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ABSTRACT

Tiltrotor aircraft are steadily proliferating as the understanding of their design matures. Their
large flight envelope is a combination of that of helicopters and that of turboprop aircraft, and
as a result tiltrotors are highly attractive to both civilian and military operators. Ongoing
improvements to their design include increasing their payload capacity and raising their cruising
speed. However, addressing the latter is where whirl flutter is encountered. Whirl flutter is a
destructive aeroelastic instability that becomes active above a certain airspeed. Occurrences have
shown that it is able to destroy aircraft structures rapidly. In making tiltrotors go faster, tackling
whirl flutter is unavoidable.

A substantial amount of research into whirl flutter has been conducted, using mathematical
models sometimes validated by wind tunnel testing. However in deriving these models, some
of the necessary simplifying assumptions might be faulty, preventing prediction of important
results. Particular examples of such simplifications are using linear expressions in parts of the
model where nonlinear expressions would be more accurate, or predicting the whirl flutter onset
using stability analyses that are incompatible with the nonlinearities or their effects. It is these
two examples, and their resulting impacts on whirl flutter, on which this work focuses.

This work uses two whirl flutter models to investigate the effects of two structural nonlineari-
ties on the models’ whirl flutter stability, a novel piece of work within the tiltrotor aeroelasticity
field. The models are contrasting in complexity, covering (1) classical whirl flutter and (2) tiltrotor
aeroelasticity, the latter being more complex. The two structural nonlinearities reflect features
of real-world systems that might otherwise be overlooked. They are (1) a smooth, low-order
polynomial stiffness representation, and (2) a quasi-nonsmooth freeplay nonlinearity. In this way,
the effects of both model complexity and nonlinearity type may be understood. Continuation and
Bifurcation Methods (CBM) are used to detect and quantify the new behaviours caused by the
nonlinearities. Stability boundaries are used to summarise the changes compared to the linear
versions of the models.

Both nonlinearities have a significant impact on the whirl flutter characteristics of both
systems, leading to the creation of several whirl flutter solution branches. Some of these whirl
flutter solution branches expand the parameter regions over which whirl flutter is possible,
causing whirl flutter to be possible at higher structural stiffness values and at lower airspeeds
than the predictions given by linear analysis for each model. In the more complex tiltrotor-specific
model, some especially rich dynamics are predicted, including quasi-periodic and even chaotic
behaviours.
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CHAPTER

INTRODUCTION

1.1 Research Background and Motivation

1.1.1 Overview of tiltrotors

Tiltrotor aircraft such as those shown in Figures 1.1 to 1.4 are steadily proliferating. They are
a particular type of fixed wing aircraft powered by rotors that may be tilted by the pilot so as
to vector the thrust they produce. Their flight envelope is a combination of that of helicopters
and that of turboprop aircraft, having both the VTOL! capabilities of the former and the range
and speed of the latter. This large envelope provides great flexibility that is highly attractive
to both military and civilian operators. In a military context this flexibility provides significant
lifting agility to a fighting force, while in civilian usage tiltrotors offer a potential solution to the
worldwide airport congestion problem. The names for the modes of operation are self-explanatory
— "helicopter mode" and "airplane mode" — and the process of going from one mode to the other is

known as transition/conversion.

Due to the engineering demands of realising the tiltrotor concept, most of the modern tiltrotor’s
ancestors did not fly, either failing to complete testing or to progress from the drawing board at all.
The Weserflug P.1003 of 1938 was related to the tiltwing concept (described below) and contained
a single engine within the fuselage. The Focke-Achgelis Fa 269 of 1941 had two rearward facing
("pusher") propellers that tilted downward, underneath the wing, when in helicopter mode.

Although they resembled modern tiltrotors in several ways, neither managed to fly.

The first tiltrotor models to fly were the American company Transcendental’s Model 1-G and

1 VTOL: Vertical Take-Off and Landing.
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FIGURE 1.1. (a) Weserflug P.10032 (b) Focke-Achgelis Fa 2693

Model 2, shown in Figure 1.2. Starting work in 1945, the Model 1-G’s first free flight was in
1954, though it did not manage to complete a full conversion cycle before the single prototype
was destroyed in a crash in 1955. The Model 2 was larger, heavier and more powerful than the
Model 1G, though little is known about the scope of its brief testing before the US Air Force’s

withdrawal of funding lead to its cancellation in 1957.

(a) (b)

FIGURE 1.2. Transcendental tiltrotors: (a) Model 1-G* (b) Model 2°

The first truly successful tiltrotor model was the Bell XV-3 (see Figure 1.3, (a)), which flew
from 1955 to 1966, achieving full conversions between airplane and helicopter modes. The modern
era of tiltrotor design began with the Bell XV-15 (see Figure 1.3, (b)) in 1972, whose purpose
was to ascertain what flight envelope could be expected from the tiltrotor configuration. A direct
successor, the well-known Bell Boeing V-22 Osprey (see Figure 1.3, (¢)) started development
in 1981, building on the knowledge gained from the XV-3 and XV-15 programmes. It is the

2 Dan Johnson http:/www.histaviation.com/Weserflug_P_1003_1_464x340.jpg, creative commons

3 Alchetron https:/alchetron.com/cdn/focke-achgelis-fa-269-4e2ec75¢-049-45¢9-8267-247089324d9-
resize-750.jpeg, creative commons

4 Aviastar http://www.aviastar.org/foto/trans_1-g.jpg, creative commons

5 Stingray’s List of Rotorcraft https://sites.google.com/site/stingraysphotoarchive3/_/rsrc/1359519708865/page-
two/Transcendental_Model-2.jpg, creative commons
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largest and most widespread operational production tiltrotor and is currently in service with the
militaries of USA and Japan. Bell and Boeing collaborated in 1996 to produce a small tiltrotor
aircraft of a similar size to the XV-15, though by 1998 Boeing had withdrawn from the venture and
been replaced by then AgustaWestland, who took over full ownership of the project in 2011. The
aircraft, known as the AW609 (see Figure 1.3, (d)), first flew in 2003 and remains in development.

A comparison of the basic specifications of these flying tiltrotor models is given in Table 1.1.

(a) (b)

() (d)

FIGURE 1.3. Examples of tiltrotor aircraft: (a) Bell XV-3%, (b) Bell XV-157, (c) Bell
Boeing V-228, (d) AgustaWestland AW609° (formerly Bell-Agusta BA609)

In the near future, Bell’s V-280 Valor, shown in Figure 1.4, (a), is expected to enter service
with the US military. Intended to provide troop insertion, the Valor is specifically designed for
high manoeuvrability. A slightly further off development is Bell and Boeing’s collaborative effort
known as the Quad TiltRotor Concept (QTR) [1], shown in Figure 1.4, (b). The QTR is a large
heavy-lift incarnation of the tiltrotor with an additional pair of tilting rotors added to the ends of a
greatly enlarged horizontal stabiliser. The current design is the descendant of a series of projects

starting in 1979 and is still in development. Tiltrotors of the more distant future are expected to

6 Us. Army photo via San Diego Air & Space Museum, public domain.
7 NASA Photo ID EC80-75, public domain.

8 Peter Gronemann, creative commons licence.

9 Dmitry Mottl, public domain.
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TABLE 1.1. Specifications of existing tiltrotor models

First | MTOW | Maximum | Fuselage | Rotor Number
Model | flight | (VTOL) speed length | radius | produced’
[kgl [kts] [m] [m]
XV-3 1955 1006 160 9.25 7.62 2
XV-15 | 1977 5897 332 12.83 7.60 2
V-22 1989 21546 305 17.48 12.00 400
AW609 | 2003 7620 275 13.4 7.90 2

include unmanned systems. Their development is already underway and their expected whirl

flutter characteristics have been investigated by Floros et al. [2] and Shen [3].

(a) (b)

FIGURE 1.4. (a) Bell V-280 Valor!! (b) Bell Boeing Quad TiltRotor concept!2

A relative of the tiltrotor configuration is the tiltwing configuration, where part or all of the
wing structure is tilted instead of just the wingtip-mounted rotors. Tiltwings generally have
smaller proprotors than tiltrotors, leading to higher disc loading. The most well-known example
of the concept is the XC-142, shown in Figure 1.5. As any part of the wing that tilts with the
rotors is always aligned with the airstream produced by the rotor thrust, the drag losses from the
wing are less than in tiltrotors, whose rotors’ thrust impinges directly on the top wing surface
when in helicopter mode. However, tiltrotors are less susceptible to crosswinds in helicopter mode
due to their smaller side area, and have a higher hover efficiency due to their lower disc loading.
The two configurations are linked both historically and in ongoing design as some models blur

the line between them.

10 400 V-22s had been manufactured at the time of writing, with production ongoing.
11 Danazar, creative commons licence.
12 Frank86, creative commons licence.
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FIGURE 1.5. XC-142 tiltwing aircraft!3

1.1.2 Overview of whirl flutter

Like any other technology, there is an interest in tiltrotors’ continued improvement. In addition
to ubiquitous efforts such as "greener" performance, there is also particular interest in increasing
their productivity, which is traditionally defined as the product of cruising speed and payload
capacity. However, addressing the former is where the phenomenon known as whirl flutter is

encountered.

Whirl flutter is an aeroelastic instability. Though it is sensitive to a number of parameters, a
well-known mechanism through which it is activated is the exceeding of a certain onset airspeed.
As such, it is regarded as an issue that affects the cruise flight regime. It comes about due to
aerodynamic and gyroscopic forces acting on the rotor interacting with elastic structural modes
of the rotor, nacelle and wing structure. Occurrences have shown that it is able to rapidly destroy
aircraft structures. To make tiltrotors go faster is to tackle whirl flutter in a tiltrotor context: one
of the designer’s responsibilities is to predict the whirl flutter onset airspeed of a given tiltrotor.
Whirl flutter limits the performance of tiltrotor aircraft, both directly through the need to stay
beneath the onset airspeed, and indirectly through the aerodynamically-detrimental addition of
stiffness (and therefore thickness) to the wing structure to guarantee aeroelastic stability up to
the design speed [4]. As the literature survey in the following sections will show, a substantial
amount of work has been devoted to finding design changes that raise the onset speed of whirl
flutter, and similarly a great deal of literature exists on parametric sensitivity studies of whirl
flutter. However, at the core of any whirl flutter research lies the need for an accurate way to

predict the whirl flutter stability of a given system - which has also received dedicated research

13 NASA, "Winds of Change, 75th Anniversary", public domain.
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attention. The push for higher capacity tiltrotors only heightens the need for accurate prediction
methods as the different technologies and materials that larger tiltrotors will likely need to

employ may have different whirl flutter characteristics to current experience [5].

Accurate prediction of the onset speed is critical: under-prediction causes a waste of potential
productivity, while over-prediction places the aircraft and those onboard at risk of loss. However,
despite the fact that whirl flutter is in practice an intrinsically nonlinear phenomenon (see
Section 1.1.4), much tiltrotor whirl flutter literature either lacks the use of nonlinear components,
or uses stability analysis methods that are either not fully compatible with nonlinear influences
or do not guarantee the discoverability of the solutions to nonlinear systems. Whirl flutter may
still be predicted in these ways, though the accuracy of any predictions is endangered. This work
investigates the impact of some structural nonlinearities on the whirl flutter characteristics
of a typical tiltrotor rotor-nacelle system. The shortcomings of other modelling and/or analysis
methods are shown by the mapping out of the parameter ranges in which whirl flutter behaviours
are created. For brevity, the umbrella term "linear analysis" is used in this work to refer to both
the use of linear models and the use of stability analysis methods that rely on linearisation.
Chapter 2 provides an explanation of the process as well as why it is unsuitable for use with

nonlinear systems.

1.1.3 Historical overview of whirl flutter

Although whirl flutter is now regarded as a serious aircraft design consideration, its path to
appreciation has not been straightforward. Arguably it was discovered twice. It was first theorised
by Taylor and Browne in 1938 [6] in research concerning the suppression of vibration caused by
aircraft piston engines, although observation through experiment was not possible. Despite it
remaining a theoretical construct at this stage, Wright Field personnel and some others made
use of the suggested theory and instituted propeller whirl flutter calculation checks as a standard
design practice for new aircraft [7]. However, the practice eventually fell out of use as only very
large margins were ever found. That whirl flutter remained in the community’s consciousness at
least as late as 1950 is suggested by Scanlan and Truman’s paper on the matter [8], however their
model neglected aerodynamics, preventing any instability from being predicted and this likely
denied whirl flutter any serious regard. Despite whirl flutter problems supposedly emerging in
the test programme of the XV-3 [9, 10] tiltrotor (see Figure 1.3, (a)) as early as 1955, it was only
after two disasters involving the Lockheed L-188 Electra aircraft (see Figure 1.6) in 1959 [11]
and 1960 [12] that an earnest investigative effort was mounted. In both cases, whirl flutter had

removed an entire wing from the airframe involved and all life onboard was lost.

NASA' was responsible for the official investigative response to the Electra disasters, with

14 NASA: National Aeronautics and Space Administration. Founded in 1958 as a successor to NACA, the National
Advisory Committee for Aeronautics, which had existed since 1915.
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FIGURE 1.6. Lockheed L-188 Electra'®. This particular aircraft (N121US) was the
victim of the 1960 disaster, Northwest Flight 710

the NASA Langley site producing most of the research output throughout the 1960s. After it
emerged that the Electra accidents quite possibly occurred due to structural damage weakening
the engine mounts, official aircraft design regulations were updated accordingly in 1964 [13],
decreeing that sufficient redundancy must exist in the engine support structure such that whirl
flutter could not be possible following the failure of any single structural element. Whirl flutter
has been a design consideration for aircraft with propellers and proprotors ever since, with
supporting research conducted on a number of axes. Earlier work in the 60s and 70s tends to
comprise parametric sensitivity studies, aiming to identify the parameters most influential in
causing and sustaining whirl flutter. Later efforts tend to focus on finding design changes that
raise the onset speed of whirl flutter. However, at the core of any research, regardless of the focus,
lies the need for an accurate way to predict the whirl flutter stability of a given system. To this
end, some research has been devoted purely to the development, validation and critique of whirl
flutter prediction codes and mathematical methods, as will be summarised in Chapter 2. The
complexity of analyses has also steadily increased, aided by digital computers, leading to the
introduction and eventual widespread use of comprehensive analysis tools such as the CAMRAD

family [14], which are commonly seen in contemporary research on the topic.

Whirl flutter remains a design consideration for turboprop aircraft [15] and similar configu-
rations [16—18]. Its prevention remains a part of air regulations governing aircraft design [19].
It is the general consensus that whirl flutter was the cause of the loss of a Beechcraft 1990C
twin-turboprop aircraft in 1991 [20-22], similar to the Electra disasters. Whirl flutter is even
known to affect large wind turbines used for energy generation, requiring dedicated research

[23, 24]. Where it does not immediately cause structural failure, it presents instead a fatigue

15 Jeremy Carlisle (https:/jeremycarlisle.files.wordpress.com/2012/03/n121us-1.jpg, creative commons)
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hazard [25, 26].

1.1.4 Intrinsic nonlinearity

The observation of cases where the oscillation amplitude remained constant [27] implies that
whirl flutter may exist as a limit cycle oscillation rather than just the "blow-up" of a linear system.
Limit cycles are necessarily nonlinear phenomena, impossible in linear systems. Furthermore,
tiltrotors — like any real world engineering system — are replete with sources of nonlinearity.
Whirl flutter is therefore in practice a nonlinear phenomenon, which ideally should be studied
with nonlinear models and stability analysis tools that are compatible with nonlinear systems.
The important role of nonlinearities in aeroelasticity has long been appreciated: in 1955 Woolston
et al. [28] investigated the impact of freeplay (then referred to as "flat spot"), hysteresis loop
and cubic stiffness nonlinearities on the wing and control surface flutter onset speeds of a basic
wing model, conducting a corresponding wind tunnel test with good agreement of results. The
1955 work was released as a technical report and was later followed by a journal paper in 1957
[29]. In both, the ability of nonlinearities to induce flutter below the linearly-predicted onset
speed was clearly shown. However, despite the clear possibility that the same phenomenon
could occur with whirl flutter in tiltrotor systems, many items of whirl flutter research neglect
nonlinearities in their modelling for the sake of simplicity. Including nonlinearity represents
adding complexity, which usually lengthens computation time and produces results that are
more difficult to interpret. A key principle of modelling is balancing complexity with fidelity,
including only elements that contribute meaningfully to a model’s outputs. Despite this, the full
role of nonlinearities in whirl flutter has been underestimated in much literature on the topic.
Consideration of nonlinearities is vital for the complete description of whirl flutter, affecting both
the size and nature of the whirl flutter solutions predicted and the parameter ranges in which

they exist.

The forthcoming review of existing literature aims to explain simultaneously the history
of tiltrotor whirl flutter study, the various avenues of investigation in which tiltrotor whirl
flutter has been examined, and crucially, what methods have been used to assess tiltrotor whirl
flutter stability. This will allow the shortcomings of these methods to be discussed, and in turn
demonstrate the need for the present work. The categories of various themes and matters that
constitute the field as a whole are listed in Table 1.2.

1.1.5 First era of whirl flutter study: classical theory

The earlier parametric studies chiefly employed a two-pronged approach comprising analytical
models with corresponding wind tunnel testing to validate the predictions. An advantage of the
parametric studies was that in addition to providing a way to understand whirl flutter, they

also yielded the most efficient ways to avoid it as the sensitivity of each parameter was a direct

8
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TABLE 1.2. Literature review categories

Theme Sections
Methods for delaying whirl flutter onset 1.1.5,1.1.6,1.1.8
Improvements to the modelling description of whirl flutter 1.1.9,1.1.16
Methods for predicting whirl flutter 1.1.3,1.1.4,1.1.10-13
Classical theory vs. tiltrotor-specific aeroelasticity 1.1.3,1.1.4,1.1.7
Presence and/or influence of nonlinearities 1.1.2,1.1.15
CBM and the benefits it offers to the study of tiltrotor whirl flutter 1.1.17,1.1.18

output. Reed and Bland’s first work on the subject in 1961 [30] refers to whirl flutter as "propeller
precession instability", and lays out the first iteration of what will become the canonical classical
whirl flutter model. The paper is quite wide-ranging, investigating the effects of Mach number
and location of the pitch and yaw axes among other parameters. The results are mainly presented
as stability boundaries, indicating the relative influences of pairs of parameters. An example of
such a stability boundary is shown in Figure 1.7, which is adapted from Figure 11 in [30]. The
lines show what damping the wing and pylon structure must provide in the nacelle pitch degree
of freedom in order to prevent whirl flutter, as a function of airspeed, thereby delineating the

stable parameter-pair region (top left) from the unstable one (bottom right).

a2
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FIGURE 1.7. Stability boundary of structural pitch damping against nondimensional
airspeed for a selection of three Mach numbers, adapted from [30]

The constant underprediction of the onset speed was noted as a limitation of the theory,
and the discrepancy was attributed to the wing structure having some damping influence that
was unmodelled by the theory. An early computer was also used to calculate some system

responses in the time domain. The equations of motion were linear and thus simple eigenvalue
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6 was used to calculate the stability. Reed and Houbolt released their work to the

analysis!
wider aerospace community in 1962 [31]. Sewall [32] built on the results of [30] and [31] by
extending the parameter ranges of analysis and adding further sweeps in parameters such as
the ratio of the rotor’s rotational moment of inertia to the nacelle’s overall moment of inertia
about the effective pitch point. In the same year, Zwaan and Bergh of the NLR!? conducted an
aeroelastic investigation that explicitly named the Electra aircraft as its focus [33]. Together, the
aforementioned literature had assembled what is now known as classical whirl flutter theory.
The defining features are the assumption of rigid proprotor blades and all motion of the system
being expressed as pitching and yawing of the rotor shaft about an effective pivot point, at which

the wing’s properties are lumped.

Aware of the limitations of the classical whirl flutter theory, a number of institutions sought to
augment the basic model with what they considered to be the most pressing omissions. Richardson
and Naylor investigated the impact of hinged blades — as opposed to rigidly-attached ones as per
the canonical theory — on whirl flutter in 1962 [34]. Bland and Bennett investigated the influence
of the whole aircraft’s static stability derivatives on whirl flutter stability in 1963 [35]. In the
same year, Abbott et al. concluded an experimental investigation [36] which had used a "large
dynamic-aeroelastic model of a four-engine turboprop transport airplane”. Although neither the
Electra aircraft nor the associated disasters were mentioned, the Figures of the wind tunnel rig
show that the motivation of the report is nevertheless such. Ravera also investigated the effect of
the blades’ steady state angle of attack [37]. Bennett and Bland began to investigate the role of
the wing in whirl flutter stability in their report of the following year [38], concluding it to be
influential and mostly stabilising. Smith’s 1966 computational-only investigation [39] added both
nacelle flexibility and response of the wing to the basic whirl flutter formulation, noting the strong
influence of damping on the onset speed, though interestingly the stabilising influence of the wing
was less obvious and the main finding was that the wing flutter onset speed could be "reduced
slightly by a coupling with an unstable power-plant whirl mode of comparable frequency". This
first era of classical whirl flutter theory with minor extensions was largely bookended by Reed’s
summary reviews of 1965 [40] and 1967 [41], the latter of which explicitly noted that unequal
values of pylon pitch and yaw stiffness could in some parameter configurations grant a greater

stability margin than equal values.

16 Eigenvalue analysis is a stability analysis tool comprising mathematical operations performed on the matrices
that comprise the equations of motion, and its results are thereby a function of the parameter values in use and
not the state vector. The operation finds the fixed point stability of the system and in the study of whirl flutter, the
transition from stability to instability is taken as the whirl flutter onset point. It is described in more detail in Chapter
2.

17 NLR: Nationaal Lucht- en Ruimtevaartlaboratorium (Dutch), Royal Netherlands Aerospace Centre (English).
Formerly known as the National Aerospace Laboratory, the NLR is an aerospace research organisation in the
Netherlands, founded in 1919.
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1.1.6 Whirl flutter in tiltrotors

Soon after the Electra disasters it was recognised that other aircraft configurations could also
be at risk. The search for feasible high-speed V/STOL!® concepts had existed for some time and
the tiltrotor configuration, now emerging, was a propitious lead to follow. However, with slender,
flexible and highly twisted blades, and heavy engine nacelles mounted upon their wingtips
to provide clearance of the blades from the fuselage, tiltrotors are prominently vulnerable to
whirl flutter. They are not represented by the classical model, and the need to employ dedicated
analyses when considering their aeroelastic properties was mentioned as early as 1962 [31], and
formally examined in 1963 [7]. Previous studies of the dynamics of proprotors had only explored
issues such as the destabilisation of aircraft rigid body modes due to blade flapping in high speed
flight [42, 43]. Now however, the study of the aeroelastic stability of specifically proprotors — a

byword at this time for tiltrotor configurations — was emerging as an area in its own right.

Motivated by the emergence of whirl flutter in the development of their XV-3 tiltrotor, the
Bell Helicopter Company set forth an investigation specifically into tiltrotor whirl flutter in 1966
[44]. A work of some size, the research used wind tunnel and computational models of Bell’s
XV-3 aircraft, finding that "in-plane force[s] generated by blade flapping at high advance ratios"
were the principal destabilising factor, and also provided an explanation of the physical origin of
the instability. However, like all literature before it, a linear set of equations was used, which
naturally was treated by eigenvalue analysis. Young conducted a computational study in 1967
[45] that centred on tuning the rotor’s flapping stiffness to achieve optimal dynamic stability.
Expressing the rotor blades’ flapping stiffness in terms of the natural frequency of their flapping
motion, the study advocated for a frequency around 1.1-1.2 per rev: a stiff' out-of-plane rotor.
The whirl flutter onset speed was assessed using linear perturbations of the nonlinear equations
of motion, and an energy-based approach was also used to assess the amplitudes of the LCOs
(arising from the presence of nonlinearities) found to comprise the forward whirl mode, which
transpired to be "self-limiting due to the non-linear aspects of the aerodynamic loads". The same
phenomenon was not found in the backward whirl mode, nor was the forward whirl found to
encroach meaningfully over the stability boundary predicted by eigenvalue analysis, i.e. existing

at not much lower speeds than those predicted by eigenvalue analysis.

Edenborough from the Bell Helicopter Company released a 1968 report [27] on some wind
tunnel testing that validated new whirl flutter stability theory that was under development,
noting good agreement. The new theory in question had two components: a "linear closed-form
analysis" which comprised a 4-DoF model to which linear eigenvalue analysis was applied, and

a "digital open-form analysis" which numerically integrated the equations of motion in the

18 V/STOL: Vertical and/or Short Take-Off and Landing.
19 A rotor with a natural frequency above 1 per rotor revolution ("per rev") is known as "stiff", whereas one below 1
per rev is known as "soft". This terminology is applied to both the flapping/out-of-plane and lead-lag/in-plane motions.
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time domain to produce time histories. The importance of the use of accurate parameter values
in theoretical models was stressed. Work by Gaffey et al. in 1969 [46] used a combination of
analytical and wind tunnel models of several tiltrotor configurations to show, among other things,
the great influence of the relative placement of the wing and pylon?° frequencies on the system’s
whirl flutter stability, echoing the work of Smith in 1966 [39]. DeLarm [47] addresses aeroelastic
issues of both tiltrotor and tiltwing configurations in his paper dated the same year, providing
analytical substantiation of some stability trends observed by Edenborough [27]. Although generic
work on understanding proprotor aeroelasticity continued into the next decade [48, 49], by 1969
knowledge had matured sufficiently to allow summary works by Loewy [50] and Wernicke [51],
which rounded up the key aspects and issues of the state of the art. However, they also made clear
that linear approximations — both in the equations and the stability analysis methods — were
very much still integral to the modus operandi of the various research projects involved, despite
frequent acknowledgement of nonlinearities having a significant influence. For instance, Loewy
states that "lag dampers frequently have non-linear characteristics", mentions "table look-up
type procedures to allow for non-linear airfoil characteristics", says of helicopter rotor dynamics
in general that "from the very earliest work...it has been clear that the governing equations
are not of the linear, constant coefficient type", and mentions the observation of a "nonlinear,

sub-harmonic flapping response".

1.1.7 Active control

A secondary outcome of Edenborough’s 1968 research was the realisation that control coupling
between the wing motion and the rotor swashplate could provide additional whirl flutter stability.
Specifically, the active control could to a degree directly oppose any incipient whirl flutter motion
and thereby raise the onset airspeed. The first tiltrotor application of active control however
was gust alleviation through swashplate cyclic control, as detailed by Frick and Johnson in
1974 [52] and again by Johnson in 1977 [53]. The (uncontrolled) gust response of tiltrotors was
also investigated, as shown in works such as that of Yasue in 1974 [54]. Although the primary
motivation was the understanding of the loads generated, Yasue also demonstrated the strong
influence that the choice of the mode shapes assumed in the model had on the reported damping
ratios of the system, and consequently on the predicted stability boundaries. Curtiss in 1979 [55]
investigated "single loop feedbacks of wing motion to cyclic pitch" and found them to "generally
appear to stabilize one particular wing mode while destabilizing another". The maturation of the
use of rotor cyclic control in this manner can be followed through Nasu (1986) [56], Vorwald et
al. (1991) [67] and van Aken (1991) [58]. Nitzsche tried a different approach in 1994 [59], using
instead the actuation of aerodynamic vanes which were to be installed on the engine nacelles.

In contrast to rotor swashplate control, these vanes would allow the control of not just pylon

20 The term "pylon" in this era of the literature refers collectively to the entire rotor-nacelle structure emanating
from the wing, that is: the rotor, its nacelle along with structure connecting the nacelle to the wing, and the engine if
the nacelle contained one.
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bending but also pylon torsion, allowing a more specific targeting of individual wing modes. A

further benefit of the approach was that it was also applicable to turboprops and propfans.

Hathaway and Gandhi [60] undertook a theoretical investigation into the use of flaperons for
whirl flutter onset delay, finding that the additional damping provided to the wing beamwise?!
bending mode would be particularly useful for tiltrotors using soft in-plane rotors, which otherwise
have inherently low damping in this mode. Paik et al. [61] added swashplate control in a
subsequent, related investigation, finding that the flaperon control was very slightly more
effective (90kts increase in flutter onset speed as opposed to 85kts). Other means of actuation
were pursued in a resurgence of interest in the topic in the late 2010s: Richter et al. (2015) used

trailing edge flaps [62], while Floros and Kang (2017) used wingtips [63].

Active control was also used for some related matters: although in-plane rotor loads play a
large part in the instigation and sustenance of whirl flutter, their potential to exceed maximum
allowable levels (as dictated by the materials comprising the rotor-nacelle system) was recognised
in the development of the V-22, prompting research into the use of active control simply for their
limitation. The most effective actuation method was deemed to be swashplate cyclic control, as
detailed by Miller and Ham (1988) [64], Agnihotri et al. (1989) [65] and Miller et al. (1991) [66].
An example of corresponding work within European research is Manimala in 2004 [67]. A further
application of active control in tiltrotors has been simply to improve the ride quality for those
onboard, investigated by Bell in a series of wind tunnel tests. Settle in 1997 describes use of the
wing flaperon [68], to which is later added higher harmonic control of the rotor swashplate, as
described by Nixon in 1998 [69]. Reportedly, the aeroelastic stability was not compromised by
the modifications, although pitch link loads increased 25% due to the swashplate control. Piatak
reports further aeroelasticity results in 2001-2 [70, 71], noting that the use of R-134a heavy
gas in wind tunnel testing to match the full-scale blade Mach number reveals current stability
boundaries to be unconservative. Nguyen et al. produced a full-scale wind tunnel demonstration
of the concept in 2001 [72]. Muro [73] later addressed the use of elevators, wing flaperons and
the swashplate, although gust alleviation was the primary aim and aeroelastic stability was only
checked after the fact rather than designed for.

1.1.8 Passive stabilisation

A contrasting philosophy of delaying the onset airspeed is the passive approach of building
intrinsically stabilising features into the design. These features modify the aircraft’s response in
a manner that acts against physical drivers of the whirl flutter instability. Popelka et al. exploited
the anisotropic properties of composite structures to create elastic couplings in a wing that were

beneficial to whirl flutter stability [74, 75], a practice that is now known as "aeroelastic tailoring".

21 Beamwise bending: up-down motion of the wingtip.
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The studies found that influencing the wing torsion/bending coupling could improve the stability
of one of the critical modes (symmetric?? wing beamwise bending) but reduced the stability of
the other (symmetric wing chordwise?? bending), ultimately leading to limited gains due to the
conflicting structural design requirements imposed by the two critical modes. The works were
NASTRAN-based, with stability found by eigenvalue analysis performed by the ASAP code?*.
This work was followed up by a purely experimental segment of research by Corso et al. [76],
which validated the linear damping predictions through measurements of the decay of various
oscillations in the time domain. It was also suggested that such aeroelastic tailoring could be used
to reduce wing thickness, recovering some of the aerodynamic efficiency lost due to aeroelastic
stability requirements. Zhang et al. investigated the use of (uncontrolled) winglets and wing
extensions using a finite element structural model coupled with a simple eigenvalue analysis
code [77-79], achieving a 60-80kt increase in the whirl flutter onset airspeed of their model. A
later analysis by the same group [80] used more sophisticated models though stability analysis

was conducted through linearised equations.

Acree instead focused on modifications to the rotor, such as chordwise shifting of the blade
section aerodynamic centre and adding tip masses and blade sweep [81-87]. Using models of the
XV-15 and V-22 (see Figure 1.3), the impact on whirl flutter stability was assessed using modes
of the linearised system. The conflict between whirl flutter stability and loads appears again in
some of the research, and the sweeps of the aerodynamic centre suggest that the datum design
point was selected based on loads minimisation rather than whirl flutter stability maximisation.
These papers contrast with other blade optimisation papers that consider only the aerodynamics
without examining the impact on whirl flutter stability, such as Liu and McVeigh’s 1991 work
[88]. Srinivas et. al investigated the introduction of favourable elastic couplings within the rotor
blades, as well as aerodynamic refinements [89]. Soykasap et al. also investigated aeroelastic
tailoring of the blades [90], though the focus was more on structural design methods. Barkai et al.
developed a symbolically exact method [91] in 1998 which was also applied to the investigation
of rotor blade and wing elastic couplings as a means of improving whirl flutter stability [92].
Nixon et al. added aeroelastic tailoring of the rotor blades to the wing tailoring undertaken by
Popelka, once again using the linear eigenvalue analysis code "ASAP" in 2000 [93], which was
supported in the same year by a wind tunnel test programme detailed by Corso et al. [94]. Singh
and Chopra investigated whether the unique dynamic properties of a two-bladed proprotor could
be beneficial for whirl flutter stability [95]. The results were mixed: the wing beamwise mode
was found to be incapable of instability as a result, though a new wing torsion instability similar

to divergence was observed.

22 Symmetric: motion of one wing is mirrored by the other in phase. In anti-symmetric modes, the wings are in
anti-phase, e.g. in anti-symmetric beamwise bending, when one wing is up, the other is down.

23 Chordwise bending: forward-backward motion of the wingtip

24 ASAP: Aeroelastic Stability Analysis of Proprotors. A proprietary code developed at the Bell Helicopter Company
that describes itself as an "eigenvalue formulation".
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The matter of preferential wing elastic couplings was revisited by Yang in 2011 [96], who
used an adapted version of Johnson’s 1974 model. Kim also investigated such wing couplings in
2012 [97]. Kambampati’s 2015 investigation [98] into wing extensions and winglets for delaying
the whirl flutter onset speed also conducted parametric sweeps in "stiffness, structural taper,
composite couplings, winglet toe cant and sweep angles" about the modified design point. These
parametric sweeps formed the basis of works employing optimisation methods that shortly
followed [99, 100]. Muscarello later explored the optimisation of blade twist for the delay of whirl
flutter onset [101]. In all cases, whirl flutter stability was determined through methods based on

linear theory.

1.1.9 Soft in-plane rotors

Concerned about the weight of rotor systems used aboard tiltrotor aircraft, quite some research
was dedicated to finding lighter alternatives. The use of a "soft in-plane" rotor — that is, a rotor
with a lead-lag natural frequency below the rotor rotation frequency rather than above it ("stiff")
— presented such an opportunity. Achieved by using a hingeless design, the concept was already
in use on helicopters but Richardson’s 1971 work on the concept [102] was dedicated to tiltrotors.
The paper argues that the hingeless design offers the further benefits of greater reliability, less
demanding maintainability and reduced drag. It focuses on optimising the design to maximise
cruising efficiency and minimise loads, and does not discuss stability beyond showing the lag
damping necessary to prevent ground resonance for a given lead-lag natural frequency. By 1972
Bell and Boeing had both began to develop their own tiltrotor models: while Bell’s Model 300
kept a stiff in-plane gimballed?® hub rotor design, Boeing’s Model 222 used soft in-plane rotors
and is described in Magee’s large 1973 work [103] about wind tunnel testing thereof.

(b)

FIGURE 1.8. (a) Bell Model 300, taken from [104] (b) Boeing Model 222, taken from
[105]

25 1n gimballed rotor hubs, the rotor may deflect relative to its driving shaft via elastic restraint provided at the
connection point. They are described in more detail in Chapter 2.
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In 1975, Alexander et al. [105] provided more work correlating wind tunnel aeroelasticity
results with theoretical prediction methods being developed by Boeing. The paper also presents
in complete detail the mathematical model being used, showing a reasonable collective under-
standing of the instability’s components, such as the role of the wing, though linear eigenvalue
analysis was used. Linear analysis was also used for Bell’s venture: Edenborough [104] gives
details of a Bell-proprietary 15-degree-of-freedom aeroelasticity code named DYN4, which again is
underpinned by linear theory. Harendra’s 1973 report [106] develops an aeromechanical model of
the Model 301 (a relative of the Model 300) for the purpose of real-time simulation, though linear
simplifications are used in the model to limit timesteps to 50ms and there is no mention of aeroe-
lasticity being considered. Further details of the Bell Model 300 development tests were given by
Wernicke in 1972 [107]. A more concrete explanation of the advantages and disadvantages of soft

in-plane rotors was given by Ormiston in 1977 [108].

The use of soft in-plane rotors results in fairly significant changes to the rotor system’s
dynamic performance, however. Between the various works it is established that the softer
in-plane rotor incurs lower loads (allowing the weight saving), at the price of less damping of
the air resonance instability and the possibility of ground resonance. This forced designers of
soft in-plane configurations to build in other sources of lead-lag damping. Whirl flutter airspeed
boundaries were generally lower than equivalent stiff in-plane systems, though the lower loads
allowed greater manoeuvring agility. Kloeppel [109] would later show that the cause of the
adverse aeroelastic behaviour in the hingeless design was the pronounced inherent torsion-flap-
lag coupling. In 2001, NASA and Bell showed renewed optimism in the soft in-plane proprotor
design, using active control of the swashplate for stability augmentation. Formal development
of the system, known as "Generalized?® Predictive Control" (GPC), was initiated by Nixon et al.
[110], who also noted that ground resonance behaviour for tiltrotors was "significantly different"
to that for helicopters. Specifically, the participation of elastic wing modes in the instability makes
it more complex in tiltrotors, and while ground resonance in helicopters may be obviated through
appropriate design of the landing gear to supply the necessary damping, such adjustment of the
tiltrotor’s elastic wing modes is substantially more difficult. Gradual improvements to the soft

in-plane concept were documented by Kvaternik et al. [111] and Nixon et al. [112].

1.1.10 The "stopped rotor" variant

The stopped rotor variant of tiltrotor attempted to design whirl flutter out of the tiltrotor
configuration entirely. Investigated separately c. 1970 by Bell [113-115] and Boeing [116] (who
called it the "folded rotor"), the principle was to obviate the issue of rotor-wing dynamical
interaction at high speeds by folding the rotor blades away once airplane-mode flight had been

achieved. “Convertible” engines that powered the proprotors during vertical operations then

26 The US English spellings used in American works are retained here.
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provided jet thrust for cruising. The transition process is illustrated in Figure 1.9, taken from
[114]. Excessive blade flapping was discovered during rotor starting and stopping however, and
combined with problems caused by shifting of the aerodynamic neutral point as flight conditions
varied, further development of the concept was presumably not sufficiently attractive. A modern
examination of the concept’s aeroelastic stability was conducted in 2011 by Slaby and Smith [117],
who concluded that a forward-swept wing was required for the concept to work. An imaginative
extension of this novel concept was the addition of a "joined wing" (also known as a box wing),
examined by Wolkovitch et al. in 1989 [118].

HELICOPTER FLIGHT FORWARD TILT CONVERSION

FAN PROPULSION -
PROPROTOR FLIGHT ROTORS STOPPED AND
FOLDING

HIGH-SPEED CRUISE MODE
ROTORS FOLDED

FIGURE 1.9. Process of transition for a stopped rotor tiltrotor, taken from [114]

1.1.11 Modelling improvements

Following the transition from classical theory to tiltrotor-specific contexts, research was also
dedicated to improving the fidelity of the physical description of the problem, with a view to
improving the accuracy of the models’ predictions. Some summary works that give a good insight
into which modelling elements were being targeted were released in the first half of the 1970s. The
V/STOL Dynamics and Aeroelastic Rotor-Airframe Technology volume of reports [119] was a large
work whose explanation of the state of the art included a comprehensive list of the assumptions
made by individual models in use with Boeing and even specific known limitations of the general

theory, i.e. experimental observations that couldn’t be recreated. One such observation was the
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existence of limit cycle oscillations in certain parameter ranges, which is somehow attributed to
"less precise knowledge of the model parameters”, indicating a lack of understanding of what
influences nonlinearities could exert on a system’s behaviour. Specifically, the authors seem
unaware that nonlinearities must be present for the limit cycles to exist. Some nonlinearity in
the aerodynamics was modelled via table-based representations of blade lift curves, allowing
effects such as stall and compressibility to be captured, though ultimately the stability analysis
remained linear. Crucially, the majority of the aforementioned limit cycles occur on the stable
side of the linearly-predicted boundary (Figure 18, Volume II of [119]). This observation was
fairly major; it is a clear demonstration that linear predictions of the whirl flutter onset speed

are not always valid.

This work was followed in 1974 by further survey works by Kvaternik [120] and Johnson [121].
The latter also provided the equations for a small collection of proprotor models, the most notable
of which was a definitive 9-DoF proprotor-wing model that, using data first published in [122],
allowed both stiff in-plane and soft in-plane rotors to be modelled. Linear analysis is once again
used to define modes and determine their stability, though thorough discussion and explanation
of key aeroelastic stability issues affecting configurations of the time was also provided. Perhaps
prompted by the helicopter community modelling the coupling of blade torsion and bending
modes (as shown by Huber in 1973 [123]), Johnson quickly followed up [121] with this refinement
to the blades implemented in an updated model, released in the same year [124]. The results
thereof were listed and discussed in a separate report approved in 1975 [125]. Curtiss made a
further extension of this model to include "the effects of the longitudinal degrees-of-freedom of
the body (pitch, heave and horizontal velocity)" [126]. Johnson also investigated the role that
the engine and transmission system might play in influencing the lead-lag dynamics of the
tiltrotor system [127]. By 1976, Johnson’s theory of the modal classification he used to describe
the aeroelastic stability of proprotors had developed to include a distinction between symmetric

and antisymmetric instances of each of the modes originally defined [128].

Further summary works came in 1976 from Kvaternik [129] and Kingston et al. [130]. Uncon-
vinced by proprotor aeroelastic stability predictions available at the time, Kvaternik and Kohn
set out in 1977 to assemble a large body of data, structured as several single-parameter sweeps,
to allow the robust validation of prediction methods [131]. Bell was at this point developing the
XV-15 tiltrotor aircraft, as reported by Few and Edenborough [132], and Magee and Wernicke
[133]. Few hints at parameter value prediction being a challenge, and echoes Johnson’s 1975
work on engine and transmission system influences saying that "special concern centers around
the thrust and power management system when flying at high speed when very small changes
in rotor collective pitch represent large changes in thrust and power". Sikorsky stopped short
of developing a full tiltrotor aircraft and instead focussed on developing solely the proprotor

system at the heart of it; their bearingless "Elastic Gimbal Rotor", detailed by Carlson and Miao
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[134], had both soft and stiff in-plane rotors tested with it in order to "explore the system’s
stiffness requirements". The design is shown in Figure 1.10. The document’s conclusions note
that either type could be chosen, though augmented structural damping may be required for the
soft variant, and that the stiff variant was in general more stable. Nixon’s 1993 study [135] is a
further parametric study with an emphasis on physical mechanisms of the instability, concluding
that "motion-dependent in-plane forces are the most significant contributor to the instability". A
further key output was that the flutter onset speed was more dependent on the placement of wing
frequencies relative to each other than relative to rotor frequencies, particularly the separation

between the beam and torsion frequencies.

FEATHERING BLADE
BEARINGS

HUB ARMS

ELASTIC BEAMS TRANSMIT
ROTOR TORQUE AND HUB MOMENTS
TO SHAFT

SPHERICAL BEARING CONNECTS
HUB TO SHAFT

FIGURE 1.10. Sikorsky EGR, taken from [134]

The aerodynamic models used in analyses were also targeted for improvement, and progress
was mainly inherited from aerodynamics-focused tiltrotor research and helicopter-based research.
Janetzke and Kaza, in their work on the whirl flutter stability of wind turbines in 1983 [23],
captured aerodynamic nonlinearities (such as the non-uniform lift slope) simply by using exper-
imental data in a look-up table that was accessed iteratively as necessary. Abrego [136] and
Betzina [137] investigated the aerodynamics of tiltrotors in descent, with vortex ring state in
mind. Johnson in 2002 [138] developed tiltrotor wake models, followed in 2002 by Yamauchi
[139] and in 2006 by Barla et al. who used PIV to measure and characterise the vortical wake
left behind by tiltrotors [140]. Barla in the same year investigated how aerodynamic interaction
between wing and rotor might be better modelled [141]. Kim and Shin in 2008 [142] focused
specifically on whirl flutter, using three aerodynamic models of varying complexity: "normal"
quasi-steady, Greenberg’s unsteady aerodynamics [143] and full unsteady. Kim noted that the full
unsteady model predicted the highest onset speed, though does not specify how this compared to
experimental data. As a secondary axis of investigation, Kim also conducted time and frequency
domain analysis (i.e. time histories and eigenvalue analysis respectively) of the effects of control
system flexibility and wing sweep. A similar, related investigation [144] followed in 2009 where

instead the swept parameters were pylon stiffness and swashplate geometric control coupling.

Yue and Xia [145] developed a wake bending model specifically for the conversion manoeuvre
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in the same year. Gennaretti and Greco [146, 147] analysed the effect of using a range of unsteady
reduced-order aerodynamic models, though the rest of the model was as per the 1960s classical
whirl flutter state of the art. Later in 2010, Gennaretti et al. [148] investigated the inclusion of
wing-proprotor aerodynamic interaction in the aerodynamic model, with specific focus on the
impact on the loads predictions. Droandi conducted wind tunnel tests that aimed to isolate and
quantify this interaction [149, 150], later specifying the context of the conversion manoeuvre
[151]. The conversion manoeuvre has been investigated in isolation: from a loads perspective by
Staruk in 2017 [152], from a modelling fidelity perspective by Appleton et al. in 2018 [153] and
from an aeroelastic stability perspective by Li in 2018 [154]. Garcia [155] dedicated attention
toward building a CFD?7 solver capable of modelling both the hover and airplane regimes of
tiltrotors, one of several objectives identified by the HiPerTilt project [156], which charts in
terms of categorical objectives the path from the state of the art of tiltrotor-dedicated CFD to
high-fidelity capabilities.

Structural modelling improvement has also received dedicated attention, although the close
coupling with helicopter research meant that several landmark developments had helicopter
contexts and the tiltrotor applicability was either secondary or only implied. Earlier work such
as Johnson [121] used linear modal representations of the first harmonic only, while beam
theory constituted an improvement in works such as Johnson’s aforementioned work on gust
response [53], before comprehensive analyses applied FEA-like methods as a standard. Hodges
consolidated improvements in nonlinear beam theory [157], which were incorporated into the
structural modelling of a number of works, such as Ormiston et al. [158] and Soykasap et al. [90].
Rigo et al. developed a new method known as MASST [159] in 2018 which was used for analysis
of the AW609 (see Figure 1.3, (¢)), while Gupta devised a methodology for identifying sources of

damping in nonlinear composite beams [160].

The role of the pilot’s biomechanics in a tiltrotor’s overall dynamics was first investigated by
Parham in 1991 within the context of the V-22 [161]. Interest was aroused by the observation
of phenomena such as "collective bounce", where the vertical acceleration of the tiltrotor is fed
back into the system as a control input due to acceleration of the pilot’s arm on the collective
lever, causing growing oscillations. Parham et al. later investigated the role of pilot biomechanics
specifically in whirl flutter of the BA-609 [162], as well as influences from the dynamics of the
FCS?8 and its actuation systems, a field known as aeroservoelasticity. Similar investigations
were also conducted by Serafini et al. [163], Gennaretti et al. [164] and Muscarello [165]. These

modelling inclusions were intended to improve the accuracy of whirl flutter predictions.

27 CFD: Computational Fluid Dynamics.
28 FCS: Flight Control System.
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1.1.12 Multidisciplinary optimisations

By contrast, it is in optimisation-based works that the largest simplifications of whirl flutter
stability assessment can be found. This shortcoming arises from the intrinsically iterative nature
of optimisation, which places pressure on the cost function?® to have as low a computational
demand as possible. Most optimisations aim to be multidisciplinary to provide a breadth of
analytical perspectives on the problem at hand. However, this diversification only exacerbates
the issue of computational cost: the computation per iteration must be shared between the
individual constituent analyses, and consequently the fidelity of each may suffer through excessive
simplification of the theory applied. The influence of the relative placement of wing natural
frequencies on the whirl flutter stability of a system — a conclusion from some of the foregoing
literature — is readily translated into structural design constraints. However, this was the only
consideration of whirl flutter stability in works by Rais-Rohani [166, 167], Brunson and Rais-
Rohani [168] and Clements and Rais-Rohani [169], which aimed to find optimal wing structural
designs. An interesting approach was Stettner 1992 [170], who sought to maximise tiltrotor
productivity (as defined earlier), arguing that the true optimal design could only be found through
simultaneous optimisation of both wing and rotor, rather than optimising the two areas in turn
as was current practice. However, the responsibility for aeroelastic stability was handed off to
an active control system assumed to be present, and it did not receive any dedicated attention.
McCarthy [171] performed an aerodynamic optimisation of a tiltrotor wing but used linear theory
for stability to determine the onset speed. Later, Park et. al [172] investigated the matter with
a more advanced structural model though the stability analysis was conducted purely through
time simulations. The optimisation studies employing the most advanced consideration of whirl
flutter were those by Chattopadhyay in 1994 [173, 174], which employed CAMRAD/JA for the
aeroelastic analysis. Kim et al. [175] employed fairly advanced structural modelling, though the
stability analysis was similar to Park’s. Optimisation has also been used directly in stability
analyses to find the stability boundaries. Using a classical whirl flutter model with eigenvalue
analysis, Cecrdle [15, 20, 176] used optimisation to find the most direct route to the stability
boundary through two-parameter subspaces, effectively conducting several single-parameter

sweeps at once and thereby bypassing considerable computational expenditure.

1.1.13 Rotorcraft comprehensive analyses

As analyses grew in size and complexity, and knowledge grew of which physical aspects required
description in modelling, the concept of universal analysis packages that could be applied to
any problem — rather than bespoke models and codes being developed for each investigation —

became more and more attractive. These universal analysis packages are now known as rotorcraft

29 The cost function assigns a figure of merit to each possible design point, calculated as a scalar function of the
design variables that constitute the design point, where a lower cost indicates a better design. The optimisation’s goal
is therefore to find the point in the design space with the lowest cost function output.
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comprehensive analyses and have since proliferated among industry and research institutions
alike. The word "comprehensive" refers all at once to: the many analysis types covered by a single
tool (structural, geometrical, aerodynamic, etc.), the high technology level of each analysis, the
range of addressable rotorcraft configurations (conventional helicopter, tiltrotor, etc.), and the
whole aircraft being under analysis rather than a subsection treated in isolation [177]. Some are
available as commercial off-the-shelf products, others as in-house/proprietary tools belonging
to a certain institution, though in all cases their useful application lies at the top of a learning
gradient. Their usefulness is set only to increase as the rising costs of experimental testing places
ever more of a demand on computational predictions [178]. There are several such analyses, and
while some attempts are made at modelling nonlinearities, the whirl flutter stability analyses

are simplistic, diminishing the accuracy of their predictions.

CAMRAD was one of the first codes to achieve applicability to a comprehensive range of
vehicle types or problem types, and was developed in 1978-79 [158, 179] for NASA, following the
growing independence of analysis codes in use [180]. Nixon notes in [135] that it was "one of the
few comprehensive rotorcraft codes to allow treatment of a tiltrotor aircraft" available at the
time of writing. Nonlinear model elements could be used, but the flutter analysis used linearised
equations. This was followed by CAMRADY/JA, developed separately by the eponymous Johnson
Aeronautics (JA) during 1986-88 [181], which incorporated a number of model extensions such as
higher harmonic control simulation. This was followed by CAMRAD II in 1989-1996 [182], which
implemented significant upgrades such as multibody dynamics and the allowance for multiple
load paths, though the stability calculations were left unchanged throughout the software family.
CAMRAD variants were used in the development of the V-22 [87, 183]. UMARC [184], from the
University of Maryland, arose from developments of a previous wing finite element formulation
coupled to rotor equations of motion [185], and used a wake model employed in CAMRAD/JA.
A finite element model is used for the blades, allowing nonlinear geometry and multiple load
paths. RCAS [186] was developed for the US Army in the late 1990s, in response to deficiencies
concerning manoeuvre analysis and computational efficiency that were identified in 2GCHAS, its
forerunner. RCAS’s aerodynamic models are advanced, incorporating features such as dynamic
inflow and dynamic wake. Ho et al. [187] further improved RCAS’s capabilities by coupling it with
the Helios CFD solver in 2019. Dymore [188] was developed at the Georgia Institute of Technology
to provide modular and therefore flexible and expandable multibody dynamics modelling, and
uses linearised equations for stability. MBDyn [189] is another multibody code, developed around
2000 at Politecnico di Milano, that has seen use in whirl flutter analyses of the ERICA tiltrotor
concept. A history and brief guide of rotorcraft comprehensive analyses — itself a comprehensive

work in several aspects — is provided by Johnson [177].

Although rotorcraft comprehensive analyses continue to proliferate, they have by no means

replaced scratch-built analysis tools. Hathaway’s work in the early 2000s [190, 191] presents a
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new analysis which models the distribution of blade flexibility while retaining separate gimbal
and blade flapping degrees of freedom. Hylton [192] similarly uses an in-house code to build a
basic whirl flutter model. Li [193] extends Johnson’s 9-DoF model of 1974 to incorporate flexibility

between the pylon and the wing structure upon which it is mounted.

Despite their power regarding the kinds of problem they are able to solve, each of the
comprehensive analyses listed above assesses whirl flutter stability either through linearised
equations, or linearisations of trim points, where the main effect of nonlinearities is to alter the
trim points’ value. Dymore assesses stability using the Prony method, which extracts modal
damping ratios from time histories by assuming linear viscous damping. In all cases, linear theory
is applied. Though this approach does produce a predicted whirl flutter onset speed, it is unable to
predict LCOs, which is the form in which whirl flutter exists in practice. Although a linear-theory-
based method exists for determining the stability of LCOs, the LCOs themselves must be found
first. The inability of linear theory to predict LCOs becomes dangerous in systems where whirl
flutter LCOs exist in parameter ranges that the linear stability analysis predicts to be stable, e.g.
below the linear-predicted whirl flutter onset airspeed, as observed by Breitbach in [26] and by
Alexander et al. in [119]. The shortcomings of at least CAMRAD, RCAS and Dymore’s stability
calculations is evidenced by the existence of a number of works dedicated to closing discrepancies
between their predicted results for damping and the corresponding experimental data, as both
earlier reports by Johnson [194, 195] and also recent, ongoing investigations by Kang, Kreshock
and Shen [196-201] explain. The problems concerning damping prediction manifest as incorrect
predictions of the stability boundary, and issues with blade load predictions arising from the
structural modelling have also been discussed [195]. The general consensus is that the next (4th)
generation of comprehensive rotorcraft analyses will make use of high performance computing

[202], though there is no mention of plans to alter the stability analysis.

1.1.14 Multibody Dynamics approaches

Though they are grouped with comprehensive rotorcraft analyses, Dymore and MBDyn are
fundamentally different in that they are dedicated multibody dynamics (MBD) codes. MBDyn
was first applied to development of the V-22 by Ghiringhelli in 1999 [203], joining an established
canon of commercial general purpose multibody codes, such as DADS [204], MECHANO [205]
and ADAMS [206], though insufficiencies in aerodynamic representation and description of
flexible bodies, and some problems caused by large rotations made them unsuitable for rotorcraft
applications as Ghiringhelli further explains [207]. Ghiringhelli would in the same year use MBD
to investigate a tiltrotor configuration fitted with active control [208], as did Mueller et al. in
2004 [209] and 2006 [210]. Quaranta et al. [211] used MBDyn to assess the stability of ground
and air resonance in a soft in-plane rotor. The large size of multibody models could be reduced

using a technique known as "proper orthogonal decomposition" [212] which was applied to a
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tiltrotor model by Masarati et al. [213] in 2003. Shen et al., applying multibody methods first
to a model-scale tiltrotor in 2005 [3, 214, 215], assessed both stiff in-plane [178, 216] and soft

in-plane [217, 218] rotors as a medium of comparison between MBDyn and Dymore.

Mattaboni [219, 220] used MBD to build on the Generalized Predictive Control work pre-
viously undertaken by Nixon et al., and found the high-speed aeroelastic stability to now be
dominated by short-period flight mechanics. Shen et al. revisited their 2005 model-scale work
in 2016 [215], this time incorporating nonlinear effects from the control system geometry and a
freeplay nonlinearity in the drivetrain. The latter of these features was especially significant as
the intermittent contact greatly altered the elastic restraint characteristics of the rotor’s lead-lag
motion, which previously was commonly assumed to be constant even by some comprehensive
analyses, resulting in a constant rotor speed. The work helped to close prediction discrepancies
regarding experimental observations of a large change in wing beamwise damping in the range
of near-zero rotor mast torque, a phenomenon known as "damping bucket". Krueger [221] pre-
sented a multibody modelling approach that was the computational counterpart of an existing
ADYN wind tunnel test, investigating the effects of the introduction of nonlinear springs in the
computational model. Spring stops were also added to provide hard limits on model deflection
and a good agreement with the wind tunnel test data was shown, with experimentally-observed
LCOs being recreated successfully. Hoover used an MBD-based approach to re-attack the original
propeller whirl flutter problem in 2019 [18] as part of development of the NASA X-57 Maxwell
aircraft, determining the stability using the Prony method applied to the time histories output by

Dymore.

A benefit of multibody solvers in general is the potential for higher fidelity kinematic repre-
sentation, mainly arising from the ability to handle large®® rotations and displacements. This
allows better representation of nonlinearities, particularly those arising from nonlinear kine-
matics, including freeplay, which otherwise might be simplified unduly. However, stability must
be assessed entirely in the time domain, often through long simulations [211]. This method
is not robust as there is no guarantee that whirl flutter solutions, if they are present, will be
found. A given whirl flutter solution has what is known as a "basin of attraction": a subset of the
state space from which the system will converge upon that whirl flutter solution. When running
time simulations as part of the MBD stability analysis, perturbations may be supplied to the
system to encourage it to find whirl flutter solutions, but a solution will only be found if a time
simulation starts within that solution’s basin of attraction. Knowledge of the locations of basins
of attraction is generally not available a priori, especially if it is not known what solutions are
present. Furthermore, time simulation is only capable of finding stable solutions and the use of

reverse time simulation to find unstable solutions is largely unreliable.

30 As opposed to the mathematical definition of "small".
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1.1.15 Other stability analysis methods

Although eigenvalue analysis is used by most of the foregoing literature, there is a small number
of other known analyses, each with their own strengths and weaknesses. The basic problem that
they address is that linear theory cannot predict LCOs, instead only producing a linear boundary
for system-wide stability. The aforementioned work by Young and Lytwyn [45] included a stability
criterion in the spirit of Lyapunov test functions that was based on the time derivative of the
total energy in the system, viewing damping in a system-wide sense. This allowed LCOs to be
predicted and their amplitudes estimated. Quaranta developed a method termed "robust stability
analysis" [222] that was designed to handle uncertainties in parameter values, though linearised
equations are used. In turboprop whirl flutter literature, one stability analysis method that has
supplanted basic eigenvalue analysis is the PK method, as used by Cecrdle [20]. The method
involves iterative curve fittings of the unsteady aerodynamic forces that cause the problem to be
of the nonlinear eigenvalue type. Although the PK method was improved upon by Colo [223], it is
more an iterative framework for finding stability boundaries efficiently and is still underpinned
by linear theory, with nonlinearity lying with the complex Laplace variable and not with the state
vector. More recently (2019), Karniel suggested a more general method [224] that he termed a
"distributed aeroelastic energy approach”, though the theory is fundamentally linear in nature,

and fixed wing aircraft flutter was the focus.

The describing function method [225] can be useful for predicting the conditions for LCO
existence, though the method struggles in circumstances where higher harmonics of the response
are significant and in these cases requires adaptation as shown by Muscarello [226]. It also
employs quasi-linearisation. The harmonic balance method [227] exploits the phenomenon of
nonlinear systems reacting to sinusoidal forcing with a response comprising several harmonics of
the fundamental frequency, and thus reconstructs steady state periodic solutions from a chosen
number of harmonics. While compatible with strongly nonlinear functions, producing higher-
order approximations can be laborious [228]. Furthermore, quasi-periodic solutions can only be
predicted by including subharmonics in the representation, and aperiodic motions cannot be

predicted at all.

1.1.16 Wing and control surface nonlinear aeroelasticity studies

Prediction fidelity in the foregoing literature was almost completely a function of the modelling
choices (i.e. physical description) rather than the stability theory employed; the stability analysis
methods in all the tiltrotor literature mentioned here have either been some application of linear
theory or time simulations and therefore any improvement in prediction fidelity only came from
improved modelling choices. The presence and consequent influences of system nonlinearities
were acknowledged by the tiltrotor community but not fully engaged with; Kunz’s 2005 survey of

proprotor whirl flutter [229] has no mention of nonlinearity whatsoever. Some models included
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nonlinearities, though stability analyses remained linear. However, elsewhere in the wider
aeroelasticity community, the full effects of structural nonlinearities were being investigated
with simple wing and control surface flutter models. One of many successors to Woolston’s
aforementioned papers [28, 29] was Breitbach’s 1977 AGARD?3! report [26], which uses a similar
model and advocates strongly for the consideration of structural nonlinearities in modelling,
knowing the strong influence that they can have on stability calculations. A similar range of
nonlinearities is considered (backlash, solid friction, kinematic limitation, cubic softening, and
some combinations thereof). Breitbach shows, for each nonlinearity, the amplitude of flutter LCOs
existing below the linear-prediction flutter onset speed, created by each nonlinearity, as a function
of airspeed. Harmonic balance was then used to manually construct a bifurcation diagram of the
flutter solution branch from its origin at the linear flutter onset speed, distinguishing between
stable and unstable segments. Impressive agreement with wind tunnel measurements was

achieved, though naturally only the stable segments could be validated.

A closer step to the application of such a method to tiltrotors was Tongue’s work [230, 231]
which addressed ground resonance in helicopters. Analysis of the wing with control surface model
deepened as the theory of nonlinear dynamics (and particularly chaos) developed and proliferated,
allowing rather advanced studies such as that by Price et al. in 1994 [232], which investigated the
behaviour of a 2-DoF pitch-heave 2D aerofoil with freeplay. Work by Conner et al. in 1997 [233]
was similar, using a 3-DoF aerofoil and with experimental data for comparison. Survey works
of theory by Dowell et al. in 2002 [234] and 2003 [235], and of experiment by Garrick in 1981
[236], show that an extensive body of research has been dedicated to nonlinear aeroelasticity,
though a great deal of the work concerns basic wing systems capturing other instabilities than
whirl flutter in a variety of applications other than tiltrotors [237-243]. The primary relevance of
these works to this research is the same as that of Woolston and Breitbach: that the presence of
structural nonlinearities adversely affects flutter characteristics, causing it to appear at lower
airspeeds than linear analysis predicts. Further rotorcraft-specific studies of this nature — where
the impacts of nonlinearities are tackled more directly through techniques such as symbolic
manipulation and harmonic balance — are comparatively scarce. Some examples are Tang 1985
[244], Flowers 1988 [245], Tang 1993 [246], Robinson 1997 [247], Kunz 2000 [248] and Muscarello
2011 [226], though the focus is almost exclusively ground resonance of helicopters, rather than
tiltrotors. Andersch [249] specifically tackles the impact of a stick-slip nonlinearity on ground

resonance stability.

1.1.17 Nonlinearities in tiltrotors

However, various kinds of nonlinearity have been shown not only to be present in various tiltrotor

systems, but also to have a non-negligible effect on system behaviour. Masarati et al. [218]

31 AGARD: Advisory Group for Aerospace Research & Development. An advisory panel within NATO that existed
from 1952 to 1996.
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showed that nonlinear effects at the blade level can have a knock-on effect on overall system
stability, specifically from deformability of the rotor blades. The appearance in tiltrotor-focused
experimental results of the aforementioned "damping bucket", where a significant decrease in
the damping of the wing beamwise bending mode occurs at very low values of rotor torque, was
also recreated in Masarati’s results and nonlinearities in the hub and drivetrain were suspected
as being the cause. Specifically, the inclusion of a freeplay deadband in the model produced good
correlation with experimentally-obtained results. Krueger [221] reports "considerable differences”
between linear and nonlinear variants of the models he investigated in his aforementioned ADYN
work. He further showed that nonlinearities introduced by the influence of the drivetrain, freeplay
and backlash can create a behavioural discrepancy between rotors in windmill and thrust mode.
A further explanation for this discrepancy is that the rotor blades deform under load when in
thrust mode, altering the trim conditions. Given the aforementioned nonlinear nature of blade

deformability, this effect would introduce nonlinearity into the behaviour of the blades.

A prolific source of nonlinearity in tiltrotors is their structure, such as geometrical nonlineari-
ties between the various subsystems and components, or kinematic nonlinearities. Furthermore,
their material properties may be intrinsically nonlinear, causing a nonlinear relationship to exist
between deformation and external forces applied. Another source of structural nonlinearities
in a tiltrotor rotor-nacelle system may be the drivetrain [221], as previously mentioned, where
interfaces between the gears introduce small but finite amounts of freeplay. In general, a mechan-
ical interface or joint may have a freeplay deadband [218]. The large degree of twisting in the
rotor blades may couple their in-plane and out-of-plane bending motions. Krueger notes that a
rotational spring element in the wind tunnel setup that his study recreated computationally was
"a major source of nonlinearity". The gimbal may itself be a source of structural nonlinearity if
elastomeric materials are used therein to provide elastic restraint, as specifically investigated by
Gandhi et al. in 1996 [250]. Freeplay may exist at hinges and other mechanical interfaces [251],

in addition to backlash and saturation nonlinearities.

In general, the assumption of linear stiffness of physical structures is only really representa-
tive when deformations are small — a condition that may well not hold for whirl flutter oscillations.
While linear analysis does produce a figure for the onset airspeed, the presence of structural
nonlinearities may not only alter the whirl flutter oscillations themselves, but also the parameter
ranges over which they are possible. Low order polynomial functions may provide a more realistic
description of structural stiffness at larger deflections [252], where a single stiffness does not
exist for all deflections. Stiffness may increase as the deflection increases (known as hardening),

decrease (softening), or some combination of both in different deflection ranges.

The effect of nonlinearities on whirl flutter stability is no merely academic interest: if non-

linearities are able to create the possibility of whirl flutter below the linear predicted onset
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speed, as is well known to happen in wing-control surface flutter, then a significant threat is
posed to the design of tiltrotors. This threat may extend to other system parameters such as
stiffness and damping. To use more general terms, the prevailing stability analyses may not
detect some of the parametric regions in which the nonlinearities induce whirl flutter, causing
incorrect, unconservative stability boundary predictions. This effect is illustrated in schematic
form between two arbitrary parameters p; and pe in Figure 1.11, and has appeared in a number
of the aforementioned works. Breitbach’s work [26] showed the existence of flutter LCOs below
the linear predicted onset speed. Lee and Tron [253] demonstrated that the existence of freeplay
in a control surface significantly reduced the flutter onset speed itself. Nonlinear effects are
not only an important modelling consideration for tiltrotor aeroelastic models, but the proper
identification of the behaviours they can cause is crucial for tiltrotor design as a whole and the

stability analyses generally used currently are insufficient.

P>

stable

Possible actual boundary

unstable i iti
unstable due to system nonlinearities

Whirl flutter boundary
predicted by linear methods

P

FIGURE 1.11. Schematic diagram of nonlinearities altering parameter ranges over
which whirl flutter is possible

1.1.18 Further complications in future predictions

Furthermore, tiltrotor design is expected to develop in a way that may threaten the accuracy of
whirl flutter prediction. A number of concept tiltrotors are under development around the world,
whose primary goal is to establish what new technologies are necessary for future tiltrotors. In the
case of developing larger tiltrotors, increasing the size and weight of tiltrotor designs looks likely
to create complications due to changes to component-level configurations and/or designs that may
become necessary, potentially affecting prediction methods. For instance, Acree et al. [254-257],
found among other things that larger tiltrotors will require larger and slower-rotating rotors with
four or more blades, for which gimballed hubs are unsuitable due to kinematic constraints [258].
Nixon [110] and Quaranta [211], among others, have also noted that soft in-plane rotors might be

necessary, due to the weight saving arising from the lower blade loads. Furthermore, hingeless
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proprotors will have different per-rev frequencies and mode shapes than the gimballed rotors on

current tiltrotors, so coupling between wing and rotor modes may differ from past experience [5].

1.1.19 Continuation and Bifurcation Methods

A newer body of theory that offers great potential in the analysis of nonlinear dynamical systems
is Continuation and Bifurcation Methods (CBM). It is a practical tool with dedicated theory for
investigating point changes in the qualitative nature of a system’s steady state solutions as one or
more of the system’s parameters are varied. Continuation is an iterative numerical method that
computes the steady state solutions of equations and their stability as one or more parameters are
varied, while bifurcation theory classifies qualitative point changes in the solutions (bifurcations)
[259-261]. Together, bifurcation diagrams are created that display the numerical values of the
system’s solutions, their stability, and any bifurcations present. The method requires a starting
solution and incrementally constructs branches of solutions from it. Both equilibrium (static)
solutions and periodic solutions can be found. The method is commonly applied to ordinary
differential equations though other types of equation, such as delay differential equations, are
also amenable to the method. Furthermore, the theory may be interfaced with the design of
control laws to alter the behaviour of systems [262]. Stability analysis is only applied to the
full numerical solutions obtained and therefore approximations do not need to be made to the
nonlinear terms in the equations, with only few exceptions such as discontinuous representations.
Though it has a significant computational demand, the increasing availability of computing power

makes CBM ever more feasible and thus attractive as a tool.

Compared to other methods, CBM offers some simplicity of use as when it is used to solve
ODEs, no manual working is required to transform the model into a usable form and the solver
may be interfaced directly with it immediately. The stability of any solutions found is ordinarily
output straight away, along with the numerical values of those solutions. A downside to CBM
is that it is not amenable to problems with a large number of influential parameters, as the

resulting high-dimensional parameter space that must be considered is unwieldy.

CBM had its debut in the aerospace field in the application to the flight dynamics of fighter
aircraft, in work undertaken by Mehra and Carroll in 1977-9 [263—265] with examples of later
contributions being Sibilski [266] and Jahnke [267]. Over time it has gradually been adopted
by other aerospace engineering fields. Gordon [268] uses CBM to attack the flutter of a control
surface on a wing, while Salles [269] addressed whole engine rotordynamics. NASA first engaged
with CBM in 2005 [270] but usage since has mainly been restricted to fixed wing flight mechanics
[271] in order to address loss of control incidents. CBM is in the gradual process of proliferation
within the field of rotorcraft dynamics, and as a result has so far been limited in its application to
a small number of problems [272], such as flight mechanics [262, 273, 274], ground resonance

[275], dynamic impact of external load carriage [276] and rotor vortex ring state [277]. Their
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inclusion in rotary wing studies is steadily becoming more prevalent as they are powerful when
applied to problems such as the identification of instability scenarios of rotor blades, as shown
by Rezgui and Lowenberg [278, 279]. Continuation methods were used in the AW159/Wildcat
Release To Service military certification document to assess the nonlinear dynamic behaviour of
the tail rotor [280]. However, the application of CBM to tiltrotor systems was not uncovered by

the literature survey conducted for this work, despite the great potential.

1.1.20 Summary and research gap

Tiltrotor aircraft are limited by whirl flutter, an aeroelastic instability that affects their design
and performance. Nonlinearities, which are present in tiltrotor aircraft, have significant effects
on their behaviour, and more general aeroelasticity studies have shown that nonlinearities can
bring about the possibility of flutter at lower airspeeds than that predicted by linear stability
analysis methods, as used by much contemporary literature. This occurs because linear prediction
methods for establishing the flutter stability boundary of a given system are not compatible with
these nonlinearities. Other analyses use time domain methods to look for instability, though there
is no guarantee that they can find whirl flutter solutions if they are present. As most tiltrotor
whirl flutter prediction tools in use have one of these weaknesses, the strong possibility exists
that they are failing to detect instances where nonlinearities cause the early onset of tiltrotor
whirl flutter. An investigation of whether nonlinearities can induce this phenomenon, using tools

that are fully compatible with nonlinear systems, is therefore required.

Work on wing-control surface nonlinear aeroelasticity provides a robust categorisation of the
stability impacts of various nonlinearities, but mostly uses generic, basic aerofoil pitch-heave
models that do not bear much resemblance to tiltrotor systems. Multibody approaches do well
to model nonlinearities, though their time-domain stability analysis is costly, unsystematic and
un-robust as there is no guarantee of finding the whirl flutter solutions. Furthermore, only
stable solutions can be found, and the use of reverse time simulation to find unstable solutions
is largely unreliable. CFD, while importantly addressing the many nonlinearities found in
aerodynamics, has not made a significant contribution to production flutter analyses [281], due to
the unavoidably significant role of structural nonlinearities. Methods for predicting LCOs require

significant manual working in order to produce useful results.

Given the available literature surveyed, a significant opening exists for the application of
CBM to tiltrotor whirl flutter. By completing such a study, this work will achieve a novelty within
the field of tiltrotor whirl flutter study. Much of the existing literature has either underestimated
the role of nonlinearities in whirl flutter in its modelling, or prevented the full discovery of their
impacts through insufficient stability analyses. The role of nonlinearities in tiltrotor whirl flutter

is therefore not fully understood. More seriously this shortfall can lead to over-estimation of the
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whirl flutter onset speed and other unconservative stability boundary predictions, placing at risk

tiltrotors designed using these unsuitable methods.

CBM offers the unparalleled capability of constructing a full picture of a nonlinear system’s
dynamics, showing what solutions exist at which parameter values, and their respective stabilities.
Furthermore, its parameter-focused nature is appropriate both for the question of tiltrotor design
and for the study of whirl flutter, as the design space of a tiltrotor is defined by parameter
combinations and the use of whirl flutter stability boundaries encourages thought in terms of
parameter ranges. Applied to tiltrotor aeroelasticity in the present work, it will reveal whirl
flutter behaviours that linear methods cannot detect, providing accurate predictions of unsafe
parametric regions in which whirl flutter can be experienced. That is, predictions that account
for wider effects in the state-parameter space than the local boundaries that are determined by
linear stability analysis. New and specific insight of the role of nonlinearities in tiltrotor whirl

flutter will thus be gained.

1.2 Research Aim and Objectives

The aim of this research is to analyse the whirl flutter characteristics of a tiltrotor’s rotor nacelle
system that has had structural nonlinearities introduced into it. In practice, this work asks
the following questions: "What impact do structural nonlinearities have on the whirl flutter
characteristics of a tiltrotor rotor-nacelle system? Are these effects common to rotor-nacelle systems
in general?”. As this work is the first of its kind, it is of the most use for it to establish an overview

of the range of qualitative effects.

The term "characteristics" is used here to denote both where whirl flutter exists (in parametric
terms), as well as the stability (stable/unstable) of the whirl flutter solutions found. Tiltrotor
design is parametrically-focused, as is their operation: quantities such as airspeed are parameters
in modelling analyses. The stability of whirl flutter solutions is important as, in addition to the
numerical solution values, it comprises the full behaviour of a system. The impact on these
characteristics is therefore any changes caused by the nonlinearities: while nonlinearity is not
necessary for the models to experience whirl flutter, nonlinearities can cause additional instances
of whirl flutter to be generated. CBM is therefore well-suited for this research as it is a dedicated
tool for analysing dynamical systems in this way. The type of motion (periodic/aperiodic) is also of
interest as individual complex behaviours can be symptomatic of overall dynamic complexity of a
system. To this end, time simulations may be employed to predict specific behaviours in detail, as

well as validating predictions made by CBM.

Choices must also be made regarding the structural nonlinearities to be portrayed and how

they are modelled. While nonlinear finite element beam theory is at quite an advanced state, the
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focus of the investigation is to establish basic qualitative effects rather than examine specific de-
signs, favouring CBM over such finite element methods. Nonlinearities that may be implemented
directly in the equations of motion are valued as this allows a simple integration with CBM. Se-
lection of which structural nonlinearities to model should follow the taxonomy established within
existing nonlinear aeroelasticity literature, which identifies two main categories: distributed
and concentrated [26]. Distributed nonlinearities manifest as macro-effects resulting from
material property nonlinearities and geometric nonlinearities in beams, and are generally smooth
in a mathematical sense. Concentrated nonlinearities are localised, generally associated with
mechanical interfaces such as control mechanisms or connection points. In contrast to distributed

nonlinearities, they are often discontinuous, or "hard".

Lastly, the results can be digested more readily if an appropriate basic model is investigated
first. The dynamics of a tiltrotor model arise from both wing and rotor degrees of freedom,
and though classical whirl flutter’s consideration of wing contributions is limited, being only
partially implicit in the angular deflections of the shaft, it is sufficient to enable the model
to depict whirl flutter, and in a simpler form than is met in tiltrotor systems. Therefore, the
analysis of a classical whirl flutter model may be used as a stepping stone to understanding
the results of a tiltrotor model. Furthermore, classical whirl flutter remains relevant to the
design of turboprops, and therefore the results of this study may be of use to both tiltrotor and
turboprop aeroelasticity communities. The findings may also provide new perspectives to the
wind turbine design community, given the various similarities between tiltrotor rotor systems

and wind turbines.

The above considerations allow the following research objectives to be formalised. They are

numbered O1-5 to allow their subsequent referencing:

* O1: assess the effect of a smooth nonlinearity on the whirl flutter dynamics of rotor-nacelle

systems

¢ 02: evaluate the impact of a hard nonlinearity on the whirl flutter dynamics of rotor-nacelle

systems

¢ 03: investigate the influence of model complexity (classical whirl flutter theory vs. tiltrotor
aeroelasticity) on the impacts that the nonlinearities have on the whirl flutter dynamics of

rotor-nacelle systems

¢ 04: explore what types of whirl flutter behaviour are observable over a range of design and

operating parameters

* 05: synthesise guidelines for tiltrotor design against whirl flutter in the presence of

structural nonlinearities, based on the findings
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1.3 Research Process

Some consideration of practicalities allows a research process to be derived from the above
objectives. Tiltrotor models are required that can produce reliable results of both linear and
nonlinear types, in order for the influence of the nonlinearities to be clear. However, as this work
is a first of its kind, no models could be found in the literature that can operate in both linear and
nonlinear forms. Rather than develop models from scratch, using linear models from existing
literature and adapting them to include nonlinearities has significant benefits. Firstly, the linear
behaviour predicted by the models is reliable: the studies containing the models are usually
validated by corresponding experimental tests. Secondly, significant effort is saved. Models are

selected that are particularly amenable to adaptation.

The bifurcation diagrams that constitute the raw results need to be summarised in some way
to allow the work’s outcomes to be gathered. An ideal way to do this is to use stability boundaries.
The de facto boundary of the nonlinear models across the whole domain of analysis can be shown
in one diagram. Crucially however, stability boundaries are a common tool in expressing linear
analysis results, and therefore summarising in this way allows a direct comparison with the

original linear predictions.

The research process followed by this work is given below. The steps are again numbered for

ease of reference:

¢ P1: Construct computational implementations of two existing linear whirl flutter models

¢ P2: Assess the linear stability boundaries of each as a baseline for comparison

¢ P3: Adapt each model to portray both a smooth and a discontinuous nonlinearity

e P4: Use CBM to find whirl flutter behaviours in each case

¢ P5: Interpret and understand the results using bifurcation diagrams

¢ P6: Use stability boundaries to summarise the impacts of the nonlinearities on the models’

whirl flutter stability characteristics

¢ P7: Formulate guidelines for tiltrotor design practice regarding whirl flutter management

The ways in which the process steps serve the various objectives is shown in Figure 1.12.

33



CHAPTER 1. INTRODUCTION

process steps

P2|P3 P6|P7
@
@

Pl
@
@

X OIS
Y XU )

objectives
OI0I0I0 |10
N W[ [—

FIGURE 1.12. Grid relating process steps to research objectives

1.4 Thesis Structure

1.4.1 Sections

The work is structured so that not only is the research process above followed, but that the
findings are ordered in a way that maximises their comprehensibility. That is, the aim is to
provide as clear as possible a path from the simplest demonstration of whirl flutter to full
understanding of all the new nonlinear cases considered. The research objectives can be boiled
down to two axes of investigation: the type of nonlinearity and the complexity of the model. So
that the differences between each combination of nonlinearity type and model type may remain
clear, the results are presented in stages. The combinations form a 2-axis grid, shown in Figure

1.13, along with the chapter in which each is covered.

type of nonlinearity

Linear Smooth Hard

Ch. 3

Classical o p O Ch. 5

»O

Gimballed hub| o o-Ch-5 5 o

model

complexity

FIGURE 1.13. Flow of technical material within this work

First, the basic model is introduced and demonstrated in its original linear form (Chapter
3). The smooth nonlinearity is then introduced and the basic behavioural differences compared
to the linear system are highlighted. The model complexity is then raised in Chapter 4. with
the introduction of the tiltrotor-representative model in both its original linear and smooth

nonlinearity forms. Finally, the discontinuous nonlinearity is integrated with both models in
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Chapter 5, completing both axes of investigation. A chapter of theory and supporting concepts is
given in Chapter 2, to provide a basic reference for the main technical material. The conclusions
of the work form Chapter 6. The contributions of each chapter to the research objectives are

shown in Figure 1.14.
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1.4.2 Basis of material in own existing publications

In the process of this research project, a selection of content from each of the individual work
packages was published as each was completed, in conference proceedings and journals. They are

now presented here in only a loosely adapted form.

Chapter 3, where the classical whirl flutter model is shown in both the linear form and with
the smooth nonlinearity implemented, is adapted from preliminary work presented at the 43rd
European Rotorcraft Forum in 2017 [282], and subsequently extended and published in full in
the Journal of Nonlinear Dynamics in 2018 [283]. A greater breadth of explanatory material,
including sensitivity analysis of the model in its original linear form, is included in the present

work.

Chapter 4, where the tiltrotor-representative model is shown in both the linear form and
with the smooth nonlinearity implemented, is adapted from a paper presented at the 75th
Annual Forum of the Vertical Flight Society in 2019 [284]. Some new results in the study were
subsequently discovered in addition to those reported in the VFS paper, and these are included
here in addition to more comprehensive explanatory material and a sensitivity analysis of the

model in its original form.

Chapter 5, where the hard nonlinearity is applied to both models, is based both on work
presented at the 45th European Rotorcraft Forum in 2019 [285] and further work subsequently
published in the Journal of Nonlinear Dynamics in 2021 [286]. Some additional bifurcation
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diagrams are shown in the present work, to show more clearly the effects that the nonlinearity’s

presence has caused.

Collectively, the papers mentioned here contribute to the conclusions in Chapter 6, as well as

to the literature review conducted in this Chapter.
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SUPPORTING THEORY AND CONCEPTS

2.1 Tiltrotors

The most common and best known form of vertical flight in the current era is the helicopter
configuration. However, helicopters have a number of performance disadvantages, such as low
cruise speed and low range compared to fixed wing configurations. They additionally have higher
accident rates due to operational factors and mechanical reliability issues directly related to their
design [287]. Tiltrotors offer an improvement on helicopters by combining the vertical capabilities
of helicopters with the flight envelope of a fixed wing turboprop aircraft. However, in combining

the two configurations, designers have to contend with the design challenges of each.

2.1.1 General description

Tiltrotor aircraft mostly resemble modern mid-size turboprop aircraft, in the sense of their
overall planform. However, their propulsion system employs two proprotors mounted on the
wingtips as opposed to a turboprop’s propellers. Proprotors are larger and slower-rotating than
propellers, and tiltrotors typically employ turboshaft engines. Each rotor is swivelled by an
actuation mechanism that can point the rotor upwards, forwards or anywhere in between, being
rigidly held in place when not moving. All operational tiltrotor designs have their engines in the
wingtips, collocated with the rotors and shielded within nacelles: pod-like structures that are
aerodynamically optimised to reduce drag. In some older designs and modern conceptual designs,

the engines are located within the fuselage, to alter the mass characteristics of the aircraft.

The wing is typically slightly swept forward and is substantially thicker than would be

aerodynamically ideal so as to provide the necessary stiffness to guarantee aeroelastic stability
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up to a certain speed. This however makes them less efficient in cruise. The payload is stored in
the fuselage, with access provided by side doors and/or a rear loading ramp depending on the
design. An annotated system-level schematic diagram of the general tiltrotor configuration is

shown in Figure 2.1.
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FIGURE 2.1. System-level schematic diagram of a tiltrotor!

The nacelle pointing angle is controlled by the pilot. Pointing the rotor upwards causes the
tiltrotor to behave as a helicopter, known as "helicopter mode". In cruise, the rotors are pointed
forward to provide thrust for flight as a conventional fixed wing aircraft, known as "airplane
mode". Additionally, some tiltrotors such as the V-22 (see Figure 1.3, (c)) have a distinct operating
mode known as the "80-jump” configuration, where the nacelles are pointed 80 degrees upward
of the horizon for take-off, achieving altitude quickly while building speed. In helicopter mode,
control of the aircraft is actuated through the proprotor blades in the same manner as a helicopter.
In airplane mode, control is aerodynamic, using control surfaces similar to a conventional fixed
wing aircraft. Elevators at the rear of the aircraft control pitch, ailerons near the wingtips control

roll, and rudders at the rear control yaw. Flaps at the trailing edge of the wing can provide extra

1 Adapted from NASA: https:/upload.wikimedia.org/wikipedia/commons/7/70/Bell_XV-
15_line_drawing.png, public domain.
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lift at lower speeds, and additionally when deployed in helicopter mode they lower the area of the
wing that obstructs the wash from the rotors. In some tiltrotor models the trailing edge surfaces

function as both ailerons and flaps, and are referred to as flaperons.

The process of tilting the rotors to go from one mode of operation to the other is known as
conversion, and requires the aircraft to keep its nacelle angle within a "corridor": upper and
lower limits that are a function of its airspeed. The walls of the conversion corridor are defined
by various constraints such as structural loading limits, or wing aerodynamic limits. The basic
stages of conversion are illustrated in Figure 2.2. The aerodynamic design of the proprotors is a
compromise between the conflicting requirements of high speed flight in airplane mode (propeller)
and efficient hover in helicopter mode (rotor). In general, tiltrotors are unable to land in airplane

mode due to their large rotors not being clear of the ground.

79

¢ O

FIGURE 2.2. The conversion manoeuvre. Top: airplane mode (cruising). Middle: conver-
sion. Bottom: helicopter mode (take-off/landing).

Given the large role that the wing degrees of freedom play in tiltrotor whirl flutter, the
manners in which the wing may bend is of relevance to whirl flutter study. There are three
distinct motions: flapwise (also known as beamwise) bending, chordwise bending, and torsion.
They are shown in Figure 2.3, and are most readily described according to the motion of the
wingtip that each bending type induces. Flapwise/beamwise bending is the up-down motion of
the wingtip, chordwise bending is forwards-backwards, while torsion is the twisting of the wing

about its root-to-span axis.

2.1.2 Rotor systems design

Tiltrotor rotor systems are in a number of ways similar to those of helicopters, in their overall

assembly and the mechanisms by which control is administered. A number of rotor blades are

39



CHAPTER 2. SUPPORTING THEORY AND CONCEPTS
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FIGURE 2.3. Types of wing bending

affixed to a hub via effective hinges which permit each rotor blade to bend elastically relative
to the hub plane in response to the loads that it experiences. The hub plane exists at the hub
where the blades are attached, perpendicular to the rotor shaft, and defines the plane in which
the blades rotate if they are entirely undeflected. There are three fundamental types of blade
motion, illustrated in Figure 2.4.

—

lead . lag

hub plane
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<—/ flap
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FIGURE 2.4. Illustrations of rotor blade motions and of a gimballed hub. An arbitrary
coordinate system (x,y,z) is included to link the perspectives of the two drawings

The blade motions are most simply distinguished by their relation to the hub plane: flapping,
lead-lag and pitching/feathering. The flapping motion is perpendicular to the hub plane; an
up-down movement of the blade tip in helicopter mode, or forward-back in airplane mode. The

lead-lag motion is parallel to the ordinary rotation of the rotors: when leading the rotors are
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ahead of their undeflected position, and vice versa when lagging. Pitching or feathering is the
axial rotation of a blade about its attachment to the hub such that changes occur in the angle of
attack made with the freestream surrounding the rotor. The flapping hinge axis is often offset
from being perpendicular to the blade by an amount known as the "63" angle, such that the
flapping and pitching motions are coupled in a way that benefits that blade’s stability. Specifically,
the blade flapping in one direction (say upward/forward) reduces the blade’s angle of attack,

inducing it aerodynamically to return to its undeflected state.

hub plane

/)llc h link

rotating swashplate
/ smm)/m/ v swashplate
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/ [ rotor shaft
control horn . /

gimbal

blade root

rotatmg swashplate
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z X

FIGURE 2.5. Schematic diagram of a tiltrotor rotor system. An arbitrary coordinate
system (x,y,z) is included to link the perspectives of the two drawings

While the motion of the blades in all three of these senses occurs due to the time-varying
loads that they each incur, the pitch motion is also controlled directly when in helicopter mode
in order to control the motion of the entire aircraft. The control system is similar to that in
helicopters and a schematic diagram of a typical tiltrotor rotor system is shown in Figure 2.5. The
control is transferred to the blades via a swashplate: a two part assembly that is able to transmit
control actuation from the non-rotating wing structure to the rotating hub. The hydraulic jacks
actuated by the pilot move the stationary swashplate, which the rotor shaft passes through
without connection. The stationary swashplate is mated with the rotating swashplate that is
connected to the rotor shaft and rotates with it. The rotating swashplate is also connected to
each of the rotor blades by a pitch link, a slender structural element which converts deflection
of the swashplate assembly into pitch control of each of the rotor blades. This is used to control
the aerodynamic forces produced by the rotor, in order to control the aircraft. Translation of the
swashplate along the rotor shaft (without tilting) changes the pitch angle of the rotor blades
equally and is referred to as collective control, changing the thrust produced by the rotor. Tilting
of the swashplate changes the pitch angle of each rotor blade according to its azimuthal position,

and is referred to as cyclic control. It produces pitching and rolling moments that are transferred
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to the tiltrotor aircraft as a whole.

The stiffness of the rotor blades is of qualitative significance in the overall dynamics of the
rotor. The stiffness is usually quantified indirectly in terms of the undamped natural frequency of
the rotor blades. Each of the three motions discussed above has its own natural frequency that is
a function of the geometry of the blade and its material properties, though the torsional natural
frequency is usually of lesser importance due to it normally being significantly higher than the
flapping and lead-lag frequencies. The lead-lag natural frequency is of particular importance
in tiltrotor rotor dynamics. As these frequencies vary with rotor rotational speed, due to the
centrifugal and aerodynamic loads that depend on the speed, it is most convenient to express the
natural frequency as a multiple of the rotor speed, usually referred to as the "per-revlolution]"
frequency. A natural frequency higher than the rotor speed (with a per-rev frequency above 1) is
referred to as "stiff", e.g. a "stiff in-plane" rotor refers to a rotor whose lead-lag natural frequency

is higher than the rotor speed. For per-rev frequencies below 1, the term "soft" is used.

The aeroelastic behaviours of the two types of rotor are notably different. Soft in-plane rotors
generally have less favourable stability boundaries, and are vulnerable to ground resonance and
air resonance. For a stiff in-plane rotor, although air resonance is avoided, there is instead the
issue of a coupled blade flap and lag instability. Additionally, a stiff in-plane rotor can result
in high hub loads, encouraging the use of soft in-plane rotors with adequate lead-lag damping
[105, 112]. While the maximum speed of the XV-15 tiltrotor is limited by power available, it is in-
plane rotor loads that limit the maximum speed of the V-22 tiltrotor [93]. The design compromise
of their blades — between the opposing requirements of efficient hovering and performance in

high speed flight — precipitated the idea of variable diameter rotors [288].

Current tiltrotor designs typically feature gimballed hubs. The rotor blades, their pitch control
mechanisms and a central connecting portion are all elastically restrained about their connection
point to the rotor shaft, as shown in Figure 2.4. The lack of bearings allows a weight saving, with
potential reliability and maintainability benefits [102]. The flapping motion is thereby replaced
with hub tilt, and the practical elimination of the one-per-rev flapping lowers Coriolis-induced
loads [134]. The use of a gimbal at the hub may have a destabilising effect on the rotor’s dynamics
however, as Carlson and Miao [134] found in their examination of the aforementioned Sikorsky
Elastic Gimbal Rotor, where the addition of the gimbal further worsened the aeroelastic stability
characteristics of the soft in-plane rotor by placing what they termed the "coupled cyclic flap/body
and gimbal roll mode" (a combination of individual blade flapping, rigid body behaviour of the
assumed airframe as a whole, and tilting of the rotor tip path plane via the gimballed hub) in
near resonance with the regressive lag mode (the lower frequency blade lead-lag mode) at the
normal rotor speed. In addition, the gimbal system also introduces an extra low frequency body

mode which further restricts the placement of the operating rotor speeds.
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2.1.3 Whirl flutter in tiltrotors

The whirl flutter instability is slightly more complex in the tiltrotor context than in the classical
form in which it was originally studied. Classical whirl flutter strictly refers to a basic system with
rigid blades and a rigid shaft, all of which is able to pitch and yaw elastically about an effective
pivot point. It is a limited representation with correspondingly limited behaviour predictions,
though it was sufficient for the purposes of the NASA 1960s work. The dynamics of a system
more representative of a tiltrotor — one with flexible blades, a gimballed hub and a flexible
wing — are fundamentally different, however. Only backward whirl (where the whirl is in the
opposite direction to the rotor rotation ) may be unstable in the classical case, whereas both
backward and forward whirl are possible in the tiltrotor proprotor system. The manner in which
the precession-generated aerodynamic loads act on the pylon/wing is significantly different to the
classical case [71]. Motion-dependent in-plane forces are the most significant contributor to the
instability [135], and the physical origin is coupling between these rotor in-plane forces and the

wing torsion motion [183].

For these reasons, some works prefer to use the term “rotor-pylon instability” instead of “whirl
flutter”, or to declare their focus to be “tiltrotor aeroelastic stability”. Kvaternik refers to it in his
doctoral thesis [289] as "proprotor/pylon instability", though also says that it is "akin to [classical]
whirl flutter". As the dynamic behaviours found in the course of this work all pose the same
overall threat to the aircraft’s structure, the term “whirl flutter” is used here both in classical

and tiltrotor contexts.

2.1.4 Nonlinearities in tiltrotors

Nonlinearities are present in virtually all real world engineering systems. They can arise in any
element of a system and be active in one or more aspects of the system’s dynamics (e.g. stiffness,
damping, etc.). Although this work focuses on structural nonlinearities, other particularly notable
sources of nonlinearity include the aerodynamics and the control actuation systems. Nonlineari-
ties may be caused by single physical mechanisms or accumulations of physical mechanisms in

concert.

Some formal words on stiffness: the stiffness of a structure is the gradient of internal
elastic restoring forces or moments with respect to the deflection. It is separate from the con-
cept of strength. A structure with a higher gradient — that is, a steeper accrual of restoring
forces/moments with growing deflection — is said to be a stiffer structure. For linear structural
elements, one gradient exists for all deflection values and so the stiffness profile is simply a
straight line, characterised by a single stiffness value: e.g. F = Kx where F is the restoring
force/moment, x is the deflection or deformation, and K is the stiffness and is a constant. However

for nonlinear structures, the gradient will vary with deflection: F = K(x)x. An expression linking
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structural deflection to the restoring force/moment that results will hereafter be referred to as
a stiffness profile. As described in the research objectives in Section 1.2, two types of nonlinear
structural stiffness are smooth nonlinearities and hard nonlinearities, and these are discussed

here.

2.1.4.1 Smooth nonlinearities

Smooth nonlinearities, as required by Objective O1, may arise in aerospace structures due to
geometric nonlinearities. Material properties may also be a cause. Smooth nonlinear stiffness is
categorised according to whether the structure offers increasing stiffness with growing deflection
(hardening) or decreasing stiffness (softening). Woolston [28] gives some examples of where each
might arise: a hardening effect is found when a thin wing, or perhaps a propeller, is subjected to
increasing amplitudes of torsion, while a soft spring effect may be associated with panel buckling.

The softening and hardening varieties of smooth nonlinearity are shown in Figure 2.6.

hardening

softening

force
force

deflection deflection

FIGURE 2.6. Types of smooth nonlinearities: softening (left) and hardening (right)

Low-order polynomials are commonly used for representing such smooth nonlinearities. They
are frequently a better representation of stiffness profiles than linear examples as nonlinearities
that may be negligible at low deflections can become significant at higher deflections. In tiltrotor
whirl flutter oscillations, the deflections involved may well be too large for a linear stiffness

profile to be assumed.

2.1.4.2 Hard nonlinearities

Hard nonlinearities, as required by Objective O2, cause gradient discontinuities in stiffness
profiles. They usually arise from intermittency of contact in mechanical interfaces, causing point
changes in stiffness as elements engage and disengage with each other. One example phenomenon
is impacting, where one structural element strikes and bounces off a hard limit. Another example
is freeplay, where an elastically-restrained structural element has a "deadband" of zero or highly

reduced stiffness around the undeflected position. A relatable real world analogue is the behaviour
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of the steering mechanism in an old motor vehicle and the phenomenon is sometimes known

simply as "play”. A sample hard nonlinear profile is shown in Figure 2.7.

force

deflection

FIGURE 2.7. Overview of hard nonlinearities. The characteristic discontinuities are
ringed with red

In order to fulfil their flight envelope, tiltrotor aircraft employ nacelle rotation actuators.
These actuators are able to rotate each nacelle to any point between horizontal and vertical, and
hold the nacelle there. Some illustrations of this mechanism within the surrounding wingtip-

nacelle structure are shown in Figure 2.8.

FIGURE 2.8. Nacelle tilting mechanisms (highlighted red) from (a) Bell XV-152 (b) Bell
Boeing V-223

The mechanism used is a two-stage telescopic ballscrew design [290, 291], driven by hydraulic
motors. This choice of design was driven by a demanding set of requirements that not only

specified particular loads to be withstood but also the ability to "operate after any single failure",

2 Adapted from NASA: https:/upload.wikimedia.org/wikipedia/commons/e/e0/Bell_XV-
15_tilt_rotor_research_aircraft.png, public domain.

3 Adapted from Flight Global: https://i.pinimg.com/originals/f9/9¢/e6/f99ce64a88027d6f894bdbaff2589707.jpg,
public domain.
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have structural redundancy and produce as low a load on the power supplies as possible [290].
Other designs that were deemed unsuitable were hydraulic rams, single ballscrews and reduction

gears.

The actuator undergoes a range of compressive and tensile axial loads within one operating
cycle. For instance, at most nacelle angles, the actuator is in compression due to the weight of
the nacelle and the thrust of the rotor. However in airplane mode, when the downstop preload
is applied to hold the nacelle down to the wing, high tension loads are applied. Over time, this
repeated cyclic loading may cause wear of the nacelle actuator components. Wear in general is the
gradual removal or deformation of material from components in a mechanical system. While wear
can cause the failure of mechanical systems, it is well known for causing freeplay. In aerospace
design the freeplay of control surfaces such as ailerons is well studied. However, in the system at
hand, wear of the end lug that attaches to the nacelle could cause this nacelle tilting actuator
assembly to develop a degree of freeplay. The same effect could also be created through wear or
damage of the housing trunnions that allow the actuator to fit into the wing end via split spindle
arms (see Figure 2.9). Structural damage may cause freeplay deadbands to appear instantly, and
freeplay oscillations themselves may directly cause their own deadband to grow, as shown by
Padmanabhan [292].
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FIGURE 2.9. V-22 nacelle tilting actuation system. (a) Figure 6 from [290] (b) Figure 5
from [291]
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Safi et al. [293] note from data they gathered that the ailerons of general aviation aircraft
appear to accrue wear at approximately 0.6° per 1000 flying hours. Padmanabhan’s investigation
observed a much faster accrual of wear, with a 13-fold increase in the freeplay deadband width of
a control surface in his investigation over 300 1-hour loading cycles [292]. Furthermore, while a
standard industry model of wear depicts in-service wear as accruing at some steady linear rate,
Padmanabhan found that the growth rate itself can increase with ongoing use, leading eventually
to a runaway effect. If this same freeplay deadband growth rate occurred in the nacelle tilting
actuator of a tiltrotor in regular operation, it would likely lead to unconservative estimates as to
when to conduct appropriate maintenance. Freeplay in the nacelle tilting actuator is therefore
not only a highly plausible eventuality, but also a significant threat to the tiltrotor aircraft in

general.

2.2 Stability Analysis Methods

2.2.1 Dynamical systems

Dynamical systems generally fall into two classes according to the manner in which time evolves.
Differential equations treat time as a continuous quantity, while iterated maps discretise time
as a number of time steps [260]. While the equations that are dealt with in the present work
are of the first kind, the concept of iterated maps is important in the formalisation of the
stability of LCOs and the study of chaos, as will be discussed later. Continuous time systems
are also known as flows. Within differential equations, the type of system this work uses are
the ordinary differential equation type, as opposed to partial differential equations, as there is
only one independent variable: time ¢. In this work, derivatives with respect to time use the well
recognised "overdot" notation, e.g. % = x. Furthermore, the systems are second order, as the
<.
said to be autonomous (or time-invariant, or constant coefficient), as no part of the equations

highest derivative in the equation is the second time derivative The equations may also be
depends on the instantaneous value of time, and therefore the system’s global dynamics are
unchanged over time. This is consistent with the physics of the rotor-nacelle systems that will be

modelled. The system of differential equations is of the form:

d o
2.1) Y0 =y(0) =f(y(®)

where f is the system of ordinary differential equations and y is the state vector, composed of
the n system states, the quantities that comprise the system and whose evolution in time is of
interest. Such a system is said to be n-dimensional. As the equations used in this work describe
mechanical systems, the states of the system are the position and velocity of each degree of
freedom or generalised displacement, leading to the following relationship between the state

vector y and the vector of degrees of freedom x:
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2.2) y=

X
Furthermore, the states are all real-valued: y € R”. Time histories of the system y(¢) that

satisfy the system of differential equations f are said to be solutions of the equations.

Two common solution types are fixed points and periodic solutions. A fixed point, also known

as an equilibrium, is a system state y* at which the system will remain motionless for all time:

(2.3) fy)=0 =yit)=y"

for all ¢. Periodic solutions are trajectories that are closed in the phase space, forming loops. They

therefore repeat with some period T':
(2.4) y) =yt +T)

A particular type of periodic solution is the Limit Cycle Oscillation (LCO). It is an isolated
trajectory, as neighbouring trajectories are not closed like the LCO is, and they either approach
the limit cycle or tend away from it [260]. LCOs are unique to nonlinear systems. Linear systems
may experience ordinary periodic solutions, though they occur as infinitely large concentrically-
nested families of such trajectories all with the same shape but varying continuously in amplitude.
When solved numerically in time simulations, the motion is completely defined by the initial
conditions used. This result can be deduced by theory concerning solutions to linear ODEs: if
a trajectory y(¢) is a solution to a system, then so is cy(¢) for any constant ¢ [260]. A schematic

diagram of this phenomenon in an arbitrary phase plane (y1,y2) is shown in Figure 2.10.
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A

@

FIGURE 2.10. Schematic diagram of concentrically nested linear periodic solutions

There also more complex types of solutions. For instance, periodicity may be achieved by a

combination of solution components with different but commensurate periods (forming a rational
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ratio). If the periods are incommensurate, then quasi-periodic solutions are formed as their
trajectories in the phase space do not close. A relatively recent addition to the field of nonlinear
dynamics is the ever-developing understanding of chaos: superficially random motion with a
complex underlying structure. Chaos typically exists in certain parametric regions, rather than

globally, and there are several mechanisms by which it may come about.

The geometrical approach* to dynamical systems involves viewing the system in an n-
dimensional space known as the phase space, where each of the space’s dimensions represents one
of the system’s n states. The instantaneous state of the system at any point in time is therefore
represented as a point in the phase space, whose instantaneous coordinates are the instantaneous
values of each of the states. This point is known as the phase point. The concepts of the phase

space and phase point are demonstrated in Figure 2.11, part (a).
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FIGURE 2.11. Illustrations of (a) a phase space with a phase point, and (b) a phase
portrait. The states of the system are denoted y;, i € 1,2...

The evolution in time of a phase point starting at an arbitrary initial point (its initial
conditions) will trace out a curve through the phase space, known as a trajectory or an orbit in
some texts. The phase space is filled with trajectories which together pass through all points.
The differential equations of motion dictate how the system evolves in time and they construct a
vector field® within the phase space. In order for the equations of motion to define one and only
one output for any arbitrary current state of the system, they must abide by the existence and
uniqueness theorem, which specifies that if f and all its partial derivatives ng;, i,j€1,2...n are

continuous (smooth) in some open real-valued connected set, then all points in that set are each

part of one unique solution to the system in time [260]. As a result of this theorem, the trajectories

4 The French mathematician Henri Poincaré (1854-1912) is widely held to be the father of this approach. Another
key aspect of his point of view was to ask qualitative questions of dynamical systems rather than quantitative ones,
such as the nature of a system’s long term behaviour (e.g. stable or divergence to infinity) rather than the exact state
of the system at all times [260].

5 Vector field: a space in which each point is assigned a vector. Here the vectors represent the rate of change of
the system in all states, at each point, as defined by the equations of motion.
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do not cross anywhere in the phase space. The phase space and motion of the phase point can be
represented in a reduced level of detail using a phase plane, where two of the system’s states are
selected for the axes of a 2D projection of the phase space. A phase portrait is a particular kind of
phase plane where a number of qualitatively different trajectories are displayed or sketched to
demonstrate the variety of dynamical behaviours present in a system. An example illustration is

given in Figure 2.11, part (b).

In this work, the computational implementations of the models to be used are constructed
in MATLAB R2015a [294]. This choice is based on its availability, thorough documentation and
prior experience of its use. Time simulations were generated using the inbuilt ode45 numerical
ordinary differential equation solver, which implements an explicit Runge-Kutta (4, 5) formula,
the Dormand-Prince pair [295]. Solvers of this kind iteratively find numerical solutions in the
time domain to ordinary differential equations. Discretising the desired time span into a number
of steps, the ode45 solver is able to adapt the time step size used at each point based on error
tolerances specified. It offers good speed of computation and as the system type studied in this

work does not feature stiff equations®, this solver is a suitable choice.

2.2.2 Stability

Stability in the context of dynamical systems refers to the long-term tendency of the system (i.e.
y(2) as t — 00) in reference to a given solution. As stability is related to how the amount of energy
in a system changes over time, an important concept relating to stability is damping, which
refers to mechanisms by which activity of a system causes energy to be bled from it. Damping can
also be negative, where energy flows into the system instead of out. Periodic solutions in linear
systems only exist if the system is both conservative (i.e. there is no damping) and autonomous.
In nonlinear systems, damping is a function of both the system parameters and the system state.
In autonomous physical systems, LCOs depict self-sustained oscillations [261], such as shimmy

in tyres or self-exciting radio transmitters.

Solutions of all types have an associated stability, which qualifies whether the system, when
in the near vicinity of that solution, will converge upon it or diverge away from it. Equivalently,
it is a qualitative measure of the system’s response to a perturbation away from that solution.
An intuitive example for the fixed point case is a rigid pendulum: while both the vertically down
and vertically up positions are fixed points at which the pendulum may rest, the former is stable
and the latter unstable, in view of the behaviour that will follow any perturbation. If there is no

tendency of either kind, the solution is said to be neutrally stable.

Based on this tendency, stable solutions may be said to be attracting while unstable ones

6 Stiff equations: ODEs that demand unusually small timestep sizes even in very smooth regions of the solution
curve.
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may be said to be repelling. In addition to the basic definition, there are several more nuanced
theoretical notions of stability. One notion is essentially linked to the perturbation size. While
a given solution may be stable in response to small perturbations away from the solution in
question, making it locally stable, the same may not be true for larger perturbations. This
separates the concepts of local and global stability [260]. Mathematically speaking, all flows in
the phase space approach a globally stable solution, allowing it to be reached from any initial

conditions.

(a) (b) (c)

- A

-

FIGURE 2.12. Three types of fixed point stability: (a) Lyapunov stability, (b) asymptotic
stability, and c) exponential stability

The behaviour of flows that pass near fixed point solutions is another distinguishing notion
[261]. The following classification of fixed point stability types has been adopted within the study
of dynamical systems. The term y(0) indicates the state vector at ¢ =0, and the three stability
types are illustrated in Figure 2.12.

e If all trajectories that start sufficiently close to a fixed point remain close to it for all
time, the fixed point is said to be Lyapunov” stable. In mathematical language, if for every
neighbourhood € > 0 of the fixed point y*, there exists a smaller neighbourhood § > 0
contained within ¢ such that every trajectory starting within § remains within ¢ for all

time, i.e. if |[y(0) —y*| < 6 then |y(¢#) —y*| <e¢ for all £ = 0.

¢ Additionally, if a Lyapunov stable fixed point has all nearby trajectories eventually converge
upon it (though they need not converge upon it monotonically), it is said to be asymptotically
stable: i.e. in addition to the above conditions, if all trajectories starting within 6 fulfil the

condition lim;_ ., [y(¢) —y*| = 0.

* An even stronger condition, exponential stability describes an asymptotically stable fixed

point whose trajectories converge not only monotonically but at least as fast as some

7 Aleksandr Mikhailovich Lyapunov (also spelt "Liapunov" in texts such as Strogatz [260]), 1857-1918. The
concept of Lyapunov stability as defined above was first presented in Lyapunov’s doctoral thesis of 1892, titled The
General Problem of the Stability of Motion.
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particular known rate a|y(0) —y*|e #. In formal mathematical language: if there exists
a >0 and B > 0 such that if [y(0) —y*| < §, then |y(t) —y*| < aly(0) —y*|e P,

Structural stability refers to how phase portraits respond to perturbations to the equations[261].
If the phase portrait’s topology® cannot be changed by an arbitrarily small perturbation, such
as the introduction of damping, then it is said to be structurally stable. Two phase portraits
have the same topology if one can be stretched or warped into the other through a continuous
one-to-one mapping? [259], without tearing or fusing. Some authoritative texts on dynamical
systems and their study that are referred to here are Strogatz [260], Thompson and Stewart
[261] and Kuznetsov [259].

Stable solutions, also known as attractors, have around them some neighbourhood in the phase
space in which all trajectories converge upon that stable solution. That is, a flow passing through
any point within this neighbourhood will converge upon the stable solution. This neighbourhood

is known as a basin of attraction.

Stability analyses calculate the stability characteristics of a solution or an overall system, and
in this sense stability can be both a quantitative matter and a qualitative one. Eigenvalue analysis
is a dedicated stability analysis framework for linear systems as it simply uses components of
linear systems theory, however it is in some circumstances incompatible with the nuances of
nonlinear systems. CBM, a toolkit of methods and theory, is potentially more computationally
expensive though it has the important ability of being able to find the new solutions created by

the nonlinearities.

2.2.3 Eigenvalue analysis
2.2.3.1 Application to linear systems

Linear systems have one global stability characteristic that eigenvalue analysis finds, as opposed
to individual solutions having their own stability characteristic. Assume an autonomous n-
dimensional linear dynamical system of the continuous-time type whose equations of motion may
be written as a flow (as opposed to a mapping) in the following matrix form that is typical of

mechanical systems:
(2.5) Mx+Cx+Kx=0

where x is the vector of m degrees of freedom of the system with x € R™, m = § and x = x(¢),

over-dots indicate derivatives taken with respect to time ¢, and M, C and K are the mass, damping

8 Topology here refers to the qualitative form or structure of the phase portrait, defined by general features and
their connectivity rather than specific dimensions.
9 Mapping: a morphism that transforms one set into another.
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and stiffness matrices respectively. The matrices are m-by-m square matrices with real-valued
elements constituted of the various system parameters. The system’s equations can be written

instead in the form:

(2.6) y=dy

where y = and J is known as the Jacobian matrix, which may be expressed in terms of the

matrices M, C and K:

0 I

(2.7) J= 1 1
-M—K -MC

The Jacobian matrix is useful as — providing it is diagonalisable (i.e. it can have its eigenvalues

determined) — the general solution for y(¢) is a function of its n eigenvectors and eigenvalues:

(2.8) y(t) = i A - yo)rpe!

k=1
where 1;, are J’s left eigenvectors, r;, are J’s right eigenvectors and A, are the corresponding
eigenvalues. If the Jacobian cannot be diagonalised it is said to be a defective matrix, which
occurs when its eigenvectors are not linearly independent. In this case, the Jordan normal form of
the Jacobian can be found, which is a matrix with the same properties and with the eigenvalues

on the leading diagonal [296].

The eigenvalues are sometimes referred to as "roots" as they are the roots of the system’s
characteristic polynomial, given by det(J — AI). In a linear system, these eigenvalues and their
corresponding eigenvectors describe the system’s modes: isolated motions of which any response
of the system is a linear combination. These modes have the property that if the system is given
a perturbation composed solely of one particular mode, its response will also contain only that
mode. While Equation (2.8) usefully gives the exact state of the system at any ¢, it also implies
the asymptotic behaviour of the system, i.e. its stability. It is a function solely of the exponential
component of each term, specifically the eigenvalues 1. The eigenvalues may be complex and

therefore the k™ eigenvalue 1;, can be written as the sum of real and imaginary parts:
(2.9) Ap=ap+iPp

where i is the imaginary constant. If §; # 0 then 1; and its complex conjugate (one of the other
eigenvalues) will pertain to an oscillatory motion. If 8, = 0 then A, will by itself pertain to a
monotonic first-order motion where the mode is non-oscillatory. In this case, the real part ay,

determines the amplitude evolution over time, with a; < 0 causing a decay to 0 and @ > 0 causing
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FIGURE 2.13. Argand diagram with example eigenvalues

a "blow-up" to infinitely large values. These behaviours may be called "stable" and "unstable",
respectively. It is common to display such roots on an Argand diagram. An example eigenvalue

plot on an Argand diagram is shown in Figure 2.13.

Furthermore, the only fixed point in a linear system is 0, to which the decay or divergence of
each eigenvalue is in relation. The response types discussed above are sketched in Figure 2.14.
The knife-edge case of ar =0 may be called "neutral stability" and for periodic solutions pertains
to a constant amplitude of oscillation. For fixed points, the range of behaviours in the case of
neutral stability may not be illustrated succinctly using the kind of diagram used in Figure
2.14 though very broadly speaking the system remains still if it is placed on the eigenvector

corresponding to the zero eigenvalue.

;<0 a;>()
Vi Vi

fixed
points

periodic
solutions

FIGURE 2.14. Sketches of response types of linear systems. The columns are organised
according to stability characteristic (unstable - stable) and the rows according to
the solution type (fixed point - oscillatory solution). Two responses are shown for
each fixed point case
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The stability of the system may therefore be viewed solely in terms of the real parts of its
eigenvalues, and an eigenvalue with a positive real component may be called an unstable root.
Inspection of Equation (2.8) shows clearly that only one of the n solution components needs to be

unstable for the system as a whole to be unstable, i.e. one unstable root is sufficient.

Two important modal characteristics may be obtained from each eigenvalue’s a; and ; and
each of the system’s n modes has associated with it an individual value for both. For the £
mode, the damping ratio {; captures the rate of amplitude change of that mode, as previously
described, while the natural frequency wy, gives the undamped (i.e. underlying) modal frequency.
However, the damped frequency at which the oscillation actually occurs is a function of both w

and (. These characteristics are defined thus:

(2.10) (= —k
wg

(2.11) wg =\/a2 + p2

This set of methods will be used to calculate the overall system stability of the original linear
version of the two rotor-nacelle models used in this work. For ease of reference, particularly when
comparisons with CBM need to be made, the application of eigenvalue analysis to fixed point

branches in order to determine the system’s whirl flutter stability is termed linear analysis.

2.2.3.2 Eigenvectors and modeshapes

An oscillatory mode consists of a sinusoidal oscillation in all states at a frequency determined
by the relevant eigenvalue’s magnitude. The actual shape of the mode in terms of the system’s
states is encoded in each mode’s right eigenvector ri, a vector the same size as the system’s
state vector whose components each pertain to the corresponding system state in the state
vector in an element-wise fashion. In the systems that are studied in this work, the oscillatory
modes not only have a complex eigenvalue but also a complex associated eigenvector. When
these complex eigenvector components are plotted on an Argand diagram, their control of the
modeshape becomes clear. Specifically, the relative magnitudes and the relative arguments
of these eigenvector components are key. If the i*? component of ri is notated rg i, then its

magnitude |ry ;| and argument /ry ; are:

(2.12) el = \/ Re(rg)? + Im(rk,i)2‘
_q (Im(rk ;)
. — 1| K17
(2.13) et = tan (Re(l‘k,i))
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The relative magnitudes of the eigenvector components determine the relative amplitudes of
the corresponding states’ participations in the given mode, and the relative arguments between
the various eigenvector components shows the phase difference between each state’s time history.
An alternative perspective is to view the mode shape as rotating: the set of eigenvectors rotates
around the origin at the frequency dictated by the corresponding eigenvalue, and the value of
each state at any given moment is given by the projection of the corresponding component onto
one of the axes; the choice of axis is irrelevant as long as it is consistent across all states. This
relationship is shown in an arbitrary context for a system with 3 states and neutral damping

with an eigenvector rk in Figure 2.15.
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FIGURE 2.15. Relationship between eigenvector components and the time histories of
their corresponding states, with damping excluded, in linear systems

2.2.3.3 Application of eigenvalue analysis to nonlinear systems

A model that has been derived with nonlinear terms in its equations may be linearised (i.e.
manually made linear) to allow eigenvalue analysis to be conducted. This may be achieved by
stipulating conditions under which the nonlinear terms may be neglected. For example, the model
might be declared applicable only for numerically small values of its states, which in a dynamical
system might pertain to small angles or small deformations. This way, small angle assumptions
such as cosf =~ 1 and sinf =~ 0 may be applied, and polynomial terms of states of order 2 and
higher may be small enough to neglect. Nonlinear terms are then removed manually from the
equations, leaving a linear system to which the eigenvalue analysis may be applied as described

above.

However eigenvalue analysis can still be applied to nonlinear systems, which are markedly
different to linear systems in a number of fundamental ways. They may contain LCOs, and fixed
points away from 0. Furthermore, the system no longer has one single stability characteristic

that is a function of the system parameters alone and does not depend on the system state. Each
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solution now has associated with it a stability characteristic, and therefore eigenvalue analysis
must be applied on a solution by solution basis, by linearising specific fixed point solutions to find

their stability. Such a nonlinear system takes the form of:
(2.14) y =1(y)

where f is some nonlinear vector function operating on the elements of the state vector y. The local
linearisation of the system at a fixed point of interest is sometimes referred to as the underlying
linear system. Geometrically speaking, it is the multivariate (n-dimensional) gradient at the
fixed point within the vector field of the system’s equations and the stability of the fixed point is
therefore assessed using a linear approximation of the system’s dynamics there [260, 261]. If y*

is a fixed point then
(2.15) )=yt -y*

is a perturbation away from that fixed point. The linearisation at the fixed point is obtained by
expanding a Taylor series of the system’s equations about the fixed point:

of(y™)
0

(2.16) fy* +n) =fy*) + 1+0(?)

where f(y*) = 0 by definition, O(5?) denotes small terms in 5 of quadratic order and above which

are ignored due to their small size, and %5;) is the operation

af Y1 Yn

2.17) v : Lo
Y e, . o

ayl ayn

evaluated at the fixed point y*. This leaves

of(y™)
oy

(2.18) fly" +m) =

The term 6fé§*) is the nonlinear system’s Jacobian matrix J. It must be evaluated at each point

of interest and the indications given are only valid in a small neighbourhood about that point.

While J might be obtained directly through partial differentiation of the equations of motion, in
some cases it may be quicker to calculate it numerically by applying a small perturbation in each
state, evaluating f(y) and thereby calculating the linear gradient associated with each. The same
eigenvalue analysis detailed above is applied to this Jacobian to obtain stability information.
There are still cases where linearisation fails, when the method produces the zero matrix 0 and
is thereby inconclusive. These cases occur when the O(5?) terms are not negligible [260] and

therefore it is unsuitable to assume that a linear representation of the local dynamics is sufficient.

57



CHAPTER 2. SUPPORTING THEORY AND CONCEPTS

This method will be used to calculate the local stability of the fixed point solutions found in
the nonlinear versions (both soft and hard nonlinearity variants) of the two rotor-nacelle models
used in this work. The stability of LCOs is calculated using a related linear method, though as it
falls within the "toolbox" of CBM, it is discussed in the following section.

In linear systems, behaviour and therefore stability is solely a function of parameters rather
than the state vector. In other words, one global stability characteristic alone exists for a given
parameter value set, and therefore in linear systems depicting tiltrotor aeroelastic stability, this
Jacobian eigenvalue analysis is all that must be considered to predict where whirl flutter exists.
In nonlinear systems however, nonlinearities may not only create non-trivial additional solutions,
but can also cause them to exist over ranges of parameter values. In the current context, LCO
solutions constitute whirl flutter behaviour, and may exist in parameter regions that the foregoing
fixed point analysis declares to be stable, resulting in incorrect predictions from the eigenvalue

analysis. CBM can be used instead to prevent such solutions going undetected.

2.2.4 Continuation and Bifurcation Methods

Broadly speaking, there are two stages to the full application of CBM to a problem: (1) the
finding of the steady state numerical solution values via the process of continuation, and (2) the
application of bifurcation theory to the results. Continuation, or parameter continuation as it is
more formally known, is a numerical technique for computing implicitly defined manifolds'® [297].
Here, these manifolds are the solutions to the differential equations that constitute the various
tiltrotor aeroelastic models under study. Key junctions between solution manifolds, where the
solution changes stability or qualitatively changes type (i.e. bifurcations), may then be classified
according to the canon of bifurcation theory. The output of the whole process is bifurcation
diagrams that typically show the numerical values of solutions as a system parameter is varied,
along with any bifurcations encountered. Where the solutions form continuous curves between
the bifurcations, they are generally referred to as solution branches, and they can exist in both

fixed point/equilibrium and LCO types.

2.2.4.1 Solution value finding

Continuation finds solutions to problems of the form:
(2.19) fly,1)=0

where f is a (sufficiently smooth) system of nonlinear equations. Here they comprise the model,
y is the state vector as before and A is some system parameter(s) of interest. Essentially all

continuation packages are based on predictor-corrector methods with slight variations [259]. An

10 A manifold is the n-dimensional generalisation of a surface. Implicit definition does not give a closed form for
the manifold but rather some indirect expression(s) which hold true for the manifold.
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initial solution yy is required, from which the set of solutions is added to, or "continued". The
initial solution may be obtained either analytically through mathematical reasoning applied to
knowledge of the system’s behaviour and/or properties, or through the use of a time simulation
that allows the system to converge upon a stable solution of either the fixed point or periodic
type. Though the latter method does not strictly find the exact values of the solution in question,
the longer the simulation, the closer the system will be to that solution at the end of the
simulation. Using a direction vector y;, given by y; = %, and a parameter increment AA defining
the step size between this starting solution and the next solution point y; that is being solved
for, Newton’s method is used to obtain convergence of the next solution point, providing the
parameter increment is small enough. The process is then repeated for each new solution point

to construct solution branches as described above.

For the continuation of periodic solution branches, equations can be set up in the form of
boundary value problems. This involves discretising the LCO into a set of mesh intervals and
then threading piecewise polynomials through a set of collocation points on each mesh interval.
Although single parameter continuation has been described here, continuation can be conducted
in more than one parameter at once. Three main types of continuation method that have seen

much use are listed here:

¢ Natural parameter continuation is the most basic iterative case. In the limit the it-
eration approaches a solution of Equation (2.19) and the solution at one value of the
continuation parameter is used as the initial guess for the next parameter point under
evaluation. It is the simplest form of continuation although it cannot negotiate turning
points of the solution branch, where the branch folds back upon itself in the continuation

parameter axis.

 Simplicial/piecewise linear continuation uses (n — 1)-dimensional simplexes!! in the
n-dimensional parameter-solution space, finding the unique linear interpolant in each and
testing if it takes on the value 0 at any point inside the simplex and thereby satisfying
f(y,A) = 0. While the method is simpler to visualise than the other two listed here, producing
an efficient computational implementation of the method is significantly more complex
than the basic statement of the method.

¢ The pseudo-arclength method parametrizes the solution curve with arclength rather
than the value of the continuation parameter(s) and is thereby able to follow the solution
branch around turning points. In addition to the system equations, the solution of each

point solves an equation involving this arclength:

(2.20) f(yl,/ll) =0

11 Simplex: the n-dimensional generalisation of a triangle or tetrahedron.
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(2.21) (y1 — yo)y6 + (/11 - Ao)/li) —As=0

where A is the parameter component of the direction vector, g and 1 are the continuation
parameter values at the current and next points respectively, and As is the increment of

arclength along the solution curve [298].

The continuation package used in this work uses the last approach, the pseudo-arclength

method. The other features of the package are described in Section 2.2.4.5.

2.2.4.2 Stability analysis

Once the solution values have been found, their stability may be assessed. Here, linear stability
analysis is acceptable, as the solution of interest — wherever in the parameter space it may
exist — has already been found. For fixed points, linearisation is employed at the solution point
of interest, followed by an eigenvalue analysis of the resulting Jacobian matrix, as detailed in
Section 2.2.3.3.

The assessment of periodic solution stability requires the application of Floquet!? theory [299],
which treats a periodically repeating motion in the phase space as a stroboscopic phenomenon
at a single point through which it passes. Instead of considering the whole trajectory of the
LCO within the n-dimensional phase space, an (n — 1)-dimensional plane is placed at some point
along the trajectory such that it is transverse!3 to the LCO at the point of intersection and to all
other trajectories that intersect it. This plane is known as a Poincaré section and the concept is

illustrated schematically for an arbitrary 3-state system in Figure 2.16.

In a sufficiently small neighbourhood of the phase space near the original LCO, nearby
trajectories behave similarly to the LCO in that they too loop around in the phase space to
re-join S from the other side. Unlike the LCO however, they do not re-join S at exactly the
same point that they departed. The use of this plane therefore transforms the system from a
continuous-time system to an iterated mapping: the trajectory emanating from an arbitrary point
ya on the Poincaré section S can be traced around in the phase space (blue line) using numerical
integration of the system equations until it intersects S once again at yy, known as its first
return. The group of mappings of all points on S, from S to itself, is known as the Poincaré map,
an iterated mapping in discrete time. As the LCO in question (green) is a closed trajectory, its
intersection point with S maps to itself on S and is therefore a fixed point of the Poincaré map,

notated y*.

12 Achille Marie Gaston Floquet, 1847-1920, is known mostly for his contributions to the theory of differential
equations.
13 The plane does not need to be orthogonal to any of the trajectories passing through it, but rather not parallel.
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Y3

FIGURE 2.16. Schematic representation of a Poincaré section in an arbitrary 3-
dimensional phase space

Floquet theory finds the stability of the LCO by measuring the tendencies of its nearby
trajectories according to their first return on the Poincaré section. If a Poincaré section S is
defined via one of the states (say y1) as y1 = C, where C is the value of the y; state at a point on
the LCO trajectory where the Poincaré section is desired to be placed, then a small perturbation
about the fixed point is applied in each of the remaining states in turn. The state values of each

of the first return points constructs the first return matrix, known also as the monodromy matrix.

This approach linearises the dynamics of the LCO within a small neighbourhood of its
intersection point with S, as this monodromy matrix is used as the Jacobian matrix of the
iterated map’s fixed point, which is an analogue for the stability of the LCO as a whole. Floquet
theory further specifies that the monodromy matrix has the property that the above process
can be performed for any point on the LCO with the same results obtained. Eigenvalues are
taken of this matrix, which contain stability information, though here they are referred to as
Floquet multipliers. One Floquet multiplier is always 1, which is the trivial indication that the
trajectory at the intersection point with S is parallel to the LCO. While a positive real part is of
significance in the eigenvalue analysis of fixed points, it is magnitude in excess of unity that has
corresponding significance in Floquet analysis. The indication of the LCO’s stability is the value
of any of the real Floquet multipliers: any real multipliers with a magnitude above 1 indicate

instability of the LCO under analysis.

The use of a Poincaré section is not restricted to the stability analysis of LCOs. They are
also highly effective for uncovering the underlying structure of chaotic motions: a system can
be simulated for a long period of time, allowing a pattern of intersections to build up on an

appropriately positioned Poincaré section.
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2.2.4.3 Bifurcation detection

While solution branches mostly vary smoothly with changes in the continuation parameter(s),
junctions between branches and other non-smooth features occur at bifurcations, where the
solution changes stability or type. Alternatively, there is no continuous one-to-one mapping of the
phase portraits of the system either "side" of the bifurcation. Bifurcations may be categorised
broadly according to the extent of the phase space that they affect. Local bifurcations such as
the Hopf bifurcation affect only a single point, while global bifurcations affect swathes of the
phase space and involve the creation, destruction or qualitative change of attractors within
the phase space. Some bifurcations may be seen as a hybrid of the two categories, involving a
"catastrophic" local bifurcation whose full repercussions depend on the system in which they
occur. Some bifurcations that are common to the type of system studied by this work are listed

here:

¢ Fold bifurcation - a fixed point solution branch changes direction on the continuation
parameter axis, and in the process changes stability. Eigenvalue/multiplier indication: a
single real eigenvalue crosses over the imaginary axis. Other names: limit point bifurcation,

saddle-node bifurcation.

¢ Pitchfork bifurcation - a fixed point solution branch changes stability, and in the process
spawns two new fixed point solution branches. The layout of the three branches emanating
from one lends the bifurcation its name. Eigenvalue/multiplier indication: a single real

eigenvalue crosses over the imaginary axis.

¢ Hopf bifurcation - a fixed point solution branch changes stability, and in the process
spawns a periodic solution branch. The emergence of this periodic solution branch is smooth,
in that at the Hopf bifurcation itself, the amplitude of the LCO is zero. Eigenvalue/multiplier
indication: a complex conjugate eigenvalue pair crosses over the imaginary axis. Other

names: Andronov-Hopf bifurcation

¢ Cyclic fold bifurcation - the periodic solution branch analogue of the ordinary fold
bifurcation listed above. Though it is mathematically different and is detected via dif-
ferent means, its appearance on bifurcation diagrams is essentially identical. Eigen-

value/multiplier indication: a single real Floquet multiplier crosses over the unit circle.

* Torus bifurcation - a periodic solution branch changes stability, and in the process a
torus-shaped manifold forms about the LCO, on which trajectories may flow. Flow of this
kind is referred to in this work as torus flow. The emergence is smooth in the same manner
as the Hopf bifurcation listed above, though torus manifolds of this kind may also be
created/destroyed non-smoothly; such an occurrence does not constitute a torus bifurcation.
Eigenvalue/multiplier indication: a complex conjugate pair of Floquet multipliers cross over

the unit circle. Other names: Neimark-Sacker bifurcation, secondary Hopf bifurcation.
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* Homoclinic bifurcation - a periodic solution branch annihilates upon collision with a
separate fixed point branch. At the collision point, the LCO connects the fixed point to itself
via a loop in the phase space; the "homo-" prefix indicates that the start and end points of

this LCO are the same. Eigenvalue/multiplier indication: none.

¢ Heteroclinic bifurcation - similar to the homoclinic bifurcation listed above, except
the collision involves two fixed point branches which the colliding LCO arcs between.
The "hetero-" prefix indicates that the start and end points of this LCO are different.

Eigenvalue/multiplier indication: none.
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FIGURE 2.17. Types of bifurcation

These bifurcation types are shown in schematic detail in Figure 2.17. The bifurcation point in
each case is indicated with a filled black dot.
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Arguably, the emergence of a chaotic regime could be regarded as a bifurcation, in the sense
that a qualitative change of the system’s behaviour has occurred, from one recognisable type to
another, and linked to the change of some system parameter. However, the canon of bifurcation
theory does not describe chaos in this way, referring instead to the "onset of chaos", or the

"emergence of chaos".

The criticality of certain types of bifurcation is a further sub-classification with qualitative
impacts for a system’s dynamics. The criticality refers to the stability of branches emanating
from a bifurcation. Of the bifurcations listed above it applies to the pitchfork, the Hopf and the
torus. A pitchfork or Hopf bifurcation is said to be supercritical if the emanating branches are
stable, and subcritical if they are unstable. In the case of a torus bifurcation, if the torus manifold
that is formed is stable (i.e. attracting) then that torus bifurcation is said to be supercritical. If it
is unstable/repelling then it is said to be subcritical. The matter of criticality is demonstrated in

schematic form in Figure 2.18.

supercritical subcritical
i 1
unstable stable
stable unstable
Pi Pi

FIGURE 2.18. Schematic representation of bifurcation criticality

A key concept of nonlinear systems that Figure 2.17 also shows is the existence of a solution
branch over a range of parameter values. This is in contrast to linear systems, which as described
earlier produce trivial solution branches of concentrically-nested solutions that only exist at the
parameter value that causes neutral stability. This phenomenon of a given solution type existing

over a range of parameters is key to the stability analysis that the application of CBM will yield.

While the key eigenvalue/Floquet multiplier transitions have been listed for some of the bifur-
cations above, several have the same indication and the homoclinic and heteroclinic bifurcations
have no such indication at all. Therefore the actual processes for detecting them are necessarily
more complex than just monitoring the eigenvalues or Floquet multipliers in this way. There are
a number of algorithms that continuation packages employ to detect specific bifurcations, which

are explained in more detail by Kuznetsov [259], and Allgower and Georg [300].

A key to the symbols and lines used in the bifurcation diagrams shown in this work is given in

Table 2.1. Particular attention is drawn to periodic solution branches. As a fixed point/equilibrium
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only exists at a single point in the phase space, its value can neatly be indicated on a bifurcation
diagram. However, the same is not possible for periodic solution branches as at each parameter
point, a whole LCO exists, covering a range of values in the states. The convention then is
to indicate periodic solution branches via the maximum (i.e. most positive) value of the given

projection state in the LCO at each point.

TABLE 2.1. Key for lines and symbols used in bifurcation diagrams

Graphic Description Meaning
solid green line stable equilibrium branch
- = = = | dashed magenta line unstable equilibrium branch
— solid blue line stable periodic solution branch
-------------- dotted red line unstable periodic solution branch
solid grey line concentric periodic solution family
O hollow square Hopf bifurcation
* black star pitchfork bifurcation
[ ) black circle fold bifurcation
A black triangle homoclinic bifurcation
A hollow triangle heteroclinic bifurcation
O hollow circle torus bifurcation

2.2.4.4 Qualitative differences in stability analyses

With the fundamental differences between linear and nonlinear systems now demonstrated, it
is logical to note that the results from their dedicated stability analyses are correspondingly
different. Firstly, the philosophy behind the use of eigenvalue analysis for linear systems — and
why it cannot be used for nonlinear systems — is clear. When applied to the classical whirl flutter
problem, linear analysis only finds the onset point in whatever parameter is being swept: e.g.
the airspeed or the stiffness value at which the whirl flutter mode roots become unstable. And
because only unstable behaviour (i.e. divergence to infinitely large solution values) can be found
beyond it, and only stable decay behaviour can be found before it — at least in the case of airspeed
— it is sufficient in linear whirl flutter models to find this onset point and not consider any whirl
flutter solutions pre- or post-instability. In terms of parametric regions, the parameter range

before the instability onset is termed "stable" and the range after it "unstable".

It is however when this philosophy is applied to nonlinear systems that problems can occur.
This is because nonlinearities can cause solution branches to "bend" within the parameter space.
Although the whirl flutter solution branches still emanate from the linear-predicted instability
onset parameter value, instead of a concentric family of solutions that only exists at that onset
value, the solution branches may exist over ranges of the parameter value. In the case of whirl
flutter, this parameter could represent airspeed, meaning that whirl flutter can be encountered at

lower airspeeds than the linear analysis predicts. The bending of solution branches means that

65



CHAPTER 2. SUPPORTING THEORY AND CONCEPTS

the parameter value at which a flutter branch emerges says nothing concrete about the range of

parameter values that the whole branch could exist over.

Secondly, what the term "whirl flutter" refers to is dependent on whether the system repre-
senting it is linear or nonlinear. In a linear model of a system undergoing whirl flutter, the term
refers to the post-instability behaviour where the system’s oscillations diverge to infinity. However
in a nonlinear representation, where solutions have their own individual stability and may exist
over a range of parameter values, whirl flutter refers more generally to a periodic solution found
in the system, including when it is stable. While this may seem contradictory, these periodic
solutions still depict motion of the real world system that would damage it. The "self-limiting"
nature of LCOs, where the same physical mechanisms that lead to a periodic solution arising
also work against the oscillation amplitude increasing beyond some amount, does not make them
any less dangerous, as the model fails to account for the structure being damaged through the
LCO occurring and thereby the oscillation amplitude increasing. Furthermore, partitioning the
parameter space into regions that are termed "stable" and "unstable" is insufficient here, given
that a stable LCO presents a whirl flutter hazard and cannot be called "unstable". Instead, the
term "unsafe" is used for any parametric regions where linear analysis predicts stability, but
CBM finds whirl flutter.

2.2.4.5 Dynamical Systems Toolbox/AUTO-07P

The continuation package used in this work is the Dynamical Systems Toolbox (DST) [301]
developed by Coetzee et al., a MATLAB-based interface for the pre-existing FORTRAN-powered
AUTO-07P [302] continuation package. This package was chosen as it is widely used, performs
robustly and is simple to use. With the simple class of system being solved in the present work, it
has a considerable speed advantage over other available options such as COC0O. While it has some
analytical capabilities suited to problems of the form of Equation (2.19), the main algorithms are

aimed at the solutions of systems of ordinary differential equations (ODEs) of the form:
(2.22) y(@) =1£(y(®),1)

with fe R” and y € R?, and A representing parameters of interest that may be varied in the
process of continuation. It uses the pseudo-arclength method of continuation and has a wide range
of capabilities (listed in [302]) though some that are employed in this work are the computation
of families of stable and unstable fixed point and periodic solutions, the computation of Floquet
multipliers, the location of folds, cyclic folds, branch points, periodic doubling bifurcations and
torus bifurcations. The main algorithms used by AUTO are explained in more detail by Doedel,
Keller and Kernevez [303, 304]. Several other algorithms used by AUTO, such as the homo-
clinic bifurcation continuation algorithms and the Floquet multiplier algorithms were originally

presented in [305-309]. AUTO is not however capable of continuing quasi-periodic solutions.
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FIGURE 3.1. Chapter map

In this chapter, the effects of a smooth nonlinearity on the whirl flutter stability characteristics
of a rotor-nacelle system are shown in an applied and integrated context, via the novel integration
of a polynomial stiffness profile with the basic model. In terms of Research Objectives and
Research Process steps, this chapter addresses objective O1, by performing steps P1-6 on the
basic model and the smooth nonlinearity. Presenting these effects in isolation will assist the
more complex analysis that follows later in this work. A summary of the chapter’s content and

structure is shown as a map in Figure 3.1.

First, whirl flutter and the basic model are introduced in tandem, each aiding the explanation
of the other. Linear stability analysis (as introduced in Chapter 2) is employed, both to show the
methods at work and also to show the sensitivity of the simple model’s stability to various pa-
rameter changes. Stability boundaries are introduced as a tool for understanding and comparing
stability impacts. Then, Continuation and Bifurcation Methods (CBM) are shown in practice by

applying them to the basic model, demonstrating the similarities and differences compared to
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linear analysis. A smooth nonlinearity is then introduced and analysed with CBM. The impacts
on the model’s stability are discussed qualitatively, and the model’s stability boundary is redrawn
based on the findings. Finally, a continuation in speed is shown to illustrate the nonlinearity’s

impact on onset speed.

3.1 Introduction

Key ingredients in classical whirl flutter are aerodynamic and gyroscopic forces acting on the
rotor, and the elastic restraint of the engine nacelle’s structure. Recognising this, W. H. Reed III
captured these aspects in a model developed during the 1960s. The model has since become the
canonical form of classical whirl flutter, used for the introduction and explanation thereof, and it
is for this reason that it is chosen for use in this work. Further benefits of using this model are the
ease of its implementation and the availability of literature from the various studies that used
it. The model changes slightly between its appearances in the various landmark publications
released by Reed and his colleagues during the 1960s. The simplicity of the equations makes them
amenable to manual analysis, something that was valued at the time of the model’s development,
when the limited performance of digital computers meant that computational analysis as a
standard was not yet feasible. Such manual analysis might include forming explicit analytical
expressions for root values necessary for specific instabilities, or relationships between parameter
values that guarantee the existence of a periodic solution. A more compact version of the model
was released later by Bielawa in his book [310] from 2005, which presents the aerodynamics and
some of the inertias in a more succinct form. It is this version of the model that this work uses as

the "basic model".

The model serves all the purposes of a canonical model: it represents the necessary physical
phenomena in as concise a form as possible. This nevertheless comes at the expense of some
features that, while not crucial for whirl flutter to appear or sustain, are nevertheless influential.
The most significant of these omissions is the absence of rotor blade degrees of freedom such as
flapping and lead-lag, while the inability of the pivot point to translate through wing bending is
another. These omissions affect the model’s predictions regarding the whirl flutter boundary and
the nature of the instability’s activation. However, the model does represent the most important
influences of various stabilising and destabilising factors. Whirl flutter as depicted by this basic

model — and accepting all the omissions — is known as classical whirl flutter.

The experimental rigs used for the practical elements of the 1960s research efforts were of a
variety of sizes, ranging from full scale to small tabletop demonstrators. The parameter value
set presented in Reed’s 1965 summary work [40] pertains to the latter of these sizes and is used
here due to its completeness. Though it is an existing model in the field, a derivation has been

provided in Appendix A for completeness. Here, a description of the model is sufficient.
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I, K, Cy K, C,

FIGURE 3.2. Schematic diagram of basic model

3.2 Modelling Description

3.2.1 Basic whirl flutter model

A rigid, N-bladed rotor of radius R rotates at an angular velocity of Q about the end of a rigid
shaft, to which it is rigidly attached. The rotation sense is clockwise if the rotor is viewed from
the origin. The shaft’s length is a multiple a of the rotor radius R, and the rotor has moment
of inertia I, about its axis of rotation. The rotor blades have chord ¢ and sectional lift slope
¢1«- The rotor and shaft together represent the nacelle as a whole, and the opposite end of the
shaft is elastically mounted at an effective pivot point, placed at the origin, which represents the
connection of the nacelle to the wing. Through this connection, the rotor and shaft as a whole
are able to rotate about the pivot point in pitch 6 and yaw w. Though the wing is not modelled
explicitly, the deformation that it would experience is lumped together into these degrees of
freedom: wing torsion (contributing to pitch) and wing chordwise bending (contributing to yaw), in
addition to flexure of the connection point itself. The nacelle rotations 6 and yaw y are measured
from an undeformed position where the shaft points down the global x-axis. The rotor and shaft’s
collective moment of inertia about the pivot point in each degree of freedom is I,,. The stiffness
and damping properties of the pivot point are aggregated as single “lumped” quantities. The
stiffness in each degree of freedom is assumed to be linear (proportional to angular deformation)
and is denoted K. The structural damping is also assumed to be linear (proportional to angular
deformation rate) and is denoted C. The structure is assumed not to contribute any coupling in
either stiffness or damping. The whole assembly is immersed in a uniform freestream velocity V'
with air density p that is parallel to the x-axis, moving in the negative direction. The system is

represented schematically in Figure 3.2.

The equations of motion, as given by Bielawa [310] are:
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These integrals are radial summations of the aerodynamic forces acting on the blades. The
integration variable 1 represents the distance away from the blade root in the radial direction,
normalised by rotor radius. The advance ratio p is defined as per contemporary convention:

U= %, that is, without the factor of 7 that is commonly present in literature of Reed’s time.

In the original text, Bielawa takes a more qualitatively-minded approach to the demonstration
of whirl flutter and therefore does not provide numerical values, either for parameter values to
be used with the model, or in the figures he includes. However, parameter values are provided
in Reed’s work [40] for use with his various iterations of the model. With some care they may
be used in Bielawa’s version of the model. Figure 3.3 shows results from the present work’s
implementation of the basic model compared to those shown in Figure 6 of [40], which shows a
sweep of rotor speed with measurement of modal frequencies and damping ratios. The results

from this work are shown with coloured lines, and those from Reed with black dots.

1 RHS: Right Hand Side.
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FIGURE 3.3. Variation of modal frequency (top) and damping ratio (bottom) with rotor
speed  of the implemented basic model (solid coloured lines) and results from [40]
(black dots)

The two distinct lines present, marked ‘FW’ and ‘BW’, correspond to the two modes of the
system and are discussed in Section 3.3.3. There is good agreement between the results of the

present work and those of Reed.
The model equations were written in state-space form, as shown in Equations (3.8) and (3.9):

(3.8) y=£(y,p), yeR*, peR™

i T
(3.9) y=10 v 6 v

where y is the state vector and p is a vector of system parameters. The parameter values used
throughout the investigation are shown in Table 3.1 and were retained, where possible, from
Reed’s original text. Where ranges of parameters were used in Reed’s study, the midpoint value
was taken for this parameter set. These values represent a scaled wind tunnel rotor-nacelle
system, however the qualitative results achieved from the following analyses are applicable to
full size aircraft for cases that approximate classical whirl flutter, such as very stiff blades (e.g.

propellers) and a minimally translating pivot point.

3.2.2 Nonlinear adaptation

The shortcomings of assuming linear stiffness — specifically within the context of aeroelasticity —
have been long known, as evidenced by Woolston’s work [29], previously mentioned. One improve-
ment is to replace the linear stiffness profile associated with a degree of freedom with a low order

polynomial with odd-numbered power terms to relate deflection to restoring force/moment. This
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TABLE 3.1. Basic model datum parameter values

Description Symbol Value
Rotor radius R 0.152 m
Rotor angular velocity Q 40 rad.s™
Number of blades N 4
Blade chord c 0.026 m
Blade (2D) lift slope Cla 2 rad!
Freestream velocity \% 6.7 m.s’!
Ratio of pivot length to rotor radius a 0.25
Rotor moment of inertia I, 0.000103 kg.m?
Nacelle moment of inertia I, 0.000178 kg.m?
Structural pitch damping Co 0.001 N.m.s.rad™!
Structural pitch stiffness Ky 0.4 N.m.rad™!
Structural yaw damping Cy 0.001 N.m.s.rad!
Structural yaw stiffness Ky 0.4 N.m.rad™!

polynomial is an improvement as it is often a more accurate representation of how stiffness varies
at larger deflections. There are also a number of important constraints satisfied by this expression.
In addition to being smooth, the zero point is crossed (i.e. zero restoring force/moment for zero
deflection) and the function is odd (i.e. the graph of the function has rotational symmetry about
the origin). The latter condition precludes the use of even-numbered powers in the polynomial
expression. There are two general kinds of this polynomial stiffness representation: softening
and hardening. Softening refers to profiles that accrue restoring force with a decreasing gradient
as the deflection grows, while the opposite is the case for hardening. These two categories have
differing hallmark influences on the dynamic behaviour of a system, as will be seen and explained

later.

The pitch and yaw degrees of freedom in the basic model are qualitatively identical from a
modelling point of view, as if the model is rotated 90° about the x-axis, it is completely unchanged
in form. Furthermore, in the parameter value set used in this work, the values that control the
respective physical attributes attached to the two degrees of freedom are also equal, giving the
rotor-nacelle isotropic properties about the pivot point. For this reason, either degree of freedom
could be selected for nonlinear adaption without any qualitative impact on the results. However,
in a typical wing, the torsional degree of freedom is much less stiff than the chordwise bending
degree of freedom, and therefore appreciable deformation may occur in the former in whirl flutter
oscillations. In the Reed/Bielawa model, torsional motion of the wing is represented solely by
motion in the nacelle pitch degree of freedom, 6, and it is therefore in this degree of freedom that
the polynomial stiffness is implemented. In the nonlinear adaptation of the model, the polynomial
stiffness expression replaces the linear expression (Kgf) specified in the original formulation of

the model, and is of the form given in Equation (3.10), where “nl” denotes “nonlinear”. Note that
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Ky »1 is not a constant but rather a function of 6, which is in units of radians.

Ko n1(0)0 = K10 + K26 + K30°

(3.10)
= (K1 + K202 +K30%0

The influence of each term is controlled via dedicated stiffness parameters K;, which ulti-
mately can provide softening behaviours by using negative values of K9 and/or K3, and hardening
behaviours by using positive values. The cubic term is dominant at smaller deflections, while the
quintic term is dominant at larger deflections, allowing both softening and hardening behaviours
to be observed in the same stiffness profile if K9 and K3 have opposite signs. A fifth order polyno-
mial is chosen as it is the simplest representation that allows softening and hardening behaviours
to be combined. The following three cases are selected for investigation to both isolate the effects

of each profile type and show them in concert:

Ks=10 N.m.rad'3, K3=0 N.m.rad™® (cubic hardening)
Ko=-10 N.m.rad'3, K3=0 N.m.rad™ (cubic softening)

Ko =-10 N.m.rad'3, K5 =350 N.m.rad™® (cubic softening - quintic hardening)

The overall shape of these profiles compared to the original linear profile is shown in Figure

3.4. Note that the x-axis is expressed in degrees, rather than radians as in Equation (3.10).
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FIGURE 3.4. Polynomial stiffness profiles compared to linear profile (dark blue)

Covering these three cases allows the modelling of a variety of possibilities for how the
stiffness of a tiltrotor’s nacelle pitch might be characterised. These values were selected such that

the desired form of the stiffness profile was readily apparent from its graph, and were ratified by
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comparison to the values used by Woolston [28] in his work on cubic stiffness in control surface
flutter. K1, the linear component of the stiffness profile, is used as the independent variable in
each case and it is varied between -0.3 and 0.5 N.m.rad™'. While the gradients of all the nonlinear
stiffness profiles are quasi-linear near zero deflection, their tendencies at larger deflections are
clear from Figure 3.4. The configurations of the model with each of these stiffness profiles are
hereafter referred to as model variants, for instance, the "hardening model variant", etc. The

cubic softening - quintic hardening case is referred to as the "combined variant".

3.3 Linear Stability Analysis

3.3.1 Parametric sweep in airspeed V

As a first step in the stability analysis of whirl flutter, the eigenvalue analysis is now applied to
the basic model described above. As the most well known activation mechanism of whirl flutter is
exceeding a critical whirl flutter onset airspeed, it is logical to first investigate a sweep in this
model parameter, evaluating the linear stability at each point. The eigenvalues, damping ratio
and frequency of the linear model’s modes are shown in Figure 3.5 as the freestream velocity V is
swept from 0 to 10 ms™!. In the Argand diagram plot of the eigenvalues (a), the ends of the loci

1

corresponding to 0 ms™! are indicated with an ‘<’ and those corresponding to 10 ms~! with an ‘0’.

The remaining parameter values used are those presented in Table 3.1.
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FI1GURE 3.5. Argand diagram of eigenvalues (left) and their corresponding modal damp-
ing ratios (centre) and frequencies (right) for a sweep in airspeed V. Unstable
regions are shaded red

The Argand diagram shows that within this domain of analysis, the four eigenvalues exist in
two complex conjugate pairs and the plotted lines on the various subplots are coloured to reflect
this. The identification of the modes is discussed shortly. Roots in a complex conjugate pair differ
only by the sign of their imaginary component and therefore will have equal modal frequency

and modal damping ratio. That is, if an eigenvalue pair — say, the pair coloured blue in Figure 3.5
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—1isin the form 112 =a £ib, then:

w2 =1\/a2+(=b)? =Va2+b2 =w,
¢ a a
2:— = — =
/a2+(_b)2 va2+b2

Hence, only two distinct lines are visible in the damping and frequency plots. The system’s

(1

stability is encoded solely in the damping ratio plot (middle): damping ratios above 0 imply
stability of a mode, and damping ratios below 0 imply instability.

We may deduce that when configured with the datum set of parameters listed in Table 3.1
(i.e. V = 6.7 ms™), the system is stable. However, the damping ratio of one of the modes crosses
through 0 from above at an airspeed of approximately 7.8 ms™, showing that this mode becomes
unstable at this airspeed. Physically speaking, the freestream is the only source of energy in the
system and when the system is unstable, energy is being supplied to the system at a greater rate
than it can dissipate through the various features in the model that provide positive damping. As
this unstable mode’s eigenvalues are a complex conjugate pair, it is therefore oscillatory and is in
fact the whirl flutter that this work concerns. As far as classical whirl flutter is concerned, this
airspeed at which the damping ratio of one of the whirl flutter modes is 0 is the whirl flutter onset
speed. Beyond this airspeed, the damping ratio of the mode continues to decrease, signifying
greater and greater instability. The other mode, by contrast, becomes more and more stable with

increasing airspeed, and at 0 ms™!

airspeed the damping ratio of the two modes is the same. This
would suggest that the airspeed affects the mechanisms of energy transfer into and out of the
system, acting to damp the orange-coloured mode but destabilise the blue-coloured mode. The
frequencies of the two modes are always well separated within the domain of analysis, with a
decrease in both modes as airspeed increases. The orange-coloured mode appears to be stiffer

than the blue-coloured mode, but growing airspeed decreases the stiffness of both modes.

3.3.2 Visualising whirl flutter

With the system at the onset airspeed, a time history of the pitch 8 and yaw vy states over
one second of the whirl flutter motion is shown in Figure 3.6. Being at the onset airspeed, the
system’s whirl flutter stability is neutral and therefore any amplitude can be chosen from the
concentrically nested family of periodic solutions that exists here; for this Figure a value of 5°
is chosen. To assist the reader in visualising the motion, a schematic diagram of the model at
various points in the same whirling motion is shown in Figure 3.7. For clarity, both the shaft
length and the oscillation amplitude have been exaggerated. The motion is a steady whirling of
the nacelle about its undeformed position. Here, the path is circular as the respective values of

damping and stiffness are set to be equal between the pitch and yaw degrees of freedom.
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FIGURE 3.6. Time histories in pitch 8 and yaw v of basic model, linear variant experi-
encing incipient whirl flutter

FIGURE 3.7. Schematic diagram of whirl flutter motion in basic model, linear variant.
For clarity, both the shaft length and the oscillation amplitude have been drawn
exaggerated

3.3.3 Classical whirl flutter mode identification

In Figure 3.7, the rotor whirls clockwise when viewed from the front (i.e. looking down the x
axis in the negative direction). This is in the opposite direction to the rotor’s spin, which is
anti-clockwise. Classical whirl flutter is in fact characterised by the relationship between the
whirl direction and the rotor spin direction: if the whirl is in the same direction as the rotor
spin then it is known as forward whirl, while whirling against the spin direction is known
as backward whirl. These are the only two types of periodic solutions that this basic model’s

linear variant is capable of exhibiting. For brevity, the shorthand ‘FW’ and ‘BW’ is used from here
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onwards to indicate forward whirl and backward whirl, respectively.

The mathematical distinction between the two whirl flutter modes lies in the phase differences
between the various states and these can be identified from the phase relationships that exist
within the system’s eigenvectors. In the simplest possible case of whirl flutter, the motion is

simply a circle of arbitrary radius A within the -0 plane, as depicted in Figure 3.8.

FIGURE 3.8. Schematic of hub motion in circular whirl flutter

If the hub whirls anti-clockwise (forward whirl in this system, given the rotor spin direction)
with some arbitrary modal whirl frequency of wr, then its angular position y, measured anti-
clockwise from the positive ¢ axis, at time ¢, is Yy = wrt, and therefore its position in the plane
is:

W = Acos(wrt)
(3.11)
0 = Asin(wgt)
The velocity of the hub in this plane is given through differentiation of these expressions with
respect to time:
1 = —Awrsin(wrgt)

(3.12) )
0 =Awpcos(wpt)

And therefore v and 0 are in phase. Similarly, for clockwise whirl (backward whirl here, given

the rotor spin direction), the hub’s angular velocity is now —wr and therefore:

¥ =Acos(—wrt) = Acos(wrt)
(3.13)
0 =Asin(—wrt)=—-Asin(wgt)

which gives:

1 = —Awrsin(wrt)
(3.14) .
0 = —Awgcos(wpt)
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where here, 6 and ¥ are in phase. These phase relationships permit the identification of FW
and BW from inspection of the eigenvector components of a given mode. The ordering of the

eigenvector components corresponds to the ordering of the state vector.

Examination of the corresponding eigenvectors of the unstable whirl mode in Figure 3.5 (blue
lines) corroborates the observation that it is backward whirl (BW). The other mode (orange line)
is a FW mode, and one pair of each will typically exist when the parameters of the system are

configured to produce oscillatory roots.

Importantly, only the BW mode is capable of instability in this model, regardless
of what parameter value configuration is being used. This is due to the aerodynamic stiffness
coupling, which always acts in the BW sense. This can be verified by inspection of the aerodynamic
terms given in Equations (3.2) and (3.3), and the schematic diagram of the hub motion given in

Figure 3.8.

If the nacelle is in the process of pitching upwards (i.e. 8 is positive) then the stiffness coupling
term A'29 in Equation (3.3) is also positive. On this side of the equation this denotes a positive
yawing moment, i.e. in the positive ¥ direction. Consulting Figure 3.8, this corresponds to BW
motion, as if the nacelle is rising, it must be following the left side of the circle so that the positive
yawing moment (to the right) is consistent with the motion to the right that follows. The reverse
is true for pitching downwards: a negative yawing moment is generated and this corresponds to

moving down the right hand side of the circle in Figure 3.8.

3.3.4 Parametric analysis

In the spirit of the investigations conducted by Reed et al., an elementary sensitivity analysis
of the model’s modes to the system parameters is shown here, conducted by means of some
parametric sweeps. The modal damping ratio and modal frequency are calculated for a range
of parameters as each is swept from a multiple of O to 4 of its datum value, a suitable range for
capturing the trend of each. As only the BW mode is capable of instability, there is no need to show
the FW mode here. Regarding the description of influences on stability, the terms "stabilising”
and "destabilising" are simply used to indicate an increase or decrease (respectively) in the BW
damping ratio rather than a transition from categorical instability to stability, or vice versa
(respectively). Broadly speaking, the model divides into two regions: the shaft and pivot point, and
the rotor. The sweeps are grouped by these regions and in each case, only the variable indicated is
altered while all others are kept at their datum values. Hence, all curves intersect at a parameter

multiple of 1.

The shaft and pivot point group comprises the nacelle moment of inertia I,, pylon pitch

damping Cy (the yaw damping could equivalently be chosen here) and the ratio of pivot length
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to rotor radius a. The pylon stiffness is shown later as its increase destabilises the system in a
non-oscillatory manner that requires dedicated explanation. The inertia is the only one of this
group to cause instability through its increase, increasing the energy associated with a given
deflection or deflection rate. Removing damping eventually destabilises the system. The increase
of shaft length has a stabilising influence due to a given angular velocity inducing greater air
velocities at the rotor and therefore greater aerodynamic damping, though its removal does not
cause instability. The increase of all parameters causes the BW modal frequency to decrease.

This set of sweeps is shown in Figure 3.9.
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FIGURE 3.9. Parametric sweeps of pivot point parameters: nacelle inertia I,, pylon
pitch damping Cy and pivot length ratio to rotor radius a

The modal frequency is similarly decreased by the increase of all parameters in the rotor
group: rotor moment of inertia I,, rotor angular velocity Q2 and rotor radius R. However in
contrast to the pivot point group, all rotor parameters are destabilising to various degrees when
they are increased. While increasing the rotor speed only reduces the stability margin without
causing instability, increases in the rotor moment of inertia — and therefore the gyroscopic
moments — does cause instability. The rotor radius affects the magnitude of the aerodynamic
forces and moments, and its increase causes a temporary increase in stability before eventual

instability. This set of sweeps is shown in Figure 3.10.
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FIGURE 3.10. Parametric sweeps of rotor parameters: rotor moment of inertia I, rotor
speed Q2 and rotor radius R
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CHAPTER 3. CLASSICAL WHIRL FLUTTER AND A SMOOTH NONLINEARITY

The driver of the whirl flutter instability is of aerodynamic origin [310]. For instance, while
gyroscopic influence is ordinarily able to destabilise the system as shown above, it is not able to
do so if the aerodynamic stiffness coupling (the A/, terms) is not present. This abstract case is

shown in Figure 3.11. The BW’s modal frequency is almost completely unchanged.
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FIGURE 3.11. Parametric sweeps of rotor inertia I,, with and without AJ, coupling

As mentioned earlier, the system destabilisation caused by sweeping the pylon stiffness Ky
away from the datum parameter value set is non-oscillatory. Shown in Figure 3.12 is a sweep in
pitch stiffness, similar to the preceding figures. For clarity however, the loci of the BW eigenvalues
in the complex plane are instead shown, as the concepts of frequency and damping ratio do not
apply to non-oscillatory modes. Note again that due to the mathematical similarity in how Ky

and K, feature in the equations and their equal datum values, either could be used in this sweep.
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FIGURE 3.12. Argand diagram of eigenvalues during a parametric sweep of pylon pitch
stiffness Ky
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Starting at a parameter multiple of 4, the BW root pair is a complex conjugate pair and
therefore an oscillatory mode. It is comfortably stable at this point and the loci indicate that
further increase of the parameter multiple would have a stabilising effect. However, as the
parameter multiple is reduced, the roots first destabilise and then rapidly converge upon each
other, representing a sharp increase in damping. The roots eventually coalesce at the marked
coalescence point, taking on zero imaginary components. This represents the mode becoming
overdamped and therefore non-oscillatory, and has occurred because the reduction in stiffness has
not been accompanied by a corresponding reduction in damping. Following this coalescence, the
two real roots shoot away from each other along the real axis, one in the positive direction across
the imaginary axis and the other in the negative direction further into the left real half-plane. At
the point that the rightward-heading root crosses the imaginary axis, it becomes unstable. As the
instability of a single real root manifests in time domain behaviour as a monotonic non-oscillatory
"blow-up" of the results (exponential divergence to infinity), in the study of aeroelasticity, it
signifies static divergence: a structural failure where, in this case, the wing structure is soft
enough to be overpowered by the aerodynamic pitch and yaw moments. This instability is distinct
from the whirl flutter that this work concerns, though as it is part of the stability characteristics
of the original linear variant of this basic model, knowledge of its existence will assist the

comparison with the nonlinear variant results that will follow.

In summary, the parametric sensitivity analysis shows that the stability of classical whirl
flutter, as depicted by the basic model, is sensitive to its constituent parameters in the manner
shown in Table 3.2.

TABLE 3.2. Summary of basic model parametric sensitivity analysis

Parameter Influence of value increase Influence of value decrease
I, Destabilising, eventual instability Stabilising
Coy Stabilising Destabilising, eventual whirl flutter
Ky y Stabilising Destabilising, eventual static divergence
a Stabilising Destabilising without instability
I, Destabilising, eventual whirl flutter Stabilising
Q Destabilising without instability Stabilising
R Destabilising, eventual whirl flutter Stabilising

3.3.5 Stability boundaries

While single-parameter sweeps can provide good insight into system sensitivities, the stability
boundary diagram between two parameters can also be useful, showing the balance of the two
parameters’ influences. Particularly useful parameters for such an understanding are those that
are readily controllable in the design phase of a practical system such as an aircraft. Such a

diagram can be produced from a grid of the combinations of different values for each parameter.
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CHAPTER 3. CLASSICAL WHIRL FLUTTER AND A SMOOTH NONLINEARITY

The Jacobian matrix is calculated at each grid point, and a surface is overlaid where the level at
each point is determined by the maximum real component of the Jacobian’s eigenvalues there. As
the sign of the real component of an eigenvalue determines the stability of the corresponding
mode — positive being unstable — and only one unstable eigenvalue is required for overall system
instability, a horizontal plane cut of this surface at the level 0 will produce a contour that denotes

the boundary between the stable and unstable regions of the parameter grid.

Two parameters that are readily controllable in the design phase of a tiltrotor aircraft are the
two structural properties yaw stiffness K, and pitch stiffness Ky. Practically speaking, control of
these parameter values would be achieved by alterations to the structure’s design (e.g. thickness,
materials used) albeit with an impact on the mass and cost of the design. They are relevant
to the study of whirl flutter as stiffness is influential in determining natural frequency, as
evidenced by the well-known relation w = \/IT? (where w is natural frequency, K is stiffness and
is inertia), and natural frequency has been known to be impactful on whirl flutter characteristics,
as previously mentioned. These two parameters are used here as the axes for the basic model’s
stability boundary. The surface with the z = 0 plane cut is shown on the left side of Figure 3.13
and the resulting 2D stability boundary is shown on the right side. Note that dimensional values

(N.m.rad ™) for the stiffnesses are now used as opposed to multiples of the datum value.
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FIGURE 3.13. Stability surface (left) for structural pitch stiffness Ky and structural
yaw stiffness K, with a plane cut at z = 0 in translucent black, with corresponding
stability boundary (right)

The parameter space partitions into two regions: an unstable region consisting of a round
bubble-like form and two side lobes neighbouring the axes, and a stable region beyond it. Apparent

again here is that the system is stable when configured with the datum set of parameter values:
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the point (Ky,Ky) =(0.4,0.4) lies in the stable region. Furthermore, the stiffness sweep shown in
Figure 3.12 can be related to this boundary: moving left from the datum point, the boundary of
the unstable region is encountered at approximately Ky = 0.04, which corresponds to the point of

instability in Figure 3.12.

As one might expect given the mathematical symmetry of these two structural stiffnesses (i.e.
their role in the equations), the stability boundary between them is symmetric about the line
Ky = Ky, although the two discontinuities where the round bubble meets each of the side lobes
suggest that the boundary is defined by two different kinds of instability.

In this work, stability boundaries will form an important part of the investigative process
detailed in Section 1.2. They will be the medium through which the comparison of the nonlinear
results and the original linear results will take place, allowing the impact of the nonlinearities on
the systems’ whirl flutter characteristics to be ascertained. As mentioned before, nonlinearities
can cause bending of solution branches within the parameter space, causing unsafe regions
to emerge if stable LCO branches exist in parametric regions that the linear analysis (that is,
eigenvalue analysis of fixed points) predicts to be safe. Not only will the stability boundaries
summarise the nonlinear results in terms of these unsafe regions, but they also will provide

direct comparison with the original linear stability boundaries.

3.4 Continuation and Bifurcation Analysis

3.4.1 Direct application to linear model

Figure 3.13 can a%so be generated by continuation methods, as the system has an equilibrium at
y=|0 0 0 0| thatcan be used as a starting solution. This phase point corresponds to the
nacelle sitting at rest at the undeformed position. Generating the stability boundary this way
in fact affords deeper insight than the contour cut method described in Section 3.3.5. Choosing
Ky =0.3 so that a continuation in Ky will intersect the regions of interest in the contour-based
stability boundary shown in Figure 3.13, the bifurcation diagram shown in Figure 3.14 is obtained.
The pitch (0) projection is shown. To link the bifurcations with the linear analysis discussed

above, the BW eigenvalues and corresponding modal damping ratios are also shown.

In the bifurcation diagram (top right), note the Hopf bifurcations (square icons) at Ky = 0.28
and Ky = 0.08, and the pitchfork bifurcation (star icon) at Ky = 0.03. Only the fixed point solutions
are plotted as the trivial periodic solution families (see Section 2.2.4.4) that emanate from the
Hopf bifurcations are not of interest. The two Hopf bifurcations are labelled ‘HB’ for ease of
reference. Although there is a separate mathematical basis for how CBM tracks solution values
along branches, the subsequent eigenvalue analysis to determine if any bifurcations have occurred

is essentially identical to the linear methods discussed, and therefore the position in Ky of the
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FIGURE 3.14. Bifurcation diagram (top right), 6 projection, with corresponding BW
roots sweep (left) and modal damping ratio (bottom right), as Ky is varied

bifurcations correlates exactly with values at which the key eigenvalue transitions occur. The BW
roots — the cause of any and all instabilities in this model — become unstable while oscillatory
between Ky = 0.28 (HB2) and Ky = 0.08 (HB1), and then after becoming non-oscillatory near
Ky =0.03 one of the roots becomes unstable again. The damping ratio plot shows that the whirl
flutter instability is only mild, and the pitchfork bifurcation manifests as a 1 — —1 snap merely as
a mathematical technicality as the imaginary part of non-oscillatory roots is zero and the concept
of damping ratio does not apply. The bifurcation diagram also shows that the solution remains at
0° pitch for the whole continuation. Physically speaking, whirl flutter occurs between Kg = 0.28
and Ky = 0.08, while static divergence may be encountered below Ky = 0.03. Looking at the sweep
from the perspective of decreasing Ky, the destabilisation at HB2 is physically intuitive: the
reduction of stiffness fails to restrain the nacelle and allows oscillations. The re-stabilisation at
HBI1 occurs as the pitch stiffness is too low for enough elastic energy to be stored to sustain whirl
flutter, but it is not yet low enough for the wing structure to be deformed by the freestream (the

A terms in Equations (3.2) and (3.3)) in static divergence.

The Ky-K, stability boundary in Figure 3.13 could be built up iteratively by generating other
bifurcation diagrams at a variety of "levels" of Ky, and marking out the unstable regions found.
However, if the sweep (Ky, Ky/) = ([0 < 0.5],0.3) is placed upon on the stability boundary (Figure
3.13), it becomes apparent that the round bubble and the side lobe present in that figure are
defined by different types of instability. Therefore, two-parameter continuations in Ky and Ky,
can be performed on either of the Hopf bifurcations and the branch point to trace their loci in the

Ky-Ky plane, and reconstruct the stability boundary in this way. Although manually tracking
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3.4. CONTINUATION AND BIFURCATION ANALYSIS

the relevant eigenvalue transitions through the plane could also reveal the underlying anatomy
of the unstable region, progress toward the research objectives can be made if two-parameter
continuation is used instead. Furthermore, the automation provided by continuation makes it a
much more convenient method. These continuations are shown in Figure 3.15, and together they
reconstruct the stability boundary obtained in Figure 3.13. Now however, the significance of each
part of the boundary is known, as well as the path of some of the boundary segments once inside

the unstable region.
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FIGURE 3.15. Basic model Kjy-Ky stability boundary regenerated through two-
parameter continuations of the pitchfork and Hopf bifurcations

The red curved region in the bottom left corner of the diagram is defined by the location
in Ky of the Hopf bifurcation(s) for a given value of Ky,. In the same way, the blue strips that
are adjacent to the axes are defined by the branch point. Note that either HB1 or HB2 could
have been used for the two-parameter continuation as they are part of the same boundary
and both lead to the other via the continuation. These bifurcation loci together enclose the
unstable region of the stability boundary. Therefore, all points that lie within the red region have
oscillatory instability (i.e. whirl flutter). Similarly, all points that lie within the blue lobes have
non-oscillatory instability and will experience static divergence. Note also that there is no overlap
in these regions, because the BW roots that can cause instability cannot simultaneously exist as
a complex conjugate pair (flutter) and two distinct real roots (static divergence). The dividing
line between the unstable and stable regions — the stability boundary itself — corresponds to the
neutral stability of the solution type in question. A number of K, values are chosen as bifurcation

analysis cases and are indicated on Figure 3.15.

As the Hopf and branch point are both on the equilibrium branch, which lies at zero displace-

ment, the positions of the bifurcations do not change with the addition of any nonlinear stiffness
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terms. However, the dynamic behaviour outside the zero-deflection equilibrium branch calculated
in Figure 3.14 (hereafter referred to as the main branch) is sensitive to the addition of nonlinear
terms. It is further noted that constructing the main branch with CBM is functionally identical
to conducting linear analysis, with the Hopf bifurcation marking the emergence of whirl flutter
solution branches (in the nonlinear model variants) and thereby the onset point of instability. It
is conducting continuations to find the periodic solution branches that emanate from this Hopf
bifurcation that is the vital step to discovering how the system’s whirl flutter characteristics have

been affected by the presence of the nonlinearities.

In summary, the baseline stability characteristics of the original linear version of the basic
model have been ascertained. It will serve as the basis for comparison with the nonlinear results
which now follow. The stability boundary of structural stiffnesses (K, Ky) has been set out and
the areas that constitute whirl flutter are identified. It is therefore changes to these particular
areas that are of interest when the nonlinearities are introduced. The use of CBM has also been

demonstrated, as well as its links to eigenvalue analysis.

3.4.2 Nonlinear results: cubic hardening (K, =10, K3 =0)

With the stability characteristics of the linear model thoroughly laid out as a baseline and the
analysis tools demonstrated, the desired structural nonlinearities may now begin to be introduced.
The first to be considered is cubic hardening, which uses a K9 value of 10 and a K3 value of 0 (see
Figure 3.4 for an illustration of the profile). For ease of comparison with the linear model variant’s
analysis (Figure 3.14), the first continuation of the hardening variant is conducted with the same
Ky, value of 0.3. This corresponds to case 2) of the five identified in Figure 3.15. The bifurcation
diagram of this continuation is shown in Figure 3.16. The continuation parameter is the linear
stiffness K1; it is equivalent to Ky in the linear model variant though now the stiffness profile is
of cubic form and the change of notation is required. The cubic stiffness nonlinearity causes a

variety of nontrivial solution branches to be created, both of periodic solutions and equilibria.

Now the value of applying continuation to this problem is clear: the specific values of nontrivial
solution branches are found in addition to any bifurcations on them. Specifically, the region of
unbounded-amplitude whirl flutter, with Hopf bifurcations HB1 and HB2 at its ends, has been
replaced by a whirl flutter LCO branch, connected to HB1 and HB2. Similarly, the onset of
static divergence now marks the emergence of two such equilibrium branches where the nacelle
is at rest but at a deflected position. These branches are hereafter referred to as secondary
branches and they are mutually symmetrical about the continuation parameter axis, that is,
(6,w) — (—6,—1v). Here they are stable, and similar to the main branch, a small flutter branch is
attached to each via two Hopf bifurcations, between which the equilibrium branch is unstable.
This type of flutter is termed “secondary flutter” in the remainder of this work to distinguish

it from flutter about the main branch. Lastly, it is typical in bifurcation analysis to extend the
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FIGURE 3.16. Bifurcation diagram for case 2 (K, = 0.3) with phase planes showing
solutions in detail at various K7 values

continuation outside the physical range to search for any bifurcations which result in secondary
branches extending back to the physical parameter range; this is why the lower limit used here
is K 1= -0.3.

To aid the reading of bifurcation diagrams throughout the work, the solutions at a variety of
cuts in K1 are shown in greater detail on -0 phase planes to the left and right of the bifurcation
diagram. The choice of coordinates (1,8) approximately depicts the physical position of the rotor
hub as observed in space. The cuts are chosen to provide a variety of different solution types and
stabilities. Fixed point solutions are shown with crosses, while limit cycles have their complete
path in the ¥-0 phase plane shown with a loop, with arrows indicating the direction of movement.
The top left phase plane shows the two stable secondary branches aside the unstable main
branch, while the bottom left phase plane shows the two stable secondary flutter LCOs about the
now-unstable secondary branches, with the unstable main branch in the centre. The top right
phase plane shows the main branch by itself, stable. The bottom right phase plane shows the
main flutter LCO about the main branch, which at this point is unstable. The 6 solution values
of the fixed points on the phase planes can be directly cross-referenced with the y-value of the
relevant branches at the corresponding K; cut. Similarly, the LCOs indicated on the relevant
phase planes can be cross-referenced in the same way. In this representation it is clearer that the
bifurcation diagram shows the maximum value of the state in question in the LCO present at
that parameter value. All the instances of flutter are backward whirl, including those attached

to the static divergence branches, however this deduction is made visually since the system’s
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behaviour cannot reliably be described in modal terms now that it is nonlinear.

While bifurcation analysis is able to reveal complex behaviours of a system, a more profitable
approach is to supplement continuation with time simulations at points of interest for a fuller
understanding. Figure 3.17 shows time histories in pitch 8 at the cuts in K7 chosen in Figure
3.16, with different initial conditions to demonstrate the stability of various coexisting solutions
by showing attraction or repulsion as relevant. Each time history is shown both for the pitch 6

state alone and on the ¥-6 phase plane, and is colour-coded to correspond to Figure 3.16.
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FIGURE 3.17. Time simulations for hardening variant, case 2 (K = 0.3), at the K
values used in Figure 3.16, with corresponding paths on -0 phase planes

In order of ascending K7, the simulations show convergence on either of the static divergence
branch fixed points (red, K1 = —0.2), joining either secondary branch flutter (brown, K1 = —0.05),
joining the main branch whirl flutter from both smaller and larger amplitudes (purple, K; = 0.2)

and convergence on the main branch (dark blue, K1 = 0.4).

Although it was touched upon in Section 2.2.4.4, it would serve well to establish a way of
describing the theoretical findings of bifurcation analysis in terms of the practically-oriented
language of aeroelasticity. This requires special care, despite the purportedly qualitative nature
of both fields. The principal issue is the stability of solutions. When observed in practice, static
divergence and whirl flutter are almost always fast, irreversible “runaway” unstable motions.
However in continuation analysis, where exact values are found, both stable and unstable solution
branches may be found for both equilibrium and periodic solutions, as is shown throughout this
work. Unstable solution branches are often very difficult to recreate in time simulations, let alone

to be observed in real-world systems. This leads to apparently contradictory terminology being

88



3.4. CONTINUATION AND BIFURCATION ANALYSIS

used to describe the various behaviours observed in the model; the phrase “stable whirl flutter” is
a contradiction in terms when viewed from the standpoint of aeroelasticity, though in the domain
of nonlinear dynamical systems it refers quite clearly to a stable periodic solution branch that has
emanated from a Hopf bifurcation on the main branch. Furthermore, in the same way that "whirl
flutter" is applied to periodic solutions found in the nonlinear variants of the models used in this
work, the term "static divergence" is applied to secondary equilibrium branches. This is because
each is still occurring due to the same phenomena that cause them in the linear model; in the
nonlinear models, the nonlinearities are simply able to prevent — in some parametric regions —
the "runaway" motion. In order to preserve both the physical meaning of predicted behaviours
and the insights afforded by bifurcation analysis, the terms “static divergence” and “whirl flutter”
are used in direct conjunction with terms qualifying stability throughout the discussion sections
of this work.

3.4.3 Effect of varying K

It is prudent to understand the effect of the value of Ky. Bifurcation diagrams with Ky, set to
0.3 (case 2) for decreased and increased values of Ko compared to the original value of 10 are
shown in Figure 3.18. As is evident from the plots, increasing Ko decreases the amplitude of
both the flutter and the static divergence branches for a given value of K, due to increased
structural stiffness. Furthermore, the concept of structural stability introduced in Section 2.2.2 is
demonstrated here: the topology of the case 2 bifurcation diagram is unchanged by the value of
K.
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FIGURE 3.18. Effect of varying cubic stiffness Ky in case 2

It is noted that the periodic solution branch connected to the main branch always leans over
HB1, the Hopf bifurcation adjacent to the branch point. As a result a portion of the branch

connecting to this bifurcation is unstable, which is present for all positive values of K. This is
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inevitable, as when a solution branch changes direction in the parameter space it must do so via
a limit point/fold bifurcation, which involves a change of stability [260]. The effects of changing
K3 could also be explored for the other K, cases shown in Figure 3.13, though given that the
basic aspects of its effects are clear here, such exploration would be of limited value. Intuitively,
the enlargement or compression effect described above can be expected for any given bifurcation

diagram generated at some value of K.

3.4.4 Nonlinear results: cubic softening (K, = -10, K3 =0)

A softening yaw stiffness profile is now used, where the sign of the K9 parameter is made negative
(K9 =-10, K3 = 0). This profile is shown graphically in Figure 3.4. A bifurcation diagram for case
2 (Ky = 0.3) in this model variant, showing the pitch projection, is presented in Figure 3.19.
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FIGURE 3.19. Bifurcation diagram of basic model, case 2, softening profile. Time simu-
lations are shown in insets, with initial conditions yy shown in the title of each

The main branch bifurcations and the values of K; at which they exist are unchanged. The
static divergence branches emanating from the branch point at K1 = 0.04, though unstable,
overhang the main branch, to the right of the Hopf bifurcation near K; = 0.3. While an unstable
flutter solution emanates from this Hopf bifurcation, this branch eventually becomes stable
through a limit point at approximately K; = 0.42, and both portions overhang the stable portion
of the main branch (from K; = 0.28 upwards) as far as this limit point. This phenomenon, where
a stable portion of the main branch is overhung by a flutter LCO, is hereafter referred to as

overhang. Time simulations for selected points are shown in subplots.

A rotor nacelle mounted on an aircraft is subject to perturbations, from manoeuvring or
gusts, for example. A perturbation of the rotor-nacelle may ultimately bring it sufficiently close

to either of these solution branches to be attracted to them, and experience behaviour of that
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branch’s type. The time simulations show that for K1 = 0.4, where the main branch is stable, a
pitch perturbation of 2° results in a decaying motion, but a stable flutter LCO develops almost
immediately with a perturbation of 3°. In general, a perturbation may consist of any combination
of individual state perturbations (i.e. angles and angular rates). Provided sufficient angular rates,
attraction to the stable flutter branch overhanging K; = 0.4 could be possible from even lower
angles than 3°. The regions of attraction for these two solutions are certainly not readily apparent

from the bifurcation diagram alone.

However, a further risk exists in this analysis case. An unstable solution branch may be part
of a separatrix? between two basins of attraction. Here, the unstable static divergence branches
leading off indefinitely to the right are part of separatrices between attraction to the stable main
branch, and "blow-up" divergence to infinity. That is, if the system crosses beyond this separatrix,
via a perturbation, it will diverge to an infinitely large solution. Physically speaking, this means
structural failure of the system. The linear stability analysis is unable to predict the above results.
The flutter boundary it predicts is simply the location of the Hopf bifurcation at K1 = 0.28, though
flutter and static divergence behaviours are shown to exist and may be encountered for values
of K7 that lie within the stable region. As separatrices are manifolds in the state space, and
bifurcation diagrams typically only show one dimension of the state space, an arbitrary point
shown on a bifurcation diagram could be on either side of a given separatrix. In this system, for a
phase point to be subject to the aforementioned divergence to infinity, all its state coordinates

must place it on the divergence side of the separatrix.
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FIGURE 3.20. Bifurcation diagram of basic model, case 2, combined softening-hardening
profile

2 Separatrix: an (n — 1)-dimensional manifold within an n-dimensional space that separates regions of the phase
space, such as distinct basins of attraction [261].

91



CHAPTER 3. CLASSICAL WHIRL FLUTTER AND A SMOOTH NONLINEARITY

3.4.5 Nonlinear results: combined softening — hardening (K3 = —-10, K3 = 350)

A hardening quintic stiffness component (K3) is now introduced into the softening stiffness
profile used in Section 3.4.4. The value of K3 chosen was 350, so that the stiffness curve is in
the neighbourhood of the linear profile within the angle range of [-10°, 10°] (see Figure 3.4), a
physically reasonable range of deflection. Initially, the bifurcation diagram for case 2 is presented

in Figure 3.20.

Compared with the softening variant’s results, here the hardening component bends the
static divergence branches back round to the left, allowing a small branch of secondary flutter
LCOs to exist on each, as seen in the hardening variant. There is also some bending back of
the flutter branch attached to the main branch, in the same manner. These observations are
consistent with the contrasting influences of the hardening and softening components. As the
softening component dominates at lower deflections due to being in the lower power, it influences
the direction of departure of the branches from the bifurcations that attach them to the main
branch. These features are seen in the softening-only case above. However, the behaviour of
the system at larger deflections, both the equilibria and periodic solutions, is dominated by the
hardening component in the quintic power, which helps to bound the solution amplitudes and

make them stable.

To provide a level comparison between the behaviours of each stiffness type (hardening,
softening, combined), the projections for all states for case 2 are shown in Figure 3.21. As before,
the secondary equilibrium branches in the pitch and yaw projections (first two rows of Figure
3.21) show the static divergence position for a given value of K. As static divergence branches
are fixed points, these secondary branches appear to overlap the main branch in the pitch rate
and yaw rate projections (last two rows of Figure 3.21) in all three models, as in both branches
pitch rate and yaw rate are by definition zero. In the hardening and combined variants (left and
right columns of Figure 3.21), each static divergence branch has its own secondary flutter LCO

branch.
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FIGURE 3.21. Bifurcation diagram of basic model, case 2, all projections, all profiles

The pitch projections for all five K, cases from all three variants are summarised in Figure
3.22. Considering a given diagram from right to left, i.e. for descending Ki: case 1 (Ky, = 0.4,
top row) shows divergence only, case 2 (K, = 0.3, second row) shows a separate region of flutter
only followed by divergence, case 3 (K = 0.2, third row) shows flutter which eventually coexists

with static divergence, case 4 (K = 0.05, fourth row) shows flutter only, and case 5 (K, = 0.037,
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bottom row) shows a separate region of divergence followed by flutter. Only the projection in pitch

6 is shown in Figure 3.22, though projections in any of the other state variables would present

the same qualitative results.

Hardening Softening Combined
I 510 = 10 _ =" 810\.
;3 8 5 S 5 - S 5 /
L8 of--- S of - - -4 S of - - -4
-
] :Cg -5/ :CQ -5 + ~ :CQ -5 Y
n = = ~ =
o o o
S -10 -10 ~ e -10 __/’
-0.3-0.2-0.1 0 0.1 0.2 03 04 05 -0.3-0.2-0.1 0 0.1 0.2 03 04 05 -0.3-0.2-0.1 0 0.1 0.2 0.3 04 0.5
Linear pitch stiffness (K1) [N.m.rad'1] Linear pitch stiffness (Kﬂ) [N.m.rad'1] Linear pitch stiffness (K1) [N.m.rad'1]
g = 10 = 10 = 10 \%(\’
.3 5 S5 3 5 7
L5 - S o S o - - - 4& - o——
o~
o § 5 € 5 S 5 \
n = = =
g O .10 a a g _/'5'
(&}
-0.3-0.2-0.1 0 0.1 0.2 03 04 05 -0.3-0.2-0.1 0 0.1 0.2 03 04 0.5 -0.3-02-0.1 0 0.1 0.2 0.3 04 0.5
Linear pitch stiffness (K1) [N.m.rad‘1] Linear pitch stiffness (KW) [N.m.rad’1] Linear pitch stiffness (K1) [N.m.rad'1]
)
c_ § ? 10 1 _ _‘- g 10 -\@f\‘
;a el k] P el ry
£ 5 o} -- Sof---d---B—"F S of - - A4 - - GF—
© - = = 1
@ 8 3 2 Y~ i3]
[ -~ a ~ 3
o o o
S -10 -10 ~ < -10
-0.3-02-01 0 0.1 0.2 03 04 05 -0.3-02-01 0 0.1 0.2 03 04 05 -0.3-02-01 0 0.1 0.2 0.3 04 0.5
Linear pitch stiffness (K1) [N.m.rad'1] Linear pitch stiffness (Kﬂ) [N.m.rad'1] Linear pitch stiffness (K1) [N.m.rad'1]
o
g '510 310 % 810
T2 g S8
£ 5 5 5 a
3 5 S S
g O o= —————— L Ofm == ———— T O == ———— O
(&}
-03-02-01 0 0.1 0.2 03 04 05 -0.3-02-01 0 0.1 0.2 03 04 05 -0.3-02-01 0 0.1 0.2 0.3 04 0.5
Linear pitch stiffness (K1) [N.m.rad'1] Linear pitch stiffness (KW) [N.m.rad'1] Linear pitch stiffness (K1) [N.m.rad'1]
5 -
2 T 10 Y 3 10 T 10
5 & TaL g x| &
X S of---=--=-- -4 S om----—- 4 S o -
Pl o 5 ~| &
g -0 =~ & -10 a-10
8 -
-0.3-02-01 0 0.1 0.2 0.3 04 0.5 -0.3-02-01 0 0.1 0.2 0.3 04 0.5 -0.3-02-01 0 0.1 0.2 0.3 04 0.5

Linear pitch stiffness (K1) [N.m.rad'1]

Linear pitch stiffness (Kﬂ) [N.m.rad'1]

Linear pitch stiffness (K1) [N.m.rad'1]

FIGURE 3.22. Bifurcation diagram of basic model, all cases, pitch projection, all profiles
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Each of the diagrams can be cross-referenced with Figure 3.13 to confirm that the bifurcations
present on the main branch correspond to the extent of the unstable regions at the relevant value
of Ky. As the value of yaw stiffness is gradually decreased, the amplitude of the limit cycles

increases significantly.

Interesting to note is the complex interaction in case 3 (Ky = 0.2) in the hardening and
combined variants (Figure 3.22, middle column, left and right) that occurs between the limit
cycles emanating from the main branch and those emanating from the two secondary branches.
In case 2, these periodic solution branches are entirely distinct and unconnected. However in case
3, these limit cycle branches have collided due to a homoclinic bifurcation, covered in more detail
in Section 3.4.7. On the other hand, a collision between a flutter branch and a static divergence

branch occurs in case 5 (Ky = 0.037), due to a heteroclinic bifurcation.

Regarding the results from the softening variant, the bifurcations on the main branch still
occur in the same left-to-right order as in Figure 3.16, as nonlinear stiffness terms do not affect
their location. Moreover, the regions of stability of the main branch are unaffected. However,
both the static divergence and flutter branches are reversed left-to-right in the direction of
their departure from the main branch. With the exception of case 5, all the static divergence
branches are unstable and no secondary limit cycle branches were found to emanate from them,
as seen in cases 2 and 3 of the hardening variant. The flutter branches in case 3 are no longer
bounded or stable as they were in the hardening variant, continuing to grow as K; is increased.
Furthermore, the flutter branch in case 5 is now connected to the secondary flutter branches

through a homoclinic bifurcation.

The values of K1 at which the bifurcations on the main branch occur is still unchanged in
the combined softening-hardening variant, as is to be expected. The static divergence branches
depart from the main branch in the same manner as in the softening variant in terms of direction
and stability, though at larger deflections (i.e. further away from the main branch) the quintic
hardening overpowers the cubic softening and the branches are bent back in the direction of the

hardening variant’s branches, i.e. decreasing Ky.

The flutter branches in the combined variant cases mainly resemble those of the hardening
variant cases in terms of shape, however the regions of stability on the branches have more in
common with the softening cases. This seems to be another effect of the differing dominant regions
of the cubic and quintic terms. The cubic softening’s dominance at low deflections influences the
direction of a branch’s departure from the main branch. By contrast, the quintic hardening’s
dominance at higher deflections plays a greater part in influencing the path of the branch through
the state space, specifically which other bifurcations the branch is connected to. This affects the
overall shape of the branch and causes resemblance of the hardening variant’s diagrams. As

the stability of periodic solution branches changes through limit points, it is the combination of
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departure direction and overall shape that influences the regions of stability along a given branch.
For example, a branch that departs a bifurcation in one direction, but eventually connects to
another bifurcation on the opposite side of its emanation point, will have both stable and unstable
portions. In contrast, if the branch spanned the two bifurcations without a change in direction

and therefore a limit point, there would not necessarily be a change in stability.

Taking a broader view of the bifurcations and branch shapes in each system allows some
links to become clear. The branch points with their stable equilibrium branches in the hardening
variant can be directly attributed to the hardening term (K53) in the stiffness function due to the
close resemblance of the supercritical pitchfork bifurcation normal form. Similarly, the softening
term present in the softening and combined variants closely resembles the subcritical pitchfork

bifurcation normal form.

3.4.6 Effect of varying K3

In the same manner that the effect of the value of the cubic stiffness parameter Ko was in-
vestigated in Section 3.4.3, the effect of the value of the quintic stiffness parameter K3 on the
combined softening-hardening variant’s behaviour is investigated here. Bifurcation diagrams for

increased and decreased values of K3 are shown in Figure 3.23.
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FIGURE 3.23. Effect of varying quintic stiffness K3 in case 2

The effect of K3 is similar to the effect of K9 in that a higher value makes for a stiffer structure
than a lower value, and the effect is to restrict the extent of the static divergence branches and
the amplitude of periodic solutions. However, as the quintic hardening controlled by K3 acts
in opposition to an existing cubic softening component, the respective influences of each are in
conflict. Specifically, the softening’s influence of bending the flutter branches to the right and
making them unstable is contested by the hardening’s influence of bending them leftward and

making them stable. The prevalence of each influence is dictated by the ratio of the respective
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parameters, which now varies with K3 being varied. This influences the extent of the previously
mentioned overhang phenomenon: as K3 is weakened, it takes larger deflections for the quintic
hardening to overpower the cubic softening, which increases the extent of the overhang. The
reverse is true for larger K3. Physically speaking, the more pronounced a structure’s hardening
characteristic is in relation to its softening characteristic, the less susceptible it is to overhang

effects and therefore the less inaccurate its linear-predicted onset speed is.

3.4.7 Homoclinic and heteroclinic bifurcations

In the hardening and combined variants of case 3 (K = 0.2; Figure 3.22, middle row, left and
right sides), the disappearance of the limit cycle branches upon contacting the secondary branches
is explained by the homoclinic and heteroclinic bifurcations that they undergo. As a continuation
parameter is varied, a portion of a limit cycle may approach a fixed point. Although the fixed
point may be unstable, the vector field (as described by the differential equations of motion) in its
near vicinity will describe smaller and smaller rates of change of the system states. Therefore
the period of the limit cycle will increase as it approaches the fixed point, reaching infinity
when the collision occurs and the homoclinic/heteroclinic trajectory is created. This runaway
increase can be used as an indication of the presence of such a bifurcation®. The homoclinic and
heteroclinic trajectories were illustrated in schematic form in Figure 2.17. The process of creating
such a homoclinic or heteroclinic trajectory is known as a homoclinic/heteroclinic (as appropriate)
bifurcation. Taking the hardening variant first, a phase portrait is shown in Figure 3.24 to

demonstrate how the limit cycles collide with a fixed point to create a homoclinic trajectory.

10 . . . . . 10 . 1 . 15
. . | Lol
1
6 6f- = =t ===kl - oL oo
1
4 4| Stable LCO from 111 Stable LCO from
S 2 B 5 Hopf 2 111 Hopf1 El
g 2 Ty 2
= 0 T O =————— H4l= = = = = = = S
s 2 £ 2 b 8 ?
o - T - (] T y
“ “ 71 Stable LCO from 5 i
11 Hopf 3
5 K,=-0.0808 7S R Abl=m—————— = 1
K,= -0.0802 1 -10 -
-8 —K,=-0.0794 -8 1
10 -10 Ll -15
-6 -4 2 0 2 4 6 -0.09 -0.085 -0.08 -0.075 007 03 02 -01 0 01 02 03 04 05
Yaw ¢ [deg] Linear pitch stiffness (K,) [N.m.rad™"] Linear pitch stiffness (K, ) [N.m.rad”™]

FIGURE 3.24. Phase plane of trajectories before, during and after a homoclinic bifurca-
tion in hardening case 3 (left), with excerpt of corresponding bifurcation diagram
(centre) and full corresponding bifurcation diagram (right) for cross-reference

3 One method of pinpointing the location of homoclinic and heteroclinic bifurcations if the collision itself is not
visible is to fit a 1/x curve to the Period vs. Parameter graph. The Parameter value over which the asymptote falls is
then taken to be the location of the bifurcation, as this is where the Period would be infinite.
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The solutions for three values of K1 are illustrated — two limit cycles, one on either side of the
homoclinic bifurcation (blue and black), and the homoclinic trajectory itself (red). The various
elements of the phase portrait can be cross-referenced with the excerpt of the bifurcation diagram
provided on the right side of the figure. The numbering of the Hopf bifurcations used to identify
the various periodic solution branches in the right side of the figure is illustrated in the relevant
subplot of Figure 3.22. Some simplifications have been made to improve the figure’s readability.
Firstly, although the cut indicated with the black line intersects the secondary flutter branch
(from Hopf 3) twice in different places, only the LCO closest to the homoclinic bifurcation is
shown. Additionally, the fixed points (magenta crosses) from the static divergence branches move
very slightly between the K plane cuts chosen, though only their locations at the homoclinic

point are shown.

In both of these plots, the maximum (positive) amplitude of each limit cycle and the position
of the fixed point branches is visible. To the left of the bifurcation point, two separate limit cycles
exist (black), each about one of the static divergence branches. As K; increases, the innermost
corner of each limit cycle nears the equilibrium at the origin — the main branch mentioned in
previous sections. The limit cycles simultaneously make contact with the origin fixed point at
K1 =-0.0802, fusing to form a homoclinic trajectory (red). Beyond this value of a K1, a single

limit cycle forms whose trajectory loosens, taking on the appearance of a bow tie (blue).
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FI1GURE 3.25. Plot of limit cycle period near the homoclinic bifurcation shown in Figure
3.24, hardening case 3

The homoclinic bifurcation itself is therefore at (v, 6, K1) = (0, 0, -0.0802), as this is the point
at which the two limit cycles collide and fuse. On the bifurcation diagram shown in Figure 3.24
(left), the limit cycle branches are indicated by their maximum amplitude, and therefore the
secondary flutter branches seem to disappear on this projection. To indicate their annihilation via
a homoclinic bifurcation, the ends of the branches are also marked with the homoclinic bifurcation
symbol. The period of the larger single limit cycle approaching the homoclinic bifurcation (from

the right) is shown in Figure 3.25. The stability and limit points are also included for cross-
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referencing with Figure 3.22 (middle row, left side) and Figure 3.24 (right). The characteristic

asymptotic increase in period near the bifurcation is clearly visible.

The combined variant’s results in case 3 (K = 0.2) feature homoclinic bifurcations and a
heteroclinic bifurcation. The heteroclinic bifurcation at K1 = 0.0779 is explored here. Unlike the
homoclinic bifurcations seen previously, the heteroclinic bifurcation involves a heteroclinic trajec-
tory that joins two equilibria. A phase portrait showing trajectories at and near the bifurcation is

shown in Figure 3.26.
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FIGURE 3.26. Phase plane of trajectories before, during and after a heteroclinic bifurca-
tion in combined case 3 (left), with excerpt of corresponding bifurcation diagram
(centre) and full corresponding bifurcation diagram (right) for cross-reference.

The two equilibria that are joined by the heteroclinic trajectory are the inner pair of fixed
points at (v, 0) = £(1.5, 4.5). As the complete motion strictly comprises two trajectories, one from
left to right and the other vice versa, it is termed a heteroclinic cycle [311]. As the bifurcation
point is approached from beneath (increasing K7), certain corners of the limit cycle move toward
the fixed points mentioned, eventually colliding with them simultaneously at K1 =0.0779. The
period of the limit cycle approaching the heteroclinic bifurcation (from the right) is shown in
Figure 3.27.

There are also two homoclinic bifurcations at K; = 0.0828 where the secondary flutter
branches collide with the same inner pair of fixed points involved in the heteroclinic bifurcation.
Homoclinic and heteroclinic bifurcations are also visible in case 5 (K = 0.037). In the hardening
variant (Figure 3.22, bottom row, left side) the periodic branch’s maximum and minimum extents
simultaneously make contact with the static divergence branches, annihilating after forming
a heteroclinic cycle between the two equilibria. In the softening variant (Figure 3.22, bottom
row, centre), the unstable flutter branch folds back to become stable at approximately K; = 0.38,

and very shortly afterwards splits into two limit cycles via a homoclinic bifurcation at (v, 8)
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FIGURE 3.27. Plot of limit cycle period near the heteroclinic bifurcation shown in Figure
3.26, combined case 3

= (0, 0). These two new limit cycles are secondary flutter motions about the static divergence
branches. This is the same process that occurred in the hardening variant for case 3 (K, = 0.2),
interpreted in reverse. In the combined variant (Figure 3.22, bottom row, right side), the main
flutter branch collides with both static divergence branches simultaneously, in the same manner

as in the hardening variant.

The aeroelastic implications for homoclinic and heteroclinic bifurcations are based on their
linking of periodic solution branches with equilibrium branches. If a rotor-nacelle system is
undergoing a reduction in stiffness over time, due to damage being incurred from aeroelastic
activity, then it may pass from one solution type (periodic solution/equilibrium) to the other,
depending on the layout of the bifurcation diagram for a given system. This may manifest as
a "jump" in the case of transitioning from an undeflected equilibrium (the main branch in the

above figures) to a whirl flutter branch that surrounds that equilibrium in the phase space.

A further threat exists that is connected specifically to homoclinic bifurcations. The Shilnikov
criterion links the existence of homoclinic orbits to some forms of chaos [259]. As chaos is dynamic
activity of the system, if it were found in this model it would constitute just as much of a threat

to the structural integrity of a nacelle-wing structure as periodic motions do.

3.5 Implications for Stability Boundaries

3.5.1 Kjy-K, stability boundary

The overhang phenomenon has repercussions for the whirl flutter stability characteristics of
the model. As shown in Figures 3.21 and 3.22, overhang occurs in the softening and combined
variants, meaning that flutter can be encountered in parametric regions that linear eigenvalue

analysis predicts to be stable. In the softening variant, this overhang occurs in the approximate
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region 0.28 < Ky, < 0.32. In this region, bifurcation diagrams take the form of case 2 (K = 0.3;
Figure 3.22, second row, centre). That is, a stable flutter branch exists but is connected only to
the main branch, and the static divergence branches each have a secondary flutter branch about
a small portion of them. The region is bounded by the existence of all the necessary bifurcations;
at approximately K, = 0.28 the left-most Hopf (HB1) and the pitchfork collide and the left-most
Hopf annihilates as detailed in Section 3.4.5. This is because instability of the system can only
originate from the BW pair and therefore both kinds of instability cannot coexist. For values
of Ky, lower than 0.28, the whirl flutter branch emanating from HB2 no longer has a second
main branch Hopf bifurcation to fold back to, and therefore while it continues to overhang the
main branch on its right side, it does not contain any stable regions (Figure 3.22, middle to last
rows, centre). The greater threat however is posed by the two unstable equilibrium branches,
which, as part of separatrices in the phase space as discussed previously, causes divergence if the
system strays sufficiently far from the main branch. These overhanging equilibrium branches
exist for all K; and all Ky: the phenomenon cannot be prevented by any increase of either of

these stiffnesses.

In the combined variant, stable overhang of the main flutter branch exists for a much greater
range of K;,. Overhang exists from K;, = 0.32 downwards as in the softening variant (Figure 3.22,
second row, right side). However, after HB1 has collided with the branch point at approximately
K, = 0.28, stable flutter branch portions still overhang a stable portion of the main branch.
Continuing to descend in K, this overhang exists until the static divergence region near the K
axis is met. Here, at Ky, = 0.037, the main branch rightward of the branch point does experience
stable flutter branch overhang (albeit connected to the static divergence branches), though the

main branch itself is unstable (Figure 3.22, bottom row, right side).
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FIGURE 3.28. Bifurcation diagram for combined softening-hardening model variant
case 2, with overhang region shaded red and overhang extent indicated with a red
<’ (left), next to stability boundary with the bifurcation diagram’s main branch
superimposed at the relevant value of Ky, along with overhang extent (right)
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The danger of the overhang is that it invalidates the linear eigenvalue analysis stability
predictions. This is best understood graphically by relating the overhang in a given bifurcation
diagram to the parametric position of the overhanging whirl flutter behaviours within the stability
boundary that was constructed in Figure 3.13. This is shown in Figure 3.28 for the combined

softening-hardening variant, case 2.

Although the right-most Hopf bifurcation, which the linear analysis takes to be the whirl
flutter onset point, is at Ky = 0.2806, the whirl flutter LCO reaches as far right as K¢ = 0.3443.
The linear analysis predicts this value of Kg to be stable, however a perturbation of the system

could cause it to join this overhanging whirl flutter branch.

A revised stability boundary accounting for the rightward reach of any overhanging flutter
branch with a stable portion can be generated. This can be achieved either through iterated one-
parameter continuation over a variety of Ky, values, or through two-parameter continuation of the
right-most limit point found on the flutter branch to trace its path in Ky, and K; simultaneously.
Such a revised stability boundary for the combined model variant is shown in Figure 3.29. The
original linear model boundary and the enclosed unstable region are shown in grey. The additional
unsafe area due to the aforementioned overhang phenomenon in the combined variant is shown
in red. Some of the boundaries are coincident though the overhang region extends to the right
of the Hopf loci. The new region is termed "unsafe" as the whirl flutter behaviours present are

stable, and the word "unstable" is here more of a relic from the nature of the linear whirl flutter

instability.
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FIGURE 3.29. Revised K1-Ky stability boundary accounting for overhanging whirl
flutter branches

It is also important to note that CBM’s prediction of stable solution branches existing well
into parametric regions that linear analysis declared to be unstable is not an indication that

these parametric regions have been made safe by the presence of the nonlinearities. Rather, the
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model does not account for any structural damage that the occurrence of whirl flutter LCOs

would likely cause the rotor system, leading to potentially catastrophic structural failure.

3.5.2 Airspeeds at which whirl flutter may be encountered

As stated earlier, whirl flutter is often thought of as being activated aerodynamically, and this was
accordingly its first demonstration in this work. So far in this chapter, the ability of polynomial
stiffness nonlinearities to cause whirl flutter branches to overhang stable parameter regions has
been shown in the structural stiffness domain. To close this chapter, a return to the aerodynamic
case is now made and the overhang effect is now demonstrated in airspeed. Figure 3.30 shows
a continuation in airspeed V of the undeflected main branch in the combined model variant,
between the datum value of 6.7 ms™! and 8 ms™'. The other parameters are left at their datum

values as indicated in Table 3.1.

0 -
6.8 7 7.2 7.4 7.6 7.8 8
Airspeed (V) [m.s™]

FIGURE 3.30. Airspeed continuation for basic model, combined variant, datum parame-
ter values

The main branch becomes unstable at about V = 7.8 ms™!, as the eigenvalues sweep shown
in Figure 3.5 also shows. However, due to the polynomial stiffness nonlinearity (and invisible
to linear stability analysis), the whirl flutter branch bends back to 7.6 ms™. Whirl flutter may
therefore be encountered from 7.6 ms™! onwards, although linear analysis predicts the onset to be

7.8 ms.

3.6 Conclusions

A summary of this chapter’s activity is given here. The relevant research process steps (e.g. P1)

are also indicated for each item. This chapter has:
¢ introduced the basic model used in this work (P1)

¢ introduced and demonstrated classical whirl flutter (P1, P2)
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¢ used linear stability analysis to investigate the parametric sensitivity of classical whirl
flutter (P2)

¢ introduced the smooth nonlinearity and discussed its implementation in the basic model

(P3)

¢ applied CBM to the basic model (P3, P4) when configured with:

the original linear stiffness profile
a hardening stiffness profile
a softening stiffness profile

a combined hardening-softening profile

¢ demonstrated the concept of overhang (P5)

¢ discussed the homoclinic and heteroclinic bifurcations found (P5)

* redrawn the structural stiffness stability boundary (K4-K,) for the combined model variant

to account for the overhang caused by the nonlinearity (P6)

¢ performed a continuation in airspeed to show the overhang existence in this parameter (P4,

P5)

This contributed to the following research objectives:

* O1: assess the effect of a smooth nonlinearity on the whirl flutter dynamics of rotor-nacelle

systems

The presence of nonlinearities was found to create whirl flutter LCOs and secondary
equilibrium branches involving static deflection of the rotor-nacelle. These solution
branches have their own associated stability and are the nonlinear equivalents of
the well known linear phenomena, whirl flutter and static divergence, respectively.
In linear stability analysis of whirl flutter, the whole system’s stability is assessed
using eigenvalue analysis, and the whirl flutter onset point of a parameter is taken
as the value at which oscillatory instability emerges. The solution branches found in
the nonlinear model variants were found to exist over a range of values of the chosen
continuation parameter, pitch stiffness, in places coexisting with the main branch
at values outside of the linear stability analysis’ predicted unstable region. This
important phenomenon, referred to as overhang, creates new unsafe parametric
regions where it occurs, as whirl flutter may be encountered via perturbations despite

the linear prediction that it cannot.
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— Conversely, the prediction of stable solution branches existing in parametric regions
that linear analysis declares to be unstable is not an indication that these parametric
regions have been made safe by the presence of the nonlinearities. This is because
the model does not account for any structural damage that the occurrence of whirl
flutter LCOs would likely cause the rotor system, leading to potentially catastrophic

structural failure.

— Hardening variant: The hardening component of the stiffness profile created largely
stable solution branches, bounding the system response in the parametric regions that
in the linear model variant contained linear (i.e. exponentially divergent) whirl flutter

and static divergence behaviours. Overhang was not observed in the analysed cases.

— Softening variant: The softening component of the stiffness profile generally led to
larger values of fixed point solutions and increased amplitudes of LCOs, that were
largely unstable. While some overhang was observed, the greatest practical risk is the
presence of unstable secondary equilibrium branches, which overhang the stable main
branch in the same way. Rather than posing the risk of whirl flutter, these secondary
equilibrium branches are part of separatrices between attraction to the stable main

branch and divergence to infinity.

— Combined variant: The influences of both hardening and softening profile components
were visible, with the lower amplitude parts of the solution branches resembling those
in the softening variant’s results, and the higher amplitude parts resembling those
in the hardening variant’s results. The stabilising influence of the added hardening
component caused the overhanging secondary equilibrium branches seen in the soft-
ening variant to be bent back, away from the stable region of the main branch. The
same was true of the whirl flutter bran<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>