2016). 

Building a flood model can be time-consuming since input data need to be processed 

from a variety different sources and adapted to a particular user’s problem. The in-

creasing quantity, complexity and resolution of useful datasets imparts an ever-grow-

ing burden of knowledge on model developers. Furthermore, the frequent update cy-

cles of some datasets can cause module builds to go out of date quickly. Therefore, 

developing a flood inundation model requires a high level of skill in handling geo-

graphical information using Graphical User Interface (GUI) driven software packages 
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such as ArcGIS and QGIS. These present a workable solution for the treatment of data, 

but typically only at small-scales due to their high demands for computing resource 

and user intervention. Instead, at continental-scale command line interface (CLI) soft-

ware packages are the best candidates for the preparation of flood inundation models 

since they provide robustness and computational efficiency. CLI packages can also be 

simpler and more streamlined than general GIS software, providing only the func-

tionality that users need and thus making sophisticated flood inundation modelling 

more accessible to specialist users. 

In this chapter we present LFPtools, a Python CLI package which attempts to encom-

pass the most commonly used methods to prepare input data for flood inundation 

studies using LISFLOOD-FP and are described in detail here (Sampson et al., 2015; 

Schumann et al., 2013; Hawker et al., 2018). Among the capabilities LFPtools can pro-

vide are: DEM upscaling, bank elevation estimation, bed elevation estimation, river 

width subtraction and interpolation, elevation smoothing algorithms, continent basin 

splitting, and more. Whilst the software has been built specifically for the LISFLOOD-

FP model, many of the operations it encodes are useful for a wide range of other flood 

inundation models, especially those operating on regular grids. LFPtools can act as an 

intermediate platform to streamline the preparation of local, continental or global 

flood inundation studies in different fields by bringing ease of use to non-expert users 

and efficiency to expert ones. For example, new experimental studies on hydrological-

hydrodynamic modelling, sensitivity analysis (SAFE Toolbox Pianosi et al., 2015; 

SALib Herman et al, 2017) will be achievable more straightforwardly. LFPtools is 

open-source and presents a series of tools to estimate the variables required for flood 

inundation modelling in rapid and automated manner. As open-source, users can re-

vise the code, modify or add new methods easily and transparently. The tools were 

verified over the Severn basin where a 1 km flood inundation model was built in un-

der 2 minutes on a standard laptop (1.6 GHz Intel Core i5; 8 GB 1600 MHz DDR3). 

 

3.2 Methods 

 

The LFPtools package is written in Python and built on top of well-known open-

source libraries: GDAL (gdal.org), Cython (cython.org), Pandas (pandas.pydata.org), 

Numpy (numpy.org) and xarray (xarray.pydata.org). The TauDEM toolbox (Tar-

boton, 2005) is also required for some functionalities. The library handles I/O 
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operations via well-known file formats such as ESRI Shapefiles and GeoTIFF. The 

code is publicly available is available at http://github.com/jsosa/lfptools 

 

3.2.1 Floodplain elevations 

 

Floodplain elevations define the grid output resolution. Those elevations can be ob-

tained directly using a Digital Elevation Model (DEM) as-is (i.e., at native resolution). 

Alternatively, if the native DEM contains noise, usually derived from instrument er-

ror, upscaling the native data will reduce that noise in a coarser floodplain elevation 

grid, but may also smooth or loose important small scale elevation features (Neal et 

al., 2012; Hawker et al., 2018). 

lfp-rasterresample is the program included in the library to upscale DEMs. The program 

can handle arrays of any size since it never loads entire arrays on memory but instead 

it loads a small portion of the array corresponding to the aggregation kernel to be 

upscaled. The program receives three inputs: a high-resolution DEM, a target resolu-

tion mask and a searching window threshold. Only cells with mask=1 will be consid-

ered for calculation. The upscaling method is described as follows: 

1. A user-defined threshold is applied to a centre cell of the target mask to lump 

together high-resolution values. 

2. A modified z-score (Iglewicz and Hoaglin, 1993; based on the median absolute 

deviation) is calculated for every DEM cell in the kernel. z-score values larger 

than 3.5 are identified as outliers and subsequently removed from the aggrega-

tion kernel. 

3. In the aggregation kernel, different reduction algorithms can be applied (e.g., 

mean, min, meanmin). meanmin is an interesting reduction method which av-

erages the minimum and mean values from the kernel and emphasises topo-

graphic valleys in the calculation. Important to mention that more reduction 

algorithms can be easily added in the source code by users should they be re-

quired. 

Step 2 is important to consider since native DEMs might present irregularities in some 

places. For example, in development testing a disagreement was found in the aggre-

gation kernel for a target cell in the Seine River using the native ~90 m resolution 

MERIT DEM. In particular, some strong negative values (~-10 m) were found in an 
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area where the typical topographic elevation was ~30 m (See Figure 3.1). The auto-

matic detection algorithm in Step 2 prevents inclusion of these values before step 3. 

Different aggregation methods from Step 3 are compared for a small part of the River 

Thames using the toolbox in Figure 3.2 

 

 

Figure 3.1. Outlier detection procedure: a) original 90 m resolution DEM and aggregation kernel (in 

black), b) zoom-in at aggregation kernel (area ~1 km2) and c) automatic detection of outliers in kernel 

(in green) points retained for upscaling and (in red) all points. 

 

 

 

Figure 3.2. Upscaling methods comparison at 1 km resolution: a) original 90 m resolution DEM, b) 

mean aggregation, c) meanmin aggregation and d) min aggregation 
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3.2.2 Channel widths 

 

LISFLOOD-FP Sub-Grid needs several input variables to run a flood simulation, one 

of which is river width estimates at every cell in the river network. With the appear-

ance of global river width data sets based on remote sensing techniques (GWD-LR 

Yamazaki et al., 2014; GRWL Allen and Pavelsky 2018) and empirical formulations 

(Andreadis et al., 2013) it is now feasible to use these data sets as width sources in 

flood studies for data-sparse regions. 

Global river width databases may have some degree of geolocation shift in relation to 

the corresponding rivers extracted from hydrography databases making them diffi-

cult to use in their native format. This problem may appear if these databases are de-

rived from different sources or due to resolution dissimilarity; for example, DEM de-

rived river networks and remotely sensed open water locations. Commonly, a nearest 

neighbour function in a searching window is used to assign the nearest value from a 

river width database to a river cell in a flood study. However, there might be cases 

where the searching window is too small and no width values are found, in this case 

increasing the window size is not an appealing option since it might result in an in-

correct river width assignment from a tributary. Instead, it is advisable to use an in-

terpolation with values already assigned. It is important to note that leaving a river 

cell with no width assigned is a critical issue since LISFLOOD-FP Sub-Grid cannot 

perform calculations on river cells with zero width. 

LFPtools includes a routine (lfp-getwidths) to automatically assign width values to 

river cells, it works in the following way: 

1. River cell widths are assigned based on the nearest neighbour within a search-

ing window. 

2. If no width value is assigned from the source database, the missing value is 

automatically interpolated with values already assigned. 

Figure 3.3 shows an example of three river cells with widths unassigned due to the 

searching window size problem. Figure 3.3-a shows a river reach (blue) at ~1 km, red 

dots are centroids of river cells and the black solid line is river vector from the GRWL 

database (~30 m). From the figure only three points (A, B, C) were not able to find an 
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appropriate width value in their neighbourhood (red dash line), those values were 

automatically calculated by interpolation in lfp-getwidths see Figure 3.3-b 

 

 

 

Figure 3.3. River widths assignment: a) Example showing three river cells unassigned due to small 

size in searching window at locations A, B and C and b) (in blue) width values that yield in the 

searching window (in red) width values interpolated. 

 

3.2.3 Bank elevations 

 

The LISFLOOD-FP Sub-Grid uses the DEM elevation as the bank height elevations, 

which when combined with the channel bed elevation defines the channel bankfull 

depth. It is therefore recommended to recalculate the bank height elevations to get 

better estimates because of the critical role this value plays in flooding simulations. 

If a native resolution DEM is used, bank height elevations are self-defined. However, 

if a coarser resolution model is created, high-resolution cell aggregation is required. 

lfp-getbankelevs reads a target river network mask (mask=1 will be considered for cal-

culation), a high-resolution DEM, and a searching window threshold to aggregate 

cells and apply a reduction algorithm (nearest, mean, min, meanmin). Resulting el-

evations might contain irregularities that may result in model instabilities caused by 

local supercritical flows and flow blocking effects if the channel bed follows the banks. 

Those irregularities can be solved by applying a smoothing algorithm along the river. 
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LFPtools includes a routine (lfp-fixelevs) which includes two approaches to deal with 

this problem: 

1. Adjust bank heights by minimising the amount of modifications following the 

method developed by Yamazaki et al., (2012). This algorithm removes all the 

pits in the spaceborne DEM caused by vegetation canopies, sub-pixel sized 

structures, and random radar speckles while minimizing the amount of modi-

fication required for removing the pits. 

2. Apply a weighted local regression (LOWLESS) (Cleveland, 1979) in the down-

stream direction as in Schumann et al., (2013). 

Both methods are compared for the main channel of the River Thames, UK in Fig-

ure 3.4-b 

 

  
Figure 3.4. Smoothing method available in LFPtools. These methods were applied to the main chan-

nel of the River Thames: a) (in red) main channel of the River Thames and (in grey) tributaries, b) (in 

grey) original elevation extracted by the nearest-neighbour (in red) Yamazaki’s method (in blue) Lo-

cally weighted smoothing. 

 

3.2.4 River depths 

 

Standard LISFLOOD-FP Sub-Grid treats river cross-sections as rectangular. Due to 

this fact channel depths may differ from in-situ river depth surveys. With some cali-

bration this approximation works very well at large scales producing reasonable re-

sults in most places as long as accurate estimations of bank heights and widths are 

used. Unlike bank heights and river widths that can be determined from satellite data, 
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river depths need to be approximated. Two approaches have been proposed to 

achieve this goal and are included lfp-getdepths i) a simple empirical power law for-

mulation (Neal et al., 2012) ii) the Manning’s equation (Sampson et al., 2015). A user-

defined raster (e.g., survey data on river bathymetry) can also be used to assign depths 

to cells if none of the previous methods are used. 

 

3.2.4.1 Power law relationship 

 

Leopold and Maddock (1953) derived a series of power law relationships given by 

Equation 3.1-3.3 where W is water-surface width, 𝑄 is discharge, 𝐷 is mean depth and 

𝑉 is mean velocity. 

 

𝑊 = 𝑎𝑄!  (3.1) 

𝐷 = 𝑐𝑄"  (3.2) 

𝑉 = 𝑘𝑄#  (3.3) 

 

It is straightforward to equate Equation 3.1-3.2 to obtain Equation 3.4 

 

𝐷 = ) $

%!/#
*𝑊"/!

 (3.4) 

 

where (𝑎, 𝑏, 𝑐, 𝑓) are empirical values depending on the geomorphology of the bed.  

Sometimes it is preferred to use only one pair of constants (𝑟,𝑝) as in Equation 3.5. See 

Hey and Thorne (1986) for empirical values for gravel-bed rivers in the UK. 

 

𝐷 = 𝑟𝑊'  (3.5) 

 

3.2.4.2 Manning’s equation 

 

The Manning’s equation for a rectangular channel is described by Equation 3.6 where 

𝐴 is the cross-section area expressed as 𝐴 = 𝑊𝐷 with 𝑊 width and 𝐷 depth, 𝑅 is the 

hydraulic radius 𝑅 = 𝐴/(𝑊 + 2𝐷), 𝑆 is the channel cell slope (i.e., it can be calculated 

via lfp-slopes or directly extracted from an external data set (Cohen et al., 2018) 𝑛 is the 

Manning’s coefficient and 𝑄!" is the bankfull flow. 
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𝑄!" = ()$ %⁄ *' $⁄

+
  (3.6) 

 

The Manning’s equation considers bankfull flow 𝑄!" as a known variable, however it 

is not always the case. If not measured in the field, bankfull flow is usually estimated 

by fitting a statistical distribution on the annual flow peaks of a streamflow time series 

where bankfull conditions occur at return periods of 1.5-2 years (Scheneider et al., 

2011). Figure 3.5 shows the aforementioned procedure for the Kingston gauging sta-

tion from the National River Flow Archive (NRFA) on the River Thames, UK. 

A comparison between the Power law relationship and Manning’s equation is pre-

sented for the River Thames in Figure 3.6. Bankfull flow (yellow dots) was obtained 

by subtracting the 2-year return period in a Pearson Type III distribution fitted on the 

annual maxima time series derived by means of a 24-year streamflow reanalysis from 

the European Forecasting Awareness System (EFAS) (Thielen et al., 2009). River width 

estimates used in Equation 3.5 were obtained from the GRWL database using lfp-

getwidths. At locations where no-bankfull width is available, the nearest bankfull value 

was assigned. Figure 3.6-c shows (in grey) bank elevations after smoothing in the main 

channel, (in blue) bed elevations (i.e., bank elevation minus depth) using the Man-

ning’s Equation 3.6 and (in red) using the power law relationship Equation 3.5. A 

zoom for the downstream section is shown in Figure 3.6-c and reveals considerable 

differences in the delta area. 

 



 

 35 

 

 

Figure 3.5. Observed river discharge in the River Thames at Kingston Station. Bankfull was estimated 

by fitting a statistical distribution on the annual maxima and retrieving the discharge value for the 2-

yr return period: a) annual maxima between 1940-2015 (red dots). b) Pearson Type III distribution fit-

ted on the annual maxima (red line), here the distribution parameters were estimated via L-moments. 

This figure was generated by using the hydroutils library (code available at 

http://github.com/jsosa/hydroutils). 

  

 

Figure 3.6. River depth estimation using hydraulic geometry equations and Manning’s equation: a) 

River Thames (in red) tributaries (in grey), b) depth estimation via hydraulic geometry (in red) and 
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Manning’s equation (in blue) for the lower part of the River Thames and c) zoom-in delta area of the 

River Thames. 

 

3.2.5 Continental tools 

 

The library includes two programs designed to automate delineation of basins within 

large regions lfp-prepdata and lfp-split. 

lfp-prepdata incorporates a subroutine to clip global data sets of DEM, hydrography 

and river width based on a user-defined extent. Thereafter, a user-defined threshold 

is applied to the flow accumulation area (or upslope drainage area) to define a river 

network. The TauDEM toolbox (Tarboton, 2005) is used to generate a network topo-

logical connectivity for the whole area and to delineate basins within the region 

(NNN_Tree.csv, NNN_Coord.csv and NNN_Rec.csv in Figure 3.7). The routine 

also includes a function to convert D8 connected river networks to D4 connectivity 

based on the flow directions map given by the hydrography. lfp-split breaks up the 

region into individual basins with a basin-number associated. Folders are created with 

a basin-number and each of them contains clipped data associated with that basin. 

After basin required data is split in this way the tools described in Sections 3.2.1-3.2.4 

can be applied. Figure 3.7 shows a flowchart describing how the tools can connect to 

each other to automatically build models at continental-scale. 
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Figure 3.7. Flowchart using LFPtools for continental-scale studies. Command-line tools are presented 

in yellow boxes, white dashed boxes represent input data sets and white dotted boxes free parame-

ters. Outputs to LISFLOOD-FP are coloured in red. 
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3.2.6 Usage 

 

In order to facilitate the use of the tools LFPtools can be called via command-line, 

however if preferred it can also be imported as a Python module. All tools can be 

invoked via the command line by typing the name of the tool followed by the -i key-

word and the name of the configuration file: 

 

$ lfp-getwidths -i config.txt 

 

where the configuration file config.txt is a text file containing a [tool-name] 

header followed by variable=argument entries. Input variable descriptions are 

specified when typing the name of the tool in the command-line followed by the –h 

keyword:  

$ lfp-getwidths -h 

LFPtools can be imported as a Python module as follows: 

import lfptools as lfp 

An overview of tools with a brief description is given in Table 3.1. 

 

Program Description 

lfp-depths Get estimates of depth 

lfp-fixelevs Smooth elevations 

lfp-getbankelevs Retrieve bank elevations 

lfp-slopes Estimate slopes in a river network 

lfp-getwidths Retrieve river widths 

lfp-rasterresample 
Upscale a high-resolution DEM into a user-de-

fined resolution 

lfp-split 
Breaks up a study area in individual basins with 

a basin number associated 

lfp-prepdata 

Clip global data sets given a user-defined extent 

and threshold. The threshold is used to define a 

river network based on the upslope area 

 

Table 3.1. Summary of programs in LFPtools 
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3.3 Results 

 

3.3.1 A flood inundation model for the Severn River in England, UK 

 

LFPTools was used to build a flood inundation model for the Severn river basin in the 

UK. A one-month simulation (April 1998) was undertaken in order to capture an ob-

served flood event that happened during this period. An additional one-month warm-

up period was included to bring the model into a hydraulic steady state condition 

prior to the commencement of the April 1998 period. The model was built from LI-

DAR-based terrain data (at 90 m resolution) where the floodplain terrain was upscaled 

to 1 km resolution using the mean aggregation method and removing outliers. Bank 

heights were defined using the nearest neighbour method. River channels were explic-

itly represented using HydroSHEDS (Lehner et al., 2008) as input hydrography at 1 

km resolution. Channel widths were retrieved from the GRWL database while river 

depths were estimated through the hydraulic geometry method (Equation 3.5) with 

𝑟 = 0.12 and 𝑝 = 0.78. The model was forced using daily gauged flows from the UK 

National River Flow Archive (NRFA) for the simulation period mentioned before. 

Data sources used in this study are briefly described in Table 3.2. 

 

Data set Description Source 

LIDAR DTM Composite at 1 m resolution  
Data available at 

data.gov.uk 

HydroSHEDS (Lehner et 

al., 2018) 
Hydrography at 1 km resolution 

Data available at hy-

drosheds.org 

GRWL (Allen and 

Pavelsky, 2018) 

Landsat-based global river width data-

base at 30 m resolution 

Data available at 

https://ze-

nodo.org/rec-

ord/1297434 

NRFA Streamflow data from gauge stations 
Data available at 

nrfa.ceh.ac.uk 

Recorded Flood Outlines 

for UK 

Records of historic flooding from rivers, 

the sea, groundwater and surface water 

Data available at 

data.gov.uk 

 

Table 3.2. Data sets used to build the flood inundation model in the Severn river basin 

 

Resulting water depths from LISFLOOD-FP at 1 km resolution were subsequently 

downscaled onto 90 m resolution using an algorithm similar to Schumann et al., 2014. 
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In particular, the algorithm takes water surface elevation (WSE) at 1 km resolution 

and subtracts its corresponding 90 m DEM values. From this arithmetic operation, a 

grid at 90 m resolution is created with positive values representing the water depth 

(wet cells) whilst negative values (dry cells) are replaced with nodata values. 

The performance of flood model in the Severn river basin in terms of flood extent was 

quantified using three scores: Hit rate (H), Falsa alarm ratio (F) and Critical success 

index (C). H tests the tendency of the model towards underprediction and can range 

from 0 (none of the wet benchmark data is wet model data) to 1 (all of the wet bench-

mark data are wet model data). F examines the tendency of the model towards over-

prediction and can range from 0 (no false alarms) to 1 (all false alarms). C accounts for 

both overprediction and underprediction and can range from 0 (no match between 

modelled and benchmark data) to 1 (perfect match between modelled and benchmark 

data). A detailed explanation of these scores is available in Wing et al., 2017. 

Simulated water depth results for the 15th April 1998 are shown in Figure 3.8. From 

the figure is clear that in most places water remains in the channel and where water 

elevations exceed bankfull heights water spreads onto the floodplains. Simulated wa-

ter depth on the 15th April 1998 were compared with the official event footprint from 

the English Environment Agency (EA) and the “Agreement” between both flood ex-

tents are presented in the Figure 3.8 right-hand panel. The “Agreement” in Figure 3.8 

refers to areas in the map where the EA flood extent and the simulated flood extent 

overlap each other. In terms of flood extent, the model obtained satisfactory compar-

ison scores against observations: 𝐻 = 0.79, 𝐹 = 0.24 and 𝐶 = 0.63. 

Example files are available at the LFPtools web repository 

http://github.com/jsosa/lfptools 
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Figure 3.8. Flood inundation model prepared for the Severn basin in England, UK during the flood 

event of April 1998. The event was compared with official footprint of the event (orange). The agree-

ment between the model and the output is also shown (purple). Note that the observed data only 

cover limited portions of the model domain which are not contiguous. In areas with no observed data 

we simply plot the modelled water depth. Also, the moderately low Hit Rates occur since the ob-

served flood extent area is upstream of the inflow point (East of the domain in the right-hand panel), 

hence, no forcing data is available to predict water depths in that area. 

 

3.4 Conclusion 

 

A Python CLI package has been developed to help prepare input data for flood studies 

carried out using LISFLOOD-FP. The package encompasses the most frequently used 

methods for flood inundation modelling data preparation, and also facilitates the ad-

dition of new ones if desired. LFPtools can be thought of as a platform to streamline 

the preparation of flood inundation studies in different fields by bringing ease of use 

to non-expert users and efficiency to expert ones. It is built on top of the state-of-the-

art Python libraries to handle large sets of data and it is in active development. It is 

important to mention that these tasks could be done in a GIS package, but only with 

quite extreme difficulty and for small data arrays. The tasks performed by LFPtools 



 

 42 

are generic for structured grids and can be used to prepare input data sets for any 

hydraulic model. 

LFPtools programs were verified in the UK’s Severn basin on a model built at 1 km 

resolution using publicly available data sets only. The test basin was used to simulate 

the event of April 1998 and results are presented in Figure 3.8. From the figure it is 

clear that most of the water is kept in channels with some places inundated suggesting 

a normal hydrodynamic behaviour. After comparison, the model obtained satisfac-

tory scores against the official event footprint: 𝐻 = 0.79, 𝐹 = 0.24 and 𝐶 = 0.63. It is 

important to mention that the Severn scenario was used only to broadly test the tools 

and not to simulate the real event to an engineering standard. 

The Severn river basin used in this study is only a small example on how the tools can 

be employed and the tools have been designed so they can be integrated within a 

framework to build continental to global scale studies. For example, LFPtools can be 

used within a modelling framework to build a continental-scale flood hindcast or re-

analysis, a modelling framework of continental-scale flood extent for an early warning 

system or even within a framework to predict flood inundation variables (flood ex-

tent, water depth, etc) in a climate change context. 

Global to continental scale models are being used by insurers, multi-national corpo-

rations, NGOs and national governments to tackle problems such as rapid flood dis-

aster response, urban planning and climate change adaptation. Thus, flood models at 

such scales are important decision-making tools and building them demands great 

effort to research scientists. We envisage that this innovative set of tools will help to 

significantly reduce these costs. 

 

3.5 Postscript 

 

This chapter presented the development of the software package LFPtools. The pack-

age facilitates the deployment of continental-scale flood studies in a seamless way. 

This suite of tools will enable novel science questions in the field, for example it can 

be integrated in a modelling chain to produce a flood inundation hindcast which is 

the subject of the Chapter 4. The tools were useful to identify potential source of errors 

in flood modelling, thus it became clear from the flood hindcast application that 
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current hydrography data sets need to be further developed for continental-scale ap-

plications, this forms the subject of the Chapter 5 
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CHAPTER 4 

 

A flood inundation hindcast for Europe 

based on 26-year simulated river 

discharge 
 

 

 

 

 

The previous chapter introduced, LFPtools, a software package to streamline the de-

ployment of flood studies at continental scales. In this chapter, LFPtools is used to 

build a European Flood Hindcast. Such application would not be possible without this 

toolbox, it forms the basis of the computational framework facilitating quality control 

along the process in a consistent and efficient way. In particular, the development of 

an automated framework to produce a multi-decal flood time series for Europe at ~90 

m resolution is introduced. Producing flood hindcasts at such resolution is a challeng-

ing problem which to date only Schumann et al., 2016 have tackled it. Here an alter-

native methodology is presented. The framework used best estimates of river geome-

try, flood protection standards and terrain information and it was forced by simulated 

river discharge. This chapter will explore concepts such as continental scale hydrody-

namic modelling, hydrologic-hydrodynamic coupling, long time period simulations 

and flood standards integration in flood models. 

This chapter consist of a paper submitted to Water Resources Research. All simulations, 

analysis, writing and figures were completed by the lead author with advice from 

Jeffrey Neal and Paul Bates. Peter Salamon and Dai Yamazaki contributed facilitating 

data accessibility to the EFAS streamflow and MERIT DEM data sets, respectively. All 

co-authors helped to shape the final manuscript. 

 

Peer-reviewed article associated: 

Sosa, J., Salamon, P., Yamazaki, D., Neal, J., Bates, P. (2020). A flood inundation 

hindcast for Europe based on 26-year simulated river discharge. Water Resources Re-

search. Submitted 



 

 45 

 

 

4.1 Introduction 

 

Over recent decades Europe has suffered significant economic losses due to floods. 

Between 1990-2016, European countries reported around 140 billion EUR in financial 

losses (normalised to 2011 values) resulting from events which affected ~3.5 million 

people (Barredo, 2009; Paprotny et al. 2018b). Many of these events occurred during 

the flood-rich decade of the 1990s, but significant floods also occurred during the 

2000s (Kundzewicz et al., 2013). The most severe floods have occurred in central Eu-

rope, with important events in 2002 and 2013 (Ulbrich et al., 2003; Blöschl et al., 2013), 

although the UK was also severely hit in 2000, 2005, 2007, 2012 and 2015/16 (Miller et 

al., 2013; Barker et al., 2016). The current changing climate, expressed in terms of in-

creased precipitation in the region, has had a significant effect on flood occurrence in 

northwestern Europe (Bloschl et al., 2019), in addition there have been increases in 

exposure due to population growth and rapid urbanisation in floodplain zones. 

A better understanding of areas exposed to floods at continental scales is still lacking, 

and is especially needed in Europe. Despite the ability of small scale studies to identify 

zones where population and assets are at risk (Castellarin et al., 2011; Vorogushyn et 

al., 2012; Ballesteros-Canovas et al., 2013), continental scale studies are needed for 

many classes of flood risk management decision, such as insurance, re-insurance and 

guiding governmental budget allocations for strategic investment in flood defences.  

Wide area models can place flooding hotspots in a broader context such that relevant 

institutions can allocate resources efficiently. This is paramount for the Europe Union, 

where the European Civil Protection Mechanism, a centralised mechanism for coordi-

nating the response to disasters in Europe and beyond, is charged with planning and 

deploying state aid for flood relief (Pappenberger et al., 2015). Small scale studies also 

lack the ability to explain flood characteristics in transnational river basins. For in-

stance, if a flood event occurs at the lower part of the Elbe basin (in Germany), its 

origins could lie in a flood event that took place a few days before in the upper part of 

the basin (in the Czech Republic). Thus, understanding flood timing and development 

at large scales can play an essential role in disaster preparedness. Because of this, the 

most effective way to treat flood management in transnational river basins is by 

adopting continental level strategies.  This change in emphasis from local to large scale 
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assessment of flood risk has been said to require an ‘evolutionary leap’ in the ap-

proaches that are used (Vorogushyn et al., 2018). 

Previous research that has focused on understanding the nature of European floods 

over time has typically been based on two different approaches. First, river discharge 

time series have been used to characterise floods, for example, in a climate change 

context (Hall and Bloschl, 2018; Bloschl et al., 2019; Bertola et al., 2020). Second, satel-

lite imagery has been used to capture inundated areas over time (Kundzewicz et al., 

2013). Both approaches can characterise floods, providing information on flood occur-

rence and inundated area respectively, however, their sampling in time and space can 

be sparse and they lack the ability to reveal information on inundation depth during 

a flood event. Flood depth information can be critical for disaster management, to plan 

insurance and re-insurance effectively, to improve urban planning and to inform 

floodplain ecological preservation. As a result, there is still a research need to explore 

changing patterns of inundation depths in time during floods at large scales. 

One way to infer inundation depths is using hydrodynamic simulations where esti-

mates of water depths are calculated using variants of the Shallow Water Equations 

(Bates et al., 2010; Moulinec et al., 2011; Sanders and Schubert, 2019). Efficient numer-

ical models can allow estimation of flood inundation depths at continental and global 

levels at resolutions that can produce actionable information for flood risk manage-

ment. For example, previous research has focused on the evaluation of flood inunda-

tion depths for different return periods in Europe (Alfieri et al., 2014; Paprotny et al., 

2017), the US (Wing et al., 2017), Africa (Trigg et al., 2016) and globally (Winsemius et 

al., 2013; Sampson et al., 2015). Nonetheless, the limited literature and lack of a formal 

methodology for hindcasting studies have delayed the progress towards the produc-

tion of flood depth time series over large areas and for multi-year or even multi-deca-

dal periods. Schumann et al. (2016) produced the first continental level flood hindcast 

at 1 km resolution for Australia. This study used 40 gauge stations coupled to a hy-

drodynamic model to create 40 years of flood depth times series in 13 river basins. 

Despite its ground-breaking nature, this study had a number of limitations: only a 

very limited number of river gauge sites were used, ungauged tributaries were not 

considered, flood defences were not taken into account, and the 1km simulation was 

not downscaled to the finer scales need for risk management. All of these steps are 

critical in flood depth estimation, particularly for highly managed European rivers, 
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and prevent such an approach from being used to gain insights into changing inun-

dations patterns. 

This chapter presents a new method for the development flood inundation hindcasts 

which addresses the limitations of previous work.  Like Schumann et al (2016), we use 

a ~1 km spatial resolution 1D/2D hydrodynamic model to simulate inundation for 

the whole of Europe, but instead of forcing this with sparse and intermittent gauge 

data we use output from a continental scale hydrological model at 5km resolution to 

provide multi-decadal time series of flow across the whole European river network.  

This allows ungauged tributaries and small streams to be represented in the model 

and provides a more consistent set of input information that does not suffer from cov-

erage gaps.  In addition, flood defences are represented based on a recent global data-

base with good coverage over Europe and we implement a downscaling approach to 

recover high resolution (~90m) inundation patterns from the ~1km native resolution 

simulation.  Using this approach, we are able to produce for the first time a European 

Flood Hindcast, a ~90 m resolution flood depth catalogue for the period 1990-2016 for 

298 river basins in Europe. This provides users with a homogenous data catalogue of 

flood events in terms of their extent and depth at a continental scale. The data set was 

validated in different basins across the UK and mainland Europe using observed flood 

extent from previous events. Finally, an automatic flood detection algorithm was de-

veloped to extract discrete flood events for the 16 largest basins in Europe in order to 

look at changes in flood inundation events over time. 

 

4.2 Methods 

 

This section describes in detail the development of the European Flood Hindcast. 

 

4.2.1 Input data sources 

 

The European Flood Hindcast used the LISFLOOD-FP hydrodynamic model (Bates et 

al., 2010; Neal et al., 2012) to simulate river and floodplain hydrodynamics on a 1 km 

resolution grid. The model was forced with river discharge from the European Fore-

casting Awareness System (EFAS) (Thielen et al., 2009; Smith et al., 2016; Salamon et 

al., 2019) which is part of the Copernicus Emergency Management Service. EFAS uses 

LISFLOOD (Bartholmes et al., 2008; van der Knijff et al., 2010) a spatially distributed 
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hydrological rainfall-runoff model, to calculate river discharge and related variables 

such as snow depth water equivalent, soil depth and volumetric soil moisture at pan-

European scale. Note that LISFLOOD and LISFLOOD-FP are separate models but 

were initially developed together and share the same design concept. This explains 

the somewhat confusing naming convention: ‘LISFLOOD’ is the name of the model 

suite, whilst ‘-FP’ stands for ‘floodplain’ and denotes the hydrodynamic module. The 

EFAS system produces two sets of river discharge i) ‘Forecasted” and ii) “Historical”, 

this study used the later set only. The “Historical” set is driven by observed hydrome-

teorological data acquired via the EFAS Hydrological data collection centre and the 

EFAS meteorological data collection centre. The EFAS system also uses static input 

maps from a large variety of sources CORINE (Batista et al., 2013), SRTM (Farr et al., 

2007), EU-DEM (Dufourmont et al., 2014), HydroSHEDS (Lehner et al., 2008), HYPRES 

(Wösten et al., 1999), GRanD (Lehner et al., 2011), and more. A complete list of sources 

is available in (Smith et al., 2016; Salamon et al., 2019). The spatial and temporal reso-

lution of the EFAS system is 5 km and one day, respectively. The “Historical” river 

discharge data set was calibrated and validated with 717 stations using the Kling-

Gupta efficiency (KGE) where it scored a KGE higher than 0.5 in 75% of all stations 

during calibration and 57% during validation (Salamon et al., 2019). 

The European Flood Hindcast explicitly represented main channels and tributaries 

using the HydroSHEDS hydrography at 1 km resolution (Lehner et al., 2008). This 

data set is validated and ensures downstream connectivity in the vast majority of riv-

ers and tributaries. The European hydrography EU-Hydro (Gallaun et al, 2019) is an-

other hydrography available for this study area, however it is not suitable for flood 

modelling as it does not consider all rivers and tributaries and it has not yet been val-

idated. River width estimates were retrieved from the GRWL database, a 30 m resolu-

tion global river width database derived from Landsat imagery (Allen and Pavelsky, 

2018). Flood protection standards were considered using the FLOPROS database, a 

global scale database for protection measures in the form of a return period for each 

river reach (Scussolini et al., 2016). 

The European Flood Hindcast used terrain elevations mainly from the MERIT DEM 

(Yamazaki et al., 2017), a 90 m resolution multisource and bias-corrected global DEM 

derived (over Europe) from Shuttle Radar Topography Mission data. We opted for 

this DEM rather than the alternative European DEM EU-DEM (Dufourmont et al., 

2014) as the latter is not suitable for flood modelling studies since it contains vertical 
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elevation bias from different sources (e.g. speckle noise, stripe noise, absolute bias, 

and tree height bias). Whilst MERIT DEM is a reliable source of terrain elevations, 

freely available airborne LIDAR terrain elevations were used instead of the default 

MERIT DEM in England as better quality terrain data produces better skill in flood 

modelling (Schumann and Bates, 2018). Although some countries, such as the Neth-

erlands, Luxembourg and Spain, do have free-access LIDAR DEM data, this infor-

mation was not used in this study as it might lead to inconsistencies in terrain eleva-

tion estimates for cross-boundary basins and an advanced data fusion procedure 

might be required. 

Over England the Environment Agency’s 2 m resolution Composite LIDAR DTM was 

resampled to 5 m, then 10 m, 20 m and 50 m resolution using bilinear interpolation to 

obtain an upscaled DTM. The LiDAR DTM covers more than 75% of floodplains leav-

ing voids in upload areas that need to be filled to avoid problems during flood simu-

lations. Hence, voids found in the resampled 50 m LIDAR Composite were filled with 

the UK Ordnance Survey Terrain 50 DTM (Ordnance Survey, 2019) using the Delta 

Surface Fill Method (Grohman et al., 2006). Finally, the resulting void-filled DTM was 

resampled to 90 m for consistency with terrain estimates in Continental Europe. 

A brief description of the data sources is presented in Table 4.1 and how they interact 

in the computational framework is shown in Figure 4.1. 

Data source Description Note 

EFAS streamflow (Thielen et 

al., 2009; Smith et al., 2016 

Salomon et al., 2019) 

Gridded streamflow estimates 

with a spatial and temporal 

resolution of 5 km and 1 day, 

respectively 

Available at https://cds.cli-

mate.copernicus.eu 

MERIT DEM (Yamazaki et 

al., 2017) 

SRTM bias corrected global 

DEM at 90 m resolution 

Available at  

http://hydro.iis.u-to-

kyo.ac.jp/~yamadai/MERIT_Hydro/ 

LIDAR Composite DTM 

A raster elevation model cov-

ering ~75% of England at 2 m 

spatial resolution 

Available at  

http://data.gov.uk 

OS Terrain 50 (Ordnance 

Survey, 2019) 

50 m resolution DTM used to 

fill missing data in the LIDAR 

Composite DTM in England 

Available at  

https://www.ordnancesur-

vey.co.uk/ 

HydroSHEDS (Lehner et al., 

2008) 

Hydrography at 1 km resolu-

tion 

Available at  

https://www.hydrosheds.org/ 
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GRWL (Allen and Pavelsky, 

2018) 

Landsat-based global river 

width database at 30 m reso-

lution 

Available at  

https://doi.org/10.5281/ze-

nodo.1297434 

FLOPROS (Scussolini et al., 

2016) 

A global protection measures 

in the form of return period at 

different spatial scales 

Available at  

http://dx.doi.org/10.5194/nhess-

16-1049-2016-supplement 

 

Table 4.1. Data sources used in the European Flood Hindcast 

 

 

Figure 4.1. Computational framework diagram for the European Flood Hindcast 

 

4.2.2 Preparing the flood inundation model 

 

The European Flood Hindcast runs at 30 arcseconds (~1 km) native resolution, which 

is a computationally tractable grid size at which to produce multi-decadal simulations 

of continental scale river hydrodynamics. This resolution was selected after 
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comparing different computational times for the same simulation period over the Elbe 

basin (~148,268 km2 or 449,328 cells at 1 km resolution given a rectangular domain). 

For example, it was estimated that producing 26 years of water depth data for a basin 

as large as the Elbe river at ~90 m resolution would require 125 days of computational 

time, a considerable amount of time compared to 30 hours at ~1 km. The previous 

scenarios are based on one node of the University of Bristol’s High Performance Com-

puting BlueCrystal Phase3 (BC3) System. Each of these nodes has 2 x 2.6 GHz 8-core 

Intel E5-2670 processors and 4 GB of RAM. 

The EFAS system does not attempt to resolve local scale hydrological conditions for 

catchments below 2,000 km2, urban flooding or flash flood and debris flows (Smith et 

al., 2016). For this reason, the European Flood Hindcast considered only catchments 

larger than 2,500 km2 (see Figure 4.2). Despite EFAS outputs covering the Scandina-

vian area, our study did not include this area as the river network from HydroSHEDS 

has coverage only up to °60N 

Evaporation rate was parametrized in LISFLOOD-FP with constant value of 5 

mm/day as the availability of time/space variable evaporation data in European 

countries is limited. The evaporation rate has small effect to the inundation peaks but 

rather helps to dry areas of the floodplain after events that may not have connectivity 

back to channel. Finally, note that all basin simulations in LISFLOOD-FP used the 

same standard values for floodplain and channel friction Manning’s coefficients of 

0.06 and 0.035, respectively. Thus, no individual calibration was carried out to adjust 

these parameters to a particular scenario. 

LISFLOOD-FP is the hydrodynamic model used in this study to simulate river and 

floodplain hydrodynamics. It has been successfully used over large domains to pro-

duce satisfactory simulations of hydrodynamic variables such as flow velocity, water 

depth, water surface elevation and river discharge in an efficient way. For example,  

Wilson et al., (2007) implemented the model for 300 km of the central Amazon River, 

Biancamaria et al., (2009) built a hydrologic-hydraulic model for ~1,000 km of the Ob 

River, Neal et al., (2012) used it to simulate the Niger Inland Delta, Schumann et al., 

(2013) modelled the Lower Zambezi River for forecasting purposes, Alfieri et al., 

(2014) produced a pan-European flood hazard map, Sampson et al., (2015) built a 

global high resolution flood hazard map, Wing et al., (2018) produced estimates of 

present and future flood risk assessment in the US, Hawker et al., (2018), and Archer 

(2018) investigate in detail the effect of DEM choice in the Mekong Delta and the Ba 
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catchment in Fiji respectively. The reader is advised to consult the user manual (Bates 

et al., 2013) for more information on technical aspects, or Bates et al., (2018) for a recent 

history of the LISFLOOD-FP development. 

To facilitate data management in the simulations at continental scale and to perform 

quality control operations in a simple way it was decided to run the European Flood 

Hindcast basin-wise; thus, the entire period (26 years) for each basin was simulated 

independently and we assume that inter-basin transfers are not significant to the flood 

response over the duration of extreme events. Figure 4.2 shows the 298 river basins 

and tributaries considered in this study. This provides a logical and efficient way to 

decompose the modelling domain into spatial units that could then easily fit into 

memory on a single compute node. This then allows multiple basins to be simulated 

simultaneously if more than one compute node is available. Simulations were carried 

out on the University of Bristol’s High-Performance Computing BlueCrystal Phase3 

(BC3) System which has 223 base nodes available. Not all nodes were used at once as 

this system is shared with other users following a queue system; instead, the simula-

tion was carried out using only 30 nodes simultaneously. 
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Figure 4.2. River basins and tributaries considered in this study. In total 298 basins were considered 

in this study, each with a catchment area larger than 2,500 km2. 

 

4.2.3 Preparing input data using LFPtools 

 

The European Flood Hindcast used the “Sub-grid” version of LISFLOOD-FP (Neal et 

al., 2012) to estimate river and floodplain hydrodynamics. Input data for the Sub-grid 

version consists of five components: floodplain elevation, river width, river bed ele-

vation, river bank elevation and inflow boundary conditions. 

Floodplain elevations were obtained by resampling the ~90 m base MERIT DEM to 1 

km using a kernel window of 10 x 10 cells (or a square of 0.08 degrees per side). The 

DEM was resampled using a weighted average ensuring that outliers values were not 

taken into account in the calculation, this calculation is wrapped in a single operation 

in the automatic toolbox LFPtools (Sosa et al., 2020). River width estimates were re-

trieved from the GRWL data set using the nearest neighbour method on a 10 x 10 

searching window. For those river cells with no width associated, a linear interpola-

tion of upstream and downstream values was carried out to obtain an estimate of river 

width. Both floodplain elevation and river width were estimated using LFPtools. 

Estimation of inflow boundary conditions, river bed and river bank elevations are ex-

plained in Sections 4.2.4-4.2.6 

 

4.2.4 Coupling the hydrological model to the flood inundation model 

 

Coupling a hydrological to a flood model is not an easy task. Both the hydrological 

and the floodplain inundation model run at different resolutions and use different 

river network maps. River networks map is a layer providing information about the 

location of river centre lines. Hereafter, "flood model pixels" are defined as those cells 

in the river network used by the flood inundation model, and "river discharge cells" 

are those cells in the river network used by the hydrological model. Among all pixels 

in the flood model, only a few of them should be considered as inflows. Those inflow 

pixels will carry the river discharge data from the hydrological model over into the 

floodplain inundation model. Identifying inflow pixels in the flood model based on 

river discharge cell location in the hydrological model can be achieved as follows: 
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1. The river network map from the hydrological model should be determined 

first. Generally, this is available, however it could be derived as follows. First, 

calculate the weighted average   of the gridded daily river discharge, then ap-

ply a threshold to the resulting map to discard cells outside of the river network 

map. In this study, a threshold of 5 m3/s was used to determine the river net-

work (see Figure 4.3). 

2. The centroid of an inflow pixel for the flood model must lie within a particular 

narrow threshold/buffer of the centroid of river discharge cells from the hy-

drological model (see Figure 4.4, step 2). 

3. As the flood model has a higher resolution than the hydrological model, several 

inflow pixels might carry the same information to the flood model generating 

water mass double-counting. To solve this problem, we use the LFPtools pro-

gram lfp-split (Sosa et al., 2020) to obtain the topological information for the 

river network in every pixel   in the flood model. Then, only those cells with 

discharge larger than its upstream cell in the downstream direction were con-

sidered (see Figure 4.4, step 3). 

4. River discharge values extracted in the previous step provide cumulative val-

ues of discharge. The flood model receives instead the contribution of each 

pixel to avoid mass-double counting. To fix this, differences between pixels in 

the downstream direction are calculated to estimate their contribution (in terms 

of discharge) to each cell in the network in the flood model (see Figure 4.5). 

These concepts were applied to every river basin and reach from Figure 4.2 and the 

approach is generic, in that it could be implemented for any combination of hydro-

logic and hydraulic models and not just LISFLOOD and LISFLOOD-FP. 
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Figure 4.3. EFAS mean river discharge with European Flood Hindcast river network superimposed in 

the Western Coast of Europe 
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Figure 4.4. Visual explanation on the procedure used to couple a hydrological model to a flood inun-

dation model. 

 

 

 

 

Figure 4.5. Visual explanation on how to fix water mass double-counting 
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4.2.5 Bed elevation estimation 

 

Estimation of river bed elevations for main channels and tributaries at continental 

scales is a complex problem as river depths are challenging to obtain via remote sens-

ing (Neal et al., 2012). Despite the existence of different methods to estimate river 

depths in flood inundation models (Neal et al., 2012; Mersel et al., 2013; Sampson et 

al., 2015), this study uses a novel method where river depths are adjusted based on 

the hydrological characteristics of the inflow boundary conditions. Thus, systematic 

biases usually found in rainfall-runoff models (Zhou et al., 2012) are corrected using 

the also unknown bathymetry (i.e. we fit a channel conveyance to the river discharge 

data). First, LISFLOOD-FP was forced using boundary conditions estimated previ-

ously in Section 4.2.4 to run a continuous simulation for the entire period (1990-2016) 

in 1D mode (i.e. only considering main channels and tributaries and excluding the 

floodplains) to obtain an ensemble of daily water surface elevations.  

Initial river bed elevations for use in the 1D only model run were estimated from the 

~90 m MERIT DEM by averaging values within a 10 x 10 window along the channel 

centreline and subsequently smoothing these in order to maintain downstream flow 

connectivity using LFPtools (Sosa et al., 2020). This initial guess at the bed elevation is 

obviously incorrect as SRTM only ‘sees’ the water surface or bank heights, so we use 

the 1D model run to update the bed elevations to a more realistic value.  To achieve 

this, the mean channel water depths over the entire 26 year simulation period obtained 

from the 1D only simulations using the initial bed elevations were calculated.  The 

mean channel depth was then subtracted from the smoothed elevations, thus produc-

ing a new and more appropriate bed elevation. This technique allows us to apply sim-

ulation-based systematic bias adjustment to the input data which is needed due to the 

potential for considerable absolute discharge errors sometimes found in rainfall-run-

off models (Gudmundsson et al., 2012).  

Figure 4.6 shows the procedure over the lower part of the main channel of the Elbe 

basin (~400 km river length). The graph shows the 9861 members corresponding to 

the daily water surface elevations during the period 1990-2016 (grey lines) in addition 

to the ensemble mean (red line). The initial “dummy” river bed elevation is shown in 

blue, and the final calculated bed elevation is shown in orange. The final bed elevation 

acts as an effective synthetic bathymetry tailored for the input river discharge such 

that inundation initiation and frequencies are correctly represented.  This approach is 
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also generic and is appropriate for any combination of inundation model and forcing 

data. 

 

 

Figure 4.6. Bed elevation estimation for section (~400 km length) in the main channel of the Elbe River 

in Germany. In total 9,861 members corresponding to the daily water surface elevations during the 

period 1990-2016 are plotted in grey, the ensemble mean is plotted in red and the final bed in orange. 

 

4.2.6 Including flood protection standards in the model 

 

Flood defences were considered in the European Flood Hindcast by integrating flood 

protection standards within the modelling framework. Channel bank heights from the 

river network in LISFLOOD-FP define the height at which water overtops the chan-

nels and flooding begins. Thus, very high banks (higher than the adjacent floodplain) 

will not produce flooding, and conversely, banks at the same height (or lower) than 

the floodplain will generate extensive inundation (Bates et al., 2013). Later, if bank 

heights can be adjusted to represent a flood protection standard value, for example, 

the 100-yr return period water level, the river network will be able to account for pro-

tection at that level, implicitly. Flood protection standards can be related to bank 

heights in two steps: 

1. Finding the discharge associated with a specific flood protection standard in 

terms of return period. 

2. Relating the discharge found in Step 1 to a water level. 

Step 1 can be solved using flood frequency analysis (FFA) or fitting a statistical distri-

bution to the annual discharge maxima, while Step 2 can simply relate a discharge 
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value to its corresponding water level via a rating curve. Both methods have been 

extensively used in previous studies (Thorarinsdottir et al., 2018; Kiang et al., 2018). 

The statistical distribution selected was the Generalised Extreme Value distribution 

with parameters estimated via Maximum Likelihood Estimation (MLE), while the rat-

ing curve was fitted using a non-linear function 𝑦 = 𝑎(𝑥 + 𝑏)!, where 𝑎, 𝑏, 𝑐 are con-

stants and x is a discharge value. When the water level related to a specific return 

period is found for a particular river cell, it is subsequently added to the bed elevation 

calculated before in Section 4.2.5 to obtain bank elevations associated with a certain 

level of flood protection. This procedure is explained in the following paragraph. 

Discharge and water levels at every river cell for every time step are needed before-

hand, to this end, a simulation in 1D mode was used to obtain these variables using 

the final bed (see Figure 4.6). The goodness of fit in both the statistical distribution and 

the rating curve fitting was calculated to prevent rare water level values affecting the 

derived relationships. In particular, the Kolmogorov-Smirnov (KS) test and the ad-

justed R2 value were used for assessing the statistical distribution and the rating 

curve, respectively. KS uses the maximal absolute difference D as its statistic. In this 

study, we use 1-D and thus let both tests produce a score value ranging from 0 to 1, 

where the best possible value is 1. In this context, a score value larger than 0.85 was 

set as a threshold to accept the calculated fitted curve. The curves were subsequently 

used to calculate water levels related to a certain level of flood protection given in the 

FLOPROS database for every basin and reach in Figure 4.2. For those neglected river 

cells (where the goodness of fit was lower than 0.85) the nearest water level was used. 

Figure 4.7 shows the procedure described above for a river cell located in the lower 

part of the main channel of the Elbe basin. The calculated curves obtained goodness 

of fit values 0.85 and 0.99 for the statistical distribution and the rating curve, respec-

tively. The curves easily relate return periods with discharge, for example, the 100-yr 

return period in this river cell is a discharge of ~5,552.94 m3/s. That discharge value 

is considered next to obtain the water level associated with it, namely 13.13 m. This 

water level is then added to the bed elevation value calculated before in Section 4.2.5 

(5.9 m) to obtain 19.03 m as the protected bank elevation. 
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Figure 4.7. Bank height estimation based on flood protection standard level. 

 

4.2.7 Downscaling daily outputs from 1 km to 90 m 

 

The European Flood Hindcast uses a downscaling algorithm (similar to Schumann et 

al., 2014) to downscale 1 km flood maps to 90 m. In particular, the algorithm takes 

water surface elevation (WSE) at its original output resolution of 1 km and combines 

it with the corresponding 90 m DEM. In order to obtain water depths beyond the sim-

ulated inundation extent, the algorithm subtracts the WSE value of every wet cell from 

a larger 90 m DEM kernel. For example, the WSE value is subtracted from a 3 km x 3 

km size 90 m DEM. From this arithmetic operation, a grid at 90 m resolution is created 

with positive values representing the water depth whilst negative values are replaced 

by no data or dry cells. The final step applies a decay function from the centreline of 

the river and tributaries following an exponential function of the form 𝐷	 = 	𝐶" where 

𝐷 is the final 90 m water depth, 𝐶 is the proximity distance from the centreline (the 

farther to the centreline, higher the distance value) and 𝑏 is a free parameter. Centre 

lines from main rivers and tributaries were obtained via MERIT Hydro (Yamazaki et 

al., 2019). The downscaling algorithm is publicly available at 

https://github.com/jsosa/downscaling 
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4.2.8 Flood event identification 

 

Flood identification in the European Flood Hindcast is not a straightforward task for 

several reasons: i) more than one event can occur during the same year; ii) several 

variables can be used to identify events (i.e. discharge, inundated area, volume); iii) 

flood event durations in the European Flood Hindcast tend to differ from observed 

flood durations primarily as the hindcast uses a fixed evaporation rate (5 mm/day) to 

remove water from river basins that do not drain back to the channel under gravity 

and also because the model does not account for human interventions in the flooding 

system. Nonetheless, some simple assumptions can be used to design an automatic 

algorithm to identify events in the European Flood Hindcast. The algorithm was in-

spired by (Brocca et al., 2011). In particular, the flood identification algorithm analyses 

the daily inundated area (𝑚#) signal to determine possible events. The signal is di-

rectly obtained as an output from the LISFLOOD-FP model for each basin. The algo-

rithm discards values under a threshold (𝑇) defined by 𝑇 = 𝐴𝑃, where 𝑇 is the thresh-

old value, 𝐴 is the basin area in 𝑚# and 𝑃 is a fraction between 0 and 1. Thus, with 𝑃 =

0.01, possible events are the ones with an inundated area larger than 1% of the basin 

area. The algorithm uses a timespan moving window of 7 days to look for the starting 

date of the event. Finally, the end date of an event is assumed to happen when the 

peak magnitude is reduced by 30%. 

 

4.3 Results and validation 

 

4.3.1 Evaluation against official flood outlines in the UK 

 

The availability of official flood outlines from historical events in Europe is very lim-

ited. Only England and Wales, via the Environment Agency (EA), keep track and re-

lease continuous updates of a database containing flood outlines. The database is 

called “Recorded Flood Outlines” and can be freely accessed from: 

https://www.data.gov.uk. However, for other countries, free access to historic flood 

outlines is still restricted or challenging to obtain. Hence, the European Flood 

Hindcast was validated on specific events in different basins across England and for 

two basins in mainland Europe. 
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The “Recorded Flood Outlines” database contains more than 1,500 georeferenced rec-

ords of historic flooding from rivers, sea and groundwater since 1946. This data set 

was compiled using digitised aerial photographs and satellite imagery, so the quality 

of the flood outlines depends entirely on the error associated with those instruments, 

which can be non-trivial (see e.g. Horritt et al., 2001).  It is worth mentioning that the 

absence of coverage for an area in the data set does not mean that the area did not 

flood during the event, only that the Environment Agency does not currently have 

records in this area. 

For the comparison, only the “river flood” label from the database was considered. 

The skill of the European Flood Hindcast was quantified by comparing modelled out-

lines against the official ones. Official outlines were compared with modelled flood 

outlines using three scores: Hit rate (H), False alarm ratio (F) and Critical Success In-

dex (C). H tests the proportion of wet benchmark data that was replicated by the 

model, and ranges from 0 (none of the wet benchmark data are wet in the model data) 

to 1 (all of the wet benchmark data are wet in the model data). F indicates the propor-

tion of wet modelled pixels that are not wet in the benchmark data, and ranges from 

0 (no false alarms) to 1 (all false alarms). C accounts for both overprediction and un-

derprediction, and ranges from 0 (no match between modelled and benchmark data) 

to 1 (perfect match between modelled and benchmark data). Further details of these 

scores can be found in Wing et al., (2017). 

In previous studies, acceptable performance in terms of Critical Success Index for 

large scale models has been suggested to be values ranging from 0.5 to 0.7 (Bernhofen 

et al., 2018; Wing et al., 2017; Dottori et al., 2016; Sampson et al., 2015; Alfieri et al., 

2014).  Results are considered good with CSI >0.7 and poor with CSI <0.5. A CSI score 

of < 0.5 effectively means that less than 50% of floodplain cells are correctly predicted 

as wet or dry. It is worth noting that the range of acceptable, good and poor perfor-

mance has been shifting upwardly during recent years as improvements in models 

and new modelling frameworks have been produced. Also, many early studies bench-

marked their outputs with models running purely at high-resolutions (30 to 90 m) 

contrary to this study (simulation at 1 km followed by downscaling to 90 m). Thus, it 

is important to note that the downscaling technique will add some degree of error to 

the benchmarking scores. Finally, CSI is sensitive to the size of the floodplain in that 

higher CSI scores are easier to obtain on larger floodplains where the ratio of flooded 

area edge length is greater. 
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The comparison used a ~1 km buffer around the modelled flood extent following the 

technique used in Wing et al., (2017). Additionally, official flood outlines from the EA 

were distributed in Vector Shapefile format, so for the comparison with the model 

those maps were rasterized to ~90 m resolution. Figure 4.8 shows the official flood 

outline extents for seven basins in England during different events. In the panels, the 

blue colour indicates the outline of the downscaled simulated flood inundation map 

of the basin from the European hindcast, the green colour shows the official flood 

outline, and the red colour indicates the agreement between both, i.e. where the model 

matches the observed flood outline. The location of the rivers mentioned is shown in 

Figure 4.8a. 

Figure 4.8b shows the Trent river basin during the November 2000 event; the model 

scores were H=0.89, F=0.40 and C=0.56 and are favourable compared to other studies 

(e.g. Bernhofen et al., 2018), albeit the model gives some overprediction near the city 

of Nottingham. Figure 4.8c shows a reasonably large area of the Ouse river basin dur-

ing the flood event of January 1995, the performance of the model in this basin still 

compares favourably to other studies (e.g. Bernhofen et al., 2018) with scores H=0.86, 

F=0.46 and C=0.50, thus the H score indicates that the model is able to capture 86% of 

the flood extent, albeit the lower score of C is mainly due to the model overprediction 

in the lower part of the basin where a complex flood protection system exists that may 

not be captured in the FLOPROS data set. The Environment Agency provides few 

details in regard to this benchmark flood extent, and for this reason it is difficult to 

indicate the level of error in the observed data. The Severn, Nene, Medway and 

Thames river basins are compared in Figures 4.8d-g, respectively. The model can cap-

ture more than 90% of the benchmark data in these four rivers. The lowest score is for 

the Thames river which has a C score of 36%, mainly due to the high level of overpre-

diction in the model. The Thames has a complex flood defence system (see yellow 

lines in Figure 4.8g) which unfortunately the approach used in Section 4.2.6 is not able 

to capture as the FLOPROS database is not robust enough in such situations. Bench-

marking scores for all cases are summarised in Table 4.2. 

There are several explanations for differences between the European Flood Hindcast 

and flood official maps, including: i) errors in the terrain elevation data; ii) errors in 

the river bathymetry or the method used to account for flood defences; iii) errors in 

the observed flood outlines; iv) errors in the input river discharge; and v) the need to 

calibrate hydrodynamic model friction parameters in some settings. Of these, the 
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dominant error sources are most likely to be the incorrect representation of flood de-

fences and errors in the EFAS river discharge data.  The latter can still result in mis-

prediction of inundated areas despite the implicit bias correction used to determine 

channel conveyance capacity and hence inundation frequency. 
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Figure 4.8. Official flood outlines comparison with the European Flood Hindcast across different river 

basins in England. The Recorded Flood Outlines take into account the presence of defences, struc-

tures, and other infrastructure where they existed at the time of flooding. It includes flood extents that 

may have been affected by overtopping, breaches or blockages. Also, it is worth mentioning that the 

absence of coverage for an area does not mean that the area did not flood during the event, only that 

the Environment Agency does not currently have records in this area. 

 

4.3.2 EFAS streamflow evaluation against observed river flow 

 

The skill of the EFAS river discharge was evaluated using observed river discharge 

data from the UK National River Flow Archive (NRFA). Performing this evaluation is 

crucial as the quality of the input river discharge plays a pivotal role in determining 

the skill of the flood inundation model (Grimaldi et al., 2019). Figure 4.9 shows hydro-

graphs for the river basins discussed earlier. The hydrograph data was available for 

all the basins except the Nene river where no records were available for the day of the 

event. The location and ID number of the gauge stations are displayed in every basin 

in Figure 4.8. The Kling-Gupta Efficiency (KGE) and the Nash-Sutcliffe Efficiency 

(NSE) were used to evaluate the performance of the model under two scenarios i) 1-

year daily discharge and ii) 15-day daily discharge (with the peak discharge in the 

middle of the hydrograph). 

Table 4.2 summarises KGE and NSE scores for the 1-year and 15-day cases. The scores 

suggest acceptable performance (0.61>NSE 1-year>0.78 and 0.56>KGE 1-year>0.81) 

for at least for one-year of observed data before the event in each of the evaluation 

basins. Hence, these scores indicate the suitability of the EFAS river discharge as input 

data in the European Flood Hindcast. The situation is different for the 15-day scores 

or during extreme events as these widely vary and performance decreases substan-

tially (-1.22>NSE Event>0.54 and 0.21>KGE Event>0.77). 

Unfortunately, gauge stations are not available in all locations within the domains 

simulated where the flood inundation model is not performing well and thus the dis-

agreement in flood inundation footprints is sometimes difficult to attribute to errors 

in the input discharge data. For example, the most significant differences in the Ouse 

river occur near the river mouth (Detail B in Figure 4.8c), however no observed dis-

charge data is available at this location, so it is difficult to understand whether or not 

the input data is causing the overprediction observed. In contrast, Detail A in Figure 
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4.8c, visually shows high performance attributed mainly to the satisfactory agreement 

of the EFAS river discharge during the event with NSE Event=0.42 and KGE 

Event=0.74 (see Figure 4.9a). 

Similar to the Ouse test case, the European flood inundation model obtained a high 

performance for the Severn River C=0.66 (see Figure 4.8d) during the event of April 

1998, and this high score can be associated to the good performance of the EFAS river 

discharge data during the event (KGE Event=0.77, NSE Event=0.54) (see Figure 4.9c). 

The strategic location of the gauge station in the Severn River (at the outlet of the river 

reach) indeed helps to explain the favourable performance of both the EFAS model 

and the European Flood Hindcast at this site. 

Looking at the event peaks in the Trent and Medway rivers (Figure 6b and Figure 6f), 

it is evident that the EFAS river discharge data is not able to reach the observed dis-

charge peak (KGE Event<0.25 and NSE Event<0.15). These low scores likely explain 

the weak performance of the European Flood Hindcast near these locations (Detail A 

in Figure 4.8b and Detail A in Figure 4.8f), however, no observed river discharge data 

is available in some areas where large differences occur (Detail B in Figure 4.8b and 

Detail B in Figure 4.8f) to determine if the flood inundation mismatch can be attributed 

to the discharge input data. 

As mentioned before, the River Thames is a heavily modified catchment with a com-

plex flood defence system (yellow lines in Figure 4.8g). Despite this, the 1-year hydro-

graph simulated by EFAS (Figure 4.9e) shows good performance (KGE 1-year=0.78 

and NSE 1-year=0.81), although some important features are still difficult to capture 

in the EFAS system. The event of January 2003 in the Thames shows a negative skill 

score (NSE 1-year=-1.22) at the outlet of the reach (Detail C in Figure 4.8g). This low 

score is likely to explain the large disagreement found in the flood inundation foot-

print comparison (Detail C in Figure 4.8g). 
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Figure 4.9. Observed river discharge from the National River Flow Archive (NRFA) compared 

against the EFAS streamflow data. 
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River basin H F C 
NSE: 

1-year 

KGE: 

1-year 

NSE: 

Event 

KGE: 

Event 

Trent 0.89 0.40 0.56 0.74 0.66 -0.02 0.21 

Ouse 0.86 0.35 0.59 0.65 0.64 0.42 0.74 

Severn 0.97 0.33 0.66 0.78 0.85 0.54 0.77 

Nene 0.97 0.30 0.68 - - - - 

Medway 0.87 0.44 0.52 0.61 0.56 0.15 0.25 

Thames 0.98 0.64 0.36 0.78 0.81 -1.22 0.57 

 

Table 4.2. Benchmarking scores of the European Flood Hindcast in the English basins. (H) Hit rate, 

(F) False alarm ratio, (C) Critical success index, (NSE) Nash-Sutcliffe Efficiency and (KGE) Kling-

Gupta Efficiency. KGE/NSE 1-year indicates the score for a one-year hydrograph and KGE/NSE 

Event indicates the score for a 15-days hydrograph. The 15-days hydrograph is a window which en-

closes the event with the maximum discharge in the middle of the hydrograph. 

 

4.3.3 Evaluating water depths in the Carlisle 2005 urban flood event 

 

On the 6-7th January 2005, up to 175 mm of rain fell over areas of the Eden river basin 

(Day, 2005) in North West England which led to severe flooding on the morning of 

the 8th January of the city of Carlisle.  In this section, the performance of the model in 

terms of flood extent and water depth is benchmarked using observed data from this 

event. 

Figure 4.10 shows water surface elevation (WSE) measurements in addition to the of-

ficial flood outline during the event of January 2005 for the city of Carlisle, UK for 

comparison purposes with the corresponding downscaled model output. In terms of 

flood extent, the model was compared against the official flood outline (black line in 

Figure 4.10a) from the EA obtaining acceptable skill scores H=1, F=0.45, and C=0.55. 

Figure 4.10b shows a benchmark against 175 locations where WSE values were meas-

ured post event, with a precision of <0.01 m, average noise error of ~0.1 m and maxi-

mum absolute errors at individual measurement points up to 0.5 m (Fewtrell et al., 

2011), the European Flood Hindcast achieved an RMSE=0.67 m and MAE=0.55. Note 

that these values compared well with previous studies (Neal et al., 2009). Neal et al., 

(2009) modelled this event on a higher resolution grid (25 m), and after calibration the 

study found that both floodplain (FPn) and channel (CHn) coefficients play an im-

portant role in determining flooding at this site and need to be adjusted for optimum 

model performance. The Neal et al. (2009) study showed that the best performance 
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was obtained using FPn=0.06 and CHn=0.055, achieving an RMSE=0.32 m and 

MAE=0.06 for a model based on a 25 m resolution DEM. Nonetheless, for the coeffi-

cients used in the European Flood Hindcast (FPn=0.06 and CHn=0.035) Neal et al., 

(2009) obtained an RMSE=0.85 m and MAE=0.7 which compares well with the scores 

obtained by the European flood model. 

 

 

 

Figure 4.10. Flood depths and outline validation for Carlisle. 

 

4.3.4 Validation against European flood data 

 

In August 2002, a severe flood event hit Germany, Austria, the Czech Republic and 

Slovakia along the rivers Elbe, Danube and a number of their tributaries. In Germany, 

in particular, 21 people were killed, and substantial infrastructure was destroyed. The 

return period of the flood was estimated at 150 years in the city of Dresden and 25 

years along the Lower Elbe near the city of Hamburg. The most affected German fed-

eral state was Saxony with total economic damage of 8.7 billion Euros, followed by 

Saxony-Anhalt (1.2 billion EUR) and Bavaria (198 million EUR) (Thieken et al., 2005) 

Figure 4.12 shows the comparison of water depths during the event of 25th August 

2002 across Europe. Official flood extents were obtained without any source indicat-

ing the compilation procedure so it is again difficult to estimate the likely of error of 

the benchmark. Nonetheless, the model obtained acceptable skill scores H=0.81, 

F=0.42 and C=0.51 in the Elbe basin in Germany (see Figure 4.11). The figure shows 
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the location of two principal cities affected during the event: Magdeburg and Dresden 

(Region A and Region B in Figure 4.12). 

Other countries affected during this event were Austria, Croatia, Czech Republic, Ger-

many, Hungary, Poland, Romania and Slovakia. However, no official flood outline 

extents were available to evaluate the performance of the model over these territories. 

As previously noted, the availability of official flood outlines for historical events in 

mainland Europe are very limited. This study had access to two flood outlines sets of 

historical events i) the event of October 2000 only for the upper part of the Po basin 

and ii) the event of June 2013 in the Elbe basin nearby four areas: Prague, Lauenburg, 

Arneburg and Dessau. Outlines of these events were compared against outputs from 

the European Flood Hindcast and its comparison scores are presented in Figure 4.13-

4.14. A summary of benchmarking scores for mainland Europe is presented in Table 

4.3. 

 

River basin H F C 

Po 0.85 0.49 0.47 

Elbe 2000 0.81 0.42 0.51 

Elbe 2013 (Prague) 0.81 0.11 0.73 

Elbe 2013 (Lauenburg) 0.90 0.08 0.84 

Elbe 2013 (Arneburg) 0.86 0.08 0.80 

Elbe 2013 (Dessau) 0.81 0.11 0.73 

 

Table 4.3. Benchmarking scores of the European Flood Hindcast in Europe. (H) Hit rate, (F) False 

alarm ratio, (C) Critical success index 
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Figure 4.11. European flood model compared against official flood map for the event of August 2002 

in the Elbe basin. Comparison scores Hit rate=0.81, False alarm ratio=0.42 and Critical success in-

dex=0.51. 
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Figure 4.12. Simulated water depths for the 25th August 2002. Two important German cities affected 

during the event were Magdeburg and Dresden, regions A and B in the figure, respectively. In red is 

shown the official flood extent during the event. 
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Figure 4.13. European flood model compared against official flood map for the event of October 2000 

in the Po basin. Comparison scores Hit rate=0.85, False alarm ratio=0.49 and Critical success in-

dex=0.47 
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Figure 4.14. European flood model compared against a flood map from the Copernicus Emergency 

Management Service (EMSN046) for the event of June 2013 in the Elbe basin. Comparison scores a) 

Hit rate=0.81, False alarm ratio=0.11 and Critical success index=0.73 b) Hit rate=0.91, False alarm ra-

tio=0.19 and Critical success index=0.75 c) Hit rate=0.86, False alarm ratio=0.08 and Critical success 

index=0.80 d) Hit rate=0.90, False alarm ratio=0.08 and Critical success index=0.84 

 

4.3.5 European-wide benchmarking 

 

The lack of flood footprints to benchmark the European Flood Hindcast is very poor, 

and continental-scale benchmarking is needed to assess the performance of the model. 

In the absence of flood footprints, discharge time series from gauge stations are used 

to benchmark. Discharge time series data were obtained from the Global Runoff Data 

Centre (GRDC). Only stations with a catchment area larger than 2500 km2 were used 

(431 in total) as the European Food Hindcast simulates hydraulics on catchment of 

this size due to limitations to the input boundary conditions (i.e., EFAS). 
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To obtain discharge time series from the European Flood Hindcast, a buffer of 0.025 

degrees (~2.775 km at the equator) around each GRDC stations was created to extract 

the model discharge time series. In cases where more than one location from model 

was available, the model location with the highest score was selected and recorded. 

The benchmarking was carried out using the Kling-Gupta Efficiency (KGE) to sum-

marise the performance of the model. A value of KGE=1 indicates perfect agreement 

between the model and the observation. A bad model performance is obtained for 

lower values (i.e., KGE ~ 0). Figure 4.15 shows KGE scores for a wide range of loca-

tions across Europe and presents performance scores between the European Flood 

Hindcast and observed discharge. Unfortunately, observed discharge data in Ukraine, 

Spain, Greece and Italy were not available for benchmarking. The scores revealed that 

the model performance is acceptable in river basins in countries like Germany, the 

Netherlands, Switzerland, Czech Republic, Austria, Lithuania and Southwest France 

with KGE values raging from 0.15 to 0.75. Lower performance was observed along the 

Danube River, in Romania, Portugal and some places in Latvia. The bad performance 

in these areas were primarily caused by errors in the input boundary conditions 

(EFAS), as well as the need to better-calibrate hydrodynamic model friction parame-

ters.  
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Figure 4.15. European Flood Hindcast benchmark using discharge data from the Global Runoff Data 

Centre (GRDC) 

 

4.3.6 Identifying important European floods between 1990 and 2016 

 

Recent studies have investigated floods in Europe extensively (Barredo 2009; Alfieri 

et al., 2015; Berghuijs et al., 2019; Bloschl et al., 2017, 2019). These studies have used 

streamflow from gauging stations to investigate the nature of floods in Europe in the 

context of climate change. Flood losses have been also investigated recently using a 

detailed database of past flood disasters with information on dates, locations, and 

loses in Europe (Paprotny et al., 2018a, 2018b). In this section, part of the events from 

the HANZE data set are compared with the European Flood Hindcast archive. This 

comparison was carried out for the 16 largest river basins in Europe for the 1990-2016 

period. An automatic flood detection algorithm was developed to extract dates of ma-

jor floods from the European Flood Hindcast. Finally, the analysis examined the total 

number of events per basin, yearly events, and how these results compare to floods 

reported in the HANZE database. 

 

The HANZE database was constructed using high-resolution maps of present land 

use and population, and a large compilation of historical statistics. It contains 1564 

records (1870–2016) of flash, river, coastal, and compound floods. To use this data set 

for comparison to the European Flood Hindcast the database was pre-processed as 

follows. First, the data set was filtered to include only flood events only between 1990 

until 2016. Also, only river floods caused by rainfall in addition to flood events with 

estimated flood loses larger than 100 million EUR were selected. Finally, the location 

of events in the HANZE data set is defined by the NUTS Level 3 European adminis-

trative region. Hence, these regions were aggregated to intersect each basin in Euro-

pean Flood Hindcast (see Figure 4.2). 

Flood identification in the European Flood Hindcast is not a straightforward task for 

several reasons: more than one event can occur during the same year, there are several 

variables that can be used to identify events (i.e., discharge, inundated area, volume), 

flood event durations in the European Flood Hindcast tend to differ from observed 

flood durations as the hindcast used a fixed evaporation rate of 5 mm/day to remove 

water from river basins that does not drain back to the channel under gravity and also 
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does not account for the human activity involved in this process. Nonetheless, some 

simple assumptions can be used to design an automatic algorithm to identify events 

in the European Flood Hindcast. The algorithm was inspired by (Brocca et al., 2011). 

In particular, the flood identification algorithm analyses the daily inundated area (m2) 

signal to determine possible events. The signal is directly obtained as an output from 

the LISFLOOD-FP model for each basin. The algorithm discards values under a 

threshold (T) defined by 𝑇	 = 	𝐴𝑃, where 𝑇 is the threshold value, 𝐴 is the basin area 

in m2 and 𝑃 is a fraction between 0 and 1. Thus, with P=0.01 possible events are the 

ones with an inundated area larger than 1% of the basin area. The algorithm uses a 

timespan moving window of 7 days to look for the starting date of the event. Finally, 

the ending date of the events is assumed to happen when the peak magnitude is re-

duced by 30%. 

The comparison between the HANZE and the European Flood Hindcast was carried 

out for the 16 largest basins in Europe. To capture important events, 𝑃 was set to be-

tween 0.01 and 0.03 in basins to define the inundated area threshold 𝑇. It is important 

to mention that an event in the European Flood Hindcast could end several days after 

the observed date as the model only uses a constant evaporation rate to remove flood-

plain water that does not drain back to the channel under gravity. Hence, in order to 

capture important events, only those with a flood duration larger than 30 days were 

considered. The analysis examined the total number of events per basin for the period 

1990-2016, the yearly evolution for the same period, and how these results compare to 

reported floods of the HANZE database (see Figure 4.16). 
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Figure 4.16. European flood events caused by rainfall for the TOP16 largest river basins from the Eu-

ropean Flood Hindcast and HANZE data sets between 1990-2016. a-b) flood events per basin. c-d) 

yearly evolution 

 

Figure 4.16-a-b shows the total number of events per basins in both data sets. In total 

HANZE reported 112 events with flood loses larger than 100 million EUR between 

1990-2016, whilst in the European Flood Hindcast 167 important flood events were 

identified in the same period. The basin which has suffered the most flood events the 

Danube, with more than 35 flood events in the last two decades according to both data 

set. The Danube is followed by the Rhine, Elbe and Rhone river basins. During the 

same period six basins experienced low flood activity: the Tagus, Douro, Ebro, Dau-

gava and Guadiana river basins have experienced only between zero and two flood 

events according to both data sets. Figure 4.16-c-d shows the number of flood events 

per year in both data sets. Important events from the last decade such the Central 

European floods in 2002 and 2010 are distinguished in both data sets. The high flood 

activity during 1993, 1994 and 1999 from the HANZE data is also present as high flood 

activity in the European Flood Hindcast. The low flood activity during for the years 
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2003, 2004, 2008 and 2012 according to HANZE compare well to the European Flood 

Hindcast. 

Regarding the reason why both data sets do not report exactly the same number of 

flood events are numerous. For example, if the location of a flood in a given river basin 

occurs in a non-urban area, its flood loses may be under the 100 million EUR threshold 

used in the HANZE database. Not all reported floods in the European Flood Hindcast 

lead to a disaster event as there are other factors which play an important role in floods 

such as: soil saturation (soil moisture content) or the complexity of the flood defence 

infrastructure. Therefore, when the soil is saturated and intense rainfall is expected 

this situation is likely to lead to a flood event. As mentioned before, the impact of 

complex flood defence infrastructure could be underestimated by the approach used 

in Section 4.2.7. Nevertheless, the analysis provides at least some confidence that the 

flood inundation hindcast produces the approximately correct number and spatial 

distribution of flood events and that analysis of these patterns can yield insights into 

the nature of flood hazard within Europe. 

 

4.4 Discussion 

 

This study presents the development of a European Flood Hindcast at ~90 m resolu-

tion for the period 1990-2016 employing a hydrologic-hydrodynamic model coupling. 

The simulation framework considered main rivers and tributaries larger than 2,500 

km2 for 298 river basins across Europe. While previous studies explored the nature of 

European floods with the use of river discharge time series or the use of remote sens-

ing techniques applied to satellite imagery, this study used a continuous 2D flood 

simulation for this purpose. The database produced in this study allows the charac-

terisation of flood events (in terms of occurrence, extent and inundation depth) over 

time at a reasonable resolution for continental scale flood risk management. 

The data set generated in this study was used to identify flood events over time oc-

curring in the largest 16 river basins in Europe. Result suggest that at European scale 

the 1990s were hit harder by floods than the 2000s and the first half of the 2010’s dec-

ade. Results also revealed that the least active river basins within the study period 

(1990-2016) are the Ebro, Guadiana and Tagus and Douro rivers with one to zero 

events in the last three decades. Similarly, the most active river basins were the Dan-

ube, Rhine, Elbe and Rhone. These results compare favourably with previous findings 
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(Blöschl et al., 2019) where a climatic signal of observed river discharge was associated 

with increasing floods in northwestern Europe (the Rhine, Elbe and Rhone) and a de-

creasing in floods in southwestern Europe (the Ebro, Guadiana and Tagus and the 

Douro). 

Since the modelling framework developed in this study can use any form of discharge 

data (from models or gauges) and the model is already built (bed, bank elevations 

calculated already), other applications can be considered. For example, the rainfall-

runoff model can be prepared to run experiments on climate change. In that scenario, 

a new set of river discharge data could be generated and easily included to evaluate 

river hydrodynamic response for that scenario. Another potential application of the 

model setup is flood inundation forecasting. The EFAS model is a system that runs 

daily, producing predictions of river discharge a few days ahead. Moreover, the meth-

odology applied here can be easily transferred to other continental or large scale stud-

ies worldwide since the modelling framework uses freely available global data with 

only the river discharge component being dependent on the study area. 

Despite the model performance being generally satisfactory for different types of ter-

rain and locations as shown in the test areas in Figure 4.8 (UK), Figure 4.11(Germany), 

Figure 4.13 (Italy) and Figure 4.14 (Czech Republic and Germany), the model used in 

this study might need revision in: (i) highly managed rivers and (ii) wetlands (i.e. 

washes, salt marshes, fens and moors). These two types of situations are difficult even 

for local scale and highly detailed flood models. In rivers with a high level of water 

control infrastructure there is no current European-scale database which captures de-

tails of the pumps, channels, gates and dikes work together to protect urban areas of 

from flooding.  These features are therefore typically missing from large area models. 

In wetlands, complexity arises because these areas have shallow terrain elevation gra-

dients and therefore even small amounts of water exceeding the river conveyance ca-

pacity can cause widespread flooding.  In this case, small errors in the defence or chan-

nel size assumptions can have a big input impact on the predicted flood extents. Fur-

thermore, wetlands tend to be formed by braided rivers or rivers that bifurcate from 

the main channel. This study used the HydroSHEDS hydrography to identify the lo-

cation of rivers across Europe; this successfully mapped most main channels and trib-

utaries, however the hydrography does not consider bifurcated channels generally 

present in wetlands areas. At the moment, none of the global scale hydrography da-

tabases (HydroSHEDS, MERIT Hydro) can represent bifurcated channels. Both highly 
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managed rivers and wetlands are still therefore likely to be best modelled at a local 

scale. 

Flood footprints generated in this study were validated using observed flood inunda-

tion extents from previous events in the UK, Germany and Italy. Other European 

countries have a very limited to non-existent records of flood extents or flood depths 

and this constraints a broader validation of the data set. Unlike the UK where the 

framework was set up with LIDAR DEM, the continental Europe model used the 

MERIT DEM. Thus, the ability to predict flood patterns could be improved over con-

tinental Europe by better terrain data as LIDAR DEMs are known to significantly in-

crease the accuracy in simulation of flood hydrodynamics (Schumann and Bates, 

2018). Although some countries own LIDAR DEM that could have been used in this 

study, a rigorous procedure is required to fusion different sources of DEM data to be 

used as terrain elevations and this represents a significant study in its own right. 

The forcing data (EFAS) used in the European Flood Hindcast plays an essential role 

in the modelling chain. EFAS obtained a Kling-Gupta efficiency higher than 0.5 for 

75% of all stations during calibration and 57% of all stations during validation (Sala-

mon et al., 2019). Higher skill scores in EFAS were found in large parts of Central 

Europe, while lower skill scores occurred mostly in the Iberian Peninsula as a result 

of the strong influence of reservoirs. Nonetheless, EFAS has a fair skill in general, but 

a few places may show large disagreement with observations. Running the test sce-

narios from Section 4.3.1 using observed data instead of a hydrological model to eval-

uate the quality of EFAS might lead to interesting findings, however, restrictions on 

the location of gauge stations, the number of available measurements and the ability 

to extend the inundation hindcast to European scale are considerable advantages to 

using the EFAS output. 

The current hydrodynamic simulation framework does not account for reservoirs. 

Similarly, subsurface links between river basins are not accounted for either in the 

hydrodynamic model or the hydrological model. The downscaling algorithm adopted 

in this study acts as a complementary procedure but makes the assumption that sub-

grid scale hydrodynamic processes are relatively unimportant. Its implementation 

and performance are computationally cheaper than running a basin scale simulation 

at high resolution (90 m) as the downscaling only has to be executed once after the 

simulation has calculated the maximum inundation extent. For this reason, simulating 

at lower resolution with subsequent downscaling implementation will never produce 
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better results than running a pure 90 m resolution simulation. However, downscaling 

is a useful and computationally efficient technique for obtaining detailed flood out-

lines for multi-decadal simulations of inundation at continental scales. 

The European Flood Hindcast used fixed Manning’s coefficients for floodplain and 

channel set to 0.06 and 0.035, respectively. Thus, no calibration was performed to im-

prove the skill of the model, which could lead to some degree of discrepancies in some 

areas. This situation can be enhanced by running a set of simulations within a sensi-

tivity analysis framework to find the best floodplain and channel coefficients which 

reduce the error against observations, similar to Neal et al., (2009). Alternatively, the 

coefficient estimates can be acquired using a land cover classification as a proxy (e.g. 

van der Sande et al., 2003). Despite this, the results present acceptable skill scores for 

different terrain types: Figure 4.8 (UK), Figure 4.11 (Germany), Figure 4.13 (Italy) and 

Figure 4.14 (Czech Republic and Germany). 

Another final limitation of the study is that the current modelling framework did not 

consider the variation of flood protection standards over time. For example, the event 

of August 2002 in Germany played an important role in improving the flood resilience 

of that country. After the event, the German government reinforced its flood defence 

infrastructure. These types of actions against floods are repeated in most developed 

countries, however, the lack of data concerning defence changes over time impedes 

its implementation in the model. Nonetheless, the assumption that the current flood 

protection levels have been installed since the 1990s seems to be broadly sensible. 

 

4.5 Conclusion 

 

We present a method for the development of flood inundation hindcasts at continental 

scales.  Using this approach, a European flood hindcast was simulated for the period 

1990-2016 at 1km native resolution, with outputs subsequently downscaled to ~90 m. 

In total, 298 river basins were considered within a computational framework built 

upon globally available data sources of terrain elevation, river width, flood protection 

standards, river discharge. Therefore, the methodology introduced here can be easily 

transferred to other continental or large-scale studies worldwide. 

The European Flood Hindcast framework was used to produce a data set containing 

a catalogue of flood events which was analysed for the 16 largest basins in Europe.  
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This indicated that the most affected decade was the 1990’s, with the Danube, Rhine, 

Rhone and Elbe being the most impacted basins.  Conversely, the least impacted ba-

sins in the same period were the Douro, Ebro, Guadiana and Tagus. These results 

compare favourably with previous findings (Blöschl et al., 2019) where a climatic sig-

nal of observed river discharge was associated with increasing floods in northwestern 

Europe (the Rhine, Elbe and Rhone) and a decreasing in floods in southwestern Eu-

rope (the Ebro, Guadiana and Tagus and the Douro). 

Both the methodology and data set in this study can be considered as new contribu-

tions to water resources. First, the computational framework improves from previous 

studies of the same kind in a few aspects: i) it introduces an efficient method to couple 

hydrological and hydrodynamic models in large scale and high resolution problems; 

ii) it presents a method to estimate river bathymetry by adjusting the channel convey-

ance to account for the systematic biases typically found in modelled river discharge; 

and iii) it describes a methodology to account for flood defences in flood inundation 

modelling by using as a proxy a database of flood protection standards and adjusting 

the capacity of the channel to match these. In addition, the data set generated provides 

useful information to characterise floods in Europe in terms of occurrence, extent and 

depth that is complementary to previous work. The study can also potentially assist 

continental scale Flood Risk Management (FRM). The database generated in this study 

can be used to identify flood hotspots at a continental level useful for insurers, multi-

national corporations, NGOs and national governments. These organisations can ad-

equately prioritize these areas in rapid disaster response, urban planning or climate 

change adaptation. 

 

 

 

 

 

 

 

4.6 Postscript 

 

This chapter presents solutions to some open research gaps in continental-scale flood 

modelling. The chapter introduces an efficient method to couple hydrological and 
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hydrodynamic models in large scale and high-resolution studies (see Section 4.2.4). 

River bathymetry is estimated with a method that links inflow river discharge to the 

channel conveyance to account for systematic biases typically found in simulated dis-

charge (see Section 4.2.5). The chapter also describes a new methodology to account 

for flood defences in flood inundation models (see Section 4.2.6). These methods were 

used to build a European flood hindcast that reconstruct flood inundation maps across 

Europe for a period of 26 years (1990-2016). 

The location of rivers and tributaries presented in the European flood was obtained 

by means of two widely used global hydrography data sets namely, HydroSHEDS 

and MERIT Hydro. These data sets were derived from terrain elevations sourced from 

space-borne satellites. In Europe, the use of global hydrography data sets is acceptable 

as many European countries do not own national hydrographic data to extract the 

location of rivers from. However, some countries own this information and can be 

used to derived better estimates of the location of rivers. The next chapter presents a 

methodology to derive a new hydrography with similar characteristics of global hy-

drographic data sets but using high quality data sources. 
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CHAPTER 5 

 

On the extraction of a precise river 

hydrography in the contiguous US 
 

 

 

 

 

The previous chapter presented the development of a Pan-European flood hindcast. 

The framework mostly used global freely available data sets for data consistency. 

Global hydrography data sets (i.e., HydroSHEDS and MERIT Hydro) were used to 

identify river centrelines for rivers with upstream catchment area larger than 2500 

km2. Although these centrelines produced good results, we argue that the location of 

rivers can be improved by using high-quality national data sets of terrain elevation 

and some source of curated river centrelines. This chapter presents a methodology to 

obtain a hydrography for continental scale studies based on two components i) a high-

fidelity source of terrain elevations and ii) a curated data set of river centrelines. The 

computational framework is presented for the US however, the same framework can 

be used in other places where similar data can be obtained. 

This chapter consist of a paper in preparation. All simulations, analysis, writing and 

figures were completed by the lead author with advice from Jeffrey Neal and Paul 

Bates. All co-authors helped to shape the final manuscript. 

Peer-reviewed article associated: 

Sosa, J., Hawker, L., Sampson, C., Smith, A., Neal, J., Bates, P. (2020). On the extrac-

tion of a precise river hydrography in the contiguous US. In preparation 
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5.1 Introduction 

 

The geolocation of rivers is one of the key factors used to drive local to global scale 

studies involving river hydrodynamics (Yamazaki et al., 2011; Neal et al., 2012; Ray-

mond et al., 2013; Zarfl et al., 2015; Sampson et al., 2015). The geolocation can be pre-

dicted from a river network usually derived from a flow drainage map calculated 

from a Digital Elevation Model (DEM). A flow drainage or flow accumulation map is 

created by counting the number of upstream cells within the drainage basin from the 

outlet of a particular river basin. To this end, the downslope drainage direction in 

every cell in the DEM must be calculated first, the later type of map is known as flow 

direction map. Both the flow accumulation and the flow direction maps are known as 

hydrographic variables (Tarboton, 1997; 1991). Several studies already have obtained 

hydrographic information at global scale. For example, HYDRO1K (USGS, 2001) was 

one of the first data sets with global coverage identifying rivers worldwide at 30 arc-

seconds (~900 m at the equator) grid resolution. It was derived from GTOPO30 (USGS, 

1997), a global digital elevation model at 30 arc-seconds spatial resolution. With the 

launch of the Shuttle Radar Terrain Mission (SRTM) (Farr and Kobrick, 2000; Farr et 

al., 2007) in February 2000, a new database containing hydrographic data at global 

scale was produced; HydroSHEDS (Lehner et al., 2008). Unlike HYDRO1K this new 

hydrography derived from the SRTM was more detailed as it was able to capture more 

river features such as meanders as a result of its higher resolution (3 arc-seconds or 

~90 m at the equator), features that previously could not be represented. Nonetheless, 

due to non-negligible intrinsic errors in the SRTM such as speckle and stripe noise in 

addition to tree height bias (Rodriguez et al., 2006; Yamazaki et al., 2017) and the 

coarse resolution of ancillary layers, the geolocation accuracy of rivers in Hy-

droSHEDS is limited (Yamazaki et al., 2019). MERIT DEM (Yamazaki et al., 2017), a 3 

arc-seconds multi-source and bias corrected DEM with global coverage and its com-

plement product MERIT Hydro (Yamazaki et al., 2019) are the most recent develop-

ments in terms DEM and hydrographic information at global scale, respectively. 

Other data sets have implicitly derived river networks globally bypassing the use 

DEMs and instead using satellite imagery. The Global River Width from Landsat 

(GRWL) (Allen and Pavelsky, 2018) is one example of this approach. The study ob-

tained river widths estimates from the entire Landsat inventory storing these values 

within centre lines of the river masks. The centre lines were limited by the availability, 
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quality and resolution of the Landsat observations. Meaning that places with no ob-

served rivers or low fidelity to extract rivers were not captured. A summary showing 

main characteristics of these sets is presented next in Table 5.1. These efforts have al-

lowed us to locate main rivers and channels within catchment areas larger than 50 km2 

in regions where this was not possible before. 

 

Data source Comments Reference 

HYDRO1K 

~900 m resolution at the equa-

tor, coverage between 90°N – 

90°S 

USGS, 2001 

HydroSHEDS 

~90 m resolution at the equa-

tor, coverage between 60°N – 

60°S 

Lehner et al., 2008 

MERIT Hydro 

~90 m resolution at the equa-

tor, coverage between 90°N – 

60°S 

Yamazaki et al., 2019 

GRWL 
coverage limited to rivers 

“seen” by Landsat 
Allen and Pavelsky, 2018 

 

Table 5.1. Summary of current hydrographic data sets available at global scale. 

 

 

Figure 5.1. Comparison between NHDPlus and MERIT Hydro in Los Angeles, CA.  
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At country level, some nations have developed their own river network data sets, this 

has been possible thanks to the availability of high-quality data sources to extract this 

information from. In the US for example, the National Hydrographic Dataset (NHD) 

(Simley et al., 2009) is the most comprehensive data set that provides this type of in-

formation. This data set was created by a joint collaboration between the US Geologi-

cal Survey (USGS), the US Environmental Protection Agency (EPA), and the Natural 

Resources Conservation Service (NRCS) and it was derived from 7.5-minute series 

topographic maps at a scale of 1:24,000. Complementary to NHD is National Hydrog-

raphy Dataset Plus (NHDPlus) (McKay et al., 2012), an ancillary data set that provides 

“added-value attributes” to the river network allowing each link in the network to 

have extra information such as flow direction, flow accumulation area, flow volume 

and flow velocity. Both the NHD and NHDPlus are continuously updated to meet the 

water resource needs of the nation. 

NHDPlus is a widely recognised product that accurately maps rivers across US. How-

ever, there are some disadvantages to using the NHDPlus for flood simulations. First, 

this data product currently lacks the representation of river links in some areas. For 

example, Figure 5.1 shows a comparison between NHDPlus (version 2.1) and MERIT 

Hydro in Los Angeles County. The NHDPlus misses links in the river network that 

might not necessarily be identified as rivers but are important depressions in the ter-

rain. These extra links are important in urban flood models, both where pluvial flood-

ing is common, or in fluvial flooding where missing river network links can lead to 

significant overestimates of flood extent (Wing et al., 2018). MERIT Hydro, a global 

scale river network, identifies those missing links but its accuracy is limited by the 

global MERIT DEM. Another disadvantage of NHDPlus is that the layers are distrib-

uted in vector format, which presents difficulties for studies using rectangular grids 

to estimate output variables such as hydraulic models. Rectangular based grid models 

require estimates of flow accumulation at the granular level, with a value for every 

pixel, which is the format of the MERIT Hydro and Hydrosheds datasets. 

In this study we introduce UShydro a new hydrography for the contiguous US created 

by means of the National Hydrography Dataset Plus (NHDPlus) and the National El-

evation Dataset (NED) at 90 m spatial resolution. The new data set offers a river net-

work that combines the best of NHDPlus but includes additional river links and is in 

a raster-based format suitable for computational studies based on rectangular grids. 

Thus, by directly integrating NED as source data set, the new hydrography ensures 
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good linkage between terrain elevation and the river network in the US. The data set 

provides a flow accumulation map in the form of global studies so that studies already 

using HydroSHEDS and MERIT Hydro can be updated with the new data set in a 

seamless way. The dataset was benchmarked against recent global hydrographic stud-

ies such as HydroSHEDS and MERIT Hydro and the original NHDPlus data set. Fi-

nally, the computational framework used to calculate the new hydrography is fast and 

it can be easily replicable in other areas of interest. 

 

5.2 Data and methods 

 

5.2.1 Data 

 

UShydro was built upon the National Elevation Dataset (NED) (Gesch et al., 2009) a 

seamless raster product primarily derived from USGS DEMs at 10 and 30 meters spa-

tial resolution. The NED is provided at a variety of resolutions ranging from 1/9 (~3.4 

m) to 1 arc-seconds (~30 m). This study used the ~30m DEM as it fully covers the 

continuous US in addition to part of the Canada and Mexico territory. Including ter-

rain information in Canada and Mexico is relevant as the US has some transboundary 

river basins such as the Columbia, Rio Grande and Colorado Rivers. Previous studies 

have shown that merely a DEM unaccompanied with any ancillary layer is not suffi-

cient to derive accurate river networks maps (Lehner et al., 2008; Yamazaki et al., 

2019). This study used as ancillary layers the National Hydrography Dataset Plus 

(NHDPlus) (McKay et al., 2012) a high-resolution river network, and the global hy-

drography MERIT Hydro (Yamazaki et al., 2019). A summary of data sets used in this 

study is shown next in Table 5.2. 

 

Data source Comments Source 

NED 

1 arc-seconds (~30 m) 

resolution 

Gesch et al., 2009 

https://viewer.na-

tionalmap.gov/basic/ 

NHDPlus v2.1 

Contains ~2.7 million 

line-type features 

McKay et al., 2012 

https://viewer.na-

tionalmap.gov/basic/ 

MERIT Hydro 

3 arc-seconds (~90 m) 

resolution 

Yamazaki et al., 2019 

http://hydro.iis.u-tokyo.ac.jp/~yama-

dai/MERIT_Hydro/ 
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Table 5.2. Data sources used in this study to generate a new hydrography in the contiguous US. 

 

UShydro was built at 90 m spatial resolution allowing interchangeability with global 

hydrographic studies such HydroSHEDS and MERIT Hydro, however higher resolu-

tion can be achievable using the same computational framework presented in the next 

sections. In order to produce a hydrography at 90 m resolution, the NED data set was 

upscaled to 3 arc-seconds (~90 m) using bilinear interpolation and subsequently tiled 

into 53 tiles with 5°x5° extent each to cover the contiguous US territory (see Figure 

5.2). Tiling was necessary to make some calculations more manageable in computer 

memory. NHDPlus is a vector-based database containing ~2.7 million features of riv-

ers and streams. The NHDPlus database was downloaded from the United States Ge-

ological Survey (USGS) servers in a stand-alone file in Geodatabase format. From the 

database, only the feature “NHDFlowline_Network” was used. Later, the attribute 

“DivDASqKm” which states for “Divergence-routed drainage area” was extracted 

and rasterised at 3 arc-seconds resolution (~90 m) resolution and tiled into 53 tiles of 

5°x5° extent matching the tiles created for the NED data set. From the MERIT Hydro 

database, the “Upstream drainage area” variable was used with no additional pre-

processing as this data was tiled already. The “Divergence-routed drainage area”, 

“Upstream drainage area” and flow accumulation area are interchangeable concepts 

which corresponds to the drainage area upstream a particular river cell in the basin. 

For example, headwater cells in a basin will have a value of 0 km2 whilst the basin 

outlet will have a value corresponding to its drainage basin area (e.g., Colorado River 

618,000 km2). 
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Figure 5.2. Spatial coverage of USHydro for the contiguous US divided into 53 - 5°x5° tiles. 

 

Trans-national river basins (e.g. Columbia, Rio Grande and Colorado) share territory 

with Canada and Mexico and are not fully represented in NHDPlus, however they are 

important to produce a correct river network. To tackle this issue, main channels and 

rivers from NHDPlus were fused with MERIT Hydro (Yamazaki et al., 2019) to com-

plete the missing information. To this end, rivers larger than 1,000 km2 in MERIT Hy-

dro were manually connected at the border of Mexico and Canada with NHDPlus 

creating a fused drainage network. For rivers lower than this threshold, elevation de-

pressions from NED were used to infer the network. 

 

5.2.2 DEM conditioning: Stream-burning 

 

DEM conditioning is the procedure of modifying the elevations in the DEM in order 

to allow full downstream drainage (Yamazaki et al., 2019). First, the DEM should be 

modified by lowering elevations in areas where rivers are forcing downstream drain-

age in a process known as “stream-burning” (Lindsay, 2016b). Additionally, spurious 

depressions such as sinks and flat areas that create depressions where no lower neigh-

bouring cell must be treated also as they break down the natural downstream flow 

routing. 

In this study, the DEM conditioning begins with the “stream-burning” process (Saun-

ders, 1999; Lindsay, 2016b). To this end, main rivers and channels centre lines are in-

corporated in the DEM by “burning” a new value for the centre line elevation in order 

to constrain interim streamline cells to maintain downstream routing. This study used 

river vector centrelines from the two sources processed before NHDPlus (in the con-

tiguous US) and MERIT Hydro (in Canada and Mexico). The drainage basin area 

given by these datasets (see e.g. Figure 3b the NHDPlus data set near Detroit) was 

used to modify the DEM elevation in order to keep local monotonic descent in the 

network. The relationship between drainage area and DEM elevation was given by 

Equation 5.1: 

 

𝐸 =
!"

!"#	(&)

!"#	((.*+,-)
#$

  (5.1) 
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where, 𝐸 is the new value to be burned in the DEM, 𝑁 is the drainage area and 𝐶 is a 

constant value calculated via trial and error with 𝐶 = −99. This form of the equation 

was used as it can handle drainage areas with values larger than 1 million km2 (largest 

accumulation value in the US is ~2.9 million Km2 in the Mississippi River) and avoid 

truncation of the number. Thus, by transforming the flow accumulation area into a 

value between -100 and 0 with decimals changing seamlessly but correctly for double-

precision computations. Figure 5.3c shows the final conditioned DEM after applying 

Equation 5.1 for a small area near Detroit, MI. 

 

5.2.3 DEM conditioning: Depressions 

 

The NHDPlus data set contains a vast number of streams (~2.7 million line-type fea-

tures) in the continuous US, however, it has disconnections in some areas which cause 

the natural downstream flow routing to break down. Thus, although rivers were 

burned into the DEM, they still may cause problems in the estimation of an accurate 

river network due to the lack connectivity. Another source of river network discon-

nection is due to spurious sinks or depressions where no lower neighbour cell can be 

identified thereby impeding natural downstream flow. Previous studies have tackled 

these issues in one of two ways (after Rieger, 1998): i) depression-filling approaches 

where the elevations of grid cell interiors are raised to the closes depression ii) depres-

sion-breaching approaches where grid cell elevations are lowered to create a single-

cell wide breach channel connecting the bottom of a closed depression to some 

downslope point. 

In this study, two depression-filling approaches and one depression-breaching 

method were tested. First, the “FillDepressions” algorithm available in Whitebox-

Tools (Lindsay, 2018) was used to fill depressions in every tile. The tiles were clipped 

with a buffer of 0.01° (~1 km) to avoid problems at the edges of the tile. Later, the 

“Priority-Flood” algorithm described in Barnes et al. (2014) and the “BreachDepres-

sionsLeastCoast” algorithm (Linday and Dhun, 2015) were also evaluated in the same 

manner. In each case, the final flow accumulation area was benchmarked against ob-

served values following the procedure described in Section 5.3.1. After analysis the 

“Priority-Flood” approach obtained the lowest flow accumulation error and it was the 

method selected to produce the final data set in this study. Figure 5.3c shows the final 

conditioned DEM for a small area near the city of Detroit, MI. 
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Inland or endorheic basins are natural geological landforms that retains water but 

have no hydrological connection to the marine environment (Nichols et al., 2007). The 

outlet location of this type of basins have been identified in the NHDPlus data set 

under the “Sinks” feature and facilitated its integration in UShydro. So that by directly 

burning the rivers from NHDPlus, endorheic basins were implicitly considered with 

no additional steps. The priority-flood depression algorithm was calibrated via a 

threshold value to not remove these features after passing the algorithm. 

 

5.2.4 Flow directions and flats 

 
Once the conditioned DEM is prepared, the next step consists of determining which 

direction water will flow in a given cell. Thus, a flow direction map containing direc-

tion information at every pixel must be generated. Several methods already exist for 

this purpose, for example, the D8 method (O’Callaghan and Mark, 1984) calculates 

flow directions by identifying the neighbouring pixel which gives the steepest slope 

within a 3x3 window. Another method is Rho8 (Fairfield and Leymarie, 1991) which 

improves the conventional D8 method by representing in a better way flow direction 

in high slope areas. D8 and Rho8 are “convergent flow” methods where only one cell 

can be assigned for descending flow however “divergent methods” also exist where 

the descending flow can be diverted into different neighbouring cells within the 3x3 

window. This is case with the algorithm of Quinn (1991) where one or more neigh-

bouring cells contain information about the descending flow. Other divergent meth-

ods from the literature are the ones proposed in Freeman (1991), Holmgreen (1994), 

Tarboton (1997) and Seibert and McGlynn (2007). 

This study used the D8 approach in the calculation of flow direction as this convergent 

method is computationally inexpensive compared to divergent methods. A divergent 

method will demand more computational resources as, to date, there is not an efficient 

(i.e. in the context of continental scale studies) algorithm to calculate flow accumula-

tion from a divergent flow direction map. As a consequence, the new river network 

generated in this study does not represent braided rivers and deltas which commonly 

exhibit divergent flow. Figure 5.3d shows flow directions for a small area near Detroit, 

MI using the D8 approach. 

Flats or depressions with no local elevation gradient are intrinsic to lakes in the NED 

data set. Flats can also occur as a consequence of the stream-burning process described 



 95 

in Section 5.2.2, but regardless their origin this is an issue that needs to be solved. 

Technically the problem arises as no flow direction can be assigned since the D8 algo-

rithm is not able to find a downslope cell. UShydro used an efficient algorithm to solve 

flats by assigning drainage directions in flats (Barnes et al., 2014) the method super-

imposes a gradient away from higher terrain with a gradient towards lower terrain to 

solve this issue. 

 
5.2.5 Flow accumulation 

 

Once flow directions are calculated and flats have been treated in every tile, upstream 

flow accumulation can be estimated for each pixel. At continental scale this task is 

rather challenging as rivers are generally contained within different tiles and the al-

gorithm should be able to count the number of cells upstream. Thus, the flow accu-

mulation algorithm must take into account this point and identify rivers from differ-

ent tiles. Despite this, several computer codes exist that can calculate flow accumula-

tion (e.g., TauDEM Tarboton, 2005; WhiteboxTools Lindsay, 2018; TopoToolbox 

Schwanghart et al., 2010) but their efficiency over continental scale areas is limited due 

to lack of efficient memory allocation or parallel computing implementations. This 

study therefore used a parallel flow accumulation algorithm with efficient memory 

management implemented in RichDEM (Barnes, 2017; Barnes, 2018). 

All steps mentioned so far were grouped together in an automatic computational 

framework to facilitate debugging, testing and allow replication of the framework in 

other areas. The entire framework took ~6 hours to obtain flow accumulation success-

fully for the entire US territory on an Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz, 64 

GB RAM.  Figure 5.3a shows flow accumulation areas for rivers larger than 250 km2 

and Figure 5.3e presents an inset of the accumulation for the city of Detroit, MI. 
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Figure 5.3. The UShydro data set a) Flow accumulation areas larger than 250 km2 b) NHDPlus river 

network near Detroit c) Conditioned DEM d) D8 Flow directions e) Zoom-in view of UShydro in the 

city of Detroit. 

 

 

 

 

5.3 Results 
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5.3.1 Flow accumulation area evaluation 

 

In this section, the flow accumulation area from NHDPlus was compared with 

UShydro and two global hydrographic data sets HydroSHEDS and MERIT Hydro. 

The flow accumulation test helped to inspect the connectivity of the river network 

from the head waters to the river outlet. NHDPlus was considered as the ground truth 

data set as it has been continuously revised and updated and it has a large community 

of personnel reporting issues in the data, despite that is not exempt from errors. The 

comparison used 90 m rasterised maps from NHDPlus and 90 m raster maps from the 

target data sets (i.e. UShydro, HydroSHEDS and MERIT Hydro). At this resolution 

evaluating every river cell demands a considerable computing effort, for this reason 

two scenarios were chosen i) an evaluation of all river cells with a flow accumulation 

area larger than 1,000 km2 and ii) a sample of ~200 thousand rivers cells for rivers 

larger than 1 km2. Then, the flow accumulation error was evaluated as follows. First, 

once a river cell in NHDPlus is detected, a radius of 2 km in the target data set is fixed 

to find the closest flow accumulation area with the minimum error, this approach was 

also used by Yamazaki et al., (2019). Finally, the flow accumulation area error was 

estimated according to Equation 5.2: 

 

𝐸𝑟𝑟𝑜𝑟 =
!"#$%&"'()*$"&+"'

)*$"&+"'
∗ 100%  (5.2) 

 

where 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the flow accumulation area in any of the hydrographic data sets 

(i.e. UShydro, HydrosSHEDS and MERIT Hydro) and 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the flow accumu-

lation area of the ground truth data set (i.e. NHDPlus). 

 

Figure 5.4 shows results of the comparison for a) UShydro b) HydroSHEDS and c) 

MERIT Hydro. Maps located in the left side show the percentage error for the rivers 

larger than 1,000 km2 upscaled to 1 km resolution and aggregated using the “maxi-

mum” for visualization purposes. Scatters plots on the right side show the percentage 

error for a sample of ~200 thousand cells for rivers across different sizes (i.e. >1 km2). 

Results suggest that UShydro improves the representation of endorheic basins com-

pared to global data sets where the UShydro error is <5%. These basins are mostly 

located the Great Basin area in Nevada and part of Oregon, Utah and California. In 
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particular basins such as the Humboldt, the new hydrography presents large im-

provements over global hydrographic studies (5% compared to 35% on average). In 

the state of California, UShydro indicates better agreement with NHDPlus for the two 

major rivers in the area the Sacramento and the San Joaquin rivers with errors lower 

than 5%, whilst global hydrographic studies ~50%. Similar patterns are repeated in 

other states. Complexity and size of the Mississippi River basin makes it challenging 

to accurately obtain flow accumulation errors lower than ~25% on average in 

UShydro, the reason is because the river formed by many tributaries producing a cu-

mulative error. MERIT Hydro shows better agreement at the lower part of the basin 

near Louisiana (error ~10%), however, its performance decreases in the upper part of 

the basin near Nebraska and South Dakota. 

A 90 m flow accumulation raster map contains vast amount of information and it was 

computationally challenging to fit it into memory. For this reason, a sample of 200 

thousand river cells in for each data set were compared to evaluate the performance 

of the hydrographic studies across a different range of river sizes. Scatter plots at the 

right margin in Figure 5.4 show the how the flow accumulation error varies across 

different sizes when compare to NHDPus. The bins in the scatter plots range from -

100% to +100% with a step of 2% in the x-axis, whilst from 10e0 to 10e7 linearly spaced 

into 151 values in the y-axis. The colour bar on the right side shows the number of 

river cells contained within each bin. The comparison suggest that all the target data 

sets present discrepancies across difference sizes with values ranging between -100% 

and 100%. Nonetheless, most of cells have an error that varies between -5% to 5% (see 

Table 5.3). UShydro presents an improvement over global hydrographic studies as 

results suggest that 72.78% of sample data lies within -5% and 5% error compared to 

62.41% and 57.72% for MERIT Hydro and HydroSHEDS, respectively. The cause of 

error for the remaining data that do not fit within this range can be attributed to sev-

eral factors, for example, connectivity issues either in the benchmarking data or in the 

target data set. Further analysis in specific areas might be important to assess the main 

cause of these errors. 

 

 

 

 

 UShydro MERIT Hydro HydroSHEDS 

-5% > Error < 5% 72.78% 62.41% 57.72% 
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-2% > Error < 2% 59.60% 49.41% 44.28% 

 

Table 5.3. Flow accumulation benchmark for different hydrographic studies and NHDPlus for a sam-

ple of 200 thousand cells. 
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Figure 5.4. Flow accumulation comparison between NHDPlus and a) UShydro b) HydroSHEDS and 

c) MERIT Hydro. Maps on left margin show the percentage error for river cells larger than 1,000 km2 

upscaled to 1 km spatial resolution and aggregated using the “maximum” for visualization purposes. 
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Scatters plots on the right margin show the percentage error for a sample of ~200 thousand cells for 

rivers across a different range sizes for river cells larger than 1 km2 in flow accumulation area. 

 

5.3.2 Stream geolocation evaluation 

 

In addition to the flow accumulation error, the geolocation of the rivers and streams 

was also evaluated. To this end, NHDPlus was used again due to high fidelity of the 

data set. One of the considerations for this evaluation is that the error indicator must 

be in accordance with the scale of the river, for example, a 1,000 m distance error is 

significantly important for a river with a catchment area <5 km2, and considerably low 

for a larger river or a catchment area >10,000 km2 (Yamazaki et al., 2019). One way to 

take into this issue is by calculating the error relative the catchment area as follows. 

First, once a river cell in the NHDPlus is identified, a fixed radius of 2 km is used to 

identify the cell with the minimum flow accumulation error and its distance (𝐷) to the 

NHDPlus cell. Then, 𝐷 was divided by the NHDPlus river cell flow accumulation as-

sociated (𝐴). Later, to range the error between -100% and 100% the least squares 

method was used where the maximum possible error occurs when 𝑚𝑎𝑥(𝐷)/𝑚𝑖𝑛(𝐴) 

whilst the minimum error when 𝑚𝑖𝑛(𝐷)/𝑚𝑎𝑥(𝐴).  

Geolocation accuracy errors are presented in Figure 5.5 for two scenarios i) all river 

cells larger than 1,000 km2 and a 200 thousand sample for river cells larger than 1 km2. 

Results suggest that the target data sets present very small differences for larger rivers 

(i.e. catchment area >1000 km2) errors are in most cases <5%. The benchmark indicates 

that 95.14% of the data sample has a geolocation error <5% in UShydro, a marginal 

improvement over the global data sets with 94.40% and 93.16% for MERIT Hydro and 

HydroSHEDS, respectively (see Table 5.4). Scatter plots in Figure 5.5 show the geolo-

cation errors distributed along different river cell sizes from the data sample. The tar-

get data sets present very small differences between the datasets for rivers larger than 

100 km2, nonetheless the error increases largely for small rivers (<100 km2) (see Figure 

5.5-bcd). 
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 UShydro MERIT Hydro HydroSHEDS 

Error <5% 95.14% 94.40% 93.16% 

Error <2% 82.87% 79.53% 77.01% 

 

Table 5.4. Geolocation error benchmark for different hydrographic studies and NHDPlus for a sam-

ple of 200 thousand cells. 

 

 

 

 

Figure 5.5. Stream geolocation comparison between UShydro, HydroSHEDS and MERIT Hydro 

against NHDPlus a) Shows UShydro error againt NHDPlus for rivers larger than 1,000 km2 (catch-

ment area) upscaled to 1 km2 spatial resolution and aggregated using the “maximum” for visualiza-

tion purposes. Error for a data sample of 200 thousand cells along different sizes in b) UShydro c) Hy-

droSHEDS and c) MERIT hydro. 
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5.3.3 NHDPlus uncovered areas 

 

The information contained in NHDPlus is very precise as the data set is under active 

development, however, it misses stream information in some areas. In this section, the 

total number of rivers and streams from NHDPlus are compared with UShydro to 

estimate the percentage of information missing by NHDPlus at county level. In doing 

so, both data sets were clipped following boundaries of the US counties. Then, a 

threshold to the flow accumulation or drainage area of 0.1 km2 was applied to extract 

a raster-based river network. Next, the total amount of pixels in UShydro were sub-

tracted from the total number found in NHDPlus to obtain the number of missing 

cells. This calculation was carried using the resulting UShydro data set (~90m resolu-

tion) and the rasterised version of NHDPlus (~90m resolution) calculated previously 

in Section 5.2.1. The missing cells difference was divided by the total number of cells 

found within county (at ~90m resolution) to obtain the percentage of territory within 

the country uncovered by NHDPlus (Figure 5.6). Results found that in all cases 

NHDPlus misses stream and rivers information in particular the ones with drainage 

areas lower than 5km2. In some counties, the missing information can be up to 25% of 

the territory. 
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Figure 5.6. Percentage of territory uncovered by NHDPlus compared to UShydro for rivers and 

streams with catchment area larger than 0.1 km2. 

 

Missing streams are further investigated for the Top10 most populated counties. Table 

5.5 shows the percentage of uncovered territory by NHDPlus for different catchment 

size classes for the most populated counties in the US. Percentage were calculated by 

subtracting the number of cells found within a catchment size class (e.g. rivers with 

catchment size between 0.1 and 5 km2) by the number of cells found in NHDPlus for 

the same class. The difference was divided total amount of cells within the county 

territory. Results found that for Los Angeles, CA, where by 10,105,518 people live (of-

ficial estimate July 2018), NHDPlus miss stream and rivers for 13% of its territory 

mostly very small streams (i.e. 0 – 5 km2). Similar results were found other well pop-

ulated counties. 
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County 0-5 (km2) 5-10 10-100 100-1k 1k-10k 10k-
100k 

>100k TOTAL 
(%) 

Los Ange-
les 

12.9 0.1 0.0 0.0 0.0 0.0 0.0 13.0 

Cook 11.5 -0.1 -0.1 -0.1 0.0 0.0 0.0 11.3 

Harris 14.0 -0.1 -0.2 0.0 0.0 0.0 0.0 13.7 

Maricopa 19.7 -0.4 0.0 0.0 0.0 0.0 0.0 19.2 

San Diego 9.6 -0.3 -0.1 0.0 0.0 0.0 0.0 9.2 

Orange 10.3 -0.1 -0.1 0.0 0.0 0.0 0.0 10.1 

Miami-
Dade 

20.7 0.9 0.2 0.2 0.0 0.0 0.0 22.0 

Dallas 11.4 -0.6 -0.2 -0.1 0.0 0.0 0.0 10.5 

Kings 12.2 1.1 0.5 0.0 0.0 0.0 0.0 13.8 

Riverside 16.1 -0.3 0.0 0.0 0.0 0.0 0.0 15.8 

 

Table 5.5. Percentage of uncovered territory by NHDPlus for different river catchment sizes for the 

Top10 most populated counties in the US. 

 

Although the size of rivers not captured by NHDPlus is small, and some hydrological 

studies might ignore these streams, other studies will consider information of streams 

at this level to be important. For example, pluvial flood modelling, where intense 

amount of rainfall produce inundation in urban areas, generally require smaller rivers 

to be included for any modelling to be effective.  

 

5.3.4 UShydro insights 

 

The relationship between the number of stream links and the size of the largest river 

in US counties is investigated next. To this end, the flow accumulation layer from 

UShydro was used and clipped according to each county in the US. Then, each link in 

the stream network was identified and the quantile 0.95 calculated to the get an esti-

mate of the size of the largest river in the county. Figure 5.7 shows the relationship 

between the number of links and the largest river size in the county. Data shows that 

most large rivers (catchment size >150,000 km2) are present in the Midwest and South-

east regions. In these regions, the density of rivers (i.e. the number of reaches) varies 

from 2 until 25 thousand. Another important region is the north-western region where 

most rivers can be characterised as midsize (<150,000 km2) and densely packed 

(>10,000 reaches). Unlike the east, the southwest and western regions present streams 

of small size generally ending up in endorheic basins in the Great Basin area. 
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Figure 5.7. Relationship between river links and the size of the largest river at county level using 

UShydro. 

 

5.4 Discussion 

 

The geolocation of rivers has been mapped by different studies based on spaceborne 

DEMs and ancillary water body layers, and the analysis of Landsat imagery e.g. 

GRWL. These approached allowed georeferenced river and stream maps to be ob-

tained in a consistent manner across the entire terrestrial land surface. However, in 

data rich areas where high quality terrain elevation and ground-truth layers of water 

bodies are accessible, higher quality hydrography layers that improves connectivity 

and geolocation accuracy can be constructed. This study presents UShydro a new hy-

drography for the contiguous US using National Elevation Dataset (NED), a high-res-

olution terrain data, and the extended version of the National Hydrography Dataset 

(NHDPlus), an ancillary vector layer of river and channel centre lines. This new hy-

drographic data set presents advantages over NHDPlus as it extends its coverage in 

areas with limited mapping. 
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The NHDPlus database contains ~2.7 million georeferenced rivers and channels 

within the contiguous US, despite that, its use is limited due the absence of some mi-

nor river links in the network and connectivity issues (see Figure 5.1). It was found 

that the proportion of missing links can reach up to 25% for territory county (see Fig-

ure 5.6) varying from 9.2% to 19.2% for the Top 10 most populated counties. Both 

constraints prevent the use of NHDPlus data in hydrological studies where river size 

and connectivity are relevant for example, flood hazard mapping (Sampson et al., 

2015; Wing et al., 2017). Thus, UShydro was created to fill the absence of minor rivers 

in NHDPlus while maintaining connectivity between main rivers, streams and water 

bodies. The new hydrography was evaluated and from a sample of 200 thousand cells 

the flow accumulation error was between -5% and 5% for 72.78% of the sample whilst 

global studies obtained values lower than 62.41% (see Table 5.4). The improvement 

over global hydrographic studies were more evident in the Great Basin area largely 

characterised by endorheic basins (see Figure 5.4). Small differences were found in the 

evaluation of geolocation accuracy where a UShydro reported errors with values 

lower %5 in 95.14% of a data sample whilst global studies lower than 94.40% (See 

Table 5.5). 

Like other DEM-based hydrographic studies such as HydroSHEDS and MERIT Hy-

dro, UShydro has limitations regarding its ability to represent bifurcated channels 

particularly present in braided rivers and delta areas. This limitation is intrinsic for 

flow directions derived from the D8 algorithm. Thus, complex river structures, such 

the case of the Old River Control Structure which diverts part of the Mississippi river 

into the Atchafalaya River, will not be represented in the hydrography. This lack of 

ability contributed as source of error during the evaluation of UShydro in the evalua-

tion of the data set in Sections 5.3.1 and 5.3.2. 

 

5.5 Conclusions 

 

A new hydrography for the contiguous US was generated by means of the National 

Elevation Dataset (NED) and the National Hydrography Dataset Plus (NHDPlus). The 

new data set extents the current coverage of the NHDPlus in areas with low coverage 

usually derived from disconnected reaches at the head waters. 

Global river network data sets such as HydroSHEDS and MERIT Hydro have pro-

duced hydrographic information that could fill the NHDPlus gaps however, they 



 108 

have been based on global DEMs and not on a country specific DEM. GRWL implicitly 

produced a river network nonetheless, its coverage is limited by the Landsat imagery 

quality so only important rivers are represented. The data set produced in this study 

used a country specific DEM in combination with and existent river network to map 

reaches not captured by NHDPlus. The linkage between both databases allowed a hy-

drography that offers a HydroSHEDS-like product (i.e. a raster-based product) but 

with better geolocation accuracy and improved connectivity. The later particularly 

notable for endorheic river basins in the Great Basin area. 

The new hydrography has a resolution of ~90m (at the equator) and is distributed in 

GeoTIFF format using 53 tiles of 5°x5° which mosaic the entire contiguous US. The 

variables distributed are flow direction and flow accumulation maps. We envisage 

that the new hydrography will improve river hydrodynamic predictions involving 

hydrographic variables in the contiguous US despite limitations discussed in Section 

5.4. 

 

5.6 Postscript 

 

This chapter presented a methodology to generate a hydrography based on high-qual-

ity data source of terrain elevation and the location of curated river centrelines, the 

later typically with partial coverage. The case study is in the US where the National 

Elevation Dataset (NED) and the National Hydrography Dataset Plus (NHDPlus) 

were used to generate a new hydrography for the contiguous US. The resulting hy-

drography presented better accuracy than global hydrography data sets especially in 

endorheic basins.  

The next chapter summarise main findings in this thesis and general conclusions. 
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CHAPTER 6 

 

Conclusions 

 

 

 

 

 

6.1. Main findings 

 

Flood modelling is still a field in active development where flood footprint accu-

racy (i.e. inundated area, flood extent) is a key factor in disaster risk management 

(Schuman et al., 2018). Over the last decade, producing accurate flood maps over 

national to global scale domains has become an important element in flood model-

ling (Schumann and Bates, 2018). The primary research aim of this thesis has been 

to improve our understanding of techniques for continental-scale flood modelling. 

In this view, this thesis achieved three objectives: i) it has developed an open-source 

software package to streamline the pre-processing of input data for continental 

scale flood studies; ii) it has used this toolbox to develop a 26-year European Flood 

Hindcast using simulated river discharge; and iii) it has created a framework to 

generate a new hydrography from a high-quality national data source. Brief details 

of these objectives are provided next. 

 

Frist, the development of the open-source software package LFPtools to automati-

cally pre-process input data for hydraulic models using regular grids in a compu-

tationally efficient manner is presented in Chapter 3. This software package encom-

passes tools to deal with DEM resampling, bank elevation estimation, bed elevation 

estimation, river width subtraction and interpolation, elevation smoothing algo-

rithms, continent basin splitting, and more. The development towards a general-

purpose set of tools to prepare flood inundation models at any scale does not exist, 

so that this was one of the motivations to create such package. The tools were eval-

uated in the Severn basin in the UK. Outputs of the test case were compared with 

the official flood extent footprint of a real event and satisfactory model performance 
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was obtained: Hit rate = 0.79, False alarm ratio = 0.24 and Critical success in-

dex = 0.63. 

 

LFPtools integrates seamlessly with modelling chains for the estimation of floods at 

any scale. In Chapter 4, LFPtools was used to create the first European Flood 

Hindcast based on 26 years of simulated river discharge across 298 basins, the set 

of tools immensely facilitated the preparation of input data for the 298 basins. With-

out automatic tools preparing data for such a number of basins would have been 

extremely laborious. The modelling framework that enabled the hindcast intro-

duced new methods in three areas: i) river bed estimation tailored for inflow river 

discharge; ii) flood defences integration in flood models; and iii) continental scale 

hydrological-hydraulic coupling. 

 

Lastly, in creating the hindcast it became clear that current hydrography data sets 

need to be further investigated for continental scale flood models. This thesis there-

fore developed a framework to generate a new hydrography from a high-quality 

national DEM, in particular, a hydrography derived from the National Elevation 

Dataset (NED) and the National Hydrography Dataset Plus (NHDPlus) (Chapter 

5). Key results from these chapters are presented next. 

 

i. The fast deployment of flood modelling studies at continental scales can be 

streamlined by the adoption of software packages that automate the process. 

 

LISFLOOD-FP is a well-recognised hydrodynamic model to simulate floodplain in-

undation. However, building a flood model can be time-consuming since input 

data need to be processed from a variety different sources and adapted to a partic-

ular user’s problem. This thesis introduced in Chapter 3, LFPtools, an open-source 

Python software package to help prepare input data for flood studies. The package 

encompasses the most frequently used methods for flood inundation modelling 

data preparation, and also facilitates the addition of new ones if desired. LFPtools 

can be thought of as a platform to streamline the preparation of flood inundation 

studies in different fields by bringing ease of use to non-expert users and efficiency 

to expert ones. It is built on top of the state-of-the-art Python libraries to handle 

large sets of data and it is in active development. It is important to mention that 
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these tasks could be done in a GIS package, but only with quite extreme difficulty 

and for small data arrays. 

 

LFPtools can be used within a modelling framework to build a continental-scale 

flood hindcast or reanalysis, a modelling framework of continental-scale flood ex-

tent for an early warning system or even within a framework to predict flood inun-

dation variables (flood extent, water depth, etc) in a climate change context. Thus, 

we envisage that this innovative set of tools will help to significantly reduce long 

pre-processing times and boost geoscience studies involving flood hydrodynamics 

in between. As LFPtools is open-source, users can revise the code, modify or add 

new methods easily and transparently. The source code is available at: 

http://github.com/jsosa/lfptools 

 

ii. It is possible to obtain continental scale flood inundation maps for multi-decal 

periods using a coupled hydrological-hydrodynamic model chain. 

 

Traditionally, the characteristics of floods at continental scales have been investi-

gated using river discharge from gauge stations and satellite imagery via remote 

sensing techniques. While these techniques provide information about the occur-

rence frequency and extent of floods, sampling in time and space may be sparse 

and they cannot provide information about flood inundation depth. Efficient flood-

plain inundation models can overcome these issues, but generally only over local 

scale areas and limited time periods. This thesis presented in Chapter 4 an auto-

mated modelling framework to produce a multi-decal flood depth time series (or 

flood hindcast) for Europe. The framework used free globally available sources of 

river width, flood protection standards, terrain information and hydrography to 

represent river geometries explicitly. The flood model was forced with simulated 

daily river discharge coupled to a floodplain inundation model to map flood pat-

terns over 26 years (1990-2016) in 298 European river basins. 

 

Both the methodology and data set in presented in Chapter 4 can be considered as 

new contributions to continental scale flood modelling. First, the computational 

framework improves from previous studies of the same kind in a few aspects: i) it 

introduces an efficient method to couple hydrological and hydrodynamic models 

in large scale and high resolution problems; ii) it presents a method to estimate river 
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bathymetry by adjusting the channel conveyance to account for the systematic bi-

ases typically found in modelled river discharge; and iii) it describes a methodology 

to account for flood defences in flood inundation modelling by using as a proxy a 

database of flood protection standards and adjusting the capacity of the channel to 

match these. 

 

The data generated in the European Flood Hindcast was evaluated against official 

maps in several basins in the UK and mainland Europe obtaining Critical Score 

Index values of 0.52 – 0.84. Later, an automatic flood detection algorithm was de-

veloped to extract important flood events in the hindcast data set. Results found 

that between 1990-2016 Europe experienced around 161 important flood events, 

with the Danube, Rhine, Elbe, Rhone and Po being the most affected river basins. 

Conversely, the least active basins in terms of fluvial floods were the Nemunas, 

Daugava, Douro, Ebro, Guadiana and Tagus during the same period. 

 

iii. The geolocation accuracy of river centrelines improves when high quality ter-

rain elevations and a source of main most important river centrelines are used. 

 

The geolocation and direction of flow of rivers are key factors used to drive accurate 

continental and local scale flood studies, such as the flood hindcast introduced in 

Chapter 4. Generally, global hydrography data sets such HydroSHEDS and MERIT 

Hydro are used for this purpose, however, they may misrepresent some river loca-

tions as these data sets are derived from space-borne satellites instead of national 

data sources. In the US, the National Hydrography Dataset Plus (NHDPlus) pro-

vides this information in a continuously revised dataset. However, the data set has 

missing information that could reach up to 25% of county area. One way to over-

come this issue is to use global hydrographic data sets based on spaceborne DEMs. 

This is beneficial for areas with poor terrain data, however areas with a full cover-

age of accurate terrain data, such the US, are not advantaged. Chapter 5 therefore 

presents UShydro, a new hydrography built on the National Elevation Dataset 

(NED) and the National Hydrography Dataset Plus (NHDPlus) which extends the 

current coverage of NHDPlus in the contiguous US and provides better estimates 

of flow accumulation and geolocation accuracy over global hydrographic data sets. 
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Global river network data sets such as HydroSHEDS and MERIT Hydro have pro-

duced hydrographic information that could fill the NHDPlus gaps however, they 

have been based on global DEMs and not on a country specific DEM. This is a prob-

lem as global DEMs contain error bias derived from the nature of the space-borne 

satellite. These biases result from: i) speckle errors caused by the variability of sur-

face reflectance over flat areas; ii) stripe patterns characterised by a regular height 

undulation with a wavelength of 500 m to 100 km; iii) absolute error bias produced 

when there is a shift in the  average elevation over large areas (~20 km); and iv) 

positive biases in the elevation due to misrepresentation of topography beneath 

forest canopies and buildings. 

 

The data set produced in Chapter 5 used a national DEM in combination with and 

existing river network to map reaches not captured by NHDPlus. The linkage be-

tween both databases allowed a hydrography that offers a HydroSHEDS-like prod-

uct but with better geolocation accuracy and improved connectivity, where the new 

hydrography obtained a flow accumulation error between -5% and 5% for 72.78% 

of a representative sample of the data set (200,000 locations) whilst global studies 

obtained values lower than 62.41%. The Improvements are particularly notable for 

endorheic river basins in the Great Basin area. The framework developed to pro-

duce these data can be easily transferable to other locations. 

 

6.2. Synthesis 

 

Global to continental scale flood models are being used by insurers, multi-national 

corporations, NGOs and national governments to tackle problems such as rapid 

flood disaster response, urban planning and climate change adaptation. Despite re-

cent advances in this field (Winsemius et al., 2013; Alfieri et al., 2014; Wing et al., 

2018), researchers have found that there are some topics that still need attention. 

This thesis presented new developments in the field which advance our under-

standing in different topics outlined below. 

 

First, workflow automation is key to developing flood inundation models at scale. 

Building flood inundation models from scratch demands a considerable amount of 

time and, as data are manipulated based on the user’s skills, it could potentially be 

subject to errors if the task has to be repeated several times. In this thesis a software 
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package is proposed in Chapter 3 to standardise the building process of flood mod-

els. The package is free and open source (http://github.com/jsosa/lfptools)  so re-

searches can revise, edit or add more methods to the package. It contains several 

methods that have been widely adopted by researchers in this field, thus we envis-

age that the package will be used to create applications involving floods in a more 

easy, fast and standardised way. 

 

Second, flood have been characterised using in-situ time series of river discharge 

for many years. Despite the fact that this approach has been widely adopted to de-

termine flood occurrence, flooding is a three-dimensional process where a volume 

of water is spread over the floodplain. Thus, the relevance of inundation area and 

inundation depth are important variables to consider for any kind of flood assess-

ment. Thanks to advances in floodplain hydrodynamic modelling and computa-

tional power, today it is possible to explore new ways to characterise floods. In this 

thesis, a Flood Inundation Hindcast was proposed to investigate the nature of 

floods. Similar to river discharge, a flood hindcast provides flood inundation esti-

mates varying in time. By adding the temporal component, it is possible to investi-

gate the evolution of floods by investigating its occurrence, inundated area and in-

undation depth. Building such application had not been possible without auto-

mated computational framework due the intense data processing that a study of 

this magnitude needs. Chapter 4 presented a European Flood Hindcast where in-

undation dynamics for 298 river basins were computed. The hindcast used freely 

available data sets at global scale to facilitate the replication of the computational 

framework. In the building the process a few unexplored aspects were investigated. 

For example, coupling hydrological-hydrodynamic models have been limited to 

basin scale studies (Grimaldi et al., 2019; Felder et al., 2017), in this thesis in Section 

4.2.4 a method was proposed to extend this to continental scales. Another aspect 

that required attention was the estimation of channel conveyance for a certain river 

flow. A solution to this aspect was presented in Section 4.2.5 where a synthetic river 

bed was produced tailored for the input river discharge. Similar to the river bed, 

flood defences were estimated and implemented implicitly in the computational 

framework using flood protection standards values as explained in Section 4.2.6. 

The data catalogue of the European Flood Hindcast contained daily estimates of 

flood inundation. Later, identification of events was possible using the methodol-

ogy explained in Section 4.2.8. Analysis suggested that between 1990-2016 the 
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Danube, Rhine, Rhone and Elbe were the most impacted basins. Conversely, the 

least impacted basins in the same period were the Douro, Ebro, Guadiana and Ta-

gus. These results compare favourably with previous findings (Blöschl et al., 2013) 

where a climatic signal of observed river discharge was associated with increasing 

floods in northwestern Europe (the Rhine, Elbe and Rhone) and a decreasing in 

floods in southwestern Europe (the Ebro, Guadiana and Tagus and the Douro). 

 

Lastly, continental scale flood modelling has been made possible thanks to global 

scale data sets of terrain elevation, river width and hydrography. The hydrography 

provides information about the geolocation of the river centrelines. Thus, incorrect 

geolocation can lead to inundation in areas where no flooding is expected or, con-

versely, flooding in unexpected areas. Thus, the geolocation of rivers has become 

in an important component in flood modelling. Generally, hydrography data sets 

derived from space-borne satellites have been adopted to identify the location of 

rivers (e.g., HydroSHEDS, MERIT Hydro), nonetheless some countries own na-

tional data sources that can help to obtain river geolocations with higher accuracy 

than can be achieved with global data sets. In Chapter 5 the accuracy of a hydrog-

raphy derived from national data sources was explored. The case study concerned 

the US as it owns freely available national maps to generate the hydrography. The 

new hydrography used the National Elevation Dataset (NED) and the National Hy-

drography Dataset Plus (NHDPlus) to generate a new data set. Whilst NHDPlus 

could have been used to directly replace global hydrography data sets, for example 

HydroSHEDS, in flood models, it was found that NHDPlus misses up to 25% river 

coverage in some US counties. Thus, the new hydrography not only extends the 

NHDPlus coverage but also improves its accuracy over global hydrography data 

sets. The new data set obtained a flow accumulation error between -5% and 5%, 

and a river geolocation accuracy (defined as the relation nearest distance/accumu-

lation) between -5% and 5%. Finally, the new data set was integrated in a modelling 

framework that combines fluvial, pluvial and coastal modelling to estimate flood 

hazard under current and future climate (Bates et al., 2020). The study became the 

basis of the flood hazard layers maps of the First Street Foundation (FSF) project 

‘FloodFactor’ (www.floodfactor.com), FSF is an organisation which main aim is to 

quantify and communicate America’s flood risk. 
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6.3. Recommendations and future research 

 

This section presents some recommendation and future research lines of this thesis. 

In particular these recommendations are for the case studies introduced in Chapter 

4 and 5. 

 

Chapter 4 presented a European Flood Hindcast for 298 basins. The modelling 

framework simulated 26 years of inland flooding at high resolution (~90 m). How-

ever, due to the complexity of the framework the coastal component was omitted. 

Under the current changing climate, it would have been interesting to explore 

coastal flooding and consequently compound flooding as well. To this end, a source 

of sea level rise estimates must be used. For example, Muis et al., 2016 generated a 

global reanalysis of storm surges and extreme sea levels that could have been inte-

grated in the European Flood Hindcast framework. The framework is flexible and 

allows users also to include probability distributions of future sea level, however 

the methods to build such integration only exist at local scale and future runoff will 

also be required (Quinn et al., 2013). 

 

The framework developed in Chapter 4 used historical river discharge to produce 

a flood hindcast, however, the framework can use any form of discharge data (from 

models or gauges) and since the model is already built (bed, bank elevations calcu-

lated already), other applications can be considered. For example, a rainfall-runoff 

model can be prepared to run experiments on climate change. In that scenario, a 

new set of river discharge data could be generated and easily included to evaluate 

river hydrodynamic response for that scenario. Another potential application of the 

model setup is flood inundation forecasting. The EFAS model is a system that runs 

daily, producing predictions of river discharge a few days ahead. Moreover, the 

methodology applied here can be easily transferred to other continental or large 

scale studies worldwide since the modelling framework uses freely available global 

data with only the river discharge component being dependent on the study area. 

 

Flood protection standards in the European Flood Hindcast were considered as 

static over time as this is the only information available to date, however, it would 

therefore be interesting to explore flood protection standards varying over time. In 

context, the event of August 2002 in Germany played an important role in 
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improving the flood resilience of that country. After the event, the German govern-

ment reinforced its flood defence infrastructure. These types of actions against 

floods are repeated in most developed countries, however, the lack of data concern-

ing defence changes over time impedes its implementation in models. 

 

The European Flood Hindcast used freely globally available DEM as source of ter-

rain elevations across Europe. This seamless DEM is available for all European 

countries. However, better estimates of inundation are expected with higher qual-

ity terrain elevations. Thus, blending global DEM with LIDAR data where it is 

available will produce better flood predictions. 

 

Chapter 5 presented a new hydrography for the contiguous US based on national 

scale data sets of terrain elevations (NED) and river centrelines (NHDPlus). The 

new hydrography, however, lacks the ability to represent bifurcated channels par-

ticularly present in braided rivers and deltas. This limitation is intrinsic for flow 

directions derived from the D8 algorithm. It will be interesting to explore a method 

to overcome this issue and thus represent in a better way complex river structures 

such the Old River Control Structure which diverts part of the Mississippi river into 

the Atchafalaya River, for example. Finally, it would have been interesting to esti-

mate the error that different hydrography data sets make to flood model outputs. 

This is relevant for flood modellers as they can use this information to minimise the 

uncertainty introduced in their modelling chains. 

 

The findings of this thesis have shown that flood modelling at continental scale is 

a challenging problem but nonetheless feasible. Whilst most development to date 

has been devoted towards the estimation of flood depths for a particular return 

period, this thesis presented the basis for floodplain estimation for long periods 

time (in the order of years) based on simulated discharge. This type of simulations 

will enable scientists in the field to investigate flood characteristics from a very dif-

ferent perspective, especially in the context of the current changing climate. 
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