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ABSTRACT

Alzheimer’s disease (AD) is a complex and multifactorial, neurodegenerative disease. Accu-
mulation of pathogenic forms of the protein amyloid-beta (Aβ), one of the hallmark features
of AD, is thought to have a causal role in this neurodegeneration. Enhanced levels of Aβ
are associated with synaptic dysfunction, altered neuronal intrinsic excitability and altered
gamma frequency activity within the hippocampus.

In this thesis, biophysical models of synapses, neurons and networks are combined
with experimental work to examine how Aβ alters neural activity in the CA1 hippocampal
region. The acute effect of Aβ-infusion on synaptic transmission is investigated by recording
spontaneous miniature excitatory postsynaptic currents (mEPSCs) from CA1 neurons in
cultured hippocampal slices; Aβ is found to cause a rapid increase in mEPSC amplitude.
Using a first-order kinetic synapse model parameterised using the mEPSC data it is found
that the increase in amplitude can be accounted for by a 50% increase in the synaptic
conductance of the model.

Two versions of a single-compartment biophysical model are used to simulate intrin-
sic excitability measures recorded from CA1 pyramidal neurons in wild type and PDAPP
transgenic mice that overexpress Aβ. Both models predict that altered excitability in PDAPP
neurons can be accounted for by lowering the transient Na+ and delayed-rectifier K+ (KDR)
channel conductances and by slowing the activation rate of the KDR-channel.

The potential impacts of these observations on gamma frequency oscillations are ex-
plored using an excitatory-inhibitory network model. The Aβ-mediated increase in synaptic
transmission increases the total gamma power of the oscillations, progressively increasing
as more synapses are affected. Incorporating the PDAPP neuron model into the network
increases the frequency of the gamma oscillations.

These results illustrate how data-informed mathematical models can bring new insights
into the underlying mechanisms and implications of Aβ pathology and can contribute to a
quantitative and multiscale understanding of AD.
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1
INTRODUCTION

In 2012 the World Health Organisation highlighted dementia as a global public health priority

due to its significant personal, social and economic impacts [253]. Currently, approximately

47 million people worldwide suffer from dementia, which is estimated to cost over one

trillion American dollars, equivalent to 1% of the global GDP [189]. Dementia is a syndrome

associated with the progressive deterioration of cognitive function caused by many different

neurological diseases. Of these, the most common is Alzheimer’s disease (AD), a terminal,

age-related neurodegenerative disease that accounts for 60 - 70% of all dementia cases [3].

Forecasts predict that the number of people with AD will surpass 100 million by 2050 as a

result of the ageing population [28]. Consequently, AD is a primary focus in the global action

against dementia. However, despite extensive international research efforts, there is still no

cure or treatment that can prevent the progression of AD [97, 136].

Essential to the development of treatments that can halt or slow the progression of

AD is an understanding of the underlying pathological processes. The challenge lies in

unravelling the inherently complex pathophysiology of AD, which is now believed to have

several subtypes [171, 190]. Many neuropathological changes have been associated with AD,

from sub-cellular through to network level dysfunction [112, 181, 214]; the aim is to identify

the mechanisms underlying these changes, to determine how they interrelate and contribute

to the disease progression and to place them within a temporal sequence of pathogenesis

[210]. However, these pathological changes occur on different spatial scales, evolve on vastly

different time scales and are recorded with distinct types of data. Though they contribute to

1



CHAPTER 1. INTRODUCTION

the understanding of AD pathology, such observations produce a fragmented picture of the

disease that is complex and therefore challenging to integrate into a coherent model.

There is a growing interest within AD research in the benefits of using ‘systems’ ap-

proaches, which integrate experimental data with computational and mathematical mod-

elling [78, 79, 197]. The idea is that to understand a complex system it is not sufficient to

only consider the underlying parts in isolation, but is also necessary to consider how they

interact to generate higher-level processes. By integrating experimental data with multi-

scale computational models it is possible to explore the behaviour of a particular biological

process at multiple temporal and spatial scales in relation to its underlying components.

Recent publications have highlighted how this multidisciplinary approach is essential for

developing a more complete picture of AD, necessary for identifying drug-targets and for

the development of effective treatments [78, 79, 197].

This systems approach is the underlying premise of this thesis, with a particular focus

on how multiscale computational models can be used to investigate the underlying mecha-

nisms and functional impact of AD-related changes in neural activity. Neural activity refers

to the propagation and processing of electrical impulses at both the individual neuron level

and across neuronal populations and brain regions and is fundamental to brain function.

There is a large body of research that focusses on the impacts of AD on synaptic, neuronal

and network-level activity. Given the dynamic interconnected nature of the brain, determin-

ing how altered activity interacts and contributes to AD pathology is extremely challenging.

Biophysical mathematical models have been developed that can simulate neural activity

across different biological scales, from sub-cellular to network level activity. By integrating

this experimental data with mathematical models, more insight can be gained about both

the cause and functional consequence of these pathological changes.

This approach provides the framework for this thesis; biophysical models are used to

explore the cause and impact of observed changes in neural activity driven by amyloid-β

(Aβ), a protein believed to play a significant, if not causative role in the early stages of AD

pathology. First, individual models of an excitatory synapse and a pyramidal neuron are used

to investigate the processes underlying Aβ-related changes in synaptic transmission and

cell excitability recorded in the CA1 region of the hippocampus, which is a locus of learning

and memory function and also presents significant neurodegeneration in AD. These data-

informed models are then individually incorporated into a network model to investigate the

potential functional implications of these changes on higher-level neural activity, specifically

2



1.1. THESIS OVERVIEW

on gamma frequency oscillations which play an important role functional activity in the

CA1. By using models to simulate the recorded activity, the aim is that more insight about

the impacts of Aβ can be gained from the data and extrapolated in ways not possible

experimentally.

1.1 Thesis Overview

Chapter 2 This chapter provides an overview of Alzheimer’s disease (AD), introducing

its defining characteristics, with the aim of highlighting the importance of

Aβ and why AD research focusses on the hippocampal region and the CA1

specifically. The hippocampal structure is then described in more detail.

Subsequently, a review of AD research papers that use data informed com-

putational models are discussed, with a specific focus on those studies that

have investigated how changes in the properties of the cell alter synaptic,

cellular and network level activity.

Chapter 3 In this chapter the computational methods used in this thesis are presented.

These include: a kinetic synapse model used to simulate spontaneous synap-

tic activity; a single-compartment conductance-based neuronal model of a

CA1 pyramidal neuron used to simulate the intrinsic excitability obtained

from experimental recordings; an excitatory-inhibitory (E-I) network model,

built using the single-compartment neuronal model (E-cell) and a fast-spiking

interneuron model (I-cell), which is used to simulate gamma activity to in-

vestigate how synaptic changes alter network activity.

Chapter 4 This chapter reports on the experimental work carried out, presenting the

electrophysiology recordings of miniature excitatory post-synaptic currents

(mEPSCs) following acute Aβ infusion into CA1 pyramidal neurons in cul-

tured hippocampal slices. First, a background to the work is given that

outlines: the evidence linking Aβ to synaptic dysfunction; the published

research that was a precursor to the work in this thesis, which suggested

that the initial response to intracellular Aβ caused an increase in CP-AMPAR

synaptic transmission; the main properties of AMPARs and miniature EPSCs.

Then the experimental electrophysiology method used to record mEPSCs is

described and the results obtained are presented.

3



CHAPTER 1. INTRODUCTION

Chapter 5 In this chapter a first-order kinetic model is fit to the mEPSC data presented in

the previous chapter to investigate the mechanisms underlying the changes

in synaptic transmission. The chapter begins with a description of the first-

order kinetic model used to simulate synaptic transmission. First the model

set-up used to simulate AMPAR-mediated mEPSCs is described followed

by an analytical and numerical analysis of its behaviour, focussing on the

relation between the model parameters and the simulated mEPSCs. Subse-

quently, the development of the ‘control’ model is explained, including the

method used for fitting the model to the mEPSCs recorded from untreated

cells and the results of the distribution analysis that is used to identify the

relationship between the fitted parameters and mEPSC amplitude. Finally,

the results from altering the synaptic conductance of the model to reproduce

the Aβ treated data are presented.

Chapter 6 This chapter presents the development of a single compartment CA1 pyra-

midal model used to simulate published intrinsic excitability data recorded

from wild type and PDAPP transgenic mice, which over express Aβ. First, the

data is described followed by the model fitting method. Subsequently, the

original CA1 neuron model and a more biologically realistic CA1 model with

two transient sodium channels, which can both reproduce the simulated

intrinsic excitability recordings, are fitted to the published data. This model

is then used to attempt to reproduce the changes observed in a mouse model

of amyloidopathy in order to suggest what alterations to the properties of the

cell may underlie those changes.

Chapter 7 In this chapter a biophysical excitatory-inhibitory network model is devel-

oped to explore the potential impacts of the Aβ-related alterations, described

in the previous chapters, on gamma frequency oscillations. First, the network

settings, output measures and behaviour of the base model used to simulate

gamma activity are described. Subsequently robustness tests are carried out

to investigate the dependence of the gamma oscillation generation on the

parameter settings. The network model is then used to independently inves-

tigate the impact of altered excitatory synaptic transmission and intrinsic

neuronal excitability on the network activity.

Chapter 8 In the final chapter of the thesis the work is discussed within the context of

Aβ-research and and more generally with regards to the multiscale computa-
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tional modelling approach to Alzheimer’s disease. Ideas for future work that

lead on from the work presented in this thesis are also discussed.

1.2 Thesis Contributions

• Through whole-cell recordings from CA1 hippocampal neurons it was found that

direct intracellular infusion of amyloid beta (Aβ) oligomers rapidly enhances AMPAR-

mediated mEPSC amplitude, thereby supporting previous findings which recorded

a similar increase in evoked EPSC amplitude. This finding contributes to current

knowledge on the initial effect of Aβ oligomers on excitatory synapses in pyramidal

neurons.

• By using a simple kinetic model of the synapse that could simulate mEPSCs it was

possible to investigate the consequence of the synaptic effect of Aβ described above

on network-level activity. It was found that a 50% increase in the synaptic conductance

could account for the effect of Aβ and that this could lead to an increase in the gamma

power of oscillations generated within an excitatory-inhibitory (E-I) neuronal network.

This contributes to the current understanding of the functional effect of Aβ related

synaptic changes.

• A previously established single-compartment conductance-based CA1 pyramidal

neuron model was extended by adding a second Na+-current as well as fitting to

previously recorded intrinsic excitability data. It was shown that this model can be

used to simulate and investigate the underlying changes that cause altered excitability

in CA1 neurons of an Aβ-overproducing mouse model (PDAPP-type). These improved

and more biophysically realistic models can be used in further CA1 neuron studies

and incorporated in a network model to further investigate Aβ-related changes.

5





C
H

A
P

T
E

R

2
BACKGROUND

2.1 Alzheimer’s Disease: An Overview

Alzheimer’s disease was first described by Alois Alzheimer as an "unusual disease of the

cerebral cortex" in his 1907 report on the case of a fifty-one year old female psychiatric

patient that he had followed from hospital admittance until her death four years later [224].

The patient presented with paranoia, memory loss and disorientation followed by pro-

gressive cognitive and physical deterioration. In his post-mortem observations Alzheimer

presciently identified histological features that are now recognised as defining features of AD.

Specifically, he described significant atrophy of the brain and two abnormal lesions: intra-

cellular neurofibrilllary tangles and "minute military foci" distributed throughout the cortex

which are now known as amyloid (or senile) plaques. Overall, these observations cover the

characteristic features of AD which have provided the underpinnings for AD research.

In the years since Alois Alzheimer’s discovery, a vast amount of research has been under-

taken to determine the pathological processes that underlie AD. What has emerged is that

AD is a complex and multifactorial disease; fundamental questions remain about the cause

(aetiology) and progression (pathogenesis) of AD, and models of the disease that have been

proposed remain under debate [212]. The following section provides a brief overview of the

key aspects of AD pathology.
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Disease Aetiology

In the vast majority of AD cases the exact reason why an individual develops the disease

is unknown. There are rare inherited forms, accounting for less than 1% of all AD cases,

that are directly associated with autosomal dominant mutations in one of three specific

genes: APP, PSEN1 and PSEN2. These familial Alzheimer’s disease (FAD) cases have provided

valuable insight into AD pathogenesis as they are the only direct causal factors that have been

identified [13]. In all remaining cases what triggers the onset of the disease is undetermined

but several risk factors have been identified that increase the likelihood of an individual

developing AD. The greatest known risk factor for AD is age; over 95% of all cases are in

individuals over 65 years old, although AD has been diagnosed in people as young as 30

years old [28]. Family history is also a significant risk factor and is found in approximately

25% of all late-onset AD cases [18]. Several genes have been identified that increase AD

susceptibility, with the greatest genetic risk associated with the Apolipoprotein A (APOE) ε4

allele [48, 68, 150]. General health factors, such as diabetes, obesity, high blood cholesterol,

depression, and physical inactivity, are also believed to increase the risk of developing

AD [12, 55].

Clinical Symptoms

Clinically, AD is characterised by a gradual decline in cognitive ability with specific deficits

in episodic memory (the memory associated with autobiographical events) [65]. Typically

these impairments in memory are the first symptoms reported and continue to worsen

throughout the disease. As the disease progresses other aspects of cognition, such as

orientation and reasoning, become affected and eventually motor functions also become

impaired, ultimately leading to the death of the patient [162]. The rate of cognitive decline

varies significantly, with average life expectancy from point of diagnosis ranging from 8 - 10

years with diagnosis at 65 years old, to less than 3 years with diagnosis at 90 years old [259].

The decline in cognitive function is caused by the progressive deterioration of neural

tissue. Post-mortem studies have shown that this neurodegeneration, although widespread

by the end of the disease, targets specific brain areas [238] and has a distinct pattern of

progression [26]. The development of clinical symptoms correlates with the location and

severity of the neurodegeneration [111]. However it is believed that AD actually begins years

before the onset of clinical symptoms, which occur once the neurodegeneration has become

sufficient to impair function [167].
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Neuropathological Features

Autopsies of severe AD brains display several characteristic neuropathological features:

significant cortical atrophy, primarily caused by neuronal loss [232]; loss of synapses [56, 95]

and two types of abnormal protein aggregations, intracellular neurofibrillary tangles (NFTs)

of hyper-phosphorylated forms of the protein tau [92] and extracellular amyloid plaques

composed of the protein amyloid-beta (Aβ) [84, 160]. Plaques and NFTs must be present

for the confirmation of an AD diagnosis [65]. Together these characteristic features provide

insight into the pathology of AD: the regions of the brain that it targets, how it progresses,

and the potential causative factors.

Post-mortem studies have found that the largest amounts of neuronal loss occur in the

medial temporal lobe [31] and connected areas in the association neo-cortex [183]. The

medial temporal lobe contains the hippocampal formation and the entorhinal, perirhinal

and parahippocampal cortices (see Figure 2.1). The highest levels of neuronal loss occur in

the hippocampal formation which plays an essential role in spatial and episodic memory,

which (as mentioned above) is characteristically impaired in AD [114, 247].

The same regions that are associated with neuronal loss also exhibit significant synapse

loss [56, 95]. This reduction is greater than that which would be expected given the amount

of neuronal loss [54] and has been found to be more strongly correlated with cognitive

impairment. Synapse loss is in fact the strongest neuropathological correlate for the severity

of cognitive impairments in AD [57, 195, 231] and is observed in the early stages of the

disease [56, 205, 231]. Consequently, synaptic degeneration is believed to play a crucial role

in the development of AD pathology [211, 219].

The highest concentrations of plaques and tangles are also observed in the medial

temporal lobe and other AD-related areas. The NFT distribution has a characteristic pattern

of progression, progressing from the entorhinal cortex to the hippocampus to the other

cortical regions, which correlates well with the locations affected by neuronal atrophy.

Consequently, NFT distribution has been used as a way to stage the disease [26]. Amyloid

plaques, in comparison, are more widely distributed and the number of plaques does not

correlate with the amount of neuronal atrophy or the severity of the disease [196, 232].

However, the aggregation of Aβ into plaques mostly occurs prior to the onset of symptoms

and therefore Aβ pathology is thought to be upstream of tau [19, 214]. Consequently, these

abnormal aggregations and the constituent proteins, Aβ and tau, have been key focuses of

AD research [172, 221].
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2.1.1 The Amyloid-beta hypothesis

Origins

Amyloid-beta (Aβ), a 36-43 amino acid peptide, has been one of the primary focuses in

AD research since it was first sequenced from the senile plaques found in AD patients by

Glenner and Wong in 1984 [84, 85]. It had already been observed that Down’s syndrome

patients, who have a high risk of dementia, invariably develop both plaques and NFTs [34].

Glenner and Wong discovered that the same amyloidogenic protein (Aβ) was found in the

meningeal blood vessels (and subsequently also in the plaques [160]) of both AD and Down’s

syndrome patients, confirming that they presented the same neuropathology. As Down’s

syndrome was known to be associated with an extra copy of chromosome 21 they predicted

that the genetic defect in AD that causes the pathological production of Aβ may also be

located on chromosome 21 [85]. Subsequently, it was discovered that Aβ is produced by

the cleavage of the larger amyloid precursor protein (APP) that is located on chromosome

21 [121].

These discoveries, combined with the evidence from familial Alzheimer’s disease (FAD)

of mutations in genes related to APP [86, 146], strengthened the hypothesis that Aβ had

a central role in AD [98, 210]. Subsequently in 1992 Hardy and Higgins published their

amyloid cascade hypothesis, proposing that aberrant Aβ accumulation is the primary cause

of the neurodegeneration observed in AD, triggering a pathological cascade that leads to

neurofibrillary tangles, cell loss, vascular damage and dementia [99]. In the 30 years since,

this hypothesis has remained the dominant theory of AD pathogenesis [213].

Amyloid-beta

There are two main forms of Aβ within the brain: the 40-residue peptide (Aβ1-40) and the

42-residue peptide (Aβ1-42), which respectively account for approximately 10% and 90% of

all cerebral Aβ [170]. Of these two forms Aβ1-42 has been the main research focus due to

its disproportionate increase in the genetic mutations associated with familial Alzheimer’s

disease (FAD) [22] and because it has been found to be more neurotoxic than Aβ1-40 [132].

Individual Aβ1-42 monomers have a high propensity to aggregate and can self-assemble,

initially forming small soluble oligomers, which contain a small number of monomers [82],

and eventually forming larger aggregations such as fibrils and plaques [32, 100]. Although

plaques are the visible hallmark of AD, as previously mentioned they have low correspon-

dence with the severity of the disease and the location of neuronal atrophy [8, 232]. The
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concentration of soluble Aβ1-42 oligomers, however, have a unique distribution in the hu-

man AD brain distinct from the amyloid fibrils and plaques [126] that correlates better with

disease severity markers [153, 163, 175]. It has also been observed that the concentration of

soluble Aβ1-42 oligomers increases in the cerebrospinal fluid (CSF) and hippocampus of

AD sufferers [30, 202]. Consequently, the focus has been on these smaller Aβ aggregations

which precede the formation of extracellular plaques.

It has been proposed that the intracellular accumulation of Aβ oligomers plays an

important role in AD pathogenesis [140]. Several studies have shown evidence that Aβ

oligomerisation occurs intraneuronally [179, 227, 242] and that these intraneuronal Aβ

aggregates can seed amyloid fibril growth [110]. In addition, extracellular Aβ, particularly

soluble Aβ oligomers, can be sequestered by neuronal cells [43, 106, 173]. Importantly, it

has been observed that soluble Aβ1-42 oligomers can accumulate at synapses providing a

key link to AD synaptic pathology [14, 221, 227]. Notably, Aβ oligomers have been found in

increased numbers in the synapses near plaques in the brains of patients with AD, but not

in the synapses near the plaques in those without AD [17, 134]. Given the fact that plaques

begin to appear 15 - 20 years before clinical onset this suggests that these oligomeric forms

are present in the very early stages of AD.

Although much evidence has been gathered that corroborates the amyloid hypothesis, it

is important to recognise that issues have been raised that challenge it [103, 122, 154, 182].

For example amyloid plaques are found in aged brains with no symptoms of dementia;

transgenic mice models that only over-express Aβ only develop some AD-like symptoms,

suggesting that Aβ is "necessary but not sufficient" to cause AD [172]; and perhaps most

significantly, there has been no success to date in drugs trials, the vast majority of which

target Aβ [182]. As a result of this, there is an ongoing debate about the role of Aβ in AD and

whether it is indeed the primary mediator of AD pathogenesis. Several other theories, such

as the cholinergic hypothesis [96], exist and are also being explored in AD research. Never-

theless, what is evident is that Aβ dysregulation is a very early event in AD pathology and is

most likely a key factor of the downstream processes that lead to AD neurodegeneration,

hence the need to fully understand the pathological impacts and the processes underlying

Aβ pathology [172, 213].
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(a)
(b)

Figure 2.1 | The hippocampus and its location. (a) The hippocampi are mirrored on
each brain hemisphere within the temporal lobes (Source: Wikimedia/Creative Com-
mons) (b) Picture of a prepared human hippocampus, so named because of the similar-
ity in its shape to a seahorse (hippocampus in greek). Photo: Laszlo Seress’ preparation
of a human hippocampus alongside a sea horse (1980). Source: Wikimedia/Creative
Commons

2.2 The Hippocampus

2.2.1 Hippocampal Structure

The hippocampus, which means ‘seahorse’ in Ancient Greek, is named after its distinctive

shape (see Figure 2.1). It is located within the medial temporal lobe, which also includes

the entorhinal, perirhinal and parahippocampal cortices. Due to bilateral symmetry there

are two mirrored hippocampi on either side of the brain hemisphere, which are centrally

connected by the commissure of fornix.

The hippocampus has a highly organised structure, with clearly defined neuronal layers

and regions of connectivity. This structure has lead to the identification of five hippocampal

subfields regions, the Dentate Gyrus (DG), the four Cornu Ammonis (CA) subfields CA1 -

CA4 and the subiculum. The majority of the connections between these subfields lie on the

same plane as a hippocampal cross-section and form highly directional neural pathways [4].

This is advantageous for hippocampal research as it means that the main aspects of the

hippocampal circuit are preserved in a hippocampal slice (a cross-section of a few hundred

microns thick) [218]. The key regions and pathways of the hippocampal circuit are shown in

Figure 2.2.

The majority of the information routes in and out of the hippocampal circuit are trans-

mitted via the entorhinal cortex (EC), forming a closed loop. There are two main neural
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Figure 2.2 | The hippocampal circuit. A schematic showing the well defined circuitry
of the hippocampal formation, which is maintained within a transverse hippocampal
slice (figure created by B. Winters [252])

.

pathways that transmit signals from the EC to the hippocampus. These are the perforant

pathway (PP), which propagates signals from the EC to the DG and CA3 subfields and the

temperoammonoic pathway (TA), which connects the EC to the CA1 via the subiculum [4].

Internally, the hippocampus is connected by what is known as the tri-synaptic circuit, which

connects the DG, CA3 and CA1 subfields. The two pathways that make up the tri-synaptic

circuit are the mossy fiber pathway (MF), which connects the DG to the CA3, and the Schaffer

collateral pathway (SC), which projects from the CA3 to CA1. The hippocampus also receives

input from the medial septum via the septal nuclei, which connect to the DG, CA3 and CA1

regions. The septal inputs are mostly cholinergic and GABAergic [74].

Output signals from the hippocampus originate from the CA1 subfield, and pass via the

subiculum to the EC, closing the loop. There are also direct connections in both directions

between the CA1 and the EC and to neocortical areas, such as the perirhinal and postrhinal

cortex [76]. Overall, this means that the CA1 sub-region is the primary source of all feed-

forward projections out of the hippocampus [237].

2.2.2 Oscillations in the Hippocampus

Neural oscillations are an inherent feature of brain activity. They reflect the rhythmic

fluctuations of neural activity that occur within and across brain regions. This synchronised
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behaviour is believed to have a fundamental role in cognitive functions, such as learning

and memory, and other neural processes [45, 243]. Synchronised neural activity (cell firing)

generates an oscillatory external electric field that can be measured. These fluctuations can

be observed from small neuronal populations using local field potential (LFP) recordings

and can be measured on a larger scale (brain-wide) using electroencephalographic (EEG)

recordings. As LFP recordings are invasive, in vivo studies of neural oscillations within

humans are usually limited to external scalp EEG recordings, although intracranial EEG

(iEEG) which can provide better resolution are sometime used [91, 133, 143]. However,

similar neural oscillation patterns are observed in other primates and mammals, which has

enabled more detailed in vivo and in vitro studies into the mechanisms that underlie the

generation of these oscillations and their function in neural processes [38, 239, 256].

Neural oscillations have a frequency spectrum that spans five orders of magnitude

from 0.05 Hz to 500 Hz [39]. This spectrum has been divided into different frequency

bands: the slow oscillations (<1 Hz), delta rhythm (1 - 4 Hz), theta rhythm (4 - 8 Hz), alpha

rhythm (8 - 12 Hz), the beta rhythm (12 - 30 Hz), the gamma rhythm (30 - 120 Hz) and

high-frequency oscillations which are associated with sharp-wave ripples (120 - 200 Hz)

and fast ripples (200 - 500 Hz). EEG and LFP recordings from human and other mammals

have indicated that different brain regions support oscillations of different frequencies and

that the oscillation frequency and region involved depends on the specific task that is being

carried out [35, 120, 128, 158, 245].

The main brain rhythms that are detected within the hippocampus are theta frequency

oscillations, gamma frequency oscillations and sharp-wave ripple complexes [45]. The

presence of these rhythms has been found to correspond with specific behaviours and is

therefore believed to have distinct roles in hippocampal processing. For example, the theta

rhythm has been associated with navigation and memory encoding [36, 44], the gamma

rhythm with learning and memory[27, 70, 107], whilst SWRs are associated with memory

consolidation [11, 37]. The cross-frequency interactions or coupling of oscillations is also

believed to facilitate neural processing; phase-amplitude coupling (nesting) of theta and

gamma frequency oscillations has been observed in both humans and animal models and

appears important in memory encoding [91, 143, 148, 233].

The CA1 is a locus of gamma oscillations in the hippocampus and they have been well

characterised in this region through both in vivo and in vitro studies [47, 51, 166]. The

oscillations can be split into low (25 - 60 Hz) and high frequency oscillations (55 -100 Hz),
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which are believed to correspond with inputs from different regions; low frequency gamma

leads to increased coherence with inputs from the CA3 whereas the higher frequency is

associated with increased coherence with the EC [46, 207].

Gamma oscillations are often nested within a theta oscillation. It is believed that theta-

gamma nesting provides a gating mechanism for different inputs to the hippocampus

by providing entrainment with either the EC or DG [27, 46, 207]. In humans the theta-

gamma phase-amplitude coupling increases during the acquisition of episodic memories

[143]. Reducing the theta-gamma coupling has been found to impair memory retrieval

performance [217]. There is also a lot of study about the formation of cell assemblies in the

CA1 by theta-nested gamma as it has been proposed that they play an important role in the

encoding and retrieval of memories [64].

The evidence for the role of gamma frequency oscillations in memory formation is

twofold. First, it has been observed in both humans and in animal studies that an increase

in hippocampal gamma activity accompanies successful memory task performances [120,

209, 239, 256]. Secondly, the disruption of hippocampal gamma activity in animal model

studies has been found to reduce memory performance [75, 217, 256]. Combined, these

observations support the hypothesis that gamma oscillations have a functional role in

memory processing in the hippocampus.

2.2.3 AD and the Hippocampus

As previously mentioned, an early characteristic symptom of AD is a distinct impairment in

recent episodic memory function. Episodic memory is a distinct cerebral function associated

with the hippocampal formation [223]. It is now widely accepted that the hippocampus

has a significant role in the encoding of new episodic memories, acting as a mediator for

the transfer of new memories to long-term storage [169]. Current theories also posit that

the hippocampus is involved in recent memory retrieval but opinions differ as to whether

this involvement is required in remote memory retrieval [257]. The hippocampus is also

associated with spatial memory which deteriorates in AD [145, 180].

Both neuronal loss and NFTs are found in the EC in the very mild stages of the disease

and then progress to the hippocampus before spreading to other cortical regions [88, 129].

The greatest amounts of neurodegeneration occur in the neurons that interconnect the

hippocampal formation with other areas of the cortex, particularly those in the CA1 region

which is the primary area that relays hippocampal output to the surrounding cortices [247].
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Due to the susceptibility of the CA1 region to AD [246], a lot of research has focused on the

changes within this region.

2.3 Computational Models of AD

AD is associated with progressive synaptic and neuronal dysfunction. The following ex-

amples demonstrate the insight that biophysical models of single cell and network level

neural dynamics that incorporate these experimental changes can bring to AD research.

The majority of these studies focus on those regions that are affected in the early stages of

AD, namely the hippocampus and thalamus and their associated networks. The models

of individual neuron activity have simulated AD-related changes in the hippocampal CA1

or CA3 neuronal populations, primarily because these models are well developed and a

lot of AD research has focused on change in these cells. Obviously the effects of AD are far

more wide spread and affect many different neuronal types. There are already many models

of different cell types and regions ready for use but as the field develops and knowledge

accumulates about the structural connectivity (connectome) of other neural regions and

about the electrophysiological properties of other cell types, further studies that follow along

the lines of investigation discussed here could be carried out.

2.3.1 Modelling Neuronal-level Dysfunction

Signal processing within a neuron is related to changes in the cell’s membrane potential

that occur as a result of ion flow across the cell membrane and synaptic transmission.

Biophysical neuron models that incorporate these intrinsic neuronal properties (e.g. ion

channels) can be used to simulate the signalling dynamics within the cell. Numerous AD-

related modifications in synaptic and cellular properties have been recorded, such as altered

ion channel expression [29, 255], increased synaptic release probability [1, 230], and altered

synaptic receptor profiles [138, 215, 248]. By incorporating these experimental observations

into biophysical neuron models it is possible to investigate how these AD-related changes in

cell properties affect the signalling properties of the neurons. To date, modelling studies

have been carried out that investigate the effects on neuronal signal processing of reduced

Na+ and K+ ion channel conductance, altered Ca2+ dynamics (caused by the K+-channel

inhibition), increased membrane conductance, and decreased synaptic release.
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Ion Channel Dysfunction

Several studies have investigated the impact of Aβ-related dysregulation of ion channel

function [90, 168, 250]. A cell’s excitability, which is its ability to generate action potentials

in response to a stimulus [116], is (in part) determined by the relative contributions of the

different ionic currents; a single compartment biophysical model of a pyramidal neuron

with the same set of ion channels but with different conductances is able to reproduce the

different excitability profiles of CA3 and CA1 neurons [178]. This model was also used to

investigate the sensitivity of the fitted pyramidal neuron model to changes in ion channel

conductance. They found that reducing K+ and Na+ channel conductance enhanced the

neuron’s excitability. Although this Na+ effect is counterintuitive, given that Na+ activation

enables the rapid depolarisation of the cell during an action potential, it is in agreement with

in vitro observations from an AD mouse model that displays decreased Na+ currents [29].

The dysregulation of Ca2+ dynamics is believed to play a fundamental role in AD-related

neurodegeneration. It has been established that Aβ can destabilise calcium homeostasis

but the underlying mechanisms are still in question [7, 142, 187]. Several studies have used

biophysical neuron models to investigate how Aβ-related reduced K+-channel conductance

can affect neuronal calcium dynamics. A link between the fast-inactivating A-type potas-

sium channel (IA) and calcium dynamics was first identified in an early modelling study

by Good et al. [90]. They simulated a hippocampal neuron using a Hodgkin-Huxley-based

"wrinkled"-sphere model, with a calcium diffusion model and synaptic receptors, to in-

vestigate how Aβ-related K+-channel inhibition would affect intracellular Ca2+ levels and

excitability [90]. They found that modelling increasing levels of Aβ as a decrease in K+ lead

to increased excitability and an increase in/influx of intracellular calcium in agreement with

their experimental observations, suggesting that K+-channel inhibition could be a pathway

for Aβ-mediated Ca2+ dysregulation.

A more recent study probed the intracellular effects of K+-channel inhibition in more

detail [168]. Previous electrophysiology work, measuring from the soma and apical dendrite,

had indicated that Aβ block of A-type K+ currents caused enhanced back-propagating

action potentials (bAPs) and increased Ca2+ influx [40]. Morse et al. used a detailed multi-

compartment CA1 pyramidal neuron model (built in NEURON) to further investigate the

effects of K+-channel inhibition in regions beyond the experimental recording sites, in the

distal dendrites. They found that the bAPs induce hyperexcitability and enhance Ca2+-levels

across the cell, with increased sensitivity to K+-channel blockage in the oblique dendrites.

This work suggests a potential mechanisms by which the distal dendrites are selectively
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vulnerable in Aβ and may be the first parts of the cell to malfunction and degenerate, which

given their role in neuronal signal processing could mean that the cell’s signalling capacity

is altered in the very early stages.

Biophysical neuronal models can be designed to simulate experimental recordings

thereby providing outputs that can be experimentally tested and validated. These models

can be used to predict how changing different components of the neuron model would

affect the output. In a study by Wilson et al. they simulated patch clamp experiments (using

a similar "wrinkled"-sphere model as Good et al.) to investigate if the neuronal signalling

generated by two different actions of Aβ on the cell membrane, specifically the blocking of

fast-activating K+-channels or increased membrane conductance, could be distinguished

experimentally [250]. They found that the cell signalling and intracellular Ca2+ dynamics

were significantly different depending on whether the Aβ-mediated affect was due to K+

channel alteration or membrane conductance changes. This produced an experimentally

testable set of results.

Synaptic Dysfunction

Experimental work has shown that endogenous Aβ enhances the release probability at

CA3-CA1 synapses [1]. In a study by Romani et al. they investigate how the enhanced

synaptic release probability would alter the cell’s ability to process incoming signals using

a detailed multi-compartment model of a CA1 pyramidal neuron (built in NEURON) with

the addition of a model of short-term synaptic plasticity (Tsodyks 1998 [235]) [198]. They

fit the model to experimental recordings of AMPAR-mediated EPSCs in Aβ-treated and

control CA1 neurons, which were generated by APs evoked at 100Hz in the presynaptic CA3

neuron. The recordings from the Aβ-treated neurons could be reproduced by increasing

the pre-synaptic release probability from 0.15 to 0.36. They investigated how this altered

synaptic plasticity and integration at different frequencies (5 - 200Hz) and the cells response

to ‘natural’ synaptic stimulation patterns which had been recorded in vivo in CA3 neurons.

They find that increased synaptic release significantly alters the CA1 neurons firing response

and the response to gamma and theta frequency stimulation.

Mixed Dysfunction

The modelling studies discussed in the previous sections simulated neuronal signalling

in response to AD-related changes in one neuronal property at a time. However, these

changes may be occurring concurrently. Understanding how they combine to alter cell
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function is important but can be difficult to determine experimentally. Models can be

used to address this issue. Culmone and Migliore investigated how several experimentally

observed beta-amyloid related neuronal changes (reduced A- and DR-type K+ currents, Na+

current and synaptic conductance) would alter the probability that a neuron would reach

the spiking threshold [53]. Using a detailed multi-compartment CA1 model they investigated

the individual and combined contributions to the cell’s spiking probability as progressively

more areas of the cell were affected by Aβ. They then tested which of these channels could

be targeted to restore the neuronal activity to the healthy level and found that A-type K+

channel manipulation (or smaller combined changes in Na+ and A-type K+ or synaptic

conductance) could potentially compensate for the effects of Aβ. Although progressive

membrane dysfunction may not be realistic as compensation mechanisms may take effect

when the cell’s activity first begins to decrease, this study illustrates the potential for models

to suggest and test therapeutic treatments.

Reverse Modelling

The previously mentioned modelling studies all begin with an identified subcellular effect

of AD and then investigate how that property will alter neuronal-level function. Models

that simulate experimental recordings can also be used to identify (or validate) processes

that may underlie a given observation. For example, in the work by Romani et al. they

were able to match the experimental observations (EPSC recordings) from control and Aβ-

treated neurons by altering the pre-synaptic release probability of the model, which was in

agreement with the experimental findings.

Models have also been used alongside experimental work to suggest the sub-cellular

level changes that underlie altered activity in mouse model studies [21, 228]. In both these

studies the intrinsic excitability properties of CA1 pyramidal neurons in transgenic AD-

mouse models and wild-type mice were compared. Using a single-compartment Hodgkin-

Huxley type CA1 neuron models they identified which reproduce the differences in the

average behaviour recorded in the WT and Aβ-treated cases.
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In this thesis mathematical models are used to investigate how Aβ alters neural signalling at

three scales within the CA1 region of the hippocampus; at the level of the synapse (Chap-

ter 5), of single cells (Chapter 6) and across a population of connected cells (Chapter 5).

Three general types of models are used to achieve this: kinetic synapse models, single-

compartment conductance-based neuronal models and an excitatory-inhibitory neural

network model. More specifically, in Chapter 5 a first-order kinetic synapse model is used

to simulate spontaneous synaptic transmission in a CA1 pyramidal neuron. In Chapter 6

a single-compartment conductance-based neuronal model is used to simulate the intrin-

sic excitability of a CA1 pyramidal neuron. In Chapter 7, the data-informed models are

used in the construction of an excitatory-inhibitory (E-I) neural network model which is

used to simulate gamma frequency oscillations within the CA1 region. The E-I network is

composed of two synaptically connected neuronal populations, CA1 pyramidal neurons

(E) and fast-spiking CA1 interneurons (I), which are represented using single-compartment

conductance-based models. A list of the models and which chapters they are used in is given

in the table in Figure 3.1.

There were several considerations that influenced the choice of these models. Firstly,

for consistency and to facilitate the incorporation of the findings from the synaptic inves-

tigations into the network-level simulations, it was desirable that the same synapse and

single-cell CA1 model were used to construct the neural-network model. Consequently, the

synapse and single-cell models were required to be relatively simple with low computational
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First-order
kinetic 

synapse model

Pyramidal 
neuron model

Fast-spiking 
interneuron 

model

Chapter 5

Chapter 6

Chapter 7

Figure 3.1 | Chapter model use guide. A reference table showing in which chapters
the synapse model, pyramidal neuron model and fast-spiking interneuron model are
used. All three are used in Chapter 7 in the construction of the EI network model.

costs so that they could be incorporated into a network model whilst also maintaining

enough level of detail that they could provide insight into how Aβ may be altering neural

signalling. Secondly, the network model needed to be able to generate rhythms that are

known to occur within the CA1 region of the hippocampus, specifically gamma frequency

oscillations. Finally, it was desirable that the single-cell and network models were flexible

and could be extended (or simplified) if necessary for future extensions of the work (beyond

this thesis).

In the following sections, a brief overview of each of the modelling approaches is given

followed by descriptions of the specific models used for the work in this thesis.

3.1 Model Backgrounds

3.1.1 Ion Channel Gating Mechanisms

All cell membranes contain ion-channels, which are pores formed by intermembrane pro-

teins that allow the influx and efflux of ions (such as potassium K+, calcium Ca2+ and sodium

Na+) from the extracellular space into the cell [104]. These ion-channels can be permeable

to just one type of ion or to several different types. The membrane proteins that form the

ion channels have specific conformational states which determine whether the channel
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is open, enabling the flow of ions, or closed. Passive ion channels (also known as leakage

channels) are always open, whereas active ion channels have ‘gates’ that determine whether

the channel is open or closed. Gated ion channels can have multiple conformational states

between open and closed which can affect the flow of ions through the channel, which is

otherwise known as the channel conductance.

Ion channels can be classified by their activation/inactivation mechanisms (i.e. what trig-

gers the transition from a non-conducting state to a conducting-state and vice versa). The

two main types are: voltage-gated ion channels, where the channel is activated/inactivated

by changes in the membrane potential, and ligand-gated ion channels, where the bind-

ing/unbinding of extracellular ligands (binding molecules) to the ion channel causes it

to open or close respectively. Examples of ligand-gated ion channels are AMPA receptors,

NMDA receptors and GABA receptors, all of which are predominantly found in neuronal

cells at the post-synaptic terminal. In the case of the voltage-gated ion channels another

distinction is made between persistent (non-inactivating) and transient (inactivating) ion

channels. Persistent ion channels (e.g. the A-type K+ channel and the persistent Na+ chan-

nel) only have one type of gate, an activation gate, which has to open for the channel to

conduct and then deactivates by closing. The transient ion channels (e.g. the transient Na+

and Ca2+ channels) have two gates, an activation gate and an inactivation gate which has an

opposite voltage dependence and therefore inactivates the channel before the activation

gate has closed/deactivated. Some voltage-gated ion channels, such as the delayed-rectifier

K+ channel, have very slow time-dependent inactivation so can either be considered as a

persistent channel or as a transient channel with a very slowly responding inactivation gate.

Another ion-channel gating mechanism is via secondary messengers, which are intra-

cellular molecules that can activate/inactivate the channels. An example channel of this

type is the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel which is a

non-selective cation channel that is activated by intracellular cyclic nucleotides when the

cell becomes hyperpolarised. As the activation is still voltage-dependent it can be modelled

using the same format as the voltage-gated ion channels. There are several other types of

ion-channel gating mechanisms but these are not modelled in this thesis so will not be

discussed here.

Kinetic Models of Ion Channel Gating

Ion channel gating can be described using a kinetic Markov scheme similar to that used to

model chemical reactions [61]. This approach models the time-dependent transition of the
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ion channel between conducting and non-conducting states (which reflects the conforma-

tional state of the membrane protein). As with chemical reactions a state diagram can be

used to represent the kinetics of the ion channel gating. Below is a diagram representing

the most simple first-order kinetic scheme where the gate has only two-states, open O and

closed C, and the transition rates between the two states, r1 and r2. For the voltage-gated

ion channels the transition rates are dependent on the membrane voltage (V ) whereas the

ligand-gated ion channel transition rate depend on the ligand (neurotransmitter) concen-

tration [60].

C
r1(V ,[T ])
�

r2(V )
O (3.1)

Assuming a short time step where the transition rate remains constant, the probability

that the gate is open, y, varies with time according to the following kinetic equation:

d y

d t
= r1(1− y)− r2 y

=
y∞− y

τ

(3.2)

where

y∞ =
r1

r1 + r2
and τ=

1

r1 + r2
(3.3)

y∞ is the steady state probability at a given voltage or transmitter concentration that is

approached exponentially with time constant τ. When considering a large number of

identical ion channels y can instead be thought of as the fraction of open channels (rather

than as a probability) [59].

Although ion channels have multiple conformational states, gating models with only

two-states (open and closed) can provide reasonable fits to data recorded from both ligand-

gated ion channels and voltage-gated ion channels. The Hodgkin-Huxley formalism for

voltage-gated ion channels (discussed in more detail in the next section) only uses two-state

gating models: the state of a given type of ion channel can depend on the gating of a identical

activation gates, m and, in the case of transient ion channels, also on b identical inactivation

gates, h. In this case the overall ion channel opening probability popen (or fraction of number

of open channels) is given by

popen = mahb (3.4)
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The voltage/transmitter dependent rates of channel activation, deactivation and inactivation

(in other words the channel kinetics), and the number of gates used to model specific ion

channels have been determined through experimental observations.

3.1.2 Conductance-based Neuronal Models

Conductance-based models use a biophysical representation of the cell membrane to simu-

late the electrical behaviour of the cell. In these models the cell membrane is represented

as an electrical circuit, known as the equivalent circuit, where the different features of the

membrane are modelled as electrical components. The cell membrane is represented as

a capacitor as the extracellular and intracellular mediums, which are the terminals of the

circuit, are conducting whereas the bilipid layer that forms the membrane is insulating. Con-

nected in parallel to the cell membrane capacitor are the conducting ion channels. Active

ion channels (both ligand and voltage-gated) are represented as variable resistors. Inactive

ion channels and ion pumps (which act together to stabilise the membrane potential) are

grouped together into a single leak channel which is represented as a fixed resistor. The

ionic concentration gradients across the membrane generate electromotive forces and so

are represented as batteries in serial with the ion channel resistor.

The total current that flows across the membrane is generated by the membrane capaci-

tance, IC =Cm

dV

d t
, and the movement of ions across the membrane (via ion channels and

pumps). As the total current across the cell must sum to zero, following Kirchoff’s law:

Cm

dV

d t
= Iv-gated + Il-gated + Ileak (3.5)

where Iv-gated is the total current flowing through the voltage-gated ion channels, Il-gated is

the total current flowing through the ligand-gated synaptic receptors, and Ileak is the total

current passing through the leak channels.

For a given ion channel the current is determined by the reversal potential of the channel

(E), which is the membrane potential at which no ions flow through the channel (typically

calculated using the Nernst potential), the membrane voltage (V ), and the conductance of a

channel (g), which reflects how easily the ions can pass through the channel. The channel

conductance is determined by the state, p, of the ion channel (i.e. how open or closed it

is, see Section 3.1.1) and the maximum possible conductance of the channel ḡ when it is

fully open. This gives the following equation for the current across an ion channel given a
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Figure 3.2 | Example equivalence circuit of a neuron. An example equivalent circuit
of a neuron where the membrane potential is governed by the current across four ion
channels represented in parallel (Na+, Ca2+, K+ and Cl−) and the membrane capaci-
tance (figure from [116]).

particular membrane voltage:

I = g (V −E) (3.6)

where

g = ḡp (3.7)

This approach was first presented in 1952 by Hodgkin and Huxley (H-H) when they

modelled the action potential in a giant squid axon. H-H formalism has since become

one of the most widely used models in neuroscience [105]. This formalism can be used to

generate cell models of varying detail. The simplest version presented above is where the

cell is represented as a single-compartment. More complex, multi-compartment models

have been developed that take into account the scale and structure of neurons and the

distribution of ion channels along the the cell membrane. Models also vary in the number

of ion channels that they include. The multi-compartment conductance-based neuron

models can provide detailed simulations of neuronal signalling, however they also have

higher computational costs.

3.2 Synapse Model

A simple conductance-based kinetic model of a chemical synapse is used in Chapters 5 and

7 to model synaptic transmission. The model is taken from the work by Destexhe et al. [62].
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Following the formalisms introduced in Section 3.1.2, the post-synaptic current generated

by a synaptic event is given by the following equation:

Is yn, j = gsynssyn(t )(Esyn −V j ) (3.8)

where gsyn is the maximum conductance of the synapse, ssyn is the synaptic gating variable,

Esyn is the reversal potential of the synapse and V j is the post-synaptic voltage. The reversal

potential of the synapse depends on the type of synapse, for example excitatory AMPA

synapses and inhibitory GABAA synapses (the two types of synapse modelled in this thesis)

have reversal potentials of 0 and -80 mV respectively.

The synapse gating variable (0 < ssyn < 1) is given by:

d s

d t
= ρα(1− s)−βs (3.9)

where ρ represents the incoming signal, α is the activation rate of the synapse and β the

deactivation rate of the synapse.

Two different models are used in this thesis to represent the incoming signal, ρ. The

first simulates the post-synaptic response to synaptic transmission at a single synapse. A

single synaptic event is represented by a step pulse of neurotransmitter of duration tx with

concentration CT:

ρ =
CT if 0 < t < tx

0 otherwise
(3.10)

The second model is dependent upon the generation of an action potential in the pre-

synaptic cell. The incoming signal is given by a smoothed Heaviside function dependent on

voltage of the pre-synaptic, Vi [66]:

ρ(Vi ) =
1+ tanh(Vi /4)

2
(3.11)

3.3 Single Cell Models

3.3.1 Pyramidal neuron model

A single-compartment conductance-based pyramidal neuron is used in Chapters 6 and 7.

The model is based on the CA1 pyramidal neuron model presented in Nowacki et al. [178],
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which included eight fast-activating ionic currents, with the addition of HCN voltage-gated

ion channels (Ih) informed by the model in Booth et al. [21]. The eight fast-activating

ionic currents included are: a transient Na+ current (INaT ) and a persistent Na+ current

(INaP ); a transient Ca2+ current (ICaT ) and a high-voltage activated Ca2+ current (ICaH ); a

delayed-rectifier (IKDR ) K+ current and a M-type K+ current (IKM ), and a leak current (IL).

The total rate of change in the membrane potential of the system is given by:

dV

d t
=

1

Cm
(INaT + INaP + ICaT + ICaH + IKDR + IKM + Ih + IL + Istim) (3.12)

where Cm represents the membrane capacitance and Istim the external input to the neuron.

In Chapter 6 the stimulation current represents an externally applied current as used

in electrophysiology protocols. In the network model used in Chapter 7, the cells receive

inputs from both synaptic transmission and an externally applied current.

The individual ionic currents (not including the h-current) are modelled by the following

equations:

INaT = gNaT m3
NaT

hNaT (ENa −V ) (3.13)

INaP = gNaP mNaP (ENa −V ) (3.14)

ICaT = gCaT m2
CaT

hCaT (ECa −V ) (3.15)

ICaH = gCaH m2
CaH

hCaH (ECa −V ) (3.16)

IKDR = gKDR mKDR hKDR (EK −V ) (3.17)

IKM = gKM mKM (EK −V ) (3.18)

IL = gL(EL −V ) (3.19)

where g∗ is the maximal conductance of the specific ion channel; m∗ and h∗ represent the

channel activation and inactivation respectively (0 ≤ m/h ≤ 1); V is the membrane potential;

and E∗ is the ion channel reversal potential.

The activation and inactivation steady states (m∞ and h∞ respectively) at voltage V for

a given ion-channel are represented with a Boltzman function:

χ∞ =
1

1+exp(−(V −Vχ/kχ))
(3.20)

where χ represents m or h, Vχ is the ion-channels half-activation/deactivation voltage and

kχ is a constant governing the ion-channels sensitivity to voltage.
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The Na+ channel activation is assumed to be instantaneous, therefore mNa = m∞(V ).

For the other channels with slower activation/inactivation time scales, the rate of change in

the ion-channel activation and inactivation is given by:

dχ

d t
=
χ∞−χ
τχ

(3.21)

where τχ is the channel activation/deactivation rate. These are assumed to be constant for

all channels except for the transient sodium channel which is given by:

τχ = 0.2+0.007exp(exp(−(V −40.6/51.4))) (3.22)

The HCN voltage-gated ion channels (Ih) included in the model for the work in Chapter

6 is based on the model given in Booth et al. [21]. The channel activation is separated into a

fast, mh-f, and a slow component, mh-s. The current equation is as follows:

Ih = ghpmhf + (1−p)mhs (Eh −V ) (3.23)

where p represents the fraction of the current generated by the fast-activating component

and the channel activation and inactivation functions are given by Equations 3.20 and 3.21.

3.3.2 Fast-spiking interneuron model

The fast-spiking interneuron used in the network model in Chapter 7 is based on the model

developed by Wang and Buzsáki et al. [244]. The model includes three ionic currents: one

Na+ current (INa), one K+ current (IK), and a leak current (IL).

dV

d t
=

1

Cm
(INa + IK + IL) (3.24)

The individual currents are given by:

INa = gNaI m
3
Na∞hNa(ENa −V ) (3.25)

IK = gKI m
4
K(EK −V ) (3.26)

IL = gLI (EL −V ) (3.27)

The activation/inactivation functions, mK and hNa are given by Equation 3.21. However,

the activation/deactivation rates, τχ, are different to those of the neuron:

τχ =
1

αχ(V )+βχ(V )
(3.28)
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where

αhN a = 0.07exp(−(V +58)/20) (3.29)

βhN a =
1

1+exp(−0.1(V +28))
(3.30)

αmK =
0.01(V +34)

1−exp(−0.1(V +34))
(3.31)

βmK = 0.125exp(−(V +44)/80) (3.32)

3.4 Network model

An excitatory-inhibitory neural network model used in Chapter 7 to simulate gamma fre-

quency oscillations within the CA1 region of the hippocampus. Two cell populations are

used to construct this network: an excitatory pyramidal neuron population, E, composed of

NE cells and a fast-spiking (FS) inhibitory interneuron population, I, composed of NI cells.

The network, illustrated in Figure 3.3, is based on the cortical network model by Kopell

et al. [135]. Each individual cell is described by a biophysical Hodgkin-Huxley type single-

compartment model (see the previous section) that is synaptically coupled to other cells

within the network. Cells of the same and different neural types can be connected. Network

activity is driven by external deterministic (Idet) and/or stochastic (Istoch) currents that input

to each cell. Signals then propagate across the neural network via the synaptic connections.

The equation for membrane potential of a given cell is extended to include the extra

inputs:

Cm

dV

d t
= Iv-gated + Isyn + Idet + Istoch (3.33)

Network Formation

The network is connected randomly using the Erdos-Renyi model. Two factors determine

the structure of the network at the cellular level: the probability that two cells in the network

are connected and the strength of these connections.

The probability that two cells in the network are synaptically connected depends on the

cell types and the direction of the connection (as the model considers AMPA and GABAA

receptor-mediated synapses which are both unidirectional). As such, there are independent
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Figure 3.3 | The excitatory-inhibitory network model structure. The excitatory-
inhibitory network used to simulate network activity in the CA1 region of the hip-
pocampus. The network consists of two neuronal populations: a neuron population
E and an interneuron population I that receive both stochastic and deterministic in-
puts. Arrow-heads indicate excitatory synaptic connections and circular-heads indicate
inhibitory synaptic connections.

probabilities for neuron-neuron connectivity pEE, interneuron- interneuron connectivity,

pII, interneuron-neuron connectivity, pIE and so on. To construct the network the cells are

randomly connected according to these probabilities; for example a synaptic connection

between any neuron i and any interneuron j will be be present with probability pEI. In

Kopell’s original E-I network model pEE = pII = pEI = pIE = 1, which means that the network

has all-to-all connectivity.

The strength of the connection between two cells, in terms of electrical signal propaga-

tion, is described by the synaptic conductance g. All cells from the same neural population,

for example pyramidal neurons, have the same expected value for the total excitatory synap-

tic conductance affecting a cell, ĝE∗, and the same expected value for the total inhibitory

synaptic conductance affecting a cell, ĝI∗. As the synaptic connections are directed, i.e. a

connection from cell i to cell j is distinct from a connection from cell j to cell i, there are dif-

ferent expected values for the total excitatory synaptic conductance affecting an inhibitory

interneuron, gEI and the expected value of the total inhibitory synaptic conductance af-

fecting an inhibitory interneuron, gII. The effective synaptic conductance of, for example,

the connections1 from interneuron i to neuron j, is given by dividing the expected value of

1One synapse in the model represents many synaptic connections
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the total inhibitory synaptic conductance affecting a neuron, by the expected number of

interneurons that that neuron receives synaptic input from:

gIE,i j =χIE,i j

ĝIE

pIENI
(3.34)

where ĝIE ≥ 0, 0 < pIE ≤ 1, and

χIE,i j =
1 with probability pIE,

0 with probability 1−pIE.
(3.35)

External Inputs

In addition to synaptic transmission the cells also receive external drive. The external drive

to the neuron population is considered to be independent of the drive to the interneuron

population. This external input is separated into two components: a deterministic current

(Idet) and a stochastic current (Istoch). The deterministic current can be used to represent

periodic or predictable input from other neural regions and also to simulate experimental

conditions e.g. an externally applied current pulse. The stochastic current, simulating

random synaptic inputs to the cells, has the form of a Poisson spike train of mean frequency

fstoch, which depends on the cell type. The stochastic drive to a given cell i, for example an

excitatory neuron, is given by:

Istoch,Ei = gstoch,Esstoch,Ei (VE −Vi ) (3.36)

where the conductance gstoch,E and the reversal potential are the same for cells of the same

type. The stochastic component is incorporated in the gating variable, sstoch,Ei , which jumps

to 1 at each time step, δt , with a probability δt fstoch,E/1000 (as the frequency is given in Hz).

Each cell has an independent gating variable that decays with time constant τstoch, which

depends on the cell type:

d sstoch,Ei

d t
= sstoch,Ei e−t/τstoch,E (3.37)

Computational Methods

These models were simulated in MATLAB (The MathWorks, Inc.). The models were solved

numerically using the midpoint method (an explicit second-order Runge-Kutta method)

with a time step of dt = 0.01.
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4
THE ACUTE EFFECT OF INTRACELLULAR Aβ ON SPONTANEOUS

SYNAPTIC TRANSMISSION

Synaptic dysfunction is believed to play a major role in AD pathology [211]. Aβ1−42 oligomers

(oAβ) have been found to dysregulate synaptic function. Most studies have focused on

prolonged extracellular oAβ exposure but it is of interest to understand how oAβ may

alter synaptic function when it first enters a cell. A previously published study found that

the intracellular infusion of oAβ in CA1 neurons caused a rapid enhancement in evoked

excitatory post-synaptic currents (EPSCs) [248]. In this chapter, as a follow on from this

study, the immediate effect of intracellular oAβ-infusion on individual synaptic events is

investigated by recording spontaneous miniature EPSC (mEPSCs).

4.1 Background

4.1.1 Aβ and Synaptic Dysfunction

The loss of synapses, particularly in the entorhinal cortex (EC) and hippocampus, is a

characteristic feature of AD [56, 95]. This degeneration begins in the early stages of the

disease [159, 204, 205] and is the strongest neuropathological correlate for the severity

of cognitive impairments in AD [57, 195, 231]. Given the fundamental role of synapses

in memory processing and the specific impairment in memory function that clinically

characterises the early stages of AD, much research has focused on the mechanisms that
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underlie this synaptic degeneration.

Oligomeric Aβ has been found to have a wide range of dysregulatory effects, both

structural and functional, at synapses in the hippocampus [50, 221]. These include the

degeneration of synapses [199, 215] and the dysregulation of synaptic plasticity, specifically

the enhancement of long-term depression (LTD) and the blocking of long-term potentiation

(LTP), as a result of AMPAR endocytosis [108, 119, 216]

4.1.2 Acute Synaptic Effect of Intracellular oAβ

The extracellular application of oAβ, via perfusion or injection, is a widely employed method

in studies investigating the synaptic effects of oAβ [52, 141, 216, 229]. Under this protocol

most effects take over an hour to manifest and are either a result of membrane-related

interactions or internalisation. However, in a study by Whitcomb et al. (2015) the immediate

effect of intracellularly-applied oAβ on synaptic function was investigated [248]. In this

work, 1-5 nM oAβ was directly infused into whole-cell patched cultured CA1 neurons via the

patching pipette. This concentration of oAβ, the majority of which were low-n oligomers,

was used to mimic the reported intraneuronal levels in AD-affected brains [101, 110]. Once

the patch was obtained they recorded the EPSC evoked by periodic electrical stimulation, at

30 second intervals, of the Schaffer Collateral. They found that the direct infusion of oAβ

caused an immediate increase in the EPSC amplitude which began within 7 minutes of

patching the cell and stabilised within 20 minutes at 181 ± 15% of the baseline (Figure 4.1a).

The increase in EPSC amplitude was specific to oligomeric forms of Aβ1−42 and was

AMPAR-mediated. The blockade of calcium-permeable AMPARs (CP-AMPARs), a sub-type of

AMPAR typically composed of only GluA1 subunits, reversed the increase in EPSC amplitude

(Figure 4.1b). In addition, biotinylation assays found that extracellular perfusion of oAβ,

which also lead to an increase in EPSC amplitude (although slower - starting within 25 min-

utes and stabilising within 40 minutes), caused an increase in the surface expression of GluA1

but not GluA2/3. Overall, these results suggested that intracellular oAβ infusion increased

the amplitude of AMPAR-mediated EPSCs via the synaptic insertion of CP-AMPARs.

4.1.3 AMPA Receptors

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are ligand-gated

ion channels (aka ionotropic receptors) activated by glutamate. They are expressed through-

out the central nervous system (CNS) and are the most common subtype of ionotropic
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(a) (b)

Figure 4.1 | Aβ infusion increases EPSC amplitude. (a) Direct infusion of Aβ1−42 into
hippocampal CA1 neurons causes a rapid increase in AMPA receptor-mediated EPSC
amplitude. (b) Application of the CP-AMPAR inhibitor IEM prevents the increase in
EPSC amplitude. Figures taken from Whitcomb et al. (2015) [248]

.

glutamate receptor (iGluR), which also includes NMDA (N-methyl-D-aspartate), kainate

and delta receptors. AMPARs are responsible for the majority of fast excitatory synaptic

transmission in the CNS [9]; in the hippocampus, blocking AMPARs silences all excitatory

transmission [194]. They are also involved in several forms of synaptic plasticity [113].

AMPARs are formed of four subunits, where a subunit can be GluA1-4 [152]. The combi-

nation of these subunits determines the AMPAR’s properties. In general, AMPARs have fast

kinetics, opening and closing quickly in response to glutamate neurotransmitter. There are,

however, differences in the properties of the different subtypes of AMPARs as a result of their

particular subunit composition. For example, GluA2-lacking AMPARs are typically calcium-

permeable and have a larger single channel conductance [206], faster desensitisation [234],

and an inwardly rectifying current-voltage relationship [63]. Given the role of AMPARs in

synaptic function and transmission, it is important to understand how Aβ impacts on their

synaptic expression and properties.

4.1.4 Spontaneous Transmission and Miniature EPSCs

Most neurotransmitter releases at glutamatergic synapses are evoked by action potentials

(AP); the arrival of an action potential depolarises the axon, activating the local voltage-gated

Ca2+ channels, which leads to an influx of Ca2+ into the terminal that then triggers synaptic

vesicle exocytosis [149]. In spontaneous neurotransmission, vesicle exocytosis occurs in
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the absence of an AP. It is a stochastic process that occurs at all chemical synapses with an

average frequency, in the hippocampus for example, of approximately 0.03 Hz per terminal

[80]. Spontaneous transmission typically involves neurotransmitter release from a single, or

occasionally two, vesicles [73].

Classically it was thought that spontaneous vesicle release occurred because of random

conformational changes in the AP-responsive vesicle machinery but there is increasing

evidence that spontaneous transmission is at least mechanistically, if not also spatially,

distinct from AP-dependent release [125, 192]. It is now believed there are two distinct pools

of vesicles, those that release in response to an action potential and those that spontaneously

fuse with the plasma membrane via independent molecular pathways [42, 72], with further

evidence that they target separate receptor populations [10, 203] and that different synapses

on a single neuron can have a propensity towards spontaneous or stimulation-dependent

transmission [184]. In the hippocampus, for example, around 30% of synapses tend to

exhibit either spontaneous or evoked release (rather than both as in the remaining synapses)

[125].

There is a growing consensus that spontaneous release has functional roles in the devel-

opment and stability of synaptic connections, as opposed to just being background noise as

was originally thought [125]. Studies have found that spontaneous transmission is involved

in the refinement of synaptic connections during neural development and that changes

in spontaneous transmission can trigger homeostatic-type synaptic responses [89, 251].

For example, reducing spontaneous transmission, either by pre-synaptically preventing

or reducing the frequency of vesicle release [49, 177, 191], or by blocking post-synaptic

receptors to prevent activation from spontaneous transmission, has been found to trigger

AMPAR-mediated upscaling [117, 225]. It is has been proposed that this synaptic scaling is a

specific form of homeostatic plasticity whereby spontaneous transmission acts as a measure

and regulator of synaptic efficacy [89].

Miniature EPSCs are the post-synaptic currents generated by spontaneous neurotrans-

mission. The discovery of these apparently random miniature currents, with a distinctive

shape and relatively consistent amplitude, occurred fairly early on in the development of

cellular recordings [69]. They contributed to the discovery that synaptic transmission is

a quantal process, where each vesicle holds an individual packet or ‘quantum’ of neuro-

transmitter [58]. As mEPSCs are generated by the neurotransmitter release from a single

vesicle they have proven to be an essential analytical tool for probing synaptic properties
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and mechanisms [83, 155].

A typical mEPSC profile is shown in the inset of Figure 4.2. The profile is affected by

both pre and post-synaptic properties. Important variables that influence the shape of

the mEPSC include: the vesicular glutamate content; the neurotransmitter clearance rates

within the cleft; the vesicle release site position relative to the post-synaptic active zone;

the distribution of receptors and the type of receptors (and their respective properties e.g.

conductance and binding, unbinding rates and desensitisation rates) [71, 254].

Miniature EPSC recordings are a commonly used experimental paradigm in synapse

studies. They are typically recorded in the presence of tetrodotoxin (TTX), which blocks Na+

channels and thereby prevents any spontaneous AP generation [124, 174]. As mEPSCs reflect

transmission at single synapses, recordings of mEPSCs are often carried out in conjunction

with other electrophysiology measurements that capture collective synaptic transmission,

such as evoked EPSC recordings. By analysing the properties of the recorded mEPSCs, these

experiments can both corroborate findings of altered synaptic transmission, from LTP or

LTD for example, and provide further insight into the underlying synaptic changes [83, 155].

The features typically analysed in mEPSC experiments are the frequency and the ampli-

tude of the mEPSC [1, 5, 118, 123, 155, 156]. A change in the mEPSC amplitude is traditionally

taken to reflect a change at the post-synapse, such as a change in the receptor profile [149].

However, mEPSC amplitude can also be determined by pre-synaptic properties such as

vesicle glutamate concentration and multi-vesicular release. Miniature EPSC frequency is

usually taken to reflect pre-synaptic changes as it is governed by the rate of vesicle release at

the pre-synapse (although it could also be related to receptor desensitisation rates) [83, 149].

Although the recent developments in our understanding of the segregation between

spontaneous and evoked synaptic transmission mechanisms (discussed above) could sug-

gest that mEPSCs are not necessarily indicative of synaptic changes observed in evoked-

response experiments, the large number of studies over the years that have used these

experiments in combination and shown corroborative data indicates that is likely that mEP-

SCs do reflect ‘general’ synaptic changes. Therefore, the traditional use of mEPSC recordings

still provides a useful measure of synaptic transmission and potentially, given recent in-

sight, has more interesting information to divulge/has more functional implications than

previously thought.
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Figure 4.2 | Example mEPSC recording. An extract of a current trace recorded from a
pyramidal neuron in patch clamp. Inset shows a magnified mEPSC. The mEPSC profile
is typical of an AMPAR-mediated mEPSC.

4.2 Experimental Methods

Electrophysiological techniques were used to record AMPAR-mediated mEPSCs in Aβ-

treated and control CA1 neurons in organotypic cultured hippocampal slices. In this section

the methods used to obtain the mEPSC data are described in detail. To summarise, the key

steps are as follows:

1. Cultured hippocampal slices were placed in the recording chamber of an electrophysi-

ology rig and continuously perfused with artificial cerebrospinal fluid (ACSF).

2. CA1 neurons in the slices were whole-cell patched and voltage clamped at -70mV.

3. Oligomerised Aβ1−42 (1 - 5 nM) was directly infused into the neurons via the filling

solution of the patching pipette (in the control experiments a Cs-based only filling

solution was used).

4. The AMPAR-mediated current was pharmacologically-isolated via the ACSF.

5. The whole-cell current was recorded continuously for 6 minutes, starting 10 minutes

after patching.

6. The current data was analysed offline to identify the mEPSCs and measure their

properties (amplitude, half-width, rise and decay times).

4.2.1 Hippocampal Slice Preparation

Organotypic slice cultures were prepared by colleagues in the lab from 7 day old Wistar

rats according to a previously established method (as described in [248]). The slices were
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Figure 4.3 | A typical cultured hippocampal slice. Miniature EPSCs were recorded
from whole-cell patched CA1 neurons in cultured hippocampal slices. (a) A bright
field image of the cultured hippocampal slice as viewed through the microscope’s 4x
objective. (b) A simple schematic of the hippocampus showing the recording electrode
placement when whole-cell patching CA1 pyramidal neurons. The neurons were Aβ-
treated by adding 500nM Aβ solution to the microelectrode filling solution.

cultured in vitro in an incubator at 35°C in a 5% CO2 enriched atmosphere for 6 - 8 days

before use. A bright-field photo of a typical cultured hippocampal slice as used in the

experiments is shown in Figure 4.3a.

4.2.2 Amyloid-β1−42 Preparation

Synthetic Aβ1−42 solution was prepared from amyloid-β 1-42 peptide (Millipore, UK) us-

ing a previously described method (see [248]). Prior to use, the solution was diluted to

the required concentraion using Dulbecco’s Phosphate-Buffered Saline (DPBS) and then

incubated for 2 hours at room temperature to allow for oligomerisation. This protocol

produces a heterogeneous amyloid-β solution containing 1 - 5 nM amyloid-β oligomers, of

which a high percentage (60%) are low-n oligomers [248]; Figure 4.4 shows the oligomeric

size distribution in the working Aβ solution (from [248]). The biological activity of the Aβ

solution was confirmed by verifying that LTP was inhibited in acute hippocampal slices

pre-treated for 2 hours with 500nM Aβ1−42 solution (an established synaptic effect of Aβ

[216, 241]).
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Figure 4.4 | Aβ oligomer size distribution in working solution. Histogram from
Whitcomb et al. (2015) showing the size distribution of the amyloid-β oligomers in the
prepared working Aβ solution. Over 60% are low n-number oligomers composed of 2 -
4 monomers [248].

4.2.3 Electrophysiology Equipment

A standard electrophysiology rig was used to record the mEPSCs. A schematic of the electro-

physiology rig used is given in Figure 4.5. The key components of the rig that are referred

to in the text are labelled in the figure. Photos of the actual rig used in the experiments are

shown in Figure 4.6.

The cultured slices were placed on a glass coverslip in an open diamond bath recording

chamber and held in place using an in-house constructed nylon mesh. The recording

chamber was secured to the xy stage of an Olympus BX51 WI microscope. The slices were

visualised using a Hitachi KP-M1AP camera which was attached to the microscope and

connected to a 12-inch PC monitor.

To keep the slices in good condition the recording chamber was continuously perfused

(at a rate of 2 ∼ 3 ml/min) with ACSF containing (in mM): NaCl, 119; KCl, 2.5; CaCl2, 4;

MgCl2, 4; NaHCO3, 26; NaH2PO4, 1; glucose, 11; 2-chloroadenosine, 0.01 [131]. To isolate

AMPAR mediated mEPSCs three antagonists were added to the ACSF: 50 µM D-AP5, an

NMDAR antagonist [176]; 20 µM bicuculline, a GABAAR antagonist; 500nM TTX, a Na+

channel inhibitor [216]. The ACSF stock was preheated in a waterbath to approximately

35°C and was continuously perfused with 5 % CO2 / 95 % O2. The ACSF was pumped to

the recording chamber via a fine bore polyethylene tube connected to a peristaltic pump.

Immediately before entering the recording chamber the ACSF was reheated via a heated
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perfusion tube to ensure the recording chamber temperature was maintained at 28 - 30°C.

The excess ACSF was continuously removed from the recording chamber via suction by

using a syringe needle attached to a vacuum pump.

The mEPSCs were recorded using glass pipette microelectrodes. The pipettes were made

from borosilicate glass capillaries using a Brown-Flaming horizontal electrode puller, which

produced glass pipettes with a tip resistance of 4 - 6MΩ. The pipettes were filled with Cs-

methane sulfonate filling solution (Cs filling solution) for the control experiments, and with

Cs filling solution with an additional 500nM Aβ-solution for the Aβ-treated experiments.

The Cs filling solution (pH 7.2) contained (in mM): CsMeSO4, 130; NaCl, 8; Mg-ATP, 4; Na-

GTP, 0.3; EGTA, 0.5; HEPES 10 and QX-314, 6 [248]. The microelectrode was threaded over

a chloride-coated silver wire (®0.2mm) connected to the headstage of a MultiClamp 700B

Microelectrode amplifier amplifier. The wire length was set so that it was in contact with the

filling solution but did not reach the tip of the glass pipette. The microelectrode was secured

to an electrode holder attached to an xyz-micromanipulator to enable precise positioning

of the microelectrode. A second chloride-coated silver wire was placed in the recording

chamber to provide a ground reference. The electrode equipment was fixed to a Scientifica

SlicePlatform. The SlicePlatform, microscope and camera were attached to a Newport air

table within an in-house constructed Faraday cage to reduce external noise.

4.2.4 Whole-cell Patch Protocol

The CA1 neurons were whole-cell patched and voltage clamped at -70mV according to

the following standard protocol [94]. The recording electrode and camera were positioned

above the bath recording chamber over the CA1 region of the slice (see Figure 4.3a as

an example of the hippocampal slice viewed through the microscope). Throughout the

experiment the electrode tip resistance was continuously monitored by measuring the

current generated across the tip by 1 mV - 100 ms pulses. Before submerging the electrode a

small positive pressure was applied pneumatically to prevent debris entering the pipette.

The microelectrode was then slowly lowered into the CA1 cell layer until the pipette was

directly above the surface of the target cell (the schematic in Figure 4.3b demonstrates the

electrode positioning). The positive pressure was then removed so that the pipette tip came

into contact with the cell membrane, causing an increase in the pipette tip resistance. The

membrane patch was then achieved by applying a short sharp burst of negative pressure.

A patch attempt was deemed to be successful if the seal resistance was greater than 1

GΩ. At this point, a holding potential of -30mV was applied via the microelectrode and
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Figure 4.5 | Electrophysiology rig infographic. An electrophysiology rig with key
components highlighted (figure adapted from [165]). 1 The electrophysiology rig
was attached to a Newport air table within an in-house constructed Faraday cage to
reduce external noise 2 The slice was placed in a diamond recording bath attached
to the xy stage of an Olympus BX51 WI microscope. 3 Electrode holders connected
to xyz manipulators were used to position the recording microelectrode. 4 A Multi-
Clamp 700B Microelectrode amplifier and integrated headstage was used to record the
electrical signals within the slice. 5 A digitiser converted the recordings into a digital
signal. 6 The direct current, series resistance and input resistance were continuously
monitored and analyzed online using WinLTP software

then gradually decreased to -70mV. As an indicator of cell health and viability, the resting

membrane potential (RMP) was measured before starting the recording; only cells with a

RMP between -50mV and -70mV were used.

4.2.5 Miniature EPSC Recording Protocol

Whole-cell current recordings began 10 minutes after successfully achieving a whole-cell

patch to allow time for the diffusion of the electrode filling solution into the cell. As men-

tioned previously (Section 4.2.3), the control experiments used a Cs-methane sulfonate

microelectrode filling solution only, whereas for the Aβ experiments 500nM Aβ solution was

42



4.2. EXPERIMENTAL METHODS

Figure 4.6 | Photos of the electrophysiology rig. The rig used for the patch-clamp
recordings. The microscope, slice platform and electrode holders (left panel) were
housed within a Faraday cage on a noise-damping Newport air table (right panel).

added to the Cs-based solution. For each hippocampal slice, recordings from both control

and Aβ-treated cells were carried out. The whole-cell current was recorded continuously

for 6 minutes. Throughout each experiment the series resistance, RS (which is synonymous

with the electrode resistance), and the membrane resistance, RM was measured to monitor

the cell’s condition. Only recordings from cells that maintained a series resistance below 20

MW which varied less than 10% from the baseline were used (see Figure A.1 in the Appendix

for the recorded RS).

4.2.6 Data Acquisition and Analysis

The direct current, series resistance and input resistance were continuously monitored using

the WinLTP software. The data was low-pass filtered at 2 kHz and sampled at 20kHz.

The mEPSC data was analysed offline using MiniAnalysis 6.0.3 (Synaptosoft) [226]. Each

current trace (refer back to Figure 4.2 for an example trace segment) was scanned by Mini-

Analysis for spontaneous events with a minimum amplitude threshold of 6pA (approximately

three times the baseline noise) and minimum area threshold of 10 fC. Each event detected

was visually inspected to eliminate false events. Events that did not display the typical
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Figure 4.7 | Miniature EPSC measures. Representative mEPSCs showing the proper-
ties extracted from the mEPSC recordings. (a) A current trace with two mEPSC events
showing the amplitude (A) and inter-event interval (IE) measures. (b) A single mEPSC
labelled with the 10-90% rise time (tr ), 90-10% decay time (td ) and half-width at 50% of
the amplitude (thw ).

characteristics of a mEPSC, namely a fast rise time relative to the decay time and an ap-

proximately exponential decay [236], were rejected. Events were also rejected when their

duration exceeded 50 ms. The majority of false events were easily identifiable and were

typically related to fluctuations in the baseline current or noise; false events accounted for

less than ∼5% of the events detected. Finally, events that overlapped were removed from

the data set to ensure that only single-event parameters were analysed, these overlapping

events accounted for less than ∼1% of the events detected.

For each confirmed mEPSC, the amplitude (A), rise time (tr ), decay time (td ), half-width

(thw ) and time of the event were extracted by MiniAnalysis. The rise time was defined as

the time taken for the current to increase from 10% to 90% of the maximum amplitude, the

decay time was the time taken for the current to drop from 90% to 10% of the maximum

amplitude and half width was the width of the mEPSC at 50% of the maximum amplitude.

The inter-event interval (IE), the time between events, was calculated by taking the time

difference between consecutive events. These properties are labelled on the stylised current

traces shown in Figure 4.7. The IE was used to calculate the instantaneous frequency (IF)

for each mEPSC, where I F = 1
/

I E .

Statistical comparisons were carried out using non-parametric tests as the data was

non-normally distributed. The tests used are the Wilcoxon rank-sum test (wrs) and the

Kolmogorov-Smirnov (ks) test to compare distributions. Correlation analysis was carried

out using Spearman’s rank correlation (rs) coefficient. Descriptive statistics are reported
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as median ± C.I. where the confidence interval (C.I.) is calculated as: ±1.58∗ IQR
/p

n

which gives an approximately 95% confidence that the medians are different (IQR is the

interquartile range). Tukey box plots show: the median (centre line), the 95% C.I. (notches),

the interquartile range (IQR, boxed area), the range of the data that falls within ±1.5∗ IQR

(whiskers) and the outliers (dots). All box plots were generated using the BoxPlotR web tool

[222]. In the figures p-values are indicated using the following labels: *p < 0.05, **p < 0.01,

***p < 0.001.

4.3 Results

In total, recordings from 12 untreated (Control) and 11 Aβ-treated (Aβ) CA1 pyramidal

neurons were analysed. Each recording consisted of 6 minutes of continuous current data

sampled at 20kHz and filtered at 2kHz. Figure 4.8a shows representative recordings of the

basal current from an Aβ-treated neuron and from a Control neuron. In total 1209 and 1263

mEPSCs were identified in Aβ-treated and Control cells respectively. The mEPSC frequency,

amplitude and kinetic properties (rise time, decay time and halfwidth) were measured and

the results from the Aβ and control cells were compared.

4.3.1 mEPSC Amplitude & Frequency Analysis

There was a statistically significant increase in the amplitudes of the AMPAR-mediated

mEPSCs following direct Aβ1−42 infusion compared to the Control group (Figure 4.8b). The

median mEPSC amplitude increased from 13.6±0.58 pA in the Control group to 14.9±0.71

pA in the Aβ-treated group, which is an increase of approximately 10% (Figure 4.8b:Left

p < 0.001, Wilcoxon rank-sum test). There was also a significant difference between the

cumulative frequency distribution of the mEPSC amplitudes in the control group compared

to the Aβ-treated group (Figure 4.8b:Right p < 0.001, Kolmogorov-Smirnov test).

No statistical difference was found between the instantaneous frequency of the mEPSCs

in the control group and the Aβ-treated group (Figure 4.8c). The median instantaneous

frequencies were 0.52±0.06 Hz and 0.53±0.06 Hz for the Control group and the Aβ-treated

group respectively (Figure 4.8c:Left p = 0.70, Wilcoxon rank-sum test). No difference was

measured between the cumulative frequency distribution of the instantaneous mEPSC

frequency for the control group compared to the Aβ-treated group (Figure 4.8c:Right p = 0.26

Kolmogorov-Smirnov test).
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Figure 4.8 | Recorded mEPSC amplitude and frequency distributions. Analysis of
the amplitudes and instantaneous frequencies of the mEPSCs recorded from Aβ-treated
and un-treated (control) CA1 pyramidal neurons (Aβ: n = 11, # mEPSCs = 1209; Control:
n = 12, # mEPSCs = 1263). (a) Representative basal current recordings from Aβ-treated
and control cells. (b) Aβ-treatment significantly increased the mEPSC amplitudes; the
median amplitude of the mEPSCs increased from 13.6±0.58 pA (control) to 14.9±0.71
pA in Aβ-treated cells (box plot, pwrs < 0.001) and the distribution of the recorded
amplitudes shifted towards larger amplitudes (CDF plot, pks < 0.001). (c) There was no
significant difference in the instantaneous frequencies of the mEPSCs recorded from
the control and the Aβ-treated cells (pwrs = 0.70, pks = 0.26).
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4.3.2 mEPSC Kinetics Analysis

The two statistical tests used to analyse the data produced different results (Figure 4.9a).

The Wilcoxon rank-sum test, which tests whether one data set is significantly larger than the

other, found no statistical difference in the median of the rise time of the AMPAR-mediated

mEPSCs following direct Aβ1−42 infusion compared to the Control group. The median rise

times were 2.56± 0.09 ms and 2.74± 0.11 ms for the Control group and the Aβ-treated

group respectively (Figure 4.9a:Left p = 0.17). However, the Kolmogorov-Smirnov test, which

assesses the difference in the distributions, showed a significant difference between the

distribution of the mEPSC rise times in the Control group compared to the Aβ-treated group

(Figure 4.9a:Right p < 0.01).

No statistical difference was found between the mEPSC decay times of the control group

and the Aβ-treated group (Figure 4.9b). The median decay times were 7.20±0.18 ms and

7.25±0.21 ms for the Control group and the Aβ-treated group respectively (Figure 4.9b:Left

p = 0.95, Wilcoxon rank-sum test). No difference was measured between the distribution of

the mEPSC decay times for the Control group compared to the Aβ-treated group (Figure

4.9b:Right p = 0.22, Kolmogorov-Smirnov test).

There was no statistical difference between the mEPSC half-widths of the the control

group and the Aβ-treated group (Figure 4.9c). The median half-widths were 7.82±0.22

ms and 7.83±0.26 ms for the Control group and the Aβ-treated group respectively (Figure

4.9c:Left p = 0.26, Wilcoxon rank-sum test). No difference was measured between the

distribution of the mEPSC half-widths for the Control group compared to the Aβ-treated

group (Figure 4.9c:Right p = 0.06, Kolmogorov-Smirnov test).

4.4 Discussion

It was found that direct intracellular infusion of Aβ oligomers into CA1 pyramidal neurons

caused an increase in the amplitude of AMPAR-mediated mEPSCs. This increase in mEPSC

amplitude occurred rapidly after Aβ infusion; the amplitude was enhanced by the time

recording started 10 minutes after the whole-cell patch was obtained. There was no signifi-

cant difference in the frequency of the mEPSC events following Aβ-treatment. Analysis of

the mEPSC kinetics identified no change in the mEPSC decay times or half-width. There

was no significant difference found in the duration of the rise times of the Aβ-treated and

Control data but the distribution of those rise times was found to be significantly different.
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Figure 4.9 | Recorded mEPSC kinetics. Analysis of the mEPSC kinetics from Aβ-
treated and un-treated (control) CA1 pyramidal neurons (Aβ: n = 11, # mEPSCs =
1209; Control: n = 12, # mEPSCs = 1263). (a) There was no significant change in the
median mEPSC rise times (box plot, Control: 2.56±0.09 ms, Aβ: 2.74±0.11, pwrs = 0.17)
but there was a significant difference in the rise time distribution (CDF plot, pks < 0.01).
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Figure 4.9 (continued) (b) There was no significant change in the mEPSC decay times
in the Aβ-treated cells (pwrs = 0.95, pks = 0.22). (c) There was no significant change in
the mEPSC half-widths in the Aβ-treated cells (pwrs = 0.26, pks = 0.06).

Changes in mEPSC amplitude are traditionally taken to reflect post-synaptic alterations,

although it can reflect changes in pre-synaptic vesicle content [83, 149]. In this case, given

that there was no observable difference in the mEPSC frequency, which is typically associated

with pre-synaptic release properties, and considering the timescale of the experiments it

is unlikely that Aβ has altered the neurotransmitter concentration at the pre-synapse. It is

therefore reasonable to hypothesise that the acute Aβ treatment caused an increase in the

amplitude of AMPA-mediated mEPSCs by altering the post-synaptic AMPA receptor profile

of individual synapses. This supports the claim of the study discussed in Section 4.1.2 that

acute Aβ-treatment enhances AMPAR-mediated EPSCs via the insertion of CP-AMPARs at

the post-synapse [248].

Given that kinetic observations and amplitude changes have a complicated interaction

with post-synaptic properties, without further research it is not possible to determine exactly

how the AMPA receptor profile has changed when considering the increase in AMPAR

receptor in conjunction with the absence of any kinetic changes. Further studies would

be need to be carried out to determine the changes underlying the increase in synaptic

transmission and to determine conclusively if there is a shift in the mEPSC rise times and

if this result is CP-AMPAR mediated. It is worth noting that these findings are recorded

from cultured hippocampal slices from young mice. CP-AMPAR expression is significantly

reduced in adult synapses therefore it is important that this experiment is repeated in older

mice to determine if this is a consistent mechanism.
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5
MODELLING THE EFFECT OF ACUTE Aβ ON SYNAPTIC

TRANSMISSION

Amyloid-β has been found to dysregulate both synaptic function and structure [50, 138, 216,

240]. Models can be used to investigate the functional consequences of this Aβ-mediated

synaptic dysfunction [53, 198]. In the previous chapter it was shown that the intracellular

infusion of Aβ causes a rapid increase in the amplitude of spontaneous mEPSCs. In this

chapter the experimental data is used to develop a minimal biophysical model of synap-

tic transmission that simulates the mEPSC waveform and accounts for the distribution in

mEPSC amplitudes recorded in the untreated control cells by using a lognormal distribution

of transmitter concentration. Using this model it is shown that the same underlying distri-

bution can account for the recorded effect of Aβ, purely by altering the conductance of the

synapse.

5.1 The mEPSC Model

5.1.1 Method Overview

A first-order kinetic model of an excitatory synapse was used to simulate AMPAR-mediated

mEPSCs. The model was parameterised using the mEPSC waveforms that were recorded in

the experiments described in the previous chapter. First, the model was fit to the individual

control mEPSCs to generate parameter distributions and to investigate their correlation
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with the recorded mEPSC amplitudes. This work was used to identify which parameter

distributions were required to describe the mEPSC amplitude distribution and to inform

the parameter values used in the control model. Through this method a lognormal dis-

tribution of neurotransmitter concentration was obtained. Drawing the neurotransmitter

concentration from this distribution, whilst keeping the other parameters fixed at values

obtained through the fitting, generated mEPSCs that fit well to the amplitude distribution

of the Control data. Subsequently, Monte Carlo simulations were run to investigate if the

experimentally observed increase in mEPSC amplitude in the Aβ-treated neurons could be

accounted for using the Control model but withy only altering the synaptic conductances.

5.1.2 Model Set-up

As discussed in Section 4.1.4, a mEPSC is generated by spontaneous quantal transmission

(i.e. the signal generated at a single synapse by a single vesicle release). In the experiments,

AMPAR-mediated mEPSCs were isolated pharmacologically, by applying ion-channel and

receptor blockers, and by voltage-clamping the cell at -70mV to prevent NMDAR activation

and to keep the current contribution from other voltage-gated ion channels constant. There-

fore, the recorded mEPSCs could be represented (assuming perfect clamping and channel

blocking) by a model of synaptic transmission that only considered currents from a fast-

activating ligand-gated receptor population. A simple first-order kinetic model of synaptic

transmission was chosen to simulate the mEPSCs as the signal-to-noise ratio present in the

recordings and the fact that they were recorded at the soma through whole-cell patch clamp

meant the resolution was not suitable for a more detailed model.

The general form of the synapse model used to describe the mEPSC behaviour is given

in Section 3.2. To simulate AMPAR-mediated mEPSCs, the five parameters used to describe

synaptic transmission in the model are interpreted as: the total conductance of the AMPAR

population at that synapse (g); the activation rate of the AMPARs (α); the deactivation

rate of the AMPARs (β); the concentration of the neurotransmitter (CT); the duration of

neurotransmitter exposure (tpulse). As the reversal potential of an AMPAR is 0 mV and the

cell is voltage-clamped at Vclamp, Eqn. 3.8 becomes:

ImEPSC =−gVclampr (t ) (5.1)

where r is the fraction of open receptors, which can be written as:

dr

d t
= γ(1− r )−βr (5.2)
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with

γ=
αCT if 0 < t < tpulse

0 otherwise
(5.3)

Given that g (the maximal synaptic conductance) is also constant, this means that the

waveform of the mEPSC is determined by the fraction of open receptors. An example of a

mEPSC-type trace generated by the model and the behaviour of r (t ) is shown in Figure 5.1.

(a) (b)

0

1500
-15

ms

pA

Figure 5.1 | Example mEPSC simulations. Example simulated mEPSC-type trace
generated by a 1ms pulse of neurotransmitter. (a) The fraction of open receptors
(r ) as a function of time. (b) The simulated mEPSC (Irec). Inset shows a recorded mEPSC
for shape comparison.

The sketch in Figure 5.2 outlines how the model parameters define the dynamics of the

receptor opening and, by extension, the simulated mEPSC. The exponential rise and decay

phase can be considered separately, where the rise time and decay time constants, τr and τd

respectively, are given by [61]:

τr =
1

γ+β
, τd =

1

β
(5.4)

The fraction of open receptors, rmax, can be derived from Equation 5.2 as:

rmax = r∞
(
1−exp

( tpulse

τr

))
=

γ

γ+β
(
1−exp

(
− (

γ+β)
tpulse

))
(5.5)

where r∞ is the fraction of open receptors at infinite time. Therefore, the mEPSC amplitude,

Imax, is given by:

Imax = rmax · gVclamp (5.6)
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t

r(t)

r∞ =
γ

γ + β

t pulse

ṙ = γ(1-r)-βr

τ d = 1/β

ṙ = -βr

τ r =
1

γ + β

0

1

γ = αCT

Figure 5.2 | mEPSC model: fraction of open receptors profile. Sketch illustrating the
properties that determine the time-course of the fraction of open receptors, r(t), and
by extension in voltage-clamp the mEPSC time-course. γ: product of CT (transmitter
concentration) and α (binding rate), τr: rise time constant, τd: decay time constant,
β: unbinding rate, tpulse: transmitter release duration, r∞: maximum number of open
receptors at infinite time.

and depends on tpulse and the ratio of γ:β, where an increase in β decreases the maximum

decreases. As the numbers of receptor activated following the release of a single vesicle

occurs well below saturation levels (< 50% of the total available AMPARs [115, 151]) this

requires r∞ < 0.5 or tpulse. 0.7τr or a combination of these constraints.

5.1.3 Parameter Sensitivity Analysis

To illustrate how the model parameters affect the shape of the simulated mEPSC when

situated within an approximately biological range, the results from one-at-a-time (OAT)

sensitivity analysis are shown in Figure 5.3. Using this method the impact of each parameter

is assessed by measuring the amplitude, rise time and decay time of the simulated mEPSCs

when the parameters are varied one-at-a-time. Note that the half-width, which was mea-

sured in the experimental chapter, is not discussed as it is closely correlated with the decay

time. As a point of reference, the best-fit parameter values obtained by fitting the simulated

trace to an average recorded control mEPSC (method described in Section 5.2.1) are marked

on the plots.

The amplitude of the simulated mEPSC is governed by g (Fig. 5.3a) and, as expected
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from Equation 5.5, on γ, β and tpulse (Fig. 5.3d, g and j). The rise time, which is governed by

τr (Eqn. 5.4), depends on γ, β and tpulse (Figures 5.3e, h and k). The mEPSC decay time is

governed by the decay time constant τd (Eqn. 5.4), which is determined by the unbinding

rate β (Fig. 5.3i).

5.2 Model Fitting

5.2.1 Simulating mEPSC Amplitude Variability

In the first stage of the mEPSC model development, the model was fit to each individual

mEPSC using multivariate gradient descent with two free variables, γ and β (an overview of

this standard fitting method is given in Appendix B). The other two synaptic properties in the

model, the total conductance, g, and neurotransmitter pulse duration, tpulse, were defined

prior to fitting; g was fixed at 0.8 nS [33, 161] and tpulse was measured as the time from start

to peak of the recorded mEPSC. Examples of the fits obtained are shown in Figure 5.4.

The inherent variability of the recorded mEPSCs resulted in variations in the fitted

parameter values, γ and β, and also in the measured tpulse. The parameter distributions are

shown in Figure 5.5, the median values of γ, β and tpulse were 0.04 ms−1, 0.08 ms−1 and 3.9

ms respectively. To identify which continuous distribution best approximated the parameter

distributions, the fit of four probability density functions (normal, lognormal , gamma and

Weibull) were compared to the empirical parameter distributions. The skewed distributions

of all three parameters were best fit with lognormal distributions (shown in Figures 5.5a, c

and e).
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Figure 5.3 | mEPSC synapse model: parameter sensitivity. OAT parameter sensitiv-
ity analysis of the mEPSC model. The simulated mEPSC’s amplitude (Col. 1), rise time
(Col. 2) and decay time (Col. 3) were measured as the synapse parameters were al-
tered, one-at-a-time, across a range of parameter values. Row 1: maximal synaptic
conductance (g ), row 2: product of the transmitter binding rate and the transmitter
concentration (αCT), row 3: receptor unbinding rate (β), row 4: transmitter pulse dura-
tion (tpulse). x: best-fit parameter values obtained by fitting the simulated trace to the
average recorded control mEPSC. 56
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Figure 5.4 | Example fits of simulated mEPSCs to data. Examples of the mEPSC fits
obtained using multivariate gradient descent, with two free variables γ and β, to pa-
rameterise the synapse model. Black line: data, Orange line: simulation

To understand how the γ, β and tpulse properties contributed to the mEPSC amplitude

the correlation between the fitted parameters and the mEPSC amplitudes was investigated.

As is evident in Figure 5.5, γ correlated most closely with the mEPSC amplitude (Fig. 5.5b)

with Spearman rank correlation coefficient, ργ = 0.62, whereas β (Fig. 5.5d) and tpulse

(Fig. 5.5f) had low correlation wth ρβ = 0.12 and ρt = 0.07 respectively. The larger variability

in the fitted parameters at lower amplitudes can be partly attributed to the relative increase

in the noise from the recordings that remained after filtering.

The low dependence of the amplitude on β can be understood analytically. Given that

the values of β and γ obtained through the fitting are small, the amplitude of the mEPSCs

given in Equation 5.6 can be approximated using the Taylor expansion to:

Imax ≈ γtpulse · gVm (5.7)

where gVm are constant throughout the fitting.

This gives approximately equal weighting to tpulse and γ in determining the model

amplitude but in the experimentally measured mEPSCs there was effectively no correlation

between tpulse and amplitude (Figure 5.5f). Therefore, it was predicted that γ captured the

variability in mEPSC amplitude.

To investigate the extent to which the γ distribution alone captured the mEPSC ampli-

tude variability, the original fitted mEPSC amplitudes were compared with the amplitudes

calculated analytically from Eqn. 5.6 using only the fitted γ values and median values for β
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β (ms-1) β (ms-1) 

γ (ms-1) γ (ms-1) 

tpulse (ms) 

(a)

(c)

(e)

(b)

(d)

(f)

Lognormal pdf
(μ = 0.05, σ = 0.001)

Fitted γ

Lognormal pdf
(μ = 0.08, σ = 0.001)

Lognormal pdf
(μ = 1.4, σ = 0.4)

Fitted β

Measured tpulse

tpulse (ms) 

Figure 5.5 | Fitted mEPSC parameter distributions and their correlation with the
mEPSC amplitudes. The fitted parameters, γ and β, were obtained by fitting to each
individual experimental control mEPSCs (Rows 1 and 2). The tpulse values were mea-
sured directly from the recorded mEPSCs (Row 3). (a, c and e) The probability density
distributions of the parameters were best fit with lognormal distributions. (b, d and f)
The fitted parameters and the associated mEPSC amplitudes had the following Spear-
man rank correlation coefficients: ργ = 0.62, ρβ = 0.12 and ρt = 0.07.
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(a) (b) (c)

γ (ms-1)

Amp. = f(γ)

Figure 5.6 | mEPSC amplitude distribution with variability only in γ. The γ-
amplitude dependence was tested by rederiving the mEPSC amplitudes from Eqn. 5.6
using only the fitted γ values and median values for β and tpulse. (a) and (b) The em-
pirical CDF and PDF distributions of the calculated mEPSC amplitudes compared to
the data (pKS = 0.14, Kolmogorov-Smirnov test). (c) The γ-amplitude relationship when
β= 0.08 ms−1 and tpulse = 3.9 ms.

and tpulse (see Figures 5.6a and 5.6b). This was equivalent to assuming the non-variable

relationship, between CT and the mEPSC amplitude that is plotted in Figure 5.6c. Although

the amplitudes were not perfectly reproduced, a Kolmogorov-Smirnov goodness-of-fit test

showed that this simplification still produced a good approximation of the control mEPSC

amplitudes (pKS = 0.14).

As the recorded increase in mEPSC amplitude following intracellular Aβ-infusion (pre-

sented in the previous chapter) was attributed to post-synaptic alterations in the AMPAR

profile and no change was evident in the pre-synaptic properties, the neurotransmitter

concentration was a good candidate for incorporating the underlying mEPSC amplitude

variability present in healthy cells. Therefore the fitted γ values were separated into the

component variables, α and CT. By fixing α at 0.04 ms−1mM−1 this resulted in a lognormal

distribution (shown in Figure 5.7a) with parameters µ= 0.1, σ= 0.66, and median CT ∼ 1

mM which is within the biological range [208].

To simulate the mEPSCs generated in control cells Monte Carlo simulations were run,

with CT drawn from the lognormal distribution. The other properties in the model were kept

at the median values established through the initial fitting. In Figure 5.7b the distribution of

simulated mEPSC amplitudes is compared with the amplitude of the recorded mEPSCs; the

simulated amplitudes fit well to the data (pKS = 0.35, Kolmogorov-Smirnov test) and were
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significantly different from the Aβ-treated mEPSC amplitudes (pKS < 0.01).
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Figure 5.7 | Input and output of the parameterised mEPSC Control model. In the
Control model, sampling CT from a lognormal probability distribution (µ= 0.1,σ= 0.66)
simulated the inherent amplitude variability of the mEPSCs recorded in control cells.
(a) The probability density of the transmitter concentration obtained by fitting the
synapse model to the control mEPSC data. (b) Comparison of the recorded mEPSC
amplitude distribution and the simulated distribution obtained from 1000 runs of
the Control model. The model output fits well with the recorded control distribution
(pKS = 0.35, Kolmogorov-Smirnov test) and is significantly different form the recorded
Aβ distribution (pKS < 0.01).

5.2.2 Simulating the Aβ Effect

A significant increase in the AMPAR-mediated mEPSC amplitudes was recorded following

acute intracellular Aβ-infusion (see Figure 4.8b). However, kinetics analysis of the recorded

mEPSCs showed no conclusive evidence of changes in the rise time, decay time or half-width

of the mEPSCs (see Figure 4.9). Therefore when simulating the Aβ-treated mEPSCs it was

important that there was no shift in the rise and decay times alongside the increase in

amplitude.

Given the model parameter sensitivities (shown in Figure 5.3), the synaptic conductance

(g), which significantly alters the mEPSC amplitude with minimal alterations to the rise

and decay times (row 1 of Figure 5.3), was varied to simulate the increased mEPSC ampli-

tude distribution. Monte Carlo simulations were run for incremental steps in the synaptic
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conductance from the original control model value gC = 0.8nS. Simulations were run from

g = 0.5gC to g = 2gC at intervals of 0.25gC. The resultant amplitude distributions for 0.5gC,

gC and 1.5gC are shown in Figure 5.8. The best fit was obtained at 1.5gC, a 50% increase in

the maximal conductance of the control from gC = 0.8nS to gAβ = 1.2nS.
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Figure 5.8 | Increased synaptic conductance simulated Aβ-mediated increase in
mEPSC amplitude. A comparison of the mEPSC amplitudes generated through Monte
Carlo simulations (1000 runs each) for different synaptic conductances (g = 0.4, 0.8 and
1.2) with the recorded Aβ and control data (presented as scaled empirical PDFs). The
increase observed in control CA1 hippocampal neurons following acute Aβ exposure
can be attributed to a 50% increase in AMPAR conductance (pKS = 0.27, Kolmogorov-
Smirnov test).

5.3 Discussion

A first-order kinetic synapse model was used to simulate the increase in AMPAR-mediated

mEPSC amplitude that was observed in the experiments presented in Chapter 4. The

model was first fit to the mEPSC data recorded in healthy (control) pyramidal neurons. The
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inherent variability in mEPSCs was captured in the neurotransmitter concentration. To

improve the fit of the model to the data a Hill function was incorporated to simulate positive

cooperativity between the neurotransmitter concentration and binding in AMPARs. To

reproduce the increased mEPSC amplitude distribution without altering the mEPSC kinetic

properties, the conductance of the AMPARs was increased by 50%, which is in the range

of the recorded increase in the EPSC study discussed in Section 4.1.2 that led to this work

([248]). This supports the hypothesis that acute Aβ-treatment causes an increase in the

number of AMPARs and that the kinetics of the inserted receptors are unchanged. However,

a more detailed synapse model (such as the NEURON simulation environment used in

Postlethwaite et al. 2007 [188]) would be necessary to test the potential receptor distribution

that could produce this result without impacting the kinetic properties, and to quantify the

number of synapses inserted.

Future work: modelling increased CP-AMPAR expression

In this work the consequence of the effect of acute Aβ was only considered in relation to the

altered electrical response that resulted from the increased AMPAR expression. However, it

was indicated by the EPSC study that the increase in synaptic transmission was potentially

a result of CP-AMPARs insertion [248]. There is growing interest in the contribution of CP-

AMPARs to the onset and progression of synaptic pathology and neurodegeneration [102,

137, 249]. A range of different experimental studies have found evidence that CP-AMPARs

may be involved in AD pathology. Another recent study found that acute extracellular Aβ

application on primary hippocampal cultures caused CP-AMPAR synthesis and lead to an

over response in homeostatic synaptic plasticity [81]. CP-AMPARs are typically homomeric

GluA1 containing receptors. There is also evidence from AD mouse models of increased

GluA1 phosphorylation and CP-AMPAR expression prior to neuropathology [164]. These

studies all used young mice so further studies need to be carried out to investigate if these

processes still occur at mature synapses. Importantly, however, there is supporting evidence

of increased CP-AMPAR expression in human studies; increased GluA1 levels have been

measured in the hippocampi of AD patients, suggesting an increase in GluA1-containing

receptors [157].

A key question, if CP-AMPAR expression is indeed altered, is how might any such changes

contribute to AD pathology. Assuming CP-AMPARs do have a physiological role in trans-

mission and plasticity as research suggests, their dysregulation is going to have some effect.

Dysregulated calcium homeostasis is believed to be an important factor in AD pathology
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[139]. The over-expression of CP-AMPARs could dysregulate intracellular calcium levels

leading to Ca2+-excitotoxicity or other pathological processes associated with Ca2+, such as

tau hyperphosphorylation [93, 144, 186, 249]. Given that CP-AMPARs have different prop-

erties to CI-AMPARs (e.g. increased conductance), altered synaptic AMPAR profiles could

alter synaptic excitability and dysregulate neural dynamics. For example, the disruption of

homeostatic synaptic plasticity caused by CP-AMPAR over-expression could contribute to

the aberrant network activity that has been detected in the early stages of AD [81]. Therefore,

it would be particularly of interest for future work to use a more detailed biophysical synapse

model that incorporates Ca2+ dynamics to investigate how increased CP-AMPAR expression

might alter Ca2+ dynamics and the potential impact of that on the cell excitability and

synaptic plasticity.
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6
MODELLING ALTERED INTRINSIC EXCITABILITY IN A

TRANSGENIC MOUSE MODEL OF AD

The overexpression of Aβ has been found to dysregulate intrinsic excitability [29, 228].

Neuronal models can be used to investigate the cell membrane changes that cause this

dysregulation as well as the subsequent effects on neural dynamics. The aim of the work

in this chapter is to develop an improved single-compartment conductance-based CA1

model that can simulate recorded excitability data and be used to investigate the changes in

intrinsic excitability in an Aβ-overexpressing AD mouse model.

6.1 Background

6.1.1 Aβ and Altered Intrinsic Excitability

Intrinsic excitability is the capacity of a cell to respond to electrical stimulation and to

generate an action potential. The intrinsic excitability of a cell is determined by the cell’s ion

channel and receptor composition. Changes in the number or properties of these channels

can alter the cell’s intrinsic excitability thereby altering the functional response of the neuron

to incoming signals and the propagation of that signal.
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6.1.2 Na+ Channels

There are different transient Na+ channel subtypes; Nav1.2 and Nav1.6 are the predominant

subtype found in excitatory neurons. They aggregate in different regions of the axon initial

segment (AIS), which is the initiation site of action potentials (AP) in pyramidal neurons,

and are believed to have different roles in neuronal excitability [110]. The Nav1.6 channels,

which are particularly prevalent in the distal end of the axon initial segment (AIS), have a

lower voltage threshold and are believed to have a key role in AP initiation [110, 200]. The

Nav1.2 channels, which have a higher voltage threshold and are located in and near the soma,

are thought to have a role in the backpropagation of APs to the soma [110]. A difference

of up to 15mV in the half-activation and half-inactivation voltages have been recorded

[110, 258]. A small number of studies have used computational models (in combination with

experimental work) to investigate the roles of Nav1.2 and Nav1.6 channels in AP initiation

and propagation [110, 200, 258]. These studies have incorporated the two Na+ channel

subtypes within single-compartment Hodgkin-Huxley type models [110, 258] and also in

multi-compartment pyramidal neuron models (built-in NEURON, [110, 200, 258]).

6.2 Model-Data Fitting Method

Two versions of a single-compartment CA1 pyramidal neuron model (described in Sec-

tion 3.3.1) were fit to previously published intrinsic excitability data, recorded from wild-type

(WT) and Aβ-overexpressing transgenic mice [127], to investigate which changes in cell

membrane properties could lead to the altered intrinsic excitability. The two versions of the

pyramidal neuron model were identical apart from the representation of the transient-Na+

voltage-gated ion channels; the first model included a single transient Na+-channel cur-

rent, whereas the second model split the contribution into the two predominant transient

Na+-channel subtypes described above.

The model fitting was primarily achieved by hand-tuning the parameters to improve

the fit of the simulated outputs to the experimental data. This data included three types of

voltage-recordings that were used to assess the intrinsic excitability of the cells, specifically

the average AP waveforms and firing patterns evoked through positive current stimulation

and the hyperpolarised ’sag’ trace evoked by negative stimulation.

The model was parameterised using the data in two stages. In the first stage the aim was

to improve the fit of the models to the WT data to create a ‘control’ model to provide a basis
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for investigating what alterations in the cell properties (ion channel and membrane proper-

ties) could account for the observed differences between the WT and PDAPP mouse model.

In the second stage, using the control models as the starting point, the parameters were then

tuned to the PDAPP data using the same fitting process but focused on the ion channel prop-

erties suggested in the literature as potential mechanisms for these amyloidopathy-related

changes [127, 255].

The intrinsic excitability data, model versions and the model fitting method are described in

detail in the following sections.

6.2.1 Intrinsic Excitability Data Summary

The intrinsic excitability data, obtained from a previous study by Kerrigan et al. (2014), was

recorded from CA1 pyramidal neurons in 9 - 10 month old PDAPP transgenic mice (an Aβ-

overexpressing transgenic mouse model: Indiana mutation, V717F) and their age-matched

wild-type littermate controls [127]. The PDAPP-mutation is used as a model of AD. PDAPP

mice exhibit cognitive deficits, particularly in spatial and recognition memory, and also

some of the characteristic features of AD, specifically extracellular Aβ deposition, loss of

synaptic and dendritic density in the hippocampus, dystrophic neurites and gliosis [77].

Below are descriptions of the two sets of recordings carried out, with the protocol used

for each recording and the properties measured. Before starting each protocol the resting

membrane potential (RMP) was measured and then the membrane potential was set to

approximately -80mV by injecting the required holding current.

Protocol 1: A 500ms negative current stimulation of -100pA was applied to patch-clamped

neurons to measure subthreshold membrane properties.

Output: The average response recorded in both the PDAPP and WT neurons is shown

in Figure 6.2, this will be referred to as the ‘sag’ trace throughout this Chap-

ter. The voltage ‘sag’ (Vsag), caused by the activation of hyperpolarization-

activated cyclic nucleotide-gated (HCN) channels, was measured as the differ-

ence between the maximum negative voltage (Vmaxneg) and the hyperpolarised-

steady state (Vss).The membrane time constant (τmem) was calculated by

fitting a single exponential to the downward slope from 10% - 95%. They

found no significant change in the intrinsic subthreshold properties in the

PDAPP neurons.
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Istim

-100 pA

⊕

⊕
Vss

Vmaxneg
Vsag

10%

95%

Figure 6.1 | Average hyperpolarised traces recorded in WT and PDAPP CA1 neu-
rons. The average ’sag‘ traces generated by -100pA stimulation to measure the passive
properties of the cell (from [127]). The membrane time constant (τmem) is measured by
fitting a single exponential to the downward slope from 10% - 95%. Vsag is measured as
the difference between the maximum negative voltage (Vmaxneg) and the hyperpolarised-
steady state (Vss). The bounded-line shows the standard error mean (SEM).

Protocol 2: A 500ms positive current stimulation was applied to patch-clamped neurons

at 6 different intensities from +50pA to 300pA to record action potential (AP)

firing properties

Output: The total number of spikes and the instantaneous firing frequencies ( finst) of

the first 10 spikes were measured at each stimulation intensity. The instanta-

neous frequency was calculated as finst = 1
/

IEI where IEI is the inter-event

interval (measured in seconds). An example of the typical evoked firing

response at 300pA is shown in Figure 6.2a. The PDAPP transgenic mice dis-

played increased instantaneous firing frequencies for the first 10 APs (see

Figure 6.6c, column 3).

The following properties were measured from the first AP generated by the

+300pA stimulation: AP peak voltage, maximum rate of rise (dV
/

dt ), AP

threshold (when dV
/

dt > 15 Vs−1), AP width (at 15mV) and after-hyperpolarisation
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(AHP). AHP is the hyperpolarisation that occurs immediately after an AP, mea-

sured as the difference between the minimum voltage and the cells normal

resting potential). The average APs from the WT and PDAPP-neurons is

shown in Figure 6.2b. The AP width was reduced by 0.1 ms from 0.7±0.01 ms

in the WT mice to 0.6±0.01 ms in the PDAPP transgenic mice.

Istim

WT

PDAPP

300 pA
(b)(a)

Figure 6.2 | Action potential and typical firing pattern in WT and PDAPP neu-
rons. WT and PDAPP CA1 neuron responses to 500ms 300pA stimulation (from [127]).
(a) Typical firing responses observed. (b) The average APs measured from the first spike
generated at 300pA. Lines include the standard error mean (SEM).

6.2.2 The Models

To investigate the potential causes of the altered intrinsic properties in the PDAPP neurons,

two versions of a single-compartment conductance-based neuronal model, which were

identical apart from the representation of the transient-Na+ voltage-gated ion channels,

were parameterised by fitting to the data described above. The basis for both models was

the CA1 pyramidal neuron model described in Section 3.3.1. This model was unmodified for

the first version of the model, which will be referred to as the ‘single Na+ channel model’ as

it included one transient Na+ channel (NaT). In the second version, the pyramidal neuron

model was developed by replacing the single NaT channel with two NaT channel subtypes:
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Nav1.2 and Nav1.6 (briefly discussed in Section 6.1.2). These channels were added to make

the model more biophysically realistic. This model will be referred to as the ‘split Na+

channel model’.

The current equations for the two Na+ channels had the same form as the NaT described

in Chapter 3 and were given as:

INa1.2 = gNa1.2 m3
Na1.2

hNa1.2 (ENa −V ) (6.1)

INa1.6 = gNa1.6 m3
Na1.6

hNa1.6 (ENa −V ) (6.2)

where gNa1.2 and gNa1.6 are the Nav1.2 and Nav1.6 ion channel maximal conductance; m∗ and

h∗ represent the ion channels’ activation and inactivation functions respectively (0 ≤ m/h ≤ 1);

V is the membrane potential; and EN a is the Na+ channel reversal potential. The channels

activation and inactivation voltages and time constants have the same standard form as

used for the other channels in the model (see Equations 3.20 and 3.21 in Section 3.3.1).

Initial Parameter Settings

The model was initially parameterised with parameter values based on biological measure-

ments and those used in previous versions of the model [21, 109, 178]. The behaviour of

the model using these initial data sets in comparison to the experimental data, is shown in

Figure 6.3.

(a) (b) (c)

Figure 6.3 | Pyramidal neuron model behaviour with initial parameterisation. A
comparison of the outputs from the single Na+ channel model using the initial parame-
ter set with the experimentally recorded excitability data. (a) The ’sag’ response of the
model. (b) The averaged first AP waveform. (c) The simulated firing pattern.

The initial parameters of the Nav1.2 and Nav1.6 channels were based on published

recordings of the Na+ currents measured in the axon and soma of pyramidal neurons from
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the prefrontal cortex of 2-3 week old rats [109]. The somatic currents were interpreted as

Nav1.2 mediated currents and the axonal currents as Nav1.6 mediated currents in line with

experimental observations [109, 200]. Figure 6.4 shows the recorded Na+ channel activation

and inactivation curves fitted with the Boltzmann equation: the half-activation and half-

inactivation voltages were −29.7±1.0mV (with Boltzmann constant, kB = 5.8±0.2) and

−67.0±1.7 mV (kB = 7.1±0.3) at the soma and −43.9±1.3 mV (kB = 5.7±0.2) and −80.0±1.0

mV (kB = 5.4±0.2) in the axon.

Figure 6.4 | Published Na+ ion channel kinetics. Na+ channel activation voltage and
deactivation functions recorded from the soma and axon (and AIS) of a pyramidal
neuron by Hu et al. (2009) [109]. These were used to inform the Nav1.2 and Nav1.6
channel parameters in the split Na+ channel model.

Simulating the Experimental Protocols

To parameterise the cell model using the experimental data, the two stimulation protocols

described above were simulated in silico. To implement the experimental set up and the

500ms current injections within the model:

• The 500ms negative current (-100 pA) and positive current injections (100, 200 and

300 pA) were converted to current densities for use in the model (with units ofµA/cm2).

This was calculated using Equation 6.3:

Imodel = Iexp

Cm

cm
=

Iexp

A
(6.3)

where cm is the total capacitance measured in the whole-cell patch experiments

(cm ≈ 140 pF), Cm is the standard approximation for the specific membrane capac-

itance of a lipid membrane (Cm ≈ 1 F/cm2) and A is the approximate area of the
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cell membrane (in cm2) [87]. Using this method, a 100 pA injection current in the

experiment was equivalent 0.7 µA/cm2 in the cell model.

• The models’ voltage-gated ion channel reversal potentials (E) were calculated from the

ionic concentrations of the intracellular and extracellular recording solutions using

the Nernst Equation [104].

• A holding current was applied to hold the cells at -80mV, as in the experiments.

6.2.3 Fitting Method

The purpose of the fitting was to improve the behaviour of the following model outputs in

comparison with the experimental data:

• The simulated ‘sag’ trace, which was generated by negative stimulation as described

in Protocol 1.

• The simulated firing pattern generated at each stimulation level, as described in

Protocol 2.

• The simulated AP, which was the first AP generated by the 300pA (equivalent to 2.1

µA/cm2 in the model) current stimulation, as described in Protocol 2.

• The model cell’s RMP.

This was a complex problem as it involved optimisation across multiple behaviours. The

fitting was primarily carried out by hand-tuning the parameters. An automated fitting

algorithm was also used to identify parameter settings by fitting to measures from the AP

and ‘sag’ traces, but these identified parameter sets performed poorly at reproducing the

observed firing patterns and required significant further manual tuning. Hand-tuning of

parameters is an iterative, empirical process informed by a combination of goodness-of-fit

measures and visual inspection. For this reason, it is difficult to explicitly state all parameter

changes that were investigated during the fitting process. Therefore the preceding text is

focused on the general considerations that informed the fitting process.

The process for tuning parameters involved starting with small iterations around the

initial values to investigate their individual impact on the different behaviours (within

that parameter space). Then, as knowledge was gained, combinations of parameters were

simultaneously altered and, if necessary, larger variations from the initial values were tested.

To ensure the model remained biologically representative throughout the fitting, the majority

of the model parameters were fixed at the original experimentally-informed values, with the
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remaining free parameters constrained to biologically reasonable ranges. As the ion channel

conductances have been less well-defined biologically, these parameters were the primary

focus when fitting to both the WT and the PDAPP data. The parameterisation of the PDAPP

was focused on a subset of the ion channels, specifically the delayed-rectified K+ channel

and the transient Na+ channel which were suggested as potential mechanisms for these

amyloidopathy-related changes [127, 130, 255].

The fitting was assessed both visually and by taking into account the following measures:

• The goodness of fit of the simulated AP trace to the data, measured using the RMSD.

• The AP peak, width, threshold and AHP values.

• The instantaneous frequencies of the oscillations at each stimulation level.

• The characteristics of the simulated firing pattern during the 500 ms stimulation.

Specifically, their duration, as they should continue throughout the 500 ms stimulation,

and the overall shape of the firing pattern (governed by the peaks and troughs).

• The goodness of fit of the ‘sag’ trace, measured using the RMSD and the ‘sag’ voltage

(Vsag).

• The membrane time constant (τmem).

• The RMP of the cell.

In the initial stages of the fitting, priority was given to the cell’s RMP, the firing frequency

and the AP peak and width. As the fit of these priority measures improved, the other

aspects of the behaviour were also considered, such as the overall fit to the AP waveform

which included the AP threshold and the AHP as well as qualitative features of the firing

pattern. The goodness of fit of the ‘sag’ trace was monitored throughout but was fine-

tuned in the later stages of the fitting process. This was because the HCN voltage-gated ion

channel properties, which govern Vsag, have a minimal impact on the AP waveform and

firing frequency. The other ion channel properties, however, do impact on the membrane

time constant (measured from the falling voltage of the ‘sag’-trace, see Section 6.2.1) and

therefore alter the fit of the simulated ‘sag’ trace to the data.
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6.3 Model Fitting Results

6.3.1 Single Na+ Channel Model

To simulate the intrinsic excitability recordings from the 9 - 10 month old mice the original

model was first fit to the WT data (as described in the previous section). The majority of

the fitting was achieved by altering the ion-channel conductances of the original model.

However, to lower the AP threshold to a value closer to that observed experimentally (com-

pared to the original model output), the activation threshold voltage of the NaT -channel

was lowered. The activation and inactivation functions used in the model are shown in

Figure 6.5, the kinetics that were altered to fit the data are indicated by dashed lines. The

final WT fitted parameter set are listed in Table 6.1 with the initial values given in brackets if

they were modified during the fitting.

Table 6.1 | CA1 pyramidal neuron model parameters: WT-fitted values vs. initial
values. Voltage-gated ion channel parameters used to simulate the WT CA1 neuron
data with the initial parameter values given in brackets for those that were modified.

Channel E(mV) g(mS/cm2) V(mV) k(mV) τ(ms)

m h m h m h
NaT 55 (60) 48 (65) -50.0 (-37.0) -75.0 7.0 (5.0) -7.0 - -
NaP 55 (60) 0.26 (0.1) -45.0 (-47.0) - 3.0 - τhN aT

-
CaT 90 1.0 (0.6) -54.0 -65.0 5.0 -8.5 2.0 15.0 (32)
CaH 90 1.1 (2.6) -15.0 -60.0 5.0 -7.0 0.08 300.0
KDR -100 (-85) 6.8 (9.5) -5.8 -68.0 11.4 -9.7 1.0 1400
KM -100 (-85) 0.8 -30.0 - 10.0 - 75.0 -
hf -30 0.011 (0.05) -82.0 (-102) - -13.0 - 15
hs -30 0.011 (0.05) -82.0 (-102) - -6.0 - 210
L -55 (-65) 0.005 (0.02) - - - - - -

Figure 6.6 shows the results of the fitting of the model to both the WT and PDAPP

experimental data. The fitted models were capable of simulating the key features of both

the WT and PDAPP intrinsic excitability recordings and reproduced the changes observed.

The fit to the PDAPP data was obtained by increasing the current contribution from the NaT

channel and the delayed-rectifier K+ channel (KDR), via the conductance, and by decreasing

the activation rate of the KDR channel. The ion channel parameters of the fitted models are

listed in Table 6.2, the properties altered to fit the PDAPP data are shown in brackets.

In terms of the behaviour of the WT model, the AP peak and width of the WT simulation

matched the experimental measurements (see Figure 6.6a), however it proved difficult to
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Figure 6.5 | Single Na+ model ion channel kinetics. These figures show the ion chan-
nel activation (m) and deactivation (h) functions. The solid lines show the original
versions presented in [178], the dashed lines show those that were altered for the fit-
ted single Na+ channel model. The half-activation voltage of the NaT channel was
decreased from -35mV to -50mV.

reduce the after-hyperpolarisation (AP tail) without significantly altering the dynamics of the

cell firing. The response of the model to negative stimulation fitted with the experimental

data although the recovery on the rebound was slightly faster than experimentally observed

(see Figure 6.6b). The goodness-of-fit of the simulated AP waveform and the simulated ‘sag’

trace to the data, assessed using the RMSD, were 3.5 mV and 7.32 mV respectively. The firing

frequency (first two columns of Figure 6.6c) and instantaneous frequency (third column of

Figure 6.6c) of the first ten spikes was slower than recorded for the 50 pA and 100 pA positive

stimulation, however it was within the range of the data at the higher currents (>150 pA).
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By altering the parameters of the WT model it was possible to simulate the behaviour of

the recorded PDAPP data, specifically the observed decrease in AP width and increase in

instantaneous frequency (described in Section 6.2.1). The parameterised model reproduced

the observed decrease in the AP width, from 0.7 ms in the WT to 0.6 ms in the PDAPP

model (Figure 6.6a). There was a slight shift in the response to the negative stimulation (see

Figure 6.6b) but this remained within the error bounds of the recordings. The goodness-of-

fit of the simulated AP waveform and the simulated ‘sag’ trace to the data, assessed using

the RMSD, were 4.5 mV and 7.33 mV respectively. There was a slight increase in the firing

frequency in the PDAPP simulation which was not observed experimentally (see Figure 6.6c).

However the simulated instantaneous frequency was in agreement with the experimental

data, with an increase in frequency in the PDAPP model simulations.

Table 6.2 | Single Na+ channel CA1 neuron model: voltage-gated ion channel para-
meters. Voltage-gated ion channel parameters used to simulate the WT and PDAPP
CA1 neuron data with the single Na+ channel model. The parameters that were altered
to fit to the PDAPP data are written in brackets.

Channel E(mV) g(mS/cm2) V(mV) k(mV) τ(ms)

m h m h m h
NaT 55 48 (50) -50.0 -75.0 7.0 -7.0 - -
NaP 55 0.26 -45.0 - 3.0 - τhN aT

-
CaT 90 1.0 -54.0 -65.0 5.0 -8.5 2.0 15.0
CaH 90 1.1 -15.0 -60.0 5.0 -7.0 0.08 300.0
KDR -100 6.8 (7.2) -5.8 -68.0 11.4 -9.7 1.0 (0.85) 1400
KM -100 0.8 -30.0 - 10.0 - 75.0 -
hf -30 0.011 -82.0 - -13.0 - 15
hs -30 0.011 -82.0 - -6.0 - 210
L -55 0.005 - - - - - -

6.3.2 Split Na+ Channel Model

The split Na channel pyramidal neuron model is described in Section 6.2.2. Initially the other

parameters in the model were based on those from the fitting of the single Na+ channel

model. The model was then fit to the WT data as described in the previous section. The

majority of the fitting was achieved by altering the ion-channel conductances. However, to

achieve a lower AP threshold (as with the single Na+ channel model) the activation threshold

of the Nav1.6 channel was lowered from the initial values shown in Figure 6.4 (discussed

in Section 6.2.2). This was deemed to be biologically reasonable as the original channel

properties were recorded in young mice (< 1 month old) and a decrease of approximately 6
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Figure 6.6 | PN model-data comparison: single Na+ channel. Comparisons of the
simulated WT and PDAPP intrinsic excitability properties generated using the single
Na+ channel model with the recorded WT and PDAPP data. (a) The difference in
width of the WT and PDAPP APs (0.1ms) was matched by the model. The RMSD of the
simulated WT and PDAPP AP waveforms to the data were 3.5 mV and 4.5 mV respectively.
(b) The ‘sag’ voltage was unchanged by the parameter alterations agreeing with the
experimental findings. The RMSD of the simulated WT and PDAPP ‘sag’ waveforms
to the data were 7.32 mV and 7.33 respectively. (c) The simulated firing frequencies
matched the data at the higher stimulation currents.
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Figure 6.7 | Split Na+ model Nav1.2 and Nav1.6 channel kinetics. Comparisons of
the activation voltage (m) and deactivation (h) functions of the original single NaT -
channel and those of Nav1.2 and Nav1.6 channels used in the split Na+-channel model

mV has been observed in the Na+ half-activation voltage in 9-10 month old mice compared

to younger 1-2 month old mice [29]. The Na+ channel activation and inactivation functions

used in the model are shown in Figure 6.7 alongside the single NaT channel functions.

Figure 6.8 shows the results from fitting the model to both the WT and PDAPP experi-

mental data. The fitted models were capable of simulating the key features of both the WT

and PDAPP intrinsic excitability recordings and reproduced the changes observed exper-

imentally, although not as closely as the single Na+ channel model. Similar to the single

Na+ channel model, the fit to the PDAPP data was obtained by increasing the current con-

tribution from the NaT channel and KDR channel, via the conductance, and by decreasing

the activation rate of the KDR channel. The ion channel parameters of the fitted models are

listed in Table 6.3, the properties altered to fit the PDAPP data are shown in brackets.

In terms of the behaviour of the WT model, the AP peak and width of the WT simulation

matched the experimental measurements (see Figure 6.8a), and the after-hyperpolarisation

(AP tail) was reduced compared to the single Na+ channel model. Figure 6.8b shows the

response of the model to negative stimulation, the negative peak and the hyper-polarised

steady-state levels were within the range of the experimental values. However, the time

course of the response was quicker than that observed experimentally. The goodness-of-fit

of the simulated AP waveform and the simulated ‘sag’ trace to the data, assessed using

the RMSD, were 2.81 mV and 7.41 mV respectively. The number of spikes evoked in the

simulations of the 500 ms positive stimulations fell within the range of the experimental

data for the medium intensity currents (150 - 250 pA). However, the responses to the high

and low intensity were slightly above and below the recorded values respectively (see first
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column of Figure 6.8c). The instantaneous frequency of the first ten spikes was slower than

recorded for the 50 pA and 100 pA positive stimulation (see third column of Figure 6.8c),

however it was within the range of the recorded data at the higher currents (>150 pA).

Table 6.3 | Split Na+ channel CA1 neuron model: voltage-gated ion channel para-
meters. Voltage-gated ion channel parameters used to simulate the WT and PDAPP
CA1 neuron data with the split Na+ channel model. The parameters that were altered
to fit to the PDAPP data are written in brackets.

Channel E(mV) g(mS/cm2) V(mV) k(mV) τ(ms)

m h m h m h
Nav1.2 60 40 -35.0 -70.0 5.7 -6.0 - -
Nav1.6 60 60 (65) -55.0 -80.0 5.7 -6.0 - -
NaP 60 0.1 -47.0 - 3.0 - τhN aT

-
CaT 90 0.8 -54.0 -65.0 5.0 -8.5 2.0 15.0
CaH 90 1.3 -15.0 -60.0 5.0 -7.0 0.08 300.0
KDR -85 8.8 (8.5) -5.8 -68.0 11.4 -9.7 1.25 (1.0) 1400
KM -85 2 -30.0 - 10.0 - 75.0 -
hf -30 0.035 -102.0 - -13.0 - 15
hs -30 0.035 -102.0 - -6.0 - 210
L -75 0.018 - - - - - -

By altering the parameters of the WT model it was possible to qualitatively reproduce

the changes in the recorded PDAPP data, specifically the observed decrease in AP width and

increase in instantaneous frequency (described in Section 6.2.1). The AP generated by the

PDAPP model was only 0.07ms narrower than the AP generated by the WT model, compared

to 0.1ms in the data (see Figure 6.8a). In agreement with experimental observations, there

was no shift in the response to the negative stimulation (see Figure 6.8b). The goodness-

of-fit of the simulated AP waveform and the simulated ‘sag’ trace to the data, assessed

using the RMSD, were 2.83 mV and 7.54 mV respectively. There was a slight increase in

the number of spikes in the PDAPP simulation during the positive current stimulation

which was not observed experimentally (see first two columns of Figure 6.8c) and the

simulated instantaneous frequency for the PDAPP was higher than observed experimentally.

However, the PDAPP instantaneous frequency was also higher than the simulated WT which

qualitatively agreed with the recorded data (see third column of Figure 6.8c).
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Figure 6.8 | PN model-data comparison: split Na+-channel. Comparisons of the
simulated WT and PDAPP intrinsic excitability properties generated using the split
Na+ channel model with the recorded WT and PDAPP data. (a) The simulated differ-
ence between WT and PDAPP AP width (0.07 ms) was smaller than in the data (0.1 ms).
The RMSD of the simulated WT and PDAPP AP waveforms to the data were 2.81 mV
and 2.83 mV respectively. (b) The ‘sag’ was unchanged by the parameter alterations.
The RMSD of the simulated WT and PDAPP ‘sag’ waveforms to the data were 7.41 mV
and 7.54 respectively.
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Figure 6.8 (continued) (c) Although the PDAPP firing frequency was faster than exper-
imentally observed the changes in the firing frequency qualitatively agreed with the
experimental results.

6.4 Discussion

The intrinsic excitability data recorded in CA1 pyramidal neurons from 9 - 10 month old

WT and PDAPP transgenic mice was simulated using two different versions of a single

compartment CA1 pyramidal neuron model; one incorporating a single NaT channel and the

other with two NaT channels. The original model was extended to include the NaT channels

Nav1.2 and Nav1.6, which are the most common subtypes found in pyramidal neurons, to

make the model more biologically realistic. The original model was previously parameterised

using ion channel properties based on experimental recordings from CA1 neurons [178, 228].

When fitting the model to the intrinsic excitability data, with the exception of the NaT

channel properties, few changes in the ion channel kinetic properties were required, with

alterations in the ion channel conductances sufficient to reproduce the WT data. To fit the

AP threshold the NaT channels half-activation and inactivation voltages were lowered by

approximately 10 mV from the original values taken from published ion-channel kinetic

data recorded in young mice. This was considered biologically reasonable because of the

evidence of lower Na+ channel threshold gating in aged mice [29].

Following parameterisation both models were able to reproduce aspects of the key

features of the recorded WT intrinsic excitability data. Both matched the AP peak and

the ‘sag’ voltage and had firing frequencies close to the experimental values. Overall, the

PDAPP single Na+ channel model performed slightly better, matching both the AP width

and producing a better fit to the full ‘sag’ trace. The split Na+ channel model was still able to

qualitatively reproduce the experimental observations and produced a closer fit to the full

AP waveform but further work is required to improve the sag response generated by negative

stimulation and to address the fast initial firing rate.

In both models the altered intrinsic excitability properties recorded in the PDAPP mice

could be accounted for by lowering the KDR and NaT channel conductance and slowing

the KDR channel response. Changes in K+ and Na+ channel currents have previously been

associated with Aβ [29, 228]. In the experimental observations it was also noted that that

there was an increase in the after-depolarisation (ADP) in the PDAPP cells (Fig. 5F in [127]).

In this work the model was not specifically fit to this aspect of the data, nevertheless, the WT

and PDAPP simulations in the split Na+ model qualitatively reproduced this change. The
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model could be further improved by also fitting to the ADP data. In the paper where the WT

and PDAPP data was published, it was suggested that the underlying mechanisms could be

a result of increased KDR channel contribution (opposite to the findings presented here),

reduced contributions from voltage-gated Ca2+ channels or through faster Na+ channel

inactivation [127]. Preliminary simulations carried out to test these suggestions proved

unsuccessful at reproducing the changes, however further work is required to robustly

investigate the proposed mechanisms.

The data-informed split Na+ channel model that was developed can simulate intrinsic

excitability recordings enabling future use in work investigating altered neuronal excitability

properties. With data-informed parameterised models it is possible to make biologically

plausible suggestions as to the potential mechanisms that underlie AD or Aβ-related changes

in neuronal activity. Altered intrinsic excitability has also been observed in the interneurons

in PDAPP mice and model fitting begun (unpublished). These parameterised models could

be incorporated within a network model to investigate the effect of the altered excitability

on oscillatory activity in the CA1 (as in Chapter 5).
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INVESTIGATING THE IMPACT OF Aβ-RELATED CHANGES IN

NEURONAL ACTIVITY ON GAMMA FREQUENCY OSCILLATIONS

The network model was used to investigate how the altered cell excitability in PDAPP CA1

neurons, as described in Chapter 6, may be impacting the gamma activity in the PDAPP

mice and also to investigate how Aβ-enhanced synaptic transmission at excitatory synapses,

based on the measurements from CA1 pyramidal neurons in Chapters 4 and 5, may alter

oscillatory activity in the CA1 region. The tests with the altered synaptic conductance

were only run on the WT network as the synaptic effects were recorded following acute

Aβ exposure in WT mice whereas the fitted cells in the PDAPP network were from aged

PDAPP-transgenic mice where it is assumed prolonged and significant Aβ exposure has

already occurred.

7.1 Gamma Oscillations in the Hippocampus

Gamma frequency oscillations, which have a frequency range of ∼25 – 100 Hz, are one of

the three principal rhythms detected within the hippocampus, along with the theta rhythm

(∼4 –12 Hz) and sharp wave ripples (∼110 – 250 Hz) [45]. The presence of these rhythms

has been found to correspond with specific behaviours and is therefore believed to have

distinct roles in hippocampal processing. Of particular relevance to AD is the association of

gamma oscillations with learning and memory [27, 70, 107]. Gamma oscillations have been

recorded both in vivo and in vitro in the CA1 region, which is a locus of gamma oscillations
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in the hippocampus. The oscillations can be split into low (25 – 60 Hz) and high frequency

oscillations (55 –100 Hz), which are believed to be created by different inputs and propagate

to different regions [45, 207]. Low frequency gamma leads to increased coherence with in-

puts from the CA3 whereas the higher frequency is associated with increased coherence with

the EC. Both pyramidal neurons and fast-spiking parvalbumin interneurons are involved

in the generation of gamma oscillations [220]. The model is then incorporated in an E-I

network composed of CA1 pyramidal and fast-spiking interneurons to investigate how this

increase in synaptic transmission may impact gamma frequency oscillations, which are

believed to have an important role in memory function.

7.2 The EI Network Model

7.2.1 Network Model Set-Up

The excitatory-inhibitory (EI) network model used to generate gamma frequency oscillations

is described in detail in Section 3.4. This model is an extension of the one developed by Kopell

et al. (2010) [135], with the original E-cell model replaced by the pyramidal neuron model

used in Chapter 6 (see Section 3.3.1 for the cell model details). The base network model, used

to represent normal behaviour in control conditions, uses the E-cell parameters obtained by

fitting to the WT pyramidal neuron data in Chapter 6. As in the original model, the network

is homogeneous, where the cells are identical within a population and the synaptic strengths

between populations are uniformly distributed and had all-to-all connectivity.

Gamma frequency oscillations were generated by applying a direct stimulating current to

the E-cells (Idet,e). This stimulation protocol simulates the pyramidal-interneuronal network

gamma (PING) generation mechanism [135], which can be induced experimentally through

optogenetic stimulation for example [2, 16, 67]. In all simulations, the external currents

were applied throughout the simulation, which had a run-time of 200ms with a 50ms run-in.

Longer simulation run-times did not significantly alter the properties of the oscillations

generated. It is worth noting that as the network did not incorporate any synaptic plasticity,

the validity of comparing the predictions made here with experimental results would reduce

as the recording time increases.

To make the network simulations more realistic, stochasticity was added to the network

in two ways: by initialising the cells at different voltages, which were drawn from a gaussian

distribution centred around their resting potential, and by including spontaneous excitatory

84



7.2. THE EI NETWORK MODEL

synaptic transmission, modelled as an independent poisson process, to both E and I-cell

populations. For all investigations Monte-Carlo simulations (n = 20) were carried out.

7.2.2 Network Activity Measures

The local field potential (LFP) of each simulation was estimated using an adaptation of

the model presented in Bedard et al. (2010) [15], which has previously been used in work

simulating experimental LFP recordings in the CA3 region [16]. In this approximation

the cells are treated as point sources, normally distributed at a distance of r j from the

hypothetical recording site. Assuming a homogeneous extracellular medium of resistivity Re ,

the contributions of the individual cell currents (I j ) are then scaled relative to their distance

from the recording site. The LFP is therefore given by:

VLF P =
Re

4π

∑
j

I j

r j
(7.1)

with Re estimated at 230Ω cm [193] and with the hypothetical distance between the cell and

the recording site r j drawn from a random distribution with µ= 75 µm and σ= 6, which

was informed by estimations on LFP ranges from [147]. Based on the work presented in [16],

which scaled the size of the simulated LFP to levels in agreement with experimental CA3

LFP recordings, the LFP was calculated from a subset of the cells (40 E-cells and 10 I-cells).

The power spectral density (PSD) of the LFP was then calculated by applying a fast fourier

transform to the LFP using the Chronux toolbox package [6, 20]. Three measures from the

PSD are used to summarise the oscillations: the total power of the oscillations in the gamma

frequency range, calculated from the integral of the PSD; the fundamental frequency of the

oscillations and the maximum PSD value at the fundamental frequency.

7.2.3 Original and Extended Network Behaviour

Summaries of the behaviour generated by applying a driving current to E-cells in the original

network (from [135]) and in the extended network with and without the stochastic input

(noise), are shown in Figure 7.1. The gamma frequency oscillations were obtained in the

extended network by altering the external drive (Idet,e) and the conductance of the inhibitory

synaptic inputs to the E-cells (g I E ), whilst keeping the other network properties at their

original values (a list of all the network properties and their initial values are given in

Table C.2 in Appendix C).
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Figure 7.1a shows examples of the network activity generated during a single simulation.

The firing times of all the cells in the network are shown in the raster plots (row 1), with

example E and I-cell firing patterns below (rows 2 and 3). For each example simulation, the

local field potential (LFP; row 4) is presented along with the corresponding power spectral

density in the gamma frequency range (PSD; row 5). Typically there are two peaks present in

the PSD, the fundamental frequency and the first harmonic of the oscillations. The results

of the Monte Carlo simulations are summarised in Figure 7.1b, which compares the total

power of the oscillations in the gamma frequency range (gamma power), the fundamental

frequency of the oscillations and the associated peak PSD value.

Overall, the network incorporating the extended E-cell model produced gamma oscilla-

tions with the same general characteristics as the original model; there was no significant

difference in any of the three summary properties in Figures 7.1b. The addition of noise to

the extended model decreased both the frequency and gamma power of the oscillations,

which can be explained by the behaviour of the individual E-cells which no longer fired

every cycle (Fig. 7.1a: Row 2). However, further tests (described in the next section) showed

that the oscillations generated by the two versions of the extended network model had

similar levels of robustness and were in agreement with previously published work on the

robustness of the original model [24, 25, 135]. Consequently, for the results in this chapter,

only the extended network model with synaptic noise was used as it is more biologically

realistic.

7.3 Robustness of the Network Oscillations

Prior to investigating the impact of any Aβ-related alterations on the properties of the

network gamma oscillations, robustness tests were run to investigate the dependence of

the network behaviour on the parameters chosen for the network construction and external

stimulation, and dependence on the network homogeneity. The robustness of the network

gamma generation to variations in these properties was investigated using one-at-a-time

(OAT) sensitivity analysis.

7.3.1 The Robustness Tests

Eight different robustness tests were performed. The tests can be categorised into three

groups: tests 1 - 3 focus on the importance of the general network properties on the network

behaviour; tests 4 - 6 focus on the external stimulation settings; tests 7 - 8 are preliminary
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(a)

(b)
***

***

Figure 7.1 | Behaviour of the different EI network models. (a) Examples of the ac-
tivity generated when a stimulation current is applied to the E-cells. Col. 1: Original
network from Kopell et al. (2010) [135]. Col. 2: Extended network using an extended
E-cell model fit to CA1 pyramidal neuron data. Col. 3: Extended network with external
stochastic synaptic input. Row 1: raster plot (for 80 excitatory and 20 inhibitory cells);
row 2: example E-cell activity; row 3: example I-cell activity; row 4: LFP; row 5: PSD.
(b) Summary properties of the oscillations generated in each network. Left: power of
the oscillations in the gamma frequency range; middle: fundamental frequency of the
oscillations; right: PSD at the fundamental frequency.

87



CHAPTER 7. INVESTIGATING THE IMPACT OF Aβ-RELATED CHANGES IN NEURONAL

ACTIVITY ON GAMMA FREQUENCY OSCILLATIONS

Figure 7.1 (continued) The total gamma power and frequency of the oscillations
were reduced when synaptic noise was added to the extended model (Student’s t-test,
***p<0.001). Means estimated by Monte Carlo simulations (n = 20), error bars indicate
SD.

investigations into the robustness of the behaviour as heterogeneity is introduced to the

synaptic strength distribution and to the cell populations. Combinations of these tests

are also used later in the chapter to check the robustness of the results generated during

the main investigations. Unless otherwise stated the total synaptic conductance between

two populations (EI, II or IE) was held constant and was distributed uniformly across the

synapses present.

1. Network size - Simulations were run for network sizes ranging from 10 to 2000 cells.

2. Network connectivity - The probability of a connection existing between two cells, p

was varied from 0.25 to 1.

3. Cell ratio - The E:I cell ratio was varied from 20:80 to 95:5 in a network of 100 cells.

4. Strength of stochastic synaptic input - The conductance of the spontaneous synaptic

transmission was varied from 0 to 0.2 mS/cm2.

5. Frequency of stochastic synaptic input - The frequency of spontaneous synaptic

transmission was varied from 5 to 40 Hz.

6. Stimulation current strength - The stimulation current strength was varied between

2.5 to 20 µA/cm2.

7. Non-uniform synaptic strength distribution - The synaptic strengths were drawn

from five gaussian distributions where the coefficient of variation was varied from 0.1

to 0.5 and the mean total synaptic conductance between two populations were held

at the original values (see Table C.2).

8. Cell Heterogeneity - The transient sodium channel conductance of the E-cell popula-

tion was drawn from three gaussian distributions where the coefficient of variation

was varied from 0.1 to 0.3 and the mean conductance was held at the original value of

48 mS cm2.

The OAT tests were carried out on both the all-to-all connected network and in a sparsely-

connected network (p = 0.5). Although a more thorough multi-factor sensitivity analysis
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might reveal particular sensitivity to some parameter selections, the tests carried out (results

described in the next section) do indicate that the gamma oscillations generated by the

network are robust to biologically reasonable changes in the general network settings. The

results of these robustness tests are presented and discussed in more detail below. In general,

only the summaries of the results generated through the Monte Carlo simulations are shown

(as in Figure 7.1b), except when there is a significant change in the oscillation properties

and examples of the network activity help to clarify the underlying behaviour.

7.3.2 Robustness Test Results

Network construction

Test 1: Network size

The EI network used in the main simulations was constructed of 100 cells with 80 excitatory

pyramidal neurons (E) and 20 inhibitory fast-spiking interneurons (I). This network size was

chosen as at smaller sizes the oscillations generated were less stable and further increasing

the network size did not significantly improve the performance of the network (Figure 7.2a)

but was associated with a non-linear increase in computational cost (Figure 7.2b).

Test 2: Network connectivity

The network was constructed as a randomly generated graph where a link between two

cells is determined by the probability of connectivity, p. In the main investigations the cells

were connected all-to-all (p = 1) as this simplification did not substantially alter the network

behaviour. The effect of increasing the probability of connectivity is shown in Figure 7.3.

As mentioned previously, the total network strength was maintained in each simulation by

proportionally decreasing the connection strengths as connections were added.

At low levels of network connectivity (p = 0.25) the entrainment of the cell firing was

low (see the raster plot in Figure 7.3a), which was associated with a smaller LFP (row 2)

and resulted in a larger variability in the frequency measured (Figure 7.3b:middle). As the

network connectivity increased, the cell firing became more synchronised which increased

the gamma power of the oscillations and lead to a decrease in the frequency as the stimulated

E-cells became more entrained (Figure 7.3b). By p = 0.75 the power and frequency of the

gamma oscillations generated had stabilised and further increasing the connectivity had no

impact on the oscillations generated (see Figure 7.3b).
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(b)

(a)

Figure 7.2 | The effect of increasing network size on network behaviour. The total
number of cells (with a 4:1 E:I ratio) was varied from 10 to 2000 cells in the all-to-all
(p = 1) and sparsely-connected (p = 0.5) EI networks. Number of cells are plotted on
a logarithmic scale. (a) Summary properties of the oscillations generated in the two
networks. As the network size increased, variability in the oscillation frequency reduced
in both networks (middle), with less variability in the all-to-all network. At network
sizes of ≥ 100 cells, the frequency plateaued as did the associated PSD (right) and the
total gamma power (left) (calculated from LFP subset of 50 cells). Means estimated by
Monte Carlo simulations (n = 20), error bars indicate SD. (b) The network simulation
time increased non-linearly as the network size increased.

Test 3: Cell Ratio

The 4:1 ratio of E to I cells was assumed as this is an often used approximation for the ratio of

glutamatergic to GABAergic neurons within the brain [23, 201]. The effect of altering the E:I

cell ratio is shown in Figure 7.4 with little change in the behaviour of the all-to-all connected

network in the biologically reasonable range of between 4:1 and 9:1 [185, 201]. Although less

stable, gamma oscillations were still generated within this range in the sparsely-connected

network, with a peak in the power of the oscillations at the lower ratio of 3:2 (Figure 3:left).
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Figure 7.3 | The effect of increasing network connectivity on network behaviour.
The probability of a connection between two cells (p) in the network was increased
from p = 0.25 to p = 1 whilst keeping the total synaptic conductance across the network
constant. (a) Columns 1 - 4 show examples of the activity generated at p = 0.25, 0.5,
0.75 and 1. Row 1: raster plot (for 80 excitatory and 20 inhibitory cells); row 2: LFP;
row 3: PSD. The coherence of the oscillations increased as the network became more
connected; at p = 0.25 connectivity (col. 1) the cell activity was not fully synchronised
but by p = 0.5 (col. 2) a clear gamma rhythm had emerged in the LFP.
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Figure 7.3 (continued) (b) Summary properties of the oscillations generated. The larger
frequency variability (middle) and low oscillation power (left) at p = 0.25 indicates low
network coherence. The total gamma power of the oscillations (left) and the peak PSD
(right) increased as connectivity increased, with the oscillation frequency stabilising
at p ≥ 0.5 (middle). Means estimated by Monte Carlo simulations (n = 20), error bars
indicate SD.

Figure 7.4 | The effect of altering the E:I cell ratio on network behaviour. Summary
properties of the oscillations generated when the ratio of E:I cells was varied from 20:80
to 95:5 in the all-to-all (p = 1) and sparsely-connected (p = 0.5) EI networks. Results
are plotted against the number of E-cells in the network, which was composed of 100
cells in total. Oscillations in the all-to-all connected network were comparable for E:I
cell ratios between 60:40 and 90:10, with little variation in the mean gamma power
(left), frequency (middle) or PSD at the fundamental frequency (right). In the sparsely
connected network although frequency remained relatively consistent, the power of
the oscillations peaked at 60:40 and deteriorated as the E:I cell ratio became more
imbalanced. Means estimated by Monte Carlo simulations (n = 20), error bars indicate
SD.

External Stimulation

Test 4: Noise Strength

The conductance of the synaptic noise (gnoise) input to the E and I-cells was set at 0.02 mS/cm2

for the main simulations, which was the same order of magnitude as the single synaptic

inputs within the network. The robustness of the model response to increasing the synaptic

noise, at a frequency of 20Hz is shown in Figure 7.5. As the synaptic noise was strengthened,

there was a significant decrease in the oscillation power accompanied by an increase in the

frequency variability at gnoise ≥ 0.08 mS/cm2 (see Figure 7.5a). This was the result of a loss

of coherence in the oscillations, as shown in the illustrative raster plots in Figure 7.5b. The
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Figure 7.5 | The effect of increasing the synaptic noise strength on network be-
haviour. The conductance of the stochastic excitatory synaptic input (gnoise) was
varied between 0 and 0.2 mS/cm2 in the all-to-all (p = 1) and sparsely-connected
(p = 0.5) EI networks. (a) Summary properties of the oscillations generated in the two
networks. Overall, in both networks, there was an increase in the frequency (middle)
but decrease in the gamma power (left) and PSD at the fundamental frequency (right)
as noise increased, indicating a loss of coherence prior to oscillation break down at
0.1 mS/cm2. Means estimated by Monte Carlo simulations (n = 20), error bars indicate
SD. 93
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Figure 7.5 (continued) (b) Examples of the activity generated in the all-to-all network
at 0.02 mS/cm2, the level used in the main simulations (column 1), at 0.06 mS/cm2

(column 2) and at 0.1 mS/cm2 (column 3). Row 1: raster plot (for 80 excitatory and
20 inhibitory cells); row 2: LFP; row 3: PSD. As the noise increased the oscillation
entrainment reduced and the frequency increased. By 0.1 mS/cm2 the oscillations were
lost with an associated drop in the PSD.

transition from gamma frequency oscillations to unsynchronised activity occurred between

gnoise = 0.06 and 0.08 mS/cm2, which notably is close to the input threshold required to

trigger a spike in the I-cell model (∼ 0.06 mS/cm2).

Test 5: Noise Frequency

The frequency of the synaptic noise, which was modelled as a poisson process, was set at

20Hz which falls within the range of activity measured in regions connected to the CA1 [45].

The sensitivity of the network behaviour to noise of frequencies between 5 and 40 Hz, at the

noise strength used in the main simulations (gstoch,e = gstoch,i = 0.02), is shown in Figure 7.6.

There was little variation in the gamma oscillations generated in either the sparse or fully

connected network as the frequency was altered.

Test 6: Stimulation Current Strength

In the main simulations, the stimulation current that was applied to the E-cells to generate

the gamma oscillations was set at 5 µA/cm2, which generated spiking in the pyramidal cells

at a frequency of ∼100 Hz. The dependence of the network response on the stimulation

current is shown in Figure 7.7. In the fully connected network, increasing the driving current

increased both the power and frequency of the oscillations, which remained within the

gamma range until the current surpassed 20 µA/cm2. However, the sparsely-connected

network was much more sensitive to the increased drive and oscillations broke down at

currents larger than 10 µA/cm2. Overall, this shows that the input current is important for

determining the initial frequency of the oscillations.

Network Homogeneity

Overall the properties of the networks used in the main simulation were homogeneous; all

cells in a population were the same and the synaptic strengths were uniformly distributed. In

initial investigations on the dependence of the network behaviour on these simplifications,

variability was added to the synapse strengths and cell properties to add heterogeneity to

the network.
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Figure 7.6 | The effect of increasing the synaptic noise frequency on network be-
haviour. Summary properties of the oscillations generated when the frequency of the
stochastic excitatory synaptic input was varied between 5 and 40 Hz in the all-to-all
(p = 1) and sparsely-connected (p = 0.5) EI networks. The gamma oscillations gen-
erated were generally consistent across the noise frequency range for both networks.
There was little variation in the mean gamma power (left), frequency (middle) or PSD
at the fundamental frequency (right), apart from a slight increase in the power and
variability at ≤ 10 Hz in the all-to-all connected network. Means estimated by Monte
Carlo simulations (n = 20), error bars indicate SD.

Figure 7.7 | The effect of altering the stimulation current on network behaviour.
Summary properties of the oscillations generated when the excitatory stimulation
current applied to the E-cells was varied between 2.5 and 20 µA/cm2 in the all-to-all
(p = 1) and sparsely-connected (p = 0.5) EI networks. The response in the two networks
was significantly different. The gamma power of the oscillations (left) was consistently
lower in the sparse network, where oscillations begun to break down at 10 µA/cm2, as
indicated by the increasing frequency variability (middle) and decreasing PSD (right). In
the all-to-all network the gamma power (left) and frequency (middle) of the oscillations
increased with stimulation current. The high PSD variability at ≥ 16µA/cm2 was a
result of detection of other harmonics in the FFT. Means estimated by Monte Carlo
simulations (n = 20), error bars indicate SD.
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Test 7: Synaptic strength distribution

Synaptic connections were represented using a simple kinetic model developed by Ermen-

trout and Kopell [66]. In the main simulations the synaptic conductance was uniformly

distributed across the connections present. To investigate how dependent the network

response was on this simplification, simulations were also run with normally distributed

synaptic strengths, with the total conductance across the network held constant as the coef-

ficient of variation was increased. The results of these simulations are shown in Figure 7.8.

There was little variation in the gamma oscillations generated in either the fully-connected

or the sparsely-connected network when the range of synaptic strengths was increased,

suggesting that the total strength of the excitatory and inhibitory conductances across the

network is a more determinant factor.

Test 8: Cell homogeneity

As an initial step towards investigating how dependent the network behaviour was on

homogeneous cell populations, simulations were run with variability incorporated into the

pyramidal cell excitability. This was achieved by drawing the conductance of the E-cells’

transient Na+-channels, gN aT , from three Gaussian distributions with increasing deviation

about the original mean value (48 mS/cm2). The results, presented in Figure 7.9, show

very little sensitivity to increasing the range of the E-cell excitability, which either suggests

that the E-cell excitability is not a determining factor (which is unlikely) or that it is the

population excitability that governs the response. The effect of cell heterogeneity could be

much more extensively investigated by adding variability to other properties of the E-cell

model and by adding similar heterogeneity to the I-cell population.
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Figure 7.8 | The effect of altering the synaptic strength distribution on network be-
haviour. Summary properties of the oscillations generated in the all-to-all (p = 1)
and sparsely-connected (p = 0.5) EI networks with synaptic conductances drawn from
gaussian distributions of equal means but with increasing coefficients of variation (CV).
Gamma frequency oscillations were maintained as synaptic strength variability was in-
creased. There was little change in the mean gamma power (left), frequency (middle) or
PSD at the fundamental frequency (right), apart from a slight increase in the frequency
of the oscillations in the sparse network. Means estimated by Monte Carlo simulations
(n = 20), error bars indicate SD.

Figure 7.9 | The effect of adding heterogeneity to the E-cell population on network
behaviour. Summary properties of the oscillations generated in the all-to-all (p = 1)
and sparsely-connected (p = 0.5) EI networks when the voltage-gated NaT channel
conductance (gNaT ) of each E-cell was drawn from gaussian distributions of equal
means but with increasing coefficients of variation (CV). Gamma frequency oscillations
were maintained in both networks as gNaT variability increased. The total gamma power
(left) and PSD at the fundamental frequency (right) of the two networks diverged, but
the frequency increased (≤ 5 Hz) in both cases (middle). Means estimated by Monte
Carlo simulations (n = 20), error bars indicate SD.
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7.4 Incorporating the Effects of Aβ

7.4.1 Altered Intrinsic Excitability

To investigate the impact of the altered PDAPP CA1 pyramidal cell properties on gamma

generation, the fitted WT pyramidal neuron model was replaced with the fitted PDAPP CA1

pyramidal neuron model from Chapter 6. In comparison to the WT cells, the PDAPP-fitted

cells had a reduced AP width and a faster firing rate during current injections as found

experimentally [127]. Monte Carlo simulations were run on the base network (WT) and the

PDAPP-type network (PDAPP) to compare the gamma activity generated. In Figure 7.10 the

behaviour of the WT and PDAPP networks are compared. The gamma oscillations generated

in the PDAPP network were significantly faster than the oscillations generated in the WT

network but there was no statistically detectable difference in the total gamma power of the

oscillations or the PSD at the fundamental frequency.

The same OAT tests as run on the WT model were run on the PDAPP network to inves-

tigate whether the difference in the response of the WT and PDAPP network was robust

to changes in those network properties. Overall the increase in the frequency of the os-

cillations in the PDAPP model was a consistent result across all tests, whereas there was

inconsistent evidence of a decrease in the power of the oscillations generated in the PDAPP

model. In Figure 7.11 the results from those tests that are most pertinent to the changes

in the E-cell parameters are presented. Specifically, the response to changes in the E:I cell

ratio (Fig. 7.11a), the response to changes in the stimulation current applied to the E-cells

(Fig. 7.11b) and the response when heterogeneity in the E-cell population is incorporated by

drawing the NaT conductances from a gaussian distribution (Fig. 7.11c). Of note is the diver-

gence of the gamma power generated by the two models when heterogeneity was increased

within the E-cell population and when the stimulation current was altered. However, as this

was not evident in the main simulation or across the other tests, drawing any conclusions

from this is not possible without further investigation.

Further simulations were run to compare the behaviour of the two networks when

excitatory synaptic connections were removed as this is a characteristic feature of AD that is

observed in the PDAPP-mouse model [41]. The response of the networks to a reduction of

between 0 and 50% in the excitatory connections is shown in Figure 7.12. Interestingly the

frequency of the oscillations generated in the PDAPP network were stable as synapses were

removed whereas the frequency in the WT network, although slower throughout, increased

as excitatory connections reduced. The peak PSD, measured at the fundamental frequency,

98



7.4. INCORPORATING THE EFFECTS OF Aβ

(a)

(b)

Figure 7.10 | Comparison of the gamma oscillations generated in the WT and
PDAPP networks. The same stimulation current was used to drive gamma oscillations
in two versions of the EI network, WT and PDAPP, where the E-cells were parameterised
with data from CA1 pyramidal neurons in WT mice and PDAPP-transgenic mice respec-
tively. (a) Examples of the activity generated in the WT (Column 1) and PDAPP network
(Column 2). Row 1: raster plot (for 80 excitatory and 20 inhibitory cells); row 2: example
E-cell activity; row 3: example I-cell activity; row 4: LFP; row 5: PSD. Firing frequency is
visibly faster in the raster plot and PSD example from the PDAPP network simulations,
as is a slight increase in the amplitude of the E-cell spikes. (b) Summary properties of
the oscillations generated in each network. Left: power of the oscillations in the gamma
frequency range; middle: fundamental frequency of the oscillations; right: PSD at the
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Figure 7.10 (continued) fundamental frequency. There was no significant difference in
the gamma power of the oscillations or the PSD at the fundamental frequency but there
was a significant increase in the frequency of the oscillations in the PDAPP network
(p<0.001, Student’s t-test). Means estimated by Monte Carlo simulations (n = 20), error
bars indicate SD.
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Figure 7.11 | The robustness of the PDAPP vs. WT network response to alterations
in the network properties. Summary properties of the oscillations generated in the
WT and PDAPP networks when the network construction was varied and heterogeneity
was introduced to the models. (a) The ratio of E:I cells was varied from 20:80 to 95:5. (b)
The stimulation current applied to the E-cells was varied from 2.5 to 10 µA/cm2.
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Figure 7.11 (continued) (c) The voltage-gated NaT channel conductance (gNaT ) of each
E-cell was drawn from gaussian distributions of equal means but with increasing co-
efficients of variation (CV). Left: power of the oscillations in the gamma frequency
range; middle: fundamental frequency of the oscillations; right: PSD at the fundamen-
tal frequency. The frequency of the oscillations were consistently faster in the PDAPP
network but the gamma power and peak PSD of the oscillations were inconsistently
lower. WT and PDAPP results compared using a Student’s T-test (*p<0.05; **p<0.01).
Means estimated by Monte Carlo simulations (n = 20), error bars indicate SD.

indicated that the oscillations in the PDAPP network were lower than in the WT network as

synapse loss increased. However, the total gamma power of the oscillations was not found

to be statistically different in the two models.

**

p<0.01

******
**

Figure 7.12 | The effect of excitatory synapse loss on the WT and PDAPP network
behaviour. Summary properties of the oscillations generated in the WT and PDAPP
networks when the number of excitatory synaptic connections were reduced by up to
50%. The total excitatory synaptic conductance across the network was kept constant.
Left: power of the oscillations in the gamma frequency range; middle: fundamental
frequency of the oscillations; right: PSD at the fundamental frequency. As synapse
loss increased the oscillation frequency in the WT-network simulations increased but
remained stable in the PDAPP network. The PSD at the fundamental frequency became
significantly different in the two networks when synapse loss reached 20%. There was
predominantly no change in the total gamma power of the oscillations. WT and PDAPP
results compared using a Student’s T-test (*p<0.05; **p<0.01). Means estimated by
Monte Carlo simulations (n = 20), error bars indicate SD.
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7.4.2 Altered Synaptic Strength

In Chapter 5 it was suggested that the enhanced synaptic transmission at CA1 pyramidal

neurons following acute Aβ treatment (results presented in Chapter 4) could be simulated

in a simple kinetic model by increasing the synaptic conductance by 50%. The synaptic

response, which is believed to be a post-synaptic AMPAR-mediated response [248], was

associated with excitatory synapses in pyramidal neurons but it is conjectured here that

Aβ could mediate the same effect at the excitatory AMPAR-mediated synapses of other

cell-types. The confirmation or invalidation of this hypothesis requires further experimental

investigation.

The impact of altering the excitatory synaptic conductance on the oscillations generated

in the WT network, whilst keeping the other parameters fixed, is shown in Figure 7.13.

Overall, strengthening the excitatory synaptic input to the I-cells increased the power of

the oscillations and the PSD at the fundamental frequency but had little impact on the

oscillation frequency at gE I > 0.6 (see Figure 7.13a). As the example raster plot shows in

Figure 7.13b, at gE I < 0.4 the network behaviour was not synchronised, which explains the

lower gamma power and high variability in the oscillation frequency at these levels. By

gE I ≥ 1, the excitatory drive to the I-cells begins to evoke rapid spikes which is outside the

desired network behaviour, that is that the cell firing is synchronised and occurs at gamma

frequency or less, limiting the suitable range of conductances within this network set-up to

0.4 < gE I < 1.

To investigate how Aβ-induced enhanced transmission at excitatory post-synaptic

synapses might impact on the generation of gamma frequency oscillations in the CA1

region, network simulations were run where the synaptic conductance of the excitatory

E to I-cell synapses (gE I ) was increased by 50%. Figure 7.14 compares the behaviour of the

original WT network with gE I = 0.5 mS/cm2 with the behaviour when gE I = 0.75 mS/cm2.

With this parameter combination there was a significant increase in the gamma power,

frequency and associated PSD of the oscillations. The monotonic increase in power as gE I is

strengthened (shown in Figure 7.13) suggests that the increase in the oscillation power was

not dependent on the initial conductance parameterisation, although this does not mean

that at other network settings this dependence could change. The frequency result is likely

due to the fact that the oscillations were less stable at gE I = 0.5 indicating this result is more

dependent on the initial parameter selection.
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(a)

(b)

Figure 7.13 | The effect of altering the excitatory synaptic conductance on network
behaviour. The excitatory synaptic conductance (gE I ) was strengthened from 0.2 to
2 mS/cm2 in the WT network. (a) Summary properties of the oscillations generated. Left:
power of the oscillations in the gamma frequency range; middle: fundamental frequency
of the oscillations; right: PSD at the fundamental frequency. The gamma power and
peak PSD increased as gE I increased. The frequency stabilised at gE I > 0.4 mS/cm2.
Results analysed using one-way ANOVA (*p<0.05; **p<0.01). Means estimated by Monte
Carlo simulations (n = 20), error bars indicate SD. (b) Columns 1 - 3 show examples
of the activity generated at gE I = 0.2, 0.5 (the strength used in the main simulations)
and 1 mS/cm2. Row 1: raster plot (for 80 excitatory and 20 inhibitory cells); row 2:
LFP; row 3: PSD. When gE I was too low network activity was not coherent (col. 1). By
gE I = 1 mS/cm2 the I-cells began to produce pairs of rapid spikes (see raster plot).
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(a)

(b)

p<0.01 p<0.01p<0.01

Figure 7.14 | Comparison of the gamma oscillations generated when the excitatory
synaptic conductance is increased by 50%. Gamma oscillations were generated in
the WT network with the excitatory synaptic conductance (gE I ) at 0.5 and 0.75 mS/cm2,
the original network value and the 50% increase suggested from acute Aβ-treatment
data. (a) Examples of the activity generated in the WT network with gE I = 0.5 (Column
1) and gE I = 0.75 (Column 2). Row 1: raster plot (for 80 excitatory and 20 inhibitory
cells); row 2: example E-cell activity; row 3: example I-cell activity; row 4: LFP; row 5:
PSD. (b) Summary properties of the oscillations generated in each network version.
Left: power of the oscillations in the gamma frequency range; middle: fundamental
frequency of the oscillations; right: PSD at the fundamental frequency.
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Figure 7.14 (continued) There was a significant increase in all three measures of the
simulated gamma oscillations when the excitatory synaptic conductance to the I-cells
was increased. Results compared using a Student’s T-test. Means estimated by Monte
Carlo simulations (n = 20), error bars indicate SD.

The same OAT tests as run on the original WT model were run when gE I was increased

by 50% to investigate whether the change in the oscillations were robust to changes in those

network properties. Overall the increase in the gamma power at increased gE I was consistent

across all tests whereas there was inconsistent evidence of an increase in the oscillation

frequency and the associated peak PSD. In Figure 7.15, the results from those tests that are

most pertinent to the changes in the synapse parameters are presented. Specifically, the

response to changes in the E:I cell ratio (Fig. 7.15a), the response to changes in the probability

of a synaptic connection (Fig. 7.15b) and the response when heterogeneity is introduced to

the synaptic strengths by drawing the conductances from a gaussian distribution (Fig 7.15c).

In these examples the frequency was generally higher when the excitatory conductance

was strengthened but as previously stated, this result is dependent on the initial parameter

selection even within this network set-up.

So far the network behaviour has been investigated when all of the excitatory synapses

have been increased simultaneously. However, given that the enhanced synaptic trans-

mission was measured following acute Aβ treatment and that it is unlikely that all cells

would simultaneously be exposed to pathogenic Aβ-levels, it is interesting to consider what

fraction of the cells have to be affected to produce changes in the oscillations. The result

of progressively increasing the fraction of affected cells, which have a 50% increase in the

conductance of their excitatory synapses, is shown in Figure 7.16. There was a progressive

increase in the gamma power of the oscillations as the fraction of affected synapses was

increased. There was also a small statistically significant increase in the oscillation frequency

when only 25% of the network was affected but no subsequent change in the frequency as

more synapses were affected. There was no significant variation measured in the PSD at the

fundamental frequency (as measured with one-way ANOVA and post-hoc unpaired students

t-tests).
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Figure 7.15 | Testing the robustness of the network response to increased excitatory
synaptic conductance. Summary properties of the oscillations generated in the WT
network with gE I = 0.5 and gE I = 0.75 mS/cm2 when: (a) the ratio of E:I cells was varied
from 20:80 to 95:5 (results are plotted against the number of E-cells in the network,
which was composed of 100 cells in total); (b) the probability of a connection between
two cells was increased from 0.25 to 1 whilst keeping the total synaptic conductance
across the network constant; (c) the synaptic conductances were drawn from gaussian
distributions of equal means but with increasing coefficients of variation (CV). Left:
power of the oscillations in the gamma frequency range; middle: fundamental frequency
of the oscillations; right: PSD at the fundamental frequency. The increase in the total
power and frequency of the oscillations at gE I = 0.75 mS/cm2 was insensitive to changes
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Figure 7.15 (continued) in cell ratio or synaptic heterogeneity and was maintained
at connectivity levels >50%. The effect on peak PSD was inconsistent across all tests.
Results compared using a Student’s T-test (*p<0.05; **p<0.01). Means estimated by
Monte Carlo simulations (n = 20), error bars indicate SD.

n.s.

*

n.s.

p<0.01

Figure 7.16 | The effect of altering the fraction of strengthened excitatory synapses
on network behaviour. Summary properties of the oscillations generated in the WT
network when the fraction of excitatory synapses strengthened from gE I = 0.5 to gE I =
0.75 mS/cm2, is increased from 0 to 100%. Left: power of the oscillations in the gamma
frequency range; middle: fundamental frequency of the oscillations; right: PSD at the
fundamental frequency. Increasing the fraction of strengthened synapses increased
the gamma power and caused a small increase in the oscillation frequency, which then
remained stable, when 25% were affected. There was no change in the associated peak
PSD. Results analysed using one-way ANOVA (*p<0.05; **p<0.01). Means estimated by
Monte Carlo simulations (n = 20), error bars indicate SD.

7.5 Discussion

The well-established EI network model was improved by adding the more detailed data-

informed CA1 neuron model and then used to simulate gamma frequency oscillations. It

was found that the 50% increase in the fast-excitatory synaptic conductance resulted in a

statistically significant increase in the total gamma power of the oscillations across all tests.

There was inconsistent evidence of an increase in the frequency of the oscillations.

The incorporation of the fitted PDAPP neuron into the network robustly increased the

frequency of the gamma oscillations. Given that gamma oscillations have an important role

in memory function it would be interesting to further investigate if this increase in gamma

frequency could alter the theta-nested gamma in an E-I-O network (where O-cells are oriens

lacunosum-moleculare (O-LM) cells) [135].
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DISCUSSION

The use of computational modelling tools alongside experimental work is essential for

furthering understanding of the complex processes that underlie Alzheimer’s Disease. In

this thesis, multiscale biophysical models informed by experimental observations were

used to further investigate the functional impact of Aβ over-expression, one of the key

areas of interest in AD research. Enhanced levels of Aβ have been associated with synaptic

dysfunction, altered neuronal intrinsic excitability and altered gamma frequency activity

within the CA1 region of the hippocampus, a focal point of AD-related neurodegeneration.

By using a combination of synapse, cellular and network level models it was possible to

investigate both the cause and functional consequence of experimentally-observed Aβ-

related changes in synaptic and cellular level activity in CA1 pyramidal neurons.

In Chapters 4 and 5 electrophysiology experiments and computational modelling were

used to probe the acute effect of amyloid-beta on synaptic transmission. Miniature EPSC

recordings in CA1 neurons following acute intracellular Aβ-treatment showed a rapid in-

crease in the strength of AMPAR-mediated synaptic transmission, corroborating previous

results [248]. As mEPSCs reflect quantal transmission they are well-suited to modelling. A

kinetic synapse model was then fit to the mEPSCs data to quantify what synaptic changes

could account for the increased transmission. It was found that increasing the synaptic

conductance of the model by 50% could account for the increase in the mEPSC amplitude

distribution. In Chapter 7, by incorporating this synaptic result in a well-established E-I

network model that generates gamma frequency activity, it was shown that this increased the
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total gamma power of the oscillations with no significant change in the gamma oscillation

frequency.

An important avenue of investigation following on from this work is to consider the

impact of calcium-permeable AMPAR (CP-AMPAR) expression, as it was suggested that they

underlie the increase in synaptic transmission. Given the importance of Ca+ dysregulation

in AD pathology, it would be of interest to investigate how an increase in the calcium per-

meability of the cell membrane could impact the synapse, cell and network level behaviour

(discussed in more detail in Section 5.3).

In Chapter 5 a single-compartment pyramidal neuron model was used to suggest what

sub-cellular alterations may underlie the altered excitability of CA1 pyramidal neurons from

a PDAPP transgenic mouse model which over-express Aβ. The model was parameterised

using the data and then extended to include a second transient sodium channel to make

the model more biologically realistic. It was found that the altered excitability properties

could be achieved by altering the ion channel conductances of the NaT and KDR channel

and the kinetics of the KDR channel, in line with other experimental observations [29, 228].

By incorporating the PDAPP-fitted pyramidal neuron model in an E-I network model in

Chapter 7, it was shown that the changes in the intrinsic excitability of the PDAPP neuron

caused a robust increase in the gamma oscillation frequency in the PDAPP network.

The next step in this work is to fit similar single-compartment neuronal models to

the excitability data recorded in CA1 oriens lacunosum-moleculare (O-LM) cells and fast-

spiking interneurons from PDAPP mice (currently unpublished data). The preliminary

stages of this work have already begun. The aim is to then incorporate these fitted cell

models into an E-I-O network model that is capable of generating theta-nested gamma,

which is also functionally important in memory processing in the hippocampus. Using this

model it would be possible to investigate how the altered excitability of the different cell

types contributes to network-level dysfunction or if the changes occur in order to maintain

network level activity homeostasis.

Overall, in this thesis models have been used to investigate cross-scale impacts of Aβ, at

a single synapse to the activity across one hundred synaptically connected cells. By using

the models, more information was gleaned from the data than was possible experimentally.

When addressing a disorder as complex as AD it is important to use all tools available. Math-

ematical models are ideal for the study of complex systems; their use in a multidisciplinary

approach is essential for driving forward understanding of AD pathology.
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Figure A.1 | The average seal resistance recorded during the mEPSC experi-
ments. Throughout the mEPSC recordings the integrity of the patch was monitored.
The plot shows the average seal resistance measured during the control and Aβ-treated
mEPSC recordings. Only experiments with a series resistance (RS) below 20 MΩ and
less than 10% variability in RS throughout the experiment were used.
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Figure A.2 | mEPSC half-width and decay time correlation. The mEPSC half-width
and decay times were highly correlated (R = 0.9) with the same correlation in both the
control and Aβ-treated cells, therefore when carrying out correlation analysis and in
the model we focused on the decay time.

Figure A.3 | Network model neurotransmitter release. The neurotransmitter pulse
generated by a pre-synaptic AP in the network model.
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The Gradient Descent Method

The gradient descent method, also known as the method of steepest descent, is an optimisa-

tion algorithm that finds the nearest local minima (xmin) of a given function ( f (x)) using

the gradient of the function ( f ′(x)). Starting from an initial parameter (x0), the minima is

reached by iteratively taking steps (x0 → x1, x1 → x2 etc.) in the negative (downhill) direc-

tion of the functions gradient (so f (x1) < f (x0), f (x2) < f (x1) and so on) until a fixed point

(within some tolerance level ε) is reached. On each iteration the parameter value is updated

using the following form:

xi = xi−1 −α f ′(xi−1) (B.1)

where the size of each step is determined by the learning rate, α, and the gradient of the

function.

The example above is of a function with a single variable but the gradient descent method

can also be used to find the local minima of a function with multiple variables (e.g. f (x, y, z)).

In this case the partial derivatives of the function are calculated simultaneously to produce

a gradient vector that is used to update the variables in the next iteration. On each iteration

the following calculations are used to update the parameter values.

xi = xi−1 −α f ′
x(xi−1, yi−1, zi−1) (B.2)

yi = yi−1 −α f ′
y (xi−1, yi−1, zi−1) (B.3)

zi = zi−1 −α f ′
z(xi−1, yi−1, zi−1) (B.4)
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To ensure that the gradient descent algorithm converges within a reasonable time it is

important that the learning rate is set to an appropriate value. If the iteration steps are too

large they can overshoot the minima and potentially diverge, whereas if they are too small a

very large number of steps may be necessary to reach convergence. The performance of the

algorithm is also improved when the parameter values are roughly within the same range. A

rule of thumb is to scale the parameters (θ1,θ2...θn) so that −1 ≥ θ1...n ≥ 1.

Model fitting using the gradient descent method

The gradient descent method can be used to optimise the fit of a predefined model to a data

set. The aim is to identify the parameter selection that provides the best fit to the data. To

achieve this the gradient descent algorithm is used to minimise a cost function J , which is

a measure of the goodness of fit of the model to the data. The value of the cost function is

dependent on the parameter values used in the model J (θ1...n).

In our case we used least squares regression to fit the synapse model to the mEPSC traces.

In this approach the aim is to minimise the mean squared error (MSE), therefore the MSE

was used as the cost function in the gradient descent algorithm.

J (θ1...n) =
1

m

m∑
i=1

(Y i − Ŷ i )2 (B.5)

where Y i is the model output and Ŷ i the expected value from the data.

There are many different optimisation algorithms that can be used for data fitting, with

the gradient descent method being one of the more simple approaches. In comparison to

the more sophisticated optimisation algorithms (e.g. conjugate gradient descent or BFGS

algorithms) the gradient descent method is slower to converge, requiring more iterations.

However, for our purposes the computational speed of gradient descent was acceptable, with

a single trace fitting taking less than 1 minute. A more pertinent limitation of the gradient

descent method is that it only finds the nearest local minima, which is not necessarily the

global minimum of the function. However, as we based our initial starting parameters on

pre-established biological measurements and the purpose was not to produce accurate

measurements of synaptic properties, this was not considered to be a significant problem

and consequently the gradient descent method was deemed sufficient for the purpose of

this work.

114



A
P

P
E

N
D

I
X

C
APPENDIX C

Table C.1: Initial AMPAR parameters fitted to CA3 EPSCs from [61]

Property Variable Unit Value
Reversal Potential E mV 0
Max. Transmitter Concentration CT mM 1
Transmitter Pulse Duration tx ms 1
Conductance g mS/cm2 1
Binding Rate α ms−1mM−1 1.1
Unbinding Rate β ms−1 0.19

Table C.2: EI Network properties. Parameters generally match those in [135] with altered
parameters written in bold.

Property Variable Unit Value
Number of E-cells NE - 80
Number of I-cells NI - 20
Connection probability p - 1
Total E-I synaptic conductance gEI mS/cm2 2.8
Total I-I synaptic conductance gII mS/cm2 0.5
Total I-E synaptic conductance gIE mS/cm2 0.5
Stimulation Current Idet µA/cm2 5
Stochastic synaptic conductance gstoch mS/cm2 0.02
Stochastic synaptic frequency fstoch Hz 20
Stochastic synaptic decay time τstoch,E ms−1 3
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