
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Cole, Laura M

Title:
Cortisol effects on pupil size and locus coeruleus activity

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



 

Cortisol effects on pupil size and locus 
coeruleus activity 

 
 
 
 

 
 

By Laura Cole 

 

 
  

A dissertation submitted to the University of Bristol in accordance with the 
requirements for award of the degree of Doctor of Philosophy in the Faculty of 

Health Sciences 
 
 

Bristol Medical School 
March 2021 

      

Word Count: 39401  
 



 

 2 

Abstract 

The regulation of behaviour is a higher-order cognitive function that is guided by attention. 
Intrinsic and extrinsic factors, such as behavioural relevance and physical salience, as well as 
the reward value of an event or stimulus can modulate behaviour by influencing attention. In 
stress, attention is biased towards bottom-up salience and behaviour is modulated so that is 
stimulus-driven and conducive to survival, rather than being goal-directed. The Locus 
Coeruleus (LC) is a small norepinephrine (NE) nucleus residing in the dorsal pons that has an 
essential role in arousal and attention, as well as strong links with the stress responsive  
hypothalamic-pituitary-adrenal (HPA) axis. In a manner akin to the attentional control of 
behaviour, the LC responds to both top-down and bottom-up salience in animals, so theories 
have proposed a role for the LC in attentional control. However, whether this function 
translates to humans is unclear due to the challenges of imaging the brainstem, which prevent 
the non-invasive investigation of the LC.  

The measure of pupil size provides a non-invasive index of LC activity, as stimuli with top-
down and bottom-up salience evoke short bursts of firing in the LC as well as transient pupil 
dilations. In addition, a change in arousal induces coincident fluctuations in baseline LC 
activity and baseline pupil size. This thesis reports a series of experiments, in which human LC 
function was explored in human volunteers by implementing an adapted auditory oddball 
task with concurrent pupillometry. Transient pupil dilations were evoked by task relevant and 
low probability events, and the effect of task relevance on the pupil was amplified by 
incentive salience when a reward manipulation was added to the task. In addition to the 
transient effect on pupil dilation, reward incentives evoked an increase in baseline pupil size. 
This evidence indicates a role for the human LC in the processes underlying these different 
types of salience. 

Cortisol is the main end product of the HPA axis in humans and administering cortisol receptor 
antagonists disrupted the transient effect of incentive salience on the pupil compared with 
placebo. In contrast, an antagonist of the NE beta adrenoceptor enhanced the transient effect 
of incentive salience on the pupil. In addition, administration of a stress-level dose of cortisol 
disrupted the tonic but not the phasic effect of incentive salience on the pupil. This suggests 
that cortisol and NE modulate the underlying processes of incentive salience, such as extrinsic 
motivation, via the LC. Implications for a maladaptive stress system, including the LC, is 
discussed in relation to the development of apathy, with disrupted attentional control and 
extrinsic motivation. In addition, this technique has allowed me to demonstrate both cortisol 
and NE regulation of  LC activity. Therefore, this thesis demonstrates that human LC function 
can be investigated with the non-invasive measure of pupillometry. 
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Introduction 

Our environment contains too much information for us to process at the same time. 

Therefore, an attentional control system is needed to guide internal resources towards 

important stimuli within our environment and shift the internal control state to facilitate 

goal-directed or stimulus-driven cognition and behaviour (Corbetta & Shulman, 2002; de 

Wit & Dickinson, 2009). Important stimuli include those that relate to internal goals, beliefs 

and values, as well as external reward incentives. These types of stimuli capture attention in 

a top-down manner, facilitating goal-directed cognition and behaviour. In contrast, 

stimulus-driven events are physically salient and automatically capture attention in a 

bottom-up manner (Fecteau & Munoz, 2006). This not only includes events that visually 

stand out but those that automatically capture attention due to high salience, such as a 

sudden loud noise or the presence of a predator (Aston-Jones & Cohen, 2005). Rapid 

attentional capture by these types of stimuli promotes survival by enabling the fast 

identification of environmentally significant events and facilitating automatic, stimulus-

driven and habit-based behaviours (Anderson, 2013; Evans et al, 2019). This ability to shift 

between control states in response to a constantly changing environment and internal goals 

is essential for the expression of adaptive and goal-directed behaviour (Dajani & Uddin, 

2015; Goschke & Bolte, 2014).  

 

Because of its central role, a dysfunctional attentional control system can result in abnormal 

attention, cognition, motivation and behaviour. Therefore, an important question for 

researchers is: which parts of the brain modulate attentional control? Cumulative evidence 

indicates the involvement of the locus coeruleus (LC), a small NE brainstem nucleus with a 

major role in arousal and attention, and strong links with the stress system. 

 

This thesis will explore the role of the LC in bottom-up and top-down processes using 

pupillometry, the measure of pupil size, as an indirect marker of human LC activity. It will 

also investigate the connection between the LC and the stress system, which can become 

maladaptive in disease.  
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Definitions 

The term bottom-up refers to processes that are driven by the sensory information from a 

stimulus (i.e., stimulus-driven). In contrast, top-down processes are goal-directed and driven 

by higher-order cognition. According to dual-system theories of control state, the 

attentional control system is dichotomous, with the top-down and bottom-up system 

competing for dominance (de Wit & Dickinson, 2009). Within the top-down category of 

attentional control, the literature often refers to both behaviourally relevant information 

and reward incentives as being goal-directed or having top-down salience, without clearly 

stating whether said events are goal-directed or have top-down salience because they 

relate to internal behavioural goals or external rewards. This is problematic because 

behavioural goals and reward incentives are separate cognitive constructs and recruit 

disparate brain regions (Awh et al., 2012). Therefore, it is important to distinguish between 

them. In this thesis I will do so by explicitly stating whether goal-directed or top-down 

events and effects are related to internal goals or external rewards unless they involve a 

combination of the two. In addition, I will refer the two types of top-down salience as 

behavioural and incentive salience.  

The locus coeruleus 

The locus coeruleus norepinephrine system 

The central NE system consists of two ascending pathways: The dorsal and ventral NE 

bundles, both of which originate in the brainstem. The ventral bundle arises from brainstem 

nuclei in the pons and medulla, and projects to the amygdala, hypothalamus, midbrain, 

medulla and spinal cord. The dorsal NE bundle originates from a subset of LC neurons, 

collectively referred to as A6. The LC resides in the dorsal pontine tegmentum, and projects 

to the cerebral cortex, hippocampus and cerebellum, as well as brain regions innervated by 

the ventral bundle including the amygdala, hypothalamus and spinal cord (Szabadi, 2013). 

These broad-reaching projections are at odds with the relatively small size of the LC, which 

is one of the smallest nuclei in the brain, measuring approximately 14.5 mm in length, 2.5 

mm in diameter and 2.0 mm in height (Fernandes et al., 2012). In addition, the LC is the 

primary site of NE synthesis in the central nervous system (Szabadi, 2013). NE exerts effects 
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on its targets by binding to G-protein coupled receptors: the alpha  and beta adrenoceptors 

(Ramos & Arnsten, 2007).  

 

Locus coeruleus neurons have two characteristic patterns of firing: phasic and tonic, which 

have separate but related functions. Tonic firing is made up of irregular but continuous, low 

frequency activity (1-3 Hz) that, according to animal studies, appears to correlate with 

changes in arousal across the sleep-wake cycle (Aston-Jones & Bloom, 1981; Hobson et al., 

1975). For example, tonic activity increases across the sleep-wake continuum: through the 

stages of sleep to the transition from sleep to waking, and in states of waking, through low 

to high arousal states, such as automatic, habitual activities to mentally challenging tasks 

and conditions of stress. This suggests that the function of tonic activity in the LC is the 

modulation of arousal across the sleep-wake cycle (Foote et al., 1980; Hobson et al., 1975). 

In contrast, phasic firing consists of transient bursts of higher frequency activity (8-10 Hz) 

(Aston-Jones & Bloom, 1981; Foote et al., 1980). Animal studies have shown that phasic 

activity in the LC is rapidly evoked by top-down and bottom-up salience (Akaike, 1982; 

Aston-Jones & Bloom, 1981; Bouret & Richmond, 2015; Foote et al., 1980).  

Animal studies of locus coeruleus function  

Animal studies have explored the role of the phasic LC response. These investigations report 

transient bursts of activity in response to infrequent, novel, noxious, reward related, task 

relevant and unexpected events (Aston-Jones & Bloom, 1981; Bouret & Sara, 2004; 2005; 

Bouret & Richmond, 2015; Dayan & Yu, 2006; Hirata & Aston-Jones, 1994; Rajkowski et al., 

1994; Vankov et al., 1995). Whilst this list of evoking stimuli might seem quite broad, studies 

have found that phasic responses in the LC are selective for these characteristics, as they are 

absent for other stimuli, which are presented within the same experiment as a comparison. 

For example, compared with task-relevant events, absent or rapidly habituated LC 

responses have been reported for similar sensory events that act as distractors and so are 

not task relevant (Aston-Jones et al., 1994). Several review articles have put all of this 

evidence together and proposed theories of phasic LC function.  

 

Early theories postulate roles related to sensory processing, as stimuli that evoke phasic LC 

activity come from many different sensory modalities (discussed by Berridge & Waterhouse, 
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2003 and Kalwani et al., 2014). However, this view was discredited when studies found that 

the phasic LC response is plastic and follows changes in task utility. For example, when a 

former non-target stimulus becomes a target, the phasic response for the former target is 

abolished and emerges instead for the new target (Aston-Jones et al., 1997; Rajkowski et al., 

2004). In most cases, a target is only a target when it is associated with a task objective. 

Therefore, it is task relevant and possesses behavioural salience. The plasticity of the phasic 

response with its sensitivity to behavioural salience is suggestive of a more complex role for 

the phasic LC response associated with higher-order cognitive processes related to 

behaviour. Therefore, several research groups have asked whether the phasic response 

functions in an internal cognitive process leading up to a motor event, such as the decision 

to action a behaviour, or even the motor event itself (Aston-Jones et al., 1994; Clayton et al., 

2004; Kalwani et al., 2014; Rajkowski et al., 2004). However, this question has been 

confounded by the use of target stimuli by these studies. For example, most of the time, a 

target stimulus is behaviourally relevant because there is a response required to that 

stimulus, such as a button press. Since the stimulus presentation and ensuing behavioural 

response are typically close together in time, it is difficult to distinguish between the 

attentional and motor contribution to the phasic LC response. Therefore, it is unclear 

whether the phasic response to behavioural relevance is actually a result of the motor 

preparation or execution rather than behavioural salience.  

 

The phasic LC response can also be evoked by bottom-up salience, such as unexpected and 

novel events (Aston-Jones & Bloom, 1981; Dayan & Yu, 2006). In addition, there is evidence 

that the phasic response to target stimuli is reduced if the target has high probability, 

suggesting that the phasic LC response is sensitive to the combination of bottom-up and 

top-down salience (Aston-Jones et al., 1994; Rajkowski et al., 2002). However, several 

research groups have stressed the importance of behavioural salience for task-evoked LC 

responses, and theories of LC function postulate that this, rather than bottom-up salience, 

drives the phasic LC response (Aston-Jones & Cohen, 2005; Bouret & Sara, 2005; Sales et al., 

2019). This controversy arose due to evidence showing early, unselective phasic responses 

to target and non-target stimuli, followed by absent phasic responses to low probability 

non-target stimuli compared with large phasic responses to target stimuli (Rajkowski et al., 

2004). Similarly, other studies have reported a habituated phasic response with repeated 
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presentations of bottom-up salience such as novelty, unless the stimulus additionally 

possesses top-down salience (Aston-Jones & Bloom, 1981; Aston-Jones & Cohen, 2005; 

Bouret & Sara, 2005). However, it is also true that bottom-up salience can decline with 

repeated presentations of a stimulus, especially if a stimulus has bottom-up salience 

because it is novel and unexpected, as the stimulus becomes increasingly less novel and 

more expected over time. In contrast, top-down salience does not decline with repeated 

presentations, unless behavioural or task contingencies change. Therefore, the finding that 

the phasic LC response habituates to bottom-up salience does not disprove a role for the LC 

related to stimulus-driven events. In sum, evidence suggests that the phasic LC response is 

evoked by bottom-up salience, but the response may habituate over time as the evoking 

event becomes less salient and less relevant to behaviour. 

 

Given that the phasic LC response is evoked by bottom-up and top-down salience, several 

research groups have proposed a role for the LC in saliency attribution or processing (e.g., 

Corbetta et al., 2008; Vazey et al., 2018). Mechanisms involved in saliency attribution and 

processing are functionally related to attentional control, which regulates the selection of 

salient stimuli and facilitates the reorientation of internal cognitive and behavioural 

resources accordingly (Bouret & Sara, 2004; Itthipuripat et al., 2017; Melloni et al., 2012). 

Therefore, the LC could indirectly facilitate adaptive behaviour by influencing attentional 

control. Furthermore, this could explain why the phasic LC response is strongly linked to 

behaviour, as mentioned above (e.g., Clayton et al., 2004). Most of the literature has 

suggested similar roles for the LC in modulating attention, cognition, motivation and 

behaviour. Thus, on the whole, research in this field suggests that the LC responds to 

important environmental events, including those that are physically and behaviourally 

salient because it has a direct or indirect role in the attentional control of behaviour (Bari et 

al., 2020; Bouret & Sara, 2004; Corbetta et al., 2008; Rajkowski et al., 1993; Sara & Bouret, 

2012; Ventura et al., 2008).  

Theories of locus coeruleus function 

There are several all-encompassing theories of LC function that piece together the roles of 

phasic and tonic LC activity into one, unified model. Perhaps the most influential model is 

the adaptive gain theory by Aston-Jones and Cohen (2005). According to this theory, frontal 
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brain regions constantly evaluate task utility and send corresponding information to the LC. 

In response, the LC releases NE at cortical targets, regulating the gain of processing (signal-

to-noise ratio) in the local neuronal circuits that facilitate task performance. Phasic and 

tonic rates of firing modulate the gain of these circuits according to the external 

environment by facilitating or disengaging task-relevant processes. In this way, particular 

patterns of phasic and tonic firing encode particular control states. Specifically, firing 

patterns predominated by phasic activity and intermediate tonic activity (phasic mode) 

promote task engagement, whereas high (tonic mode) or low rates of tonic firing are 

respectively associated with distractibility and drowsiness, promoting task disengagement 

and environmental exploration of new sources of reward. The phasic LC response acts as an 

attentional filter, which becomes biased for behaviourally relevant stimuli. Events that 

possess bottom-up salience, including novel and unexpected events, might evoke a phasic 

response in the LC if they are highly salient and elicit a reorientation of internal resources, 

such as a sudden loud sound or a threat.  

 

The network reset theory of LC function takes a slightly different view of the same collection 

of evidence, postulating that phasic bursts of activity in the LC are elicited by important 

environmental stimuli and act as a reset signal for the active functional networks underlying 

ongoing task activities (Bouret & Sara, 2005). The phasic LC response prompts the 

reorganisation of large neuronal networks, causing a cognitive shift in task set in accordance 

with the eliciting stimulus. According to the network reset theory, active functional 

networks are not only reset but also maintained by phasic LC activity. Therefore, phasic 

firing in the LC can sustain or disrupt active functional networks in line with environmental 

demands. Tonic activity is also thought to contribute to network reset (Bouret & Sara, 

2005).  

 

The adaptive gain theory and network reset theory propose distinct functions for the phasic 

LC response in attentional filtering and regulating active functional networks. However, 

both theories propose that phasic LC activity can be evoked by bottom-up and top-down 

salience, and that changes in phasic and tonic firing rates modulate the mode of control 

(e.g., a task engaged and disengaged mode). In this way, the adaptive gain theory and 

network reset theory are only subtly different in that they respectively propose that firing 
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rates in the LC regulate motivation and task switching. These processes are related and 

ultimately interact to modulate the appropriate control of internal resources in a constantly 

changing environment.  

Stress function 

Stress is defined as “a state of real or perceived threat to homeostasis” (Smith & Vale, 2006, 

p. 383). Under stress, the normal function of the LC changes. It is widely agreed that the LC-

NE system facilitates the cognitive and behavioural components of the stress response by 

stimulating adaptive changes in control state (Morris et al., 2020). Stress activation of the LC 

increases tonic firing and suppresses phasic firing. In line with the adaptive gain theory, 

evidence suggests that this causes a surge in arousal and distraction, suppressing the 

activation of the top-down control system (i.e., goal-directed processes; Elam et al., 1985; 

McCall et al., 2015; Valentino, 1988; Valentino & Foote, 1987; 1988). The result is overriding 

bottom-up control, with enhanced environmental scanning and the capture of attention by 

stimulus-driven events. Together, these changes promote survival by facilitating threat 

detection, as well as stimulus-driven and habit-based behaviours that conserve energy 

whilst enabling fight-or-flight responses (Braunstein-Bercovitz et al., 2001; Henckens et al., 

2010; 2012; Hermans et al., 2014; Sänger et al., 2014; Schwabe et al., 2010; 2012; 2017; 

Schwabe & Wolf, 2009; 2011; van Marle et al., 2009; 2010). The adaptive modulation of 

phasic and tonic LC mode in stress is coordinated through reciprocal connections with the 

hypothalamic-pituitary-adrenal (HPA) axis. 

The HPA Axis 

Underlying mechanisms 

The HPA axis is made up of a complex set of interactions between the three main structures: 

the hypothalamus, the pituitary gland and the adrenal gland. The HPA axis is under control 

of two systems: the circadian pacemaker, and the stress system, which activates the HPA 

axis via inputs from the medial amygdala, the central nucleus of the amygdala, the lamina 

terminalis, the LC and various other brain stem nuclei. In contrast, inhibitory inputs from the 

hippocampus suppress HPA axis activity (Aguilera et al., 1995; Cunningham et al., 1990; 

Dong et al., 2001; Matheson et al., 1971; Kolbe et al., 2015; Nicolaides et al., 2014; Petrovich 

& Swanson, 1997).  
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Stimulation of the HPA axis initiates a cascade of tightly coordinated events. Upon 

activation, neurons originating in the paraventricular nucleus (PVN) of the hypothalamus 

release corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) into the 

hypophysial portal circulation at the median eminence. Corticotrophin-releasing hormone 

and AVP stimulate corticotroph cells in the anterior pituitary gland to release of 

adrenocorticotrophic hormone (ACTH), which travels in the systemic circulation and targets 

glucocorticoid secreting cells within the zona fasciculata of the adrenal cortices. This results 

in the secretion of glucocorticoids from the adrenal cortex (Nicolaides et al., 2014) .  

 

In non-stress conditions, glucocorticoid secretion follows an hourly, pulsatile (ultradian) 

rhythm, superimposed upon a diurnal circadian rhythm, which is conserved in all mammals 

including humans, with blood concentrations falling throughout the day, then building up 

overnight to peak on waking (Weitzman et al., 1971). Stressors evoke a surge in 

glucocorticoid secretion, much larger than that under circadian and ultradian control 

(Krieger et al., 1971; Weitzman et al., 1971; Windle et al., 1998; Young et al., 2004).  

 

Since glucocorticoids are lipophilic, they readily pass through the phospholipid bilayer of cell 

membranes and bind to their receptors: the mineralocorticoid receptor (MR) and the 

glucocorticoid receptor (GR), which typically reside in the cytoplasm (Timmermans et al., 

2019). The GR is ubiquitous, present in most cell and tissue types, whereas the expression of 

MR is more specific (Reul & de Kloet, 1985). As a result, glucocorticoids can influence almost 

all organ systems, and they have a profound effect on the brain where they mediate 

neuronal differentiation, synaptic plasticity, arousal, cognition, emotion and behaviour 

(Fitzsimons et al., 2013; Kadmiel & Cidlowski, 2013; Karssen et al., 2001; Thau et al., 2019). 

In addition, glucocorticoids coordinate internal homeostatic mechanisms, such as metabolic, 

cardiovascular, immune and neuroendocrine activities (Sapolsky et al., 2000). 

 

The precise effect that glucocorticoids exert on their targets depends on several factors. For 

example, as MR has a high affinity and GR has a low affinity for glucocorticoids, MR and GR 

are preferentially bound at different glucocorticoid concentrations. Therefore, the ratio of 

MR/GR signalling may change over the circadian cycle, or even the course of a single stress 
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or ultradian glucocorticoid pulse. Furthermore, although MR and GR bind to the same 

glucocorticoid response elements on DNA, they bind distinct sets of genes, with a small 30% 

overlap (Datson et al., 2001). As a result, glucocorticoids exert distinct effects via their 

receptors at different phases of a stress or smaller ultradian pulse (McMaster et al., 2011). 

Therefore, a blunted ultradian rhythm in disease alters relative GR and MR binding and 

induces more constant gene transcription, whereas pulses of glucocorticoids induce 

fluctuations in receptor occupancy, leading to differential and tissue-specific gene 

expression and phenotype. Indeed, research has demonstrated that pulsatile profiles of 

glucocorticoids produce fundamentally different transcription programs than that of 

smooth profiles (Stavreva et al., 2009). In addition, the effects of glucocorticoids also vary 

across brain regions because, as mentioned, whereas GR is present in most parts of the 

brain, MR is predominantly found in limbic areas, such as the amygdala, hippocampus and 

prefrontal cortex (Reul & de Kloet, 1985).  

Fast and slow effects  

Glucocorticoids exert their effects via fast, non-genomic mechanisms and slower, genomic 

mechanisms (Dallman, 2005). The traditional effects of glucocorticoid signalling occur via 

genomic pathways, which depend on MR or GR mediated transcription and de novo protein 

synthesis (Karst et al., 2005). Via this pathway, the ligand bound receptor translocates from 

the cytoplasm to the nucleus. Here, it influences gene expression indirectly via interactions 

with other transcription factors or directly by binding to specific DNA sites, such as 

glucocorticoid response elements, and by activating or repressing the transcription of 

specific gene sets (Mifsud & Reul, 2016).  

 

The faster, non-genomic pathway occurs independently of DNA binding and de novo protein 

synthesis (Karst et al., 2005). These non-genomic or fast effects occur within seconds to 

minutes of glucocorticoid exposure, a time scale that is too fast to be accounted for by 

slower genomic mechanisms (Wiegert et al., 2005). Perhaps the most well-known example 

of these fast effects is the rapid suppression of the HPA axis by glucocorticoids, occurring 

within 5-10 minutes of corticosterone (the primary glucocorticoid in rodents) infusion in rats 

(Hinz & Hirschelmann, 2000).  
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Animal studies and a few human studies have demonstrated fast effects of glucocorticoids 

on cognition, emotion and behaviour. Interestingly, these effects tend to have the opposite 

directionality of the later, slow effects of glucocorticoids. Thus, the effects of glucocorticoids 

vary over time. The consensus is that the fast effects stimulate rapid, adaptive changes in 

cognition and behaviour, such as survival behaviours in stress, whereas the slow effects 

restore homeostasis (e.g., de Kloet et al., 2005; Henckens et al., 2010; 2012). However, 

there has been little research of these fast effects in humans. Therefore, there is a gap in 

our understanding of how the effects of cortisol (the primary glucocorticoid in mammals) on 

human cognition, emotion and behaviour vary over time. 

Links with the autonomic nervous system and the locus coeruleus 

The HPA axis is one of the two neuroendocrine stress response systems, together with the 

autonomic nervous system (ANS). Both of these systems are highly interconnected. Their 

activation by stress follows a highly coordinated, temporal sequence. Because the HPA axis 

is an endocrine system, its effects take minutes to emerge, rather than seconds, such as 

those of the ANS. This delay is due to the use of hormonal messengers, which travel through 

systemic circulation, a much slower mode of transport than neuronal signal transmission. As 

a result, the first effects of the stress response are those of the ANS, which are short-lived, 

followed by those of the HPA axis by glucocorticoids, which are more sustained (Ulrich-Lai & 

Herman, 2009).  

 

The ANS is innervated by a number of inputs, many of which similarly project to the HPA 

axis and activate the stress response. The major activating stress signals arise from the 

central nucleus of the amygdala, the LC and the ventrolateral medulla (Jones & Yang, 1985; 

Ulrich-Lai & Herman, 2009). Upon activation, the ANS promotes rapid physiological changes 

through its sympathetic branch and by increasing circulating levels of epinephrine and NE, 

which are secreted principally from the adrenal medulla as well as sympathetic nerve 

terminals. The result is a rapid activation of the fight-or-flight response, which increases 

blood pressure, heart rate, peripheral vasoconstriction and energy mobilisation. The 

parasympathetic branch serves to protect homeostasis by modulating the duration of the 

sympathetic response (Ulrich-Lai & Herman, 2009).  
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The LC is an important part of the stress response and regulator of the ANS. It sends direct 

projections to the sympathetic preganglionic neurons in the spinal cord and 

parasympathetic preganglionic neurons in the brain stem and spinal cord (Lewis & Coote, 

1990; Unnerstall et al., 1984). In stress, the LC is activated by inputs from the PVN of the 

HPA axis (Valentino, 1988; Valentino & van Bockstaele, 2008). As mentioned, stress 

activation of the LC causes an increase in tonic firing and central NE. The result is enhanced 

sympathetic activity and an increase in CRH synthesis in the PVN and glucocorticoid 

secretion from the adrenal gland (Ward et al., 1976). In this way, the HPA-axis promotes LC 

activity, and the LC-NE system promotes HPA axis activity. In addition, the LC expresses both 

MR and GR, and its activity is regulated by glucocorticoids (Avanzino et al., 1987; Makino et 

al., 2002). It has been suggested that fast effects of glucocorticoids on the brainstem 

stimulate and sustain a state of behavioural arousal during stress (Aston-Jones & Bloom, 

1981; Grant et al., 1988; Rasmussen et al., 1986). 

 

The ANS and the LC work synergistically with the HPA axis in the physiological response to 

stress. The interactions described above coordinate the peripheral (fight-or-flight) and 

central (cognitive and behavioural) arms of the stress response to bring about an adaptive 

state of physiological, cognitive and behavioural preparedness.  

The HPA axis in disease 

In some circumstances, the stress response becomes abnormal and stimulates maladaptive 

physiological, cognitive and behavioural changes (de Kloet et al., 2005). Pathological stress 

systems have been described in numerous diseases, including depression, post-traumatic 

stress disorder, Alzheimer’s disease, schizophrenia, Parkinson’s disease and stroke (e.g., 

Bradley & Dinan, 2010; Herrero et al., 2015; Keller et al., 2017; Olsson et al., 1992; Pomara 

et al., 2003; Speer et al., 2019). Reports of underlying pathology include hypercortisolemia, 

hypocortisolemia, impaired HPA axis inhibition, dysregulation of HPA axis activity, abnormal 

circadian cortisol and a blunted cortisol awakening response (e.g., Bao & Swaab, 2019; 

Carroll et al., 2007; Hatfield et al., 2004; Kwon et al., 2015; Rohleder et al., 2004). These 

abnormalities are clearly linked to the HPA axis, and perhaps areas of the brain that regulate 

or are regulated by HPA axis activity, such as the LC. Although the ANS is also a major part of 

the stress response, this system has not been so widely associated with disease. Symptoms 
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of ANS disorders are well-defined and typically characterised by peripheral symptoms. For 

example, bradycardia can result from abnormal parasympathetic activation or sympathetic 

withdrawal, and hypotension results from sympathetic withdrawal (Kitchen et al., 2006; 

Mano & Iwase, 2003). In contrast, the HPA axis in disease is associated with maladaptive 

neuroplastic changes in the brain (Radley et al., 2015). Symptoms tend to be related to 

cognition and behaviour, implicating the diseased HPA axis in psychiatric mechanisms 

(Stokes & Sikes, 1991).  

The HPA axis in reward 

Evidence indicates a link between the HPA axis and reward (Bao & Swaab, 2019; Bunce et 

al., 2015; Kinner et al., 2016; Koob & Kreek, 2007; Montoya et al., 2014; Putman et al., 

2010). This link was initially hypothesised after reports describing HPA axis and cortisol 

dysregulation in affective disorders and addiction, as the common theme between these 

diseases could be a dysfunctional reward system (Bogdan & Pizzagalli, 2006; Carroll et al., 

2007; Kwon et al., 2015; Lovallo, 2006). For example, in depression an aberrant reward 

system could impair motivated reward-seeking behaviours. In contrast, in addiction it could 

bias motivation in favour of addictive behaviours (Whitton et al., 2015). In line with this 

notion, Putman et al. (2010) found that the administration of 40 mg (a high, stress-dose) 

oral hydrocortisone (synthetic cortisol) increased risky decision-making in men, suggesting 

that exogenous cortisol biases behaviours in favour of reward-seeking. In turn, this suggests 

that, with a maladaptive HPA axis, the normal function of cortisol could change and 

promote abnormal reward-seeking behaviours, such as in addiction. 

Reward and motivation 

Definitions 

Motivation is a complex cognitive construct. It is the biasing, top-down influence driven by 

external rewards or internal values and beliefs, such as behavioural goals (Ryan & Deci, 

2000). In addition, bottom-up mechanisms can bias motivation if they are subsequently 

perceived as being behaviourally relevant, such as a threat (Sussman et al., 2016). For 

clarity, I will define motivation according to the factor that is driving it—that is, extrinsic 

motivation (rewards) or intrinsic motivation (behavioural goals). 
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Extrinsic motivation or wanting a reward, must be distinguished from reward itself, which is 

the hedonic effect that comes with reward delivery (Berridge & Robinson, 2016). In 

research, the investigation of reward has been broken up into distinct stages, mainly 

comprising a reward cue step, and a reward delivery step. Reward cues can act as reward 

incentives and these terms are often used interchangeably in the literature (Zhang et al., 

2009). However, they are not one and the same. The term reward incentive relates to the 

motivational value associated with the reward cue, whereas reward cue refers to the 

stimulus that is presented to signal upcoming reward  (Robinson et al., 2014). This reward 

can be high or low or even completely negligible. Therefore, a reward cue does not 

inherently possess incentive salience and drive extrinsic motivation: if a reward cue signals 

low or absent reward, especially compared with a reward cue that signals a larger reward, it 

is less likely to be perceived as having incentive salience. In contrast, stimuli that signal large 

rewards generally have incentive salience. However, the extent to which a given reward is 

rewarding varies to some degree across individuals, thus the degree of incentive salience 

attributed to a given reward cue can vary across individuals (Robinson et al., 2014). 

However, generally the greater or more intense a reward is, the more rewarding it is 

perceived as being. For example, high monetary rewards are typically perceived as more 

rewarding than low monetary rewards, thus reward cues that signal high monetary rewards 

typically have high incentive salience. 

 

Therefore, reward cues can have incentive salience but do not always, and reward 

incentives are more closely linked to the wanting or motivational part of the reward-seeking 

process than reward per se. In contrast, reward delivery is closely associated with the actual 

rewarding or hedonic effect (Berridge & Robinson, 2016). Despite this, the literature often 

associates both effects observed at the presentation of reward cues and those observed at 

reward delivery with reward. This is a confusing generalisation, given that these steps 

reflect motivation and reward, which are separate constructs and so are likely underpinned 

by distinct neuronal circuitry. In the present thesis, I will refer to the terms reward cue as 

the sensory stimulus used to signal reward, and reward incentive as the motivational value 

associated with the reward cue. In addition, I will distinguish between the motivational 

(presentation of reward cues) and rewarding (reward delivery) stages of reward 

investigations. 
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Finally, reward sensitivity is ill-defined in the literature, having been given a number of 

different definitions, such as reward anticipation and the tendency for extrinsic motivation 

to bias behaviour in favour of a reward (Depue & Collins, 1999; van Hulst et al., 2015). In 

this thesis, like Van Lippevelde et al. (2020), I will define reward sensitivity as the propensity 

to detect reward signals in the environment, as this definition is similar to several others in 

the literature (e.g., Fauth-Bühler, 2019). Reward sensitivity can be gaged by measuring 

incentive salience and is a marker of extrinsic motivation, as it indicates the extent to which 

internal resources are biased to reward.  

The locus coeruleus in reward 

As mentioned, phasic responses in the LC have been observed for behaviourally relevant 

stimuli, such as targets (Aston-Jones et al., 1994; Kalwani et al., 2014; Rajkowski et al., 

2004). Target stimuli represent a behavioural goal, and although reward incentives recruit 

comparatively disparate brain regions, they similarly represent a goal, albeit reward related. 

Therefore, behavioural and incentive salience can capture attention and bias behaviour in a 

similar goal-directed, top-down manner (Awh et al., 2012). As a result, it is plausible that, 

like target stimuli, reward incentives activate a phasic LC response, especially if the LC 

functions in the attentional control of behaviour. Indeed, there is some evidence of a link 

between phasic LC activity and reward incentives. This suggests a role for the LC related to 

both internal and external goals, such as goal-directed behaviour for both types of events. 

 

Early electrophysiological animal studies of LC function presented rewards with target 

stimuli during task training to encourage animals to make a behavioural response to targets. 

However, these studies concluded that recorded phasic LC responses were evoked by 

behavioural salience rather than reward delivery (e.g., Aston-Jones et al., 1994; 1997). A few 

more recent animal studies were specifically carried out to investigate the relationship 

between the LC and reward-related events (reward cues and delivery). The majority of these 

studies reported phasic LC responses to reward incentives but not reward delivery (Bouret 

& Richmond, 2015; Varazzani et al., 2015). This suggests that phasic LC responses occur as a 

result of incentive salience and extrinsic motivation rather than the actual rewarding effect. 
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One research group carried out a series of studies investigating the relationship between LC 

activity and reward in monkeys using electrophysiological recordings (Bouret & Richmond, 

2015; Jahn et al., 2018; Varazzani et al., 2015). For example, in one paper from this group, 

Varazzani et al. (2015) trained monkeys to perform a series of squeezes on a grip for reward 

delivery (drops of water), and found that when monkeys made these squeezes, the required 

amount of force covaried with phasic LC activity. This research team went on to implement 

the same reward task on monkeys administered with clonidine, which reduces central NE 

(Jahn et al., 2018). The treated monkeys squeezed the grip with less force, expending less 

effort during the reward task. Therefore, whilst they still engaged in the task, monkeys 

demonstrated less effortful engagement, indicating that a reduction in central NE disrupted 

extrinsic motivation. 

 

Similarly, Bouret and Richmond (2015) recorded LC activity in monkeys whilst manipulating 

the size of expected reward (drops of water). They found that LC activity was higher at cue 

onset when the cue signalled a larger reward. In contrast, when monkeys released a lever to 

receive the reward after the reward cue was presented, LC activity was higher if smaller 

rewards were expected. Bouret and Richmond (2015) explained these paradoxical results by 

proposing a role for the LC in mobilising the resources required to perform goal-directed 

actions for rewards. For example, cue presentation stimulated the LC, which mobilised the 

amount of energy proportional to the expected reward size. Prior to lever release, slightly 

more energy is required to reach threshold for movement, so if this threshold remains 

constant across all trials, the supplementary amount of energy required to reach threshold 

is inversely related to the total energy mobilised on cue onset. Therefore, more energy is 

required just before action onset when smaller reward cues are presented. Regardless of 

whether the LC is explicitly involved in mobilising energy resources for goal-directed, 

reward-seeking responses, the evidence clearly suggests that phasic LC activity is more 

closely related to extrinsic motivation and reward-seeking behaviour than the actual 

rewarding effect.  

The locus coeruleus norepinephrine system in addiction 

Additional evidence for the role of the LC in reward comes from addiction studies.  
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Some of the earliest NE addiction studies investigated the effect of opiates on the LC in 

animals. They found that opiate withdrawal caused hyperactivity in the LC in rodents 

(Akaoka & Aston-Jones, 1991). This hyperactivity was reported to drive the expression of 

physical withdrawal symptoms, such as motor hyperactivity, mastication and piloerection 

(Maldonado & Koob, 1993). In addition, evidence has demonstrated the importance of 

central NE for opiate-seeking behaviours. For example, studies have shown that central NE 

depletion abolishes the preference for morphine-related contexts in mice, as well as the 

stress-induced reinstatement of heroin-seeking behaviour in rats (Sahraei et al., 2004; 

Shaham et al., 2000). Whilst historically it was thought that activity in the dopaminergic 

system was necessary for opiate abuse, some studies have reported conflicting results 

(Dworkin et al., 1988; Pettit et al., 1984). Therefore, another neurotransmitter system, such 

as NE, is likely to be involved.   

 

In psychostimulant studies of addiction, the LC-NE system is essential for drug-induced 

locomotor activity and sensitisation (an increased drug effect with repeated doses; Drouin 

et al., 2002). Like the opiate addiction studies, investigations have reported that NE 

depletion abolishes the preference for amphetamine-related contexts, as well as the 

reinstatement of psychostimulant self-administration in mice, with an emphasis on the 

stress-induced reinstatement of drug-seeking behaviours (Davis et al., 1975; Erb et al., 2000; 

Ventura et al., 2003). For example, the reinstatement of stress-induced (foot shock) 

cocaine-seeking behaviour is abolished in rats by clonidine, a presynaptic alpha 

adrenoceptor agonist that reduces sympathetic activity and central NE (Erb et al., 2000). 

Similarly, NE has been implicated in the stress-induced reinstatement of other drugs of 

abuse (Lê et al., 2011; Leri et al., 2002; Shaham et al., 2000; Shepard et al., 2004). This 

suggests that the combined effects of NE and stress are required for this reinstatement of 

drug-seeking behaviour.  

 

Since the LC is closely linked with the endogenous stress system and is essential for the 

stress response, it is unsurprising that some LC-NE effects, whether adaptive or 

maladaptive, are specifically triggered by stress, such as the stress-induced reinstatement of 

addictive behaviours. Indeed, Schwabe et al. (2010; 2012) demonstrated that a stress-

induced shift in control state, from a goal-directed to a stimulus-driven mode is dependent 
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on both NE and cortisol, implicating the LC and the HPA axis. They administered healthy 

human male and female volunteers with a 20 mg stress dose of hydrocortisone, or 20 mg 

yohimbine (an antagonist of the presynaptic alpha adrenoceptor that increases central NE) 

or both. Participants were then trained on a task to receive two different food outcomes, 

one of which was subsequently devalued by consumption to satiety. A following session of 

extinction training showed whether participants displayed goal-directed or habitual 

behaviour, as food devaluation should have changed behaviour accordingly, so that 

participants were less inclined to make goal-directed actions for delivery of the devalued 

food. This behavioural modulation in line with task goals is indicative of goal-directed rather 

than habitual behaviour. In contrast, responses for the devalued food would be indicative of 

habitual behaviour. Schwabe et al. (2010; 2012) found that hydrocortisone and yohimbine 

rendered behaviour habitual, whereas monotherapy with hydrocortisone or yohimbine 

resulted in goal-directed behaviour. As mentioned, this suggests that the combined effects 

of cortisol and NE are required for the stress-induced shift in control mode towards a 

habitual, stimulus-driven state. Otherwise, behaviour remains goal-directed. 

 

With this in mind, perhaps the HPA axis and LC function in reward by facilitating the 

appropriate attentional control of goal-directed (including reward-seeking) or stimulus-

driven states. As such, a pathological HPA axis and/or LC, disrupts the adoption of 

appropriate control states and in doing so promotes maladaptive reward-seeking 

behaviours. If we relate this to the addiction studies that report a stress-triggered 

reinstatement in drug-seeking by NE, it suggests that this reinstatement occurs due to the 

combined effects of NE and cortisol, which drive a pathological shift in control state in 

favour of drug-seeking behaviour rather than stimulus-driven behaviour in stress. Therefore, 

perhaps cortisol brings about a change in control state via the LC by stimulating changes in 

LC phasic and tonic mode. 

Apathy 

Similarly, cumulative evidence indicates that a pathological mechanism involving the LC and 

cortisol promotes the development of apathy (Bouret & Richmond, 2015; Jahn et al., 2018; 

Kaye & Lightman, 2006; Putman et al., 2010; Schwabe et al., 2010; 2012; Tiemensma et al., 

2014). Historically, apathy has lacked a universal definition, although it is now widely agreed 
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that it encompasses a group of amotivation syndromes, characterised by a profound lack of 

motivation with functional impairment. Classification also requires the expression of at least 

2 out of 3 of the following symptom clusters: impaired goal-directed behaviour, cognition 

and emotion (Robert et al., 2009; 2018).  

 

A lack of clinically valid measures of apathy has somewhat restricted its research (e.g., 

Carrozzino, 2019). This is problematic because apathy is highly prevalent, common to many 

diseases including Alzheimer’s disease, Parkinson’s disease, schizophrenia, depression and 

traumatic brain injury (e.g., den Brok et al., 2015; Ishizaki et al., 2011; Kant et al., 1998; 

Kiang et al., 2003; Nobis et al., 2018). In addition, apathy occurs with functional impairment, 

which has a substantial negative impact on quality of life (Robert et al., 2009; 2018). Despite 

this, there are no effective treatments available on prescription for apathy (e.g., Theleritis et 

al., 2019). There is even an absence of any prospective treatment, as there has been very 

little research of the molecular mechanisms of apathy, especially universal mechanisms 

shared by different diseases (Heron et al., 2018). Therefore, there are no drug targets. 

Research in this field could lead to the discovery of novel treatment strategies, with the 

enhancement in the quality of life of thousands of patients worldwide.  

 

With this in mind, a good starting point for uncovering the underlying mechanisms of apathy 

is to investigate patients who commonly present with apathy and show well-defined 

pathophysiology. For example, patients with primary adrenal insufficiency, which is 

characterised by insufficient cortisol, often present with apathy (Cleghorn, 1951; Farah et 

al., 2015; Tiemensma et al., 2014). Although these patients receive cortisol replacement 

therapy, the normal function of cortisol is still lost, as the therapy does not replicate the 

physiological ultradian rhythms of cortisol. As a result, treated patients with primary adrenal 

insufficiency still display symptoms, such as apathy (Tiemensma et al., 2014). This evidence 

suggests that abnormal cortisol activity is involved in apathy pathophysiology. What’s more, 

when patients with primary adrenal insufficiency are deprived of cortisol replacement 

therapy, they lose the pressor response to stressors, a cardiovascular sympathetic reflex 

that elevates blood pressure (Kaye & Lightman, 2006). This suggests that primary adrenal 

insufficiency patients show abnormal sympathetic and cortisol activity. Therefore, perhaps 

both of these abnormalities are involved in the underlying mechanism of apathy.  
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Since the LC is a cortisol target that promotes sympathetic activity, it is a good candidate 

brain region for the study of apathy. Precisely how dysfunctional LC activity could result in 

apathy is unclear, although as mentioned it could promote maladaptive attentional control, 

resulting in abnormal cognition, motivation and behaviour—in other words, an abnormal 

control state.  

 

Conceptual frameworks have been useful in identifying prospective avenues for research by 

defining key processes in motivated behaviour that could become dysfunctional in apathy. 

For example, Husain and Roiser (2018) outlined a framework for apathy centred around 

effort-based decision-making for rewards. According to this framework, the decision-making 

process involves several steps, including the generation of options for behaviour, option 

selection, anticipation of action or reward, action execution and effort, the hedonic or 

rewarding effect and a learning phase, which reinforces behaviour and guides future option 

selection. Abnormalities within any one of these stages could result in or contribute to the 

development of an apathetic-type syndrome.  

 

Evidence from the LC literature could suggest a role for the LC-NE system in option 

generation and selection, given the proposed role of the LC in the attribution of salience and 

a behavioural decision-making process; the anticipatory phase, which involves motivational 

arousal; or initiating action and effort, given the proposed role of the LC in mobilising energy 

resources for goal-directed actions (Aston-Jones & Cohen, 2005; Bouret & Richmond, 2015; 

Jahn et al., 2018; Vazey et al., 2018). At present, it is not possible to say whether disrupting 

any one of these steps involves the pathological LC and results in apathy, as investigation of 

the LC in motivation, particularly extrinsic motivation, is still in its early stages. However, 

this framework does support apathy research focusing on the LC and the relationship 

between the LC and salience or motivation. In addition, in terms of experimental design, the 

framework posits that reward anticipation could become disrupted in apathy, so it supports 

the assessment of apathy by measuring reward sensitivity, as it suggests that extrinsic 

motivation is reduced in apathy. In support of this notion, Rochat et al. (2013) found that 

increasing reward insensitivity correlated with symptoms of apathy in stroke patients. This is 

useful because, as mentioned, present measures of apathy include self-reports, which lack 

clinical validity and reliability (Carrozzino, 2019). 
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Pupillometry 

The challenges of investigating the human locus coeruleus 

Compared with animal studies, which have the use of more invasive techniques, 

investigation of the human LC has been limited by the particular challenges of imaging the 

brain stem (Turker et al., 2019). Functional imaging of the brain is typically conducted using 

blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI), 

which has a spatial and temporal resolution that is limited by the haemodynamic response. 

Because the brainstem is so densely packed with nuclei and comprises a relatively small 

volume, brainstem nuclei tend to have small cross-sections compared with other brain 

regions (Butler & Taube, 2015; Fernandes et al., 2012; Watson, 2012). Unfortunately, the 

spatial resolution of BOLD fMRI is not sufficient to distinguish between adjacent brainstem 

nuclei. Furthermore, the precise shape and location of the LC varies across individuals, so 

the use of published coordinates and brain atlases in locating the LC is problematic  (Keren 

et al., 2009; Swallow et al., 2003; Turker et al., 2019). Despite this, the majority of studies 

investigating human LC function have used such localisation techniques (K. Liu et al., 2017). 

This has led to the investigation of unreliable regions of interest, which are likely to capture 

surrounding brain stem nuclei as well as the LC. Indeed, the LC and surrounding nuclei 

appear homogenous in T1-weighted images. Thus, accurate identification of the voxels 

containing the LC is difficult (Swallow et al., 2003; Turker et al., 2019). What’s more, the 

brainstem has a topological arrangement, which groups nuclei with similar functions 

(Fernández-Gil et al., 2010). As a result, the LC has overlapping functions with surrounding 

nuclei, such as the inferior colliculus and the nucleus incertus, both of which also function in 

arousal and control state (Ryan et al., 2011; Turker et al., 2019). Therefore, researchers 

cannot distinguish the LC from surrounding nuclei by implementing a task that is selective 

for LC activation.  

 

Another challenge for fMRI studies of the LC is minimising physiological noise. The 

brainstem is located close to major arteries and the ventricles, which introduce signals from 

cardiac-related artifacts and cerebrospinal fluid, respectively. It is also closer to the lungs 

than the rest of the brain, increasing the susceptibility of fMRI to respiratory artifacts. As a 

result, brainstem fMRI suffers from a poor signal-to-noise ratio (Harvey et al., 2008).  



 

 30 

Attempts to combat physiological noise include a process called spatial smoothing, which 

reduces noise effects by averaging across adjacent voxels (Mikl et al., 2008). However, for 

small brainstem nuclei, spatial smoothing can prevent the identification of the true region of 

interest. In addition, as the LC is so close to the fourth ventricle, smoothing could actually 

introduce more noise into the signal. In investigations of the human LC, spatial smoothing 

has been used inconsistently (K. Liu et al., 2017; Turker et al., 2019).   

 

Most investigations of human LC function have used single-echo fMRI, which measures the 

magnetic resonance signal in each voxel once per acquisition (K. Liu et al., 2017). In contrast, 

multi-echo fMRI measures the magnetic resonance signal at least two times per acquisition, 

reducing the influence of physiological noise and signal dropout from regions of interest  

(Turker et al., 2019). Investigations of the human LC with fMRI have been inconsistent in 

their use of single echo denoising techniques (K. Liu et al., 2017). Their failure to implement 

a unified approach has led to unreliable data across the research field. Indeed, Turker et al. 

(2019) compared different fMRI acquisition (single and multi-echo) and denoising 

techniques, reporting various estimates of LC function obtained by these approaches.  

 

Recent research suggests that neuromelanin-sensitive fMRI is a more effective means of 

localising the LC, as the LC contains a pigment called neuromelanin, which has paramagnetic 

properties, whereas surrounding nuclei do not (Sasaki et al., 2006). This approach increases 

the contrast of neuromelanin-containing voxels in the LC compared with adjacent nuclei, 

allowing the identification of the LC from surrounding nuclei (Keren et al., 2009; Turker et 

al., 2019). However, neuromelanin-sensitive imaging is expensive and very few fMRI studies 

investigating the LC have implemented this approach (Turker et al., 2019).   

 

Due to the challenges of imaging the LC in humans, a large part of this research field has 

used pupillometry, the measure of pupil size, to investigate human LC function instead. 

Pupillometry studies of the locus coeruleus 

Like the firing rates of LC neurons, pupil responses can be high amplitude and transient 

(phasic, pupil dilatory responses) or lower in amplitude and sustained (tonic, baseline 

changes in pupil size). The rationale behind using pupillometry to investigate LC activity 
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comes from cumulative findings, which have shown that baseline pupil size, like tonic LC 

activity, is sensitive to changes in arousal and control state, and that phasic pupil responses 

occur for some of the stimulus properties that evoke phasic activity in the LC, such as 

bottom-up and top-down salience (e.g., Beatty, 1982; Qiyuan et al., 1985). Therefore, 

findings from human pupillometry studies have been compared with those of 

electrophysiological animal studies of the LC  (Aston-Jones et al., 1994; 1997; Beatty, 1982; 

Qiyuan et al., 1985; Rajkowski et al., 1994; 2004). It is thought that, since the onset of 

arousal- and stimulus-evoked changes in LC activity occur at similar points in time as evoked 

changes in pupil size, they must share a common neuronal pathway. Therefore, arousal- and 

stimulus-evoked changes in pupil size provide a marker of LC activity.  

 

Most comparisons by human studies have focused on LC responses predicted by the 

adaptive gain theory (e.g., Chiew & Braver, 2013; Gabay et al., 2011; Gilzenrat et al., 2010; 

Murphy et al., 2011, 2014). To recap, the adaptive gain theory posits that LC phasic mode, 

which occurs at intermediate levels of tonic activity, promotes the exploitation of current 

behavioural rewards and therefore task engagement. In contrast, high and low tonic activity 

promote the exploration of alternative rewards and therefore task disengagement. 

Disengagement occurs at low levels of tonic activity due to drowsiness, and at high levels of 

tonic activity due to extreme arousal and distractibility. Since phasic mode is thought to 

facilitate task engagement, it should be associated with improved behavioural performance 

compared with high and low tonic activity, which is associated with poor performance 

(Aston-Jones & Cohen, 2005). Therefore, the adaptive gain theory predicts phasic or 

transient pupil dilatory responses with relatively small baseline pupils during optimal task 

engagement and performance, and smaller or absent phasic pupil responses with relatively 

large, or even smaller baseline pupils during poor task engagement and performance.  

 

Task paradigms implemented by several human pupillometry studies of the LC have been 

specifically designed to investigate whether indicators of task engagement (mostly 

behavioural performance) influence phasic pupil responses and especially baseline pupil 

size. Researchers then manipulate task engagement whilst measuring the effects on 

behavioural performance and pupil size (and therefore LC activity), to see whether there is a 

correlation. A demonstrated association is used to infer a relationship between behavioural 
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performance and LC function. For example, in the first of a series of experiments, Gilzenrat 

et al. (2010) found that smaller baseline pupil size and larger phasic pupil responses were 

associated with superior task performance in a simple pitch discrimination task 

implemented in humans. This suggests that phasic LC mode, which is marked by phasic LC 

activity (and therefore phasic pupil responses) and low tonic LC activity (small baseline 

pupils) is associated with task engagement. However, very low tonic activity in the LC 

(smallest baseline pupil size) is associated with drowsiness, task disengagement and 

therefore poor behavioural performance. Similarly, Murphy et al. (2011) carried out a 

simple auditory task in humans and found that pupil size correlated with task performance. 

Specifically, they reported that large phasic pupil responses, evoked by targets, correlated 

with poor task performance, as did the largest and smallest recoded baseline pupil size. In 

contrast, intermediate baseline pupil size was associated with superior task performance, as 

predicted by the adaptive gain theory. The correlations between baseline pupil size and task 

performance support the adaptive gain theory; however, the correlation between phasic 

pupil responses and task performance does not. 

 

Another experiment by Gilzenrat et al. (2010) involved a simple pitch discrimination task, 

with added concepts of cost (increasing task difficulty) and reward, which were 

implemented to manipulate task engagement. For example, the authors postulated that 

reward would promote engagement, as would task difficulty (as greater difficulty requires 

greater mental effort) up to a point, after which task disengagement would occur. In 

anticipation of this, the authors introduced an escape button which, once pressed, allowed 

participants to truly escape from the task before starting the same task again, beginning 

with low but constantly increasing difficulty and reward values. It was expected that escape 

button presses would occur when increasing reward became increasingly unattainable due 

to task difficulty, which increased up to a point at which pitch discrimination was impossible 

as the two tones were identical. Pupillometry data from these tasks revealed that baseline 

pupil size increased up to and peaked upon escape, then fell over the next few trials at the 

beginning of the subsequent task. Similarly, phasic pupil responses increased and then 

diminished near escape. These pupil responses are indicative of task disengagement as 

predicted by the adaptive gain theory. After escape, baseline pupil size decreased and 

phasic pupil responses increased, indicative of phasic LC mode and task engagement. This 
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supports the adaptive gain theory and suggests that pupil responses and LC activity are 

influenced by factors that affect task engagement and therefore a goal-directed control 

state. 

 

In contrast to these human pupillometry studies, most of the animal studies in this field 

investigated the processes underlying the phasic LC response (Aston-Jones et al., 1994, 

1997; 1999; Clayton et al., 2004; Kalwani et al., 2014; Rajkowski et al., 1994; 2004; Vazey et 

al., 2018). In addition, although the adaptive gain theory posits that changes in the 

magnitude and frequency of phasic and tonic activity in the LC alters task engagement and 

therefore control state, it also suggests that a phasic response locked to a salient (top-down 

or bottom-up) event reflects an attentional filtering process, biased towards important 

environmental stimuli (Aston-Jones & Cohen, 2005). Few human pupillometry studies have 

investigated this hypothesis by manipulating top-down and bottom-up salience whilst 

measuring the effects on pupil size, especially in the context of a simple sensory task (e.g., 

O’Bryan & Scolari, 2021; Liao et al., 2016). For example, although Liao et al. (2016) 

investigated the effects of salience on phasic pupil responses, they implemented a task in 

which participants ignored auditory or visual stimuli, whilst responding to stimuli in the 

other modality by making various button presses. This is just one example of many, in which 

human pupillometry studies have implemented more complex task paradigms than those 

used by the animal studies.  

 

This is problematic because pupillometry is an indirect measure of LC activity, thus any 

change to the task paradigm compared with the animal studies could lead to the 

recruitment of disparate brain regions and a change in the mechanisms underlying the pupil 

response. To mitigate this problem, it is important to first carry out a similar task paradigm 

to those implemented by animal studies. Once reliable pupil responses to top-down and 

bottom-up salience have been established, more complex task manipulations can be 

implemented to see how they affect the established pupil responses. Furthermore, given 

that human pupillometry studies often use more complex paradigms than animal studies 

and that many have focused on predicted changes in baseline pupil size by the adaptive gain 

theory, there is a gap in the literature for human pupillometry studies of the LC that simply 
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replicate the task design of electrophysiological animal studies, which reported phasic LC 

responses to top-down and bottom-up salience.  

The oddball task 

Much of the LC electrophysiological and pupillometry literature has used the oddball task  

to investigate the relationship between LC activity and pupil size (Aston-Jones et al., 1994; 

Aston-Jones & Cohen, 2005; Gilzenrat et al., 2010; Hong et al., 2014; Liao et al., 2016; 

Murphy et al., 2011, 2014; Rajkowski et al., 2004). In its most simplistic form, this task 

involves presenting an infrequent target (oddball) stimulus amongst frequent distractor 

stimuli. For example, Rajkowski et al. (1994) presented oddball stimuli with a 10-20% 

probability to monkeys. Typically, subjects are tasked with identifying the oddball stimulus 

and they must signal its presentation by making some sort of behavioural response, such as 

a button press. Most oddball tasks are auditory or visual, in which case, the oddball stimulus 

might differ from distractors in auditory frequency, colour or shape.  

 

The oddball task is well suited to investigations of LC function, as it provides stimuli that 

possess top-down (behavioural) and bottom-up salience, characteristics that have been 

shown to evoke phasic responses in the LC (Aston-Jones et al., 1994; Rajkowski et al., 1994). 

For example, the target oddball stimulus has behavioural salience because it is task relevant, 

whereas bottom-up salience can be manipulated by adjusting stimulus probability. 

Therefore, measuring stimulus-evoked, phasic changes in pupil size by a low probability 

oddball stimulus provides a marker of phasic LC activity in response to bottom-up and top-

down salience. In addition, by collecting epochs of baseline pupil size outside of stimulus 

presentation, investigators can assess tonic LC  activity, which indexes arousal and control 

state (Aston-Jones & Cohen, 2005; Gilzenrat et al., 2010).   

 

Most of the early animal studies, which measured LC activity via electrophysiological 

recordings, implemented a visual version of the oddball task—for example, Rajkowski et al. 

(2004) presented visual oddballs on a computer monitor, in the form of two-dimensional 

vertical or horizontal rectangles. However, presenting visual stimuli in human pupillometry 

studies is problematic as the pupil constricts in response to light exposure. Therefore, a 

visual oddball task could evoke changes in pupil size between trials by luminance rather 
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than task manipulations. Consequently, the majority of human pupillometry studies have 

implemented auditory oddball tasks, in which the oddball stimulus differs from distractors 

in auditory frequency (Gilzenrat et al., 2010; Hong et al., 2014; Liao et al., 2016; Murphy et 

al., 2011, 2014). 

 

An important question for pupillometry research is whether the characteristic LC responses 

to visual oddball stimuli exist for auditory oddball stimuli. One electrophysiological animal 

study presented auditory tones to rats and reported coinciding phasic LC responses in a 

passive listening task (Aston-Jones & Bloom, 1981). However, as this task was passive, unlike 

most oddball tasks, there was no target stimulus nor any type of behavioural response, so 

the auditory stimulus did not have top-down salience. Furthermore, stimulus probability 

was not manipulated, so the auditory stimulus did not have bottom-up salience. These are 

important properties for evoking LC activity. Having said this, Aston-Jones and Bloom (1981) 

described a stimulus novelty effect on the LC by the auditory tones, with phasic responses 

habituating over time as the stimulus was repeated. This suggests that the phasic response 

seen here could have been the result of a stimulus novelty or bottom-up salience effect, 

which in turn suggests that phasic LC responses can be evoked by salient auditory tones. In 

support of this, a human fMRI study, which used neuromelanin-sensitive imaging, reported 

LC activation in response to auditory oddball presentations (Mather et al., 2020). This 

validates the implementation of auditory oddball tasks in pupillometry research of the LC.   

Evidence of a causal link between the locus coeruleus and pupil 

Precisely how LC activity leads to changes in pupil size is unclear, and evidence of a causal 

relationship between the LC and the pupil has been lacking until recently. For example, 

before 2015, only one study had compared electrophysiological recordings of LC activity 

with pupil size in the same animal. This was an unpublished animal study carried out by 

Rajkowski et al. (1993) who reported a relationship between tonic LC activity and baseline 

pupil size (they did not examine phasic LC activity). Since this research remains unpublished, 

it is difficult to determine the reliability of this data. Even so, pupillometry studies of LC 

activity persisted. In 2016, research led by Siddhartha Joshi investigated the causal link 

between the LC and pupil size by carrying out single unit recordings from several brain 

regions (the inferior colliculus, superior colliculus, anterior cingulate cortex and posterior 
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cingulate cortex), with simultaneous pupillometry in monkeys (Joshi et al., 2016). Whilst the 

authors found associations between neuronal activity and pupil size for several brain 

regions, non-luminance changes in pupil size most reliably correlated with the LC. For 

example, electrical stimulation of the LC evoked changes in pupil size at every site tested, 

whereas results were more variable for other brain regions, such as the inferior and 

superior colliculus. This evidence is supported by similar electrical stimulation of the LC in 

rats (Y. Liu et al., 2017). 

 

Joshi et al. (2016) also presented unexpected auditory tones to monkeys during passive 

fixation and found that phasic responses in the LC showed a trial-by-trial correlation with 

pupil size. In contrast, whilst the same tones evoked responses in other regions, the 

responses did not vary trial-by-trial. Only activity in the LC covaried with pupil size both over 

long (several seconds) and short (single spikes) timescales, suggesting that phasic and tonic 

LC responses correlate with phasic and tonic changes in pupil size.  

 

Two other animal studies comparing LC activity with pupil size reported a relationship 

between phasic LC activity and phasic pupil responses. The first recorded LC activity and 

pupil size in monkeys performing a reward task (Varazzani et al., 2015). The authors 

reported coinciding phasic LC responses and phasic pupil responses at the presentation of a 

reward cue and action onset (actions were made for reward delivery). Phasic responses in 

the LC also occurred sporadically during passive tasks, supposedly as a result of rapid 

fluctuations in control state. The second study reported similar findings, with coinciding 

phasic LC activity and phasic pupil responses in rats during quiet waking and locomotion 

(Reimer et al., 2016). In addition, there have been human fMRI studies of LC activity that 

have compared LC activity with changes in pupil size (Murphy et al., 2014). Whilst such 

investigations typically report a correlation between task evoked LC activity and pupil size, 

fMRI investigations of LC activity have been unreliable, as discussed in detail above. 

However, this collective evidence supports a relationship between phasic LC activity and 

phasic pupil responses.   

 

Some studies have sought out the pathway that connects the LC with the pupil (Joshi et al., 

2016; Y. Liu et al., 2017). The most obvious link is the ANS, which recruits the LC and 
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constricts or dilates the pupil via respective parasympathetic and sympathetic contributions. 

For instance, the pupil is constricted by the pupillary sphincter muscle, which receives 

excitatory parasympathetic input from neurons of the ciliary ganglion. In turn, the ciliary 

ganglion is innervated by the Edinger-Westphal nucleus, residing in the midbrain. Therefore, 

pupil constriction is driven by the parasympathetic activity of Edinger-Westphal neurons (or 

inhibition of the dilatory sympathetic input). The pupillary dilator muscle receives excitatory 

sympathetic input from neurons of the superior cervical ganglion. In turn, the superior 

cervical ganglion is innervated by neurons of the intermediolateral cell column of the spinal 

cord. Therefore, pupil dilation occurs when the sympathetic neurons of the superior cervical 

ganglion stimulate the pupillary dilator muscle to contract or when parasympathetic input 

of the pupillary sphincter muscle is inhibited (McDougal & Gamlin, 2015). Indeed, a recent 

investigation confirmed that pupil dilation evoked by the LC is dependent on inhibitory 

pathways from the LC that project to the ipsilateral and contralateral parts of the Edinger-

Westphal nucleus. These pathways suppress the parasympathetic activation of pupil 

constriction by the Edinger-Westphal nucleus, thus dilating the pupil (Y. Liu et al., 2017; 

Nobukawa et al., 2021). 

 

Altogether, the evidence suggests that the LC dilates the pupil through autonomic 

connections. In addition, whilst pupil size is not a direct measure of LC activity, the literature 

provides substantial evidence to support the use of pupillometry as a marker of LC activity. 

Pupillometry studies of the locus coeruleus and reward 

I am interested to see if there is any evidence that supports a relationship between pupil 

size and incentive salience, given the purported role of the LC in the attentional control of 

goal-directed behaviour for external rewards. This evidence will provide further support for 

the use of pupillometry in investigations of LC function in reward processes, such as 

extrinsic motivation. 

 

Several human pupillometry studies have investigated the effect of extrinsic motivation on 

pupil size, reporting phasic pupil responses to reward cues, with larger dilations evoked by 

larger reward incentives (Chiew & Braver, 2014; Dix & Li, 2020; Gilzenrat et al., 2010; 

Manohar & Husain, 2015). For example, Manohar and Husain (2015) implemented a 
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monetary incentive task, in which participants were presented with an auditory reward cue, 

then ignored a distractor and made a saccade to a target location in order to obtain a 0p, 

10p or 50p reward. Participants exhibited larger phasic pupil dilations when presented with 

the 50p reward incentive. Dix and Li (2020) reported similar phasic pupil responses by 

reward incentives. Their interpretation of these findings is particularly interesting as it 

suggests a role for the LC in extrinsic motivation. Specifically, they proposed that larger 

phasic pupil responses in high reward conditions reflected a greater effect of incentive 

salience on the pupil, resulting from an enhanced resource allocation to extrinsic 

motivation. Notably, this interpretation is strikingly similar to the hypothesised role of the 

LC in reward by electrophysiological animal studies. To reiterate, Bouret and Richmond 

(2015) suggested that the LC mobilises the resources required to perform goal-directed 

actions. Together, these pieces of evidence suggest that the phasic LC response and the 

phasic pupil response to incentive salience are similar. Therefore, pupillometry can be used 

to investigate the effect of incentive salience on LC activity. 

 

Evidence for an association between baseline pupil size and incentive salience is variable, 

with some studies reporting an increase in baseline pupil size by larger reward incentives, 

and others reporting no change in baseline pupil size (Chiew & Braver, 2014; Gilzenrat et al., 

2010; Walsh et al., 2019). Most of those that have reported a change in baseline pupil size 

by incentive salience have explained findings by relating them to changes in control state 

predicted by the adaptive gain theory (e.g., Gilzenrat et al., 2010). For example, larger 

rewards motivate task engagement and improved behavioural performance (unless they are 

used as a task distractor), thereby promoting a goal-directed, reward-biased control state. 

In this way, these studies comply with the LC literature, which propose that tonic LC activity 

covaries with control state and linearly with arousal (Aston-Jones & Bloom, 1981; Aston-

Jones & Cohen, 2005; Chiew & Braver, 2014; Foote et al., 1980; Hobson et al., 1975). 

However, the reason for the inconsistent effects of incentive salience on baseline pupil size 

is unclear. 

 

In sum, studies that have investigated the relationship between pupil size and reward 

mostly report an association between the phasic pupil response and incentive salience, 

which is a marker of reward sensitivity and closely associated with extrinsic motivation. In 
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contrast, the association between baseline pupil size and incentive salience is less clear. 

These findings parallel electrophysiological recordings of phasic and tonic LC activity in 

reward tasks. Therefore, this evidence provides further support for a link between the LC 

and pupil, and pupillometry can be used to investigate human LC function in extrinsic 

motivation.  

Research plan 

This thesis reports a series of pupillometry experiments that administer different versions of 

an auditory oddball task to human volunteers. In Chapter 2, I report three experiments. One 

of the main objectives of these experiments was to design and implement a similar oddball 

paradigm on humans compared with the early animal studies of LC function. If the recorded 

pupil responses to task stimuli resemble the phasic and tonic LC responses reported by 

animal studies, this would validate the use of my oddball task in combination with 

pupillometry as a marker of human LC activity. The remaining experiments in this chapter 

explore the task components that drove the pupil response and developed a reward 

manipulation for the oddball task. These experiments were implemented to develop and 

test an oddball task in order to validate its use for the investigation of human LC function, 

particularly in motivation, in the later experiments reported in Chapter 3 and 4.  

 

Chapter 3 reports a clinical study that implemented the oddball task with a reward 

manipulation and concurrent pupillometry in healthy human volunteers. The main objective 

was to investigate the underlying mechanisms of salience effects on the pupil, especially 

behavioural and incentive salience as indicators of intrinsic and extrinsic motivation. As 

mentioned earlier in this chapter, evidence suggests that these mechanisms could involve 

cortisol and NE signalling, although there has been very little research in this field (Bouret & 

Richmond, 2015; Jahn et al., 2018; Kaye & Lightman, 2006; Putman et al., 2010; Robert et 

al., 2008; 2019; Schwabe et al., 2010; 2012; Tiemensma et al., 2014). Therefore, I 

administered cortisol and NE receptor antagonists to participants and investigated the 

effects of salience on the pupil with these treatments compared with placebo. A difference 

in the phasic and/or tonic pupil response to salience between a treatment and placebo 

could indicate cortisol or NE involvement in the underlying processes of behavioural, 

incentive or bottom-up salience. These findings could have implications for the treatment of 
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apathy, which is characterised by a profound lack of motivation with marked reward 

insensitivity (Adam et al., 2013; Marin, 1991; Martínez-Horta et al., 2014; Muhammed et al., 

2016; Rochat et al., 2013).  

 

Chapter 4 reports another experiment that implemented an oddball task with a reward 

manipulation and concurrent pupillometry in healthy human volunteers. The main objective 

was to investigate whether a stress dose of cortisol differentially altered the effects of 

salience on the pupil over time, as an indicator of distinct fast and slow effects of cortisol. 

To test this, I administered a stress-level dose of hydrocortisone on healthy human 

volunteers and examined pupil responses to salience on both the rising and falling phase of 

the ensuing stress pulse of cortisol. A difference in the effects of salience on the pupil 

between the rising and falling phase would indicate that cortisol exerted distinct fast and 

slow effects. The motivation for this study was the lack investigation of the fast and slow 

effects of cortisol in humans, especially on reward sensitivity and extrinsic motivation. In 

addition, this study allowed the assessment of cortisol effects on LC activity, which is 

indexed by the phasic and tonic pupil response (Joshi et al., 2016; Y. Liu et al., 2017). This is 

an important area of research as although the LC and HPA axis are highly interconnected 

there has been very little investigation of how this connection influences cognition and 

behaviour in humans (e.g., Schwabe et al., 2010; 2012). These findings could have 

implications for disease marked by a maladaptive stress system. 
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Introduction  

In this chapter, I report three experiments that investigate pupil sensitivity to different types 

of salience in various versions of an oddball task with concurrent pupillometry. The first 

experiment was designed to investigate whether the pupil shows the characteristic phasic 

and tonic responses to oddball task stimuli reported by electrophysiological animal studies 

of the LC. Phasic and tonic LC responses are reflected by task-evoked, phasic pupil responses 

and in epochs of baseline pupil size. Therefore, I indirectly measured phasic and tonic 

changes in LC activity by examining phasic pupil responses and changes in baseline pupil 

size, respectively. The second experiment was designed to investigate why oddball stimuli 

evoke phasic pupil responses: is it due to the aspect of top-down, behavioural salience or 

the associated motor response, which is generated to signal identification of the target 

stimulus? The third experiment investigated the effect of adding a reward manipulation to 

the oddball task on the pupil. Here, my aim was to develop a reward task that showed 

reliable pupil responses to incentive salience, to validate the use of this task with 

pupillometry in the later experiments reported in Chapter 3 and 4. The findings reported in 

this chapter have implications for LC function, which has received relatively little attention 

in human studies compared with other parts of the brain, due to the challenges of 

examining LC activity with non-invasive techniques.  

Literature review 

As discussed in Chapter 1, the LC is the primary source of NE in the CNS and the sole source 

in the cortex (Samuels & Szabadi, 2008). Despite this, there has been little investigation of 

the LC in humans due to its small size compared to cortical structures, strong physiological 

noise and the proximity of surrounding brainstem nuclei. These issues prevent traditional 

non-invasive techniques, such as fMRI from obtaining accurate measurements of the LC 

(Turker et al., 2019).  However, researchers have identified pupillometry as an alternative 

measure of LC activity (Joshi et al., 2016).  

 

Both phasic LC activity and phasic pupil responses can be evoked by bottom-up salience 

(e.g., Aston-Jones & Bloom, 1981; Dayan & Yu, 2006; Qiyuan et al., 1985; Vankov et al., 
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1995). These phasic pupil responses scale with subjective salience, so that larger dilations 

follow the presentation of more salient stimuli (Liao et al., 2016). The range of salient 

stimuli that have been used to evoke these phasic responses is quite broad; however, 

perhaps the most shared characteristic of these stimuli is low probability. Such stimuli are 

salient because they tend to stand out compared with more frequently presented, expected 

stimuli. So, as stimulus probability decreases, bottom-up saliency increases, and so does the 

phasic pupil response (Qiyuan et al., 1985). Similar phasic LC responses by bottom-up 

salience have been reported in animal studies (Aston-Jones & Bloom, 1981; Dayan & Yu, 

2006; Vankov et al., 1995). However, as mentioned in Chapter 1, the relationship between 

phasic LC activity and bottom-up salience has largely been overlooked by the literature in 

favour of behavioural salience, as the consensus is that there is a stronger relationship 

between behavioural salience and phasic LC activity than bottom-up salience. This notion 

has been driven by the finding that phasic responses to bottom-up salience habituate unless 

the stimulus is also behaviourally relevant (Aston-Jones & Bloom, 1981; Aston-Jones & 

Cohen, 2005; Bouret & Sara, 2005). It has been suggested that the phasic response is only 

evoked by bottom-up salience if the stimulus is so highly salient that it elicits a behavioural 

orienting response. Indeed, highly salient events generally cause a reorientation of internal 

resources and behaviour (Sara & Bouret, 2012). 

 

Evidence from both human pupillometry studies and animal studies with 

electrophysiological LC recordings indicates that presentations of target stimuli evoke phasic 

activity in the LC (Aston-Jones et al., 1994; Gilzenrat et al., 2010; Liao et al., 2016; Rajkowski 

et al., 1994). In most cases, a target is only a target (and so has top-down, behavioural 

salience) when there is a response required to that stimulus. As a result, in most laboratory 

tasks, the target stimulus is often temporally confounded with a motor response, such as a 

button press, which must be made on target presentation for successful task completion. 

This is typical for oddball tasks, which have been implemented in many of the studies 

mentioned above. In such instances, phasic responses to the target oddball stimulus may be 

a consequence of this motor output rather than the behavioural salience per se. Evidence 

from pupillometry studies suggests that the onset of the pupil response and motor output 

are closer than that of stimulus presentation, indicating that these phasic responses are at 

least more likely to be related to behaviour rather than sensory processing (Clayton et al., 
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2004). However, in these instances, it is unclear whether an overt behavioural response is 

required to evoke a phasic change in LC activity or pupil size, or whether behavioural 

salience alone is sufficient. The latter would implicate the LC in intrinsic motivation rather 

than motor preparation or execution. 

 

As mentioned in Chapter 1, compared with target stimuli, reward incentives possess a 

similar but distinct type of top-down salience, as they also motivate goal-directed behaviour 

(Awh et al., 2012). Therefore, perhaps like target stimuli, reward incentives evoke phasic LC 

and pupil responses. Indeed, recent studies have reported phasic LC responses to reward 

incentives. For example, Bouret and Richmond (2015) found that reward cues modulated 

phasic LC responses, with larger responses for cues that signalled larger rewards. 

Pupillometry studies have also reported associations between reward incentives and phasic 

(and sometimes tonic) changes in pupil size. Like LC activity, pupil size increases in response 

to reward cues, with larger dilations for cues predicting greater rewards (Chiew & Braver, 

2014; Dix & Li, 2020; Gilzenrat et al., 2010; Manohar & Husain, 2015). Most reward studies 

have focused on the dopaminergic system, but the above evidence opens a novel avenue of 

investigation, as it indicates that the LC, which is a major NE nucleus, has a role in extrinsic 

motivation. 

 

The present study addresses some of the issues discussed above directly by implementing 

an adapted auditory oddball task combined with pupillometry in groups of human 

volunteers. In Experiment 1, I investigated the contribution of bottom-up salience (stimulus 

probability) and behavioural salience to the pupil response. However, as participants 

manually responded to the target oddball stimulus, I could not determine whether any 

change in pupil size related to behavioural salience or motor output. So, in Experient 2, I 

compared two conditions, one in which the participants manually responded to the target 

and one which they silently counted the total number of targets instead. Finally, to 

investigate the relationship between incentive salience and pupil size (and LC activity by 

proxy), in Experient 3, I compared pupil responses to reward cues in high and low reward 

conditions.  
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General method 

Participants 

All participants had normal or corrected-to-normal vision and were paid for participation. 

Informed consent was obtained for all studies, and all were approved by the Faculty of 

Health Sciences Research Ethics Committee, University of Bristol, UK. Participants were 

recruited from the University of Bristol community via poster advertisements, webpage 

advertisements and email lists. 

Materials 

All experiments were written using Psychophysics Toolbox v3 (Brainard, 1997) running 

under Matlab 2015a (The MathWorks, Inc., Natick). The computer display was a ViewPixx 

22.5-inch liquid crystal display screen, with a resolution of 1920 x 1200 pixels (VPixx 

Technologies, Inc); viewing distance was 60 cm. Pupil area (left pupil) and eye position were 

recorded at a sampling rate of 500 Hz by a tower-mounted Eyelink 1000 (SR Research, 

Canada) eye tracker, which has a typical operating spatial resolution of 0.5o or better. Head 

movement was minimised using a chin and forehead rest. Manual responses were recorded 

via a computer keyboard. See Figure 2.1 for pupillometry set up. 
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Figure 2.1 

Pupillometry Set Up 

 
 

 

Design 

In each of the following experiments, participants were asked to carry out an auditory 

oddball task (see Figure 2.2 for a diagram of the oddball task design). In the task, 

participants were played a sequence of short tones (100 ms) and required to listen for, and 

respond to, a rarely occurring tone (the oddball target), which occurred alongside another 

rarely occurring tone (deviant tone) and a frequently occurring tone (standard tone), neither 

of which required a response. The standard tone had a frequency of 1,400 Hz and the 

oddball and deviant were either 1,200 or 1,600 Hz (counterbalanced within or between 

participants, depending on the experiment), and the interstimulus interval was randomly 

varied between 1.2 and 1.7 s (uniformly distributed). In a given block, 8% of the trials were 

deviant and 8% were oddball tones and 84% were standard tones. Participants were 

instructed to maintain fixation on a fixation cross that was present at the centre of the 
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screen throughout each block of trials. Trial order within a block was randomised. Each 

testing session was made up of a practice block and experimental blocks. 

 

 

Figure 2.2 

Diagram showing the Oddball Paradigm 
 

 
 

Note. The figure shows the instruction screen followed by three example trials, which 
present a 100ms auditory tone of the oddball (8%), deviant (8%), or standard (84%) trial 
type. Each trial is separated by 1.2-1.7s. 
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Data processing and statistical analysis 

The raw pupil data was subjected to the following pre-processing. I coded as missing data 

where the eye tracker detected a blink using the default Eyelink setting. Around these 

detected blinks, there were additional periods of instability in the recording pupil size, 

which I coded as missing pupil data 200 ms either side of the blink onset and offset. The 

recorded pupil size also depends on the eye position and so I coded as missing all pupil 

samples where the eye position was two degrees of visual angle away from the central 

fixation point. I then carried out a linear interpolation across the missing data based on the 

first and the last recorded pupil measurement. In these studies, I was interested in event-

related changes in pupil size that occurred within about 5 s of the onset of the tone. Some 

participants tend to have long term changes in pupil size across the whole block duration 

probably due to changes in overall arousal levels. To remove this effect, I next carried out a 

linear detrending of the data across the duration of the block of trials. Using a number of 

different artificial pupils, which were laser printed on paper, I converted the arbitrary units 

of pupil size produced by the Eyelink eye tracker into pupil size in mm2. 

 

For each trial (tone), I next extracted the pupil size data time locked to the tones, from 500 

ms before the tone onset to 4,000 ms after the tone onset. For each participant, I then 

averaged these responses for each Trial Type (Oddball, Deviant or Standard). To allow for 

statistical analyses, I averaged the pupil response in each Trial Type, for each participant, 

across three 500 ms epochs. The first of these Epochs was the Pre-stimulus Baseline Epoch (-

500 to 0 ms). The second of these Epochs was the Stimulus Response Epoch which was 

placed in the data to capture the peak response to the stimulus across all the Trial Types 

within a particular experiment. The third of these Epochs was the Post-stimulus Baseline 

Epoch (3,500 to 4,000 ms). 

Experiment 1 

Participants  

There were 27 participants.  Three participants were excluded because they made more 

than 20% manual response errors on the task, resulting in a final sample of 24 participants 

(15 females; age range 18-69).   
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Design 

Trial Type (i.e., task relevance and stimulus probability) was manipulated within an auditory 

oddball paradigm to investigate the effect of Trial Type on pupil area. Participants carried 

out 1 practice block of 25 trials followed by 2 experimental blocks of 250 trials. In one block, 

the high tone (1,600 Hz) was defined as the Oddball Trial Type, and in the other the low 

tone (1,200 Hz) was defined as the Oddball Trial Type. Block order was counterbalanced 

between participants.   

Procedure 

Participants were seated in front of a computer monitor and a tower-mounted eye-tracking 

system. They were instructed to place their chin on a chinrest, fixate on a central fixation 

cross and respond to the oddball stimulus by pressing any key on the computer keyboard in 

front of them.  

 

Once participants indicated that they were ready, all lights were switched off, and they 

completed the practice block, followed by pupil calibration and validation measures, and 

the first experimental block. 

 

As soon as block 1 was initiated, instructions appeared on the screen to remind participants 

to respond to the oddball stimulus. All visual stimuli were then removed from the screen 

other than the fixation cross. At the end of block 1, participants were allowed a one-minute 

break (in the dark) before commencing block 2 of the task, which followed the same 

procedure as block 1. 

 Results 

 For each Trial type, 4500 ms of the mean pupil data (500 ms of Pre Stimulus Baseline pupil 

data and 4000 ms of pupil data from the onset of the stimulus, as described above) was 

averaged again across all participants to give the grand average. Grand average pupil 

responses for the three Trial Types are plotted in Figure 2.3. The figure shows a clear 

response to the stimulus onset for the Oddball Trial Type alongside a smaller response to 

the Deviant when compared to the Standard Trial Type. The peak of these responses is 

around 750 ms post onset so the Stimulus Response Epoch in this experiment was defined 
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as being between 500 and 1,000 ms. All three Epochs are shown shaded in grey in Figure 

2.3, with the mean pupil area for each Epoch and Trial Type plotted in black. 

 
 
Figure 2.3 

Grand Average Pupil Responses to the Oddball, Deviant and Standard Stimuli Averaged in 
Experiment 1.  

 
Note. The Pre-Stimulus Baseline, Stimulus Response and Post-Stimulus Baseline Epochs are 
shaded in grey. The mean pupil area for each Epoch is plotted in black with error bars to 
show the range. 
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I carried out a repeated measures Analysis of Variance (ANOVA) on the average pupil size 

with the following factors: Trial Type (Oddball, Deviant, Standard); Epoch (Pre-stimulus 

Baseline, Stimulus Response, Pre-stimulus Baseline) and Block (Block 1, Block 2). There was 

a significant main effect of Trial Type- F(2, 46) = 7.78, p = 0.001; partial ETA squared= 0.253), 

Block - F(1, 23) = 14.98, p = 0.001; partial ETA squared = 0.394 and Epoch - F(2, 46) = 32.53, 

p < 0.001; partial ETA squared = 0.586. The only significant interaction was between Trial 

Type and Epoch - F(4, 92) = 25.35, p < 0.001; partial ETA squared = 0.524.  The main effect of 

Block reflects an overall tendency for the pupil to be more dilated in Block 1 (M = 20.47 

mm2) than Block 2 (M = 18.23 mm2). 

 

In order to explore the interaction between Trial Type and Epoch, first the two baseline 

Epochs were compared using a repeated measures ANOVA on the average pupil size with 

two factors: Trial Type (Oddball, Deviant, Standard) and Epoch (Pre-stimulus Baseline, Post-

Stimulus Baseline). There was no significant effect of Trial Type F(2, 46) = 1.28, p = 0.287; 

partial ETA squared = 0.053, nor Epoch F(1, 23) = 1.57, p = 0.223; partial ETA squared = 

0.064. However, there was a significant interaction between Trial Type and Epoch F(2, 46) = 

3.40, p = 0.042; partial ETA squared = 0.129.  This resulted from the contrast between a 

smaller pupil in the Pre-Stimulus Baseline than the Post-Stimulus Baseline for Oddball and 

Standard Trial Types and the opposite pattern, of a larger pupil in the Pre-Stimulus Baseline 

than the Post-Stimulus Baseline, for the Deviant Trial Type (see Figure 2.3). 

 

To investigate the effect of Trial Type on pupil size within the Stimulus Response Epoch a 

one-way repeated measures ANOVA was carried out on the average pupil size with Trial 

Type (Oddball, Deviant, Standard) as the factor. There was a significant effect of Trial Type 

F(2, 46) = 43.10, p < 0.001; partial ETA squared = 0.652. Post hoc testing revealed significant 

differences in pupil area between all levels of Trial Type (Paired Samples t-test: [oddball - 

deviant: t(23) = 5.98, p < 0.001; oddball - standard: t(23) = 7.44, p < 0.001; deviant - 

standard: t(23) = 4.65, p < 0.001]). This demonstrates that the differences between the pupil 

responses observed in Figure 2.3 are significant within the Stimulus Response Epoch.  
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Discussion   

Within the Stimulus Response Epoch, there was a reliable effect of Trial Type with a greater 

pupil dilation in the Oddball Trial Type, followed by the Deviant and Standard Trial Type (see 

Figure 2.3). The response to the Deviant Trial Type when compared with the Standard gives 

a measure of the effect of stimulus probability when the stimulus is task irrelevant. The low 

stimulus probability in this Trial Type will have resulted in this stimulus having an increased 

salience in a bottom-up (task-irrelevant) manner. The reliable difference between the 

Standard and Deviant Trial Types confirms that the pupil is responsive to such bottom-up 

salience. The difference in the pupil response between the Deviant and Oddball Trial Types 

measures the effect on the pupil response of the target being task relevant, while all other 

features are kept constant (i.e., stimulus probability and so bottom-up salience). The 

reliable difference between the Oddball and Deviant Trial Types suggests that there is also 

an effect on the pupil response of task relevance or top-down, behavioural, salience. 

Together these comparisons suggest that the pupil response to the Oddball Trial Type is a 

combination of both bottom-up and top-down salience signals and that this phasic response 

to the oddball stimuli is sensitive to stimulus probability and task relevance.  

  

Consistent with these results, de Gee et al. (2014, 2017) showed that phasic pupil responses 

are stronger for targets than distractors in equiprobable setups. In addition, Strauch et al. 

(2020) reported larger phasic pupil responses to frequent target stimuli than infrequent 

distractor stimuli, and even larger responses to infrequent target stimuli. This suggests that, 

although the pupil responds to both stimuli—task relevant and infrequent task-irrelevant 

events—the pupil response is greatest for task-relevant target stimuli. However, these 

factors can combine to amplify the pupil response further so that as infrequent target 

stimuli produce an even larger response as shown in the current experiment. 

  

I also found a significant effect of Epoch. However, comparison of the two baseline phases 

revealed no significant effect of Epoch, suggesting that the pupil area was similar between 

the two and that the main effect of Epoch stemmed from the Stimulus Response Epoch. 

Although apparent from looking at Figure 2.3, this result confirms that the task stimuli 

increased pupil area above baseline, resulting in a phasic pupil response. 
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Pupil area decreased across Block 1 and 2. This could be explained by a decrease in alertness 

over time, as alertness is positively correlated with pupil size (Hou et al., 2005). This 

suggests that the participants may become fatigued throughout the task, so in Experiment 2 

I decided to reduce the number of trials per block and allow participants to have a break in 

between blocks.  

  

The current experiment seems to show clear evidence of a task relevant effect on the pupil 

response, and I have so far been attributing this effect to the top-down salience of the 

stimulus for this Trial Type. However, as discussed in the Introduction, it remains possible 

that elevated pupil response to the oddball stimulus is a result of the motor preparation or 

motor execution associated with the manual response. To investigate this, in Experient 2 I 

adjusted the oddball task by adding a counting block, in which participants were asked to 

silently count oddball stimulus presentations and compared this directly with a condition 

where the participants were required to respond to each Oddball Trial Type as before. 

Experiment 2 

Participants  

There were 25 participants. Five participants were excluded for producing error rates of 

20% or more in 1 or more experimental blocks, or due to missing pupil data, resulting in a 

final sample of 20 participants (14 females; age range 18-29).  

Design 

Trial Type (Oddball, Deviant, Standard) and Response Type (Manual, Counting) were 

manipulated within an auditory oddball paradigm to investigate their effects on pupil area. I 

expected to find a difference in pupil area between Response Types, and between Trial 

Types. 

 

Participants carried out 1 practice block of 25 trials followed by 4 experimental blocks of 125 

trials. In two of the experimental blocks, participants were asked to count the number of 

Oddball Trial Types that they heard and to state the total count at the end of the block 

(Counting Response Type); in the other two blocks, participants made manual responses to 
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the Oddball instead (Manual Response Type). The two blocks for each Response Type were 

administered consecutively, so that each participant completed all blocks for one Response 

Type before completing the other, and the block order was counterbalanced between 

participants, so that half of the participants completed the Counting Response Type first. 

The auditory frequency of the Oddball Trial Type was also counterbalanced between 

participants so that the low tone (1,200 Hz) was Oddball for half of the participants, and the 

high tone (1,600 Hz) was the Oddball for the others.   

Procedure 

The procedure was the same as Experiment 1, with the exception that between blocks 2 and 

3, participants were reminded that the task rules had changed, and that for the subsequent 

blocks, they should silently count the number of oddball tones rather than manually 

respond, or vice versa.  

Results 

Grand average pupil responses in the three Trial Types and two Response Types are plotted 

in Figure 2.4. The figure shows a large pupil response in the Oddball Trial Type, with smaller 

responses in the Deviant and Standard Trial Type, respectively. This pattern is clear for both 

Response Types. The peak of these pupil responses is around 1,500 ms, so the Stimulus 

Response Epoch was defined as 1,250-1,750 ms. In Figure 2.4, the Pre-Stimulus, Stimulus 

Response and Post-Stimulus Baseline Epochs are shaded in grey. For both Response Types, 

the mean pupil response for each Epoch and Trial Type is plotted in black 
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Figure 2.4 

Grand Average Pupil Responses to the Oddball, Deviant and Standard Stimuli for Both 
Response Types in Experiment 2

 

Note. The Trial Types in the Manual Response Type are the solid lines, and the Trial Types 
in the Counting Response Type are the Dashed lines. The Pre-Stimulus Baseline, Stimulus 
Response and Post-Stimulus Baseline Epochs are shaded in grey. The mean pupil area for 
each Epoch is plotted in black with error bars to show the range. 

 

 
I carried out a repeated measures ANOVA on the average pupil size with the following 

factors: Response Type (Manual, Counting); Trial Type (Oddball, Deviant, Standard); and 

Epoch (Pre-stimulus baseline, Stimulus Response, Post-stimulus baseline). There was a 

significant main effect of Trial Type - F(2, 38) = 21.905, p < 0.001; partial ETA squared = 

0.536 and Epoch - F(2, 38) = 27.702, p < 0.001; partial ETA squared = 0.593, but no 

significant effect of Response Type (Manual: M = 13.07 mm2, SD = 4.69 mm2; Counting: M = 

13.18 mm2, SD = 4.12 mm2) - F(2, 19) = 0.029, p = 0.866; partial ETA squared = 0.002. There 

was a significant interaction between Trial Type and Epoch - F(4, 76) = 31.429, p < 0.001; 

partial ETA squared = 0.623. 
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To investigate the interaction between Trial Type and Epoch, the two baseline Epochs were 

compared using a repeated measures ANOVA on the average pupil size with two factors: 

Trial Type (Oddball, Deviant, Standard) and Epoch (Pre-Stimulus Baseline, Post-Stimulus 

Baseline). There was a main effect of Epoch - F(1, 19) = 12.038, p = 0.003; partial ETA 

squared = 0.388 but not Trial Type - F(2, 38) = 2.637, p = 0.085; partial ETA squared = 0.122. 

There was a significant interaction between Trial Type and Epoch - F(2, 38) = 10.608, p < 

0.001; partial ETA squared = 0.358.  This interaction resulted from contrasting patterns of a 

larger pupil for the Oddball Trial Type than the Deviant and Standard for the Post-Stimulus 

Baseline Epoch, and a larger pupil for the Standard Trial Type than the Deviant and Oddball 

for the Pre-Stimulus Baseline Epoch. 

 

To investigate the effect of Trial Type on pupil size within the Stimulus Response Epoch, a 

one-way repeated measures ANOVA was carried out on the average pupil size within this 

Epoch, with Trial Type (Oddball, Deviant, Standard) as the factor. There was a significant 

effect of Trial Type - F(2, 38) =  51.424, p < 0.001; partial ETA squared = 0.730. Post hoc 

testing revealed significant differences between all levels of Trial Type (Paired Samples t-

test: [Oddball - Deviant: t(19) = 7.054, p < 0.001; Oddball - Standard: t(19) = 8.555, p < 

0.001; Deviant - Standard: t(19) = 2.713, p = 0.014]).   

Discussion 

I found a significant effect of Trial Type in the Stimulus Response Epoch, with a greater 

dilation for the Oddball Trial Type, followed by the Deviant and Standard. There was no 

effect of Response Type, so the effect of the oddball stimulus on the pupil is not a result of 

motor preparation or execution, but of task relevance, or top-down, behavioural salience. 

Whilst these findings are in line with the previous investigations that have reported task-

evoked, phasic pupil dilations in the absence of overt behavioural responses, I have not 

been able to find a study that has directly compared pupil responses to targets in the 

presence and absence of a motor event (Einhäuser et al., 2008; Swallow et al., 2019). 

Therefore, previous studies could not say definitively that pupil responses to target stimuli 

were the result of a top-down salience effect rather than a motor effect. In contrast, my 

results provide a direct comparison of pupil responses in the presence and absence of 

motor output. 
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I also found a significant effect of Epoch. Comparison of the two baseline phases revealed a 

significant effect of Epoch, with greater pupil size in the Post-Stimulus Baseline Epoch than 

the Pre-Stimulus Baseline Epoch. This suggests that pupil size did not return to baseline 

after the phasic response to the oddball and deviant stimuli in the Stimulus Response 

Epoch. Therefore, the main effect of Epoch stems from the task-evoked pupil responses in 

the Stimulus Response Epoch and a lag in return to baseline, which is evident in the Post-

Stimulus Baseline Epoch.  

 

Compared with Experiment 1, the pupil responses to the oddball and deviant stimuli are 

slightly delayed. As the experimental blocks in the Manual Response Type involved exactly 

the same task paradigm as before, the increased latency of the phasic response could be 

due to individual differences in pupil response latency, rather than a difference in cognition.  

 

My results suggest that pupil size is sensitive to task relevance or behavioural salience. As I 

am using pupil size as a marker of LC activity, these findings implicate the LC in the bottom-

up and top-down control of attention. Like task or behavioural relevance, which possesses 

top-down salience and influences (intrinsic) motivation, reward incentives possess top-

down salience and influence (extrinsic) motivation. Precisely how these top-down salience 

effects compete or interact to influence attention is unclear. Although there is some 

conflicting evidence, one study found that stimuli associated with greater rewards receive 

more attention than behaviourally relevant stimuli associated with low reward (Hickey et 

al., 2010). Therefore, perhaps the addition of a reward component to the oddball task 

would alter the effect of top-down salience by task relevance on the pupil by amplifying or 

interfering with it. I am especially interested in this notion given recent evidence that 

reward incentives evoke phasic changes in LC activity and the pupil (Chiew & Braver, 2014). 

In Experiment 3, I investigated the relationship between pupil size and reward incentives in 

human volunteers.  
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Experiment 3 

Participants 

Twenty-five participants took part in the experiment. Five participants were excluded for 

producing error rates above 20%, or due to missing pupil data, so the final sample contained 

20 participants (12 females; age range 19-45). Errors were defined as making manual 

responses to the deviant or standard stimulus, or not responding to the oddball stimulus. 

Slow responses to the oddball stimulus (>0.7s) were not classified as errors.  

Design 

I manipulated Trial Type (Oddball, Deviant, Standard) and Reward Condition (Low, High) 

within an auditory oddball paradigm to investigate the effects on pupil area (see Figure 2.5 

for a diagram of the oddball task paradigm). Participants carried out 1 practice block of 25 

trials followed by 4 experimental blocks of 125 trials. In two of the experimental blocks, the 

oddball stimulus was associated with 20p; in the other two it was associated with £20. On-

screen instructions conveyed the amount of reward associated with the oddball stimulus 

prior to each block, and participants were instructed to make quick manual responses to the 

oddball stimulus if they wanted to have a chance of winning the associated reward. Visual 

stimuli were added to the task to provide participants with visual feedback: if participants 

responded in time to the oddball stimulus (<0.7s), £00.20 (in low reward blocks) or £20.00 

(in high reward blocks) appeared on-screen within a fixation box. If participants did not 

respond in time, £00.00 was displayed instead. Visual stimuli made up of the same number 

of pixels were presented with and between each trial so that there was no difference in 

luminance throughout the task and importantly, between trials.  

 

At the end of the task, one of the oddball trials from the whole task was selected at random, 

and if the participant had responded within 0.7 s to the selected oddball stimulus, they 

received the associated monetary reward in cash. High and low reward blocks were 

alternated within participants, so that no participant completed 2 high reward nor 2 low 

reward blocks consecutively, and the block order was counterbalanced between 

participants, with half of the participants completing a high reward block first and the other 

half completing a low reward block first. Like Experiment 2, half of the participants were 
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told to respond to the low tone (1,200 Hz) and the other half were told to respond to the 

high tone (1,600 Hz). 

 

 

Figure 2.5 

Diagram showing the Oddball Paradigm with a Reward Manipulation. 
 

 
Note. The diagram shows the introductory instruction screen, followed by three example 
trials in the High Reward Condition. Visual stimuli consisting of the same number of pixels 
were presented in a fixation box with each auditory trial.  

 

Procedure 

The procedure was like the previous experiments, with some added changes related to the 

reward manipulation. As part of this, participants were informed about the amount of 

reward associated with the oddball stimulus prior to each block. Additionally, after 

Respond to high tones 
to win £20 

£xx.xx 

£20.00 

£xx.xx 

1.2-1.7s 

100ms 
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completing all four experimental blocks, a lottery incentive reward system was executed, 

and if the participants won a monetary reward, they received the cash immediately. 

Results 

Grand average pupil responses for the 3 Trial Types and 2 Reward Conditions are plotted in 

Figure 2.6, which depicts a clear pupil response to the Oddball Trial Type and smaller 

responses to the Deviant and Standard, respectively. This pattern is clear for both Reward 

Conditions, although overall the pupil is more dilated in the High Reward Condition. The 

peak of the pupil responses is around 1,250 ms, so the Stimulus Response Epoch was 

defined as 1,000-1,500 ms. In Figure 2.6, the Pre-Stimulus, Stimulus Response and Post-

Stimulus Baseline Epochs are shaded in grey. For both Reward Conditions, the mean pupil 

response for each Epoch and Trial Type is plotted in black. 
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Figure 2.6 

Grand Average Pupil Responses to the Oddball, Deviant and Standard Stimuli for both 
Reward Conditions in Experiment 3

 
Note. The High Reward Condition is represented by the dashed line, the Low Reward 
Condition is represented by the solid line. The Pre-Stimulus Baseline, Stimulus Response 
and Post-Stimulus Baseline Epochs are shaded in grey. The mean pupil area for each Epoch 
is plotted in black with error bars to show the range. 

 
 

I carried out a repeated measures ANOVA on the average pupil size with the following 

factors: Reward Condition (Low, High); Trial Type (Oddball, Deviant, Standard); and Epoch 

(Pre-Stimulus Baseline, Stimulus Response, Post-Stimulus Baseline). There was a significant 

main effect of Reward Condition – F(1, 19) = 7.31, p = 0.014; partial ETA squared = 0.278, 

Trial Type - F(2, 38) = 38.80, p < 0.001; partial ETA squared = 0.671 and Epoch - F(2, 38) = 

42.76, p < 0.001; partial ETA squared = 0.692. There was a significant interaction between 

Trial Type and Epoch - F(4, 76) = 35.18, p < 0.001; partial ETA squared = 0.649, and Trial 

Type, Epoch and Reward Condition - F(4, 76) = 2.65, p = 0.039; partial ETA squared = 0.122. 

  

To investigate the effect of Trial Type and Reward Condition on pupil size within the 

Stimulus Response Epoch, a two-way repeated measures ANOVA was carried out on the 
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average pupil size within this Epoch, with Trial Type (Oddball, Deviant, Standard) and 

Reward Condition (Low, High) as the factors. There was a significant effect of Trial Type - 

F(2, 38) =  97.78, p < 0.001; partial ETA squared = 0.837, and Reward Condition - F(1, 19) =  

7.39, p = 0.014; partial ETA squared = 0.280, with greater pupil size in the High Reward 

Condition (M = 16.91, SD = 5.95) than the Low Reward Condition (M = 15.99, SD = 5.89). 

There was also a significant interaction between Trial Type and Reward Condition - F(2, 38) 

=  4.72, p = 0.015; partial ETA squared = 0.199. 

 

To investigate the effect of Reward Condition on pupil area within the Pre-Stimulus Epoch, a 

one-way repeated measures ANOVA was carried out on the average pupil size with Reward 

Condition (Low, High) as the factor. There was a significant effect of Reward Condition - F(1, 

19) = 7.47, p = 0.013; partial ETA squared = 0.282, with greater pupil area in the High 

Reward Condition (M = 15.78, SD = 5.72) than the Low Reward Condition (M = 14.96, SD = 

5.61). These results indicate that the pupil was generally more dilated in the High Reward 

Condition at baseline. 

 

To investigate the interaction between Trial Type and Epoch, the two baseline Epochs were 

compared using a repeated measures ANOVA on the average pupil size with two factors: 

Trial Type (Oddball, Deviant, Standard) and Epoch (Pre-Stimulus Baseline, Post-Stimulus 

Baseline). There was a main effect of Epoch - F(1, 19) = 12.03, p = 0.003; partial ETA squared 

= 0.388 but not Trial Type - F(2, 38) = 2.31, p = 0.113; partial ETA squared = 0.108. There was 

a significant interaction between Trial Type and Epoch - F(2, 38) = 12.64, p < 0.001; partial 

ETA squared = 0.399.  As in Experiment 2, this resulted from a contrast in a larger pupil for 

the Oddball Trial Type than the Deviant and Standard for the Pre-Stimulus Epoch and Post-

Stimulus Baseline Epoch, and the opposite pattern of a larger pupil for the Standard Trial 

Type than the Deviant and Oddball for the Pre-Stimulus Baseline Epoch.  

 

To investigate the interaction between Trial Type, Reward Condition and Epoch, three 

repeated measures ANOVAs (one for each Epoch) were carried out on the average pupil size 

with two factors: Trial Type (Oddball, Deviant, Standard) and Reward Condition (Low, High). 

There was a significant effect of Trial Type - F(2, 38) = 7.74, p = 0.002; partial ETA squared = 

0.289 and Reward Condition - F(1, 19) = 7.47, p = 0.013; partial ETA squared = 0.282 on pupil 
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size in the Pre-Stimulus Epoch, but no significant interaction between Trial Type and Reward 

Condition - F(2, 38) = 0.61, p = 0.548; partial ETA squared = 0.031. In the Stimulus Response 

Epoch, there was a significant effect of Trial Type - F(2, 38) = 97.78, p < 0.001; partial ETA 

squared = 0.837 and Reward Condition - F(1, 19) = 7.39, p = 0.014; partial ETA squared = 

0.280 and a significant interaction between Trial Type and Reward Condition - F(2, 38) = 

4.72, p = 0.015; partial ETA squared = 0.199. In the Post-Stimulus Epoch, there was a 

significant effect of Trial Type - F(2, 38) = 7.17, p = 0.002; partial ETA squared = 0.274 and 

Reward Condition - F(1, 19) = 6.80, p = 0.017; partial ETA squared = 0.263 but no significant 

interaction between Trial Type and Reward Condition - F(2, 38) = 0.51, p = 0.603; partial ETA 

squared = 0.026.  

 

To investigate whether Reward Condition had a phasic effect on pupil size, three repeated 

measures ANOVAs were carried out on the average pupil size with two factors: Trial Type 

and Reward Condition (Low, High). For each ANOVA, I compared two levels of Trial Type, 

rather than all three, to allow me to home in on any significant interactions. First, the 

Oddball and Deviant Trial Types were investigated: there was a significant effect of Trial 

Type - F(1, 19) = 89.51, p < 0.001; partial ETA squared = 0.825, Reward Condition - F(1, 19) = 

7.54, p = 0.013; partial ETA squared = 0.284 and a significant interaction between Trial Type 

and Reward Condition - F(1, 19) = 5.79, p = 0.026; partial ETA squared = 0.233. Next, the 

Oddball and Standard Trial Types were investigated: there was a significant effect of Trial 

Type- F(1, 19) = 142.84, p < 0.001; partial ETA squared = 0.883, Reward Condition - F(1, 19) = 

9.80, p = 0.006; partial ETA squared = 0.340 and a significant interaction between Trial Type 

and Reward Condition - F(1, 19) = 12.42, p = 0.002; partial ETA squared = 0.395. Finally, the 

Deviant and Standard Trial Types were investigated: there was a significant effect of Trial 

Type - F(1, 19) =16.99, p = 0.001; partial ETA squared = 0.472 and Reward Condition - F(1, 

19) = 4.52, p = 0.047; partial ETA squared = 0.192, but no significant interaction between 

Trial Type and Reward Condition - F(1, 19) = 0.19, p = 0.671; partial ETA squared = 0.010. 

These findings suggest that there was an effect of Reward Condition that was dependent on 

the Oddball Trial Type. Figure 2.7 shows a larger difference between the High and Low 

Reward Condition in the Oddball Trial Type than the other Trial Types for the Stimulus 

Response Epoch. This is indicative of a phasic effect of incentive salience on the pupil, as it 
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suggests that there is an additional effect of incentive salience that stems from the 

presentation of the Oddball Trial Type. 

 

 

Figure 2.7 

Mean Pupil Area in the Stimulus Response Epoch for each Trial Type sorted into Reward 
Conditions  

 
Note. The error bars are 95% confidence intervals.  
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Manual responses 

I also recorded reaction times to oddball stimuli. To investigate whether Reward Condition 

had an effect on these reaction times, a one-way repeated measures ANOVA was carried 

out on average reaction times, with Reward Condition (Low, High) as the factor. There was 

no significant effect of Reward Condition on reaction time -F(1, 19) = 1.58, p = 0.225; partial 

ETA squared = 0.077, indicating that there was a mismatch between the effect of Reward 

Condition on pupil size and the effect of Reward Condition on reaction time.  

Discussion 

My results demonstrate an amplification of the phasic effect of top-down salience on the 

pupil by the High Reward Condition, as well as a tonic effect of incentive salience. The tonic 

effect of incentive salience on the pupil is clearly seen when comparing the greater pupil 

area in the High Reward Condition with the smaller pupil area in the Low Reward Condition, 

and it is evident across all Trial Types (see Figure 2.6). The effect of Reward Condition is 

present before and after stimulus presentation, in the Pre-Stimulus Baseline and Post-

Stimulus Baseline Epoch. Therefore, the effect of incentive salience is both phasic and tonic.  

 

This effect of reward on pupil size must be related to incentive salience or extrinsic 

motivation rather than the actual rewarding effect, as reward delivery occurred after task 

completion. In the previous experiments, I showed that the pupil is sensitive to top-down 

(behavioural) and bottom-up salience. Evidence suggests that extrinsic motivation can 

influence top-down (incentive) salience to bias attentional selection in favour of reward 

incentives (Hickey et al., 2010). Therefore, the phasic and tonic effect of incentive salience 

on the pupil signify an effect of top-down salience on the pupil driven by extrinsic 

motivation. The phasic incentive salience effect is stimulus-locked and represents a 

combined effect of two types of top-down salience, resulting in a magnified pupil response 

compared with the pupil response in the Low Reward Condition, which was evoked by 

behavioural salience alone. This suggests that behavioural and incentive salience can 

combine to amplify the pupil response further so that as target stimuli produce an even 

larger response if they are linked to higher monetary reward. In contrast, the tonic effect of 

incentive salience on the pupil reflects a block effect of Reward Condition that is not 
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stimulus-locked, and therefore constitutes a sustained effect of incentive salience or 

extrinsic motivation in the absence of task relevance.  

 

The mismatch in the effect of Reward Condition on pupil size with no effect on reaction 

times is surprising because it suggests that the processes driving the cognitive and 

behavioural effect of Reward Condition are distinct. Reaction times reflect an overt, 

executed action, whereas the pupil response reflects an effect of incentive salience, which is 

a covert, attentional process. Whilst it would seem to make sense for reward to both 

capture attention and influence behaviour, the underlying processes are distinct. This is in 

line with the results of Experiment 2, which showed that pupil responses to salient events 

do not relate to motor preparation nor execution. Alternatively, reaction time data has high 

variability, which could have masked the reward effect, especially as manual responses 

were only made for the Oddball Trial Type. For example, there were only about 10 Oddball 

Stimuli presented for each block (Oddball Trial Types had an 8% probability and there were 

125 trials per block), so approximately 20 Oddballs were presented in the High Reward 

Condition and 20 in the Low Reward Condition. The low presentation frequency of the 

Oddball stimulus resulted in little reaction time data, which is typically quite noisy and 

therefore could have obscured the reward effect. 

 

General discussion 

The experiments presented in this chapter were carried out to explore human LC function, 

which can be inferred from phasic pupil responses and changes in baseline pupil size. In 

Experiment 1, I wanted to see whether the phasic pupil response (and therefore phasic LC 

activity) would differ between three Trial Types, which varied in bottom-up (stimulus 

probability) and top-down, behavioural salience. There was a significant main effect of Trial 

Type, and further exploration revealed a significant difference in the mean pupil size 

between all levels of Trial Type in the Stimulus Response Epoch, with the largest dilation in 

response to the low probability, target (oddball) stimulus, a smaller but clear dilation in 

response to the low probability, distractor (deviant) stimulus, and no response to the high 

probability, distractor (standard) stimulus. These results demonstrate that the pupil is 

sensitive to low probability, or bottom-up salience; however, I conducted a further 
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investigation to determine whether the pupil response to the oddball stimulus reflected a 

sensitivity to behavioural salience, or motor activity related to the behavioural response. 

There was no significant effect of Response Type (Counting versus Manual Response Type), 

indicating that the pupil response to the oddball stimulus was not driven by motor planning 

nor execution, but by behavioural salience. Finally, I investigated the effect of incentive 

salience on pupil size and found significantly greater tonic and phasic pupil dilations in the 

High Reward Condition than the Low Reward Condition. This suggests that reward 

incentives can amplify the effect of top-down salience by task relevance on the pupil 

response. 

  

My results show that the pupil is sensitive to characteristics that influence both bottom-up 

and behavioural salience, which were manipulated by modifying stimulus probability and 

task relevance, respectively. Furthermore, I demonstrated that stimulus probability and task 

relevance can interact to magnify the effect of salience on the pupil. There is very little 

evidence of how top-down and bottom-up salience interact to influence attentional control, 

especially in auditory tasks. My findings suggest that both types of salience can interact to 

strengthen the overall effect of salience. This is true for the combined effect of behavioural 

and bottom-up salience, as well as that of behavioural and incentive salience. As pupil 

responses are a marker of LC activity, my findings also suggest that the LC is sensitive to 

these effects of salience. As mentioned, several research groups have stressed the 

importance of behavioural salience for task-evoked, phasic LC responses, and theories of LC 

function postulate that this, rather than bottom-up salience, drives the phasic LC response 

(Aston-Jones & Cohen, 2005; Bouret & Sara, 2005; Sales et al., 2019). This is mostly because 

phasic LC responses to bottom-up salience, such as unexpectedness, sometimes habituate, 

whereas responses to behavioural salience do not, so they are thought to be more 

important for the phasic LC response (Aston-Jones & Bloom, 1981; Aston-Jones & Cohen, 

2005; Bouret & Sara, 2005).  

 

As mentioned in Chapter 1, theories of LC function propose that tonic and phasic LC firing 

drive changes in control state, triggered by the onset of a behavioural relevant event 

(Aston-Jones & Cohen, 2005; Bouret & Sara, 2005). My findings do not oppose this, as I 

found a phasic pupil response to the behaviourally relevant oddball stimulus. However, I 
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also observed a phasic pupil response related to the deviant stimulus, which was not 

behaviourally relevant. I would argue that the effect of behavioural relevance and low 

stimulus probability on the pupil infers a role for the LC related to both bottom-up and top-

down salience in a manner analogous to attentional control, a system that allows for the 

selection of internal and external goals, as well as physically salient events (Awh et al., 2012; 

Corbetta & Shulman, 2002; de Wit & Dickinson, 2009; Fecteau & Munoz, 2006; Melloni et 

al., 2012). This role would provide a functional explanation as to why the phasic LC response 

habituates with repeated presentations of a stimulus-driven event: physically salient stimuli 

automatically capture attention but should be discarded if they do not constitute a threat or 

possess behavioural significance, so as to allow for goal-directed behaviour. Perhaps then, 

bursts of LC firing evoked by bottom-up salience eventually habituate to facilitate 

appropriate control and goal-directed behaviour, which is important for normal functioning 

in the absence of stress or threat (Aston-Jones & Bloom, 1981). This notion is supported by 

a recent animal study, which reported that attentional control is modulated by two distinct 

projections originating in the LC, innervating the prefrontal cortex (Bari et al., 2020). 

 

I found an effect of incentive salience on the pupil, with a larger phasic pupil response to the 

£20 reward incentive than the 20p reward incentive. As mentioned, this effect of incentive 

salience on the pupil likely reflects a greater effect of top-down salience on the phasic pupil 

response that was driven by extrinsic motivation in the High Reward Condition. In contrast, 

the phasic pupil response in the Low Reward Condition is a result of behavioural salience 

driven by intrinsic motivation. It has been argued that behavioural goals and other top-

down influences, such as reward incentives, should be viewed as distinct categories of 

control, because they produce conflicting selection biases (Awh et al., 2012). Therefore, in 

my task, the engagement of extrinsic motivational resources rather than intrinsic 

motivational resources could constitute a change in control state towards a reward-seeking, 

goal-directed mode, instead of a task-relevant, goal-directed mode. Indeed, according to 

the adaptive gain theory, a change in control state coincides with a change in tonic LC 

activity or baseline pupil size. Furthermore, this suggests that the reward incentive captured 

attention and drove motivational and behavioural resources over task-relevant information 

(although this did not affect behavioural performance measured by reaction time). This is in 

line with evidence in the literature which suggests that stimuli associated with high reward 
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capture attention over equally salient target stimuli associated with low reward, even when 

the reward incentive distracts participants from the task and disrupts behavioural 

performance (Hickey et al., 2010).  

 

Therefore, attentional resources are drawn to reward when reward incentives and 

behaviourally relevant information compete. However, in the present task, reward and task 

contingencies were not in direct competition, as the task-relevant information and reward 

incentive were both signalled by the Oddball Trial Type. Perhaps, if the target stimulus and 

reward incentive were presented as separate stimuli, I would have found a greater effect of 

behavioural salience on pupil size than incentive salience. Furthermore, I cannot say 

whether the bottom-up salience aspect of the deviant stimulus would have interacted with 

incentive salience to amplify or change the overall effect of salience on the pupil, as in this 

experiment, the reward incentive was never associated with the Deviant Trial Type. There 

has been little investigation of how different types of top-down and bottom-up salience 

interact. Therefore, this could be investigated in future studies by associating reward 

incentives with distractor stimuli, which compete with target stimuli that are not associated 

with reward incentives.  

 

I have shown that top-down and bottom-up salience reliably elicit changes in pupil size. 

Events with top-down salience include task-relevant stimuli and reward incentives, which 

should be thought of as separate entities. These top-down and bottom-up effects can 

interact to further dilate the pupil in a transient, task-evoked manner. The top-down 

salience effect of the reward incentive is a marker of extrinsic motivation. In addition to a 

phasic effect of incentive salience, reward incentives stimulated a tonic increase in baseline 

pupil size, which was sustained and unrelated to task relevance. Since phasic and tonic pupil 

responses reflect LC activity, these findings have implications for human LC function and 

therefore suggest that the LC functions in the underlying processes of top-down and 

bottom-up salience. In the next Chapter, I implement the same oddball task with a reward 

manipulation and concurrent pupillometry on healthy human volunteers to further 

investigate the underlying mechanisms of these effects of salience.  
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Introduction 

In the previous chapter, I reported effects of top-down and bottom-up salience on pupil 

size. This chapter reports a study that implements the same oddball task with a reward 

manipulation and concurrent pupillometry. The main aim was to uncover the underlying 

mechanisms of these effects by disrupting certain signalling systems and seeing whether 

this disruption altered the effects of salience on pupil size. I was particularly interested in 

the effects of behavioural and incentive salience on the pupil, which reflect intrinsic and 

extrinsic motivational processes. In addition, the overall effect of top-down and bottom-up 

salience on the pupil could indicate the active mode of control. For example, if there is a 

greater effect of bottom-up than top-down salience on the pupil, this could indicate a 

stimulus-driven state with a suppression of top-down salience effects on the pupil. 

Therefore, capturing the holistic effect of salience on the pupil and disrupting certain 

signalling systems provides an indication for the underlying mechanisms of attentional 

control. 

Literature review 

As mentioned in Chapter 1, evidence suggests that the allocation of internal resources is 

supported by two distinct systems: a top-down and bottom-up attentional control 

mechanism, which selects stimuli based on internal or external goals and physical 

characteristics, respectively (Awh et al., 2012; Corbetta & Shulman, 2002; de Wit & 

Dickinson, 2009; Fecteau & Munoz, 2006; Melloni et al., 2012). In a manner analogous to 

attentional capture, the LC responds to important environmental events, including those 

that are physically and behaviourally salient (Aston-Jones & Cohen, 2005; Bouret & Sara, 

2005; Corbetta et al, 2008). Converging evidence suggests that the LC is also sensitive to 

incentive salience, which is similar to behavioural salience in that it captures attention in a 

top-down manner (e.g., Bouret & Richmond, 2015). Whilst behavioural goals and reward 

incentives generally recruit disparate brain regions, and are separate cognitive constructs, 

since they both influence attentional control, it seems likely that they also activate common 

brain regions, such as the LC (Awh et al., 2012).  
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A link between reward and LC activity was first reported decades ago by addiction studies, 

which showed that NE is necessary for the conditioned place preference of cocaine, 

amphetamines and opiates, and the stress-induced reinstatement of various drugs of abuse 

(Weinshenker & Schroeder, 2007). Despite this evidence, the contribution of the LC-NE 

system to reward function has historically been overlooked in favour of the dopaminergic 

system, which dominates this literature. Recent studies have reported a close association 

between the LC-NE system and extrinsic motivation, rather than the rewarding effect that 

occurs with reward delivery, which is linked to the dopaminergic system. These studies have 

suggested that the LC mobilises energy resources for goal-directed actions, such as reward-

seeking behaviours (Bouret & Richmond, 2015).  

 

In contrast, my findings presented in previous chapters indicate that the phasic pupil 

response (and therefore the phasic LC response) is sensitive to top-down salience even in 

the absence of motor execution. This suggests that phasic activity in the LC does is not 

directly associated with energy mobilisation for the execution of behaviour. Other research 

groups have suggested that the LC functions in related processes of attention and 

motivation, such as saliency attribution, which facilitates the attentional selection of 

important environmental stimuli and the according allocation of internal resources. For 

example, one study reported increased prefrontal NE in response to rewarding and aversive 

stimuli in mice (Ventura et al., 2008). Following this, the authors proposed a functional role 

for the NE system in the attribution of salience to highly salient stimuli, such as highly 

rewarding and aversive stimuli, suggesting a less specific role for the LC-NE system in 

reward, and a more general role in the attribution of top-down salience for attentional 

selection. This would not directly result in the mobilisation of energy resources for goal-

directed behaviour, but it would facilitate it. Alternatively, the LC could be involved in 

mobilising energy resources for goal-directed actions, even if they are not always executed. 

This would explain why I found a phasic pupil response in the absence of overt behaviour. 

 

The idea that the LC functions in goal-directed behaviour, whether directly or indirectly, ties 

in with several reports that NE regulates drug-seeking behaviours, which represent a 

maladaptive goal-directed behavioural state. As mentioned in Chapter 1, pharmacological 

inhibition of NE attenuates the stress-induced reinstatement of alcohol-, cocaine-, heroin- 
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and methamphetamine-seeking behaviours in rodents, and there is some evidence for this 

in humans (Davis et al., 1975; Erb et al., 2000; Lê et al., 2011; Leri et al., 2002; Mantsch et 

al., 2010; Shaham et al., 2000; Shepard et al., 2004). Furthermore, this evidence suggests 

that the reinstating effect of NE on drug-seeking is dependent on stress, which therefore 

implicates the stress system as well as NE in the underlying pathophysiology of drug abuse 

relapse. 

 

The two main structures supporting central NE and the stress system—the LC and HPA 

axis—are highly interconnected, which backs the idea that they might have collaborative 

functions. Indeed, as mentioned in Chapter 1, evidence from a human study indicates that 

together, NE and cortisol shift behaviour from a goal-directed to a stimulus-driven, habit-

based state in stress, whereas alone, neither cortisol nor NE shift behaviour (Schwabe et al., 

2010; 2012). This implicates NE, and cortisol, the main product of the HPA axis, in the 

modulation of control state, especially in stress; in addiction pathophysiology, this 

mechanism could become maladaptive and promote drug-seeking.  

 

Interestingly, apathy is prevalent in neurological conditions with stress-related aetiology or 

pathology (e.g., Chase, 2011; Söndergaard et al., 2012; Strassman et al., 1956; Tiemensma 

et al., 2014). Whilst the underlying mechanisms of apathy are unclear, the above evidence 

implicates the LC-NE system and cortisol, which work synergistically to alter goal-directed 

behaviour in stress. If this system is disrupted, the result could be an amotivated 

presentation, in which individuals are not drawn to goals nor driven to work towards them. 

In support of this notion, patients diagnosed with primary adrenal insufficiency, who display 

aberrant cortisol dynamics, commonly present with apathy, indicating a link between 

cortisol dysregulation and amotivation. Furthermore, when this disease pathology is 

unmasked by removing cortisol replacement therapy, patients with primary adrenal 

insufficiency lose their sympathetic response to stressors, demonstrating an association 

between cortisol and NE (Kaye & Lightman, 2006). Therefore, these patients provide 

evidence for a new mechanism of apathy, in which the collaborative function of cortisol and 

NE on control state and goal-directed behaviour is disrupted.  
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One way to investigate this mechanism would be to disrupt cortisol and NE signalling in 

healthy human volunteers undergoing a measure of apathy. If this disruption resulted in 

apathy symptoms compared with placebo, this would implicate cortisol and/or NE signalling 

in apathy. However, as mentioned in Chapter 1, measures of apathy consist of self-reports, 

which lack clinical validity (Carrozzino, 2019). Therefore, some investigations have 

implemented alternative measures, such as by examining reward sensitivity (Muhammed et 

al., 2016; Rochat et al., 2013). The rationale for examining reward sensitivity comes from 

reports describing reward insensitivity in patients with apathy (Adam et al., 2013; Martínez-

Horta et al., 2014; Muhammed et al., 2016; Rochat et al., 2013). However, it is important to 

keep in mind that whilst reward sensitivity is a marker of extrinsic motivation, and this can 

be assessed as a measure of apathy, intrinsic motivation could also be disrupted in apathy. 

Therefore, I implemented my oddball task with a reward manipulation and concurrent 

pupillometry to assess the effects of behavioural and incentive salience on pupil size in 

healthy human volunteers. These effects of salience are linked to motivation and will 

therefore provide an indication of the levels of intrinsic and extrinsic motivation in my 

participants.  

 

To investigate the influence of cortisol and/or NE signalling on these effects of salience, I 

disrupted cortisol and NE signalling with cortisol and NE receptor antagonists. The effects of 

these antagonist treatments on salience compared with placebo indicates whether cortisol 

and/or NE function in intrinsic and extrinsic motivation, and therefore whether such 

mechanisms could become disrupted in apathy to impair motivation. Cortisol signals via two 

main receptors: the MR and GR, so cortisol effects on salience (and motivation) could occur 

via either or both of these receptors (Timmermans et al., 2019). Therefore, I administered 

both MR and GR antagonists. If I were to administer an MR antagonist without a GR 

antagonist (or vice versa) and found no effect of the treatment on salience, I could not rule 

out cortisol effects on salience via the other receptor. Spironolactone and mifepristone are 

MR and GR antagonists available on prescription that have been used previously in human 

research. In addition, research teams have reported specific dosing regiments to block 

cortisol activity that consider the fluctuating levels of cortisol due to its circadian and 

ultradian rhythms (see Method section; Gaillard et al., 1984; Young et al., 1998; 2016). 
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Therefore, I used spironolactone and mifepristone to block MR and GR signalling in the 

present study. 

 

NE binds to alpha and beta adrenoceptors, so to disrupt NE signalling, I could block one or 

both of these receptors (Ramos & Arnsten, 2007). The problem with alpha adrenoceptor 

antagonists is that they do not readily cross the blood brain barrier (Guo et al., 1991; Nikolić 

et al., 2013; Prys-Roberts & Farndon, 2002). Therefore, if I were to administer an alpha 

adrenoceptor antagonist, I would risk more peripheral than central effects. However, I 

wanted to investigate the effects of NE signalling disruption on salience and motivation, 

which are cognition functions, so I needed a NE receptor antagonist that crosses the blood 

brain barrier into the brain. Propranolol, which is a beta adrenoceptor antagonist, is highly 

lipophilic and readily crosses the blood brain barrier (Neil-Dwyer et al., 1981; Pintor, 2009). 

In addition, it is a common treatment for high blood pressure and anxiety that is well 

tolerated in humans. Therefore, to disrupt NE signalling, I used propranolol.  

 

In this study, I investigated a prospective mechanism of apathy by implementing my 

previously developed oddball task with a reward manipulation on healthy human volunteers 

undergoing pupillometry. In addition, NE and cortisol signalling were pharmacologically 

disrupted with propranolol, mifepristone and spironolactone to see whether these 

treatments influenced the effect of salience on pupil size (and therefore LC activity), 

especially the effects of behavioural and incentive salience, which indicate underlying 

intrinsic and extrinsic motivation. The study design was a randomised, single-blind, placebo-

controlled, four-arm, crossover study, in which participants underwent all four treatment 

arms (mifepristone, spironolactone, propranolol and placebo), with a >10 day wash out 

period between each arm (see Figure 3.1). In this way, each participant acted as their own 

control, so that salience effects on the pupil between mifepristone or spironolactone or 

propranolol treatment arms and placebo were compared in each participant. A difference in 

the effects of incentive salience on the pupil in one of the treatment arms compared with 

placebo would indicate that cortisol or NE function in extrinsic motivation via the LC, as 

discussed. Furthermore, if this mechanism were disrupted, it could result in the 

development of apathy. Therefore, these data have implications for the treatment of 

apathy. 
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Method 

Participants 

There were 24 healthy volunteers aged 18-45 (14 females), with no history of psychiatric 

disease. All participants had normal or corrected-to-normal vision and were paid for 

participation. Informed participant consent was obtained, and this study was approved by 

the Faculty of Health Sciences Research Ethics Committee, University of Bristol, UK. 

Participants were recruited from the University of Bristol community via poster 

advertisements, webpage advertisements and email lists. 

Materials 

During testing, participants were seated in front of a computer screen. The computer 

display was 22.5 inches and had a resolution of 1920 x 1200 pixels; viewing distance was 60 

cm. Pupil area (left pupil) and eye position were recorded at a sampling rate of 500 Hz by a 

tower-mounted Eyelink 1000 eye tracker (SR Research, Canada), which has a typical 

operating spatial resolution of 0.5o or better. Head movement was minimised using a chin 

and forehead rest. Manual responses were recorded via a computer keyboard. 

Study design 

I implemented a randomised, single-blind, four-arm, crossover study design (see Figure 3.1). 

The four treatment arms (mifepristone, propranolol, spironolactone and placebo) were 

randomised across participants by the Pharmacy Trials Unit (University Hospitals Bristol, UK) 

and separated by a >10-day washout period. For each treatment arm, participants 

completed two visits: a drug dispensing visit, in which participants received the tablet 

treatment, and a testing visit, in which participants completed the oddball task with a 

reward manipulation and pupillometry. At the drug dispensing visit, a research nurse 

dispensed the allocated treatment and instructed participants when to take the tablets so 

that they could self-administer at home. Participants were instructed to take the dispensed 

tablets on the day of testing (see Table 3.1 for dosing regimen), and the testing visit always 

took place between 9AM and 10AM. Prior to study commencement, participants attended a 

screening session, during which they underwent task training to control for task practice 

effects. 
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Figure 3.1 

Study Design 
 

 
 
 

Note. This figure shows the study design, which is a randomised, placebo-controlled, four-
arm, crossover study. Participants completed all four treatment arms in a randomised 
order. Each treatment arm was separated by at least 10 days to allow for drug washout. 
This figure was created with BioRender.com. 

 

Dosing regimen 

The dosing times for mifepristone and spironolactone shown in Table 3.1 were established 

by reviewing the previous use of these drugs in research and by considering the drug 

pharmacodynamics and pharmacokinetics (Young et al., 2016). For instance, in healthy 

humans, the amplitude of ultradian pulses of cortisol increase in the early morning, just 

before waking. Therefore, administering mifepristone or spironolactone at 12AM will 

prevent the genomic mechanisms of these nocturnal pulses as well as their effects on 

behaviours measured in the morning. However, one study found that a 12AM dose of 

mifepristone (4.5 mg/kg and 6 mg/kg) reduced feedback inhibition on the HPA axis and 

therefore actually increased plasma cortisol between 8AM and 12PM (Gaillard et al., 1984). 

In addition, another study reported that two 400mg doses of spironolactone, administered 

5 hours apart, increased plasma cortisol when tested 30 minutes to 4 hours later (Young et 

al., 1998). Thus, in order to maintain blockade of cortisol signalling over the morning period, 

an additional morning dose of mifepristone or spironolactone is required. This should 

prevent the fast and slow effects of cortisol via MR or GR on cognition and behaviour during 

testing if testing is carried out in the morning. For example, although the plasma half-life of 

>10 days          >10 days                  >10 days 
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mifepristone is only 1-2 hours, studies have found that mifepristone prevents the GR-

mediated release of heat-shock protein and the translocation of the receptor complex for 

24 hours after administration (Raux-Demay et al., 1990). In contrast to mifepristone, 

spironolactone has a much longer half-life of 28 hours, and the active metabolites of 

spironolactone with anti-mineralocorticoid effects have a half-life of 14 hours (Gardiner et 

al., 1989). From this evidence, two doses of mifepristone (400 mg) or spironolactone (400 

mg) were administered, one at 12AM and the other at 7AM (see Table 3.1) to maintain MR 

and GR blockade until after testing, which took place between 9AM and 10AM. 

 

The decision to use mifepristone and spironolactone was partly due to their prescriptive 

status, thus their side effects are well known. For example, mifepristone is a medication 

available on prescription for the termination of pregnancy in combination with another 

medication (typically, the prostaglandin misoprostol). Reported side effects for mifepristone 

relate to its use with misoprostol in pregnant women, rather its lone use and two one-off 

doses in healthy volunteers, such as in the present experiment. Reported common side 

effects for mifepristone include abdominal cramps, diarrhoea, infection, nausea, pelvic 

inflammatory disease, uterine disorders, vaginal haemorrhage and vomiting (Mifepristone, 

n.d.).  

 

Spironolactone is a diuretic medication available on prescription for the treatment of 

oedema (fluid retention) in heart failure, cirrhosis and kidney disease. Reported side effects 

for spironolactone relate to its chronic administration, rather than two one-off doses, such 

as in the present experiment. The National Institute for Health and Care Excellence does not 

report any common side effects for spironolactone, only side effects with an unknown 

frequency, including acute renal failure, alopecia, benign breast tumour, breast pain, 

changes in libido, confusion, dizziness, drowsiness, electrolyte disturbances and gastro-

intestinal disturbances. As spironolactone is a diuretic, the most probable side effect for my 

participants was increased urination overnight, potentially leading to tiredness and fatigue 

during testing (see Spironolactone, n.d., for a full list of side effects).  

 

I administered propranolol to reduce NE signalling via the beta adrenoceptor, a G-protein 

coupled membrane receptor that responds rapidly to changes in NE, unlike the slower 
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genomic responses to cortisol. Propranolol has a plasma half-life of 3-6 hours. Therefore, 

one 80 mg dose administered at 7AM is sufficient to block endogenous NE throughout the 

testing period (9-10AM). Again, the rationale for blocking the beta adrenoceptor rather than 

the alpha adrenoceptor subtype was mostly due to evidence that propranolol readily 

crosses the blood brain barrier, whereas most adrenoceptor antagonists do not (Neil-Dwyer 

et al., 1981; Pintor, 2009). In addition, propranolol is safe and well tolerated in humans. 

Reported side effects relate to the chronic administration of propranolol, rather than a one-

off dose, such as in the present experiment. The most commonly reported side effects 

include abdominal discomfort, bradycardia, confusion, depression, dizziness, diarrhoea and 

fatigue (see Propranolol hydrochloride, n.d., for a full list of side effects).  

 

Although side effects of mifepristone, spironolactone or propranolol were not expected, 

other than increased urination with spironolactone, it was ensured that participants were 

feeling well immediately prior to testing. The only complaints included feeling unwell due to 

a common cold infection and some tiredness. Any specific drug-related side effects were not 

relayed to me but to a research nurse, as I was blinded from the drug randomisation.  

 

 

Table 3.1 

Drug dose regimen 
 

 
                               Treatment arm 
 

 Mifepristone Spironolactone Propranolol Placebo 

12AM dose 
(mg) 

400 
 

400 
 

— 
 

Placebo 

7AM dose (mg) 400 
 

400 
 

80 
 

Placebo 
 

 
Note. A 12AM dose of placebo was not administered in the Propranolol Treatment Condition 
as participants were not blind to the treatment randomisation.  
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Task design 

The implemented oddball task was the same as Experiment 3 of Chapter 2. It was written 

using Psychophysics Toolbox v3 (Brainard, 1997) running under Matlab 2015a (The 

Mathworks Inc., Natick). This task was implemented during testing visits, as well as during 

task training at screening. 

 

During the task, participants were played a randomised sequence of short auditory tones. 

They were required to listen for, and respond to, a rarely occurring tone (the oddball 

target), which occurred alongside another rarely occurring tone (the deviant stimulus) and a 

frequently occurring tone (the standard stimulus), neither of which required responses. The 

standard stimulus had an auditory frequency of 1,400 Hz, and the oddball and deviant were 

either 1,200 or 1,600 Hz (counterbalanced between participants). For each participant, the 

auditory frequency and assignment of these tones was maintained across the whole study 

(including the screening and each testing visit). All tones had a duration of 100 ms, and the 

interstimulus interval was randomly varied between 1.2 and 1.7 s. In each block, 8% of the 

trials were deviant and oddball tones and 84% were standard tones. Responses to oddball 

stimuli were made via a keyboard press. 

 

The task consisted of 1 practice block of 25 auditory trials, followed by 4 experimental 

blocks of 125 auditory trials. In two of the experimental blocks, the oddball stimulus was 

associated with 20p; in the other two it was associated with £20. The participants were told 

to respond quickly to the oddball stimulus if they wanted to win the associated reward. 

They were provided with on-screen feedback, which informed them whether they had 

responded in time (within 0.7 s).  

 

At the end of the task, one of the oddball trials from the whole task was selected at random, 

and if the participant had responded within 0.7 s to the selected trial, they received the 

associated monetary reward in cash. High and low reward blocks were alternated within 

participants, and the block order was counterbalanced between participants. Half of the 

participants were told to respond to the low tone for the whole experiment (1,200 Hz), and 

the other half were told to respond to the high tone (1,600 Hz). 
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Procedure 

Participants self-administered the dispensed treatment as instructed, with slightly different 

dosing times across treatment arms (see Table 3.1 for dosing regimen). Testing took place 

on the same day as drug administration.  

 

At the testing site, participants were given printed task instructions, so that they could 

remind themselves of the task rules, which they learnt during task training at screening. 

During testing, participants were seated in front of a computer monitor and a tower-

mounted eye-tracking system. They were instructed to place their chin on the chinrest and 

fixate on a central fixation box throughout each block, responding to the oddball stimulus by 

pressing any key on the computer keyboard in front of them. Once participants were seated 

comfortably, the lights were switched off, and a short practice block was initiated prior to 

task initiation. 

 

After the practice block, pupil calibration and validation measures were carried out (these 

preceded each experimental block), and if they were met, the first experimental block was 

initiated. At the start of each block, instructions appeared on the screen to inform 

participants of the amount of monetary reward associated with the oddball stimulus (£20 or 

20p). All text was then removed from the screen and the central fixation box appeared. 

Throughout the task, visual stimuli appeared within the fixation box to provide participants 

with feedback as to whether they had responded to the oddball stimulus in time (within 0.7 

s of stimulus presentation). Between each block, participants were allowed a one-minute 

break. After completing all four experimental blocks, a lottery incentive reward system was 

executed, and if the participants won a monetary reward, they received the cash 

immediately. 

 

Participants were booked in for the next treatment arm after a 10-day washout period, 

completing each of the subsequent 3 treatment arms, all of which followed the same 

procedure.  
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Results  

Grand average pupil responses for the 3 Trial Types and 2 Reward Conditions in each of the 

4 Treatment Conditions are plotted in Figures 3.2A-D. Figure 3.2A shows the pupil responses 

in the Placebo Treatment Condition, which acts as a comparison for the other treatments. In 

comparison with the Placebo, each of the Treatment Conditions (other than Propranolol in 

Figure 3.2B) show a smaller difference between Reward Conditions, perhaps suggesting a 

blunted effect of incentive salience on the pupil. Each figure shows a clear pupil response to 

the oddball stimulus across all four Treatment Conditions, with a greater pupil response in 

the High Reward Condition than the Low Reward Condition. The peak of the pupil responses 

is around 2,000 ms, so the Stimulus Response Epoch was defined as 1,750-2,250 ms. In all 

four figures, the Pre-Stimulus Baseline, Stimulus Response and Post-Stimulus Baseline 

Epochs are shaded in grey, and the mean pupil response for each Epoch and Trial Type is 

plotted in black, for both Reward Conditions. 
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Figure 3.2 

Grand Average Pupil Responses to the Oddball, Deviant and Standard Stimuli for Both 
Reward Conditions in all Treatment Conditions 
 

A B

C D 

Note. (A) Grand average pupil responses in the Placebo Treatment Condition. (B) 
Propranolol Treatment Condition. (C) Spironolactone Treatment Condition. (D) 
Mifepristone Treatment Condition. The High Reward Condition is represented by the 
solid line, the Low Reward Condition is represented by the dashed line. The Pre-
Stimulus Baseline, Stimulus Response and Post-Stimulus Baseline Epochs are shaded in 
grey. The mean pupil area for each Epoch is plotted in black with error bars to show 
the range.  

 



 

 82 

The primary objective of the study was to investigate whether the Mifepristone, 

Spironolactone and Propranolol Treatment Conditions showed different phasic and tonic 

incentive salience effects on the pupil compared with the Placebo Treatment Condition. 

Secondary outcomes included examining differences in the phasic pupil response by 

bottom-up and top-down salience effects of Trial Type (Oddball, Deviant and Standard) 

between the three drug Treatment Conditions and Placebo. To investigate this, three 

repeated measures ANOVAs were carried out on the mean pupil size (one for each drug 

treatment) with the following factors: Treatment Condition (Mifepristone or Spironolactone 

or Propranolol versus Placebo), Reward Condition (Low, High), Trial Type (Oddball, Deviant, 

Standard) and Epoch (Pre-Stimulus Baseline, Stimulus Response, Post-Stimulus Baseline). 

Mifepristone 

First, a four-way repeated measures ANOVA was carried out with the Mifepristone and 

Placebo levels of Treatment Condition. There was a significant main effect of Epoch – F(2, 

46) = 65.260, p < 0.001; partial ETA squared = 0.739; Trial Type – F(2, 46) = 38.109, p < 

0.001; partial ETA squared = 0.624, and Reward Condition – F(1, 23) = 5.231, p = 0.032; 

partial ETA squared = 0.185. There was no significant main effect of Treatment Condition – 

F(1, 23) = 3.789, p = 0.767; partial ETA squared = 0.004. There were significant interactions 

between Treatment Condition and Trial Type – F(2, 46) = 6.171, p = 0.004; partial ETA 

squared = 0.212; Epoch and Trial Type – F(4, 92) = 35.788, p < 0.001; partial ETA squared = 

0.609; Treatment Condition, Epoch and Trial Type – F(4. 92) = 10.387, p < 0.001; partial ETA 

squared = 0.311; Epoch and Reward Condition – F(2, 46) = 6.294, p = 0.004; partial ETA 

squared = 0.215; Treatment Condition, Epoch and Reward Condition – F(2, 46) = 4.046, p = 

0.024; partial ETA squared = 0.150; Trial Type and Reward Condition – F(2, 46) = 23.022, p < 

0.001; partial ETA squared = 0.500; Treatment Condition, Trial Type and Reward Condition – 

F(2, 46) = 15.190, p < 0.001; partial ETA squared = 0.398; Epoch, Trial Type and Reward 

Condition – F(4, 92) = 18.280, p < 0.001; partial ETA squared = 0.443; and Treatment 

Condition, Epoch, Trial Type and Reward Condition – F(4, 92) = 25.795, p < 0.001; partial ETA 

squared = 0.529. 

 

The most important finding from this analysis is that there was no main effect of Treatment 

Condition nor was there a significant interaction between Treatment Condition and Reward 
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Condition. This suggests that there was not a tonic effect of Treatment Condition on the 

pupil—that is, there was no change in baseline pupil size by Treatment Condition nor by the 

effect of Treatment Condition on Reward Condition. However, a phasic effect of Treatment 

Condition on the pupil has not been ruled out by this analysis. In fact, the interaction effects 

between Treatment Condition and the other factors suggests that there was a phasic effect 

of Treatment Condition on the pupil. Phasic pupil responses are transient and stimulus-

locked, so phasic effects on the pupil can be investigated by focusing on the effects of Trial 

Type. Therefore, three repeated measures ANOVAs were carried out on the average pupil 

size with four factors: Treatment Condition (Mifepristone, Placebo), Reward Condition (Low, 

High), Trial Type (Oddball and Deviant, Oddball and Standard or Deviant and Standard) and 

Epoch (Pre-Stimulus Baseline, Stimulus Response, Post-Stimulus Baseline). For each ANOVA, 

two levels of Trial Type were compared, rather than all three, to home in on any significant 

interactions.  

  

First, the Oddball and Deviant Trial Types were investigated: there was no significant effect 

of Treatment Condition – F(1, 23) = 0.103, p = 0.747; partial ETA squared = 0.005; nor were 

there any interactions between Treatment Condition and any other factor (Treatment 

Condition and Epoch – F(2, 46) = 1.344, p = 0.271; partial ETA squared = 0.055; Treatment 

Condition and Trial Type – F(1, 23) = 0.144, p = 0.708; partial ETA squared = 0.006; 

Treatment Condition, Epoch and Trial Type – F(2, 46) = 0.613, p = 0.546; partial ETA squared 

= 0.026; Treatment Condition and Reward Condition – F(1, 23) = 2.870, p = 0.104; partial 

ETA squared = 0.111; Treatment Condition, Epoch and Reward Condition – F(2, 46) = 0.529, 

p = 0.593; partial ETA squared = 0.022; Treatment Condition, Trial Type and Reward 

Condition – F(1, 23) = 0.654, p = 0.427; partial ETA squared = 0.028; and Treatment 

Condition, Epoch, Trial Type and Reward Condition – F(2, 46) = 1.638, p = 0.205; partial ETA 

squared = 0.066). 

 

Next, I investigated the Oddball and Standard Trial Types, and found significant interactions 

between Treatment Condition, Epoch and Trial Type – F(2, 46) =26.062, p < 0.001; partial 

ETA squared = 0.531; Treatment Condition and Reward Condition – F(1, 23) = 14.080, p = 

0.001; partial ETA squared = 0.380; and Treatment Condition, Epoch and Reward Condition 

– F(2, 46) = 28.0178, p < 0.001; partial ETA squared = 0.550. 
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Figure 3.3 shows the relationship between Treatment Condition, Epoch and Trial Type 

(Oddball, Standard). As you can see, the pupil is the most dilated for the Oddball Trial Type 

in the Stimulus Response Epoch followed by the Oddball Trial Type in the Post-Stimulus 

Baseline Epoch. In contrast, the extent of pupil dilation is similar across all other 

combinations of factors. Overall, the pupil was more dilated in the Placebo Treatment 

Condition than the Mifepristone Treatment Condition, especially for the Oddball Trial Type 

in the Stimulus Response and Post-Stimulus Baseline Epochs. In addition, the difference in 

pupil size between the Oddball and Standard Trial Types was greater in the Placebo 

Treatment Condition than the Mifepristone Treatment Condition for the Stimulus Response 

Epoch (Mifepristone: 1.70 mm2; Placebo: 1.81 mm2) and the Post-Stimulus Baseline Epoch 

(Mifepristone: 1.05 mm2; Placebo: 1.22 mm2), indicating a blunted phasic effect of the 

Oddball Trial Type or behavioural salience on the pupil in the Mifepristone Treatment 

Condition compared with Placebo. 
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Figure 3.3 

Line Chart showing Pupil Dilation for the Oddball and Standard Trial Types across the Pre-
Stimulus Baseline (Pre SE), Stimulus Response (SRE) and Post-Stimulus Baseline Epoch (Post 
SE) in the Mifepristone and Placebo Treatment Conditions 
 

 
 

Note. Error bars are standard error of the mean. 

 

Figure 3.4 depicts the relationship between Treatment Condition and Reward Condition. 

The interaction between these two factors appears to stem from a more dilated pupil in the 

High Reward Condition than the Low Reward Condition across both Treatment Conditions 

but a blunted effect of incentive salience by the Mifepristone Treatment Condition 

compared with Placebo (because there is a smaller difference in pupil size between the 

Reward Conditions in the Mifepristone Treatment Condition). 
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Figure 3.4 

Bar Chart showing Pupil Dilation in the High and Low Reward Condition in the Mifepristone 
and Placebo Treatment Condition 

 
 

Note. Error bars are standard error of the mean. 

 

Similarly, exploration of the interaction between Treatment Condition, Epoch and Reward 

Condition revealed a smaller effect of incentive salience on the pupil by Mifepristone 

compared with Placebo. The added effect of Epoch came from a more dilated pupil in the 

Stimulus Response Epoch than the Post-Stimulus Baseline Epoch and Pre-Stimulus Baseline 

Epoch, respectively. This effect of Epoch was maintained across both Reward Conditions and 

Treatment Conditions.  
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Next, the Deviant and Standard Trial Types were investigated: there was no significant effect 

of Treatment Condition – F(1, 23) = 0.069, p = 0.795; partial ETA squared = 0.003; nor were 

there any interactions between Treatment Condition and any other factor (Treatment 

Condition and Epoch – F(2, 46) = 0.882, p = 0.421; partial ETA squared = 0.037; Treatment 

Condition and Trial Type – F(1, 23) = 0.121, p = 0.731; partial ETA squared = 0.005; 

Treatment Condition, Epoch and Trial Type – F(2, 46) = 0.015, p = 0.985; partial ETA squared 

= 0.001; Treatment Condition and Reward Condition – F(1, 23) = 1.938, p = 0.177; partial 

ETA squared = 0.078; Treatment Condition, Epoch and Reward Condition – F(2, 46) = 1.870, 

p = 0.166; partial ETA squared = 0.075; Treatment Condition, Trial Type and Reward 

Condition – F(1, 23) = 0.400, p = 0.533; partial ETA squared = 0.017; and Treatment 

Condition, Epoch, Trial Type and Reward Condition – F(2, 46) = 1.6574, p = 0.218; partial ETA 

squared = 0.064). 

Spironolactone 

I carried out a repeated measures ANOVA on the average pupil size with four factors: 

Treatment Condition (Spironolactone, Placebo), Reward Condition (Low, High), Trial Type 

(Oddball, Deviant, Standard) and Epoch (Pre-Stimulus Baseline, Stimulus Response, Post-

Stimulus Baseline). There was a significant main effect of Epoch – F(2, 46) = 83.932, p < 

0.001; partial ETA squared = 0.785; Trial Type – F(2, 46) = 48.138, p < 0.001; partial ETA 

squared = 0.677; and Reward Condition – F(1, 23) = 6.683, p = 0.017; partial ETA squared = 

0.225. There was no significant main effect of Treatment Condition – F(1, 23) = 0.959, p = 

0.338; partial ETA squared = 0.040. There were significant interactions between Treatment 

Condition and Trial Type – F(2, 46) = 7.165, p = 0.002; partial ETA squared = 0.238; Epoch 

and Trial Type – F(4, 92) = 39.715, p < 0.001; partial ETA squared = 0.633; Treatment 

Condition, Epoch and Trial Type – F(4, 92) = 19.571, p < 0.001; partial ETA squared = 0.460; 

Epoch and Reward Condition – F(2, 46) = 9.602, p < 0.001; partial ETA squared = 0.295; 

Treatment Condition, Epoch and Reward Condition – F(2, 46) = 7.125, p = 0.002; partial ETA 

squared = 0.237; Trial Type and Reward Condition – F(2, 46) = 18.062, p < 0.001; partial ETA 

squared = 0.440; Treatment Condition, Trial Type and Reward Condition – F(2, 46) = 19.228, 

p < 0.001; partial ETA squared = 0.455; Epoch, Trial Type and Reward Condition – F(4, 92) = 

20.391, p < 0.001; partial ETA squared = 0.470; Treatment Condition, Epoch, Trial Type and 

Reward Condition – F(4, 92) = 23.859, p < 0.001; partial ETA squared = 0.509. 
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Again, there was no main effect of Treatment Condition nor was there a significant 

interaction between Treatment Condition and Reward Condition, suggesting that there was 

no tonic effect of Treatment Condition on the pupil. However, the various interaction 

effects between Treatment Condition, Reward Condition, Trial Type and Epoch suggest that 

there is a phasic effect of Treatment Condition on the pupil. The phasic effects of 

Spironolactone on pupil size were investigated in the same way as for the Mifepristone 

Treatment Condition—by carrying out three repeated measures ANOVAs on the average 

pupil size with four factors: Treatment Condition (Spironolactone, Placebo), Reward 

Condition (Low, High), Trial Type (Oddball and Deviant, Oddball and Standard or Deviant and 

Standard) and Epoch (Pre-Stimulus Baseline, Stimulus Response, Post-Stimulus Baseline).  

 

First, the Oddball and Deviant Trial Types were investigated: there was no significant effect 

of Treatment Condition – F(1, 23) = 0.883, p = 0.357; partial ETA squared = 0.037; nor were 

there any interactions between Treatment Condition and any other factor (Treatment 

Condition and Epoch – F(2, 46) = 1.656, p = 0.202; partial ETA squared = 0.067; Treatment 

Condition and Trial Type – F(1, 23) = 0.615, p = 0.283; partial ETA squared = 0.050; 

Treatment Condition, Epoch and Trial Type – F(2, 46) = 1.013, p = 0.371; partial ETA squared 

= 0.042; Treatment Condition and Reward Condition – F(1, 23) = 1.468, p = 0.238; partial 

ETA squared = 0.060; Treatment Condition, Epoch and Reward Condition – F(2, 46) = 2.580, 

p = 0.087; partial ETA squared = 0.101; Treatment Condition, Trial Type and Reward 

Condition – F(1, 23) = 2.194, p = 0.152; partial ETA squared = 0.087; Treatment Condition, 

Epoch, Trial Type and Reward Condition – F(2, 46) = 1.169, p = 0.320; partial ETA squared = 

0.048). 

 

Next, I investigated the Oddball and Standard Trial Types, and found a significant interaction 

between Treatment Condition, Trial Type and Reward Condition – F(1, 23) = 4.919, p = 

0.037; partial ETA squared = 0.176. This interaction resulted from a more dilated pupil in the 

High Reward Condition than the Low Reward Condition, and although the pupil was more 

dilated in the Spironolactone Treatment Condition, Figure 3.5 shows that there was a 

smaller difference between the two Reward Conditions in Spironolactone Treatment 

Condition compared with Placebo. Therefore, the phasic response to incentive salience, 
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which is reflected in the difference in pupil size between Reward Conditions, is smaller in 

the Spironolactone Treatment Condition compared with Placebo.  

 
 
Figure 3.5 

Line Chart showing Pupil Dilation for the Oddball and Standard Trial Types across both 
Reward Conditions in the Mifepristone and Placebo Treatment Conditions 

 
Note. Error bars are standard error of the mean. 

 

 

 

 

 

 

 

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

Spironolactone Placebo

P
u

p
il 

D
ila

ti
o

n
 (

m
m

2
)

Treatment Condition

Oddball, High Reward

Standard, High Reward

Oddball, Low Reward

Standard, Low Reward



 

 90 

Next, I investigated the Deviant and Standard Trial Types and found a significant interaction 

between Treatment Condition, Epoch and Trial Type – F(2, 46) = 4.607, p = 0.015; partial ETA 

squared = 0.167. This interaction appeared to come from a more dilated pupil in the 

Spironolactone Treatment Condition compared with Placebo but a similar pattern across the 

two Treatment Conditions of greater pupil size in the Deviant Trial Type than the Standard 

Trial Type in the Stimulus Response and Post-Stimulus Baseline Epoch, and the contrasting 

pattern of greater pupil size in the Standard Trial Type than the Deviant Trial Type in the 

Pre-Stimulus Baseline Epoch. 

Propranolol 

I carried out a repeated measures ANOVA on the average pupil size with four factors: 

Treatment Condition (Propranolol, Placebo), Reward Condition (Low, High), Trial Type 

(Oddball, Deviant, Standard) and Epoch (Pre-Stimulus Baseline, Stimulus Response, Post-

Stimulus Baseline). There was a significant main effect of Epoch – F(2, 46) = 63.057, p < 

0.001; partial ETA squared = 0.733; Trial Type – F(2, 46) = 44.959, p < 0.001; partial ETA 

squared = 0.662; and Reward Condition – F(1, 23) = 6.760, p = 0.016; partial ETA squared = 

0.227. There was no significant main effect of Treatment Condition – F(1, 23) = 1.321, p = 

0.262; partial ETA squared = 0.054. There was a significant interaction between Treatment 

Condition and Epoch – F(2, 46) = 5.761, p = 0.006; partial ETA squared = 0.200; Treatment 

Condition and Trial Type – F(2, 46) = 4.209, p = 0.021; partial ETA squared = 0.155; Epoch 

and Trial Type – F(4, 92) = 38.841, p < 0.001; partial ETA squared = 0.628; Treatment 

Condition, Epoch and Trial Type – F(4, 92) = 15.076, p < 0.001; partial ETA squared = 0.396; 

Epoch and Reward Condition – F(2, 46) = 5.329, p = 0.008; partial ETA squared = 0.188; 

Treatment Condition, Epoch and Reward Condition – F(2, 46) = 5.927, p = 0.005; partial ETA 

squared = 0.205; Trial Type and Reward Condition – F(2, 46) = 29.608, p < 0.001; partial ETA 

squared = 0.563; Treatment Condition, Trial Type and Reward Condition – F(2, 46) = 8.894, p 

= 0.001; partial ETA squared = 0.279; Epoch, Trial Type and Reward Condition – F(4, 92) = 

20.028, p < 0.001; partial ETA squared = 0.465; and Treatment Condition, Epoch, Trial Type 

and Reward Condition – F(4, 92) = 23.772, p < 0.001; partial ETA squared = 0.508. 

 

Again, there was no main effect of Treatment Condition nor was there a significant 

interaction between Treatment Condition and Reward Condition. Therefore, there was no 
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tonic effect of Treatment Condition on the pupil, nor was there a tonic effect of incentive 

salience on the pupil by Treatment Condition. However, there is some evidence for a phasic 

effect of Treatment Condition on the pupil in the various interaction effects with Treatment 

Condition. To investigate the phasic effect, three repeated measures ANOVAs were carried 

out on the average pupil size with four factors: Treatment Condition (Propranolol, Placebo), 

Reward Condition (Low, High), Trial Type (Oddball and Deviant, Oddball and Standard or 

Deviant and Standard) and Epoch (Pre-Stimulus Baseline, Stimulus Response, Post-Stimulus 

Baseline). Again, for each ANOVA, two levels of Trial Type were compared, rather than all 

three, to home in on any significant interactions.  

 

First, I investigated the Oddball and Deviant Trial Types and found a significant interaction 

between Treatment Condition and Epoch – F(2, 46) = 5.587, p = 0.007; partial ETA squared = 

0.195; and Treatment Condition, Epoch and Trial Type – F(2, 46) =3.521, p = 0.038; partial 

ETA squared = 0.133. Figure 3.6 shows the relationship between Treatment Condition, Trial 

Type and Epoch. This figure shows that, although the pupil was more dilated in the 

Propranolol Treatment Condition, the same pattern of a more dilated pupil for Oddball Trial 

Type in the Stimulus Response Epoch followed by the Oddball Trial Type in the Post-

Stimulus Baseline Epoch was conserved across Treatment Conditions. In addition, the 

difference in pupil size between the Oddball and Deviant Trial Types was greater in the 

Placebo Treatment Condition than the Propranolol Treatment Condition for the Stimulus 

Response Epoch (Propranolol: 1.56 mm2; Placebo: 1.66 mm2) and the Post-Stimulus Baseline 

Epoch (Propranolol: 0.54 mm2; Placebo: 1.02 mm2). This data suggests that the phasic 

response to the oddball stimulus (i.e., behavioural salience) was suppressed in the 

Propranolol Treatment Condition compared with Placebo.  
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Figure 3.6 

Line Chart showing Pupil Dilation for the Oddball and Deviant Trial Types across the Pre-
Stimulus (Pre SE), Stimulus Response (SRE) and Post-Stimulus Baseline Epoch (Post SE) in the 
Propranolol and Placebo Treatment Conditions 
 

 
Note. Error bars are standard error of the mean. 

 

 

Next, I investigated the Oddball and Standard Trial Types and found significant interactions 

between Treatment Condition and Epoch – F(2, 46) = 6.087, p = 0.005; partial ETA squared = 

0.209; Treatment Condition, Epoch and Trial Type – F(2, 46) = 35.918, p < 0.001; partial ETA 

squared = 0.610; and Treatment Condition, Epoch and Reward Condition – F(2, 46) = 26.824, 

p < 0.001; partial ETA squared = 0.538. The interaction between Treatment Condition, Epoch 

and Trial Type is similar to that of the previous ANOVA (see Figure 3.6), with a more dilated 

10

11

12

13

14

15

16

Propranolol Placebo

P
u

p
il 

D
ila

ti
o

n
 (

m
m

2
)

Treatment Condition

Pre SE, Oddball

Pre SE, Deviant

SRE, Oddball

SRE, Deviant

Post SE, Oddball

Post SE, Deviant



 

 93 

pupil in the Propranolol Treatment Condition than Placebo, but a similar pattern of a more 

dilated pupil at the level of the Oddball Trial Type in the Stimulus Response Epoch followed 

by the Oddball Trial Type in the Post-Stimulus Baseline Epoch, then similar pupil size 

between other combinations of factors. Again, the difference in pupil size between the 

Oddball and Standard Trial Types was greater in the Placebo Treatment Condition than the 

Propranolol Treatment Condition for the Stimulus Response Epoch (Propranolol: 1.70 mm2; 

Placebo: 1.81 mm2) and the Post-Stimulus Baseline Epoch (Propranolol: 0.78 mm2; Placebo: 

1.22 mm2), indicating a blunted phasic effect of the oddball stimulus (i.e., behavioural 

salience) on pupil dilation in the Propranolol Treatment Condition compared with Placebo. 

 

Figure 3.7 shows the relationship between Treatment Condition, Epoch and Reward 

Condition, with a more dilated pupil in the Propranolol Treatment Condition compared with 

Placebo and the High Reward Condition compared with the Low Reward Condition across 

both Treatment Conditions. The difference in pupil dilation between Reward Conditions was 

greater in the Propranolol Treatment Condition than Placebo for the Stimulus Response 

Epoch (Propranolol: 0.64 mm2; Placebo: 0.61 mm2) and the Post-Stimulus Baseline Epoch 

(Propranolol: 0.59 mm2; Placebo: 0.56 mm2), suggesting a greater phasic effect of incentive 

salience on the pupil in the Propranolol Treatment Condition. 
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Figure 3.7 

Line Chart showing Pupil Dilation in the High and Low Reward Conditions across the Pre-
Stimulus Baseline (Pre SE), Stimulus Response (SRE) and Post-Stimulus Baseline Epoch (Post 
SE)in the Propranolol and Placebo Treatment Conditions 
 

 
Note. Error bars are standard error of the mean. 

 

 

Finally, the Deviant and Standard Trial Types were investigated: there was no significant 

effect of Treatment Condition – F(1, 23) = 1.662, p = 0.210; partial ETA squared = 0.067, nor 

were there significant interactions between Treatment Condition and any other factor 

(Treatment Condition and Epoch – F(2, 46) = 2.616, p = 0.084; partial ETA squared = 0.102; 

Treatment Condition and Trial Type – F(1, 23) = 0.042, p = 0.840; partial ETA squared = 

0.002; Treatment Condition, Epoch and Trial Type – F(2, 46) = 0.408, p = 0.667; partial ETA 

squared = 0.017; Treatment Condition and Reward Condition – F(1, 23) = 0.060, p 0.809; 
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partial ETA squared = 0.003; Treatment Condition, Epoch and Reward Condition – F(2, 46) = 

0.030, p = 0.970; partial ETA squared = 0.001; Treatment Condition, Trial Type and Reward 

Condition – F(1, 23) = 0.076, p = 0.785; partial ETA squared = 0.003; Treatment Condition, 

Epoch, Trial Type and Reward Condition – F(2, 46) = 0.264, p = 0.769; partial ETA squared = 

0.011). 

Manual responses 

In addition to pupillometry data, the manual response times of keyboard presses made to 

oddball stimulus presentations were recorded. The effects of Reward Condition and 

Treatment Condition on these manual responses were investigated by carrying out a 

repeated measures ANOVA on the average reaction time with two factors: Treatment 

Condition (Mifepristone, Spironolactone, Propranolol, Placebo), Reward Condition (Low, 

High). There was a significant main effect of Reward Condition – F(1, 23) = 5.775, p = 0.025; 

partial ETA squared = 0.201; but not Treatment Condition – F(3, 69) = 0.321, p = 0.810; 

partial ETA squared = 0.014, with faster reaction times in the High Reward Condition (M =  

0.64 ms) than the Low Reward Condition (M = 0.65 ms; SD = 0.40 ms). There was no 

significant interaction between Treatment Condition and Reward Condition – F(3, 69) = 

0.454, p = 0.715; partial ETA squared = 0.019.  

Discussion 

Whilst there was no tonic effect on pupil dilation by Mifepristone, Spironolactone nor 

Propranolol, there were significant phasic effects on the pupil by these drug Treatment 

Conditions compared with Placebo. Administration of Mifepristone, a GR antagonist, and 

Spironolactone, an MR antagonist, suppressed the phasic effect of incentive salience on 

pupil dilation. Mifepristone also blunted the phasic effect of behavioural salience on the 

pupil. The beta blocker Propranolol amplified the phasic effect of incentive salience on the 

pupil but suppressed the phasic effect of behavioural salience on the pupil compared with 

Placebo. Interestingly, although manual response times to oddball stimuli showed a reward 

effect with faster reaction times in the High Reward Condition than the Low Reward 

Condition, there was no interaction between Treatment Condition and Reward Condition on 

the average reaction time. Therefore, the effects of Treatment Condition on incentive 
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salience were only reflected in pupil sensitivity and were locked to the task stimuli of the 

oddball task. 

 

The suppressed phasic effect of incentive salience by Mifepristone and Spironolactone is 

consistent with my proposal that cortisol signalling via MR or GR is part of the brain circuitry 

underlying extrinsic motivation. Mifepristone and Spironolactone are GR and MR 

antagonists, and therefore inhibit the effects of cortisol signalling. Thus, if cortisol functions 

in extrinsic motivation, a blunted effect of incentive salience and reduced reward sensitivity 

by Mifepristone and/or Spironolactone would be expected. It is important to note that 

although the pupil appears generally more dilated in the Spironolactone Treatment 

Condition than Placebo (see Figure 3.2A and C), there is a smaller difference between 

Reward Conditions with Spironolactone (i.e., a blunted phasic effect of incentive salience), 

and this small difference is similar to that of the Mifepristone Treatment Condition. 

 

In addition to the smaller phasic effect of incentive salience, administration of Mifepristone 

caused a suppressed phasic effect of behavioural salience on the pupil compared with 

Placebo. This phasic effect was measured by comparing the difference in the peak of the 

pupil response to the Oddball with the peak of the pupil response to the Deviant or 

Standard Trial Types. Therefore, a reduced phasic effect of behavioural salience by 

Mifepristone could reflect a reduced effect of behavioural salience by the Oddball Trial Type 

or an enhanced effect of bottom-up salience by the Deviant or Standard Trial Type (or both). 

However, the Standard Trial Type should not have stood out from the other Trial Types as it 

was not task relevant (i.e., behaviourally salient) nor did it possess low stimulus probability 

(i.e., bottom-up salience). Therefore, I propose that this suppressed phasic effect is related 

to a reduced effect of behavioural salience rather than an increase in the bottom-up 

salience effect, as this effect was only present in an ANOVA investigating the Oddball and 

Standard levels of Trial Type. The suppression of both top-down salience effects 

(behavioural and incentive salience) by Mifepristone suggests that Mifepristone inhibited 

top-down or goal-directed processes. According to theories of action control, goal-directed 

and stimulus-driven modes compete for dominance (de Wit & Dickinson, 2009). This 

suggests that if Mifepristone suppressed behavioural salience and incentive salience, which 

are both related to goal-directed processes, it could have enhanced stimulus-driven 
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processes, marked by increased bottom-up salience. However, the pupil response to the 

Deviant Trial Type, which had bottom-up salience, was not elevated in the Mifepristone 

Treatment Condition compared with Placebo. Thus, it seems that the effect of Mifepristone 

was an overall dampening of top-down, goal-directed processes. 

 

On the other hand, the suppressive effects of Spironolactone on the phasic pupil response 

were targeted to incentive salience and not behavioural salience, as the difference in pupil 

size between Reward Conditions was smaller in the Spironolactone Treatment Condition 

compared with Placebo, but otherwise the difference between Trial Types was similar 

between the Spironolactone Treatment Condition and Placebo. Altogether, this suggests 

that the blockade of MR by Spironolactone impeded reward sensitivity and therefore the 

incentive salience effect by extrinsic motivation, whereas blockade of GR by Mifepristone 

impeded general top-down salience effects related to both intrinsic and extrinsic 

motivation. Therefore, perhaps cortisol signalling via MR is a better target for future 

investigations of cortisol function in motivation and reward. However, it is important to 

point out that the inhibitory effects of these drugs on extrinsic motivation did not translate 

to behaviour, as there was no effect of Treatment Condition on reaction times. Thus, 

although my data provides evidence for a role of cortisol in extrinsic motivation—a novel 

finding in this field—it does not provide evidence for an effect on behaviour. This suggests 

that cortisol functions in an attentional process underlying extrinsic motivation that does 

not necessarily translate to behaviour. Having said this, reaction time data is quite variable, 

and so it is possible that this variability obscured the effects of Treatment Condition on 

reaction time. As mentioned in Chapter 2, there were only about 10 Oddball Stimuli 

presented for each block (Oddball Trial Types had an 8% probability and there were 125 

trials per block), so approximately 20 Oddballs were presented in the High Reward 

Condition and 20 in the Low Reward Condition. The low presentation frequency of the 

Oddball stimulus resulted in little reaction time data, which is typically quite noisy and 

therefore could have obscured the a significant effect of Treatment Condition on reaction 

time. 

 

The literature is divided on whether cortisol enhances or reduces reward sensitivity. As 

mentioned, the direction of cortisol’s effects on the reward system seem to depend on 
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whether stress or ultradian levels of plasma cortisol are present, and whether genomic or 

non-genomic mechanisms are involved. However, the drug dosing regimens for 

Spironolactone and Mifepristone in this study were designed to prevent both the fast (non-

genomic) and slow (genomic) effects of cortisol by administering a midnight dose, which 

blocked the effects of long-acting genomic responses overnight, plus a morning dose, which 

antagonised more rapid non-genomic responses during testing. My study was not designed 

to test the effects of these agents on the response to stressors, and I avoided any stressful 

components in my relatively straight-forward task, thus maintaining plasma cortisol at non-

stress levels. In this non-stress state, the literature suggests that a goal-directed mode is 

favoured over a stimulus-driven mode, especially within a task setting with a reward 

manipulation (Bogdan & Pizzagalli, 2006; Braunstein-Bercovitz et al., 2001; Sänger et al., 

2014; Schwabe et al., 2010; 2012; 2017; Schwabe & Wolf, 2009; 2011). This would suggest 

that, in my study, blockade of MR and GR with Spironolactone and Mifepristone prevented 

the normal function of cortisol in facilitating a goal-directed, rewarding seeking mode and 

therefore suppressed the phasic effect of incentive salience on the pupil. As mentioned, the 

effect of Spironolactone on top-down salience is specific to incentive salience and not 

behavioural salience, whereas Mifepristone exerted an overall dampening influence on top-

down salience. Therefore, perhaps cortisol signalling via GR, which is blocked by 

Mifepristone, is required for a goal-directed state in favour of internal goals, whereas 

cortisol signalling via either MR or GR is sufficient for goal-directed, reward-seeking states. 

In other words, the effects of cortisol on incentive salience are not specific to MR or GR. 

 

In contrast to the Spironolactone and Mifepristone Treatment Conditions, Propranolol 

enhanced the phasic effect of Reward Condition on the pupil compared with Placebo. This 

finding is more difficult to interpret as although Propranolol is a beta adrenoceptor 

antagonist and thus inhibits the effects of NE on the pupil, the NE control of pupil dilation 

and constriction involves a delicate balance between alpha and beta adrenoceptor 

activation. For example, the iris sphincter muscle, which constricts the pupil, expresses 

inhibitory beta adrenoceptors that dilate the pupil, and excitatory alpha adrenoceptors that 

constrict the pupil. In contrast, the iris dilator muscle, which dilates the pupil, has more 

excitatory alpha adrenoceptors that dilate the pupil than beta adrenoceptors that constrict 

the pupil (Pintor, 2009; Yoshitomi et al., 1985). Blockade of either of these receptor 
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subtypes disrupts the balance between excitatory input and inhibitory input to both muscles 

and leads to an increase in the activation of the other subtype. Therefore, administering 

Propranolol could dilate the pupil by causing an increase in NE signalling via the alpha 

adrenoceptor. However, Propranolol did not cause an overall more dilated pupil compared 

with Placebo, as its effects were phasic, and stimulus locked. This suggests that Propranolol 

enhanced the phasic effect of incentive salience on the pupil, perhaps by increasing NE 

signalling at the alpha adrenoceptor. Interestingly, blockade of the alpha adrenoceptor with 

yohimbine abolishes pupil responses evoked by electrical stimulation of the LC in rats (Y. Liu 

et al., 2017). This suggests that the pathway connecting the LC to the pupil expresses alpha 

adrenoceptors, and perhaps the effects of alpha adrenoceptor blockade on salience 

measured via the pupil should be investigated in future.  

 

I found evidence for an inhibited phasic response to behavioural salience by the Oddball 

Trial Type in the Propranolol Treatment Condition compared with Placebo. This indicates 

that the phasic effect of behavioural salience on the pupil was suppressed by beta 

adrenoceptor blockade and therefore likely involves NE signalling via beta adrenoceptors, 

although the response was not completely abolished so it could also involve activation of 

the alpha adrenoceptor subtype. The enhanced phasic effect of incentive salience by 

Propranolol compared with the suppressed phasic effect of behavioural salience by 

Propranolol suggests that the processes driving these two types of top-down salience are 

distinct and comprise different pathways. As proposed by Awh et al. (2012), events related 

to internal or external goals should be thought of as distinct phenomena. Therefore, it is 

possible for a given control state to facilitate goal-directed, reward-biased behaviours whilst 

suppressing other types of goal-directed behaviour, and vice versa. This brings into question 

dual-system theories of control state, which propose that attentional control is biased 

towards top-down or bottom-up events. In contrast, there was evidence of an increased 

effect by one top-down event but not another. In terms of my expectation that the LC-NE 

system functions in intrinsic and extrinsic motivation, this evidence suggests that central NE 

is involved in mediating processes related to motivation, but that distinct intrinsic and 

extrinsic motivational processes require the activation of different receptor subtypes. 
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There is one main limitation of the present study in that it is only possible to draw indirect 

inferences about underlying mechanisms from pupillometry data. For example, although it 

is clear that there is an effect of incentive salience on the pupil, it is unclear which extrinsic 

motivational process is driving this effect on the pupil, and so which process is influenced by 

Treatment Condition. For example, this process could be saliency attribution, the detection 

of salience, the mobilisation of energy resources for reward-seeking behaviours, and so on. 

These limitations extend to the previous experiments documented in this thesis, but they 

are particularly important to keep in mind when drawing conclusions from the present data, 

which was collected to test a novel mechanism of apathy. This study cannot confirm 

whether a mechanism involving a dysfunctional LC and HPA axis in apathy exists, but the 

findings do suggest that cortisol and NE influence incentive salience and reward sensitivity, 

which become disrupted in apathy. In addition, this evidence suggests the mechanism 

involved is more closely linked to extrinsic motivation than the rewarding effect, as the 

phasic pupil response was evoked by reward incentives and not reward delivery. Future 

investigations should examine the effects of disrupting cortisol and NE signalling on 

different parts of the reward processes in an attempt to establish the precise contribution 

of these mechanisms to motivation and reward function. 

 

I have shown that, regardless of the precise underlying mechanisms, blockade of cortisol 

signalling via MR and GR suppresses a phasic effect of incentive salience on the pupil (and 

therefore LC activity), demonstrating cortisol involvement in a reward sensitivity process by 

the LC that is closely associated with extrinsic motivation. Additionally, blockade of NE 

signalling via the beta adrenoceptor enhanced the phasic effect of incentive salience on the 

pupil, possibly by enhancing NE signalling via the alpha adrenoceptor. In contrast, beta 

adrenoceptor blockade suppressed the phasic effect of behavioural salience on the pupil, 

suggesting an involvement of beta adrenoceptor signalling in top-down salience that was 

not present in the incentive salience effect by propranolol. Notably, although the pupil is 

innervated by NE input, blocking NE signalling via the beta adrenoceptor did not lead to a 

significantly overall more dilated pupil in the Propranolol Treatment Condition compared 

with Placebo. The differences in pupil dilation were related to stimulus presentation. 

Therefore, the effects of Propranolol were on salience and cognition rather than directly on 

the mechanics of the pupil. Whilst the directionality of these findings was not entirely 
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expected, the literature suggests a regulatory effect of these systems on extrinsic 

motivation, which indicates that effects could be bidirectional depending on the context. 

Future investigations questioning the precise role of cortisol and NE signalling in 

mechanisms of motivation and reward could be important for elucidating the underlying 

mechanisms of apathy. This study demonstrates how pupillometry techniques might act as a 

useful tool for indicating novel avenues for the research of human cognition and behaviour. 

 

In the next chapter, I explore the mechanisms driving these effects of salience on the pupil 

further by administering the same oddball task with a reward manipulation and concurrent 

pupillometry on healthy human volunteers exposed to a stress dose of hydrocortisone. 

Given the distinct fast and slow effects of cortisol, I was interested to see whether these 

effects of cortisol on salience vary over time. 
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Introduction 

In this chapter, I report a study investigating the fast and slow effects of a stress dose of 

cortisol on bottom-up and top-down salience effects on the pupil. The rationale for carrying 

out this study comes from the lack of research investigating the fast and slow effects of 

cortisol in humans, the effects of cortisol on reward and the link between the HPA axis and 

the LC-NE system. This study was exploratory, carried out in collaboration with another 

Ph.D. student.  

Literature review 

The glucocorticoid stress hormone cortisol is the main downstream effector of the HPA axis 

in humans. Cortisol is a very dynamic hormone with circadian rhythmicity and a 

superimposed ultradian rhythm (Windle et al., 1998; Young et al., 2004). Glucocorticoids 

synchronise physiological changes through their widely distributed receptors: the high 

affinity MR and the low affinity GR (Smith and Vale, 2006). In addition to the slow effects, 

which are achieved by ligand-receptor binding, nuclear translocation and transcription, 

glucocorticoids exert fast effects via non-genomic mechanisms and membrane-bound 

receptors, such as membrane-bound MR (Groeneweg et al. 2011). The fast effects occur 

within seconds to minutes of glucocorticoid exposure (Wiegert et al., 2005).  

 

A few human studies have investigated the fast effects of glucocorticoids, focusing on the 

rapid effects of cortisol on brain connectivity, cognition and behaviour in stress (Henckens 

et al., 2010; 2012; Hermans et al., 2011; 2014; Lovallo et al., 2010; van Marle et al., 2009; 

2010) . It is thought that, in the early stages of the stress response, energy resources are 

redistributed throughout the brain from the executive control network, which comprises 

frontal brain regions, toward the salience network, which includes the dorsal anterior 

cingulate cortex and the anterior insula, and functions in detecting and filtering salient 

stimuli for attentional selection (Hermans et al., 2014; Schwabe, 2017). In addition, 

evidence suggests that there is a rapid increase in connectivity between the LC and the 

amygdala, which mediates a surge in vigilance, whilst also facilitating saliency detection 

(Hermans et al., 2014; van Marle et al., 2009; 2010). These fast changes in brain activation 
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underlie a rapid increase in emotional distractibility and vigilance (Braunstein-Bercovitz et 

al., 2001; Skosnik et al., 2000; van Marle et al., 2009; 2010). In addition, there is a shift in 

control state from a goal-directed mode to a habit based and stimulus-driven mode 

(Braunstein-Bercovitz et al., 2001; Henckens et al., 2010; 2012; Hermans et al., 2014; Sänger 

et al., 2014; Schwabe et al., 2010; 2012; 2017; Schwabe & Wolf, 2009; 2011; van Marle et 

al., 2009; 2010). Overall, this leads to the development of a highly aroused behavioural state 

in which individuals are alert and readily drawn to salient events within their environment 

and quick to react. This is a highly adaptive response to threat detection, which promotes 

survival (Dallman, 2005; Henckens et al., 2010; Hermans et al., 2014).  

 

In contrast, prolonged changes can be maladaptive, so it is important to revert to 

homeostasis. This could explain why genomic mechanisms of cortisol result in opposing 

brain activity patterns compared to non-genomic mechanisms. Evidence suggests that the 

genomic mechanisms redirect resources back from the salience network towards the 

executive control network, facilitating higher-order cognitive processes, and reinstating a 

less vigilant and distractable arousal state (Henckens et al., 2012; Hermans et al., 2014). 

Behavioural studies have reported results that compliment these brain activation findings: 

compared with enhanced vigilance, distractibility and stimulus-driven and habit-based 

behaviour, which is seen in the early stages of the stress response, the slower genomic 

mechanisms of cortisol facilitate executive function and goal-directed behaviour (Henckens 

et al., 2012; Hermans et al., 2014). In sum, it seems that non-genomic mechanisms serve to 

mediate cortisol’s short-term effects on cognition and behaviour, whereas the genomic 

mechanisms reinstate and maintain homeostasis. 

 

Some of the brain regions mentioned above overlap with networks of motivation and 

reward. For example, the anterior cingulate cortex and the LC, which are both involved in 

saliency detection, are interconnected with brain regions that function in reward, such as 

the ventral tegmental area (Cole et al., 2013; Hermans et al., 2014; Seeley et al., 2007). This 

link between networks of saliency and reward makes sense, given the functional 

relationship between the two phenomena. For instance, like behavioural goals, reward 

incentives possess a sort of top-down salience, which captures attention and motivates 

goal-directed behaviour (Awh et al., 2012; Fecteau & Munoz, 2006; Gong & Liu, 2018). In 
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addition, as described above, stress causes a shift in control state, promoting bottom-up 

processing as well as habit-based and stimulus-driven behavioural states rather than top-

down processing and goal-directed behaviour for internal and external goals (Braunstein-

Bercovitz et al., 2001; Henckens et al., 2010; 2012; Hermans et al., 2014; Sänger et al., 2014; 

Schwabe et al., 2010; 2012; 2017; Schwabe & Wolf, 2009; 2011; van Marle et al., 2009; 

2010). This suggests there is a negative relationship between stress and goal-directed, 

reward-seeking control states. Indeed, although the literature is limited, evidence suggests 

that reward sensitivity is altered in stress (Bogdan & Pizzagalli, 2006; Kinner et al., 2016; 

Montoya et al., 2014).  

 

Whilst there is some evidence of altered reward functioning and goal-directed behaviour in 

stress, there is no evidence of the real-time effects of cortisol on intrinsic and extrinsic 

motivation. As mentioned in Chapter 3, a state of intrinsic or extrinsic goal-directed mode or 

a stimulus-driven mode can be inferred from the effect of salience on the pupil. For 

example, if there is a greater effect of incentive salience on the pupil than behavioural and 

bottom-up salience, this would suggest a goal-directed control state for external rewards 

and not internal goals. In contrast, if there is a greater effect of behavioural salience on the 

pupil than incentive and bottom-up salience, this would suggest a goal-directed state for 

internal goals and not external rewards. Finally, if there is a greater effect of bottom-up 

salience on the pupil than top-down salience, this would be indicative of a stimulus-driven 

control state.  

 

To investigate how these effects of salience on the pupil change over time in stress, I can 

compare the effects of salience on the pupil at different stages of a stress pulse of cortisol. 

My research group has previously trialled a subcutaneous pump for the infusion of 

hydrocortisone into the abdominal tissue of healthy human volunteers and patients with 

primary adrenal insufficiency (The Pulses Study, 2014). They developed a dosing regimen, 

which included the successful suppression of endogenous cortisol with metyrapone and the 

replacement of endogenous cortisol with hydrocortisone (Russell et al., 2014). Whilst it 

might be easier to administer oral hydrocortisone, this method does not control for 

endogenous cortisol, which varies throughout the day within and between individuals due 

to its circadian and ultradian rhythmicity. In addition, the timing of hydrocortisone 
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absorption into the systemic circulation from oral administration is slow and varied. By using 

the subcutaneous infusion pump with metyrapone, I can control the timing of ultradian and 

stress pulses of synthetic cortisol or hydrocortisone, as well as the levels of endogenous 

cortisol. 

 

Therefore, the effects of top-down and bottom-up salience on the pupil were investigated 

over the course of a single hydrocortisone stress pulse in healthy human volunteers, using a 

subcutaneous infusion pump. The oddball task with a reward manipulation was 

administered in combination with pupillometry on both the rising and falling phases of the 

stress pulse. This allowed me to compare the pupil sensitivity of healthy human volunteers 

to incentive salience between the rising and falling phases of the stress pulse. Any 

differences in incentive salience effects on the pupil between these phases indicated a 

change in reward sensitivity and therefore extrinsic motivation over time. In addition, pupil 

sensitivity to behavioural salience was examined (an indicator of intrinsic motivation) and 

bottom-up salience. Any difference between phases indicated a change in intrinsic 

motivation or bottom-up processes over time. These findings have implications for the fast 

and slow effects of cortisol on salience and motivation, as well as the stress function of the 

human LC in control state. As mentioned, this investigation was part of a large research 

project that I collaborated on with another Ph.D. student. 

Method 

Participants 

Participants were primarily recruited for another Ph.D. project by Jamini Thakrar using the 

subcutaneous infusion pump, which was attached to participants for seven days. As part of 

Jamini’s recruitment, I advertised a small pupillometry experiment that would take place on 

1 of the 7 days. However, as this was not my research project, participants were screened 

for eligibility on Jamini’s project, which required healthy male volunteers, and did not 

include pupillometry screening. Thus, some recruited participants were unsuitable for 

pupillometry. Eight participants were excluded from my analysis due to missing pupil data 

and issues with attaching the subcutaneous infusion pump. Therefore, the participants were 

10 right-handed, healthy male volunteers aged 18-26, with no history of psychiatric disease. 
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All participants had normal or corrected-to-normal vision. Informed consent was obtained 

from each participant prior to testing, and all participants were paid for participation. The 

study was approved by the Faculty of Health Sciences Research Ethics Committee, 

University of Bristol, UK. Participants were recruited from the University of Bristol 

community via poster advertisements, webpage advertisements and email lists.  

Materials 

During testing, participants were seated in front of a computer screen. The computer 

display was 22.5 inches and had a resolution of 1920 x 1200 pixels; viewing distance was 60 

cm. Pupil area (left pupil) and eye position were recorded at a sampling rate of 500 Hz by a 

tower-mounted Eyelink 1000 eye tracker (SR Research, Canada), which has a typical 

operating spatial resolution of 0.5o or better. Head movement was minimised using a chin 

and forehead rest. Manual responses were recorded via a computer keyboard. 

Crono-P© pump and infusion set  

A portable infusion pump called the Crono-P pump (see Figure 4.1) was attached to each 

participant via a subcutaneous infusion line, which was implanted into abdominal tissue. 

Participants were given a waist-fitted sports belt, with a pocket in it, which fitted the Crono-

P Pump, so that they could carry the pump around with them hands-free. 

 

 

Figure 4.1 

Crono-P Pump (Applied Medical Technology, n.d.) 
 

 
 



 

 107 

Study design 

As mentioned, this experiment was part of a larger, seven-day study. On study day 1, 

participants attended a clinical facility for Crono-P pump attachment, endogenous cortisol 

suppression and task training. Cortisol suppression was achieved with the metyrapone 

dosing regimen displayed in Table 4.1, which included oral tablets and a gradual increase in 

dosage. Participants were instructed to self-administer metyrapone at home and show 

evidence of conforming to the dosing regimen by attending several tablet counts. The 

selected metyrapone dosing regimen was determined to be efficacious by a previous study 

(Russell et al., 2014). 

 

 

Table 4.1 

Metyrapone Tablet Dosing Regimen 

Day 1 2 3 4 5 6 7 8 

Breakfast dose (mg)  
— 

 
250 

 
500 

 
750 

 
750 

 
750 

 
750 

 
750 

Lunch dose (mg)  
250 

 
500 

 
500 

 
750 

 
750 

 
750 

 
750 

 
— 

Evening dose (mg)  
250 

 
500 

 
750 

 
750 

 
750 

 
750 

 
750 

 
— 

Note. Tablets were taken at mealtimes with food to prevent nausea 
 
 

The Crono-P pump replaced suppressed endogenous cortisol with hydrocortisone 

(Efcortisol), in a physiological three-hour pattern (see Table 4.2 for dosing regimen). The 

pump allowed us to control the timing of cortisol pulses, and to deliver stress-level doses 

(15 mg) of cortisol on data collection days. This high-level, stress dose was found to achieve 

the desired plasma cortisol level in a pilot study carried out by Jamini Thakrar. The pilot 

study acutely suppressed endogenous cortisol with dexamethasone and administered 

different subcutaneous doses of hydrocortisone. 
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Table 4.2 

Hydrocortisone dosing regimen as administered via Crono-P pump 

Time 
 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6  Day 7 Day 8 

09:00  4.0 mg 4.0 mg 4.0 mg 4.0 mg 15.0 mg 15.0 mg Saline 

12:00 
 

 2.3 mg 2.3 mg 2.3 mg 2.3 mg 2.3 mg 2.3 mg  

15:00 
 

2.3 mg 2.3 mg 2.3 mg 2.3 mg 2.3 mg 2.3 mg 2.3 mg  

18:00 
 

2.3 mg 2.3 mg 2.3 mg 2.3 mg 2.3 mg 2.3 mg 2.3 mg  

21:00 
 

0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg  

00:00 
 

0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg 0.5 mg  

03:00 
 

4.0 mg 4.0 mg 4.0 mg 4.0 mg 4.0 mg 4.0 mg 4.0 mg  

06:00 
 

4.0 mg 4.0 mg 4.0 mg 4.0 mg 4.0 mg 4.0 mg 4.0 mg  

 
 
 

Pilot study 

Four healthy volunteers were acutely supressed with dexamethasone and administered 4 

mg subcutaneous hydrocortisone at 9AM, with a subsequent elevated dose of 10, 12.5 or 15 

mg at 12PM. As can be seen from Figure 4.2, after trialling 10, 12.5 and 15 mg doses, it was 

found that 15 mg gave the desired sustained plasma cortisol level of 600 nM/L. Therefore, 

Jamini decided to use this 15 mg dose as the elevated study dose for her study. 
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Figure 4.2 

Plasma Cortisol Profiles after Infusion of Two Pulses in Four Human Volunteers 
 

 
Note. The legend key displays the infused hydrocortisone doses. One anomalous sample 
at 13:30 for the 15 mg dose has been excluded due to possible contamination. This graph 
was produced by Jamini Thakrar. 
 
 

Participants wore the pump from day 1 for a duration of 7 days in total for Jamini’s study. 

I collected data on study day 6, during which participants received the 15 mg stress-level 

dose of hydrocortisone.  

Task design 

On study day 6, participants completed the oddball task with a reward manipulation and 

concurrent pupillometry. The task design is the same as Chapter 3 and Experiment 3 of 

Chapter 2. It was written using Psychophysics Toolbox v3 (Brainard, 1997) running under 

Matlab 2015a (The Mathworks Inc., Natick). During the task, participants were played a 

randomised sequence of short auditory tones. They were required to listen for, and respond 



 

 110 

to, a rarely occurring tone (the oddball target), which occurred alongside another rarely 

occurring tone (deviant tone) and a frequently occurring tone (standard tone), neither of 

which required responses. The standard tone had an auditory frequency of 1,400 Hz, and 

the oddball and deviant were either 1,200 or 1,600 Hz (counterbalanced between 

participants). All tones had a duration of 100 ms, and the interstimulus interval was 

randomly varied between 1.2 and 1.7 s. In each block, 8% of the trials were deviant and 

oddball tones and 84% were standard tones.  

 

The task consisted of 1 practice block of 25 auditory trials, followed by 4 experimental 

blocks of 125 auditory trials. In 2 of the experimental blocks, the oddball stimulus was 

associated with 20p; in the other 2 it was associated with £20. The participants were told to 

make quick manual responses to the oddball stimulus if they wanted to win the associated 

reward. They were provided with on-screen feedback, which informed them whether they 

had responded in time to the oddball stimulus (within 0.7 s).  

 

At the end of the task, one of the oddball trials from the whole task was selected at random, 

and if the participant had responded within 0.7 s to the selected trial, they received the 

associated monetary reward in cash. High and low reward blocks were alternated within 

participants, and the block order was counterbalanced between participants. 

Procedure 

At 8AM on the sixth day of the study, participants attended a clinical facility, where they 

were given a new Crono-P pump, programmed to deliver the stress-level dose of 

hydrocortisone at 9AM on the same day. The old pump was detached from the infusion line, 

the line was changed, and the new pump was attached to the new infusion line, then 

participants were escorted to another facility for testing.  

 

At the testing facility, participants were given breakfast, and at 9AM, during pulse delivery 

(see Table 4.2 for dosing regimen), the infusion line was checked to ensure that there had 

been no leakage of the stress dose. Participants were given printed task instructions, so that 

they could remind themselves of the task rules, which they learnt during task training on 

study day 1. At 9:20AM, during the rising phase of the stress pulse (as determined by the 
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pilot study—see Figure 4.2), testing began. Half of the participants were told to respond to 

the low tone (1,200 Hz), and the other half were told to respond to the high tone (1,600 Hz) 

for the whole experiment. 

 

During testing, participants were seated in front of a computer monitor and a tower-

mounted eye-tracking system. They were instructed to place their chin on the chinrest and 

fixate on a central fixation box throughout each block, responding to the oddball stimulus by 

pressing any key on the computer keyboard in front of them. Once participants were seated 

comfortably, the lights were switched off, and a short practice block was initiated prior to 

task administration. 

 

After the practice block, pupil calibration and validation measures were carried out (these 

preceded each experimental block), and if they were met, the first experimental block was 

initiated. At the start of each block, instructions appeared on the screen to remind 

participants the amount of monetary reward associated with the oddball stimulus for that 

block (£20 or 20p). All text was then removed from the screen and the central fixation box 

appeared. Throughout the task, visual stimuli appeared within the fixation box to provide 

participants with feedback as to whether they had responded to the oddball stimulus in 

time (within 0.7 s). Between each block, participants were allowed a one-minute break. 

After completing all four experimental blocks, a lottery incentive reward system was 

executed, and if the participants won a monetary reward, they received it in cash 

immediately. 

 

Participants then completed a ten minute N-back task as part of Jamini’s study. This was 

followed by a long break (1-2 hours) before the same procedure was repeated and 

participants completed the oddball task with a reward manipulation and concurrent 

pupillometry again, during the falling phase of the pulse (at 11:20AM). 

Results 

Grand average pupil responses for the 3 Trial Types and 2 Reward Conditions over the Rising 

Phase are plotted in Figure 4.3A. Figure 4.3B depicts the equivalent for the Falling Phase. 

The figures show a clear pupil response to the oddball stimulus in both Reward Conditions, 
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with a greater pupil response to the oddball stimulus in the High Reward Condition than the 

Low Reward Condition during the Falling Phase in Figure 4.3B. This is also true for the Rising 

Phase, although there is less of a difference in pupil response to the oddball stimulus 

between the High Reward Condition than the Low Reward Condition for this Phase (see 

Figure 4.3A). The peak of the pupil responses is around 2,250 ms, so the Stimulus Response 

Epoch was defined as 2,000-2,500 ms. In both figures, the Pre-Stimulus Baseline, Stimulus 

Response and Post-Stimulus Baseline Epochs are shaded in grey, and the mean pupil 

response for each Epoch and Trial Type is plotted in black, for both Reward Conditions. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. (A) The grand average pupil response in the Rising Phase. (B) The grand average 
pupil response in the Falling Phase. The solid line depicts the pupil responses in the High 
Reward Condition and the dashed line depicts the pupil response in the Low Reward 
Condition. The mean pupil area for each Epoch is plotted in black with error bars to show 
the range. 
 

 

I carried out a repeated measures ANOVA on the average pupil size with the following 

factors: Phase (Rising, Falling), Reward Condition (Low, High); Trial Type (Oddball, Deviant, 

Standard); and Epoch (Pre-Stimulus Baseline, Stimulus Response, Post-Stimulus Baseline). 

There was a significant main effect of Trial Type – F(2, 18) = 43.649, p = < 0.001; partial ETA 

Figure 4.3 

Grand Average Pupil Responses in the Rising and Falling Phases 

A B 



 

 113 

squared = 0.829, and Epoch – F(2, 18) = 47.151, p = < 0.001; partial ETA squared = 0.840, 

and a significant interaction between Reward Condition and Trial Type - F(2, 18) = 4.415, p = 

0.028; partial ETA squared = 0.329, and Epoch and Trial Type – F(4, 36) = 18.133, p < 0.001; 

partial ETA squared = 0.668. There was no significant effect of Phase – F(1, 9) = 0.367, p = 

0.559; partial ETA squared = 0.039, nor Reward Condition – F(1, 9) = 0.541, p = 0.481; partial 

ETA squared = 0.057. 

 

The significant interaction between Reward Condition and Trial Type indicates that Reward 

Condition had a phasic effect on pupil size. To investigate this, a three two-way repeated 

measures ANOVAs was carried out on the average pupil size in the Stimulus Response 

Epoch, with two factors: Trial Type and Reward Condition (Low, High). For each ANOVA, I 

compared two levels of Trial Type, rather than all three, to allow me to home in on any 

significant interactions.  

 

First, the Oddball and Deviant Trial Types were investigated: there was a significant effect of 

Trial Type - F(1, 9) = 28.725, p < 0.001; partial ETA squared = 0.761, and a significant 

interaction between Trial Type and Reward Condition - F(1, 9) = 5.346, p = 0.046; partial ETA 

squared = 0.373.  

 

Next, the Oddball and Standard Trial Types were investigated: there was a significant effect 

of Trial Type - F(1, 9) = 40.245, p < 0.001; partial ETA squared = 0.817, and, again, a 

significant interaction between Trial Type and Reward Condition - F(1, 9) = 8.918, p = 0.015; 

partial ETA squared = 0.498.  

 

Finally, the Deviant and Standard Trial Types were investigated: there was no significant 

effect of Trial Type - F(1, 9) = 2.400, p = 0.156; partial ETA squared = 0.211, nor was there a 

significant interaction between Trial Type and Reward Condition - F(1, 9) = 0.010, p = 0.922; 

partial ETA squared = 0.001. These results suggest that, within the Trial Type factor, the 

Oddball Trial Type contributed to the significant interaction between Reward Condition and 

Trial Type, indicative of a phasic effect of incentive salience on the pupil. In contrast, there 

was no main effect of Reward Condition on the average pupil size, so there was no tonic 

effect of incentive salience. This discrepancy, marked by a phasic but no tonic effect of 
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incentive salience on the pupil, was not present in Experiment 3 of Chapter 2, which showed 

both phasic and tonic effects on the pupil evoked in the same oddball task with a reward 

manipulation. This suggests that the stress hydrocortisone dose in the present study 

disrupted the tonic but not the phasic effect of incentive salience on the pupil.  

 

To investigate the interaction between Trial Type and Epoch, the two baseline Epochs were 

compared using a repeated measures ANOVA on the average pupil size with two factors: 

Trial Type (Oddball, Deviant, Standard) and Epoch (Pre-Stimulus Baseline, Post-Stimulus 

Baseline). There was a main effect of Epoch - F(1, 9) = 31.113, p < 0.001; partial ETA squared 

= 0.776, and Trial Type - F(2, 18) = 23.361, p < 0.001; partial ETA squared = 0.722. There was 

also a significant interaction between Epoch and Trial Type - F(2, 18) = 20.059, p < 0.001; 

partial ETA squared = 0.690.  This interaction resulted from contrasting patterns of a larger 

pupil for the Standard (M = 11.35 mm2; SD = 2.58 mm2) than the Oddball (M = 10.95 mm2; 

SD = 2.37 mm2) and Deviant (M = 11.07 mm2; SD = 2.36 mm2) Trial Types in the Pre-Stimulus 

Baseline Epoch and a larger pupil for the Oddball (M = 12.49 mm2; SD = 3.04 mm2) and 

Deviant (M = 11.30 mm2; SD = 2.48 mm2) than the Standard Trial Type (M = 11.14; SD = 2.28 

mm2) in the Post-Stimulus Baseline Epoch.  

 

To investigate the effect of Trial Type on pupil size within the Stimulus Response Epoch, a 

one-way repeated measures ANOVA was carried out on the average pupil size within this 

Epoch, with Trial Type (Oddball, Deviant, Standard) as the factor. There was a significant 

effect of Trial Type - F(2, 18) = 33.952, p < 0.001; partial ETA squared = 0.785. Post hoc 

testing revealed significant differences between the Oddball and Deviant, and the Oddball 

and Standard, but not the Deviant and Standard Trial Types (Paired Samples t-test: [Oddball 

- Deviant: t(9) = 5.360, p < 0.001; Oddball - Standard: t(9) = 6.344, p < 0.001; Deviant - 

Standard: t(9) = 1.549, p = 0.156]).   

Manual responses 

To investigate the effect of Phase and Reward Condition on manual response times to the 

oddball stimulus, a two-way repeated measures ANOVA was carried out on average reaction 

times, with Phase (Rising, Falling) and Reward Condition (Low, High) as the factors. There 
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was no significant effect of Phase - F(1, 9) = 1.447, p = 0.260; partial ETA squared = 0.138 nor 

Reward Condition - F(1, 9) = 1.245, p = 0.293; partial ETA squared = 0.122. 

Discussion 

I carried out an oddball task with a reward manipulation and concurrent pupillometry on 

the rising and falling phase of a stress pulse of cortisol in 10 healthy human volunteers. The 

main objective was to see whether there was any difference in the pupil response to 

behavioural salience by the Oddball Trial Type, and it’s modulation by incentive salience, 

between Phases. A difference in pupil sensitivity to Trial Type between Phases would 

indicate changes in bottom-up and top-down salience, if related to the Deviant and Oddball 

Trial Type, respectively. A difference in pupil sensitivity to Reward Condition between 

phases would reflect a change in incentive salience and therefore reward sensitivity, 

indicative of altered extrinsic motivation. Although there appears to be more of a difference 

in pupil size between the High and Low Reward Condition for the Oddball Trial type in the 

Falling Phase (see Figure 4.3A and B), there was no significant effect of Phase, indicating 

that there was no difference in pupil sensitivity to Trial Type nor Reward Condition between 

the Rising and Falling Phase of the stress pulse. In other words, the effects of cortisol on 

salience did not change over time. There was a significant interaction between Trial Type 

and Reward Condition, and further exploration of this interaction revealed a phasic effect of 

Reward Condition—in other words, the effect of incentive salience was locked to the 

oddball stimulus. This is interesting because due to the absence of a significant main 

effect—that is, a tonic effect—of Reward Condition and therefore incentive salience. 

Additionally, in a previous experiment using the same task without hydrocortisone 

administration, there was both a phasic and tonic effect of Reward Condition (Experiment 3 

in Chapter 2). Given that the task design was the same, the absence of a tonic effect of 

incentive salience in the present experiment could be down to hydrocortisone 

administration. This suggests that the stress dose of cortisol disrupted incentive salience 

and reward sensitivity in my participants. 

 

This disrupted effect is in line with evidence suggesting a shift in control from a goal-

directed to a stimulus-driven state in stress (Braunstein-Bercovitz et al., 2001; Henckens et 

al., 2010; 2012; Hermans et al., 2014; Sänger et al., 2014; Schwabe et al., 2010; 2012; 2017; 
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Schwabe & Wolf, 2009; 2011; van Marle et al., 2009; 2010). For example, in a stimulus-

driven state, top-down processes are suppressed, which could explain why the top-down 

effect of incentive salience on the pupil was disrupted. This change in control state is 

advantageous in states of stress, as it facilitates threat detection by promoting 

environmental scanning and automatic attentional capture by bottom-up salience 

(Henckens et al., 2012; Hermans et al., 2014; van Marle et al., 2009; 2010). It is thought that 

this shift in control state is reversed later in the stress response, to restore goal-directed 

behaviour, which is important for the higher-order cognitive functioning required for daily 

tasks (Henckens et al., 2010; 2012; Hermans et al., 2014). Perhaps then, in the early stages 

of the stress response, I would expect to see an increase in pupil sensitivity to bottom-up 

salience, and decreased sensitivity to top-down salience, reflecting the promotion of a 

stimulus-driven control state, followed later by the opposite pattern. Whilst there was a 

partly disrupted effect of top-down, incentive salience on the pupil by cortisol, there was no 

evidence for a change in the effects of salience over time and therefore a shift in control 

state, as there was no significant effect of Phase. However, perhaps there was a change or 

reversal in control state occurring at a later time point, which was not captured by the 

present study. Alternatively, it is important to point out that the analysis for this study only 

included 10 participants, so it is possible that a significant effect of Phase and a tonic effect 

of Reward Condition on the pupil was lost as a result of reduced power, rather than an 

insignificant effect of Phase and a disrupted effect of incentive salience by the 

hydrocortisone dose. 

 

It is difficult to say how the phasic and tonic effects of incentive salience on the pupil differ 

in terms of the internal processes that drive them. Some studies have interpreted phasic 

and tonic changes in pupil size using the adaptive gain theory, which associates changes in 

phasic and tonic LC activity and pupil responses with shifts in control state (Aston-Jones & 

Cohen, 2005; Gilzenrat et al., 2010). To reiterate, this theory posits that changes in LC 

activity regulate exploitation and exploration behaviours. Exploitation promotes task 

engagement and optimises behavioural performance, whereas exploration promotes task 

disengagement, a decline in behavioural performance and reward-seeking behaviour 

(Aston-Jones & Cohen, 2005; Gilzenrat et al., 2010). Phasic responses act as an attentional 

filter for behaviourally relevant events and occur frequently during task engagement with 



 

 117 

intermediate levels of tonic activity. Therefore, the phasic effect of incentive salience on the 

pupil could reflect a reward-biased attentional filtering process and an increase in reward 

sensitivity by extrinsic motivation, which was not sustained over block duration. This effect 

of incentive salience did not translate to behaviour as there was no effect of Reward 

Condition on behavioural performance, as measured by manual response times to oddball 

stimuli, despite a phasic effect of Reward Condition on the pupil. 

 

The disrupted tonic effect of incentive salience on the pupil is especially interesting given 

the small number of studies that have investigated the effects of stress or stress-level doses 

of cortisol on reward sensitivity in humans. One human study administered a 40 mg dose of 

hydrocortisone to male participants and found a downregulation in brain activity across the 

reward network, 50 minutes after treatment (Montoya et al., 2014). This occurred in the 

basolateral amygdala, striatum, caudate and nucleus accumbens, in rewarding and non-

rewarding trials, indicating a widespread disruption in reward circuitry by cortisol. These 

findings are backed by a few other studies that have used similar doses and implemented 

testing at similar time delays after cortisol administration (e.g., Kinner et al., 2016).  

 

However, some human studies have reported the complete opposite. For example, Putman 

et al. (2010) found that a 40 mg dose of hydrocortisone increased reward sensitivity in men 

completing a gambling task, which was administered 2-hours post infusion. In comparison 

with the placebo group, the treatment group made more risky choices, which either 

resulted in a large reward or an equally large loss. This suggests that the treated participants 

were more motivated to receive large rewards. It is possible that these conflicting results 

were caused by time dependent effects of cortisol, which perhaps disrupt and facilitate 

reward sensitivity due to engagement of the different genomic and non-genomic 

mechanisms. Although there was no evidence for this, the mechanisms of cortisol are 

complex, and may not have been fully captured here due to study limitations, especially due 

to the small sample size.  

 

It is important to point out that studies across the literature have used different doses of 

cortisol. As we know, the plasma concentration of cortisol can determine its target effects 

by influencing the proportion of bound MR and GR. Therefore, I must consider the effects of 
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the selected dose. For example, perhaps if we had used a higher stress-level dose of cortisol, 

there would have been a more disrupted, or even an absent, incentive salience effect, or a 

change in the effects of Reward Condition and Trial Type across time, due to increased GR 

signalling (GR is the low affinity receptor and so would become increasingly occupied under 

higher plasma cortisol concentration). In addition, administering a stress dose of cortisol 

does not replicate a real physiological stress response. Most notably, the NE part of the 

stress response is absent. Therefore, perhaps the changes to control state that have been 

reported in the literature depend on the NE part of the stress response. Indeed, as 

mentioned in Chapter 1, a healthy volunteer study reported that a 20 mg stress-level dose 

of hydrocortisone in combination with the alpha adrenoceptor antagonist yohimbine 

(increases central NE), disrupted goal-directed behaviour, whilst facilitating habit-based 

actions. This change in behaviour was not achieved by hydrocortisone nor yohimbine alone, 

indicating that stress-induced changes by cortisol on control state require NE as well 

(Schwabe et al., 2010; 2012).  

 

Another important consideration in this research field is the control of endogenous cortisol. 

It could be argued that the present study is more reliable than most, due to the suppression 

of endogenous cortisol, which we achieved using metyrapone. In contrast, other studies 

have attempted to control for the effects of endogenous cortisol by implementing their 

experiments at times of the day when plasma cortisol concentrations are relatively low, 

such as during the afternoon (e.g., Kinner et al., 2016; Montoya et al., 2014). Therefore, in 

these studies, the combined effect of administered and endogenous cortisol could have 

resulted in different receptor signalling patterns than would have been achieved if 

endogenous levels were pharmacologically suppressed. In this way, the present study 

possesses more reliable data.  

 

However, a major caveat can be seen from my study design, which did not alternate the 

order of rising and falling phases across participants. Therefore, the task experience during 

the rising phase always affected the falling phase, and never vice versa. This is mostly 

problematic due to the reward delivery component of the study. For example, if participants 

received a £20 reward during the rising phase, it could have impacted the effect of incentive 

salience and reward sensitivity by increasing extrinsic motivation during the falling phase. 
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This limitation arose as I was only able to administer testing on participants on one morning 

a week, as they were mainly recruited for participation in another experiment. If I had more 

time with these participants, I could have administered two separate stress pulses of 

hydrocortisone and implemented my task on the falling phase before the rising phase in half 

of the participants. To investigate order effects in my collected data, I could examine how 

the earlier experiences of reward affect those later on, by comparing the effect of incentive 

salience on the pupil in the falling phase between participants who received larger reward 

than smaller rewards or no reward in the rising phase. However, there were only ten 

participants in this study—too few to carry out a meaningful analysis of this effect, 

especially since the groups are unbalanced for those who won 0, 20p and £20 in the rising 

phase.  

 

Although studies have demonstrated that changes in receptor occupancy, genomic and non-

genomic mechanisms result in varying phenotypes by cortisol over time, there was no 

evidence for this as there was no significant effect of Phase. Instead, I report a disrupted 

tonic effect of incentive salience on the pupil by a stress-level dose of cortisol. Compared 

with Experiment 3 of Chapter 2, this could reflect a disrupted change in control state to a 

reward-biased mode, with a reduced effect of reward sensitivity and extrinsic motivation.  
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General discussion 

The main aims 

The main goal of the research presented in this thesis was to use pupillometry as a marker 

of human LC activity in order to investigate a prospective mechanism of apathy, in which 

cortisol and NE signalling is disrupted, causing reduced incentive salience, reward sensitivity 

and extrinsic motivation. Another aim was to explore how the effects cortisol on incentive 

salience vary over time in stress. The first experiments reported in this thesis built up 

towards these investigations and were carried out with the idea of developing a robust 

pupillometric technique for the later investigations. 

 

First, I implemented a simple oddball task in humans, similar to those used in animal studies 

of LC function. Here, the main objective was to establish pupil responses to task stimuli that 

resemble the characteristic phasic and tonic LC responses reported by animal studies. The 

idea was that this would validate the use of my oddball task in combination with 

pupillometry as a marker of human LC activity. In addition, my findings would contribute to 

the small human pupillometry literature of LC function that has simply attempted to 

replicate the phasic and tonic LC responses found by these animal studies in humans. These 

animal studies reported phasic LC responses to presentations of stimuli with bottom-up or 

top-down salience. Therefore, another objective of my research has been to explore how 

bottom-up and top-down salience affects pupil size. 

Summary of findings 

My experiments demonstrated that the effects of top-down (behavioural and incentive 

salience) and bottom-up salience on the phasic and tonic pupil response are reliable: I 

repeatedly found a large phasic pupil response to task relevance combined with low 

stimulus probability with the oddball stimulus, a smaller phasic response to low stimulus 

probability with the deviant stimulus and no observable change in pupil size in response to 

high stimulus probability and task irrelevance with the standard stimulus. The addition of a 

reward manipulation amplified the phasic effect of top-down salience and induced an 
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additional sustained or tonic increase in pupil dilation in the High Reward Condition 

compared with the Low Reward Condition. Thus, there was an effect of extrinsic motivation 

that was locked to the behaviourally salient reward incentive as well as a sustained effect of 

incentive salience on the pupil. The literature suggests that pupil responses are a marker of 

LC activity. Therefore, these findings suggest that the LC functions in processes related to 

behavioural and incentive salience, such as intrinsic and extrinsic motivation, as well as 

processes related to bottom-up salience. This is in line with the LC literature. However, 

many human pupillometry studies of the LC have explicitly investigated hypotheses based 

on the adaptive gain theory of LC function and have designed task paradigms accordingly. 

The present research reconciles this literature by implementing an oddball task that is 

similar in design to the animal studies, and by reporting pupillometry data that resembles 

characteristic phasic LC responses to similar stimulus properties. Therefore, this thesis 

supports the use of pupillometry for the investigation of human LC function.  

 

In addition, I found that the effect of incentive salience on the pupil was manipulated by 

disrupting cortisol and NE signalling. This suggests involvement of cortisol and NE signalling 

in the underlying mechanisms of incentive salience, such as extrinsic motivation, which 

becomes disrupted in apathy. An unexpected finding was that the effects of top-down and 

bottom-up salience on the pupil did not change over the course of a stress hydrocortisone 

pulse, although the tonic effect of incentive salience on the pupil was disrupted. However, 

both of these findings could have been confounded by the small sample size (10 

participants), which reduced the power of the study.  

Impact on the research field 

Surprisingly, very few studies have investigated the effects of cortisol on reward sensitivity 

in humans (e.g., Kinner et al., 2016; Montoya et al., 2014; Putman et al., 2010). The present 

research found a suppressed phasic effect of incentive salience on the pupil by blockade of 

cortisol signalling. This suggests a role for cortisol in the underlying processes, such as 

extrinsic motivation. According to the adaptive gain theory, the phasic LC or pupil response 

acts as an attentional filter that is biased to behaviourally relevant events (presumably 

including reward incentives; Aston-Jones & Cohen, 2005). Therefore, perhaps cortisol 

functions in the attentional filtering or saliency attribution of reward incentives for extrinsic 
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motivation. If so, blocking cortisol signalling would reduce incentive salience, explaining why 

the phasic pupil response was blunted by administration of MR and GR antagonists. In 

addition, the adaptive gain theory proposes that phasic responses occur frequently during 

task engagement. However, the suppressed phasic effect by the MR and GR antagonists was 

not associated with inferior task performance, as there was no difference in reaction times 

between Treatment Conditions.  

 

In a separate experiment, I found that a stress-level dose of hydrocortisone abolished a 

tonic effect of incentive salience on the pupil. Again, this suggests a function in extrinsic 

motivation, albeit through a slightly different mechanism. The adaptive gain theory (and a 

substantial amount of evidence from animal studies) indicates that tonic LC activity (and 

therefore baseline pupil size) covaries with control state and linearly with arousal (Aston-

Jones & Bloom, 1981; Aston-Jones & Cohen, 2005; Foote et al., 1980; Hobson et al., 1975). 

According to this interpretation, in my experiment, the stress-level dose of cortisol 

prevented a shift in control mode to a goal-directed, reward-biased state, as cortisol 

prevented the increase in baseline pupil size by incentive salience that was observed in a 

previous study. Therefore, cortisol regulates goal-directed control states.  

 

The effects of propranolol on the phasic pupil response to incentive salience suggest a 

similar role of central NE in the attentional filtering or saliency attribution of behaviourally 

relevant information. Although this might seem like quite a convoluted explanation for 

pupillometry data, a substantial amount of evidence supports the notion that NE drives 

large-scale network reorganisation, especially involving the salience network (Guedj et al., 

2017; Hermans et al., 2011; Zerbi et al., 2019). This suggests that the LC-NE system can drive 

changes in control state, and perhaps saliency attribution in line with the active mode of 

control. Recent evidence in support of this comes from Zerbi et al. (2019) who explored 

changes in local and global brain networks induced by LC activation. The authors achieved 

selective LC activation in transgenic mice by using a viral vector to deliver a modified 

receptor to LC neurons that expressed codon-improved recombinase under the dopamine-

beta-hydroxylase promotor. The modified receptors were designed to become activated by 

clozapine. Clozapine injection followed by resting state fMRI revealed a rapid activation of 

the salience network in transgenic mice compared with controls. In addition, these changes 
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in brain activity were accompanied by the development of symptoms of anxiety with 

reduced locomotion and exploration. Together, this suggests that the LC-NE system drives 

rapid changes in functional connectivity in the salience network, with corresponding 

changes in behaviour and cognition. In other words, these findings show that the LC is able 

to drive changes in attentional control and therefore they support previous reports that 

propose a role for the LC in related processes such as saliency attribution. Interestingly, 

Zerbi et al. (2019) also found that, within one minute of clozapine injection, the transgenic 

mice exhibited a more dilated pupil compared with control mice. Therefore, this evidence 

also provides support for the use of pupillometry in investigations of LC function.  

 

Such descriptions of the LC-NE system driving large scale changes in network activity are 

strikingly similar to the stress-induced change in control state by cortisol described in 

Chapter 4. To recap, evidence suggests that the fast effects of cortisol redistribute energy 

resources towards the salience network in states of stress (Hermans et al., 2014; Schwabe, 

2017). This coincides with a shift in control state towards a habit-based and stimulus-driven 

mode (Braunstein-Bercovitz et al., 2001; Henckens et al., 2010; 2012; Hermans et al., 2014; 

Sänger et al., 2014; Schwabe et al., 2010; 2012; 2017; Schwabe & Wolf, 2009; van Marle et 

al., 2009). Since the LC is activated by PVN neurons of the HPA axis and by cortisol, and the 

HPA axis is stimulated by the LC, it is likely that the changes in network activity described by 

both of these literatures involve both of these systems (Valentino, 1988; Valentino & van 

Bockstaele, 2008; Ward et al., 1976). Indeed, as mentioned in Chapter 1, Schwabe et al 

(2010; 2012) described a shift in control state to a habit-based mode that was dependent on 

cortisol and NE. In contrast, blockade of NE with propranolol inhibited a stress-induced shift 

in control state from a goal-directed to a habit-based mode (Schwabe et al. 2011). This 

suggests that the combined effect of cortisol and NE drives the stimulus-driven control state 

in stress. 

 

A disrupted ability to shift between control states could lead to a number of conditions, 

including addiction and apathy. In addiction, the reinstatement of drug-seeking behaviours 

is often triggered by stress, which stimulates the expression of adaptive behaviours 

promoting survival rather than goal-directed behaviours in the healthy population (Mantsch 

et al., 2016; Schwabe & Wolfe, 2009; 2011). However, in addiction, this shift in behaviour 
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during stress is not only inhibited, but the goal-directed or reward-seeking state becomes 

hypersensitised (Robinson & Berridge, 1993; 2008). The HPA axis is highly plastic and 

vulnerable to maladaptive changes (de Kloet et al., 2005). Therefore, perhaps the pathology 

of addiction includes maladaptive plastic changes to the HPA axis, which subsequently 

drives an abnormal shift in attentional control on exposure to stress, rather than a 

physiological shift that facilitates adaptive stress behaviours. These maladaptive changes 

could include connections with the LC.  

 

Apathy is characterised by an opposing presentation compared with addiction, as rather 

than displaying an extremely biased motivational state for drugs of abuse, patients are 

profoundly unmotivated. Therefore, in apathy, maladaptive plastic changes to the stress 

system could prevent the adaptive shift in control state in the opposing direction. In line 

with this idea, Klaasen et al. (2017) reported an association between symptoms of apathy 

and inhibited cognitive set shifting. Cognitive flexibility is required for shifting between 

control states. Therefore, the findings reported by Klaasen et al. (2017) could suggest that 

apathy is associated with an impaired ability to shift internal resources to a goal-directed 

control state. Unlike addiction, apathy is not typically triggered by an episode of stress, but 

it is common to numerous neurological diseases that have stress-related aetiology and/or 

pathology (e.g., Chase, 2011; Söndergaard et al., 2012; Strassman et al., 1956; Tiemensma 

et al., 2014). This suggests that, although a single episode of stress does not trigger the 

presentation of apathy, the stress system is involved in the underlying mechanisms. 

Altogether, my findings with the evidence presented here implicates the endogenous stress 

system, including the LC-NE system, in the underlying mechanism of apathy. In addition, it 

supports the research of NE and cortisol in motivation and reward processes, rather than 

focusing on the dopaminergic system alone. 

Limitations in the field 

Through my literature searches, I identified several problems within the research field, 

which I addressed and partly reconciled by carrying out the experiments reported in this 

thesis. For example, salience has been poorly defined in the literature, particularly in 

biomedical research, thus effects that have been induced by top-down or bottom-up 

salience, or both, are often attributed to overarching stimulus salience (e.g., Eschenko et al., 
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2017). For example, the salience network is often described as a network that supports the 

detection of behaviourally relevant events (Uddin, 2015). However, behaviourally relevant 

events are not intrinsically salient—salience is defined as “the bottom-up, distinctiveness of 

an object” (Fecteau & Munoz, 2006, p. 382). Therefore, the salience network is also 

described as a network for detecting stimulus-driven salience rather than behavioural 

relevance (Menon & Uddin, 2010). Such ambiguity in the literature can lead to confusing or 

inaccurate interpretations. The same is true for animal studies of the LC that report phasic 

responses to salient events. These salient events can have top-down or bottom-up salience 

or both but are generally referred to as being salient, without a clear definition. For 

example, numerous reports have stated that the phasic LC response is sensitive to salience; 

however, most of these statements are actually referring to top-down salience rather than 

bottom-up salience, because, as mentioned, the consensus is that behaviour salience drives 

the phasic response (e.g., Sales et al., 2019; Vazey et al., 2018). In this thesis, I have 

distinguished between bottom-up and top-down salience. In addition, I have shown that the 

pupil—and therefore the LC—is sensitive to both.  

 

The distinction between top-down and bottom-up control processes is important because 

they involve different underlying mechanisms. For example, bottom-up attentional control 

activates the temporoparietal lobe, and detects events based on physical features or 

stimulus-driven characteristics, such as physical salience, novelty and unexpectedness 

(Marois et al., 2000). In contrast, top-down control activates the intraparietal and superior 

frontal lobes, and selects stimuli based on certain cognitive factors, such as goals, 

motivation and expectations (Hopfinger et al., 2000). As mentioned, similarly, behavioural 

goals and external rewards are classified under the top-down or goal-directed category by 

dual-system theories (Awh et al., 2012; de Wit & Dickinson, 2009; Fecteau & Munoz, 2006). 

Although this conceptualisation can be useful in guiding research, it is important to keep in 

mind that behavioural goals and rewards represent disparate cognitive constructs when 

interpreting data and reporting research to prevent the dissemination of overgeneralised 

conclusions (Awh et al., 2012).  

 

Aside from the biomedical literature, perhaps the most pervasive problem in human 

pupillometry studies of the LC is the implementation of inconsistent stimulus characteristics, 
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such as the interstimulus interval, stimulus duration and task duration (Furukawa et al., 

2014; Gilzenrat et al., 2010; Hong et al., 2014; Liao et al., 2016; Murphy et al., 2011). Such 

discrepancies are problematic because slight differences in task design can modify 

subjective bottom-up salience and reduce the validity of any conclusions drawn from the 

data. For example, the onset of stimulus presentation is more unexpected and therefore 

more salient with a randomly varied rather than stable interstimulus interval. In addition, if 

the interstimulus interval is too short pupil responses accumulate and cause a larger phasic 

pupil response than would have been recorded if the presentation of consecutive stimuli 

was more spread out (Liao et al, 2016). However, studies across this field have used very 

different interstimulus intervals, such as Liao et al. (2016) and Gilzenrat et al. (2010) who 

presented auditory tones, with an interstimulus interval of 300ms and 4.2s, respectively. 

Similarly, inconsistent perceptions of bottom-up salience could have resulted from 

discrepancies in the auditory frequency of oddball tones implemented between studies, 

with some presenting white noise, laser gun sounds and 1,000 Hz tones as oddball stimuli 

(Furukawa et al., 2014; Hong et al., 2014; Murphy et al., 2011). The problem is that if a 

stimulus is more intense, such as greater in pitch or volume, it could be perceived as more 

salient and thus evoke a larger pupil response in one study compared with another. Again, 

similar problems arise for differences in stimulus probabilities, which also manipulate 

bottom-up salience and have varied between studies (e.g., Gilzenrat et al., 2010; Liao et al., 

2016). Finally, varied task duration is likely to affect results by influencing arousal, and 

therefore the tonic LC and pupil response (Hou et al., 2005). To reconcile this literature, 

future studies should try to maintain consistency in basic task parameters, unless imperative 

to their research—for example, if they are specifically investigating the effect of stimulus 

probability on pupil size. It is especially important to draw comparisons between the 

implemented task paradigm and those implemented by earlier animal studies that this 

human research is based on, as the pupil response is a marker of LC activity, and by no 

means a direct measure.  

Future directions for the research field 

I have pointed out a significant gap in the pupillometry literature of the LC, with few human 

studies replicating similar oddball paradigms compared with electrophysiological animal 

studies and attempting to replicate and explore the phasic LC response. Although the 
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research presented in this thesis reduces this gap, there is still a need for pupillometry 

studies to implement more simplistic task paradigms, especially to establish reliable pupil 

responses before measuring the effect of adding more complex task manipulations on the 

pupil. Otherwise, we cannot be so sure about the neural underpinnings of the evoked pupil 

response. In addition, there has not been much interest in the relationship between reward 

sensitivity or extrinsic motivation and the HPA axis, nor the temporal variation in this 

relationship. Perhaps this is partly due to the focus on dopaminergic systems in reward 

processes. However, there is a strong link between a diseased HPA axis and reward-related 

symptomology, especially in psychiatric disease (Stokes & Sikes, 1991). Therefore, research 

in this field could have important clinical implications and so it is essential that future 

studies investigate this relationship. The same is true for the relationship between the LC-

NE system and extrinsic motivation, although it is starting to receive more attention (e.g., 

Bouret & Richmond, 2015; Jahn et al., 2018). Finally, there have been very few studies 

investigating the link between the LC-NE system and the HPA axis, especially in relation to 

disease pathology. In part, this could be down to the challenges of investigating the LC in 

humans. However, pupillometry and improving fMRI technology, such as neuromelanin-

sensitive imaging, have enabled the investigation of the LC in humans (Joshi et al., 2016; 

Sasaki et al., 2006).    

Future directions for my research 

The next step for my research would involve patient studies. Although my findings suggest 

that the mechanisms of extrinsic motivation involve cortisol and NE signalling, they do not 

provide direct evidence for these mechanisms becoming disrupted in apathy. To resolve 

this, I could implement my oddball task with a reward manipulation and concurrent 

pupillometry on patients with apathy compared with a group of healthy human volunteers. 

In my previous experiments, I have only conducted within-subject analyses on the average 

pupil size as this type of data is quite variable. Therefore, for a between-subject patient 

study I would need to recruit a much larger sample to allow for a reliable comparison 

between groups. Another problem is that apathy is a syndrome, with different profiles of 

motivational deficits in goal-directed behaviour, cognition and/or emotion (Robert et al., 

2009; 2018). In addition, apathy is present in a wide variety of diseases, and even the 

healthy population experience reduced motivation. Therefore, as part of this patient study it 
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would be essential to establish the presence of any amotivation symptoms, as well as 

whether the presenting symptoms fall under categories of impaired goal-directed 

behaviour, cognition or emotion. This research would answer whether there is a deficit in 

extrinsic motivation in apathy compared with healthy controls that can be identified by 

examining the pupil response. A blunted phasic or tonic pupil response incentive salience 

would indicate reduced reward sensitivity and therefore extrinsic motivation by the LC-NE 

system, which drives the psychosensory pupil response. 

 

During my literature search, I found reports indicating that addiction pathology could be 

related to an impaired stress system, including the LC, which drives abnormal extrinsic 

motivation and reward-seeking behaviour (Davis et al., 1975; Erb et al., 2000; Schwabe et 

al., 2010; 2012). Therefore, it would be interesting to carry out a similar patient study to see 

whether drug-dependent patients exhibit abnormal pupil responses to incentive salience. 

Ideally, recruited patients would include those that had and had not experienced a stress-

induced reinstatement of drug-seeking behaviour to allow for a comparison between these 

groups, which could show distinct pathology. In contrast to apathy, I would expect reward 

incentives to evoke a larger phasic pupil response and/or change in baseline pupil size in 

drug-dependent patients compared with healthy volunteers. 

Clinical implications 

Ultimately, this research field aims to uncover new treatment strategies for diseases marked 

by abnormal motivation. This is particularly important for apathy, which does not have a 

standard prescriptive therapy. However, in addition to this, pupillometry might have some 

value in clinical diagnostics or tracking disease progression. For example, some studies have 

investigated the use of pupillometry in uncovering pre-symptomatic changes in Alzheimer’s 

disease, as well as monitoring neocortical plaque accumulation by measuring the pupillary 

light reflex (Frost et al., 2013). In addition, investigations in patients with Parkinson’s disease 

have reported that a blunted pupil response prior to motor execution is an indicator of 

impaired movement preparation compared with controls (Wang et al., 2016). Therefore, 

pupillometry could be used to monitor the progression of symptoms related to action 

control and potentially other cognitive impairments in Parkinson’s disease.  
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However, it seems that not everyone is a good candidate for pupillometry. My experience of 

this led me to screen prospective participants for pupillometry during task training. For 

some, the eye tracker could not identify the location of the pupil and so would not complete 

the calibration procedure. I had to exclude these participants as I was unable to measure 

their pupil size. This was particularly the case for individuals with dark eyelashes, although 

sometimes I could not determine the reason for unsuccessful calibration. The use of various 

eye trackers, such as those that are more mobile and attach directly to the head could prove 

to have more frequently successful calibration procedures by allowing improved adjustment 

of the recording angle. For example, the eye tracker I used had an adjustable chinrest and a 

headrest, so in my experiments, participants were only able to move the chinrest vertically 

(see Figure 2.1). Perhaps if I had been able to tilt the headrest to adjust the recording angle, 

the eye tracker would have located the pupil for all participants and I would not have had to 

exclude as many due to unsuccessful calibration procedures. This problem of being unable 

to successfully calibrate everyone limits the clinical use of pupillometry. 

 

However, if this problem is mitigated, pupillometry is a desirable diagnostic tool because it 

is inexpensive and non-invasive. Therefore, in the future, pupillometry in combination with 

a reward task could be used to uncover impaired extrinsic motivation that is specifically 

caused by a disrupted link between the stress system and the LC. Since apathy has a variety 

of presentations, with deficits in goal-directed behaviour, cognition and emotion, its 

pathology might differ across the patient population. Thus, it is important to identify those 

patients that are eligible for treatments targeted to the stress or LC-NE system. Pupillometry 

could be used to identify these patients from other patients with apathy and a more intact 

stress or LC-NE system that does not drive the apathetic presentation. Furthermore, 

pupillometry could be used to track disease progression or improvement with therapy.  

Conclusion 

This thesis provides new insights into the effects of top-down and bottom-up salience on 

the phasic and tonic pupil response, which were recorded as an index of LC activity. These 

effects are reliable. The effects of incentive salience on the pupil can be manipulated by 

blockade of cortisol signalling via the MR and GR, and by blockade of NE signalling via the 

beta adrenoceptor. Further research will be required to fully understand how these 
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signalling pathways contribute to the processes underlying incentive salience and extrinsic 

motivation. However, especially given the lack of research in this field, the experiments 

reported in this thesis provide an important step forward.  
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