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Abstract 
 
Bread wheat is an important food source whose low genetic diversity has historically been supplemented with 
introgressed sequences from a range of different wild grasses. The 1RS/1BL introgression derived from rye is a 
particularly prevalent introgression that anecdotally provides resistance to several fungal pathogens. However 
little is known about the expression of these genes and how they behave once introduced into a wheat genetic 
background, as well as what potential pathways they may be implicated in. To understand this, the transcriptome 
of various wheat cultivars were studied using an RNA-seq based workflow. Publicly-available RNAseq data, 
representing a global sample of 38 different varieties, were collated and a subset analysed using a modified 
RNAseq pipeline to dissect 1RS/1BL expression. As expected, varieties containing the 1RS/1BL introgression 
showed an upregulation of rye genes and a downregulation of 1B genes, evident of (possible) 1RS introduction 
and 1BL removal. However these rye genes were expressed at a much lower level relative to wheat genes, which 
may indicate that these genes are being suppressed, perhaps through homologous co-suppression or by association 
to nearby transposons. The functional analyses also identified several potential mechanisms by which the 
1RS/1BL’s documented disease resistance properties may be realised: the use of NBS-LRR receptors and/or a 
variant jasmonate signalling pathway are possibilities. Overall the study of the 1RS/1BL introgression is able to 
glean some important generalisations on the use of introgressions, notably that translocated arms should be treated 
as heterogeneous collections of diverse genes with dynamic expression that may be much lower in a new crop 
background. Further research, like a similarly designed experimental study, will help fully determine how useful 
this introgression will be for wheat cultivars, especially its disease resistance properties that will be increasingly 
important in a future where crop productivity is likely to be under high threat.  
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Covid-19 Statement 
 
The original aim of this project was to study the expression of the 1RS/1BL introgression in wheat using both 
Illumina data and MinION data. The latter would have been generated by growing and sequencing select wheat 
cultivars in laboratory facilities during March/April 2020. As a result of the coronavirus pandemic and lockdown 
policies during this time sequencing could not go ahead (though plants were grown), and thus this data was not 
available for analysis and incorporation into this study. Laboratory activities that did not go ahead include RNA 
extraction, sequencing and library preparation. 
 
If the plans for sequencing had gone ahead an extra 12 Gb of sequence information would have been obtained for 
analysis. This would have supplemented the approximately 190 Gb of sequence data that was compiled from 
online databases. Proportionally this is not a huge loss in terms of raw sequence information but this MinION data 
would have been able to increase the scope of my research project in several ways. Firstly it would have provided 
RNAseq data on eight extra wheat varieties and two rye varieties which were not already represented in the 
Illumina data. Having extra varieties to analyse would therefore have made the results of this study more 
representative of the larger wheat germplasm, and may have improved the quality of the results. Furthermore 
information on rye varieties would then be available and it would have been possible to study whether or not 
expression levels change when rye genes are moved from a rye and into a wheat genetic background. Secondly 
the long reads provided by MinION sequencing would have helped to clarify some results. For example, some 
observed results may have been due to mis-mapping and due to the better alignments allowed for by longer reads 
this would have been easier to determine. Thirdly the inclusion of MinION data would have allowed me to explore 
MinION data more generally. This would have been an exciting opportunity to discuss how this technology could 
be applied for transcriptomics and crop research, both of which are not well-represented in current uses of MinION 
sequencing. Overall the limitations caused by the pandemic have reduced the breadth of discussion that was 
originally intended. However the accessibility of online information has meant that the fundamentals of my 
analysis and project have remained unchanged.
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1 Introduction 

1.1 A Primer on Wheat 

The ‘big three’ cereal crops: bread wheat (Triticum aestivum), rice (Oryza sativa, Oryza glaberrima) and maize 

(Zea mays) provide over half of the calories consumed by humans worldwide, reflecting their sizeable 

contributions to the global food supply (FAOSTAT, 2020). Out of the three, wheat is the most widely cultivated 

and occupies the largest amount of land area of any crop plant (FAOSTAT, 2020). This popularity is due to a 

unique syndrome of characteristics that the plant possesses (Shewry, 2009), which reflect useful features of wheat 

that make it a prime choice for cultivation as well as biological qualities of its grain that make it ideal as a food 

source. For example it exhibits a great deal of adaptability and environmental resilience that has allowed it to 

prosper in a wide range of environments, from as far north as Finland to as far south as Argentina (Lantican, 

Dubin and Morris, 2005). Wheat also boasts a high yield potential: under optimum conditions wheat can be 

harvested at yields as high as 9 tonnes ha-1 (Lobell, Cassman and Field, 2009). However what truly sets it out 

from its fellow cereals is its grain. Like the plant itself, the grain is flexible in that it can be processed to make a 

wide variety of edible end-products like bread and pasta which are extremely adaptable foodstuffs in their own 

right. The flexibility of wheat as a culinary item can be attributed to characteristics of grain content, as well as the 

variety of ways in which the wheat grain can be manipulated at different stages of food processing. Post-harvest 

grains of different varieties exhibit varying levels of hardness, based on the structural properties of a protein 

known as friabilin  (Giroux and Morris, 1998). This results in textural variation in flours with different applications 

for harder grains (bread) compared to softer ones (cakes). Once flour is processed into dough, wheat exhibits a 

set of unique physical properties: viscosity, plasticity and elasticity (Wieser, 2007). These fundamental properties 

of wheat are derived from its high quantities of insoluble gluten proteins (glutenin and gliadin) which, upon 

contact with water, form a proteinaceous network that is extensible yet elastic (Wieser, 2007). The unique 

viscoelastic characteristics conferred by glutens can explain wheat’s global popularity; by being malleable wheat 

dough can be manipulated into a variety of shapes and forms to create structure and volume to cooked goods, 

facilitating its incorporation into a wide diversity of end-products and therefore cultures (Wieser, 2007; Shewry, 

2009). With wheat’s sheer flexibility, in terms of where and when it can be grown and the potential applications 

of its grain, combined with its unique physical properties, it is no wonder why it is essentially ubiquitous in all 

kinds of diets. 

 

As one of the most nutritionally valuable and widespread crops in the world, wheat must be safeguarded against 

decreases to its yield. This is threatened by external factors in the current world context including climate change, 

economic instability and the limited availability of arable land. In addition the global population is continuing to 

grow rapidly, with a projected rise from 7.3 billion people in 2015 to 8.5 billion by 2030, with large implications 

for world food security (UN, 2015). Even in recent years around 9% of the world was undernourished (FAO, 

2020), and this therefore represents an issue that needs to be addressed immediately. It is not enough to maintain 

wheat productivity – it needs to be improved too. Targets for cereal production require yield increases of over 

40% (which represent an increase of almost a billion tonnes per annum) within the next few decades to meet 

future demands (FAO, 2009) with the caveat that if substantial progress has not been made by 2030 then catching 

up may not be possible (Rothamsted, 2017). 
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Despite its importance and urgency, research on wheat has lagged in comparison to other major crops. This can 

be attributed to aspects of its genetics. For example, wheat has a very complex genome and this complexity has 

impeded the development of genomic resources, like a reference genome, that would help accelerate its study. A 

draft reference was generated for rice in 2002 (Goff et al., 2002) and maize in 2009 (Schnable et al., 2009) but 

one for wheat was not developed until 2012 (Brenchley et al., 2012). A reference genome is a whole genome 

sequence constructed from one or more individuals of a species and represents a standard against which other 

genetic sequences can be compared (Ballouz, Dobin and Gillis, 2019). Reference genomes often mark a milestone 

in the research of an organism, from which rapid jumps in knowledge can be made, and many different research 

consortia exist or have existed with the singular aim of sequencing whole genomes, like the 100,000 Genomes 

Project and even the Earth BioGenome Project (Lewin et al., 2018). They are invaluable research tools as they 

allow important inferences to be made: genes can be annotated and located, SNPs identified and gene expression 

networks elucidated (Ballouz, Dobin and Gillis, 2019). In addition they allow for important genomic parameters 

like gene number, gene family copy number and transposon content to be determined, which can glean information 

on the evolution of a species’ genome via comparative genomics. Reference genomes also accelerate the speed of 

resequencing and further genome assembly by providing a scaffold for reads to map to (Ballouz, Dobin and Gillis, 

2019), allowing individual variation to be catalogued and facilitating population genomic studies. 

 

The reasons for wheat’s complexity and for the delay in developing a reference genome is two-fold: genome size 

and polyploidy, each posing their own problems. Where rice and maize are diploids with genome sizes of 0.39 

Gb (IRGSP, 2005) and 2.30Gb (Schnable et al., 2009) respectively, wheat is a polyploid with an expansive 17 Gb 

genome (IWGSC et al., 2018). Such a large genome would have been unfeasible, in terms of both time and money, 

to sequence using the technology available in the 2000s. This posed a major problem previously but recent jumps 

in technology, especially in improvements to throughput, have made it possible to sequence such large genome 

sizes (van Dijk et al., 2014). 

 

The second problem is that of polyploidy. To understand this problem fully one must consider the evolutionary 

history of wheat. Modern bread wheat is a polyploid, but more specifically an allohexaploid: it has six sets of 

chromosomes (-hexaploid) derived from different progenitor species (allo-) (Comai, 2005), which are sub-divided 

into three diploid sub-genomes AABBDD (Gustafson et al., 2009). This is the result of two distinct rounds of 

hybridisation between the progenitor species of modern bread wheat: wild wheat species and wild grasses known 

as goatgrasses (Smith et al., 2009). The first occurred between Triticum urartu (AA, 7N) and Aegilops speltoides 

(BB, 7N) which gave rise to tetraploid emmer wheat Triticum turgidum (AABB, 14N) after a chromosome 

doubling event that made it fertile (Smith et al., 2009). The second occurred between the resultant emmer and 

another goatgrass Aegilops tauschii (DD, 7N) giving rise to modern bread wheat after another round of 

chromosome doubling (Smith et al., 2009). The result was a wheat species with a huge genome organised into 

twenty one pairs of chromosomes with seven pairs per sub-genomes (IWGSC et al., 2018). As its genome is 

organised into six constituent sets of chromosomes derived from related species, problems arise with accurately 

identifying genes. All three progenitor species of wheat were close relatives of one another and so genes exist as 

multiple, sequence-similar copies across the sub-genomes, known as homoeoalleles/homoeologs – a property 

known as homoeology. Homoeoalleles can share sequence similarities of 97% and over with one another (Uauy, 
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2017) and so their presence makes it difficult to determine which sub-genome a particular copy is derived from, 

which poses a computational problem for genome assembly. This is further compounded by the fact that the wheat 

genome consists of over 80% repetitive elements (Brenchley et al., 2012; IWGSC et al., 2018). These repetitive 

sequences again make it difficult to assemble reads together. Usually one can rely on synteny – where gene order 

is conserved across a taxon – among grass species (Feuillet and Keller, 2002) to help with determining where to 

put which reads, but gene order has been shuffled in certain chromosomal locations in wheat (Langridge, 2012). 

Further down the line, homoeoalleles also obscure the identification of true SNPs, as variants exist between sub-

genomes (homoeologous SNPs) it becomes problematic to distinguish these from variants between different 

varieties (varietal SNPs), and only the latter are informative for marker-assisted selection (Winfield et al., 2012). 

The problem with assembling reads also extends to mapping reads: homoeoalleles make it difficult to 

unambiguously align transcripts to certain regions to quantify gene expression (Kyriakidou et al., 2018) and this 

can have important effects on RNAseq studies such as this which require accurate mapping. In previous years, 

and to some extent in the present, the wheat genome has been problematic to research but with recent 

advancements in sequencing technology it has become much more tractable for genomic study. 

 

Another of wheat’s genetic problems is that its germplasm exhibits low genetic diversity. This is problematic as 

sufficient variation is required to source alleles that can be used for survival and improvement. For example, 

growing crops of similar genotypes make them extremely susceptible to decimation by pathogens: an epidemic 

caused by the fungus Helminthosporium maydis destroyed almost half of all maize crops in southern US in 1970, 

an event facilitated by the crop’s narrow genetic base (Esquinas-Alcázar, 2005). Using cultivars which all have 

similar genotypes therefore make them vulnerable to any perturbations in abiotic or biotic conditions, with 

potentially devastating consequences to yield. This remains true for wheat which has especially low genetic 

diversity that can be attributed to a series of successive population bottlenecks. Crops in general suffer reduced 

genetic variation as a result of domestication: only a small proportion of wild individuals become domesticated, 

reducing effective population size and genetic diversity (Haudry et al., 2007). However this seems to be more 

pronounced in wheat. Using nucleotide diversity as a measure, most crops exhibit 30% lower genetic diversity 

than their wild counterparts but bread wheat shows a much greater decrease of 69% (Haudry et al., 2007). This 

could partially be due to differences in effective population sizes: tetraploid durum wheat (Triticum durum) 

showed an even lower decrease in diversity (84%) than bread wheat, and the former appears to have experienced 

a more intense population bottleneck, with a smaller resulting effective population size, than the latter (Haudry et 

al., 2007). Polyploidy has also contributed to lowered genetic variation, acting as another bottleneck in wheat’s 

evolutionary history. Only a relatively small number of individual progenitor plants would have undergone the 

polyploidisation events that generate hexaploid wheat. This created an effective bottleneck with these new 

polyploid wheats being unable to interbreed freely with diploid progenitors, preventing gene flow and therefore 

limiting genetic variation to this new founding population (Willis and McElwain, 2013). Polyploidisation involved 

two rounds of hybridisation and so this would have involved at least two rounds of bottlenecks. Further losses in 

genetic diversity are also experienced in the way crops are cultivated. Crops are often bred to generate varieties 

that produce the highest yield possible, resulting in the formation of a few superior varieties which are favoured 

and grown widely. To create these varieties a breeder may create inbred lines to enhance useful traits that the lines 

already possess. The lack of outbreeding here prevents the broadening of the genetic base. These superior crops 
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may also be grown in large swathes, all having very similar genotypes (Reif et al., 2005). Common agricultural 

practices therefore act as an obstacle to crop diversity, but this can be alleviated. In the 1990s, after years of 

decreasing, genetic diversity experienced an upturn as a result of breeders actively using foreign and exotic 

material to supplement the germplasm of cultivated wheats (Reif et al., 2005). As we will see, outsourcing 

genomic novelty in such a fashion has become an invaluable method of circumventing the low genetic diversity 

of cultivated wheats. 
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1.2 Introgressions  

Wild grasses can be excellent sources of genes with adaptive traits; they often represent a much extended gene 

pool that likely harbour agronomically useful genes which can be drawn upon for wheat breeding (Winfield et al., 

2016). This is done via introgression, where hybridisation and repeated backcrossing introduce genetic sequences 

from the gene pool of a wild grass to wheat (Harrison and Larson, 2014). The resulting product is a crop with a 

gene or genes of interest from a wild grass within the genetic background of a cultivated wheat variety. 

Introgressions are readily tolerated by wheat as its polyploidy (the presence of multiple sub-genomes) helps buffer 

any genomic perturbations caused by substitutions of chromosome portions that it involves (Dubcovsky and 

Dvorak, 2007). Considering this tolerance and wheat’s low genetic diversity, introgressions are effective methods 

for wheat breeding. Indeed wild grass introgressions are commonplace in wheat, both in cultivars and landraces 

(Cheng et al., 2019). This is suggestive of them being useful sources of genetic variation both for artificial and 

natural selection. The wheat germplasm is thought to contain introgressions from 52 species which represent 13 

genera (Wulff and Moscou, 2014), such as close relatives like Aegilops (Schneider, Molnár and Molnár-Láng, 

2008) or environmentally hardy wild grasses like Thinopyrum (Ren et al., 2017). The success of wild grasses as 

a donor of genetic novelty may be due to them being rich in genes for increased survivability and resistance. In 

contrast to food crops under intense artificial selection pressure for better productivity and nutrition, wild grasses 

would have been under greater pressure to evolve traits that would have allowed for better survival. Wild grass 

introgressions may therefore be effective methods of offsetting the relative fragility of cultivated crops. In practice 

many introgressed genes do serve this function. For example over 50 resistance alleles exist in the wheat 

germplasm against Blumeria graminis f. sp. tritici, the causative agent of powdery mildew (Luo et al., 2009; He 

et al., 2009). Only 25 of these alleles originate from Triticum aestivum, the rest being sourced from closely related 

species of the Triticum and Aegilops genera, as well as other more distantly related grasses like Thinopyrum 

timopheevi, Haynaldia villosa and Elytrigia intermedium (Luo et al., 2009; He et al., 2009). Wild grasses can also 

provide resilience against abiotic stressors, providing phenotypes such as salinity-tolerance (Wang et al., 2014) 

and drought-tolerance (Placido et al., 2013). Furthermore introgressions may even be used not just for 

survivability purposes but also to improve end-product qualities of wheat, where chromatin from wild grasses has 

been shown to bolster grain protein content (Pace et al., 2001; Kumar et al., 2011). From the myriad of examples 

seen in the literature, introgressions have clearly been invaluable in improving various aspects of wheat biology. 

  

Out of all of the potential sources of introgression, rye (Secale cereale) has been one of, if not the most, important 

for wheat (Ren et al., 2017). Rye chromatin appears frequently in wheat cultivars (Crespo-Herrera, Garkava-

Gustavsson and Åhman, 2017), providing a versatile array of advantages for wheat: improved seedling vigour, 

pathogen resistance and water-use efficiency (Saulescu et al., 2011) make up just a few. In fact, crosses among 

rye and wheat are so effective that a hybrid between the two even exists: a synthetic grass known as triticale 

(Mergoum and Gómez-Macpherson, 2004). Triticale combines advantageous aspects of both species – wheat’s 

nutritional properties and rye’s environmental resilience – to establish a high-yielding food crop (Mergoum and 

Gómez-Macpherson, 2004). It is also economically important, filling a niche as animal feed (Mergoum and 

Gómez-Macpherson, 2004). However as it is not commonly used for human consumption, it is produced on a 

much lower scale than wheat itself (FAOSTAT, 2020). Triticale exemplifies how compatible and effective rye is 

as a donor species for wheat improvement. Another example for this is the 1RS introgression, a translocation that 
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substitutes out a portion of a wheat chromosome for the short arm of rye chromosome 1. This is the most common 

form in which rye genes are present in wheat varieties (Rabinovich, 1998)  and exists as one of two variants: 

1RS/1AL or 1RS/1BL, where 1RS substitutes either the short arm of wheat chromosome 1A or 1B, respectively 

(Graybosch et al., 2019). The 1RS/1BL variant is by far the most prevalent of the two; it exists globally 

(Graybosch et al., 2019) and within approximately 1000 wheat cultivars (Molnár-Láng, Ceoloni and Doležel, 

2015), being present in up to as many as 34% of a country’s wheat varieties (Crespo-Herrera, Garkava-Gustavsson 

and Åhman, 2017). It is also the more prominent variant present in wheat literature. Cultivars containing the 

1RS/1BL introgression remain widely used as they improve yield and yield stability, as well as improving crop 

performance over a wider range of environments (Kumlay et al., 2003). However the main reason for its popularity 

is in pathogen resistance: it provides a slew of resistance alleles against several wheat pathogens (Ren et al., 2017). 

These include genes against many high-morbidity fungal pathogens such as stripe rust (Puccinia striiformis f. sp 

tritici) (Ren et al., 2009), stem rust (Puccinia graminis f. sp. tritici) (Koebner, Shepherd and Appels, 1986) and 

powdery mildew (Ren et al., 2009), though resistance alleles also exist against insect pests like the Russian wheat 

aphid (Diuraphis noxia) (Anderson et al., 2003). In some cases the same rye genotype can even contribute more 

than one resistance allele to wheat, against different isolates of the same pathogen (Ren et al., 2009). Using the 

1RS/1BL introgression therefore allows for resistance traits against many pathogens to be inherited 

simultaneously, making it a very effective choice for improving wheat crops. Indeed fragments of rye chromatin, 

but especially this introgression, have been superior choices for wheat breeding and explains why wheat cultivars 

containing this introgression continue to be grown at a large scale. 

 

The 1RS/1BL introgression however is not without its flaws. Firstly, though the introgression generally improves 

wheat phenotype this is not always the case. Its effects are dependent on the wheat genetic background as well as 

the rye source (Ren et al., 2012; Lelley, Eder and Grausgruber, 2004). Some introgressions are more effective 

than others and, depending on genotype, a wheat line containing this introgression will not necessarily perform 

better than one without it (Lelley, Eder and Grausgruber, 2004). Even genotypes that do benefit from the 

introgression may not enjoy this improvement indefinitely. The introgression has a narrow genetic base with most 

cultivars obtaining their introgression from a singular rye source – Petkus rye (Schlegel and Korzun, 1997) – and 

so most cultivars share the same resistance alleles (Ren et al., 2012; Lelley, Eder and Grausgruber, 2004). As a 

result these resistance alleles can easily be overcome by pathogen counter-adaptation and is thought that many of 

these alleles are no longer effective (Ren et al., 2012). In addition, not all of the genetic changes caused by this 

introgression are beneficial. Some genes that are introduced are deleterious: the Sec-1 locus is transferred which 

codes for rye storage proteins known as secalins and contributes to dough being sticky, an unfavourable trait for 

breadmaking (Howell et al., 2014). Some beneficial genes have also been excised along with the substituted 1B 

long arm, including loci encoding for gluten proteins (Glu-B3 and Gli-B1) that strengthen dough (Howell et al., 

2014). It is evident then that the increased environmental adaptability provided by the introgression is somewhat 

offset by negative effects on end-use qualities. A further problem with the 1RS/1BL introgression is that we lack 

detailed information on the mechanisms by which it brings about its benefits. For one we are unaware of what 

particular genetic mechanisms are involved in providing disease resistance; the same gene names recur in the 

literature as being important in delivering resistance to fungal pathogens but we do not know what these genes 

actually do. Most studies focus on detailing how introgression lines are made and their cytogenetic 
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characterisation, rather than determining their particular functions. Without this knowledge we have limited 

insight into the functional basis of the introgression. There are clear drawbacks for the use of the 1RS/1BL 

introgression and further work is necessary to see how useful it will be for future wheat breeding. 

 

Other potential problems with the use of the 1RS/1BL introgression are related to gene expression. The literature 

often works under the assumption that all the beneficial genes from an introgression are expressed but this is not 

always the case. For example the resistance gene for powdery mildew Pm8 can be suppressed by an orthologous 

gene found in the 1A genome of wheat (Hurni et al., 2014). Some lines containing this introgression therefore do 

not actually enjoy increased resistance to this pathogen and resistance is dependent on variety and genetic 

background (Hurni et al., 2014; Crespo-Herrera, Garkava-Gustavsson and Åhman, 2017). With little to no 

quantitative data to support the idea that rye transgenes are expressed, one could argue that the effects seen in 

1RS/1BL-containing wheat lines are due to the excision of the 1B short arm, not the introduction of the 1R short 

arm. As allopolyploids like wheat have complex patterns of expression it is not unreasonable to postulate this. 

Their complex expression is the direct result of allopolyploids fostering several sub-genomes derived from 

different species, representing multiple distinct modules of ancestral regulation which may conflict with one 

another. Alleles will be expressed at levels appropriate for their ancestral species and incipient allopolyploids 

must reconcile different regulation patterns to best fit the new hybrid (Feldman et al., 2012). This is achieved 

through gene suppression and gene loss, removing competition (or redundancy) between homoeoalleles by 

reducing the action of one or more of them. Studies show that 30% of loci of hexaploid wheat show unbalanced 

gene expression where at least one homoeoallele has been suppressed and in 10% of loci only one functional 

homoeoallele remains functional due to suppression (Feldman et al., 2012). Experimental evidence supports this 

theory with gene silencing and loss occurring immediately upon artificially-induced polyploidisation of wheat 

lines (Kashkush, Feldman and Levy, 2002; He et al., 2003). The result is a phenomenon known as genomic 

asymmetry, where one sub-genome becomes more dominant in expression than the other sub-genomes. While not 

a global paradigm, genome asymmetry is observed for particular loci causing certain sub-genomes to contribute 

more for particular phenotypes (Feldman et al., 2012; Pfeifer et al., 2014), and sub-genomes even exhibit a degree 

of specialisation for said phenotypes. For example the A genome appears to be dominant in the control of 

morphological traits like caryopsis and grain morphology whereas the B genome is enriched in the expression of 

genes related to environmental adaptation and tolerance to external stresses (Feldman et al., 2012). Furthermore 

other nutritionally and agronomically relevant traits like baking quality and pathogen resistance also appear to 

show sub-genome bias (Pfeifer et al., 2014; Powell et al., 2017). This may have important implications for 

introgression-centric breeding efforts in the future: will transgenes have to be targeted toward specific sub-

genomes so they are expressed? 

 

Another point of concern is the continued suppression of wheat genes. If not immediately suppressed upon 

introduction, introgressions may still be suppressed given time. Gene suppression in hexaploid wheat appears to 

be a flexible and continuing process as it has been suggested that the frequency of silenced and lost genes is 

increasing over time (Bottley, Xia and Koebner, 2006). This may be because wheat, as an evolutionarily young 

polyploid, may still be in the process of managing the expression of its complex genome. The implication of this 

is that introgressions introduced in the future may be a target for gene suppression. Some studies even suggest 
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that gene silencing may be biased against foreign sequences. For example in rice the introgression of sequences 

from a wild grass resulted in silencing both epigenetically and via retrotransposon action (Liu and Wendel, 2000). 

Such potential intolerance for transgenes results in very short-lived, if any, effects on the host plant. It is evident 

that the wheat transcriptome has evolved to be extremely dynamic, using suppression techniques to deal with the 

stresses of harbouring multiple homoeoalleles (Feldman et al., 2012). However this dynamism poses a threat to 

the introduction of novel sequences into the wheat germplasm which may represent prime targets for silencing. 

Investigating the expression of existing introgressions will therefore help shed light on whether or not future 

introgressions will be tolerated by the wheat genome. This will allow us to evaluate whether the 1RS/1BL 

introgression, as well as introgressions in general, remain strong strategies for improving wheat cultivars. 
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1.3 RNAseq 

In theory introgressions have been an effective method in improving crop genotypes and phenotypes. A multitude 

of studies characterise introgressions and their putative benefits to the wheat genotype but very few studies have 

even looked at whether or not these introgressions are expressed. A recent study showed that only 18 out of 1373 

genes found in introgressed blocks showed differential expression between introgression lines and non-

introgression lines (Cheng et al., 2019), potentially suggesting transcriptional inactivity of a large proportion of 

introgressed genes. Another study compared the wheat variety Chinese Spring with variant wheat lines containing 

artificially introduced chromosomes from Aegilops longissima (Dong et al., 2020). They showed that most of the 

genes that were differentially expressed were mostly downregulated or not transcribed – many genes involved in 

introgression may not be expressed. However, twelve upregulated introgression genes were identified that 

putatively confer pathogen resistance, proving that introgressions can still be effective. The project outlined here 

elaborates on both of these previous studies by looking specifically at the 1RS/1BL introgression and by taking a 

meta-analysis approach, analysing many different wheat varieties to look at the general expression effects of 

1RS/1BL and introgressions as a whole. 

 

Studying expression is especially important for wheat given its complex pattern of gene expression that may 

silence an introgression altogether. For a study of this kind, the 1RS/1BL translocation constitutes a useful model 

introgression for study: many varieties contain it so there should be plenty of data available for it, and many of 

these varieties are widely grown so the results of this research should be relevant for wheat breeders. In addition 

there are some potential pitfalls and uncertainties regarding the use of the 1RS/1BL introgression. Research on 

how this translocation is expressed may help clarify several questions that will allow us to determine its effects 

on wheat phenotype more closely, and evaluate how useful it will be for future wheat breeding. For one, like other 

introgressions, we have no positive confirmation that all of its genes are expressed. Even if they were at some 

point expressed, they may no longer be: some resistance genes are no longer effective against their pathogen 

antagonists (Ren et al., 2012; Ren et al., 2017; Crespo-Herrera, Garkava-Gustavsson and Åhman, 2017) and whilst 

this is likely due to the emergence of resistant isolates it could also be possible that the genes have been silenced. 

Even if many genes are expressed it would be important to know the identities of those which are and those which 

are not. Some genes of the 1RS/1BL introgression are beneficial but some are also deleterious and by knowing 

which are switched on or off we can better evaluate the costs and benefits of its use. Furthermore, it is known that 

the performance of this introgression is modulated by rye source and wheat background (Ren et al., 2012). As a 

result one would expect that the introgression would show variant expression among different wheat cultivars and 

it would be informative to know which varieties expressed it and if there are any evident patterns (e.g. if cultivars 

from a particular region consistently did not express it). In addition by studying the expression of this introgression 

we would gain a more complete picture of the mechanisms by which it works. Downstream from obtaining the 

list of expressed genes one can look at functions and shared pathways that these gene sets may be involved in, 

providing information on the processes by which the introgression may bring about pathogen resistance and other 

phenotypic changes. 

 

To obtain information on expression, RNA-sequencing (RNAseq) data can be analysed to study the transcriptomes 

of wheat. RNAseq is a technique that uses a sequencing-based method to profile a sample’s transcriptome, and 
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has emerged as a result of sequencing technology becoming cheaper and more sophisticated (van Dijk et al., 2014). 

In RNAseq all the mRNA fragments from a sample are isolated and converted to cDNA (Wang, Gerstein and 

Snyder, 2009). These cDNA molecules are then sequenced and mapped back to a reference genome and the 

number of fragments associating to different genes give a measure of that gene’s expression (Wang, Gerstein and 

Snyder, 2009). RNAseq offers various advantages in comparison to other methods like microarrays as it works 

over a higher dynamic range, provides higher resolution data and can even identify sequence variants in transcripts 

(Illumina, 2020; Wang, Gerstein and Snyder, 2009). In addition it can be used for species without reference 

genomes; this information is not required a priori as transcriptomes can be generated from scratch  (Illumina, 

2020; Wang, Gerstein and Snyder, 2009). As a result it has largely supplanted microarrays and has, in recent years, 

proved invaluable for crop research. For example resources like expVIP now exist which catalogue the 

information from various RNAseq studies to allow users to easily study the transcriptome of a collection of wheat 

varieties (Borrill, Ramirez-Gonzalez and Uauy, 2016). This exemplifies the kind of research we are now able to 

do with such a boom in sequence and transcriptome data; by applying a similar kind of analysis that aggregates 

large amounts of data we could massively illuminate questions we have on how introgressions are expressed. 

 

In this study I will be leveraging large quantities of information, gathering publicly available RNAseq data and 

applying a custom bioinformatics pipeline to quantify expression of the 1RS/1BL introgression in an assortment 

of wheat varieties. By using the 1RS/1BL introgression as a model organism for study, I am aiming to infer how 

its genes are expressed and how its expression may change across different cultivars, with the hope that this may 

elucidate general rules on how other introgressions may be treated by the wheat genome. By looking at differential 

expression I am also hoping to obtain information on what pathways and processes this introgression may be 

influencing. These results should be able to unveil not just how the 1RS/1BL introgression works, but also some 

framework for how wheat’s regulatory system manages the introduction of introgressions, and how this can 

inform strategies for designing future wheat cultivars. Originally this would have been supplemented with long-

read sequencing, where an extra set of cultivars would have been sequenced using Oxford Nanopore’s MinION 

platform. However due to facilities closing down as a result of the coronavirus pandemic I was unable to follow 

this through. This would have provided an important comparison point to the Illumina data. In contrast to Illumina, 

which is cost-effective and produces short reads at high throughput, MinION sequencing is able to produce much 

longer reads of over several kilobases (Amarasinghe et al., 2020). This has several advantages to Illumina, namely 

in that it allows for more reliable alignment of reads which would have been a useful reference point to validate 

any possible erroneous Illumina read mapping. It also has several other benefits such as avoidance of PCR 

amplification bias and real time sequencing (Amarasinghe et al., 2020), and it would have been an interesting 

point of discussion to dissect any differences in the results from the Illumina and MinION analyses that may have 

resulted from their differences in sequencing protocol.  

 

To generate the data to answer these questions an RNAseq pipeline must be used. Expression studies like this 

leverage sequential use of programs that perform the same basic steps: pre-processing, read alignment, counting 

and functional analysis. Many variant RNAseq pipelines exist which collect together different individual 

programs which yield the same expression information. These have different workflows, use different methods 

and may provide different results (Costa-Silva, Domingues and Lopes, 2017) and so a particular pipeline must be 
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chosen carefully to provide optimal results. The pipeline in this study uses fastp, HISAT2, htseq-count and 

DESeq2. This pipeline was chosen as it has a simple workflow and has been explained and validated in a paper 

as an appropriate means for studying gene expression (Yalamanchili, Wan and Liu, 2018). In addition, these 

programs together do not form a pre-defined ‘protocol’ like the Tuxedo or BallGown protocols so may be more 

amenable to substitutions of individual programs (as such protocols may require some level of backward 

dependency). This is beneficial and important in this case as it allows for a similar pipeline to be used with the 

MinION data that would have been collected, which would facilitate comparisons between the two kinds of data. 

MinION data necessitates the use of a different read mapper (as a result of long-read sequencing having a higher 

error rate than Illumina) and so any pipeline used must be robust to changes. No current read mapper is optimal 

in both scenarios and so different read mappers should be used for the different data types. The use of this 

apparently robust pipeline therefore allows for this and facilitates comparisons between the two. 

 

With regard to some specifics of the pipeline, fastp is used for pre-processing, HISAT2 for read alignment, htseq-

count for counting and DESeq2 for differential expression analysis. After the pipeline the Gene Ontology web 

resource can be used for gene enrichment analysis. All of the programs are necessary to produce high-quality data. 

fastp is necessary to gauge the quality of the reads and process when appropriate; this involves automatically 

removing low quality data e.g. removing low quality reads, trimming adapters and low quality bases at the 5’ and 

3’ ends. As different studies may have used different pre-processing methods before submitting their reads to 

bioinformatics repositories, it is important to ensure that they had all been processed in the same fashion before 

putting them through the pipeline. The reads remaining after clipping and filtering can then be aligned to a 

reference genome using HISAT2. HISAT2 is a splice-aware aligner which makes it suitable for an RNAseq study 

like this; as mRNA reads can span introns and exons that may be spliced out, aligners need to be aware of such 

splicing events for them to accurately map these reads back to a genome. In this study a custom reference genome 

(containing both the wheat reference and a rye draft assembly) is used. This provided the opportunity for wheat 

reads derived from the 1RS/1BL introgression to correctly map to rye, therefore allowing its expression to be 

studied. Without this genome the rye-derived reads may erroneously map to sequence-similar wheat regions due 

to homology, or not map at all. After alignment, reads mapping to certain gene regions must be counted in order 

to get data regarding expression by htseq-count. This produces raw, non-normalised counts for each gene which 

can be used as a proxy for gene expression once normalised. A custom GFF is also used here containing both 

wheat and rye information, in order to match the custom reference genome and alignment information from the 

previous step. After applying the pipeline the count data can be analysed using DESeq2, a statistics package on 

R. DESeq2 effectively takes an input of raw count data and outputs a list of differentially expressed genes (DEGs) 

between specified conditions. In this case varieties are split into two conditions: introgression-containing and non-

introgression-containing. Once functions have been found for these DEGs, gene enrichment analysis can then be 

used to provide further context by outputting a list of biological processes that may be perturbed as a result of the 

introgression. The DEGs and their downstream gene enrichment results make up the crux of the process and 

provide information on what functions may have been changed as a result of introgression, and as a result what 

phenotypes one may predict in cultivars when introducing this introgression as part of wheat breeding strategies. 
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My main research questions are as follows:  

1. Are the 1RS genes expressed in any wheat varieties? 

Which varieties show expression of 1RS genes? 

2. What genes are expressed and what are their functions? 

Does this support the notion that the 1RS genes are the cause of adaptive phenotypes? 

3. How can my results inform future wheat breeding? 
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2 Materials and Methods 
2.1 Section 1: Illumina Data 
RNAseq reads representing different hexaploid wheat varieties from various sources/studies were obtained as 

shown in Table 1. The full dataset containing all of the metadata is seen in the Supplementary Material (S1). Data 

was split into two conditions: introgression and non-introgression, based on whether or not they contained the 

1RS/1BL introgression, using several references (Winfield et al., 2016; Schlegel and Korzun, 2020; Rabinovich, 

1998). 

 
Obtaining RNA-Seq Data 

A comprehensive manual literature search was performed to obtain sources of information that provided RNAseq 

data on hexaploid wheat varieties and rye varieties. Searches were made in literature search engines like Google 

Scholar and through data repositories such as the NCBI SRA and EBI ENA. Sources which had relevant 

information were included in this study and their read data downloaded and included in the analysis. Information 

was deemed relevant if it passed three criteria: 

1. Does it provide data on a hexaploid wheat (Triticum aestivum) variety? 

2. Does it provide RNAseq data? 

3. Do we know if it contains the 1RS/1BL introgression? 

 

Many sources did not pass all criteria e.g. information on tetraploid wheat was given, RNAseq data was 

inaccessible, microarray data was provided instead, etc. The last criterion excluded the greatest number of sources 

and many varieties had no known information on if it contained the 1RS/1BL introgression, and thus could not 

be included given the nature of this study’s design. To determine whether or not a particular variety contained the 

1RS/1BL introgression a publicly-available, independently-curated and reference-supported database of wheat 

varieties was referenced (Schlegel and Korzun, 2020). My lab group’s own exome-capture data (which provides 

similar data on a smaller number of varieties) was also referenced (Winfield et al., 2016). 

 

Raw fastq files of relevant sources were downloaded from the EBI ENA database’s FTP server using wget. The 

EBI ENA database was used as the source for all reads due to it having the easiest interface to download files 

from. Once downloaded, the relevant reads were compiled together using the cat command so that one variety 

would be represented by a single file of RNAseq reads – this single file would represent all of the runs, tissue 

types, etc available for that particular read, unless a particular tissue such as leaf-tissue needed to be analysed. If 

reads were paired-end then a single variety would be represented by two files of paired-end reads, again using cat 

whilst taking care that files were concatenated in the correct order. Using one file (or one pair of files) for one 

variety facilitates easier manipulation of data in the downstream analysis. 
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Variety Tissue Country NCBI Accession Reference 

Aimengniu Spike China PRJNA348655 (Wang et al., 2017) 
Bacanora Leaf Mexico PRJEB5290  (Harper et al., 2016) 

Banks Spike Australia PRJEB23118  (Rangan, Furtado and Henry, 
2020) 

Beaver Leaf UK PRJEB5290  (Harper et al., 2016) 
Bobwhite Leaf Mexico PRJNA497810  (Borrill et al., 2019) 
Equinox Leaf UK PRJEB5290  (Harper et al., 2016) 
Florida Leaf Germany PRJEB5290  (Harper et al., 2016) 
Haven Leaf UK PRJEB5290  (Harper et al., 2016) 

Lovrin 10 Spike Romania PRJNA348655  (Wang et al., 2017) 
Lumai 15 Leaf China PRJNA351906  (Ni et al., 2017) 
Nautica Leaf Netherlands PRJEB5290  (Harper et al., 2016) 
Palur Leaf Germany PRJEB5290  (Harper et al., 2016) 

PBW 343 Leaf India PRJNA613349 Unpublished 
ProIntaFederal Leaf Argentina PRJNA490015  (de Haro et al., 2019) 

Rialto Leaf UK PRJEB5290  (Harper et al., 2016) 
Savannah Leaf UK PRJEB5290  (Harper et al., 2016) 

Svilena Microspore Bulgaria PRJNA297977  (Seifert et al., 2016) 
Alba Leaf Poland PRJEB5290  (Harper et al., 2016) 

Atlas 66 Leaf USA PRJNA563057 (Cheuk, Ouellet and Houde, 2020) 
Avalon Leaf UK PRJEB5290 (Harper et al., 2016) 

Borenos Leaf Germany PRJEB5290 (Harper et al., 2016) 
C 306 Root India PRJNA529036 (Kaur et al., 2019) 
Capo Leaf Austria PRJEB5290 (Harper et al., 2016) 

Chinese Spring Leaf China PRJEB5290 (Harper et al., 2016) 
Chuanmai 25 Leaf China PRJNA555667 (Bhoite et al., 2020) 

Fortuna Leaf Russia PRJNA514367 (Jobson et al., 2019) 
Holdfast Grain Australia PRJEB7795 (Pearce et al., 2015) 
Jagger Leaf USA PRJNA485724 (Peng et al., 2019) 

Jimai 19 Root China PRJNA355905 (Jiang et al., 2017) 
Obelisk Leaf Netherlands PRJNA415716 (Haueisen et al., 2019) 

Raj 3765 Root India PRJNA435777 (Dalal et al., 2018) 
Saratovskaya 29 Leaf Russia PRJNA630059 (Ermakov et al., 2019) 

Sevin Leaf Denmark PRJNA196595 (Yang, Li and Jørgensen, 2013) 

Stoa Shoot/Leaf USA PRJNA397654 (Bajgain, Russell and Mohammadi, 
2018) 

Sumai 3 Shoot/Leaf China PRJNA397654 (Bajgain, Russell and Mohammadi, 
2018) 

Triumph Spike USA PRJNA348655 (Wang et al., 2017) 
Yecora Rojo Leaf Mexico PRJNA629995 (Wu et al., 2019) 

Yumai 18 Spike China PRJNA491844 (Tang et al., 2020) 

Table 1 
Information on wheat varieties 
 
Table shows the varieties with which RNAseq data was collected along with their sources (NCBI accession and paper DOI) and 
related metadata (tissue and country). Varieties shaded in orange contain the introgression and those in blue do not contain the 
introgression. This is a sample of a larger dataset that contains more metadata information such as study type and data quantity. 
This full dataset can be accessed in the Supplementary Material (S1). 
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Bioinformatics Pipeline 

A custom bash pipeline was written containing all of the analysis steps and was used to process the compiled data 

(see appendix). The pipeline analyses the data from the individual varieties one by one, reading the file’s name, 

applying different parameters depending on if the read data is single-end or paired-end and outputting files that 

are named by variety. 

 

The pipeline uses the programs fastp, HISAT2 and HTseq-count. After this the pipeline’s output is then manually 

analysed and passed onto DESeq2 (run on an R environment) and Gene Ontology’s gene enrichment analysis tool 

(run on a browser). fastp is first used to preprocess raw reads. HISAT2 then aligns the filtered reads to a custom 

reference genome, resulting in SAM files. htseq-count then counts the number of reads mapping to gene regions, 

with the assistance of a custom GFF, resulting in raw, un-normalised count tables. These count tables can then be 

imported to R, where DESeq2 can be run. Using the count table information, DESeq2 determines which genes 

are differentially expressed between the conditions, resulting in a list of differentially expressed genes (DEGs). 

The list of DEGs can then be passed on to the Gene Ontology gene enrichment analysis tool (which uses the 

Panther database), resulting in a list of biological processes that are overrepresented and underrepresented in one 

condition in comparison to the other. 

 

This can be visualised in the following diagram, which shows the programs in dark blue, their functions in light 

blue and the input/output files in black: 

 
 

 

Further information on the individual steps is provided below. 

 

fastp: 

fastp version 0.20.0 was used with default settings (Chen et al., 2018). An example of the command line used 

(for a single-end RNAseq file) in the pipeline is shown below: 
fastp -i [INPUT FILE] -o [OUTPUT FILE] 

 

HISAT2: 

HISAT2 version 2.1.0 was used with default settings (Kim et al., 2019). An example of the command line used 

(for a single-end RNAseq file) in the pipeline is shown below: 

 
hisat2 -p [THREAD NUMBER] -x [PATH TO REFERENCE GENOME] 

–U [INPUT FILE] –S [OUTPUT FILE] 
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htseq-count: 

htseq-count (which was part of the HTseq framework) version 0.11.0 was used with the following command 

line options (Anders, Pyl and Huber, 2015): 
--type=gene 

--idattr=gene_id 

--strandedness=no 

The first two options allow the GFF to be parsed correctly. The last option forces all data to be treated as 

unstranded which allows for standardisation as some studies have stranded information and some do not. All 

remaining parameters were set to default. An example of the command line used (for a single-end RNAseq file) 

in the pipeline is shown below: 

 
htseq-count --type=gene --idattr=gene_id --stranded=no 

[INPUT FILE] [GFF FILE] > [OUTPUT FILE] 

 

DESeq2 

DESeq2 version 1.28.1 (Love, Huber and Anders, 2014) was used and steps were followed according to the 

DESeq2 vignette (Love, Anders and Huber, 2020). 

 

Functional annotation and GO Analysis 

Functional annotation of the top DEGs is necessary to determine which biological processes may have changed 

due to introgression. Here functional annotation refers to manually finding the functions (or putative functions) 

of the genes by BLASTing sequences as well as seeing if existing repositories of functional information have data 

on them. Various results for functions are compiled together in a dataset (Supplementary Material, S2) with the 

most informative result for function used in downstream analysis. Below describes how this information was 

obtained for wheat genes and rye contigs – different measures are used as different kinds of data are available to 

them. 

 

For wheat genes: 

Repositories of functional information are searched to find putative gene functions. First UniProt is searched and 

any function found is inputted into the database. The IWGSC also have a set of gene annotations which is searched 

for functions. Again any function found is inputted into the database. If functions found here appeared to 

contradict then the gene would be searched via blastp to find the functions of top hits and determine which function 

would be used in downstream analysis. The amino acid sequence of the gene would be obtained from UniProt by 

searching for the gene ID e.g. TraesCS1B02G020600, which is then used as the input for blastp. BLAST 2.10.1 

is used and set to search through the ‘non-redundant protein sequences/nr’ database, with the search limited to the 

grass taxon Poaceae (taxid: 4479). All other parameters are set to default. The best or top-reported match of this 

search is inputted into the database. If the top hit has no apparent functional information (e.g. an ‘uncharacterised 

protein’) and other genes with matching functions appear at least twice in the top 20 matches (e.g. homologous 

serine kinases from different organisms) then this is also inputted as this may provide a clue to the gene’s function. 

Match parameters (bit score, query cover, e-value) are also inputted along with information on whether or not the 
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match originates from the taxon Triticeae. This information provides a gauge of how good the match is: using a 

system of quality-control taken from AHRD (Hallab et al., 2017), the best matches will have a bit score > 50, 

query cover > 60%, e-value < e-10 and a hit to a Triticeae species. This is coded in the database as ****, with a 

* coding representing that a particular condition had been fulfilled and – coding that it has not, just like with the 

AHRD system. 

 

For rye contigs: 

Different methods/more BLAST-heavy approaches are used for characterising the functions of rye contigs as 

functional information on rye genes is not as freely available. First the nucleotide sequence of the contig is isolated 

from the reference sequence using a custom Python script (see appendix). This is used as the input for blastx. 

BLAST 2.10.1 is used and set to search through the ‘non-redundant protein sequences/nr’ database, with the 

search limited to the grass taxon Poaceae (taxid: 4479). All other parameters are set to default. The same protocol 

for recording the outputs of BLAST runs as above for the wheat genes is used here. Another repository of 

functional information is also searched, in this case gene annotations from the paper that supplied the reference 

genome (Bauer et al., 2017). Any function found here is inputted into the dataset. 

 

Once all of the information from above is compiled into the ‘Functional Information’ dataset (Supplementary 

Material, S2), there will be various putative gene annotations allocated to each wheat gene or rye contig as a result 

of the various searches. For each DEG the most informative gene annotation is chosen and used as the input for 

downstream analysis, with priority for annotations from the gene models provided by the IWGSC and Bauer et 

al., 2017 (as these involved more sophisticated search steps). This list of ‘prime’ gene annotations is then inputted 

into Gene Ontology’s gene enrichment analysis tool (2020-08-10 release, database 2020-07-16 release). These 

lists are found in the Supplementary Material (S3). In this list raw gene names are used e.g. peroxidase or putative 

gene names e.g. BHLH domain-containing protein. The GO analysis tool is set to search for changes to ‘Biological 

Process’ and ‘Molecular Function’ with the organism set to ‘Triticum aestivum’. All other parameters are set to 

default. The full outputs of the enrichment analyses are found in the Supplementary Material (S4). 
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Custom Files 

Reference Genome 

A custom reference genome was required to positively identify rye reads (from the 1RS/1BL introgression) and 

to avoid rye reads from erroneously mapping to wheat regions due to homology. This involved appending a draft 

genome of rye (Bauer et al., 2017) onto the IWGSC reference assembly for wheat (IWGSC et al., 2018). First the 

rye genome was stripped of contig names (which otherwise interrupted the sequence) using a custom Python script 

(see appendix). Then it was appended to the end of the wheat genome using the cat command. 

 

GFF 

A custom rye GFF was similarly required to identify all gene regions (both wheat and rye) specified by the custom 

reference genome. The custom GFF involved the creation of a preliminary rye GFF which was appended to the 

wheat GFF supplied by IWGSC (IWGSC et al., 2018). No GFF is readily available for rye so this preliminary 

GFF was created using the contigs available in the rye reference genome as putative gene regions which may or 

may not be representative of the actual rye gene space. These contigs cover the entirety of the reference genome 

and are non-overlapping so are suitable for this use. The preliminary rye GFF was created by using a custom 

Python script (see appendix). This script ran through the reference genome and outputted a text file listing each 

contig, their base start position and base end position. Various awk and sed commands were then used to fill in 

the other columns of information with default values to correctly modify it into the GFF format. The rye GFF was 

then appended to the IWGSC GFF for wheat (IWGSC, 2018) using the cat command. The overall GFF contains 

1,686,907 gene regions: 105,200 validated regions from the IWGSC region for wheat plus 1,581,707 putative 

gene regions created from the contig sequences of the rye reference for the rye GFF. 
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2.2 Section 2: MinION Data 

This section details the work that was completed regarding the MinION data collection side of the project, as well 

as work that was intended to be done but was unable to be completed due to the coronavirus pandemic. 

 

Study Design Summary 

Obtaining and analysing the MinION data involved roughly the same workflow as the Illumina data. The main 

difference was that for the MinION data, it was intended that plants would be grown, RNA would be extracted 

and then sequenced using Oxford Nanopore’s MinION sequencing platform, in comparison to Illumina data which 

would be extracted from online data repositories. The downstream data analysis would largely have been the same 

as detailed in Section 1, aside from the use of a different read mapper. 

 

Growth of Plants 

Originally five introgression varieties, five non-introgression varieties and two rye varieties were grown in 

triplicate (36 seeds sowed in total). If varieties did not germinate they were removed, soaked in gibberellic acid 

to promote growth and replanted. Some varieties still did not grow (represented in strikethrough in Table 2) so a 

further two introgression and three non-introgression varieties were grown approximately three weeks after 

(bracketed varieties in the table). Plants were grown in small containers with peat-based compost (Levington F2) 

in a growth chamber (GroDome) under constant temperature (18qC) and constant photoperiod conditions (16 

hours, 5am – 9pm). Plants were allowed to grow for at least two weeks (to surpass the seedling stage). After this 

point a small portion of the youngest leaf from each of the plants was cut and stored in a centrifuge tube. Each 

sample was immediately put into liquid nitrogen to prevent degradation by RNase and later transferred to a -80qC 

freezer for indefinite storage. 

 
 
 
 
 
  

Non-Introgression Introgression Rye 

Chinese Spring Brompton 578092 

Skyfall Gatsby Blanco 

Revelation Humber 

Viscount KWS Kielder 

Crusoe Lynx 

(Capelle-Desprez) (Opata) 

(Recital) (Relay) 

Table 2 
Grown varieties 
 
Table shows the names of the hexaploid wheat varieties grown, subdivided into those that putatively do not contain the 
introgression (Non-Introgression) and those that do (Introgression). The names of rye varieties grown are also shown. Varieties 
which did not germinate originally are written in strikethrough and varieties that were grown later are in brackets. Varieties in 
which leaf tissue was obtained are bolded. The remaining varieties did not germinate and so leaf tissue was not obtained. 
 



 27 

Reasoning for Choosing Varieties 

The introgression varieties were chosen as they definitely have an introgression in the 1B chromosome based on 

the lab’s genotyping array data, though require proper validation on whether or not this introgression is the 1RS 

translocation specifically. These varieties are also not already represented in the Illumina data so they increase 

the number of varieties available for analysis in the study. 

 

The non-introgression varieties were chosen as they do not have an introgression in the 1BL region (based on 

information from rye-gene-map.de). These are also varieties that are widely grown and are therefore of particular 

interest to wheat breeders. In addition four of these varieties (Skyfall, Revelation, Crusoe and Viscount) are part 

of the AHDB’s Recommended List for Cereals for 2020/2021 and so are especially relevant for wheat breeding 

(Hallab et al., 2017). Chinese Spring is also a very important variety and is often taken as the standard for 

experimental studies on wheat; it is the variety sequenced for the 2012 wheat draft assembly (Brenchley et al., 

2012) and the 2018 IWGSC reference assembly (IWGSC et al., 2018). Another variety known as Costello was 

grown (not shown in Table 1) and it is unknown whether or not it contains the 1RS/1BL introgression. However 

as seed was available for it and it is another AHDB recommended variety it would be a useful addition to the 

study. 

 

From this point the laboratory work that would have been done but was unable to be completed due to the 

coronavirus pandemic will be discussed. 

 

Extraction of Material 

Total RNA would have been extracted from each of the samples. First the plant material (leaf cuttings) would 

have been placed inside an Eppendorf tube with two silver ball bearings each and grinded to break open cell walls 

using a GenoGrinder. The Qiagen RNeasy Plant Mini Kit would have been used to obtain total RNA from this 

material, following instructions. The RNA would then have been purified via polyA+ selection to obtain only 

mRNA using the Qiagen Oligotex mRNA Mini Kit, again following instructions. 

 

MinION Sequencing 

MinION sequencing would have been performed for each of the samples. Firstly library preparation would have 

been carried out, adding leading and trailing adapter sequences to the RNA molecules before sequencing. Twelve 

samples (reflecting the 12 varieties) would have been multiplexed over two MinION flow cells, ultimately 

producing 12 GB of data. This would have resulted in about 1 GB of data for each variety with an average cover 

of 5x for each gene (under an assumption of equal expression). 

 

Data Preparation 

The resulting FAST5 files would have been converted to FASTQ files using a tool such as poretools. The files, if 

not already, would have been compiled into one file per variety ready for downstream analysis. 
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MinION Pipeline 

This pipeline would largely have been the same as the previous Illumina pipeline, except with the use of an 

alternative read mapper to cope with the higher error rates of MinION sequencing. Several programs could have 

been used to do this, for example GMAP (Križanovic et al., 2018) or LAST (Seki et al., 2019), both of which 

should be appropriate for RNAseq studies. The remaining analysis steps would have been the same as with the 

Illumina data (htseq-count, DESeq2, GO analysis) to enable easier comparison of the two methods. The two 

streams of analysis (Illumina vs MinION) would have been treated as separate and analysed as such. 
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3 Results 

3.1 Clustering of Data 

To study the 1RS/1BL introgression publicly-available RNAseq data reads were compiled, representing a total of 

38 different hexaploid wheat (Triticum aestivum) varieties from various sources (Table 1). The collected RNAseq 

data was put through a custom bioinformatics pipeline which involved the following steps: pre-processing, 

alignment and counting. Data was split into two conditions: ‘introgression’ and ‘non-introgression’, depending 

on whether a variety contained the 1RS/1BL translocation or not. Given that this introgression is the main 

difference between the conditions, comparisons between the two should yield information on how it is expressed. 

To categorise varieties into their correct conditions, two sources (Schlegel and Korzun, 2020; Winfield et al., 

2016) were referenced. From this, seventeen varieties were shown to putatively contain the 1RS/1BL introgression, 

with the other twenty one not containing it. Data from these two conditions were compared via differential 

expression analysis and gene enrichment analysis which would inform how genes in the introgression condition 

(like the 1RS/1BL genes) behave in comparison to the non-introgression condition as a control. The compiled 

data contains metadata such as tissue type that may explain variation between different expression profiles and so 

Principal Component Analysis (PCA) was used to gauge the level with which different explanatory variables 

contributed to variation. Any clusters shown in the PCA should reflect groups of biological interest with data 

points within the same cluster sharing similar properties. Data points should therefore be sampled from the same 

clusters when possible when wanting to remove extraneous variation. In this case it is expected that clusters would 

form for variables such as introgression condition and/or tissue type – both of which are likely to have large effects 

on expression – and as tissue type is not of interest, sampling should take place within the same tissue types if 

clusters are evident. To create the PCA raw count data is first transformed using DESeq2’s internal normalisation 

process. This calculates a geometric mean for each gene and uses this to calculate a size factor individual to each 

sample which each raw count is then divided by. These normalised counts are then passed through a variance-

stabilising transformation which ensures that data is homoscedastic for visualising – in other words the variance 

is kept the same across different values of the mean (Love, Anders and Huber, 2020). This is important as RNAseq 

data consists of counts and so is naturally heteroscedastic. After normalisation and transformation, the total set of 

varieties were plotted as individual data points on the two axes representing the two principal components and 

were annotated by introgression condition and by tissue type (Figure 1A). In Figure 1B the points representing 

leaf data cluster together. As most of the variation is on the X axis (75% > 6%) and as this cluster is separate from 

the other points in terms of horizontal distance one can be confident that this cluster is sufficiently distinct to those 

of other tissues. The other tissues themselves do not form distinct clusters. There are therefore two evident clusters 

here: leaf tissue (encircled in blue) and the other tissues (encircled in pink). When looking at the whole original 

collection of data (all 38 varieties) there is no visible clustering by introgression condition (Figure 1A). However 

when data is filtered just for leaf tissue and another PCA is ran (Figure 1C) this clustering pattern is evident: 

introgression varieties cluster on one corner and non-introgressions cluster on the opposite corner. Note that there 

are some anomalous varieties which join the cluster of the opposite condition: Alba, Sevin, Chuanmai 25 and 

Bacanora. These varieties were further investigated (see next section). Given the overall results of the PCA: leaf 

data clusters together, leaf data shows distinct introgression vs non-introgression groups, as well as the fact that 

the majority of collected data comes from leaf tissue, suggests that the best course for analysis is to analyse only 

the leaf tissue. Whilst applying the data to the entire dataset may yield informative results, the effect of different 
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tissue types on gene expression is likely to confound any findings on the differences between introgression and 

non-introgression-containing varieties, and so a leaf-only analysis should give the most accurate results on these 

expression differences. 

 

  

Figure 1 
PCA Plots for Wheat Data 
A) PCA plot for all 38 different varieties. Each data point 
represents a single variety. Points are given different 
colours based on tissue and different shapes based on 
condition.  
 
B) PCA plot equivalent to Figure 1A except without the 
condition annotation and with an ellipse encircling points 
of each different tissue type. The condition annotation is 
removed here as it interferes with ellipse drawing. Data 
representing leaf tissue generally clusters toward the 
right-hand of the plot. 
 
C) PCA plot for the subset of data representing leaf 
tissue. Each data point represents a single variety. Points 
are given different colours based on condition. An ellipse 
is drawn encircling points of each condition, except for 
three anomalous points which were excluded when the 
ellipse was drawn. Anomalous varieties are labelled. 
 

A B 

C 

Bacanora 

Chuanmai 25 

Sevin 

Alba 
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3.2 Exploration of Anomalous Varieties 

The anomalous varieties that clustered in a contradictory fashion were explored further to see if they should be 

placed in a different condition. If kept in these conditions then they may interfere with the results of differential 

expression analysis so it is essential that they are correctly classified. Here gene expression for the 1B chromosome 

was investigated, where an average ‘reference’ line was calculated for introgression varieties and non-

introgression varieties (calculated without information from the anomalies). The varieties were then plotted 

separately to see which condition’s expression profile they matched more closely to. Consistent with the PCA 

plots, the anomalies do clearly match the expression of varieties from the opposing condition (Figure 2). The 

graphs show that Alba, Chuanmai 25 and Sevin express genes in the 1BS arm which would not be the case if they 

contained the introgression. Inversely, Bacanora does not express genes in this region which suggests that the 1BS 

arm has been removed, consistent with an introgression. Based on these results these anomalies were then placed 

in their opposing, putatively-correct conditions (Table 3). Other studies contradict these results but this may be a 

case of different pedigrees being used in different studies, where some pedigrees have the introgression and some 

do not, but they all share the same name. 

 

 

 

Introgression Varieties Non-Introgression Varieties 

Aimengniu Lumai 15 Alba Jimai 19 

Bacanora Nautica Atlas 66 Obelisk 

Banks Palur Avalon Raj 3765 

Beaver PBW 343 Borenos Saratovskaya 29 

Bobwhite ProIntaFederal C 306 Sevin 

Equinox Rialto Capo Stoa 

Florida Savannah Chinese Spring Sumai 3 

Haven Svilena Chuanmai 25 Triumph 

Lovrin 10  Fortuna Yecora Rojo 

  Holdfast Yumai 18 

  Jagger  

Table 3 
List of Varieties Used 
A list of all of the varieties represented in the collected RNAseq library, split and colour-coded into two different conditions: 
introgression and non-introgression, based on whether or not they contain the 1RS/1BL introgression. Varieties representing 
leaf tissue (and were included in the final analysis) are in black, the rest are greyed out. Varieties that originally grouped in a 
different condition (anomalies) are coloured in the opposite colour to show that they initially belonged to the opposing condition. 
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Note that in Figure 2 counts are used which are proxies for gene expression – counts are proportional but not 

equivalent to true gene expression. These counts are normalised using DESeq2’s aforementioned internal 

normalisation process. This method accounts for differences in library size and RNA composition, allowing the 

same gene across different samples to be compared between one another. However it does not account for gene 

length and so some genes may show greater expression due to them having longer coding sequences. (Love, Huber 

and Anders, 2014). This prevents comparison between different genes. This is an imperfect way of visualising but 

this matters less in this case as the main point of this graph is to visualise expression differences between varieties 

(or condition) and not between genes. Also note that the variance-stabilising transformation was not used like 

before: as the count values for the condition ‘reference’ lines are a mean average across each variety in a condition, 

this reduces the effect of heteroscedasticity where higher means have higher variance (Love, Huber and Anders, 

2014). In summary the normalisation allows data from different varieties (and by extension different conditions) 

to be compared between one another. 

  

  

Figure 2 
Expression Graphs for Anomalous Varieties 
A) Rolling average graph showing gene expression for chromosome 1B for the two conditions and for the variety Alba. Count data is 
used which is first normalised and averaged across all varieties for a particular condition. A rolling average of 100 genes is then 
calculated using this normalised count data. This is plotted along chromosome location. The averages for the two conditions are 
calculated without the values for the anomalous varieties. Lines are colour-coded by condition/variety. 
B) Equivalent graph for Bacanora. C) Equivalent graph for Chuanmai 25.  D) Equivalent graph for Sevin. 
 

A B 

C D 
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3.3 Distribution of DEGs Across Chromosomes 

Given the results of the PCA, the total set of data was filtered to contain only accessions generated from leaf tissue, 

resulting in 28 accessions that would be analysed (13 introgression vs 15 non-introgression) (Table 4). The 

pipeline was applied to each of these accessions from which count data and a list of differentially expressed genes 

was obtained. The former can be used as a proxy for gene expression, like previously shown, and the latter can 

be used to identify functional differences between the two conditions. Both of these can make up the basis for 

further analysis and/or visualisation downstream. 

 
  

Variety Data 
Type Total Mappable Mapped Unmapped % Mapped 

Bacanora Single 27034735 26040321 22748951 3291370 87.4 
Beaver Single 24909118 23475128 22055511 1419617 94.0 
Equinox Single 26583664 24652073 22357749 2294324 90.7 
Florida Single 33975792 32074550 30314156 1760394 94.5 
Haven Single 19003144 17075084 16017784 1057300 93.8 
Nautica Single 35369544 33829297 31836307 1992990 94.1 
Palur Single 42341554 40318624 37793250 2525374 93.7 

ProIntaFederal Single 359368239 359366553 337150544 22216009 93.8 
Rialto Single 22562564 20384803 19081781 1303022 93.6 

Savannah Single 23570762 19344177 14667902 4676275 75.8 
Bobwhite Paired 362778518 325728235 308331782 17396453 94.7 
Lumai15 Paired 111328604 109005138 105848496 3156642 97.1 
PBW343 Paired 31358314 31039550 29728583 1310967 95.8 

Alba Single 69560169 64102245 54844112 9258133 85.6 
Atlas66 Single 49565258 49088422 45672982 3415440 93.0 
Avalon Single 25476815 24862425 22827975 2034450 91.8 

Borenos Single 19489316 17398453 16255469 1142984 93.4 
Capo Single 23049962 19697725 18122717 1575008 92.0 

Chinese Spring Single 101134481 94578490 85960241 8618249 90.1 
Fortuna Single 69746697 69480439 67077602 2402837 96.5 
Obelisk Single 434967728 419870228 288947084 130923144 68.8 

Saratovskaya 29 Single 23365771 22638224 16619722 6018502 73.4 
Chuanmai 25 Paired 82706752 82703274 79035311 3667963 95.6 

Jagger Paired 49814619 49814502 47456045 2358457 95.3 
Sevin Paired 49619979 49616691 44294279 5322412 89.3 
Stoa Paired 24061955 23774951 23057073 717878 97.0 

Sumai 3 Paired 22992469 22790766 22277112 513654 97.7 
Yecora Rojo Paired 169827291 168146892 156749169 11397723 93.2 

Table 4 
Mapping Statistics 
Table showing the varieties that were analysed with their respective data types and data quantities. For each variety the total 
number of reads (for single-end data) and read-pairs (for paired-end data) are shown, as well as the number available after 
mapping, number mapped and unmapped and percentage mapped. Introgression-containing varieties are shaded in orange 
and non-introgression varieties in blue. Varieties that originally grouped in a different condition (anomalies) are coloured in 
the opposite colour to show that they initially belonged to the opposing condition. 
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After running the pipeline, DESeq2 outputs a list of differentially expressed genes (DEGs) between the varieties 

containing the introgression and those that do not. These genes are those that are significantly upregulated or 

downregulated in the introgression varieties, in comparison to the non-introgression varieties. The results of my 

analysis yielded 4300 significant (p < 0.05) differentially expressed genes. By looking at the number of DEGs 

attributed to each chromosome a general, low-resolution measure of the differences in expression between the 

two conditions can be obtained and one can see which chromosomes have had their expression most perturbed by 

the introduction of the introgression. Given that the introgression involves the translocation of a substantial portion 

of the 1B chromosome, there should at least be a large-scale change in 1B expression that should be detectable 

using this method. Out of the wheat chromosomes, 1B had the greatest change in expression in terms of the 

number of DEGs attributed to it which is as expected (Figure 3A). 710 of the 4300 DEGs are found in the 1B 

chromosome, in comparison to the  other chromosomes (each of which have 32-75 DEGs attributed to them). In 

addition the majority of genes that are differentially expressed are actually rye in origin (2532 genes) as opposed 

to wheat in origin (1768 genes) (Figure 3B) – these rye genes can be considered to arise from the 1RS/1BL 

introgression. 
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Figure 3 
DEG Bar Charts 
A) Shows the number of DEGs from each 
wheat chromosome. 
 
B) Shows the number of DEGs that represent 
wheat genes or rye genes (putatively from the 
1RS/1BL introgression). The bar for wheat is 
colour-coded with each segment representing 
the number of DEGs from each wheat 
chromosome. The same data from A was used 
to generate B. 

A 

B 
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3.4 Gene Expression Along the Chromosome 

To further investigate expression and to look deeper at the changes that occurred to chromosome 1B of wheat, 

changes in gene expression along chromosomal length was studied. This should provide higher resolution data on 

how gene expression differs between the two conditions. The same methods for generating Figure 2 was used 

here. Regarding the 1B chromosome, introgression and non-introgression varieties generally show the same 

pattern of expression along the chromosome, except for the proximal part (Figure 4A) – this approximately 

corresponds to location 0 to ~2.6e-08. Here introgression varieties show a noticeable dip in expression that is 

consistent along this stretch of chromosome. Using chromosomes 1A (Figure 4B) and 2B (Figure 4C) as points 

of comparison it is evident that generally introgression and non-introgression varieties have equivalent gene 

expression, and that this dip in 1B expression is the most noticeable change in all three chromosomes. Such 

evident changes in gene expression is consistent with the previous finding, where chromosome 1B showed the 

greatest perturbations in gene expression, as a result of introgression. By cross-referencing one of the genes 

present on this region this proximal part of the chromosome can be parsed to be 1BS. This was done by looking 

for the presence of the gene Gli-B1: this is known to be found on the 1B short arm (IWGSC, 2018) and corresponds 

to the gene ID TraesCS1B02G010600. This gene is found in this proximal region of the 1B reference sequence 

which shows the dip in expression, suggesting that this region corresponds to the 1BS arm. This is consistent with 

the 1RS/1BL introgression as it is the 1RS arm that is excised (Graybosch et al., 2019).  

 

This approach to gene expression was repeated for the rye chromosomes to see if introgression varieties were 

upregulated for rye genes. For the rye genes physical location information was available but plotting this resulted 

in a plot that was difficult to interpret due to many genes occupying the same physical location ‘bins’. In addition 

the contigs of the reference are not organised into a sequence that represents their actual location in the genome, 

as it is a draft sequence and so the same x-axis cannot be used as in the previous plot. Instead arbitrary units are 

used to more easily visualise this plot – this arbitrary unit corresponds to the order of numbering of the rye contigs 

e.g. the first contig in the list is arbitrary unit 1. This system simply allows the same graph to be produced in the 

absence of location information, and allows each gene to be plotted uniformly on the x-axis. For chromosome 1R 

introgression varieties generally show higher gene expression than their non-introgression counterparts (Figure 

4D). However this difference is not as pronounced as in the 1B result. It is also not consistent across all genes (for 

some genes non-introgression varieties have slightly higher expression) and without location information it is not 

possible to see if genes from a whole stretch of chromosome (e.g. the 1RS arm) are all consistently upregulated, 

like in the 1B example. Note that here the y-axis (count values acting as expression proxy) is on a smaller scale 

than in the wheat genes, but this is partially due to many rye genes having 0 expression which likely weighs down 

the rolling average that is plotted. For comparison, the range of average count values seen for the 1B genes is 0 

to 112,265 and 22% of genes have 0 expression. For 1R the range of count values is 0 to 1334 and 85% of genes 

have 0 expression. Rye genes are therefore expressed to a much lower level but not to as low a level as the axes 

on the graphs suggest. Chromosomes 2R and 3R also show similar patterns of expression to 1R, characterised by 

a slight upregulation in introgression varieties with some larger peaks (Figure 4E, 4F). This supports the idea that 

rye genes are expressed in the wheat genome but this is unexpected: 1R genes should be present in the 

introgression varieties, and all other rye chromosomes should have 0 or much lower expression in comparison to 

chromosome 1R.
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Figure 4 
Expression graphs for wheat and 
rye chromosomes 
A) Rolling average graph showing 
gene expression for chromosome 
1B. Count data is used which is 
first normalised and averaged 
across all varieties for a particular 
condition. A rolling average of 100 
genes is then calculated using this 
normalised count data. This is 
plotted along chromosome 
location. Lines are colour-coded by 
condition. 
B) Equivalent graph for 
chromosome 1A. 
C) Equivalent graph for 
chromosome 2B. 
 
D) Rolling average graph showing 
gene expression for chromosome 
1R. Calculated the same way as for 
the equivalent wheat graphs except 
using arbitrary units instead of 
chromosome location. Colour-
coded based on condition. 
E) Equivalent graph for 
chromosome 2R. 
F) Equivalent graph for 
chromosome 3R. 
 
 

A 

B 

C 
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3.5 Top Differentially Expressed Genes 

After obtaining a list of differentially expressed genes it is important to isolate which of these are likely to actually 

contribute to functional changes between the two conditions. For example, those with the largest fold-changes 

and/or the lowest p-values are likely to be the best indicators of biological difference between the two conditions 

and should be taken under higher consideration. Figure 5A shows a heat map visualising the top 100 DEGs. Here 

two clusters form: one consisting of rye contigs upregulated in introgression varieties and the other consisting of 

wheat 1B genes downregulated in introgression varieties. There is a distinct separation of these clusters and it is 

clear that introgression varieties have much greater expression of rye contigs than non-introgression varieties, at 

the cost of 1B expression. This is consistent with a 1RS/1BL introgression. Furthermore, these changes to gene 

expression are consistent within conditions (i.e. all varieties of a condition generally will either upregulate or 

downregulate a specific gene) and varieties have more similar expression profiles to others in the same condition 

as them. The results of the heat map and these findings suggest that all varieties have been placed in the correct 

conditions, and it was correct to change the original allocations of the anomalous varieties described previously. 

Figure 5B shows an extension of this heat map, visualising 1000 top DEGs. The same patterns found in Figure 

5A are seen here, with two main clusters: rye and wheat 1B genes (though row names are not shown), which are 

upregulated and downregulated respectively in the introgression varieties. Only two anomalies are seen here: 

TraesCS1D02G114400 and TraesCS1B02G036300, which are two wheat genes found in the rye cluster that are 

upregulated in introgression varieties. Overall, both heat maps provide support for the 1RS/1BL introgression and 

for the correct allocation of conditions, at different scales. 
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Figure 5 
Heat map of 100 DEGs 
A) The top 100 DEGs with the smallest p-values. Each column represents a specific variety, colour-coded by condition 
(introgression vs non-introgression) and each row represents a specific gene (hierarchically clustered). These genes are 
not ordered by p-value. Wheat genes are named with the prefix ‘TraesCS…’ and rye contigs are named with the prefix 
‘Lo7_v2_contig_...’. The syntax for wheat genes show which chromosomes they came from e.g. TraesCS1B comes 
from chromosome 1B. No such information is available for the rye contigs. Each cell is coloured based on their z-score 
showing the number of standard deviations that specific value is away from the overall mean. This z-score is calculated 
from count values that were normalised by DESeq2 and then transformed via a variance-stabilising transformation. 
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Figure 5 
Heat map of 1000 DEGs 
 
B) Equivalent graph to A but visualising 1000 DEGs. All of the genes downregulated in the introgression-
containing varieties are wheat 1B genes and almost all of the upregulated genes in the introgression varieties 
are rye contigs – the two exceptions are TraesCS1D02G114400 and TraesCS1B02G036300. 
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3.6 Variety-Dependent Gene Expression of Rye Contigs 

The heat map shows that there is some variation in the expression of rye contigs between different varieties. This 

was explored in further detail by visualising the expression of the top 10 rye DEGs between different conditions, 

to see if rye gene expression can be modulated by wheat genetic background like the literature says (Ren et al., 

2012). In theory this means that some varieties will better express the 1RS/1BL introgression than others. It is 

evident that there is an appreciable level of variation in gene expression for every rye contig (Figure 6). In most 

cases one variety will express a contig at around double the level of expression as another variety. This variation 

is most pronounced for contig 1350291 where ProIntaFederal shows over 5-fold greater expression for the contig 

than varieties Palur, Rialto and Haven. However in some contigs like 230940 such an effect is much less evident 

and this could be attributed to natural variation in a biological trait. As a result variation is evident in the expression 

of the same rye contigs with some having much greater variance than others. In addition there is no apparent 

consensus on a specific variety consistently showing greater or lower expression for rye sequences than other 

varieties. For example Savannah shows the greatest expression for contig 52364 but the lowest for contig 87853.    

  

 

 

  
Figure 6 
Variant Gene Expression Bar Charts  
Bar chart showing gene expression levels of the top 10 differentially expressed rye contigs in each of the 13 
different introgression-containing varieties. The bars are grouped by contig with the x-axis showing the 
number contig that the bars correspond to, for easier comparison, and are colour-coded by variety. 
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3.7 Gene Expression of 1B Homoeologs 

Further exploration of the 1B genes was also undertaken, instead looking at the potential effects that their excision 

and downregulation may have had on other genes. Each 1B gene has homoeologs (homologs present in equivalent 

sub-genomes) and changes to a gene’s expression may have subsequent changes on its homoeologs. Almost all 

of the top DEGs are from chromosome 1B and the large-scale change caused by many 1B gene losses may have 

been followed by upregulations in homoeologous genes to compensate. To visualise this a plot showing the 

expression of the top 10 1B DEGs and their respective homoeologs was generated (homoeologs were identified 

using the web resource wheat-exp.com). Figure 7 clearly shows that there is no appreciable response, positive nor 

negative, from other chromosomes when 1B genes were downregulated. After looking at the p-values generated 

from DESeq2, none of the small fold-changes in the homoeologs were significant whereas all of the 1B changes 

were highly significant. 

 

 

  

Figure 7 
Homoeologous Gene Expression Bar Charts 
Bar chart showing the log-fold change expression of the top 10 differentially expressed wheat 1B genes and 
their 1A and 1D homoeologs. The change in expression is between introgression-containing varieties 
compared to non-introgression varieties i.e. negative values mean that the gene is downregulated in 
introgression varieties. The bars are grouped by arbitrary numbers to distinguish between the different 
homoeologous gene groups (which otherwise have no name) and are colour-coded by chromosome. 
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3.8 Functional Annotation of DEGs 

To determine the biological significance of the introgression i.e. to see how varieties containing the introgression 

and those that do not actually differ in terms of phenotype, it is necessary to functionally annotate the significant 

DEGs. This involves BLASTing their sequences as well as manually searching through repositories of functional 

information. Various methods were used to find putative functions for each of the wheat and rye genes and this 

information is all compiled in the Supplementary Material (S2). Here the top 100 wheat DEGs (which were all 

1B and downregulated) and the top 100 rye DEGs (which were all upregulated) were studied further. An extra 31 

rye DEGs were also studied – these were derived from the 1R chromosome and could be important candidate 

genes for understanding the effects of the 1RS/1BL introgression. All 100 wheat genes were annotated with 

putative functions but only 87 out of 131 genes (66%) from the rye clusters could be annotated (Table 5). This is 

expected as rye not being a model organism or major food crop has fewer genomic resources available for its 

study.  

 

For the wheat genes 39 were allocated to various enzyme functions e.g. synthases and peroxidase. 4 genes were 

also allocated to ‘Binding Protein’ functions such as calmodulin. This functional class was not represented in the 

rye gene set. Many (43%) were also allocated to functions in the ‘Miscellaneous’ category; these genes putatively 

represent a wide diversity of functions such as peptide chain release factor, as well as proteins that don’t have a 

clear function but contain specific domains such as CULLIN 2-domain containing protein. For the rye genes, a 

similar number of contigs were allocated to enzyme functions (33, 25%) and miscellaneous functions (28, 21%). 

In addition 12 (9%) of genes were putatively known to be transposon in origin, in comparison to the wheat gene 

set which had none. Similar numbers of transcription factors and transposons seem to be downregulated and 

upregulated. Overall, there are a wide variety of functions that are represented in the list of top DEGs and there 

does not seem to be a consensus on if genes representing any particular functional class was largely lost or 

acquired due to the 1RS/1BL introgression. The only exception is transposon-related sequences and an appreciable 

proportion of active transposons may have been introduced as a result of the introgression. 
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 Wheat 
(downregulated) 

Rye 
(upregulated) 

Miscellaneous 
Functions 

Function Annotated   Actin-like protein 

Binding Protein 4 0 
BTB/POZ and MATH 

domain-containing 
protein 

Enzyme (Metabolism) 26 16 Cyclin-like protein 

Enzyme (Kinases) 5 9 Formin-like protein 

Enzyme (Other) 8 8 Gamma prolamin 

Transcription Factor 
(or nucleotide binding protein) 10 9 Histone H2B 

Transporter 4 5 INO80 complex subunit 

Transposon 0 12 Kinesin-like protein 

Miscellaneous/Unknown 43 28 Peptide chain release 
factor 

   
Regulator of nonsense 

transcripts 1-like 
protein 

No Information 0 44 Replication protein A 
subunit 

Total 100 131 Seed storage protein 

Table 5 
Summarised results of functional annotation 
Table shows the number of genes annotated with specific classes of functions – each function appeared 
multiple times during the annotation process. Wheat genes are those that are downregulated in introgression 
varieties and rye genes are those that are upregulated in the same varieties. Examples of functions in the 
‘Miscellaneous’ class are shown. The full dataset showing the specific annotations to each gene is found in 
the Supplementary Material (S2).  
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3.9 Gene Enrichment Analysis 

Gene enrichment analysis can be performed to provide greater context to the functional information obtained 

previously by looking at which pathways these genes may be involved in. This provides information on what 

biological processes may have changed as a result of the 1RS/1BL introgression and thus what phenotypic changes 

it may confer. The Gene Ontology’s enrichment analysis tool was used to do this, using the total list of gene 

functions found from the annotation step to generate a list of biological processes that are either over- or under-

represented in the introgression varieties. Over- or under-represented functions are those that are seen in greater 

or lower frequencies than expected, and represent potentially important functions that may have been changed as 

a result of the introgression. The list of rye DEGs upregulated and wheat DEGs downregulated in the introgression 

varieties were used as the input to the gene enrichment analysis, separately. Tables 6 and 7 show the summarised 

outputs of these two separate analyses, noting the important and interesting results, all of which happened to be 

over-represented. For rye over-represented functions reflect those that would have been conferred to introgression 

varieties as a result of the introduction of the 1RS arm (Table 6). For wheat over-represented functions reflect 

those that would have been lost from introgression varieties as a result of the excision of the 1BS arm (Table 7). 

Both results therefore represent potentially important changes that the introgression may have caused, by 

introduction and removal of genes respectively. 

 

  

Biological Process/Molecular Function Fold Change P-value 

Ubiquitin-dependent protein catabolism >100 6.4E-09 

 Ubiquitin protein ligase activity 34.91 7.2E-114 

Calcium ion transmembrane transport 83.74 3.7E-55 

 Calcium transmembrane transporter activity >100 8.3E-67 

 Calmodulin binding 25.86 2.9E-25 

Histone H3 deacetylation >100 1.5E-26 

 H3-K14-specific histone deacetylase activity >100 1.9E-27 

Oxylipin biosynthetic process >100 1.4E-81 

Triglyceride biosynthetic process 28.18 3.3E-04 

Steroid biosynthetic process 8.18 2.0E-02 

Table 6 
Over-represented terms from GO enrichment analysis (rye)   
Table shows a portion of the results from GO Enrichment Analysis using the set of gene functions obtained from manually annotating 
the upregulated rye DEGs. Only over-represented terms are shown. Over-represented ‘biological processes’ are shaded in darker 
orange and over-represented ‘molecular functions’ associated with these processes are shaded in lighter orange as sub-headings. P-
values are calculated using the Bonferroni correction. Note that not all significantly over/under-represented processes from the 
analysis are included – the ones included have the greatest fold-changes and/or are of interest in explaining phenotypic changes 
between conditions. The full datasets showing the entirety of the results of the enrichment analyses are found in the Supplementary 
Material (S4). 
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With regard to the rye analysis, some of the top over-represented processes with the greatest fold-changes and 

lowest p-values include ubiquitin-dependent protein catabolism and calcium transport. In addition, several 

processes related to lipid anabolism are over-represented, including oxylipin biosynthesis, triglyceride 

biosynthesis and steroid biosynthesis. These are functions that introgression-containing varieties may be better at 

performing and/or regulating. With regard to the wheat analysis, several top over-represented processes are 

involved in oxidative stress pathways: hydrogen peroxide catabolism, cellular oxidant detoxification and response 

to oxidative stress. Other over-represented processes are involved in signalling (ethylene and brassinosteroid 

signalling) and carbohydrate metabolism (malate and pyruvate metabolism). In addition, ubiquitin-dependent 

protein catabolism appears again here. These are functions that introgression-containing varieties may be worse 

at performing and/or regulating as they would have lost the 1BS arm that contains the genes with these functions. 

Overall, gene enrichment analysis helps clarify the results from the previous steps and identifies some important 

pathways that may explain phenotypic differences between varieties containing the introgression and those that 

do not. 

 

 

 

Biological Process/Molecular Function Fold Change P-value 

Ubiquitin-dependent protein catabolism 89.55 3.4E-06 

 Ubiquitin-specific protease binding 55.97 3.5E-04 

Hydrogen peroxide catabolism 80.93 0 

 Peroxidase activity 66.21 0 

Cellular oxidant detoxification 59.50 0 

Response to oxidative stress 57.17 0 

Ethylene-activated signalling 39.80 2E-11 

 Ethylene binding 59.70 4E-13 

 Ethylene receptor activity 59.70 4E-13 

Brassinosteroid signalling 12.57 1.4E-03 

Malate metabolic process 37.70 1.4E-15 

 Malate dehydrogenase activity 84.28 7.7E-20 

Pyruvate metabolic process 5.45 2.7E-04 

Table 7 
Over-represented terms from GO enrichment analysis (wheat)   
Same as for A) except this table shows the results of GO Enrichment Analysis using the set of gene functions obtained 
from manually annotating the downregulated wheat genes. Over-represented ‘biological processes’ are shaded in 
darker blue and over-represented ‘molecular functions’ associated with these processes are shaded in lighter blue as 
sub-headings. 
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4 Discussion 

4.1 Expression of 1RS/1BL 

My results suggest that the 1RS/1BL translocation is expressed in all of the introgression varieties sampled here 

as they show a downregulation of 1B gene expression and slight upregulation of many rye contigs, consistent with 

introgression. The introgression should therefore be active in most, if not all, of the varieties it is found in. 

However, it is important to note that my results are unable to provide conclusive evidence that it is the 1RS/1BL 

introgression that is expressed, and not another similar translocation. The 1RS/1BL introgression involves the 

wheat 1BS arm being substituted out for the rye 1RS arm (Lukaszewski, 2000), which leads to the expectation of 

an absence of 1BS gene expression and the presence of 1RS gene expression in lieu of this. The evidence for the 

former is strong: Figure 4A clearly shows a region of downregulated gene expression of the proximal region of 

the 1B chromosome of introgression varieties. This corresponds to roughly the whole short arm of 1B, suggesting 

that its complete removal as part of the translocation causes this dip in expression. It is possible that gene 

expression by introgression varieties here could be due to them being more outbred than the original introgressed 

population. However this would require the introgression to be broken up by recombination and it is more likely 

that this is the result of mis-mapping. The complementary evidence that the 1RS genes are introduced and 

expressed is not as strong. While Figure 4D shows that introgression varieties show greater expression for rye 

genes, this is on a substantially lower scale than the wheat genes. It is also not as consistent of a signal: this pattern 

is only evident for a few genes that show up as smaller peaks. Note that in Figure 3, most of the DEGs were 

derived from rye but this can occur from a small amount of transcriptional activity by rye genes in the introgression 

varieties, as non-introgression varieties should have a null value (or very low counts) for rye gene expression. The 

DEG analysis will therefore be more sensitive to differences in rye gene expression. In addition some gene 

expression from chromosomes 2R and 3R are also observed, though the 1RS/1BL introgression should only 

involve 1R, all of which have similar scales of gene expression. Two possibilities are likely to explain this: other 

rye regions have been translocated into wheat and/or that some contigs have been assigned to the incorrect 

chromosome. The results here cannot conclusively say that the 1RS arm is the main source of the rye signal in the 

tested wheat varieties but as 1RS is the most common form of rye chromatin in wheat we can be sufficiently 

confident this is so (Graybosch et al., 2019). When a subset of varieties (five introgression and five non-

introgression) were further investigated using the Cereal Genomics group’s 35K axiom array data (Wilkinson et 

al., 2016), introgression varieties generally had lower SNP calls for the 1B chromosome, which suggest the loss 

of 1B genes in introgression varieties, providing further support for the loss of a 1B segment.  

 

It is important to note that positional information was not available to many of these rye genes: only 23% of the 

top 100 rye DEGs could be traced back to a specific chromosome. As a result it is only possible to visualise a 

small proportion of 1R genes, and the lack of a strong 1R signal could be the result of the absence of this 

chromosome information. Regardless it is clear that rye genes are present in the germplasm of the wheat varieties 

sampled here with introgression varieties exhibiting greater rye expression, suggesting that the difference between 

introgression and non-introgression varieties can be attributed to their rye content. Furthermore if the observed 

alignment to rye genes is not due to mis-mapping and is evident of true gene expression then this could highlight 

that rye sequences and therefore the history of outbreeding with rye may be much more prevalent in wheat that 

previously thought. 
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In further exploring and quantifying the expression of the 1RS/1BL introgression, it is clear that the expression 

of introgressed rye sequences is markedly lower than that of native wheat genes. In Figure 4 the scales of 

normalised counts are much higher for wheat genes, on average at least 20x so, than for rye genes. A similar 

discrepancy is observed when looking at the average count values of genes: for the 1B chromosome the mean 

average of normalised counts mapping to a gene is 232 whereas for the 1R chromosome it is 10 (this average 

excludes genes which are not expressed at all). The range for the former is 0 to 112,265 and 0 to 1334 for the 

latter. This suggests that rye genes are expressed in wheat varieties but on a much lower scale, which brings about 

the possibility for targeted gene suppression of genes from 1RS chromosomes. In plants the presence of native 

and foreign homologs can co-suppress each other’s expression (Jorgensen, 1990) and this could be the case here 

with the 1RS and 1BS arms being homologous. Furthermore 85% of 1RS genes appear to show 0 expression, in 

comparison with 22% in 1BS and this large discrepancy could be due to rye-preferential gene silencing. 

Alternatively they could just represent non-coding sequence elements on the rye chromosome as the GFF used 

here contains putative, not confirmed, gene regions. Overall it is evident that rye genes are expressed at a low 

level; they are not expressed to the same extent as wheat genes but at least a small proportion remains 

transcriptionally active, and likely still exert effects on wheat phenotype. However the results here show a greater 

change in gene expression due to 1BS removal as opposed to 1RS introduction, which highlights that chromosome 

loss due to introgression may be just as important as chromosome introduction, if not more. 

 

Other patterns of gene expression were also identified in this study. Firstly the expression of rye genes appear to 

show a degree of heterogeneity: rye genes are expressed to different extents in different varieties, with some genes 

showing greater variance than others. This could be the result of the introgression performing differently in 

different wheat backgrounds as is known in the literature (Ren et al., 2012), though no particular variety seems to 

be better at or worse at expressing rye genes than others. This could therefore just be a result of natural variation 

in gene expression or could reflect the different conditions the varieties were in at the time of sampling. In addition, 

there does not seem to be any compensation of gene expression by homoeologs and the substitution of the 1BS 

arm for the 1RS arm seems to be a relatively independent event that does not perturb other sub-genomes.  
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4.2 Functional Characterisation of 1RS/1BL 

It is clear that the 1RS/1BL introgression has impacted the transcriptional landscape of the varieties containing it 

and this likely resulted in a wide variety of various phenotypic changes to wheat. These changes would have been 

two-fold: the additive changes brought about from the introduction of genes from the 1RS arm and the reductive 

changes resulting from the excision of genes from the 1BS arm. The former is explained by looking at the rye 

genes upregulated in introgression varieties and the over-represented terms observed in this list, while the latter 

is explained by the wheat 1B genes downregulated in introgression varieties and the over-represented terms 

observed in this list. Note that the results identified here reflect the lower-end of the diversity of functions that 

would have been perturbed as only a total of 231 DEGs were functionally annotated, with 44 of these not having 

any accessible functional information. It is also important to address that the functions provided here are by no 

means perfectly accurate: multiple strategies were used to find functions for these genes, to compensate for the 

lack of functional information for wheat and rye, and so some annotations may be much better or worse than 

others. A detailed explanation of this is in the Methods section and the full dataset containing quality 

measurements of annotations is included in the Supplementary Material (S2). 

 

Benefits of 1RS introduction 

The introduction of the 1RS arm is generally accepted in the literature as having a main advantage of providing 

various disease resistance loci to the wheat germplasm. For example it contains resistance genes such as Lr26 and 

Yr9. However the functions of many of these genes are still unknown and so the results here may represent a 

useful point for exploring the potential mechanisms with which they may work (Crespo-Herrera, Garkava-

Gustavsson and Åhman, 2017). In this study, differential expression analysis identifies several DEGs with putative 

functions that may contribute to such disease resistance. For example rye contig 1360483 shows homology to a 

disease resistance protein found in Arabidopsis thaliana, known as RPM1. Homology matches and functional 

characterisation of these rye contigs (and wheat DEGs) can be found in Supplementary Material 2. This is a 

protein that contains an NBS (nucleotide binding site) and LRR (leucine rich repeat) domain (Boyes, Nam and 

Dangl, 1998). Such NBS-LRR proteins are known to be important in disease resistance, making up the largest 

class of known plant resistance genes (Martin, Bogdanove and Sessa, 2003; Shao et al., 2019). They are thought 

to be effective at identifying the presence of pathogens and triggering signalling pathways that result in the 

induction of plant defences. The LRR domain is used to detect pathogen molecules known as effector proteins 

(McHale et al., 2006; Ng and Xavier, 2011), and activates the NBS domain which then begins the signalling 

cascade. Downstream plant defences eventually ensue such as the hypersensitive response (HR), which causes 

cell death at the site of infection, reducing further pathogen spread (van Ooijen et al., 2008). In the case of RPM1, 

effector proteins produced by Pseudomonas syringae modify the protein RIN4, with this change being detected 

by RPM1 as an indicator of pathogen invasion (Mackey et al., 2003). Its activation then ultimately triggers HR-

induced cell death (Grant et al., 2000). Another example of a potentially important NBS-LRR protein identified 

in the results is a homolog for RPP8 (contig 1358729). In Arabidopsis thaliana, RPP8 identifies the presence of 

Hyaloperonospora arabidopsidis, (which causes powdery mildew) and provides resistance against it (McDowell 

et al., 1998; Mohr et al., 2010), and another homolog of this protein, HRT, provides resistance to turnip crinkle 

virus (Cooley et al., 2000). NBS-LRR proteins are therefore integral in plant immunity due to their ability to 

specifically recognise pathogens, with homologous variants able to recognise different pathogens with the same 
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level of specificity. The NBS-LRR proteins identified here thus represent possible candidates for explaining the 

rye-derived resistance seen in 1RS/1BL-containing varieties. 

 

Another potential candidate could be an LRR-receptor serine/threonine kinase (contig 143345). In this case the 

LRR domain, useful for specific pathogen identification via protein-protein interactions (Bella et al., 2008), is 

used alongside a kinase that triggers the signalling cascade instead of the NBS domain. However without any 

further information this is only speculative. Other potential candidates could be the various rye-derived kinases 

(9) identified in the analyses. Serine/threonine kinases can play important roles in resistance by identifying 

pathogens and subsequently propagating signals through protein phosphorylation (Cao et al., 2011), and they 

represent a separate, but important, class of disease resistance proteins separate to NBS-LRR proteins (Martin, 

Bogdanove and Sessa, 2003). Specific examples are even seen in wheat: Yr36 or WKS1 uses a serine/threonine 

kinase and lipid-binding domain to provide resistance against stripe rust (Wang et al., 2019) and Pm21 or Stpk-V 

is a serine/threonine kinase that provides resistance against powdery mildew (Cao et al., 2011). The latter is also 

the product of an introgression from the short arm of chromosome 6 of  Haynaldia villosa (6VS) (Cao et al., 2011). 

As a result it is evident that, not only can serine/threonine kinases provide disease resistance functions in wheat, 

but also that introgressions from other grasses can perform this same function in wheat, when introgressed. The 

DEGs characterised here to be possible kinases may play important roles in disease resistance, and though this is 

only speculative may constitute good starting points for further research. 

 

An alternative, but not mutually exclusive, hypothesis is that the 1RS arm provides genes which do not identify 

specific pathogens but instead exert an effect downstream to facilitate the immune response. Little is known about 

the specific processes that occur downstream of pathogen detection and receptor activation (Dodds and Rathjen, 

2010), representing various understudied pathways that these rye genes could be involved in to generate disease 

resistance. For example rye contig 61381 putatively codes for ‘pathogenesis-related protein 5-like’, which has 

been proven to be necessary for disease resistance against leaf rust mediated by the gene Lr35 in wheat (Zhang et 

al., 2018). This is thought to provide a glucanase function that helps break down fungal cell walls (Zhang et al., 

2018; Liang et al., 2019). Proteins that work downstream in more of a defence function may therefore be just as 

integral to resistance against specific pathogens as the receptors that identify them. 

 

One theory is that the 1RS arm’s pathogen resistance could be mediated via changes to jasmonate (JA) signalling. 

JAs are compounds known as oxylipins that play integral roles in stress- and defence-related responses via changes 

to gene expression (Howe and Schilmiller, 2002). The effects of JA signalling are sufficient to cause wide and 

specific disease resistance (Ellis, Karafyllidis and Turner, 2002) and so is an integral part of plant immunity. The 

results of the GO enrichment analysis identified ‘oxylipin biosynthesis’ as one of the top over-represented 

processes (fold change > 100, p-value = 1.4E-81) observed in the list of upregulated rye genes which makes it 

likely that the rye genes in the introgression exert some effect on this pathway. Other oxylipins do exist and this 

could feed into their synthesis instead, though JA is the principal oxylipin known in plants (Farmer, Alméras and 

Krishnamurthy, 2003). Further evidence for the potential impact of JA signalling in rye-mediated disease 

resistance in wheat is that potential homologs of several core components of this pathway are observed as top 

differentially expressed genes from this analysis: contig 62402 shows homology for an E3 ubiquitin-ligase-like 
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protein, 62998 for histone deacetylase-like and 1358116 for ethylene-responsive transcription factor (ERF) 

ERF110-like. In Arabidopsis such genes work in concert to change gene expression under pathogen attack: JA-

derivatives are perceived by an E3 ubiquitin-ligase like SCFCOI, which can tag histone deacetylase for degradation, 

de-repressing certain genes which can then be activated by an ERF, resulting in the expression of defence genes 

(Farmer, Alméras and Krishnamurthy, 2003; Devoto et al., 2002; Nagels Durand, Pauwels and Goossens, 2016). 

GO terms related to these genes and processes were also observed to be over-represented: ‘ubiquitin-dependent 

protein catabolism’ and ‘histone H3 deacetylation’ were both shown to have enrichment values of >100. It is 

therefore possible that this rye-derived JA signalling pathway is used in a wheat system. The implication of this 

is that the 1RS arm may allow the use of a variant JA pathway, notably a different ERF. This could result in the 

expression of a different assortment of defence genes and provide resistance to a new pathogen or isolate that the 

wheat variety was susceptible to before, as different ERFs are known to activate and repress different JA-

responsive genes with varying outcomes on resistance (Thirugnanasambantham et al., 2015). If this theory is 

correct then this provides evidence that the introgression provides not only singular disease resistance genes but 

potentially entire suites of self-contained immune-functioning toolkits. Theoretically this could allow for 

smoother functioning of signalling pathways if all, or at least some, of the signalling components are derived from 

rye, especially if coherent signalling is strictly dependent on specific protein variants.  

 

There may also be other candidate pathways for the observed rye-derived resistance observed in introgression-

containing wheat varieties. One of the most over-represented processes in the 1RS arm is ‘calcium ion 

transmembrane transport’ (FC > 83.74, p = 3.7E-55). With calcium ion influxes known to be integral as an 

apoptosis signal (Levine et al., 1996), the upregulation of genes like a ‘calcium transporting ATPase’ (contig 

2641) could be used as a means to better facilitate programmed cell death in limiting pathogen spread. Similarly 

several contigs show homology to ABC transporters. These are important ATP-dependent membrane proteins that 

can import or export substrates (Rees, Johnson and Lewinson, 2009) and can theoretically provide pathogen 

resistance via efflux of anti-pathogen compounds or pathogen effectors. In wheat an important resistance gene, 

Lr34, encodes an ABC transporter that provides resistance against several fungal pathogens by exporting out 

metabolites that deter pathogen growth (Krattinger et al., 2009). Two of the contigs identified in my results are 

homologous to ‘ABC transporter G 37’ which is overexpressed after pathogen exposure (Gräfe and Schmitt, 2020), 

which may make it important in the immune response. Overall various potential pathways are identified which 

may be able to explain the disease resistance traits conferred by the 1RS arm, which may work in identification, 

signalling and/or defence-related traits. 

 

Potential disadvantages of rye 

Not all of the genes introduced by the 1RS arm may be beneficial: some may be disadvantageous and some may 

not have any effect at all. The 1RS/1BL introgression is widely known to have negative effects on end-use quality 

– this is the result of the Sec-1 locus that introduces omega secalins that worsen the bread-making properties of 

the grain (Li et al., 2016). While the gene coding for this secalin was not identified in the select proportion of 

DEGs annotated other genes were characterised that may contribute to the negative end-use qualities caused by 

this locus. Contig 2808155 shows homology for a gamma prolamin from Secale cereale (secalins are a type of 

prolamin) and contig 1357725 shows homology for a seed storage prolamin (glutelin). These may form part of 
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the Sec-1 locus as other prolamins, notably gamma prolamins, are known to be genetically linked to omega 

secalins (Shewry et al., 1984). With their relatively high expression in the introgression-containing varieties they 

could also play a role in negatively impacting wheat grain quality. In addition gamma secalins can cross-react 

with gliadins as an allergen (Palosuo et al., 2001), which may make introgression-containing varieties even worse 

choices for bread-making when considering their effects on those with allergies and insensitivities to gluten. 

 

The genes present on the 1RS arm may also not be functional at all: transposons/transposable elements (TEs) 

and/or retroviral sequences make up the second most commonly represented functional class of the rye DEGs. 

This is in contrast to the 1B DEGs, none of which were putative TEs. These may have been tolerated by the wheat 

genome as they already contain a large proportion of TEs. In fact wheat has one of the greatest numbers of 

transposons of any crop species (Zhao et al., 2017) and 85% of its genome is made up of TEs (IWGSC et al., 

2018). The presence of these transposons suggest that a sizeable portion of the introgression may compose of non-

functional and even selfish elements that use up cellular resources for their own propagation. In addition these 

transposons may have substantial impacts on the expression of other genes in the introgression. Transposons may 

exist as part of a gene’s coding sequence or by themselves (Fu et al., 2009) and this may also be the case here as 

the BLAST hits for these rye contigs have query covers that range from 14% to 91%. The contigs showing lower 

query covers could be associated with rye genes, and this association could potentially lower the gene’s expression. 

In a study of Aegilops tauschii (the progenitor species of the wheat D genome), it was shown that around half of 

its genes contained TEs (Zhao et al., 2017). These genes showed reduced expression in comparison to their non-

TE-containing counterparts, likely due to the increased methylation of TE sequences which cause downregulation 

of the TE and associated genes (Zhao et al., 2017). The TEs in the 1RS arm could act as a self-contained 

mechanism for reducing rye gene expression which could explain why rye genes are expressed at a lower level 

than wheat genes, thus depreciating the benefits of the introgression – this is an aspect of the introgression that 

has yet to be discussed in the literature. This finding could also explain why wheat has so many transposons and 

why its genome is so large: it has been subject to many different introgressions over time and each event may 

have introduced many active transposons that would proliferate rapidly until silenced. Interestingly these 

transposons could also provide raw sequence material for adaptation, as transposons can be co-opted into proteins 

with novel functions (Joly-Lopez and Bureau, 2018)  as well as for generating novel regulatory motifs (Feschotte, 

2008). However with transposons already being extremely pervasive in the wheat genome the introduction of 

further transposon sequences by the introgression may be negligible, and this is unlikely to be fruitful regarding 

current timescales of crop improvement.  

 

Disadvantages of 1BS excision 

The removal of the 1BS arm is also likely to result in functional changes. These changes are represented as the 

wheat 1B genes which are significantly downregulated in introgression varieties and the over-represented terms 

that arise when these genes are analysed, representing genes that introgression-containing varieties no longer have 

access to. 

 

From the enrichment analysis of the downregulated wheat genes, terms like ‘malate metabolic process’ and 

‘pyruvate metabolic process’ and ‘brassinosteroid’ and ‘ethylene signalling’ are over-represented. This suggests 
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that introgression-containing varieties may suffer reduced functionality in aspects of metabolism and also 

signalling. However any disadvantages may be negligible as no such effects are described in experimental studies 

of the 1RS/1BL introgression. Instead reported disadvantages are mostly concerned with negative effects on 

bread-making quality (Graybosch, 2001), though the analysis of wheat genes did not identify any proteins or 

pathways that could contribute to this due to loss of 1B genes. However interestingly the results of this analysis 

identified genes downregulated in the introgression varieties that show homology to important stress-related 

proteins. More specifically, two putative chaperone proteins and a heat-shock protein were downregulated, as well 

as a putative peroxidase and metal tolerance protein. These would likely play roles in tolerance to heat, oxidative 

and heavy metal stress, respectively. In addition the enrichment analysis identified that in the downregulated 

wheat 1B genes, terms relating to ‘cellular response to stress’, ‘cellular response to toxic substance’ and ‘response 

to oxidative stress’, were over-represented, suggesting that introgression varieties are worse able to deal with these 

stressors. The B sub-genome of wheat is also known to have a relatively high number of genes relating to 

environmental adaptation due to sub-genome specialisation (Feldman et al., 2012), so this is likely to be 

representative of the 1B chromosome as a whole. However this contradicts with the literature: the 1RS/1BL 

introgression is known to improve abiotic stress tolerance, which is consistent with rye being an environmentally 

hardy grass (Howell et al., 2014). This suggests that the loss of these genes must have been matched and surpassed 

by an introduction of even more genes relating to stress tolerance from the 1RS arm – the introgression doesn’t 

just provide more genes to wheat but it also compensates for certain gene losses. These stress-tolerant genes were 

not identified in the results of the functional analysis, but may arise if further genes were annotated. 

 

Continuing on from this point, it appears that genes lost due to the 1BS arm may be compensated by an 

introduction of similar or equivalent genes within the 1RS arm, or genes involved in the same pathways. This is 

in contrast to 1A and 1D gene expression, which does not appear to compensate for 1B loss. This is expected as 

Triticeae chromosomes are homologous and syntenic with one another, though the group 1 chromosomes show 

the least synteny (Feuillet and Keller, 2002). For example several ligase enzymes and actin-related proteins are 

both lost and gained as a result of 1RS/1BL introgression. Also some shared terms are over-represented in both 

the analysis of the upregulated rye genes and downregulated wheat genes such as ‘ubiquitin-dependent protein 

catabolic process’. This suggests that, in some cases, wheat genes are being swapped out with rye equivalents and 

the presence of having novel variants as opposed to entirely novel genes may be important in the introgression’s 

benefits. Having slightly similar genes (with similarity resulting from homology) makes them useful but also 

usable in the genetic background of a new host. 
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4.3 Relevance to Future Wheat Breeding 

My results suggest that the 1RS/1BL introgression should be expressed in most varieties it is found in, though at 

a very low level. However the genes are not all silenced and many still remain transcriptionally active. In 

conjunction with what is known in the literature it would be safe to surmise that the introgression remains useful 

and may still be a good choice for wheat breeding, though its effects may be dependent on the wheat genetic 

background it is used in. However it may have negative effects such as reduced metabolic capability, though my 

study is unable to make comment or quantify the relative costs and benefits of this trade-off. Also as its expression 

in wheat seems to be quite low it may not have as noticeable an impact on wheat phenotype as previously thought, 

and its importance in bolstering wheat yield should not be overstated. Though it may still be a good option for 

improving wheat, when choosing between cultivars to grow it may be better to consider not whether a variety 

contains this introgression but rather whether a variety comes from a better pedigree, and use the presence of the 

introgression as a tie-breaker when deciding which to use. Unfortunately more in-depth recommendations cannot 

be made as further research is required that can supplement the findings in this study and address its limitations. 

 

Limitations 

Though the scope of the results here are sufficiently large, in that the effects of the 1RS/1BL introgression can be 

discussed on several fronts, there are many unknowns that prevent high-resolution conclusions from being made 

as a result of several limitations. Firstly the lack of functional data for both wheat and rye makes it difficult to 

maximise the amount of information that can be gleaned from this study. Only 66% of the rye DEGs could be 

functionally annotated and the remaining unknowns represent a lot of information that cannot be analysed. 

Assuming they have functions, incorporation of the unannotated 34% would likely have a large effect on the 

results, allowing more confident conclusions to be made or changing them altogether. There are also other 

limitations regarding information. For example many wheat varieties did not have known introgression 

information and so much RNAseq data existing in data repositories could not have been used in this study, which 

would have improved the clarity of the results. The genomic resources available for rye also lacked sufficient 

positional information to provide chromosome assignments or locations for every single rye contig. As a result 

the chromosomal origin of many rye contigs were unknown, and so 1R gene expression could not be properly 

determined, especially in comparison to other rye genes, and as a consequence makes it difficult to conclude if it 

is the 1R chromosome that is responsible for the rye signal obtained here. Furthermore the reference genome used 

in this study is sub-optimal and may have obscured some information. Whilst the majority of 1RS/1BL 

introgressions are derived from the rye variety ‘Petkus’ (Schlegel and Korzun, 1997), the rye reference was 

sequenced from the variety ‘Lo7’ (Bauer et al., 2017). These varieties may be different in terms of genomic 

composition and so this reference may not be able to fully capture the expression dynamics of the 1RS/1BL genes. 

Finally there are limitations to consider with using this framework of study to a meta-analysis which may mask 

true patterns of variation. Here many varieties are compiled together from various studies and as a result of their 

different origins, samples would have been sequenced under different conditions. As a result it is difficult to 

determine which of the changes in expression observed between conditions were actually due to biological 

differences between varieties, or just differences in the conditions they were sampled under. In addition the use 

of different varieties as ‘pseudoreplicates’ for DESeq2 mean that the results it generates are not as powerful as if 

true biological replicates are used. This is because the program uses estimates of dispersion for each gene to 
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determine differential expression and use of the latter provides more accurate estimations of this for analysis 

(Love, Huber and Anders, 2014). 

 

This study could be drastically improved if it was repeated using the same structure – many different introgression 

varieties vs many non-introgression varieties – with the difference that all plants would be grown and sequenced 

under the same conditions. This would help clarify what changes were due to biology or due to external factors. 

In addition if phenotypic characteristics were measured it would be possible to confirm the putative functional 

changes identified in this study with actual changes observed in the plants. 
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4.4 Summary and Conclusion 

Overall my results are able to reinforce current knowledge regarding the 1RS/1BL introgression as well as unveil 

new areas of knowledge that may represent promising areas of further research. For one there is evidence to 

support the expression of the 1RS/1BL introgression but this is followed by certain caveats. Firstly genes from 

other rye chromosomes may be expressed, not just those from 1R, which prevents confirmation that the source of 

rye expression is this specific chromosome, though this is likely. Secondly the expression of rye genes is much 

lower than native wheat genes (around 20x lower) suggesting that there may be a mechanism leading to their 

suppression or non-preferential transcription. This also casts doubt on how influential these rye genes actually are 

in improving wheat phenotype. There may be an equal or greater effect of 1BS removal given that the signal for 

a drop in 1B gene expression was much stronger than the signal representing an increase in 1R expression. 

Changes that result from chromosome loss during introgression should therefore be regarded with the same 

amount of importance as that of novel chromosome introduction. Thirdly expression of rye genes may be 

dependent on wheat genetic background, which is a finding consistent with the literature. Overall it can be said 

that the 1RS/1BL introgression remains transcriptionally active and its expression in a wheat background is 

dynamic with non-uniform effects. 

 

Whilst the changes conferred by the introgression are well-described in the literature, the means by which these 

are realised are mostly unknown and the results here identify potential pathways that can explain this, unveiling 

promising veins of further research. Several homologs to important disease resistance proteins in Arabidopsis 

may have been donated from rye to wheat and could be important candidates for the disease resistance the 

introgression is known for. In addition JA signalling may play an important role in such rye-derived resistance 

and the use of rye-derived components for this signalling may organise the expression of a novel set of defence 

genes that provide disease resistance to existing wheat pathogens. The disease resistance provided by the 1RS/1BL 

introgression appears to be complex and multi-faceted, and the results here identify promising starting points for 

future research to understand it in greater detail, especially given that many of these disease resistance loci have 

yet to be cloned functionally. 

 

This study also highlights some potential generalisations on introgressions which could be clarified by further 

research. Firstly introgressions may involve ‘homologous swaps’ where genes from a crop species are replaced 

with variant homologs from a donor species (1BS vs 1RS in this case), and shared homology may allow novel 

variants to remain functional in a new genetic background. Secondly introgressions may not just introduce 

independently functioning genes but also self-contained gene sets that contain several, functional components of 

a pathway that may allow that pathway to function optimally in a novel environment. Thirdly the effects of 

introgressions can be conceptualised as chromosome loss vs chromosome gain, and their respective effects on 

phenotype may be asymmetric like with the loss of the 1BS arm resulting in a greater transcriptional footprint 

than the introduction of 1RS. Finally it is important to consider the non-functional elements of introgressions such 

as transposons – here the identification of many transposon-derived sequences highlight the need to view 

introgressions as having a varied genetic landscape. Treating introgressions as mere vehicles for a few beneficial 

loci ignore the other consequences that it may have on its new host’s genome, such as the potential suppressant 

effects of transposons. 



 58 

 

Whilst this study is not meant to be an in-depth functional analysis of the 1RS/1BL introgression it is able to touch 

base on several important properties of the 1RS/1BL introgression (and introgressions in general) which represent 

promising starting points for elaboration. Indeed further research is required to be able to fully exploit the genomic 

novelties available for crop breeding. However this is gated by the current availability of genomics resources 

where for many introgression sources (like rye) a lack of information hampers the ability to fully make use of data 

available. However major strides have been made in recent years which makes a study like this possible, and even 

greater leaps are likely once the rising necessity for food security becomes realised by the wider populace. 

Hopefully this study will be a starting point and a standard with which other introgressions can be studied, so that 

in the future the beneficial genes in the Triticeae gene pool can be catalogued and the various kinds of 

introgressions characterised. This could ideally allow for all usable genomic novelties for wheat to be compiled, 

providing a diverse and accessible library that could be used to improve wheat germplasm against the uncertainties 

of the future. 
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Appendix 
This section details all of the custom scripts written and used for various points of the data analysis. 

 

BASH SCRIPT: pipeline 

This is the main pipeline used for analysing all of the reads. 

 
# Works for single-end and paired-end reads on the basis that single-end reads have 
Reads.fastq.gz suffix and paired-end reads have _1/_2.fastq.gz 
 
# First create a list variable of all the variety names 
# find: prints out files ending with .gz with a newline character in between each 
# sed: removes Reads.fastq.gz from the file name to get the base variety names 
singleList=$(find . -name \*Reads.fastq.gz -printf "%f\n" | sed 
's/Reads.fastq.gz//g') 
echo $singleList 
 
pairedList=$(find . -name \*_1.fastq.gz -printf "%f\n" | sed 's/_1.fastq.gz//g') 
echo $pairedList 
 
# Perform a for loop to carry out each of the processes 
# if clause: paired-end reads will have two instances of the base name and single-
end reads will just have one 
 
# THIS IS FOR SINGLE-END READS 
for i in $singleList 
do 
echo "NOW PROCESSING $i" 
fastp -i $i'Reads.fastq.gz' -o $i'Clipped' 
hisat2 -p 8 -x ~/data/referenceGenome/refIndices/fullIndex -U $i'Clipped' -S 
$i'Align' 
htseq-count --type=gene --idattr=gene_id --stranded=no $i'Align' 
~/data/GFFs/fullChimeraGFF > $i'Count' 
done 
 
# THIS IS FOR THE PAIRED-END READS 
for i in $pairedList 
do 
echo "NOW PROCESSING $i" 
fastp -i $i'_1.fastq.gz' -I $i'_2.fastq.gz' -o $i'_1Clipped' -O $i'_2Clipped' 
hisat2 -p 8 -x ~/data/referenceGenome/refIndices/fullIndex -1 $i'_1Clipped' -2 
$i'_2Clipped' -S $i'Align' 
htseq-count --type=gene --idattr=gene_id --stranded=no $i'Align' 
~/data/GFFs/fullChimeraGFF > $i'Count' 
done 
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PYTHON SCRIPT: removeHeader.py 

Used for removing contig names from the rye reference genome. Contigs had to be removed to create a 

contiguous reference genome where contigs were not broken up by headers. 

 
#!/usr/bin/python 
 
# Program to remove headers from FASTA files. 
 
# Store the FASTA file into object fasta and read the first line. 
 
path = input("Please enter the absolute path of your FASTA file. \n") 
fname = input("What will the new file be named? \n") 
fasta = open(path) 
 
# Create empty strings that lines of the sequence will be added to. 
title = "" 
sequence = [] 
 
# Store the title line and remove whitespace. 
for line in fasta: 
    if line.startswith(">"): 
        title = line 
    else: 
        sequence.append(line) 
         
# Convert the list into a string 
string = "".join(sequence) 
 
# Creates a new file and writes to it. 
# This will create the file in whatever directory you are in. 
 
f = open(fname, "w+") 
f.write(string) 
f.close() 
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PYTHON SCRIPT: isolateBounds.py 

Used for isolating contig bounds for GFF. Output of this is the input for modifyGFF.sh 
 
#!/usr/bin/python 
 
#sys.argv[1] is the reference genome, sys.argv[2] is the file you’ll write to. 
 
import sys 
 
genome = open(sys.argv[1]) 
 
contigCount = 0 
baseCount = 0 
 
# need three separate lists that will then be joined together later. 
contigList = [] 
startList = [] 
endList = [] 
 
for line in genome: 
        if line.startswith(">"): 
                contigCount += 1 
                splitLine = line.split() 
                contigList.append(splitLine[6]) 
 
# store the start value (but don't actually modify the count as it messes up the 
loop later) 
                startList.append(baseCount+1) 
 
# store the end value (but not for the first line) 
                if contigCount > 1: 
                        endList.append(baseCount) 
 
# if line doesn't start with a header, iterate through the lines and count the 
number of bases 
        else: 
                for base in line: 
                        if base != "/N": 
                                baseCount += 1 
 
# append the last end list value when the for loop has finished 
endList.append(baseCount) 
 
# create a new nested list based on the other three lists 
# zip merges the lists together but in the form of a zip/tuple data form - use 
list(value) to convert into lists 
nestedList = [list(value) for value in zip(contigList, startList, endList)] 
 
# nested for loop to write the list to output 
with open((sys.argv[2]), "w+") as f: 
        for list in nestedList: 
                        f.write("\n") 
                        for item in list: 
                                f.write("{}\t".format(item)) 
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AWK/SED COMMANDS: modifyGFF.sh 

Used to create a full GFF file from contig bounds. Input for this is the output from isolateBounds.py. 

 
#!/bin/bash 
 
# this has the awk (and sed commands) to create a manual GFF from the contigs and 
bounds derived from the rye genome. 
 
# first re-order the columns so it goes START; END; CONTIG 
awk '{$4=$1}{print}' isolateBounds > copy2 
 
# change the first column (duplicate contig column) to 1R 
awk '{$1="1R"}{print}' copy2 > copy3 
 
# add the second and third columns by appending it to 1R 
awk '{$1=$1 FS "manual" FS "gene"}{print}' copy3 > copy4 
 
# add the sixth, seventh and eighth columns by appending it to END 
awk '{$5=$5 FS "." FS "+" FS "."}{print}' copy4 > copy5 
 
# put gene_id in front of the contig name (ninth column) 
awk '{$9="gene_id="$9}{print} copy5 > copy6 
 
# substitute the spaces for tabs 
sed 's/ /\t/g' copy6 > copy7 
 
# then manually write in the first three lines: ##gff-version 3, etc 
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PYTHON SCRIPT: findContigSeq.py 

Used to isolate the sequence of a particular contig. This was necessary when a contig sequence needed to be put 

through BLAST to find its putative function. 

 
import sys 
 
# sys.argv[1] is the genome, sys.argv[2] is the contig number you want to find. 
 
genome = open(sys.argv[1]) 
query = sys.argv[2] 
searchContig = "Lo7_v2_contig_" + str(query) 
 
queryList = [] 
 
# define the function: iterate through the genome until you find the contig based 
on whether or not the query matches up with the 6th field of the header. 
 
def findContig(): 
    for line in genome: 
        if line.startswith(">"): 
            splitLine = line.split() 
         
            if searchContig == splitLine[6]: 
                for line in genome: 
                    if line.startswith(">"): 
                        return 
                    else: 
                        for base in line: 
                            queryList.append(base) 
 
            else: 
                continue 
        else: 
            continue 
 
# join method used to join together the bases from the loop to make a contiguous 
sequence: the contig’s sequence. 
 
findContig() 
sequence = "".join(queryList) 
 
# print sequence to standard output 
print(searchContig) 
print(sequence, end="") 
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Supplementary Material 
S1) Metadata table of varieties used in the study 
 
INTROGRESSION-CONTAINING VARIETIES 

Variety Paper DOI Tissue Study Type Country of 
Origin 

NCBI 
Accessi
on 

Sequencing 
Type 

Sequencing 
Platform 

Amount of 
Data (GB) 

Notes 

Aimengn
iu 

https://doi.org/10.11
04/pp.17.00694 

Reproductive tissue 
(spikes?) 

Investigating spike 
architecture 

China PRJNA
348655 

Paired Illumina 
HiSeq 2500 

4 
 

Bacanora https://doi.org/10.11
11/pbi.12486 

Leaf? Normal Mexico PRJEB
5290 

Single Illumina 
Genome 
Analyzer II 

1.8 
 

Banks https://doi.org/10.10
16/j.jcs.2019.10289
5 

Spikes Drought, time-series Australia PRJEB
23118 

Paired Illumina 
HiSeq 4000 

1.5 
 

Beaver https://doi.org/10.11
11/pbi.12486 

Leaf Normal UK PRJEB
5290 

Single Illumina 
HiSeq 2000 

1.6 
 

Bobwhite https://doi.org/10.11
04/pp.19.00380 

Flag leaf 10-point time-series Mexico PRJNA
497810  

Paired Illumina 
HiSeq 2500 

60 
 

Equinox https://doi.org/10.11
11/pbi.12486 

Leaf Normal UK PRJEB
5290 

Single Illumina 
HiSeq 2000 

1.8 
 

Florida https://doi.org/10.11
11/pbi.12486 

Leaf Normal Germany PRJEB
5290 

Single Illumina 
HiSeq 2000 

2.9 
 

Haven https://doi.org/10.11
11/pbi.12486 

Leaf Normal UK PRJEB
5290 

Single Illumina 
HiSeq 2000 

1.6 
 

Lovrin 
10 

https://doi.org/10.11
04/pp.17.00694 

Spike Investigating spike 
architecture 

Romania PRJNA
348655 

Paired Illumina 
HiSeq 2500 

4 
 

Lumai 15 https://doi.org/10.10
38/ncomms15121 

Flag leaf, (fertile 
anther, sterile 
anther, pistil) 

Investigating male 
sterility gene 

China PRJNA
351906 

Paired Illumina 
HiSeq 2500 

64 Only flag leaf 
reads were 
used. 

Nautica https://doi.org/10.11
11/pbi.12486 

Leaf Normal Netherlands PRJEB
5290 

Single Illumina 
HiSeq 2000 

2.4 
 

Palur https://doi.org/10.11
11/pbi.12486 

Leaf Normal Germany PRJEB
5290 

Single Illumina 
HiSeq 2000 

3.6 
 

PBW 343 UNPUBLISHED Leaf Inoculated with 
stripe rust 

India PRJNA
613349 

Paired Illumina 
HiSeq 4000 

4 Control reads 
downloaded. 
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ProIntaFe
deral 

https://doi.org/10.11
86/s12870-019-
1709-y 

Leaf Inoculated with 
MRCV 

Argentina PRJNA
490015 

Single Illumina 
HiSeq 3000 

9.8 Control reads 
downloaded. 

Rialto https://doi.org/10.11
11/pbi.12486 

Leaf Normal UK PRJEB
5290 

Single Illumina 
HiSeq 2000 

2 
 

Savannah https://doi.org/10.11
11/pbi.12486 

Leaf Normal UK PRJEB
5290 

Single Illumina 
HiSeq 2000 

1.4 
 

Svilena https://doi.org/10.11
86/s12870-016-
0782-8 

Microspore Time-series, 
treatment of 
Microspore 

Bulgaria PRJNA
297977 

Single Illumina 
HiSeq 2000 

9.3 
 

 
 
NON INTROGRESSION-CONTAINING VARIETIES 
 

Variety Paper Tissue Study Type Country 
of Origin 

NCBI 
Accession 

Sequenc
ing Type 

Sequencing 
Platform 

Amount 
of Data 
(GB) 

Notes 

Alba https://doi.org/10.1111/pbi.12486 Leaf Normal Poland PRJEB529
0 

Single Illumina 
HiSeq 2000 

5.5 
 

Atlas 66 https://doi.org/10.1186/s12870-
020-02355-x 

Leaf Overexpression of a TF 
to see relevance in 
drought-resistance 

USA PRJNA563
057 

Single Illumina 
NovaSeq 
6000 

3.8 
 

Avalon https://doi.org/10.1111/pbi.12486 Leaf? Normal UK PRJEB529
0 

Single Illumina 
Genome 
Analyzer II 

1.7 
 

Borenos https://doi.org/10.1111/pbi.12486 Leaf? Normal Germany PRJEB529
0 

Single Illumina 
HiSeq 2000 

1.7 
 

C 306 https://doi.org/10.1093/jxb/erz358 Roots Iron deprivation India PRJNA529
036 

Paired Illumina 
NextSeq 
5000 

8 
 

Capo https://doi.org/10.1111/pbi.12486 Leaf? Normal Austria? PRJEB529
0 

Single Illumina 
Genome 
Analyzer II 

1.4 
 

Chinese 
Spring 

https://doi.org/10.1111/pbi.12486 Leaf? Normal China PRJEB529
0 

Single Illumina 
HiSeq 2000 

7 
 

Chuan 
Mai 25 

https://doi.org/10.21203/rs.3.rs-
29235/v1 

Leaf Metribuzin (herbicide) 
treated 

China PRJNA555
667 

Paired Illumina 
NovaSeq 
6000 

11 Control reads 
could not be 
downloaded. 
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Fortuna https://doi.org/10.3389/fpls.2019.0
0051 

Leaf, Transcriptomes of 
normal and semi-
dwarfing gene-
containing cultivars 

Russia PRJNA514
367 

Single Illumina 
HiSeq 2500 

8 Only leaf reads 
taken. 

Holdfast https://doi.org/10.1186/s12870-
015-0520-7 

Grain Different tissue layers 
of developing grain 

Australia PRJEB779
5 

Single Illumina 
Genome 
Analyzer II 

4 
 

Jagger https://doi.org/10.1073/pnas.19116
60116 

Leaf Inoculation with X. 
translucens 

USA PRJNA485
724 

Paired Illumina 
HiSeq 2000 

6 No mention of 
if reads were 
inoculated or 
not. 

Jimai 19 https://doi.org/10.1016/j.cj.2016.12
.001 

Roots Drought stress, salt 
stress 

China PRJNA355
905 

Paired Illumina 
HiSeq 2500 

4 
 

Obelisk https://doi.org/10.1002/ece3.4724 Leaf Inoculation with Z. 
tritici 

Netherla
nds 

PRJNA415
716 

Single Illumina 
HiSeq 2500 

38 
 

Raj 3765 https://doi.org/10.1016/j.plaphy.20
18.07.035 

Roots Control vs stress India PRJNA435
777 

Paired Illumina 
HiSeq 1000 

3 
 

Saratovsk
aya 29 

https://doi.org/10.7717/peerj.7791 Leaf Water deficiency, cold 
stress 

Russia PRJNA630
059 

Single Illumina 
MACE/Next
Seq 5000 

1 
 

Sevin https://doi.org/10.1371/journal.pon
e.0081606 

Leaf Inoculated with S. 
tritici 

Denmark PRJNA196
595 

Paired Illumina 
HiSeq 2000 

7.6 Control reads 
downloaded. 

Stoa https://doi.org/10.1038/s41598-
018-25430-8 

Shoot/L
eaf 
(seedlin
g stage) 

5 different lines to see 
differential expression 
of transporters 

USA PRJNA397
654 

Paired? Illumina 
HiSeq 2500 

7.5 Only shoot 
reads 
downloaded. 

Sumai3 https://doi.org/10.1038/s41598-
018-25430-8 

Shoot/L
eaf 
(seedlin
g stage) 

5 different lines to see 
differential expression 
of transporters 

China PRJNA397
654 

Paired? Illumina 
HiSeq 2500 

7 Only shoot 
reads 
downloaded. 

Triumph https://doi.org/10.1104/pp.17.0069
4 

Spike Sequencing various 
cultivars 

USA PRJNA348
655 

Paired Illumina 
HiSeq 2500 

5 
 

Yecora 
Rojo 

https://doi.org/10.3390/ijms201844
98 

Leaf Inoculated with P. 
triticina 

Mexico PRJNA629
995 

Paired Illumina 
HiSeq 4000 

28.5 
 

Yumai 18 https://doi.org/10.1016/j.cj.2019.08
.009 

Spikelet Exploring 
cleistogamous 
phenotype 

China PRJNA491
844 

Paired Illumina 
HiSeq 2000 

8.5 
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S2) FUNCTIONAL INFORMATION DATASET 
 
DIFFERENTIALLY EXPRESSED WHEAT GENES 
 

contig blast-
accession 

human-readable-description quality-
code 

quality-
values 

blast2 uniprot iwgsc 

TraesCS1B02G1484
00 

N/A N/A N/A N/A N/A ER membrane protein 
complex subunit 1 

ER membrane protein 
complex subunit 1, *** 

TraesCS1B02G1049
00 

N/A N/A N/A N/A N/A Mitogen-activated protein 
kinase, EC 2.7.11.24 

Mitogen-activated protein 
kinase, *** 

TraesCS1B02G1423
00 

N/A N/A N/A N/A N/A Non-specific 
serine/threonine protein 
kinase, EC 2.7.11.1 

Kinase family protein, *** 

TraesCS1B02G0600
00 

N/A N/A N/A N/A N/A Uncharacterized protein E3 UFM1-protein ligase 1-
like protein, *** 

TraesCS1B02G0903
00 

N/A N/A N/A N/A N/A Prolycopene isomerase, EC 
5.2.1.13 

Carotenoid isomerase, 
putative, expressed, *** 

TraesCS1B02G1071
00 

N/A N/A N/A N/A N/A Uncharacterized protein Ankyrin repeat domain-
containing protein 2, *-* 

TraesCS1B02G1069
00 

N/A N/A N/A N/A N/A Uncharacterized protein DNA/RNA helicase protein, 
*-* 

TraesCS1B02G1070
00 

N/A N/A N/A N/A N/A Serine/threonine-protein 
phosphatase, EC 3.1.3.16 

Serine/threonine-protein 
phosphatase, *** 

TraesCS1B02G0918
00 

N/A N/A N/A N/A N/A Uncharacterized protein RNA polymerase II-associated 
protein 3, *** 

TraesCS1B02G1464
00 

N/A N/A N/A N/A N/A UBC core domain-
containing protein 

Ubiquitin-conjugating enzyme 
E2, *** 

TraesCS1B02G1017
00 

N/A N/A N/A N/A N/A RING-type domain-
containing protein 

RING/U-box superfamily 
protein, putative, *** 

TraesCS1B02G1396
00 

N/A N/A N/A N/A N/A Uncharacterized protein 70 kDa heat shock protein, 
*** 

TraesCS1B02G1234
00 

N/A N/A N/A N/A N/A HECT domain-containing 
protein 

E3 ubiquitin-protein ligase, *-
* 

TraesCS1B02G1407
00 

N/A N/A N/A N/A N/A DUF1664 domain-
containing protein 

bZIP transcription factor, 
putative (DUF1664), *** 

TraesCS1B02G0990
00 

N/A N/A N/A N/A N/A Uncharacterized protein ABC transporter B family 
protein, *** 
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TraesCS1B02G1490
00 

N/A N/A N/A N/A N/A KAT8 regulatory NSL 
complex subunit 2 

INO80 complex subunit D, 
*** 

TraesCS1B02G1383
00 

N/A N/A N/A N/A N/A RING-type domain-
containing protein 

RING/U-box superfamily 
protein, *** 

TraesCS1B02G0559
00 

N/A N/A N/A N/A N/A Uncharacterized protein Coiled-coil domain-containing 
protein, putative, *** 

TraesCS1B02G1180
00 

N/A N/A N/A N/A N/A CULLIN_2 domain-
containing protein 

Cullin-1, *** 

TraesCS1B02G0933
00 

N/A N/A N/A N/A N/A Protein SQS1 G-patch domain containing 
protein, *** 

TraesCS1B02G1284
00 

N/A N/A N/A N/A N/A Golgi apparatus membrane 
protein TVP23 

Golgi apparatus membrane 
protein TVP23, *** 

TraesCS1B02G1179
00 

N/A N/A N/A N/A N/A CULLIN_2 domain-
containing protein 

Cullin-1, *** 

TraesCS1B02G0982
00 

N/A N/A N/A N/A N/A Uncharacterized protein Zinc ion binding protein, *** 

TraesCS1B02G0991
00 

N/A N/A N/A N/A N/A Uncharacterized protein Diacylglycerol 
acyltransferase, *-* 

TraesCS1B02G1193
00 

N/A N/A N/A N/A N/A Uncharacterized protein Starch synthase family 
protein, *** 

TraesCS1B02G1476
00 

N/A N/A N/A N/A N/A NFACT-R_1 domain-
containing protein 

Coiled-coil domain-containing 
protein 25, *** 

TraesCS1B02G1127
00 

N/A N/A N/A N/A N/A Na_H_Exchanger domain-
containing protein 

Sodium/hydrogen exchanger, 
*** 

TraesCS1B02G1265
00 

N/A N/A N/A N/A N/A Importin subunit alpha Importin subunit alpha, *** 

TraesCS1B02G1404
00 

N/A N/A N/A N/A N/A FACT complex subunit 
SSRP1 

FACT complex subunit 
SSRP1, *** 

TraesCS1B02G1231
00 

N/A N/A N/A N/A N/A RING-type domain-
containing protein 

RING/U-box superfamily 
protein, *** 

TraesCS1B02G0887
00 

N/A N/A N/A N/A N/A J domain-containing protein Chaperone protein dnaJ, *** 

TraesCS1B02G1417
00 

N/A N/A N/A N/A N/A Malic enzyme Malic enzyme, *** 

TraesCS1B02G1293
00 

N/A N/A N/A N/A N/A Uncharacterized protein Acyl-CoA dehydrogenase, 
putative, *** 

TraesCS1B02G1267
00 

N/A N/A N/A N/A N/A Nfu_N domain-containing 
protein 

Fe/S biogenesis protein nfuA, 
*-* 
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TraesCS1B02G1251
00 

N/A N/A N/A N/A N/A J domain-containing protein Chaperone protein dnaJ, 
putative, *** 

TraesCS1B02G1408
00 

N/A N/A N/A N/A N/A Myb_DNA-bind_3 domain-
containing protein 

Myb/SANT-like DNA-
binding domain protein, --* 

TraesCS1B02G0693
00 

N/A N/A N/A N/A N/A Uncharacterized protein Mammalian uncoordinated 
homology 13, domain 2, *** 

TraesCS1B02G1466
00 

N/A N/A N/A N/A N/A RRM domain-containing 
protein 

RNA-binding family protein, 
*-* 

TraesCS1B02G1349
00 

N/A N/A N/A N/A N/A Uncharacterized protein Protein apaG, *** 

TraesCS1B02G0996
00 

N/A N/A N/A N/A N/A Uncharacterized protein Aspartic proteinase, *** 

TraesCS1B02G0598
00 

N/A N/A N/A N/A N/A Nudix hydrolase domain-
containing protein 

Nudix hydrolase 9, *** 

TraesCS1B02G1082
00 

N/A N/A N/A N/A N/A Fibronectin type-III 
domain-containing protein 

Protein VERNALIZATION 
INSENSITIVE 3, *** 

TraesCS1B02G0191
00 

N/A N/A N/A N/A N/A Uncharacterized protein Ras-like protein, *** 

TraesCS1B02G0717
00 

N/A N/A N/A N/A N/A Uncharacterized protein Zinc finger family protein, 
*** 

TraesCS1B02G0011
00 

N/A N/A N/A N/A N/A Uncharacterized protein Nucleic acid-binding, OB-
fold-like protein, *** 

TraesCS1B02G1010
00 

N/A N/A N/A N/A N/A Uncharacterized protein Agenet domain containing 
protein, *** 

TraesCS1B02G0983
00 

N/A N/A N/A N/A N/A RF_PROK_I domain-
containing protein 

Peptide chain release factor 1, 
*** 

TraesCS1B02G0016
00 

N/A N/A N/A N/A N/A Uncharacterized protein Adenylyl cyclase-associated 
protein 1, --* 

TraesCS1B02G0899
00 

N/A N/A N/A N/A N/A Uncharacterized protein phosphoglycolate 
phosphatase, *** 

TraesCS1B02G1419
00 

N/A N/A N/A N/A N/A Proteasome subunit beta, 
EC 3.4.25.1 

Proteasome subunit beta type, 
*** 

TraesCS1B02G1052
00 

N/A N/A N/A N/A N/A WD_REPEATS_REGION 
domain-containing protein 

Transducin/WD-like repeat-
protein, *** 

TraesCS1B02G1413
00 

N/A N/A N/A N/A N/A Ephrin_rec_like domain-
containing protein 

Glycine-rich protein, *** 

TraesCS1B02G1329
00 

N/A N/A N/A N/A N/A Autophagy-related protein 
18a 

WD repeat phosphoinositide-
interacting-like protein, *** 
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TraesCS1B02G1053
00 

N/A N/A N/A N/A N/A Uncharacterized protein O-acyltransferase, --* 

TraesCS1B02G1232
00 

N/A N/A N/A N/A N/A Kinesin-like protein Kinesin-like protein, *** 

TraesCS1B02G1008
00 

N/A N/A N/A N/A N/A RRM domain-containing 
protein 

RNA-binding family protein, 
*** 

TraesCS1B02G0245
00 

N/A N/A N/A N/A N/A Actin Actin, *** 

TraesCS1B02G0904
00 

N/A N/A N/A N/A N/A Uncharacterized protein Metal tolerance protein, *** 

TraesCS1B02G1482
00 

N/A N/A N/A N/A N/A PA domain-containing 
protein 

Vacuolar-sorting receptor-like 
protein, *** 

TraesCS1B02G1322
00 

N/A N/A N/A N/A N/A F-box domain-containing 
protein 

F-box family protein, --* 

TraesCS1B02G0952
00 

N/A N/A N/A N/A N/A Non-specific 
serine/threonine protein 
kinase, EC 2.7.11.1 

Protein kinase, *** 

TraesCS1B02G1455
00 

N/A N/A N/A N/A N/A alpha-1,2-Mannosidase, EC 
3.2.1.- 

alpha-1,2-Mannosidase, *** 

TraesCS1B02G1270
00 

N/A N/A N/A N/A N/A Histidine kinase domain-
containing protein 

Ethylene receptor, *** 

TraesCS1B02G1382
00 

N/A N/A N/A N/A N/A Pre-mRNA-splicing factor 
38 

Pre-mRNA-splicing factor, 
*** 

TraesCS1B02G0839
00 

N/A N/A N/A N/A N/A Uncharacterized protein E3 SUMO-protein ligase 
SIZ1, *** 

TraesCS1B02G0580
00 

N/A N/A N/A N/A N/A Uncharacterized protein UDP galactose transporter-
related protein,  *** 

TraesCS1B02G1480
00 

N/A N/A N/A N/A N/A Uncharacterized protein Calmodulin, *** 

TraesCS1B02G1022
00 

N/A N/A N/A N/A N/A Replication protein A 
subunit 

Replication protein A 70 kDa 
DNA-binding subunit, *** 

TraesCS1B02G1452
00 

N/A N/A N/A N/A N/A N-acetyltransferase domain-
containing protein 

N-acetyltransferase-like 
protein, *** 

TraesCS1B02G0977
00 

N/A N/A N/A N/A N/A Protein kinase domain-
containing protein 

Kinase family protein, *** 

TraesCS1B02G1190
00 

N/A N/A N/A N/A N/A Uncharacterized protein Double stranded RNA binding 
protein 3, *** 
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TraesCS1B02G0897
00 

N/A N/A N/A N/A N/A Uncharacterized protein ATP-dependent zinc 
metalloprotease FtsH, *-* 

TraesCS1B02G1399
00 

N/A N/A N/A N/A N/A Uncharacterized protein Late embryogenesis abundant 
protein, *** 

TraesCS1B02G0659
00 

N/A N/A N/A N/A N/A Uncharacterized protein Arginine/serine-rich splicing 
factor, putative, *** 

TraesCS1B02G0922
00 

N/A N/A N/A N/A N/A DUF4033 domain-
containing protein 

Beta-carotene isomerase d27, 
chloroplastic, *** 

TraesCS1B02G0192
00 

N/A N/A N/A N/A N/A CAP-Gly domain-
containing protein 

Tubulin-specific chaperone 
cofactor E-like protein, *** 

TraesCS1B02G0873
00 

N/A N/A N/A N/A N/A Uncharacterized protein Methyl-CpG-binding domain 
protein 4, *** 

TraesCS1B02G0178
00 

N/A N/A N/A N/A N/A Methionine S-
methyltransferase, EC 
2.1.1.12 

Methionine S-
methyltransferase, *** 

TraesCS1B02G0586
00 

N/A N/A N/A N/A N/A Uncharacterized protein Dual specificity phosphatase, 
*** 

TraesCS1B02G1440
00 

N/A N/A N/A N/A N/A O-acyltransferase O-acyltransferase, *** 

TraesCS1B02G1261
00 

N/A N/A N/A N/A N/A Protein disulfide-isomerase, 
EC 5.3.4.1 

Disulfide-isomerase, *** 

TraesCS1B02G1027
00 

N/A N/A N/A N/A N/A Aminotran_1_2 domain-
containing protein 

Aminotransferase, *** 

TraesCS1B02G1189
00 

N/A N/A N/A N/A N/A Chromatin-remodeling 
complex ATPase 

Chromatin remodeling factor, 
putative *** 

TraesCS1B02G1473
00 

N/A N/A N/A N/A N/A PMR5N domain-containing 
protein 

Trichome birefringence-like 
protein, *** 

TraesCS1B02G0517
00 

N/A N/A N/A N/A N/A Morc6_S5 domain-
containing protein 

MORC family CW-type zinc 
finger protein 4, *** 

TraesCS1B02G1051
00 

XP_003568
961.1 

ribosome biogenesis protein 
NOP53 [Brachypodium 
distachyon] 

***- 587, 100%, 
0.0, Y 

N/A Ribosome biogenesis 
protein NOP53 

Glioma tumor suppressor-like 
protein, *** 

TraesCS1B02G0488
00 

N/A N/A N/A N/A N/A Uncharacterized protein BRI1-KD interacting protein, 
*** 

TraesCS1B02G1026
00 

N/A N/A N/A N/A N/A N-acetyltransferase domain-
containing protein 

N-acetyltransferase, putative, 
*** 

TraesCS1B02G1191
00 

N/A N/A N/A N/A N/A Uncharacterized protein Transport inhibitor response 1, 
*** 
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TraesCS1B02G1215
00 

N/A N/A N/A N/A N/A Uncharacterized protein Pre-rRNA-processing protein 
TSR2, *** 

TraesCS1B02G1422
00 

N/A N/A N/A N/A N/A Derlin Derlin, *** 

TraesCS1B02G1305
00 

N/A N/A N/A N/A N/A Uncharacterized protein centrosomal protein of 135 
kDa-like protein, *** 

TraesCS1B02G1087
00 

N/A N/A N/A N/A N/A SUN domain-containing 
protein 

SAD1/UNC-84 domain 
protein, putative, --* 

TraesCS1B02G1281
00 

N/A N/A N/A N/A N/A Serine/threonine-protein 
phosphatase, EC 3.1.3.16 

Serine/threonine-protein 
phosphatase, *** 

TraesCS1B02G1007
00 

N/A N/A N/A N/A N/A Uncharacterized protein Peptide chain release factor 1, 
--* 

TraesCS1B02G0601
00 

N/A N/A N/A N/A N/A Uncharacterized protein E3 UFM1-protein ligase 1-
like protein, *-* 

TraesCS1B02G1308
00 

N/A N/A N/A N/A N/A GTP diphosphokinase, EC 
2.7.6.5 

RelA/SpoT-like protein, *-* 

TraesCS1B02G0998
00 

N/A N/A N/A N/A N/A 4HBT domain-containing 
protein 

Thioesterase family protein, 
*** 

TraesCS1B02G1428
00 

N/A N/A N/A N/A N/A Peroxidase, EC 1.11.1.7 Peroxidase, *** 

TraesCS1B02G0967
00 

N/A N/A N/A N/A N/A Uncharacterized protein phosphoribosylformylglycina
midine synthase, *** 
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DIFFERENTIALLY EXPRESSED RYE CONTIGS 
contig blast-accession human-readable-description quali

ty-
code 

quality-
values 

blast2 bauer chrom
osome 

Lo7_v2_con
tig_62501 

KAF6983978.1 hypothetical protein 
CFC21_002053 [Triticum 
aestivum] 

*-** 2109, 
25%, 
0.0, Y 

N/A DNA replication and 
repair recF, *** 

1R 

Lo7_v2_con
tig_2869707 

VAI93343.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 140, 
13%, 
2e-48, 
Y 

actin-related protein 2/3 complex subunit 
3 [Brachypodium distachyon] 

Actin-related protein 
2/3 complex subunit 
3, *** 

6R 

Lo7_v2_con
tig_87853 

SPT16341.1 unnamed protein product 
[Triticum aestivum] 

*-** 337, 
20%, 
2e-102, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_230940 

XP_020198414.1 nucleolin-like [Aegilops tauschii 
subsp. tauschii] 

*-** 73.9, 
10%, 
2e-12, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_1346697 

XP_020150077.1 inversin-B-like [Aegilops tauschii 
subsp. tauschii] 

*-** 330, 
15%, 
3e-161, 
Y 

ankyrin repeat-containing protein ITN1 
[Brachypodium distachyon] 

Ankyrin repeat family 
protein, putative, *** 

6R 

Lo7_v2_con
tig_124264 

XP_020154354.1 uncharacterized protein 
LOC109739699 [Aegilops 
tauschii subsp. tauschii] 

*-** 94.4, 
13%, 
1e-21, 
Y 

transposon protein, putative, unclassified 
[Oryza sativa Japonica Group] 

N/A N/A 

Lo7_v2_con
tig_2706128 

XP_020173519.1 uncharacterized protein 
LOC109759094 [Aegilops 
tauschii subsp. tauschii] 

**** 267, 
97%, 
6e-83, 
Y 

Rim2 protein [Oryza sativa Indica 
Group]/TPA: transposase [Oryza sativa] 

N/A N/A 

Lo7_v2_con
tig_1350291 

EMS59497.1 ABC transporter G family 
member 37 [Triticum urartu] 

*-** 89.7, 
11%, 
2e-33, 
Y 

N/A N/A 7R 

Lo7_v2_con
tig_52364 

N/A N/A N/A N/A N/A N/A 7R 
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Lo7_v2_con
tig_6239 

VAI36291.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 145, 
5%, 7e-
35, Y 

BTB/POZ domain-containing protein 
At1g30440 [Aegilops tauschii subsp. 
tauschii] 

N/A N/A 

Lo7_v2_con
tig_1360483 

EMS53266.1 Disease resistance protein RPM1 
[Triticum urartu] 

*-** 702, 
15%, 
0.0, Y 

N/A Ankyrin repeat 
domain-containing 
protein 2, *** 

N/A 

Lo7_v2_con
tig_126289 

KAF7067932.1 hypothetical protein 
CFC21_073747 [Triticum 
aestivum] 

*-** 570, 
32%, 
0.0, Y 

N/A N/A N/A 

Lo7_v2_con
tig_62387 

KAE8812924.1 Receptor-like protein kinase 
HSL1 [Hordeum vulgare] 

*-** 86.3, 
15%, 
3e-59, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_1358729 

VAI69795.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 73.6, 
19%, 
1e-16, 
Y 

putative disease resistance RPP8-like 
protein 4 [Triticum urartu] 

N/A N/A 

Lo7_v2_con
tig_4807 

EMS58960.1 hypothetical protein 
TRIUR3_19133 [Triticum urartu] 

*--* 50.8, 
3%, 3e-
04, Y 

N/A N/A 4R 

Lo7_v2_con
tig_143345 

KAF7012669.1 hypothetical protein 
CFC21_026836 [Triticum 
aestivum] 

*-** 1547, 
56%, 
0.0, Y 

probable LRR receptor-like 
serine/threonine-protein kinase 
At3g47570 [Aegilops tauschii subsp. 
tauschii] 

N/A N/A 

Lo7_v2_con
tig_1366296 

XP_020153283.1 uncharacterized protein 
LOC109738600 [Aegilops 
tauschii subsp. tauschii] 

*-** 163, 
21%, 
1e-107, 
Y 

transposon protein, putative, Mutator 
sub-class [Oryza sativa Japonica Group] 

N/A 1R 

Lo7_v2_con
tig_374712 

XP_020165672.1 uncharacterized protein 
LOC109751192 [Aegilops 
tauschii subsp. tauschii] 

*-** 622, 
12%, 
0.0, Y 

F-box protein At5g49610-like [Aegilops 
tauschii subsp. tauschii] 

N/A N/A 

Lo7_v2_con
tig_1379005 

VAH54650.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 113, 
22%, 
4e-26, 
Y 

putative N-acetylglucosaminyl-
phosphatidylinositol de-N-acetylase 
[Hordeum vulgare] 

N-
acetylglucosaminyl-
phosphatidylinositol 
de-N-acetylase, *** 

2R 

Lo7_v2_con
tig_2871610 

KAF6989608.1 hypothetical protein 
CFC21_006926 [Triticum 
aestivum] 

*-** 474, 
32%, 
0.0, Y 

U-box domain-containing protein 57 
[Triticum urartu] 

Kinase family protein, 
*** 

N/A 
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Lo7_v2_con
tig_1348975 

XP_020195405.1 uncharacterized protein 
LOC109781215 [Aegilops 
tauschii subsp. tauschii] 

*-** 286, 
10%, 
2e-108, 
Y 

Serine carboxypeptidase-like 18 
[Triticum urartu] 

N/A 4R 

Lo7_v2_con
tig_2870479 

KAF7068198.1 hypothetical protein 
CFC21_073973 [Triticum 
aestivum] 

*-** 612, 
47%. 
0.0, Y 

N/A N/A N/A 

Lo7_v2_con
tig_1353544 

BAH79979.1 putative unclassified 
retrotransposon protein [Oryza 
sativa Indica Group] 

*-*- 206, 
28%, 
0.0, N 

putative non-LTR retroelement reverse 
transcriptase [Sorghum bicolor] 

N/A N/A 

Lo7_v2_con
tig_9185 

XP_020190265.1 wiskott-Aldrich syndrome protein 
homolog 1-like [Aegilops tauschii 
subsp. tauschii] 

*-** 67.8, 
21%, 
1e-12, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_1364696 

KAF7088973.1 hypothetical protein 
CFC21_092039 [Triticum 
aestivum] 

**** 584, 
60%, 
0.0, Y 

4-hydroxyphenylpyruvate dioxygenase 
[Aegilops tauschii subsp. tauschii] 

N/A N/A 

Lo7_v2_con
tig_222418 

hypothetical protein 
C2845_PM09G025
40 [Panicum 
miliaceum] 

hypothetical protein 
C2845_PM09G02540 [Panicum 
miliaceum] 

*--* 52.0, 
5%, 2e-
06, N 

retrotransposon protein, putative, Ty1-
copia subclass, expressed [Oryza sativa 
Japonica Group] 

N/A N/A 

Lo7_v2_con
tig_1353729 

KAE8771443.1 Heterogeneous nuclear 
ribonucleoprotein 27C [Hordeum 
vulgare] 

*-** 459, 
14%, 
3e-146, 
Y 

peptide chain release factor PrfB3, 
chloroplastic [Oryza sativa Japonica 
Group] 

Peptide chain release 
factor 2, *** 

N/A 

Lo7_v2_con
tig_61381 

VAI86876.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 463, 
7%, 2e-
147, Y 

pathogenesis-related protein 5-like 
[Aegilops tauschii subsp. tauschii] 

Pathogenesis-related 
thaumatin-like 
protein, *** 

N/A 

Lo7_v2_con
tig_3953 

KAF7073925.1 hypothetical protein 
CFC21_078845 [Triticum 
aestivum] 

*-** 831, 
16%, 
0.0, Y 

N/A N/A 5R 

Lo7_v2_con
tig_1363468 

AKE47417.1 hypothetical protein 
TAANSRALLhA_1740J17.g000
04 [Triticum aestivum] 

*-** 92.0, 
4%, 1e-
18, Y 

N/A N/A N/A 

Lo7_v2_con
tig_78076 

KAE8805228.1 putative cyclin-dependent kinase 
F-2 [Hordeum vulgare] 

*-** 661, 
25%, 
0.0, Y 

N/A Kinase-like, *** N/A 
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Lo7_v2_con
tig_1372743 

KAE8781419.1 hypothetical protein 
D1007_45278 [Hordeum vulgare] 

*-** 145, 
9%, 3e-
38 , Y 

Hydroxymethylglutaryl-CoA lyase, 
mitochondrial [Hordeum vulgare]/NHL 
repeat-containing protein 2 [Hordeum 
vulgare] 

N/A N/A 

Lo7_v2_con
tig_1348151 

AAQ56285.1 putative gag-pol protein [Oryza 
sativa Japonica Group] 

*-*- 116, 
6%, 9e-
40, N 

N/A MADS-box 
transcription factor 1, 
*** 

5R 

Lo7_v2_con
tig_1348527 

XP_024316431.1 uncharacterized protein 
LOC100839419 isoform X2 
[Brachypodium distachyon] 

*-*- 135, 
4%, 6e-
52, N 

N/A N/A N/A 

Lo7_v2_con
tig_2641 

VAI02585.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 1232, 
21%, 
0.0, Y 

calcium-transporting ATPase 2, plasma 
membrane-type-like isoform X2 
[Aegilops tauschii subsp. tauschii] 

N/A 4R 

Lo7_v2_con
tig_64434 

SPT15596.1 unnamed protein product 
[Triticum aestivum] 

*-** 438, 
12%, 
1e-134, 
Y 

probable membrane-associated kinase 
regulator 4 [Aegilops tauschii subsp. 
tauschii] 

N/A 1R 

Lo7_v2_con
tig_1347313 

XP_020190442.1 uncharacterized protein 
LOC109776199 [Aegilops 
tauschii subsp. tauschii] 

*-** 337, 
7%, 3e-
102, Y 

N/A Unknown protein N/A 

Lo7_v2_con
tig_59883 

XP_020163190.1 uncharacterized protein 
LOC109776199 [Aegilops 
tauschii subsp. tauschii] 

*-** 622, 
21%, 
0.0, Y 

N/A F-box domain 
containing protein, 
expressed, *** 

6R 

Lo7_v2_con
tig_377814 

N/A N/A N/A 
 

N/A N/A N/A 

Lo7_v2_con
tig_208418 

XP_020180543.1 uncharacterized protein 
LOC109766178 [Aegilops 
tauschii subsp. tauschii] 

*-** 331, 
25%, 
6e-103, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_1390307 

XP_020195337.1 actin cytoskeleton-regulatory 
complex protein pan1-like 
[Aegilops tauschii subsp. 
tauschii] 

*-** 66.2, 
12%, 
9e-13, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_1346943 

XP_020187078.1 uncharacterized protein 
LOC109772792 [Aegilops 
tauschii subsp. tauschii] 

*-** 485, 
14%, 
0.0, Y 

N/A N/A N/A 
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Lo7_v2_con
tig_264947 

VAH22123.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*--* 51.2, 
2%, 1e-
05 , Y 

Histone H2B.2 [Hordeum vulgare] N/A 1R 

Lo7_v2_con
tig_62402 

XP_020193939.1 BOI-related E3 ubiquitin-protein 
ligase 1-like [Aegilops tauschii 
subsp. tauschii] 

*-** 339, 
8%, 7e-
103, Y 

N/A N/A N/A 

Lo7_v2_con
tig_2870870 

KAE8794488.1 Homeobox protein KNOX3 
[Hordeum vulgare] 

*-** 180, 
29%, 
3e-50, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_123975 

EMS49933.1 hypothetical protein 
TRIUR3_25873 [Triticum urartu] 

\---* 46.2, 
4%, 3e-
04, Y 

N/A N/A N/A 

Lo7_v2_con
tig_1355103 

SPT21164.1 unnamed protein product 
[Triticum aestivum] 

*-** 679, 
26%, 
0.0, Y 

retrotransposon protein, putative, 
unclassified [Oryza sativa Japonica 
Group] 

N/A N/A 

Lo7_v2_con
tig_69071 

XP_020189365.1 uncharacterized protein 
LOC109775022 [Aegilops 
tauschii subsp. tauschii] 

*-** 196, 
35%, 
5e-56, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_63334 

XP_020177626.1 uncharacterized protein 
LOC109763185 [Aegilops 
tauschii subsp. tauschii] 

*-** 580, 
12%, 
0.0, Y 

N/A N/A N/A 

Lo7_v2_con
tig_2994 

BAJ99011.1 predicted protein [Hordeum 
vulgare subsp. vulgare] 

*-** 331, 
9%, 5e-
100, Y 

N/A Cyclin-like protein, 
putative, *** 

7R 

Lo7_v2_con
tig_70724 

KAE8805831.1 Alpha-amylase [Hordeum 
vulgare] 

*-** 333, 
16%, 
1e-103, 
Y 

N/A Protein kinase G11A, 
*** 

N/A 

Lo7_v2_con
tig_1347152 

N/A N/A N/A N/A N/A N/A N/A 

Lo7_v2_con
tig_2872298 

N/A N/A N/A N/A N/A N/A 1R 

Lo7_v2_con
tig_1355711 

VAH41411.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*--* 60.8, 
11%, 
2e-08, 
Y 

N/A N/A N/A 
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Lo7_v2_con
tig_230954 

N/A N/A N/A N/A N/A N/A N/A 

Lo7_v2_con
tig_2673288 

VAI58481.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 66.2, 
33%, 
6e-11, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_59538 

VAI67989.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 286, 
8%, 2e-
117, Y 

GDSL esterase/lipase At5g45950-like 
[Aegilops tauschii subsp. tauschii] 

GDSL esterase/lipase, 
*** 

N/A 

Lo7_v2_con
tig_1405567 

N/A N/A N/A N/A N/A N/A N/A 

Lo7_v2_con
tig_1375794 

XP_020148526.1 uncharacterized protein 
LOC109733718 [Aegilops 
tauschii subsp. tauschii] 

*-** 883, 
47%, 
0.0, Y 

putative reverse transcriptase [Sorghum 
bicolor] 

N/A N/A 

Lo7_v2_con
tig_1354240 

KAF7050430.1 hypothetical protein 
CFC21_058801 [Triticum 
aestivum] 

*--* 54.3, 
5%, 8e-
06, Y 

N/A N/A N/A 

Lo7_v2_con
tig_11315 

XP_020147081.1 uncharacterized protein 
LOC109732305 [Aegilops 
tauschii subsp. tauschii] 

*-** 530, 
18%, 
4e-169, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_1357725 

KAF7111876.1 hypothetical protein 
CFC21_111831 [Triticum 
aestivum] 

*-** 564, 
22%, 
0.0, Y 

glutelin type-A 1-like [Hordeum vulgare] 11S seed storage 
protein, *** 

N/A 

Lo7_v2_con
tig_2872626 

N/A N/A N/A N/A N/A N/A 1R 

Lo7_v2_con
tig_61750 

ACN88793.1 putative polyprotein [Secale 
cereale] 

*-** 295, 
6%, 1e-
139, Y 

Putative retroelement [Oryza sativa 
Japonica Group] 

N/A N/A 

Lo7_v2_con
tig_145997 

XP_020160305.1 uncharacterized protein 
LOC109745593 [Aegilops 
tauschii subsp. tauschii] 

*-** 98.6, 
8%, 2e-
19, Y 

N/A N/A N/A 

Lo7_v2_con
tig_64956 

KAF7027069.1 hypothetical protein 
CFC21_039141 [Triticum 
aestivum] 

*-** 1008, 
41%, 
0.0, Y 

putative ubiquitin carrier protein E2 23 
[Hordeum vulgare] 

N/A N/A 

Lo7_v2_con
tig_6491 

EMS68313.1 putative polyamine oxidase 4 
[Triticum urartu] 

*-** 251, 
27%, 

N/A Lysine-specific 
histone demethylase 
1, *** 

N/A 
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6e-138, 
Y 

Lo7_v2_con
tig_1350506 

KAF7012839.1 hypothetical protein 
CFC21_026988 [Triticum 
aestivum] 

*-** 341, 
25%, 
2e-101, 
Y 

(E)-beta-farnesene synthase [Setaria 
italica] 

Terpenoid cyclases/Protein 
prenyltransferases superfamily 
protein LENGTH=603, *** 

Lo7_v2_con
tig_427775 

SPT17925.1 unnamed protein product 
[Triticum aestivum] 

*-** 154, 
20%, 
1e-40, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_63252 

VAH55546.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 362, 
17%, 
2e-108, 
Y 

N/A O-acyltransferase 
WSD1, *** 

3R 

Lo7_v2_con
tig_204561 

AAA66167.1 unknown protein [Triticum 
urartu] 

*-** 81.3, 
20%, 
6e-17, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_66476 

CAB3493741.1 unnamed protein product 
[Digitaria exilis] 

*-** 116, 
15%, 
2e-27, 
Y 

ADP-ribosylation factor-like protein 2 
[Zea mays] 

ADP-ribosylation 
factor, *** 

N/A 

Lo7_v2_con
tig_584464 

N/A N/A N/A N/A N/A N/A N/A 

Lo7_v2_con
tig_1358326 

KAE8805029.1 hypothetical protein 
D1007_19052 [Hordeum vulgare] 

*-** 82.4, 
9%, 2e-
21, Y 

putative methionyl-tRNA synthetase 
[Hordeum vulgare] 

N/A N/A 

Lo7_v2_con
tig_123999 

SPT18624.1 unnamed protein product 
[Triticum aestivum] 

*-** 80.1, 
30%, 
9e-25, 
Y 

putative F-box/FBD/LRR-repeat protein 
At5g52460 [Aegilops tauschii subsp. 
tauschii] 

N/A N/A 

Lo7_v2_con
tig_1355255 

AAV80394.1 polyprotein [Hordeum vulgare 
subsp. vulgare] 

*-** 378, 
55%, 
0.0, Y 

retrotransposon protein, putative, Ty3-
gypsy subclass [Oryza sativa Japonica 
Group] 

N/A N/A 

Lo7_v2_con
tig_1380475 

KAE8805271.1 hypothetical protein 
D1007_18675 [Hordeum vulgare] 

*-** 425, 
27%, 
6e-140, 
Y 

N/A N/A N/A 
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Lo7_v2_con
tig_146164 

XP_020156837.1 G-type lectin S-receptor-like 
serine/threonine-protein kinase 
At2g19130 [Aegilops tauschii 
subsp. tauschii] 

*-** 1353, 
33%, 
0.0, Y 

N/A N/A N/A 

Lo7_v2_con
tig_2871655 

VAH38114.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 552, 
14%, 
8e-177, 
Y 

F-box protein At3g07870-like [Aegilops 
tauschii subsp. tauschii]/Programmed cell 
death protein 2-like protein [Hordeum 
vulgare] 

Programmed cell 
death protein 2-like 
protein, *** 

2R 

Lo7_v2_con
tig_1344244 

XP_020196522.1 uncharacterized protein 
LOC109782328 [Aegilops 
tauschii subsp. tauschii] 

*-** 95.9, 
8%, 2e-
45, Y 

putative nuclease HARBI1 [Aegilops 
tauschii subsp. tauschii] 

N/A N/A 

Lo7_v2_con
tig_141118 

N/A N/A N/A N/A N/A N/A N/A 

Lo7_v2_con
tig_1386227 

ABA96959.2 retrotransposon protein, putative, 
Ty1-copia subclass [Oryza sativa 
Japonica Group] 

*-** 320, 
14%, 
4e-90, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_1405569 

ABE60891.1 putative polyprotein [Oryza sativa 
Japonica Group] 

*-** 407, 
59%, 
3e-171, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_2492 

VAI55040.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 1176, 
32%, 
0.0, Y 

putative histone acetyltransferase HAC-
like 1 [Triticum urartu] 

Histone 
acetyltransferase, *** 

6R 

Lo7_v2_con
tig_262970 

KAE8783768.1 hypothetical protein 
D1007_42748 [Hordeum vulgare] 

*-** 546, 
18%, 
8e-176, 
Y 

N/A Protein of unknown 
function (DUF793) 
LENGTH=382, *** 

N/A 

Lo7_v2_con
tig_61289 

SPT18691.1 unnamed protein product 
[Triticum aestivum] 

*-** 368, 
19%, 
0.0, Y 

N/A N/A N/A 

Lo7_v2_con
tig_1358116 

XP_020151355.1 protein trichome birefringence-
like 9 [Aegilops tauschii subsp. 
tauschii] 

*-** 122, 
15%, 
2e-34, 
Y 

ethylene-responsive transcription factor 
ERF110-like [Aegilops tauschii subsp. 
tauschii] 

N/A N/A 

Lo7_v2_con
tig_1364344 

KAF7099606.1 hypothetical protein 
CFC21_101227 [Triticum 
aestivum] 

*--* 65.9, 
17%, 

N/A N/A N/A 
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2e-09, 
Y 

Lo7_v2_con
tig_124266 

EMS48257.1 Protein IN2-1-like protein B 
[Triticum urartu] 

*-** 67.8, 
5%, 5e-
10, Y 

N/A N/A N/A 

Lo7_v2_con
tig_70563 

VAI12735.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 280, 
9%, 2e-
111, Y 

N/A Unknown protein N/A 

Lo7_v2_con
tig_139988 

EMS48183.1 hypothetical protein 
TRIUR3_10502 [Triticum urartu] 

*-** 73.6, 
10%, 
4e-12, 
Y 

retrotransposon protein, putative, Ty3-
gypsy subclass [Oryza sativa Japonica 
Group] 

N/A N/A 

Lo7_v2_con
tig_1358102 

XP_020182672.1 probable disease resistance RPP8-
like protein 4 [Aegilops tauschii 
subsp. tauschii] 

*-** 790, 
39%, 
0.0, Y 

N/A N/A N/A 

Lo7_v2_con
tig_6407 

XP_020148001.1 uncharacterized protein 
LOC109733211 [Aegilops 
tauschii subsp. tauschii] 

*-** 57.0, 
3%, 3e-
06, Y 

Serine/threonine-protein kinase SMG1 
[Hordeum vulgare] 

N/A N/A 

Lo7_v2_con
tig_112373 

AAO66559.1 putative copia-type pol 
polyprotein [Oryza sativa 
Japonica Group] 

*-** 307, 
26%, 
3e-153, 
Y 

N/A N/A N/A 

Lo7_v2_con
tig_11782 

KAF7080142.1 hypothetical protein 
CFC21_084265 [Triticum 
aestivum] 

*-** 199, 
22%, 
3e-70, 
Y 

enhancer of mRNA-decapping protein 4-
like [Hordeum vulgare] 

N/A 6R 

Lo7_v2_con
tig_59943 

VAH20602.1 unnamed protein product 
[Triticum turgidum subsp. durum] 

*-** 1486, 
20%, 
0.0, Y 

G-type lectin S-receptor-like 
serine/threonine-protein kinase 
At2g19130 [Aegilops tauschii subsp. 
tauschii] 

Serine/threonine-
protein kinase, *** 

1R 

Lo7_v2_con
tig_145050 

BAJ92268.1 predicted protein [Hordeum 
vulgare subsp. vulgare] 

*-** 103, 
7%, 3e-
23, Y 

N/A N/A 3R 

Lo7_v2_con
tig_85958 

XP_020194961.1 uncharacterized protein 
LOC109780791 [Aegilops 
tauschii subsp. tauschii] 

\---* 43.1, 
20%, 
0.022, 
Y 

N/A N/A N/A 
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Lo7_v2_con
tig_2808155 

AEW46799.1 gamma prolamin [Secale cereale 
subsp. afghanicum] 

*-** 64.3, 
28%, 
3e-12, 
Y 

gamma-gliadin [Triticum aestivum] N/A N/A 

Lo7_v2_con
tig_2875859 

EMS58901.1 hypothetical protein 
TRIUR3_27333 [Triticum urartu] 

*-** 86.3, 
5%, 2e-
17, Y 

putative methyltransferase At1g22800 
[Aegilops tauschii subsp. tauschii] 

N/A N/A 

 
 

contig blast-
accessi
on 

human-readable-
description 

qual
ity-
code 

qualit
y-
value
s 

blast2 bauer chro
mos
ome 

Lo7_v2_c
ontig_625
01 

KAF6
98397
8.1 

hypothetical protein 
CFC21_002053 
[Triticum aestivum] 

*-** 2109, 
25%, 
0.0, 
Y 

N/A DNA replication and repair recF, *** 1R 

Lo7_v2_c
ontig_136
6296 

XP_02
01532
83.1 

uncharacterized 
protein 
LOC109738600 
[Aegilops tauschii 
subsp. tauschii] 

*-** 163, 
21%, 
1e-
107, 
Y 

transposon protein, putative, 
Mutator sub-class [Oryza 
sativa Japonica Group] 

N/A 1R 

Lo7_v2_c
ontig_644
34 

SPT15
596.1 

unnamed protein 
product [Triticum 
aestivum] 

*-** 438, 
12%, 
1e-
134, 
Y 

probable membrane-
associated kinase regulator 
4 [Aegilops tauschii subsp. 
tauschii] 

N/A 1R 

Lo7_v2_c
ontig_264
947 

VAH2
2123.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*--* 51.2, 
2%, 
1e-
05 , 
Y 

Histone H2B.2 [Hordeum 
vulgare] 

N/A 1R 

Lo7_v2_c
ontig_287
2298 

N/A N/A N/A N/A N/A N/A 1R 

Lo7_v2_c
ontig_287
2626 

N/A N/A N/A N/A N/A N/A 1R 
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Lo7_v2_c
ontig_599
43 

VAH2
0602.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 1486, 
20%, 
0.0, 
Y 

G-type lectin S-receptor-like 
serine/threonine-protein 
kinase At2g19130 [Aegilops 
tauschii subsp. tauschii] 

Serine/threonine-protein kinase, *** 1R 

Lo7_v2_c
ontig_134
7926 

KAF6
98690
9.1 

hypothetical protein 
CFC21_004604 
[Triticum aestivum] 

*-** 694, 
27%, 
0.0, 
Y 

N/A unknown protein; FUNCTIONS IN: molecular_function unknown; 
INVOLVED IN: biological_process unknown; LOCATED IN: 
cellular_component unknown; EXPRESSED IN: 24 plant 
structures; EXPRESSED DURING: 15 growth stages. 
LENGTH=690, *-* 

1R 

Lo7_v2_c
ontig_135
8115 

XP_01
56136
71.1 

BTB/POZ and MATH 
domain-containing 
protein 1 [Oryza 
sativa Japonica 
Group] 

*-*- 233, 
23%, 
1e-
67, N 

N/A BTB/POZ domain containing protein, *** 1R 

Lo7_v2_c
ontig_135
0507 

VAH2
2617.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 423, 
8%, 
4e-
134, 
Y 

N/A Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase 
family protein, *-* 

1R 

Lo7_v2_c
ontig_377
813 

KAF6
99276
6.1 

hypothetical protein 
CFC21_009729 
[Triticum aestivum] 

*-** 297, 
32%, 
6e-
90, Y 

formin-like protein 14 
[Hordeum vulgare] 

Formin-like protein, *** 1R 

Lo7_v2_c
ontig_287
1483 

XP_02
01935
77.1 

uncharacterized 
protein 
LOC109779371 
isoform X2 [Aegilops 
tauschii subsp. 
tauschii] 

*-** 292, 
6%, 
7e-
82, Y 

N/A Unknown protein 1R 

Lo7_v2_c
ontig_136
5155 

XP_02
01861
78.1 

uncharacterized 
protein 
LOC109771898 
[Aegilops tauschii 
subsp. tauschii] 

*-** 217, 
9%, 
3e-
62, Y 

lactoylglutathione lyase 
[Hordeum vulgare] 

Lactoylglutathione lyase / glyoxalase I family protein, *** 1R 

Lo7_v2_c
ontig_343
9 

VAH0
4317.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 165, 
15%, 
4e-
39, Y 

Transportin-3 [Triticum 
urartu] 

N/A 1R 
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Lo7_v2_c
ontig_234
473 

N/A N/A N/A N/A N/A N/A 1R 

Lo7_v2_c
ontig_136
1945 

XP_02
01983
17.1 

ABC transporter F 
family member 4-like 
[Aegilops tauschii 
subsp. tauschii] 

*-** 1111, 
20%, 
0.0, 
Y 

N/A ATP-binding cassette transporter, *** 1R 

Lo7_v2_c
ontig_217
11 

N/A N/A N/A N/A N/A N/A 1R 

Lo7_v2_c
ontig_601
57 

KAF6
98378
7.1 

hypothetical protein 
CFC21_001903 
[Triticum aestivum] 

*-** 590, 
6%, 
0.0, 
Y 

zinc finger HIT domain-
containing protein 2 isoform 
X1 [Aegilops tauschii 
subsp. tauschii] 

Zinc finger HIT domain-containing 2, *** 1R 

Lo7_v2_c
ontig_603
19 

VAH1
3453.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 1464, 
40%, 
0.0, 
Y 

E3 ubiquitin-protein ligase 
UPL4-like [Aegilops 
tauschii subsp. tauschii] 

Tudor/PWWP/MBT superfamily protein, *-* 1R 

Lo7_v2_c
ontig_629
98 

VAH2
0705.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 253, 
30%, 
6e-
72, Y 

histone deacetylase 5-like 
[Aegilops tauschii subsp. 
tauschii] 

Histone deacetylase 6, *** 1R 

Lo7_v2_c
ontig_566
693 

VAH2
1070.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 158, 
16%, 
5e-
39, Y 

carnosine N-
methyltransferase-like 
[Aegilops tauschii subsp. 
tauschii] 

N/A 1R 

Lo7_v2_c
ontig_278
194 

VAH9
5365.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 117, 
8%, 
2e-
26, Y 

lipoxygenase 3 [Triticum 
aestivum] 

N/A 1R 

Lo7_v2_c
ontig_629
04 

XP_02
01644
50.1 

mixed-linked glucan 
synthase 2-like 
[Aegilops tauschii 
subsp. tauschii] 

*-** 1048, 
23%, 
0, Y 

N/A N/A 1R 

Lo7_v2_c
ontig_634
54 

KAF6
99419
0.1 

hypothetical protein 
CFC21_010947 
[Triticum aestivum] 

*-** 135, 
9%, 
7e-
34, Y 

40S ribosomal protein S7 
[Aegilops tauschii subsp. 
tauschii] 

40S ribosomal protein S7, *** 1R 
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Lo7_v2_c
ontig_154
997 

EMS6
0767.1 

hypothetical protein 
TRIUR3_28838 
[Triticum urartu] 

*-** 56.6, 
6%, 
6e-
07, Y 

N/A N/A 1R 

Lo7_v2_c
ontig_179
456 

SPT17
767.1 

unnamed protein 
product [Triticum 
aestivum] 

*-** 87.4, 
42%, 
8e-
20, Y 

Iron sulfur cluster assembly 
protein 1, mitochondrial 
[Triticum urartu] 

N/A 1R 

Lo7_v2_c
ontig_136
0047 

VAH0
2851.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 264, 
12%, 
9e-
80, Y 

PHD finger protein ALFIN-
LIKE 1 [Aegilops tauschii 
subsp. tauschii] 

PHD finger protein ALFIN-LIKE 2, *** 1R 

Lo7_v2_c
ontig_148
9150 

XP_02
01491
64.1 

uncharacterized 
protein 
DDB_G0286299-like 
[Aegilops tauschii 
subsp. tauschii] 

***
* 

362, 
79%, 
2e-
121, 
Y 

titin-like [Aegilops tauschii 
subsp. tauschii] 

N/A 1R 

Lo7_v2_c
ontig_134
5370 

KAF6
99744
7.1 

hypothetical protein 
CFC21_013666 
[Triticum aestivum] 

*-** 177, 
6%, 
6e-
48, Y 

N/A N/A 1R 

Lo7_v2_c
ontig_262
762 

VAH1
8435.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 77, 
19%, 
1e-
69, Y 

glyoxysomal fatty acid beta-
oxidation multifunctional 
protein MFP-a-like 
[Aegilops tauschii subsp. 
tauschii] 

Fatty acid oxidation complex subunit alpha, *** 1R 

Lo7_v2_c
ontig_683
5 

KAF6
99672
1.1 

hypothetical protein 
CFC21_013032 
[Triticum aestivum] 

***
* 

1095, 
54%, 
0.0, 
Y 

N/A Unknown protein 1R 

Lo7_v2_c
ontig_877
27 

XP_02
01717
44.1 

uncharacterized 
protein 
LOC109757330 
[Aegilops tauschii 
subsp. tauschii] 

*-** 238, 
15%, 
4e-
65, Y 

ABC transporter G family 
member 37 [Hordeum 
vulgare] 

Unknown protein 1R 

Lo7_v2_c
ontig_603
29 

KAE8
80055
1.1 

hypothetical protein 
D1007_24051 
[Hordeum vulgare] 

*-** 296, 
7%, 

Isopenicillin N epimerase 
[Hordeum vulgare] 

N/A 1R 
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2e-
85, Y 

Lo7_v2_c
ontig_288
3402 

XP_02
43182
71.1 

DNA mismatch repair 
protein MSH5 isoform 
X5 [Brachypodium 
distachyon] 

*-** 64.3, 
24%, 
2e-
20, Y 

N/A N/A 1R 

Lo7_v2_c
ontig_137
0013 

VAI33
703.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 535, 
26%, 
7e-
171, 
Y 

N/A N/A 1R 

Lo7_v2_c
ontig_286
8832 

KAF6
99772
9.1 

ethylene-responsive 
transcription factor 
ERF061 [Aegilops 
tauschii subsp. 
tauschii] 

*-** 355, 
6%, 
4e-
109, 
Y 

AP2/ERF domain-
containing transcription 
factor [Triticum turgidum 
subsp. durum] 

N/A 1R 

Lo7_v2_c
ontig_287
1363 

PUZ6
8739.1 

hypothetical protein 
GQ55_2G052800 
[Panicum hallii var. 
hallii] 

*-** 528, 
33%, 
2e-
164, 
Y 

wall-associated receptor 
kinase 1-like [Panicum 
hallii] 

N/A 1R 

Lo7_v2_c
ontig_908
67 

VAH0
9720.1 

unnamed protein 
product [Triticum 
turgidum subsp. 
durum] 

*-** 427, 
16%, 
0.0, 
Y 

putative glycerophosphoryl 
diester phosphodiesterase 3 
[Triticum urartu] 

Glycerophosphoryl diester phosphodiesterase 2-like protein, *** 1R 
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S3) List of input genes used for GO Enrichment Analysis 
 
DOWNREGULATED WHEAT GENES 
ER membrane protein complex subunit  
Mitogen-activated protein kinase 
Non-specific serine/threonine protein kinase 
Ligase-like protein  
Prolycopene isomerase 
Ankyrin repeat domain-containing protein 
DNA/RNA helicase 
Serine/threonine-protein phosphatase 
RNA polymerase II-associated protein 
Ubiquitin-conjugating enzyme 
RING/U-box superfamily protein 
heat shock protein  
E3 ubiquitin-protein ligase 
bZIP transcription factor 
ABC transporter protein  
KAT8 regulatory NSL complex subunit 
RING/U-box superfamily protein  
Coiled-coil domain-containing protein 
CULLIN_2 domain-containing protein 
G-patch domain containing protein  
Golgi apparatus membrane protein 
CULLIN_2 domain-containing protein 
Zinc ion binding protein  
Diacylglycerol acyltransferase 
Starch synthase family protein  
NFACT-R_1 domain-containing protein 
Sodium/hydrogen exchanger  
Importin subunit alpha  
FACT complex subunit 
RING/U-box superfamily protein  
Chaperone protein  
Malic enzyme  
Acyl-CoA dehydrogenase 
Fe/S biogenesis protein 
Chaperone protein 
Myb/SANT-like DNA-binding domain protein 
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RNA-binding family protein 
Protein apaG 
Aspartic proteinase Nudix hydrolase 
Fibronectin type-III domain-containing protein 
Ras-like protein  
Zinc finger family protein  
Nucleic acid-binding OB-fold-like protein  
Agenet domain containing protein  
Peptide chain release factor 
Adenylyl cyclase-associated protein 
Phosphoglycolate phosphatase  
Proteasome subunit beta type 
Transducin/WD-like repeat-protein 
Glycine-rich protein 
Autophagy-related protein 
O-acyltransferase 
Kinesin-like protein  
RNA-binding family protein  
Actin 
Metal tolerance protein  
Vacuolar-sorting receptor-like protein  
F-box domain-containing protein 
Non-specific serine/threonine protein kinase 
alpha-12-Mannosidase 
Ethylene receptor 
Pre-mRNA-splicing factor  
E3 SUMO-protein ligase 
UDP galactose transporter-related protein   
Calmodulin  
Replication protein A subunit 
N-acetyltransferase domain-containing protein 
Protein kinase domain-containing protein 
Double stranded RNA binding protein 
ATP-dependent zinc metalloprotease 
Late embryogenesis abundant protein  
Arginine/serine-rich splicing factor 
Beta-carotene isomerase 
Tubulin-specific chaperone cofactor 
Methyl-CpG-binding domain protein 
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Methionine S-methyltransferase  
Dual specificity phosphatase  
O-acyltransferase 
Protein disulfide-isomerase 
Aminotransferase  
Chromatin-remodeling complex ATPase 
Trichome birefringence-like protein  
MORC family CW-type zinc finger protein 
Ribosome biogenesis protein 
BRI1-KD interacting protein  
N-acetyltransferase domain-containing protein 
Transport inhibitor response 
Pre-rRNA-processing protein 
Derlin 
Centrosomal protein 
SUN domain-containing protein 
Serine/threonine-protein phosphatase 
Peptide chain release factor 
protein ligase 1-like protein 
GTP diphosphokinase 
Thioesterase family protein 
Peroxidase  
Phosphoribosylformylglycinamidine synthase 
 
 
UPREGULATED RYE GENES 
DNA replication and repair 
Actin-related protein 
nucleolin-like 
Ankyrin repeat family protein 
transposon protein 
Rim2 
ABC transporter G 
BTB/POZ domain-containing protein 
Disease resistance protein RPM1 
Ankyrin repeat domain-containing protein 
Receptor-like protein kinase 
disease resistance protein RPP8 
LRR receptor-like serine/threonine-protein kinase  
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Transposon protein 
F-box protein-like 
N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase 
U-box domain-containing kinase 
Serine carboxypeptidase-like 
non-LTR retroelement reverse transcriptase 
wiskott-Aldrich syndrome protein homolog 
1-like4-hydroxyphenylpyruvate dioxygenase 
retrotransposon protein 
Peptide chain release factor 
Pathogenesis-related thaumatin-like protein 
Cyclin-dependent kinase 
Hydroxymethylglutaryl-CoA lyase 
MADS-box transcription factor 
calcium-transporting ATPase 
membrane-associated kinase regulator 
F-box domain containing protein 
Actin cytoskeleton-regulatory complex protein 
Histone H2B.2 
BOI-related E3 ubiquitin-protein ligase 1-like 
Homeobox protein KNOX3 
retrotransposon protein 
Cyclin-like protein 
Protein kinase G11A 
GDSL esterase/lipase 
Reverse transcriptase 
11S seed storage protein 
Polyprotein 
Ubiquitin carrier protein 
Lysine-specific histone demethylase 
Terpenoid cyclase 
O-acyltransferase 
ADP-ribosylation factor 
Methionyl-tRNA synthetase 
F-box/FBD/LRR-repeat protein 
Polyprotein 
G-type lectin S-receptor-like serine/threonine-protein kinase  
Programmed cell death protein 2-like protein 
nuclease HARBI1 
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Retrotransposon protein 
Polyprotein 
Histone acetyltransferase 
ethylene-responsive transcription factor ERF110-like 
Protein IN2-1-like protein B 
Retrotransposon protein 
Disease resistance RPP8-like protein 
Serine/threonine-protein kinase SMG1 
Polyprotein 
Enhancer of mRNA-decapping protein 4-like 
G-type lectin S-receptor-like serine/threonine-protein kinase 
gamma gliadin 
methyltransferase 
BTB/POZ domain containing protein 
Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase family protein 
Formin-like protein 
Lactoylglutathione lyase 
Transportin 
ATP-binding cassette transporter 
Zinc finger HIT domain-containing 
E3 ubiquitin-protein ligase 
Histone deacetylase 
carnosine N-methyltransferase-like 
lipoxygenase 
mixed-linked glucan synthase 2-like 
40S ribosomal protein 
Iron sulfur cluster assembly protein 
PHD finger protein ALFIN-LIKE 
titin-like 
Fatty acid oxidation complex subunit alpha 
ABC transporter G family protein 
Isopenicillin N epimerase 
DNA mismatch repair protein MSH5 isoform 
ethylene-responsive transcription factor ERF061 
wall-associated receptor kinase-like 
Glycerophosphoryl diester phosphodiesterase-like 
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S4) Output of GO Enrichment Analysis 
 
DOWNREGULATED WHEAT GENES - BIOLOGICAL PROCESS: 
Analysis Type: PANTHER Overrepresentation Test (Released 20200728) 
Annotation Version and Release Date: GO Ontology database DOI:  10.5281/zenodo.4033054 Released 2020-09-10 
Analyzed List: upload_1 (Triticum aestivum) 
Reference List: Triticum aestivum (all genes in database) 
Test Type: FISHER 
Correction: BONFERRONI 
Bonferroni count: 2196 
GO biological process complete Triticum aestivum - REFLIST (102802) upload_1 (1148) upload_1 (expected) upload_1 (over/under) upload_1 (fold 
Enrichment) upload_1 (P-value) 
ubiquitin-dependent protein catabolic process via the N-end rule pathway (GO:0071596) 6 6 .07 + 89.55 3.43E-06 
hydrogen peroxide catabolic process (GO:0042744) 675 610 7.54 + 80.93 0.00E00 
hydrogen peroxide metabolic process (GO:0042743) 675 610 7.54 + 80.93 0.00E00 
reactive oxygen species metabolic process (GO:0072593) 719 610 8.03 + 75.97 0.00E00 
cellular oxidant detoxification (GO:0098869) 918 610 10.25 + 59.50 0.00E00 
response to oxidative stress (GO:0006979) 957 611 10.69 + 57.17 0.00E00 
cellular response to toxic substance (GO:0097237) 960 610 10.72 + 56.90 0.00E00 
cellular detoxification (GO:1990748) 960 610 10.72 + 56.90 0.00E00 
detoxification (GO:0098754) 970 610 10.83 + 56.31 0.00E00 
response to toxic substance (GO:0009636) 981 610 10.95 + 55.68 0.00E00 
malate metabolic process (GO:0006108) 38 16 .42 + 37.70 1.38E-15 
NLS-bearing protein import into nucleus (GO:0006607) 19 8 .21 + 37.70 8.74E-07 
MAPK cascade (GO:0000165) 105 44 1.17 + 37.53 3.36E-46 
sodium ion transmembrane transport (GO:0035725) 29 12 .32 + 37.05 4.02E-11 
sodium ion transport (GO:0006814) 30 12 .34 + 35.82 5.57E-11 
sodium ion import across plasma membrane (GO:0098719) 27 10 .30 + 33.17 1.52E-08 
telomere maintenance via telomerase (GO:0007004) 41 14 .46 + 30.58 2.33E-12 
microtubule-based movement (GO:0007018) 166 56 1.85 + 30.21 4.62E-55 
inorganic cation import across plasma membrane (GO:0098659) 30 10 .34 + 29.85 3.58E-08 
inorganic ion import across plasma membrane (GO:0099587) 30 10 .34 + 29.85 3.58E-08 
signal transduction by protein phosphorylation (GO:0023014) 151 50 1.69 + 29.65 1.35E-48 
import across plasma membrane (GO:0098739) 31 10 .35 + 28.89 4.69E-08 
cellular response to chemical stimulus (GO:0070887) 1995 635 22.28 + 28.50 0.00E00 
telomere maintenance via telomere lengthening (GO:0010833) 44 14 .49 + 28.49 5.27E-12 
cellular response to nitrogen starvation (GO:0006995) 22 6 .25 + 24.42 1.20E-03 
DNA unwinding involved in DNA replication (GO:0006268) 52 14 .58 + 24.11 3.71E-11 
cellular response to ethylene stimulus (GO:0071369) 48 12 .54 + 22.39 5.88E-09 
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histone H3-K4 methylation (GO:0051568) 24 6 .27 + 22.39 1.86E-03 
ethylene-activated signaling pathway (GO:0009873) 48 12 .54 + 22.39 5.88E-09 
movement of cell or subcellular component (GO:0006928) 226 56 2.52 + 22.19 9.30E-49 
cellular response to nitrogen levels (GO:0043562) 25 6 .28 + 21.49 2.29E-03 
response to chemical (GO:0042221) 2762 639 30.84 + 20.72 0.00E00 
RNA-dependent DNA biosynthetic process (GO:0006278) 65 14 .73 + 19.29 5.22E-10 
root development (GO:0048364) 29 6 .32 + 18.53 4.86E-03 
root system development (GO:0022622) 29 6 .32 + 18.53 4.86E-03 
import into cell (GO:0098657) 50 10 .56 + 17.91 2.61E-06 
cellular catabolic process (GO:0044248) 4286 749 47.86 + 15.65 0.00E00 
response to ethylene (GO:0009723) 71 12 .79 + 15.14 3.22E-07 
cellular response to stimulus (GO:0051716) 5210 842 58.18 + 14.47 0.00E00 
catabolic process (GO:0009056) 5046 749 56.35 + 13.29 0.00E00 
response to stress (GO:0006950) 4443 654 49.62 + 13.18 0.00E00 
multicellular organism development (GO:0007275) 898 127 10.03 + 12.66 1.63E-87 
regulation of intracellular pH (GO:0051453) 71 10 .79 + 12.61 5.27E-05 
regulation of cellular pH (GO:0030641) 71 10 .79 + 12.61 5.27E-05 
cellular response to organic cyclic compound (GO:0071407) 57 8 .64 + 12.57 1.37E-03 
brassinosteroid mediated signaling pathway (GO:0009742) 57 8 .64 + 12.57 1.37E-03 
cellular response to steroid hormone stimulus (GO:0071383) 57 8 .64 + 12.57 1.37E-03 
cellular response to brassinosteroid stimulus (GO:0071367) 57 8 .64 + 12.57 1.37E-03 
steroid hormone mediated signaling pathway (GO:0043401) 57 8 .64 + 12.57 1.37E-03 
response to steroid hormone (GO:0048545) 57 8 .64 + 12.57 1.37E-03 
anatomical structure homeostasis (GO:0060249) 100 14 1.12 + 12.54 9.17E-08 
telomere maintenance (GO:0000723) 100 14 1.12 + 12.54 9.17E-08 
telomere organization (GO:0032200) 100 14 1.12 + 12.54 9.17E-08 
response to brassinosteroid (GO:0009741) 59 8 .66 + 12.14 1.74E-03 
intracellular signal transduction (GO:0035556) 786 105 8.78 + 11.96 1.85E-69 
cellular monovalent inorganic cation homeostasis (GO:0030004) 76 10 .85 + 11.78 9.46E-05 
anatomical structure development (GO:0048856) 1010 130 11.28 + 11.53 4.35E-85 
response to organic cyclic compound (GO:0014070) 72 8 .80 + 9.95 6.81E-03 
response to stimulus (GO:0050896) 7734 845 86.37 + 9.78 0.00E00 
microtubule-based process (GO:0007017) 541 56 6.04 + 9.27 1.49E-30 
regulation of pH (GO:0006885) 125 12 1.40 + 8.60 1.07E-04 
nucleotide-excision repair (GO:0006289) 148 14 1.65 + 8.47 9.93E-06 
multicellular organismal process (GO:0032501) 1395 127 15.58 + 8.15 1.17E-66 
ubiquitin-dependent protein catabolic process (GO:0006511) 1450 132 16.19 + 8.15 1.92E-69 
protein dephosphorylation (GO:0006470) 519 47 5.80 + 8.11 5.26E-23 
monovalent inorganic cation homeostasis (GO:0055067) 133 12 1.49 + 8.08 2.01E-04 
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cell redox homeostasis (GO:0045454) 145 13 1.62 + 8.03 6.33E-05 
DNA duplex unwinding (GO:0032508) 161 14 1.80 + 7.79 2.68E-05 
DNA geometric change (GO:0032392) 161 14 1.80 + 7.79 2.68E-05 
developmental process (GO:0032502) 1529 130 17.07 + 7.61 4.57E-65 
oxidation-reduction process (GO:0055114) 7562 626 84.45 + 7.41 0.00E00 
modification-dependent protein catabolic process (GO:0019941) 1628 132 18.18 + 7.26 7.67E-64 
DNA biosynthetic process (GO:0071897) 175 14 1.95 + 7.16 7.11E-05 
protein import into nucleus (GO:0006606) 126 10 1.41 + 7.11 6.91E-03 
modification-dependent macromolecule catabolic process (GO:0043632) 1681 132 18.77 + 7.03 2.65E-62 
import into nucleus (GO:0051170) 129 10 1.44 + 6.94 8.41E-03 
response to endoplasmic reticulum stress (GO:0034976) 235 18 2.62 + 6.86 1.54E-06 
dicarboxylic acid metabolic process (GO:0043648) 209 16 2.33 + 6.86 1.35E-05 
protein localization to nucleus (GO:0034504) 134 10 1.50 + 6.68 1.15E-02 
signal transduction (GO:0007165) 2764 202 30.87 + 6.54 5.11E-93 
signaling (GO:0023052) 2821 202 31.50 + 6.41 1.60E-91 
protein ubiquitination (GO:0016567) 1973 140 22.03 + 6.35 3.27E-61 
protein modification by small protein conjugation (GO:0032446) 2086 140 23.29 + 6.01 2.01E-58 
proteolysis involved in cellular protein catabolic process (GO:0051603) 2025 132 22.61 + 5.84 1.76E-53 
cellular protein catabolic process (GO:0044257) 2028 132 22.65 + 5.83 2.07E-53 
protein catabolic process (GO:0030163) 2076 132 23.18 + 5.69 2.55E-52 
cell communication (GO:0007154) 3356 208 37.48 + 5.55 1.11E-83 
peptidyl-serine phosphorylation (GO:0018105) 222 13 2.48 + 5.24 6.00E-03 
pyruvate metabolic process (GO:0006090) 277 16 3.09 + 5.17 5.25E-04 
double-strand break repair via homologous recombination (GO:0000724) 243 14 2.71 + 5.16 3.01E-03 
peptidyl-serine modification (GO:0018209) 226 13 2.52 + 5.15 7.22E-03 
protein modification by small protein conjugation or removal (GO:0070647) 2434 140 27.18 + 5.15 8.08E-51 
recombinational repair (GO:0000725) 260 14 2.90 + 4.82 6.35E-03 
cellular macromolecule catabolic process (GO:0044265) 2516 132 28.10 + 4.70 1.64E-43 
organonitrogen compound catabolic process (GO:1901565) 2584 132 28.86 + 4.57 2.56E-42 
dephosphorylation (GO:0016311) 1035 51 11.56 + 4.41 3.05E-14 
cellular homeostasis (GO:0019725) 473 23 5.28 + 4.35 2.89E-05 
DNA-dependent DNA replication (GO:0006261) 290 14 3.24 + 4.32 2.08E-02 
macromolecule catabolic process (GO:0009057) 2900 132 32.38 + 4.08 3.12E-37 
homeostatic process (GO:0042592) 871 39 9.73 + 4.01 3.29E-09 
cellular metabolic process (GO:0044237) 26857 1037 299.91 + 3.46 0.00E00 
cellular protein modification process (GO:0006464) 10192 387 113.82 + 3.40 1.83E-101 
protein modification process (GO:0036211) 10192 387 113.82 + 3.40 1.83E-101 
protein phosphorylation (GO:0006468) 5552 200 62.00 + 3.23 9.41E-44 
macromolecule modification (GO:0043412) 10849 387 121.15 + 3.19 1.73E-93 
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proteolysis (GO:0006508) 4070 134 45.45 + 2.95 2.80E-24 
organic substance catabolic process (GO:1901575) 4248 132 47.44 + 2.78 1.18E-21 
phosphorylation (GO:0016310) 6558 200 73.23 + 2.73 9.42E-34 
cellular protein metabolic process (GO:0044267) 12945 392 144.56 + 2.71 1.49E-74 
cellular process (GO:0009987) 37512 1135 418.90 + 2.71 0.00E00 
metabolic process (GO:0008152) 35025 1045 391.13 + 2.67 0.00E00 
phosphate-containing compound metabolic process (GO:0006796) 8754 253 97.76 + 2.59 2.89E-40 
phosphorus metabolic process (GO:0006793) 8828 253 98.58 + 2.57 8.59E-40 
protein metabolic process (GO:0019538) 14647 394 163.56 + 2.41 5.56E-61 
regulation of biological quality (GO:0065008) 1571 42 17.54 + 2.39 1.67E-03 
cellular macromolecule metabolic process (GO:0044260) 16379 407 182.91 + 2.23 2.66E-54 
cellular response to stress (GO:0033554) 1628 39 18.18 + 2.15 3.49E-02 
organonitrogen compound metabolic process (GO:1901564) 17646 397 197.05 + 2.01 6.90E-42 
biological_process (GO:0008150) 53482 1144 597.24 + 1.92 6.15E-310 
regulation of cellular process (GO:0050794) 10969 228 122.49 + 1.86 2.53E-16 
macromolecule metabolic process (GO:0043170) 20597 409 230.01 + 1.78 7.68E-31 
regulation of biological process (GO:0050789) 11900 229 132.89 + 1.72 1.04E-12 
biological regulation (GO:0065007) 13579 255 151.64 + 1.68 2.49E-13 
nitrogen compound metabolic process (GO:0006807) 22445 412 250.65 + 1.64 8.16E-24 
primary metabolic process (GO:0044238) 26618 427 297.25 + 1.44 1.29E-13 
organic substance metabolic process (GO:0071704) 28058 443 313.33 + 1.41 4.10E-13 
regulation of gene expression (GO:0010468) 6951 42 77.62 - .54 1.78E-02 
regulation of macromolecule metabolic process (GO:0060255) 8364 42 93.40 - .45 2.62E-06 
regulation of metabolic process (GO:0019222) 8501 42 94.93 - .44 1.19E-06 
small molecule metabolic process (GO:0044281) 4313 20 48.16 - .42 1.14E-02 
cellular nitrogen compound biosynthetic process (GO:0044271) 4275 17 47.74 - .36 9.79E-04 
biosynthetic process (GO:0009058) 8721 34 97.39 - .35 8.65E-11 
transport (GO:0006810) 7778 29 86.86 - .33 6.70E-10 
cellular macromolecule biosynthetic process (GO:0034645) 4336 16 48.42 - .33 1.61E-04 
establishment of localization (GO:0051234) 7872 29 87.91 - .33 2.62E-10 
localization (GO:0051179) 8145 29 90.96 - .32 2.97E-11 
macromolecule biosynthetic process (GO:0009059) 4502 16 50.27 - .32 4.92E-05 
transmembrane transport (GO:0055085) 4374 15 48.84 - .31 4.67E-05 
cellular biosynthetic process (GO:0044249) 7925 27 88.50 - .31 2.00E-11 
organic substance biosynthetic process (GO:1901576) 8094 27 90.39 - .30 3.93E-12 
organic substance transport (GO:0071702) 3403 11 38.00 - .29 9.36E-04 
nucleic acid metabolic process (GO:0090304) 5372 16 59.99 - .27 3.93E-08 
heterocycle metabolic process (GO:0046483) 7191 20 80.30 - .25 9.67E-13 
nucleobase-containing compound metabolic process (GO:0006139) 6563 18 73.29 - .25 1.42E-11 
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organic cyclic compound metabolic process (GO:1901360) 7760 20 86.66 - .23 6.06E-15 
cellular aromatic compound metabolic process (GO:0006725) 7640 19 85.32 - .22 3.45E-15 
cellular nitrogen compound metabolic process (GO:0034641) 8997 20 100.47 - .20 3.49E-20 
cellular component biogenesis (GO:0044085) 3172 7 35.42 - .20 2.65E-05 
carbohydrate derivative metabolic process (GO:1901135) 1937 4 21.63 - .18 1.82E-02 
cellular amide metabolic process (GO:0043603) 2413 3 26.95 - .11 2.28E-05 
organophosphate metabolic process (GO:0019637) 1874 2 20.93 - .10 6.80E-04 
positive regulation of biological process (GO:0048518) 1877 2 20.96 - .10 6.81E-04 
positive regulation of nucleobase-containing compound metabolic process (GO:0045935) 1268 1 14.16 - .07 4.11E-02 
positive regulation of macromolecule biosynthetic process (GO:0010557) 1286 1 14.36 - .07 4.29E-02 
positive regulation of cellular biosynthetic process (GO:0031328) 1287 1 14.37 - .07 4.31E-02 
positive regulation of biosynthetic process (GO:0009891) 1287 1 14.37 - .07 4.31E-02 
organonitrogen compound biosynthetic process (GO:1901566) 4033 3 45.04 - .07 9.38E-13 
ncRNA metabolic process (GO:0034660) 1361 1 15.20 - .07 2.11E-02 
regulation of transcription by RNA polymerase II (GO:0006357) 1500 1 16.75 - .06 4.85E-03 
positive regulation of nitrogen compound metabolic process (GO:0051173) 1600 1 17.87 - .06 1.57E-03 
positive regulation of cellular metabolic process (GO:0031325) 1606 1 17.93 - .06 1.62E-03 
positive regulation of macromolecule metabolic process (GO:0010604) 1610 1 17.98 - .06 1.03E-03 
positive regulation of metabolic process (GO:0009893) 1646 1 18.38 - .05 7.10E-04 
small molecule biosynthetic process (GO:0044283) 1691 1 18.88 - .05 4.95E-04 
positive regulation of cellular process (GO:0048522) 1752 1 19.56 - .05 2.33E-04 
amide biosynthetic process (GO:0043604) 1901 1 21.23 - .05 5.32E-05 
regulation of transcription, DNA-templated (GO:0006355) 5717 3 63.84 - .05 7.79E-21 
regulation of RNA biosynthetic process (GO:2001141) 5754 3 64.26 - .05 5.24E-21 
regulation of nucleic acid-templated transcription (GO:1903506) 5754 3 64.26 - .05 5.24E-21 
RNA metabolic process (GO:0016070) 3972 2 44.36 - .05 1.20E-13 
regulation of RNA metabolic process (GO:0051252) 5979 3 66.77 - .04 4.91E-22 
regulation of nucleobase-containing compound metabolic process (GO:0019219) 6091 3 68.02 - .04 1.51E-22 
regulation of cellular macromolecule biosynthetic process (GO:2000112) 6242 3 69.71 - .04 3.19E-23 
regulation of macromolecule biosynthetic process (GO:0010556) 6286 3 70.20 - .04 1.33E-23 
regulation of cellular biosynthetic process (GO:0031326) 6309 3 70.45 - .04 1.41E-23 
regulation of biosynthetic process (GO:0009889) 6312 3 70.49 - .04 1.43E-23 
RNA processing (GO:0006396) 2153 1 24.04 - .04 3.98E-06 
regulation of nitrogen compound metabolic process (GO:0051171) 7681 3 85.77 - .03 1.74E-30 
gene expression (GO:0010467) 5125 2 57.23 - .03 3.03E-19 
regulation of primary metabolic process (GO:0080090) 7714 3 86.14 - .03 1.15E-30 
regulation of cellular metabolic process (GO:0031323) 7797 3 87.07 - .03 5.18E-31 
carbohydrate metabolic process (GO:0005975) 3152 1 35.20 - .03 6.28E-11 
Unclassified (UNCLASSIFIED) 49320 4 550.76 -  < 0.01 0.00E00 
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DOWNREGULATED WHEAT GENES - MOLECULAR FUNCTION: 
Analysis Type: PANTHER Overrepresentation Test (Released 20200728) 
Annotation Version and Release Date: GO Ontology database DOI:  10.5281/zenodo.4033054 Released 2020-09-10 
Analyzed List: upload_1 (Triticum aestivum) 
Reference List: Triticum aestivum (all genes in database) 
Test Type: FISHER 
Correction: BONFERRONI 
Bonferroni count: 1853 
GO molecular function complete Triticum aestivum - REFLIST (102802) upload_1 (1148) upload_1 (expected) upload_1 (over/under) upload_1 (fold 
Enrichment) upload_1 (P-value) 
methionine S-methyltransferase activity (GO:0030732) 8 8 .09 + 89.55 4.76E-09 
malate dehydrogenase (decarboxylating) (NAD+) activity (GO:0004471) 17 16 .19 + 84.28 8.01E-20 
malic enzyme activity (GO:0004470) 17 16 .19 + 84.28 8.01E-20 
malate dehydrogenase (decarboxylating) (NADP+) activity (GO:0004473) 13 12 .15 + 82.66 2.63E-14 
oxidoreductase activity, acting on peroxide as acceptor (GO:0016684) 825 610 9.21 + 66.21 0.00E00 
peroxidase activity (GO:0004601) 825 610 9.21 + 66.21 0.00E00 
antioxidant activity (GO:0016209) 914 610 10.21 + 59.76 0.00E00 
ethylene binding (GO:0051740) 18 12 .20 + 59.70 4.15E-13 
alkene binding (GO:0072328) 18 12 .20 + 59.70 4.15E-13 
ethylene receptor activity (GO:0038199) 18 12 .20 + 59.70 4.15E-13 
ubiquitin-specific protease binding (GO:1990381) 8 5 .09 + 55.97 3.61E-04 
protease binding (GO:0002020) 9 5 .10 + 49.75 5.56E-04 
MAP kinase activity (GO:0004707) 98 44 1.09 + 40.21 2.48E-47 
sodium ion transmembrane transporter activity (GO:0015081) 29 12 .32 + 37.05 3.39E-11 
sodium:proton antiporter activity (GO:0015385) 29 12 .32 + 37.05 3.39E-11 
sequence-specific single stranded DNA binding (GO:0098847) 37 14 .41 + 33.88 6.09E-13 
single-stranded telomeric DNA binding (GO:0043047) 37 14 .41 + 33.88 6.09E-13 
malate dehydrogenase activity (GO:0016615) 45 16 .50 + 31.84 1.04E-14 
microtubule motor activity (GO:0003777) 166 56 1.85 + 30.21 3.90E-55 
potassium ion antiporter activity (GO:0022821) 30 10 .34 + 29.85 3.02E-08 
potassium:proton antiporter activity (GO:0015386) 30 10 .34 + 29.85 3.02E-08 
intramolecular oxidoreductase activity, transposing S-S bonds (GO:0016864) 40 13 .45 + 29.10 3.53E-11 
protein disulfide isomerase activity (GO:0003756) 40 13 .45 + 29.10 3.53E-11 
ATP-dependent microtubule motor activity, plus-end-directed (GO:0008574) 23 7 .26 + 27.25 5.95E-05 
ATP-dependent microtubule motor activity (GO:1990939) 25 7 .28 + 25.07 9.65E-05 
heme binding (GO:0020037) 2471 610 27.59 + 22.11 0.00E00 
motor activity (GO:0003774) 230 56 2.57 + 21.80 1.81E-48 
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metal ion:proton antiporter activity (GO:0051139) 50 12 .56 + 21.49 7.50E-09 
tetrapyrrole binding (GO:0046906) 2600 610 29.03 + 21.01 0.00E00 
monovalent cation:proton antiporter activity (GO:0005451) 53 12 .59 + 20.28 1.36E-08 
telomeric DNA binding (GO:0042162) 63 14 .70 + 19.90 3.03E-10 
cation:cation antiporter activity (GO:0015491) 60 12 .67 + 17.91 4.82E-08 
nuclear import signal receptor activity (GO:0061608) 56 10 .63 + 15.99 5.80E-06 
microtubule binding (GO:0008017) 377 56 4.21 + 13.30 3.73E-38 
nuclear localization sequence binding (GO:0008139) 56 8 .63 + 12.79 1.03E-03 
tubulin binding (GO:0015631) 401 56 4.48 + 12.51 7.30E-37 
ubiquitin protein ligase activity (GO:0061630) 749 100 8.36 + 11.96 4.76E-66 
nucleocytoplasmic carrier activity (GO:0140142) 76 10 .85 + 11.78 7.98E-05 
ubiquitin-like protein ligase activity (GO:0061659) 766 100 8.55 + 11.69 3.30E-65 
phosphotransferase activity, nitrogenous group as acceptor (GO:0016775) 46 6 .51 + 11.68 4.38E-02 
protein histidine kinase activity (GO:0004673) 46 6 .51 + 11.68 4.38E-02 
phosphorelay sensor kinase activity (GO:0000155) 46 6 .51 + 11.68 4.38E-02 
small molecule sensor activity (GO:0140299) 46 6 .51 + 11.68 4.38E-02 
damaged DNA binding (GO:0003684) 124 14 1.38 + 10.11 1.02E-06 
solute:proton antiporter activity (GO:0015299) 116 12 1.30 + 9.26 4.23E-05 
solute:cation antiporter activity (GO:0015298) 123 12 1.37 + 8.74 7.69E-05 
protein serine/threonine phosphatase activity (GO:0004722) 315 30 3.52 + 8.53 1.30E-14 
phosphoprotein phosphatase activity (GO:0004721) 503 47 5.62 + 8.37 1.29E-23 
oxidoreductase activity (GO:0016491) 7180 626 80.18 + 7.81 0.00E00 
cytoskeletal protein binding (GO:0008092) 691 59 7.72 + 7.65 3.26E-28 
intramolecular oxidoreductase activity (GO:0016860) 156 13 1.74 + 7.46 1.19E-04 
zinc ion binding (GO:0008270) 1906 149 21.28 + 7.00 9.84E-71 
metal ion binding (GO:0046872) 10305 803 115.08 + 6.98 0.00E00 
cation binding (GO:0043169) 10372 803 115.83 + 6.93 0.00E00 
ubiquitin-protein transferase activity (GO:0004842) 1343 101 15.00 + 6.73 2.38E-45 
ubiquitin-like protein transferase activity (GO:0019787) 1377 101 15.38 + 6.57 1.92E-44 
NAD binding (GO:0051287) 230 16 2.57 + 6.23 4.03E-05 
single-stranded DNA binding (GO:0003697) 237 14 2.65 + 5.29 1.92E-03 
protein serine/threonine kinase activity (GO:0004674) 3305 171 36.91 + 4.63 6.10E-57 
phosphatase activity (GO:0016791) 1004 51 11.21 + 4.55 7.84E-15 
ion binding (GO:0043167) 20725 1050 231.44 + 4.54 0.00E00 
phosphoric ester hydrolase activity (GO:0042578) 1202 51 13.42 + 3.80 7.76E-12 
heterocyclic compound binding (GO:1901363) 24029 903 268.33 + 3.37 0.00E00 
organic cyclic compound binding (GO:0097159) 24069 903 268.78 + 3.36 0.00E00 
protein kinase activity (GO:0004672) 5562 197 62.11 + 3.17 4.71E-42 
transition metal ion binding (GO:0046914) 4326 149 48.31 + 3.08 1.86E-29 



 109 

catalytic activity, acting on a protein (GO:0140096) 10753 360 120.08 + 3.00 2.42E-78 
phosphotransferase activity, alcohol group as acceptor (GO:0016773) 6005 197 67.06 + 2.94 1.81E-37 
kinase activity (GO:0016301) 6261 197 69.92 + 2.82 4.92E-35 
catalytic activity (GO:0003824) 34957 1091 390.37 + 2.79 0.00E00 
binding (GO:0005488) 34554 1069 385.87 + 2.77 0.00E00 
transferase activity, transferring phosphorus-containing groups (GO:0016772) 6911 197 77.18 + 2.55 1.88E-29 
ATP binding (GO:0005524) 9039 250 100.94 + 2.48 9.67E-37 
adenyl ribonucleotide binding (GO:0032559) 9166 250 102.36 + 2.44 8.43E-36 
adenyl nucleotide binding (GO:0030554) 9198 250 102.71 + 2.43 1.38E-35 
hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides (GO:0016818) 2435 66 27.19 + 2.43 3.27E-07 
hydrolase activity, acting on acid anhydrides (GO:0016817) 2449 66 27.35 + 2.41 3.97E-07 
nucleoside-triphosphatase activity (GO:0017111) 2251 60 25.14 + 2.39 3.95E-06 
purine ribonucleoside triphosphate binding (GO:0035639) 9677 253 108.06 + 2.34 2.18E-33 
purine ribonucleotide binding (GO:0032555) 9804 253 109.48 + 2.31 2.08E-32 
purine nucleotide binding (GO:0017076) 9856 253 110.06 + 2.30 3.88E-32 
ribonucleotide binding (GO:0032553) 9956 253 111.18 + 2.28 2.68E-31 
carbohydrate derivative binding (GO:0097367) 10066 253 112.41 + 2.25 1.20E-30 
pyrophosphatase activity (GO:0016462) 2406 60 26.87 + 2.23 4.45E-05 
nucleotide binding (GO:0000166) 10950 269 122.28 + 2.20 2.37E-31 
nucleoside phosphate binding (GO:1901265) 10950 269 122.28 + 2.20 2.37E-31 
small molecule binding (GO:0036094) 11572 278 129.23 + 2.15 5.69E-31 
transferase activity (GO:0016740) 14789 353 165.15 + 2.14 2.97E-41 
anion binding (GO:0043168) 11616 262 129.72 + 2.02 9.15E-25 
molecular_function (GO:0003674) 56344 1141 629.20 + 1.81 1.03E-277 
transmembrane transporter activity (GO:0022857) 4098 15 45.76 - .33 3.15E-04 
nucleic acid binding (GO:0003676) 11115 30 124.12 - .24 2.89E-22 
DNA binding (GO:0003677) 6755 18 75.43 - .24 2.26E-12 
RNA binding (GO:0003723) 3666 7 40.94 - .17 1.86E-07 
peptidase activity (GO:0008233) 2546 2 28.43 - .07 5.51E-07 
UDP-glycosyltransferase activity (GO:0008194) 1300 1 14.52 - .07 2.40E-02 
double-stranded DNA binding (GO:0003690) 1467 1 16.38 - .06 5.96E-03 
endopeptidase activity (GO:0004175) 1720 1 19.21 - .05 2.86E-04 
transferase activity, transferring glycosyl groups (GO:0016757) 2410 1 26.91 - .04 1.56E-07 
DNA-binding transcription factor activity (GO:0003700) 2812 1 31.40 - .03 2.52E-09 
transcription regulator activity (GO:0140110) 3264 1 36.45 - .03 1.73E-11 
molecular function regulator (GO:0098772) 5087 1 56.81 - .02 1.43E-20 
Unclassified (UNCLASSIFIED) 46458 7 518.80 - .01 0.00E00 
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UPREGULATED RYE GENES - BIOLOGICAL PROCESS: 
Analysis Type: PANTHER Overrepresentation Test (Released 20200728) 
Annotation Version and Release Date: GO Ontology database DOI:  10.5281/zenodo.4033054 Released 2020-09-10 
Analyzed List: upload_1 (Triticum aestivum) 
Reference List: Triticum aestivum (all genes in database) 
Test Type: FISHER 
Correction: BONFERRONI 
Bonferroni count: 2196 
GO biological process complete Triticum aestivum - REFLIST (102802) upload_1 (399) upload_1 (expected) upload_1 (over/under) upload_1 (fold 
Enrichment) upload_1 (P-value) 
ubiquitin-dependent protein catabolic process via the N-end rule pathway (GO:0071596) 6 6 .02 +  > 100 6.40E-09 
histone H3 deacetylation (GO:0070932) 39 30 .15 +  > 100 8.28E-51 
histone deacetylation (GO:0016575) 63 30 .24 +  > 100 5.30E-46 
protein deacetylation (GO:0006476) 66 30 .26 +  > 100 1.64E-45 
oxylipin biosynthetic process (GO:0031408) 104 47 .40 +  > 100 1.21E-72 
oxylipin metabolic process (GO:0031407) 104 47 .40 +  > 100 1.21E-72 
protein deacylation (GO:0035601) 75 30 .29 +  > 100 3.80E-44 
macromolecule deacylation (GO:0098732) 81 30 .31 + 95.43 2.59E-43 
calcium ion transmembrane transport (GO:0070588) 120 39 .47 + 83.74 3.73E-55 
calcium ion transport (GO:0006816) 122 39 .47 + 82.36 6.47E-55 
nucleosome assembly (GO:0006334) 186 59 .72 + 81.73 1.93E-84 
lipid oxidation (GO:0034440) 151 47 .59 + 80.20 2.83E-66 
nucleosome organization (GO:0034728) 227 59 .88 + 66.97 5.07E-80 
chromatin assembly (GO:0031497) 230 59 .89 + 66.09 1.00E-79 
chromatin assembly or disassembly (GO:0006333) 238 59 .92 + 63.87 5.87E-79 
DNA packaging (GO:0006323) 263 59 1.02 + 57.80 1.06E-76 
protein-DNA complex assembly (GO:0065004) 342 59 1.33 + 44.45 1.12E-70 
protein-DNA complex subunit organization (GO:0071824) 389 59 1.51 + 39.08 1.09E-67 
divalent metal ion transport (GO:0070838) 286 39 1.11 + 35.13 4.11E-42 
multicellular organism development (GO:0007275) 898 120 3.49 + 34.43 1.08E-137 
divalent inorganic cation transport (GO:0072511) 301 39 1.17 + 33.38 2.53E-41 
DNA conformation change (GO:0071103) 466 59 1.81 + 32.62 1.80E-63 
lipid modification (GO:0030258) 374 47 1.45 + 32.38 8.89E-50 
anatomical structure development (GO:0048856) 1010 120 3.92 + 30.61 4.67E-132 
fatty acid biosynthetic process (GO:0006633) 418 47 1.62 + 28.97 1.07E-47 
chromatin organization (GO:0006325) 892 91 3.46 + 26.28 1.37E-92 
triglyceride biosynthetic process (GO:0019432) 61 6 .24 + 25.34 5.78E-04 
acylglycerol biosynthetic process (GO:0046463) 61 6 .24 + 25.34 5.78E-04 
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neutral lipid biosynthetic process (GO:0046460) 61 6 .24 + 25.34 5.78E-04 
triglyceride metabolic process (GO:0006641) 65 6 .25 + 23.78 8.18E-04 
acylglycerol metabolic process (GO:0006639) 65 6 .25 + 23.78 8.18E-04 
neutral lipid metabolic process (GO:0006638) 65 6 .25 + 23.78 8.18E-04 
ubiquitin-dependent protein catabolic process (GO:0006511) 1450 127 5.63 + 22.57 7.40E-125 
multicellular organismal process (GO:0032501) 1395 120 5.41 + 22.16 1.73E-116 
monocarboxylic acid biosynthetic process (GO:0072330) 549 47 2.13 + 22.06 1.38E-42 
fatty acid metabolic process (GO:0006631) 574 47 2.23 + 21.10 9.43E-42 
developmental process (GO:0032502) 1529 120 5.93 + 20.22 4.70E-112 
modification-dependent protein catabolic process (GO:0019941) 1628 127 6.32 + 20.10 6.27E-119 
modification-dependent macromolecule catabolic process (GO:0043632) 1681 127 6.52 + 19.47 2.74E-117 
histone modification (GO:0016570) 441 32 1.71 + 18.70 4.26E-26 
covalent chromatin modification (GO:0016569) 441 32 1.71 + 18.70 4.26E-26 
protein ubiquitination (GO:0016567) 1973 140 7.66 + 18.28 4.50E-127 
chromosome organization (GO:0051276) 1329 91 5.16 + 17.64 4.93E-78 
protein modification by small protein conjugation (GO:0032446) 2086 140 8.10 + 17.29 6.34E-124 
proteolysis involved in cellular protein catabolic process (GO:0051603) 2025 127 7.86 + 16.16 9.28E-108 
cellular protein catabolic process (GO:0044257) 2028 127 7.87 + 16.13 1.10E-107 
protein catabolic process (GO:0030163) 2076 127 8.06 + 15.76 1.73E-106 
sterol biosynthetic process (GO:0016126) 136 8 .53 + 15.16 2.43E-04 
protein modification by small protein conjugation or removal (GO:0070647) 2434 140 9.45 + 14.82 3.27E-115 
cellular macromolecule catabolic process (GO:0044265) 2516 127 9.77 + 13.01 1.10E-96 
organonitrogen compound catabolic process (GO:1901565) 2584 127 10.03 + 12.66 2.50E-95 
cellular protein-containing complex assembly (GO:0034622) 1295 59 5.03 + 11.74 1.86E-39 
metal ion transport (GO:0030001) 880 39 3.42 + 11.42 1.03E-24 
macromolecule catabolic process (GO:0009057) 2900 127 11.26 + 11.28 1.77E-89 
monocarboxylic acid metabolic process (GO:0032787) 1151 48 4.47 + 10.74 7.16E-30 
protein-containing complex assembly (GO:0065003) 1426 59 5.53 + 10.66 3.15E-37 
lipid biosynthetic process (GO:0008610) 1565 61 6.07 + 10.04 3.47E-37 
organic acid biosynthetic process (GO:0016053) 1245 47 4.83 + 9.73 2.26E-27 
carboxylic acid biosynthetic process (GO:0046394) 1245 47 4.83 + 9.73 2.26E-27 
protein-containing complex subunit organization (GO:0043933) 1655 59 6.42 + 9.19 8.20E-34 
inorganic cation transmembrane transport (GO:0098662) 1106 39 4.29 + 9.09 2.96E-21 
inorganic ion transmembrane transport (GO:0098660) 1225 39 4.75 + 8.20 9.89E-20 
steroid biosynthetic process (GO:0006694) 252 8 .98 + 8.18 2.04E-02 
proteolysis (GO:0006508) 4070 127 15.80 + 8.04 1.67E-72 
cation transmembrane transport (GO:0098655) 1257 39 4.88 + 7.99 2.38E-19 
cellular component assembly (GO:0022607) 1923 59 7.46 + 7.90 2.05E-30 
organic substance catabolic process (GO:1901575) 4248 128 16.49 + 7.76 2.04E-71 
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sterol metabolic process (GO:0016125) 267 8 1.04 + 7.72 3.05E-02 
cellular catabolic process (GO:0044248) 4286 128 16.64 + 7.69 5.66E-71 
small molecule biosynthetic process (GO:0044283) 1691 47 6.56 + 7.16 7.02E-22 
cellular lipid metabolic process (GO:0044255) 1948 53 7.56 + 7.01 1.33E-24 
catabolic process (GO:0009056) 5046 128 19.58 + 6.54 6.34E-63 
cation transport (GO:0006812) 1575 39 6.11 + 6.38 4.66E-16 
organelle organization (GO:0006996) 3875 91 15.04 + 6.05 5.76E-40 
ion transmembrane transport (GO:0034220) 1771 39 6.87 + 5.67 2.18E-14 
lipid metabolic process (GO:0006629) 2846 61 11.05 + 5.52 2.09E-23 
cellular component biogenesis (GO:0044085) 3172 60 12.31 + 4.87 2.77E-20 
carboxylic acid metabolic process (GO:0019752) 2600 48 10.09 + 4.76 2.93E-15 
oxoacid metabolic process (GO:0043436) 2629 48 10.20 + 4.70 4.50E-15 
organic acid metabolic process (GO:0006082) 2638 48 10.24 + 4.69 5.14E-15 
cellular protein modification process (GO:0006464) 10192 178 39.56 + 4.50 7.54E-68 
protein modification process (GO:0036211) 10192 178 39.56 + 4.50 7.54E-68 
macromolecule modification (GO:0043412) 10849 178 42.11 + 4.23 9.74E-64 
cellular component organization (GO:0016043) 5672 91 22.01 + 4.13 1.80E-27 
ion transport (GO:0006811) 2637 39 10.23 + 3.81 5.22E-09 
cellular component organization or biogenesis (GO:0071840) 6640 92 25.77 + 3.57 3.06E-23 
cellular protein metabolic process (GO:0044267) 12945 178 50.24 + 3.54 2.22E-52 
protein metabolic process (GO:0019538) 14647 178 56.85 + 3.13 1.04E-44 
small molecule metabolic process (GO:0044281) 4313 49 16.74 + 2.93 7.67E-08 
cellular macromolecule metabolic process (GO:0044260) 16379 178 63.57 + 2.80 5.25E-38 
organonitrogen compound metabolic process (GO:1901564) 17646 178 68.49 + 2.60 1.11E-33 
primary metabolic process (GO:0044238) 26618 239 103.31 + 2.31 8.19E-43 
transmembrane transport (GO:0055085) 4374 39 16.98 + 2.30 5.13E-03 
cellular process (GO:0009987) 37512 330 145.59 + 2.27 2.36E-76 
macromolecule metabolic process (GO:0043170) 20597 178 79.94 + 2.23 4.39E-25 
cellular metabolic process (GO:0044237) 26857 232 104.24 + 2.23 7.80E-38 
organic substance metabolic process (GO:0071704) 28058 240 108.90 + 2.20 2.94E-39 
nitrogen compound metabolic process (GO:0006807) 22445 178 87.11 + 2.04 1.77E-20 
organic substance biosynthetic process (GO:1901576) 8094 62 31.41 + 1.97 7.50E-04 
biosynthetic process (GO:0009058) 8721 62 33.85 + 1.83 1.16E-02 
metabolic process (GO:0008152) 35025 240 135.94 + 1.77 7.89E-23 
biological_process (GO:0008150) 53482 340 207.58 + 1.64 7.04E-41 
Unclassified (UNCLASSIFIED) 49320 59 191.42 - .31 0.00E00 
organic cyclic compound metabolic process (GO:1901360) 7760 9 30.12 - .30 1.39E-02 
phosphate-containing compound metabolic process (GO:0006796) 8754 9 33.98 - .26 7.08E-04 
phosphorus metabolic process (GO:0006793) 8828 9 34.26 - .26 5.04E-04 
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regulation of gene expression (GO:0010468) 6951 5 26.98 - .19 7.41E-04 
regulation of transcription, DNA-templated (GO:0006355) 5717 4 22.19 - .18 9.99E-03 
regulation of RNA biosynthetic process (GO:2001141) 5754 4 22.33 - .18 6.65E-03 
regulation of nucleic acid-templated transcription (GO:1903506) 5754 4 22.33 - .18 6.65E-03 
regulation of RNA metabolic process (GO:0051252) 5979 4 23.21 - .17 3.28E-03 
regulation of nucleobase-containing compound metabolic process (GO:0019219) 6091 4 23.64 - .17 2.31E-03 
regulation of cellular macromolecule biosynthetic process (GO:2000112) 6242 4 24.23 - .17 1.11E-03 
regulation of macromolecule biosynthetic process (GO:0010556) 6286 4 24.40 - .16 1.11E-03 
regulation of cellular biosynthetic process (GO:0031326) 6309 4 24.49 - .16 1.13E-03 
regulation of biosynthetic process (GO:0009889) 6312 4 24.50 - .16 1.13E-03 
regulation of macromolecule metabolic process (GO:0060255) 8364 5 32.46 - .15 4.21E-06 
biological regulation (GO:0065007) 13579 8 52.70 - .15 5.61E-12 
regulation of metabolic process (GO:0019222) 8501 5 32.99 - .15 2.93E-06 
protein phosphorylation (GO:0006468) 5552 3 21.55 - .14 2.34E-03 
regulation of nitrogen compound metabolic process (GO:0051171) 7681 4 29.81 - .13 9.42E-06 
regulation of primary metabolic process (GO:0080090) 7714 4 29.94 - .13 6.14E-06 
regulation of cellular metabolic process (GO:0031323) 7797 4 30.26 - .13 4.21E-06 
phosphorylation (GO:0016310) 6558 3 25.45 - .12 5.61E-05 
regulation of biological process (GO:0050789) 11900 5 46.19 - .11 9.38E-12 
regulation of cellular process (GO:0050794) 10969 4 42.57 - .09 2.76E-11 
RNA metabolic process (GO:0016070) 3972 1 15.42 - .06 1.17E-02 
organonitrogen compound biosynthetic process (GO:1901566) 4033 1 15.65 - .06 7.78E-03 
cellular macromolecule biosynthetic process (GO:0034645) 4336 1 16.83 - .06 2.47E-03 
macromolecule biosynthetic process (GO:0009059) 4502 1 17.47 - .06 1.78E-03 
gene expression (GO:0010467) 5125 1 19.89 - .05 1.11E-04 
nucleic acid metabolic process (GO:0090304) 5372 1 20.85 - .05 5.16E-05 
nucleobase-containing compound metabolic process (GO:0006139) 6563 1 25.47 - .04 4.29E-07 
heterocycle metabolic process (GO:0046483) 7191 1 27.91 - .04 3.82E-08 
cellular aromatic compound metabolic process (GO:0006725) 7640 1 29.65 - .03 7.89E-09 
response to stimulus (GO:0050896) 7734 1 30.02 - .03 5.15E-09 
cellular nitrogen compound metabolic process (GO:0034641) 8997 1 34.92 - .03 2.11E-11 
 
 
UPREGULATED RYE GENES - MOLECULAR FUNCTION: 
Analysis Type: PANTHER Overrepresentation Test (Released 20200728) 
Annotation Version and Release Date: GO Ontology database DOI:  10.5281/zenodo.4033054 Released 2020-09-10 
Analyzed List: upload_1 (Triticum aestivum) 
Reference List: Triticum aestivum (all genes in database) 
Test Type: FISHER 
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Correction: BONFERRONI 
Bonferroni count: 1853 
GO molecular function complete Triticum aestivum - REFLIST (102802) upload_1 (399) upload_1 (expected) upload_1 (over/under) upload_1 (fold 
Enrichment) upload_1 (P-value) 
histone deacetylase activity (H3-K14 specific) (GO:0031078) 36 30 .14 +  > 100 1.23E-51 
NAD-dependent histone deacetylase activity (H3-K14 specific) (GO:0032041) 36 30 .14 +  > 100 1.23E-51 
NAD-dependent histone deacetylase activity (GO:0017136) 36 30 .14 +  > 100 1.23E-51 
NAD-dependent protein deacetylase activity (GO:0034979) 39 30 .15 +  > 100 6.98E-51 
calcium transmembrane transporter activity, phosphorylative mechanism (GO:0005388) 51 39 .20 +  > 100 8.66E-67 
histone deacetylase activity (GO:0004407) 57 30 .22 +  > 100 4.07E-47 
protein deacetylase activity (GO:0033558) 60 30 .23 +  > 100 1.38E-46 
deacetylase activity (GO:0019213) 68 30 .26 +  > 100 2.86E-45 
ion transmembrane transporter activity, phosphorylative mechanism (GO:0015662) 109 39 .42 + 92.19 1.31E-56 
calcium ion transmembrane transporter activity (GO:0015085) 114 39 .44 + 88.14 5.75E-56 
oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen (GO:0016702) 142 47 .55 +
 85.28 2.03E-67 
oxidoreductase activity, acting on single donors with incorporation of molecular oxygen (GO:0016701) 185 47 .72 + 65.46 9.37E-63 
ATPase-coupled cation transmembrane transporter activity (GO:0019829) 192 39 .75 + 52.33 2.82E-48 
ATPase-coupled ion transmembrane transporter activity (GO:0042625) 192 39 .75 + 52.33 2.82E-48 
divalent inorganic cation transmembrane transporter activity (GO:0072509) 201 39 .78 + 49.99 1.39E-47 
protein heterodimerization activity (GO:0046982) 427 73 1.66 + 44.05 3.10E-88 
hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides (GO:0016811) 180 30 .70 + 42.94 2.69E-34 
dioxygenase activity (GO:0051213) 292 47 1.13 + 41.47 1.90E-54 
ubiquitin protein ligase activity (GO:0061630) 749 100 2.91 + 34.40 2.89E-113 
ubiquitin-like protein ligase activity (GO:0061659) 766 100 2.97 + 33.64 2.26E-112 
diacylglycerol O-acyltransferase activity (GO:0004144) 52 6 .20 + 29.73 2.04E-04 
calmodulin binding (GO:0005516) 353 39 1.37 + 28.47 6.28E-39 
acylglycerol O-acyltransferase activity (GO:0016411) 61 6 .24 + 25.34 4.87E-04 
ATPase-coupled transmembrane transporter activity (GO:0042626) 445 39 1.73 + 22.58 2.50E-35 
hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds (GO:0016810) 353 30 1.37 + 21.90 2.73E-26 
active ion transmembrane transporter activity (GO:0022853) 461 39 1.79 + 21.80 8.86E-35 
primary active transmembrane transporter activity (GO:0015399) 488 39 1.89 + 20.59 6.80E-34 
ubiquitin-protein transferase activity (GO:0004842) 1343 101 5.21 + 19.38 3.04E-91 
zinc ion binding (GO:0008270) 1906 141 7.40 + 19.06 1.57E-130 
ubiquitin-like protein transferase activity (GO:0019787) 1377 101 5.34 + 18.90 3.14E-90 
metal ion transmembrane transporter activity (GO:0046873) 568 39 2.20 + 17.69 1.56E-31 
protein dimerization activity (GO:0046983) 1528 75 5.93 + 12.65 1.72E-53 
inorganic cation transmembrane transporter activity (GO:0022890) 1112 39 4.32 + 9.04 3.01E-21 
transition metal ion binding (GO:0046914) 4326 141 16.79 + 8.40 2.87E-84 
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cation transmembrane transporter activity (GO:0008324) 1210 39 4.70 + 8.30 5.48E-20 
active transmembrane transporter activity (GO:0022804) 1415 39 5.49 + 7.10 1.11E-17 
inorganic molecular entity transmembrane transporter activity (GO:0015318) 1739 39 6.75 + 5.78 1.02E-14 
ion transmembrane transporter activity (GO:0015075) 1821 39 7.07 + 5.52 4.53E-14 
protein binding (GO:0005515) 5436 116 21.10 + 5.50 1.08E-48 
metal ion binding (GO:0046872) 10305 211 40.00 + 5.28 1.04E-97 
cation binding (GO:0043169) 10372 211 40.26 + 5.24 3.52E-97 
catalytic activity, acting on a protein (GO:0140096) 10753 137 41.74 + 3.28 5.92E-34 
ion binding (GO:0043167) 20725 251 80.44 + 3.12 3.66E-73 
DNA binding (GO:0003677) 6755 76 26.22 + 2.90 1.55E-13 
transferase activity (GO:0016740) 14789 156 57.40 + 2.72 2.41E-30 
transmembrane transporter activity (GO:0022857) 4098 39 15.91 + 2.45 8.62E-04 
binding (GO:0005488) 34554 328 134.11 + 2.45 3.91E-85 
transporter activity (GO:0005215) 4338 39 16.84 + 2.32 3.86E-03 
catalytic activity (GO:0003824) 34957 245 135.68 + 1.81 2.07E-25 
nucleic acid binding (GO:0003676) 11115 76 43.14 + 1.76 2.73E-03 
molecular_function (GO:0003674) 56344 359 218.69 + 1.64 2.54E-49 
Unclassified (UNCLASSIFIED) 46458 40 180.31 - .22 0.00E00 
RNA binding (GO:0003723) 3666 1 14.23 - .07 3.05E-02 
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