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Abstract 
 

Diamonds are a valuable tool for petrologists in order to study the lithospheric mantle. 

Diamond’s unique material properties enable it to act as a record of the conditions within the 

mantle from which diamonds grow, through mineral inclusions and crystallographic defects 

within the lattice. One impurity often observed is hydrogen, with the most common form being 

the N3VH centre, seen in the IR spectra of many natural diamonds. Despite its ubiquity, it is 

not well understood. This work initially presents an attempt at quantification of the amount of 

hydrogen present in natural diamonds and how it relates to the amount of N3VH. The results 

suggest that most hydrogen within diamonds is not contained in the N3VH defect, with the 

concentrations observed over 20 times higher than predicted using IR alone. High-quality IR 

and UV-vis line scans are then used to interrogate the effect of hydrogen on the nitrogen 

aggregation sequence in diamonds, specifically using the concentration of N3, a minor 

aggregate. This enables generation of proportionality constants within each diamond and 

suggests that the primary formation mechanism of N3VH is through direct protonation of N3. 

A methodology is laid out for studying the availability of hydrogen within diamond-forming 

fluids through the study of the relative abundance of N3 and N3VH within a diamond. A minor 

IR peak at 3236 cm-1 is also investigated through comparison with other IR features, and some 

evidence is found for aggregated nitrogen and platelets in the defect structure.   
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1.1 Why study diamond? 

Diamonds have long fascinated humanity due to their brilliance as a gemstone. There is a global 

production of ca. 150 million carats of rough diamonds per year, with a global demand of US 

$76 bn for diamond jewellery and polished diamonds in 2018 (De Beers Group, 2019). Aside 

from their gemmological interest, diamond also displays a wide array of extreme material 

properties. These properties include the highest thermal conductivity of any solid, at ~ 2000 W 

m-1 K-1 (five times higher than that of copper), as well as a high refractive index (η ≈ 2.4 

compared to ~ 1.5 for glass) and a range of optical transparency that extends from the 

ultraviolet (UV) to the far infrared (IR) (Field, 1992) – the latter two, along with high dispersion, 

are the reason for the striking appearance of cut gem-quality diamonds. This unique set of 

properties has led to intense focus on diamond for technological applications and a wide array 

of research areas. With the advent of synthetic diamonds via high-pressure high-temperature 

(HPHT) (Bundy et al., 1955) and later chemical vapour deposition (CVD) (Ashfold et al., 1994) 

came the capability to tailor the properties of diamonds to fit numerous applications. These 

range from diamond as a Raman laser (Nikkinen et al., 2018) to electrodes for sensing (Hutton 

et al., 2013; Read et al., 2019) and even through to potential quantum computing applications 

using the nitrogen-vacancy defect as a qubit (Chen et al., 2019; Jelezko et al., 2004). 

Natural diamonds have provided a valuable source of information on the geological history of 

Earth processes, due to their range of deep mantle origins and ages ranging back throughout 

Earth history (Harris et al., 1997). They have long been studied as unique records of conditions 

within the Earth. 

Along with its well-known exceptional hardness – diamond represents the top of the Mohs 

scale of mineral hardness with a value of 10 – diamond is unique as a material due to its 

resistance to changes in its environment from a chemical standpoint. Brought to the surface by 

fast-moving kimberlite and lamproite magmas as xenocrysts, diamond’s unique properties 
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enable it to remain chemically unchanged well outside its high-pressure stability field, despite 

the volatile-rich nature of these magmas. Whilst xenoliths are often highly altered by mantle 

metasomatism and transportation to the surface of the Earth, individual diamonds can preserve 

a significant amount of information about the conditions from which they were grown, and 

their subsequent residence within the mantle. 

Information stored within the diamond tends to be studied in two main ways: by the 

composition of mineral inclusions captured during the growth of the crystals, or through the 

properties and characteristics of the host diamond lattice itself – including the lattice defects 

that are the subject of this thesis. Whilst there has been significant development in the study of 

inclusions, both mineral (Stachel et al., 2005; Thomson et al., 2016) and fluid (Klein-BenDavid 

et al., 2007; Smith et al., 2015) in nature, there is still a significant amount of information yet 

to be gleaned from more detailed studies of the diamonds themselves. 

1.1.1 Diamond formation and geological setting 

Diamond hosted in kimberlite was first discovered in South African deposits in the early 1870s. 

Initially, diamond formation was linked to reactions of the kimberlite magmas that bring 

diamonds to the surface with carbonaceous shale fragments. This would make diamond a high-

pressure phenocryst within the kimberlite (Lewis, 1887). Although there was evidence of a 

xenocrystic origin as early as 1899, based upon the observation of diamondiferous eclogite 

xenoliths (Bonney, 1900), this phenocryst theory was widely accepted until geochemical 

studies of inclusions and radiometric dating of diamond became prevalent. These both provided 

evidence of crystallisation in the Earth’s mantle, unrelated to the magmatism of the kimberlite 

within which the diamonds were hosted (Kramers, 1979; Sobolev et al., 1969). Once it had 

been recognised that diamond was a mantle-derived xenocryst, the concept emerged of its 

formation via redox reactions occurring during a melt or fluid  traveling through the mantle 

host rock (Rosenhauer et al., 2019; Taylor and Green, 1986). This means that diamond is now 
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considered to be a metasomatic mineral (Stachel and Harris, 1997), although the exact nature 

of the fluids or melts from which diamonds precipitate is poorly understood. There is much to 

be learned about the composition or redox character of these fluids, making further study 

crucial in order to further constrain these mantle conditions. 

The mineralogy of the rocks in which diamond is hosted in the mantle is well characterised 

from studies of the mineral inclusions (Shirey et al., 2013; Stachel and Harris, 2008). Results 

from these studies suggest that diamonds are derived from two locations: the first, and most 

common, of these is the subcontinental lithospheric mantle (this reaches depths at which 

diamond is stable at around 200 km deep) (Boyd and Gurney, 1986), or, more rarely from the 

sublithospheric mantle at depths of up to 700 km (Harte, 2010, 1994; Stachel et al., 2005). 

These sublithospheric diamonds consist of less than 1 % of global diamond production by mass 

(Stachel and Harris, 2008).  A schematic of the geological setting for diamond formation and 

ascent to the surface is provided in figure 1.1 (Shirey et al., 2013).  
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According to the mineral inclusions present, diamonds from the lithospheric mantle can be 

divided into 3 suites or parageneses: i) peridotitic (65 % of all diamonds), ii) eclogitic (33 %) 

and iii) websteritic (2 %) (Stachel and Luth, 2015). The 33 % of diamonds from eclogitic 

sources greatly exceeds the estimated 1 – 5 % abundance by volume of eclogite within the 

lithospheric mantle beneath cratons (Dawson and Stephens, 1975) This may suggest that 

eclogite is a preferred substrate for the growth of diamond (Grütter et al., 2004), and that this 

paragenesis has some genetic significance. This is supported by the observation of different 

carbon isotope fractionation in diamonds of peridotitic and eclogitic parageneses (Gurney, 

1986). Peridotitic diamonds have been observed to display a narrow range of δ13C values 

(Deines et al., 1984), meaning that diamonds found to be either isotopically heavy or light can 

be considered as of eclogitic or unknown paragenesis. 

The robust and inert nature of diamonds suggest that they can provide a closed system. This 

means that isolated single-phase mineral inclusions within diamonds (known as non-touching 

Figure 1.1: A schematic showing the geological setting for the formation of diamonds, with the relationship 

between the craton, lithospheric mantle keel and diamond stable regions within, along with the convecting 

mantle. G is graphite, D is diamond and LAB is the lithosphere/asthenosphere boundary. Diagram from Shirey 

et al., 2016 (mineral assemblage information and abbreviations can be found within). 
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inclusions) are assumed to have remained unchanged since their encapsulation within the 

diamond crystal, in the absence of visible exsolution features. There are some exceptions where 

disequilibrium has been observed in inclusions incorporated in environments with significant 

chemical evolution (Bulanova, 1995). The pressure-temperature conditions under which 

diamond is formed are primarily calculated from a number of geothermobarometers, using data 

from the silicate inclusions. Within the region at which diamond is stable and at temperatures 

of over 1000 °C, diamond is capable of conveying changes in the ambient pressure of its growth 

medium to included minerals via plastic deformation (De Vries, 1975). This means that the 

minerals included will re-equilibrate with the surroundings if changes in the pressure-

temperature conditions occur, and so they can be considered to reflect the conditions under 

which the diamond is stored within the mantle. Two primary geothermobarometers can be 

considered as appropriate to a relatively large amount of inclusions for peridotitic diamonds: a 

combination of an Al exchange barometer (Brey and Köhler, 1990) and a Mg-Fe exchange 

thermometer (Harley, 1984) can be used for pairs of garnet and orthopyroxene inclusions, and 

a single crystal geothermobarometer for clinopyroxene inclusions (Nimis and Taylor, 2000). 

Based on 157 independent estimates using these geothermobarometers to study lithospheric 

diamonds (Stachel and Luth, 2015), the average peridotitic diamond is derived from 5.3 ± 0.8 

GPa and 1130 ± 140 °C. For eclogitic diamonds, the most widely used thermometer is one 

using garnet-clinopyroxene Mg-Fe exchange (Krogh, 1988). A reliable barometer does not 

currently exist for mantle eclogites and the corresponding eclogitic inclusions in diamond. It 

has therefore been assumed that these diamonds form at similar pressures to those of peridotitic 

origin (Abbott, 2018; Nimis and Grütter, 2010). A previous study examined 144 garnet-

clinopyroxene pairs using this method, with an average temperature produced of 1170 ± 110 °C 

(Stachel and Luth, 2015). This is in excellent agreement with temperatures derived from  164 

pairs of garnet and olivine inclusions in peridotitic diamonds (O’Neill and Wood, 1979), the 
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study of which yields a mean derivation of 1160 ± 110 °C. This agreement suggests that 

peridotite and eclogite hosted diamonds originate from the same source within the diamond 

stable region of the lithospheric mantle. 

1.1.2 Diamond-forming processes 

There are a variety of proposed processes in the mantle which might lead to diamond formation. 

These include precipitation from a carbon-rich fluid or melt, or via redox reactions involving 

species derived from carbonate or methane. Alongside this is the potential direct conversion of 

graphite to diamond, although without the presence of a solvent or catalyst this requires 

overcoming of a significant activation energy; experiments have shown that temperatures and 

pressures exceeding 12 GPa and 1800 °C are required to undergo this reaction (Irifune et al., 

2004). Industrial syntheses of diamond use nickel, iron or cobalt melts as growth media in order 

to precipitate diamond out of solution, and it is possible that melts such as these could account 

for diamond growth within the mantle. Below ca. 250 km it appears that conditions are reducing 

enough to stabilise the presence of metal, whereas at shallower depths, the conditions are 

typically too oxidised (Frost and McCammon, 2008). There is currently no evidence for the 

ability of elemental carbon to dissolve in silicate or carbonate melts. This suggests that diamond 

precipitation requires a redox reaction to take place. This could potentially involve the 

reduction of an oxidised carbon species such as CO2 or CO3
2-, along with the alternative of 

oxidation of a reduced carbon species, for example methane.  

Discussion of the redox conditions of diamond-forming processes normally uses the concept 

of oxygen fugacity (fO2), which is a representation of the partial pressure of oxygen present in 

an environment available for reaction with other redox-active elements that are capable of 

existing in a number of valence states. This concept originates from the use of oxygen buffers 

to control the oxygen content and availability in early petrological experiments (Eugster, 1957), 

such as the following: 
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2𝑥 𝐹𝑒 +  𝑂2  ⇌ 2 𝐹𝑒𝑥𝑂 (𝑖𝑟𝑜𝑛 − 𝑤ü𝑠𝑡𝑖𝑡𝑒; 𝐼𝑊) (1.1) 

4 𝐹𝑒3𝑂4 +  𝑂2  ⇌ 6 𝐹𝑒2𝑂3 (𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 − ℎ𝑒𝑚𝑎𝑡𝑖𝑡𝑒; 𝑀𝐻) (1.2) 

3 𝐹𝑒2𝑆𝑖𝑂4 + 𝑂2  ⇌ 2 𝐹𝑒3𝑂4 + 3 𝑆𝑖𝑂2 (𝑓𝑎𝑦𝑎𝑙𝑖𝑡𝑒 − 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑡𝑒 − 𝑞𝑢𝑎𝑟𝑡𝑧; 𝐹𝑀𝑄) (1.3) 

An equilibrium expression can then be written for these reactions, and, using the standard free 

energy for the reaction, an expression for fO2 (conventionally represented as log10(fO2)) can be 

produced and related to the activity of the components (a), such as for the magnetite-hematite 

(MH) system: 

𝑙𝑜𝑔𝑓𝑂2(𝑀𝐻) =  
Δ𝑟𝐺0

2.303𝑅𝑇
+ 6 𝑙𝑜𝑔𝑎𝐹𝑒2𝑂3

− 4 𝑙𝑜𝑔𝑎𝐹𝑒3𝑂4
 (1.4)

The temperature dependence can be discounted through the use of a reference reaction, most 

commonly the fayalite-magnetite-quartz (FMQ) reaction, giving 

Δ log 𝑓𝑂2  (𝐹𝑀𝑄) = log 𝑓𝑂2  (𝑠𝑎𝑚𝑝𝑙𝑒) − log 𝑓𝑂2  (𝐹𝑀𝑄) (1.5) 

These buffer reactions also have a degree of pressure dependence. This dependence must also 

be considered while using values of ΔlogfO2, especially where a compressible, volatile species 

is involved. Evidence alluding to the oxidation state of the mantle in regions in which diamond 

is stable comes from a number of sources. The most commonly used are garnet-bearing 

peridotites, which can accommodate Fe2+ and Fe3+ to variable extents, most notably in garnet 

and pyroxenes. Reactions involving these minerals can be used as ‘oxybarometers’ (Luth et al., 

1990). The oxygen fugacity of the mantle is consistent with the presence of a metasomatic 

liquid dominated by one of an H2O- or silicate-rich melt (Stagno et al., 2013). It has been 

determined through study of a large body of xenolith samples from the diamond stability field 

that the ambient cratonic lithosphere likely has a low enough fO2 that carbon can exist as 

diamond (Shirey et al., 2013). The highest oxygen fugacity – and therefore most oxidising 

conditions – that diamonds can be stable is represented by the enstatite-magnetite-olivine-
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diamond (EMOD) buffer, at which diamond becomes stable over magnesite or carbonate in 

peridotitic assemblage. Without the presence of olivine, diamond could potentially coexist at 

higher fO2 values with fluids richer in CO2. At low oxygen fugacities the potential for diamond 

growth is inhibited by the presence of metallic Fe, and subsequent dissolution of carbon into 

the metal (Luth and Stachel, 2014). Whilst these buffers represent well-defined places in P-T-

fO2 space, they present some difficulty for the study of diamonds due to the lack of touching 

inclusions present in the majority of samples. 

 1.1.3 Carbon and hydrogen speciation in the mantle 

Some carbon bearing fluids within the mantle can be considered as part of the C-O-H system, 

which comprises mixtures of species such as H2, H2O, CO, CO2, CH4, O2 and C2H6. These can 

play significant roles in a wide variety of geologically significant processes, from fluid-rock 

interactions (McCollom and Shock, 1998) through to mantle melting (Dasgupta and 

Hirschmann, 2010; Eggler, 1983; Watson and Brenan, 1987) and magma degassing (Wallace, 

2003). A number of thermodynamic modelling studies have been undertaken alongside high 

pressure high temperature experiments in an attempt to predict the compositions of these fluids 

and model their behaviour (Sokol et al., 2004; Zhang and Duan, 2009). Some of the results are 

displayed in figure 1.2. It can be seen that fluids coexisting with diamond can have a variety of 

properties. Under reduced conditions, the fluids would be CH4-rich. At the ‘water maximum’ 

the fluids would be almost pure H2O. At the highest oxygen fugacity under which diamond 

would be stable (EMOD), the fluids would be a water-rich mixture of CO2 and H2O. However, 

it must be noted that such a fluid would likely interact with the host peridotite or eclogite and 

lead to a saline melt. The idea of diamond formation through carbonate-bearing high-density 

fluids is corroborated through the observation of saline fluid inclusions within diamonds from 

a variety of localities (Jablon and Navon, 2016; Krebs et al., 2019; Weiss et al., 2015). 
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Some evidence for diamond formation from methane-rich fluids with a reduced oxidation state 

is that the ambient fO2 of the lithospheric mantle at depths below ~ 150 km lies below an fO2 

capable of supporting CO2-rich fluids (Frost and McCammon, 2008). Along with this comes 

the observation of some diamonds exhibiting fluid inclusions containing CH4 ± H2, which can 

be interpreted as direct evidence of the role methane may play in some instances of diamond 

formation (Smit et al., 2016a; Smith et al., 2018). It must also be noted that fluid inclusions in 

diamonds are often observed to contain precipitated carbonates (Izraeli et al., 2004, 2001). 

Recent experimental work has provided further suggestions of the viability of diamond growth 

from such reduced methane-rich fluids (Matjuschkin et al., 2020). In this study, the diamond 

crystallisation was not related to a significant change in redox state, instead forming from 

processes such as interactions between H2 and olivine and pyroxene, along with graphite 

‘etching’. The implication of this study suggests that CH4-rich fluids could be more common 

than is often believed. They may also represent a significant source of carbon for diamond 

formation in the mantle. Alongside this, the associated H2 present is believed to hold an 

important role in diamond forming processes. 

Figure 1.2: (a) Diamond crystallisation in the C-O-H fluid system, displaying data from experiments and 

calculations at 1693.15 K and 5.7 GPa. The curve displayed represents the carbon saturated line generated 

through calculations. Diagram adapted from Zhang and Duan, 2009. (b) The speciation of C-O-H fluids in 

equilibrium with diamond, plotted as a function of ΔlogfO2. The diamond ‘m’ represents the ‘water maximum’ 

and the vertical line labelled ‘stability limit of diamond’ on the right of the diagram is representative of the 

reaction C + O2 ⇌ CO. This reaction defines the highest oxygen fugacity at which diamond is stable in this 

system. Diagram from Stachel and Luth, 2015. 

(a) (b) 
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Under the reduced conditions within the mantle, hydrogen is likely not present in an oxidised 

form as H2O, but instead as H2. Retention of this hydrogen may then only be possible via the 

direct dissolution of H2 into mantle minerals. Studies on He solubility in olivine suggested this 

may not be implausible (Parman et al., 2005). Further studies on olivine, orthopyroxene, 

clinopyroxene and garnets have demonstrated that molecular H2 does indeed have an 

appreciable solubility in these mantle minerals (Yang et al., 2016). It has also been 

demonstrated that water and molecular hydrogen are immiscible within the mantle through the 

generation of synthetic fluid inclusions in olivines (Bali et al., 2013). This could potentially 

offer an explanation as to why magmas generated from the lower mantle contain significant 

amounts of hydrogen, despite the fact that minerals derived from this region are almost 

completely anhydrous. 

As the experimental and observational evidence suggests that diamond forming fluids are 

oxidised, whereas the ambient mantle is very reduced, it must be considered where the oxidised 

material is derived from. The likeliest source is through subduction, whereby oxidised material 

from the surface is brought down to deeper within the Earth. 

1.1.4 Water in the mantle 

The cycling of water throughout the exosphere and the different reservoirs in the mantle is a 

critical process when it comes to the description and understanding of the Earth’s geochemical 

evolution. Despite this, the exact distribution of H2O and the mechanisms of the transport of 

water between the different reservoirs still require further examination. An example of this is 

the uncertainty in the total amount of H2O stored in the mantle. Estimates produced have ranged 

from roughly a quarter of an ocean mass (the total mass of H2O in the world’s oceans) to ca. 4 

ocean masses (Ahrens, 1989; Bolfan-Casanova, 2005; Bolfan-Casanova et al., 2000; 

Hirschmann, 2006; Jambon and Zimmermann, 1990). H2O storage in the mantle can take place 

in the form of solid, H2O-containing minerals, or it can be present in the form of hydrous fluids 
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or melts; the latter are crucial when it comes to mass transfer and differentiation within the 

mantle. Figure 1.3 displays a schematic of areas in which hydrous melting may occur in the 

mantle (Hirschmann, 2006). The right of the diagram presents a representation of the total 

storage capacity by depth, with gradually increasing H2O storage capacity with depth until the 

discontinuity at 410 km. The capacity within the transition zone is much higher, and the lower 

mantle below 670 km has a significantly lower storage capacity than the rest of the mantle. 

The predominant phase in the upper mantle (above the transition zone at 410 km) is olivine, 

and the H2O storage capacity is well-characterised for mantle phases (Demouchy and Bolfan-

Casanova, 2016). Olivine storage capacity was originally found to increase significantly with 

water fugacity (and thereby with depth) by Kohlstedt et al., with their studies showing an 

increase from ~ 25 ppm at a depth of 10 km to ~ 1300 ppm at 410 km (Bai and Kohlstedt, 1993; 

Kohlstedt et al., 1996). Later work then lead to an increase in these values by a factor of 3-3.5 

after a reconsideration of the analytical techniques involved in the analysis and a comparison 

between the relevant infrared and SIMS analyses (Bell et al., 2003; K. Koga et al., 2003). 

Storage capacities for other upper mantle assemblages such as pyroxene and garnet are not as 

Figure 1.3: A schematic displaying theorised regions of hydrous melting in the mantle (a) melting triangular 

shaped regions of mantle above areas of subduction, (b) melting in deep oceanic island basalts, (c) melting in 

the deeper portions of mid ocean-ridge basalt source regions, (d ) melting in regions above the discontinuity at 

410 km, (e) melting above the 410 km discontinuity, situated  in localised upwellings, and ( f ) melting below the 

discontinuity at 670 km in downwellings. The section on the right shows an illustrative image of the variation of  

storage capacity with depth. Diagram from Hirschmann, 2016. 
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well characterised as that of olivine. However, it has been observed that at low pressure the 

storage capacity of pyroxene is significantly higher than in olivine (Aubaud et al., 2004). This 

suggests that pyroxene is likely the main host of water in the upper mantle, although it is not 

known whether or not this is the case at depth. If this is indeed the case, then the H2O storage 

capacity of the lower regions of the upper mantle could reach up to 1 % (Hirschmann et al., 

2005). 

Studies of diamond have provided some valuable information when it comes to the study of 

water in the mantle, due to the possibility of observing hydrous mineral inclusions (those with 

water bound within the crystal structure of the mineral). For example, there has been some 

evidence of aqueous fluid deep in the mantle in the transition zone with the observation of ice-

VII inclusions in diamonds sourced from this depth (Tschauner et al., 2018). This ice is thought 

to have crystallised upon ascent as a residue of aqueous fluid present during the growth of the 

diamond, which points to the potential existence of fluid-rich areas within the transition zone. 

There are also limited observations of hydrous ringwoodite inclusions observed within super 

deep diamonds that suggest of the existence of deep water within the transition zone, potentially 

constraining on the ascension rate of diamond from depths of at least 525 km (Nestola and 

Smyth, 2016; Pearson et al., 2014). Aside from inclusions, hydrogen within the diamond lattice 

is another potential indicator of the water content in the deep mantle and is the focus of this 

thesis. Information gleaned from the study of hydrogen could be applied to a wide array of 

samples due to its ubiquity in the IR spectrum, and could lead to the ability to study variations 

across different localities. 

1.2 Defects in diamond 

1.2.1 The mechanism of diamond growth and the incorporation of defects 

Most natural diamonds are thought to crystallise in layer-by-layer mechanisms. This leads to 

zoned internal growth structures which can be complex, containing any number of different 
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growth zones, from the most common octahedral growth, to non-faceted growth on curved 

surfaces. The latter averages out to a mean orientation defined by simple indices, termed as 

‘cuboid growth’. Alongside this are also dissolution and overgrowth features (Bulanova, 1995). 

The zonation found in diamonds contains valuable information regarding the geological history 

of the crystal, with spatial variation in isotopic composition (Thomson et al., 2014) and infrared 

absorption features (Kohn et al., 2016; Palot et al., 2013) commonly being observed. 

A pure diamond, while valuable to gemmologists, is less interesting to geologists. An imperfect 

diamond can be thought of as a record, with the imperfections observed providing a wealth of 

information about the growth history of individual crystals. Infrared features observed in 

diamonds often arise from defects within the crystal structure, which are one way in which the 

crystals can retain information from the growth environment during diamond growth. Lattice 

defects can take two primary forms, the first being point defects. These are defects that occur 

at or around a single point within the crystal lattice. There are also extended defects,  such as 

stacking faults (Lang, 1974a) and dislocations (Hanley et al., 1977; Lang, 1977), which exist 

as larger-scale defects within the lattice. Due to the strong C-C bonds and small interatomic 

spacing in the diamond lattice, the incorporation of foreign elements should be difficult, with 

the most common impurities being smaller elements such as boron, nitrogen and hydrogen. 

The latter is the focus of this thesis. Point defects can be investigated using optical spectroscopy 

techniques such as photoluminescence (PL) or Fourier-transform infrared (FTIR) spectroscopy, 

and variations in the spectroscopic features can be used to investigate differences within single 

samples, or to detect variations between populations of diamonds from differing localities or 

of different types. 

1.2.2 Nitrogen in diamond 

Nitrogen is the most abundant and well-studied impurity in natural diamonds, and can be 

present in quantities of up to 3500 ppm (Cartigny, 2005). Absorption peaks in the FTIR 
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spectrum of diamond were first related to nitrogen in the 1950s (Kaiser and Bond, 1959), and, 

over time, an aggregation sequence of diamond was determined. 

The simplest mechanism for nitrogen incorporation into diamond is as single nitrogen atoms 

substituted into the lattice for carbon atoms during growth (Dyer et al., 1965), forming defects 

known as C-centres. Under typical mantle temperatures, these single nitrogen atoms are mobile, 

and migrate within the lattice to form pairs of nitrogen atoms occupying neighbouring lattice 

sites known as A-centres (Davies, 1976). In natural diamonds, this reaction continues to 

completion at typical mantle conditions over geological timescales. This means that the 

majority of, but not all (Hainschwang et al., 2006), natural samples do not contain measurable 

amounts of C-centres, although they are common in synthetic HPHT diamonds due to their 

high nitrogen content (Collins, 2001; Reinitz et al., 2000). The A-centre pairs can then 

aggregate further to form groups of four nitrogen atoms around a carbon vacancy (Bursill, 

1983), known as B-centres. The structure of these is displayed in figure 1.4. These IR-active 

defects have been studied in great detail to develop the quantification of defect concentrations 

(Boyd et al., 1995, 1994). In addition, the kinetics of the interconversions between these species  

has become the intense focus of much research (Chrenko et al., 1977; Evans and Qi, 1982). 

Figure 1.4: Schematic models of the three most common nitrogen aggregates in diamond. White is carbon, the 

blue atoms represent nitrogen atoms and the dashed circle is a vacancy. The aggregates are displayed in the 

order of the nitrogen aggregation sequence, from single substitutional nitrogen (C-centres), to nitrogen pairs 

(A-centres) through to four nitrogen atoms around a vacancy (B-centres). These centres are all IR-active. 
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Alongside these three major aggregates are a number of other IR inactive nitrogen containing 

species, for example the N3 centre, which consists of a trio of substitutional nitrogen atoms 

around a vacancy (Zaitsev, 2013). Species such as this are thought to be in minor abundance 

when compared to the other aggregates (Kiflawi and Bruley, 2000). The N3 centre and its role 

in the nitrogen aggregation sequence will be discussed in greater detail in chapter 4. The final 

population of aggregation states achieved within a diamond is more dependent on temperature 

than time. This means that, for a diamond with a known formation age and a known time at 

which the diamond was exhumed (kinetically frozen), the aggregation state can function as a 

geothermometer and provide a temperature history of the crystal’s residence within the mantle 

(Evans and Harris, 1989; Kohn et al., 2016). 

Diamonds have long been classified according to the presence (or, indeed, absence) of 

impurities within the crystal (Robertson et al., 1933). The ubiquitous system classifies 

individual samples based on the existence of nitrogen and/or boron defects within the stone 

(Breeding and Shigley, 2009), and is presented in figure 1.5. Type I diamonds contain nitrogen, 

whereas type II diamonds do not have a measurable amount of nitrogen present. Type I 

diamonds are further divided into type Ia and Ib. Type Ia comprises the majority of natural 

Figure 1.5: A schematic of the type classification system for diamonds, based on the presence or absence of 

boron and nitrogen defects. 
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diamonds and contains nitrogen in its aggregated forms. This may be further split into type IaA 

and IaB classifications, used to distinguish between those with majority A centres and B centres 

respectively. Type Ib contain non-aggregated nitrogen in the form of C-centres. These type Ib 

stones rarely occur naturally but are common amongst synthetic samples. Type II diamonds 

are similarly subdivided into type IIa, consisting of diamonds that are entirely free from 

impurities, and type IIb, which comprises diamonds that contain substitutional boron as an 

impurity. 

The three major nitrogen aggregates in diamond are all IR-active, with their characteristic 

absorption spectra having known shapes and an intensity that is dependent on the 

concentrations of the defects present (Mendelssohn and Milledge, 1995). The absorption at 

1282 cm-1 was initially discovered to be proportional to nitrogen concentration in diamonds 

using combustion techniques combined with mass spectrometry (Kaiser and Bond, 1959). 

However, nitrogen contained within different species can also contribute to this intensity. In 

order to obtain concentrations of the underlying defects, the spectrum must be decomposed 

into several overlapping components, which are displayed in figure 1.6, along with the D 

feature, which is related to platelets (see Section 1.2.3). 
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The deconvolution of IR spectra was first undertaken in 1981 using spectra of diamonds 

dominated by either A- or B- centres (Davies, 1981), although it was later found that an 

additional component, known as the D component, was necessary in order to successfully 

model the observed range of data in diamonds. This D component has since been attributed to 

platelets (Woods, 1986) – these will be discussed in section 1.2.2 and in chapter 5. 

Once decomposed, the relationship between the absorption intensity and the concentration of 

the defect responsible can be used to measure defect concentrations. This relationship can be 

described using an extinction coefficient, usually termed k, in the following form 

𝑐 = 𝑘. 𝜇 (1.6) 

Figure 1.6: IR absorption spectra of the most common nitrogen-bearing defects in diamond (as displayed in 

figure 1.4) along with the D feature, related to platelets. Data is taken from the CAXBD Excel spreadsheet (D. 

Fisher, De Beers Technologies, Maidenhead) 



 

37 

 

Where c is the concentration of the defect and µ is the absorption coefficient measured at a 

specific wavenumber. The values of this extinction coefficient used within this thesis are as 

follows 

𝑘𝐶(1330 𝑐𝑚−1) = 25.0 ± 2 
𝑝𝑝𝑚

𝑐𝑚−1⁄  (1.7) 

𝑘𝐴(1282 𝑐𝑚−1) = 16.5 ± 1 
𝑝𝑝𝑚

𝑐𝑚−1⁄  (1.8) 

𝑘𝐵(1282 𝑐𝑚−1) = 79.4 ± 8 
𝑝𝑝𝑚

𝑐𝑚−1⁄  (1.9) 

For kC this is derived from Kiflawi et al., 1994 and kA and kB are from Boyd et al., 1994. The 

comprehensive procedure used for spectral deconvolution is provided in chapter 2. 

 1.2.3 Platelets 

Platelets are amongst the most commonly observed impurities in natural diamonds and take 

the form of extended planar defects containing nitrogen in aggregated forms. They are 

frequently observed in FTIR studies of natural diamonds (Bulanova et al., 2018; Speich et al., 

2018, 2017), but despite this, their formation at high temperatures is not fully understood. 

Current understanding is that platelets are formed of a thin layer of carbon interstitials in the 

{100} plane (J P Goss et al., 2003; Humble, 1982). This suggests that nitrogen is not a 

fundamental component of the platelet structure, but can instead be considered an impurity 

(Speich et al., 2018). Proposed formation mechanisms are varied. One is the potential release 

of interstitials during the formation of B-centres, which could lead to platelet formation (Woods, 

1986). Ab initio calculations have also suggested that the most favourable mechanism is 

through the production of vacancies. The vacancies are subsequently trapped by A-centres, 

forming VN2, and then B-centres by trapping another A-centre (J P Goss et al., 2003). These 

mechanisms are quite different, but both highlight the links between platelet formation and the 

nitrogen aggregation sequence. 



 

38 

 

Comprehensive studies of the relationship between the most prominent IR feature (referred to 

as the B’ peak) and IR features related to the presence of nitrogen aggregates shows that most 

diamonds exhibit a positive linear correlation between the B-centre absorption and the 

integrated B’ peak (Woods, 1986). There is a variation in peak width and symmetry that is 

probably a result of the relationship between average platelet radius and position of the platelet 

peak (Clackson et al., 1990; Speich et al., 2017). 

Diamonds are commonly observed as showing weaker platelet absorption than predicted by 

the relationship with B-centres. This is commonly thought to be a result of platelet degradation 

caused by short-lived events occurring at high temperature (Hunt et al., 2009; Melton et al., 

2013). This behaviour can be considered as a first order rate equation of the following form 

𝑃𝑡 =  𝑃0  × 𝑒−𝑘𝑃𝑡 (1.10) 

Where Pt is the amount of platelets detected represented as peak area (cm-2), P0 is the initial 

amount of platelets, kPt is the rate constant for the process of platelet degradation and t is the 

duration. In order to calculate the deviation from expected platelet behaviour, the following 

relationship can be used (Speich, 2017; Speich et al., 2018) 

𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =  100 × (1 −  

[𝑁𝐵]
0.806

⁄

𝐼(𝐵′)
) (1.11) 

Where [NB] is the concentration of nitrogen present as B-centres (ppm) and I(B’) is the 

integrated intensity of the platelet peak (cm-2). This will be discussed further and used to 

interrogate another IR feature in chapter 5. 

1.2.3 Hydrogen in diamond 

Hydrogen was first observed as an impurity in diamonds in the 1950s (Charette, 1959), with 

the first evidence of hydrogen (in the form H2) found during mass spectrometry measurements 
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on escaped gases from a number of high-quality gem diamond crystals (Kaiser and Bond, 1959). 

Although studies using this destructive method were carried out for some time afterwards 

(Melton and Giardini, 1975, 1974), a non-destructive spectroscopic method is desirable in order 

to get better spatial information and allow for complimentary investigations of samples. 

Hydrogen is thought to be a ubiquitous impurity in natural diamonds, with nuclear rection 

analysis (NRA) suggesting that diamonds can contain anywhere between 500 – 3500 ppm 

(Sideras-Haddad et al., 2001). Chemical analysis using an ion beam has suggested that the 

concentration of hydrogen in natural diamond could reach up to 1 atomic % (or 10,000 atomic 

ppm) (Hudson and Tsong, 1977). These previous attempts at hydrogen quantification in 

diamond will be discussed in greater detail in chapter 3, which also presents efforts using a 

technique that has not been previously attempted on natural diamonds.  

There are more than 90 sharp lines or absorption systems in the IR and UV-visible ranges in 

natural diamonds that have been at least tentatively related to the presence of hydrogen within 

the crystal (Fritsch et al., 2007). However, despite the ubiquity of hydrogen in diamond, there 

is a relative paucity of information as to the environments involved. In the structurally 

analogous silicon crystal, for example, complexes such as an interstitial H2 dimer (Pritchard et 

al., 1998) and a series of hydrogen-silicon-vacancy complexes (Bech Nielsen et al., 1995) have 

been characterised. This is not the case in diamond. The hydrogen contents proposed by 

Sideras-Haddad et al. (2001) and Hudson and Tsong (1977) are bulk techniques that consider 

any and all forms of hydrogen in diamond, whether it is optically active or not. 

Hydrogen is also commonly observed in synthetic diamond. In particular, it is often 

incorporated into CVD-grown diamond (Titus et al., 2006). Hydrogen is also capable of 

passivating boron acceptors in doped synthetic diamond, and can also influence other electronic 

properties in these synthetic samples (Chevallier et al., 1998; Uzan-Saguy et al., 2001). 



 

40 

 

However, its incorporation into synthetic diamonds is often different than in natural samples. 

For example, some hydrogen-related defects such as the NVH centre (which will be discussed 

in section 3.1) have only been observed in synthetic samples. 

1.2.3.1 The 3107 cm-1 peak 

By far the most widely observed and well characterised hydrogen related defect in diamond is 

the centre responsible for a vibrational mode at 3107 cm-1. This feature is seen in almost all 

type Ia natural diamonds (Fritsch et al., 2007). This defect is amongst the first hydrogen related 

defects to have been observed in diamond and original interpretations involved either an N-H 

stretch, a C-H stretch or even a vinylidene group (>C=CH2) due to comparable positions of the 

vibrational frequencies (Runciman and Carter, 1971). Assignment was then refined to a C-H 

stretch due to the presence of a peak at 3097.8 cm-1 with the relative intensity and wavenumber 

expected of an isotopically-shifted 13C band, along with a corresponding bending mode at 1405 

cm-1 (Woods and Collins, 1983). This was also indicated by the lack of shift with isotopic 

substitution of nitrogen, although the intensity of the 3107 cm-1 was found to increase with the 

nitrogen content in the diamond (Kiflawi et al., 1996). The lack of isotopic shift suggested that 

nitrogen was not bonded to a hydrogen atom, or even to a carbon atom upon which a H atom 

is decorated, but that nitrogen was part of the defect in some fashion. It was thought for a long 

time that the 3107 cm-1 defect could not be observed in synthetic diamonds. However, it has 

now been shown that, upon annealing of CVD and HPHT samples at temperatures upwards of 

1900 °C, this spectral feature can develop (Fuchs et al., 1995; Kiflawi et al., 1996). Uniaxial 

stress studies that showed a trigonal defect along the [1 1 1] crystal axes (J P Goss et al., 2014), 

which combined with the previous information suggests a possible link to the N3 and B centres 

– this will be discussed in chapter 4. The peak  was eventually assigned to a defect referred to 

as N3VH, consisting of three substitutional nitrogen atoms around a vacancy, with the dangling 
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carbon bond having been decorated by a hydrogen atom (J P Goss et al., 2014). The structure 

of this defect is displayed in figure 1.7. 

Although the structure of this defect has been characterised, the identity of a vast number of 

other peaks attributed to hydrogen within the diamond spectrum is as yet unknown. Whilst the 

majority of IR-active hydrogen is believed to be contained within the N3VH defect, there is 

still much to be learned from the study of the other minor features that could potentially lead 

to information about the environment in which diamonds grow. The viability of the 3107 cm-1 

as a proxy for total hydrogen content in natural diamonds will be considered in chapter 3. 

The term ‘hydrogen-rich’, or ‘H-rich’ was originally coined in the early 1990s (Fritsch and 

Scarratt, 1993) and has been used to refer to diamonds with an unusually high amount of IR-

active hydrogen, where the intensity of the 3107 cm-1 absorption is higher than that of the 

intrinsic diamond absorption located at 2450 cm-1. This can often lead to diamonds with 

unusual gemmological properties, for example specific and unique colouration (van der Bogert 

et al., 2009).  

1.2.3.2 Hydrogen and cuboid growth 

Figure 1.7: A representation of the structure of the N3VH centre which causes the 3107 cm-1 IR absorption 

feature in diamond. The larger spheres indicate sites surrounding the vacancy, consisting of one carbon atom 

and three nitrogen atoms (in blue). The carbon is decorated with a hydrogen atom (smaller white sphere). The 

smaller grey spheres constitute the carbon atoms in the diamond lattice. (Goss et al., 2014) 
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The features associated with hydrogen in diamonds often tend to be associated with cuboid 

growth. This can be observed both in purely cubic or cuboid crystals (Welbourn et al., 1989) 

or in the cuboid sectors of diamonds containing various mixed growth zones, most strikingly 

observed in asteriated samples (Rondeau et al., 2004). Studies of the difference between growth 

sectors in mixed-habit diamonds has observed that the formation of platelets is diminished in 

cuboid growth sectors (Lang, 1974b; Rondeau et al., 2004), and it has thereby been proposed 

that hydrogen could play a part in the quenching of nitrogen aggregation. However, it is 

possible that, in the case that there is more nitrogen in the octahedral sectors than in the cuboid 

sectors of these mixed-habit stones, the formation of platelets could simply be more probable 

in octahedral sectors as a result (Fritsch et al., 2007 and ref. within). This relationship will be 

examined further in chapter 6. 

1.2.3.3 Hydrogen diffusion 

Natural diamond can host hydrogen-bearing fluid inclusions and nominally anhydrous minerals 

(NAMS) with a small but important OH content that provide valuable information about the 

‘wetness’ of the source mantle (Ohtani, 2015; Tomlinson et al., 2007). This information relies 

heavily on the assumption that the diamond is a perfect sealed container and that hydrogen has 

not entered or escaped since the inclusion was captured. As a result, understanding hydrogen 

diffusion within the crystals is an essential step in validating models based on these inclusions. 

It has often been assumed that this process is too slow to warrant consideration for geologically 

relevant conditions and timescales. However, this assumption may be completely incorrect, as 

discovered with the advent of chemical vapour deposition (CVD) techniques for production of 

synthetic diamond substrates for technological applications (Gicquel et al., 2001). Due to the 

fact that hydrogen is present within the carrier gas used for CVD synthesis, and potentially has 

an effect on the chemical and electronic properties of the diamond (both at the surface and 

within the bulk), it has become important to better quantify and understand hydrogen diffusion. 
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Past studies of H in diamond and how it relates to the material properties have focused on the 

effect of H in doped, semiconducting CVD diamond, both p- and n-type. This showed that, in 

p-type diamond, the neutral boron acceptors present were compensated by H donors, ionising 

the hydrogen to protons, which are fast donors with a migration energy of 0.1 – 0.2 eV 

(Chevallier et al., 1998; Saguy, 2004). In undoped and n-type diamond the diffusion was 

thought to be slower due to a higher migration energy and a lower solubility of both H0 and H- 

compared to H+ (Chevallier et al., 2002; Saguy et al., 2003). 

Calculations of H diffusion through the diamond lattice have been undertaken to provide a 

diffusion coefficient, which can be used to calculate diffusion distances at temperatures 

between 500 – 1600 °C, using the temperature dependant Arrhenius relationship in the form 

𝑥 ~ (𝐷 𝑡)1 2⁄  (1.12) 

Where D is the diffusion coefficient according to the Arrhenius relationship, x is the diffusion 

distance and t is the time (Crank, 1979). Data produced by Cherniak et al. in 2018 extrapolate 

to a diffusion of 50 µm in 300,000 years at a temperature of 500 °C and ~ 30 min at 1400 °C 

(Cherniak et al., 2018). By contrast, a 50 µm diffusion of a nitrogen atom at 1400 °C within 

diamond would take close to 1 billion years (K. T. Koga et al., 2003). H retention within 

diamond grains was also calculated, and this showed almost complete loss of hydrogen from 

the diamond on a geological timescale, assuming a spherical geometry of the diamond and a 

uniform initial H concentration (Cherniak et al., 2018). If this holds true for natural diamonds, 

it can be assumed that diamonds will equilibrate with ambient hydrogen in the mantle on the 

timescale of most mantle scale processes. However, it is also possible that there is some re-

equilibration with the host kimberlite magmas as the diamonds are transported from source to 

surface on an hourly timescale (Canil and Fedortchouk, 1999; Kelley and Wartho, 2000; Peslier 

et al., 2008; Sparks et al., 2006). Modelling of the hydrogen diffusion during ascent has found 
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that the outcomes depend largely on the rate of ascent and cooling, with fractional losses 

ranging from 15 % within larger diamonds (ca. 1 mm radius) at an ascent rate of 45 m/s up to 

70 % using an ascent rate of 5 m/s (Cherniak et al., 2018). This indicates that diamonds do not 

necessarily preserve the bulk of the hydrogen present within the lattice during their ascent. 

However, it is worth noting that these simple diffusion models only consider atomic hydrogen 

migrating through the diamond lattice. They do not consider the presence of inclusions, either 

fluid or mineral in nature, and also do not account for the possibility of the hydrogen being 

trapped by point defects present within the diamond lattice. If the decoration of a point defect 

with a hydrogen atom functions as a thermodynamic sink, then it could be expected that any 

retention of hydrogen is dependent on the presence of these pre-existing defects, rather than 

the availability of hydrogen within the growth medium. This has been studied in synthetic 

diamond, in particular boron-doped diamond. A combination of theory and experiments have 

observed that, in B-doped diamond, traps are likely a primary cause of low observed diffusion 

of hydrogen within the diamond lattice (J. P. Goss et al., 2003b; Teukam et al., 2003). This has 

also been investigated in undoped polycrystalline CVD diamond (Ballutaud et al., 2001). This 

study focussed on deuterium diffusion within the diamond, and it was found that the diffusion 

rate was primarily governed by trapping on defects. This data lends credence to defects as a 

primary mechanism of hydrogen retention within the diamonds. 

1.2.3.4 Classification of diamonds through hydrogen-related features 

By reviewing the hydrogen and nitrogen-related spectral features and their corresponding 

defect concentrations, along with gemmological properties such as visible colour, Fritsch et al. 

(2007) suggested that all diamonds containing hydrogen can be categorised as the following 

six groups: 
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1. Near-colourless type Ia diamonds – these contain weak features related to hydrogen, 

often only the 3107 cm-1 peak. These are commonly encountered, and it is rare to find 

a type Ia stone containing no hydrogen.  

2. Yellow to brown to green diamonds, and white to grey diamonds (coloured by 

inclusions) – the spectra of these can vary significantly (Fritsch et al., 1991). There are 

often weaker hydrogen- and nitrogen-related IR features than in some of the 

subclassifications. The nitrogen in these diamonds is often present in a less aggregated 

form.  

3. Grey to blue to violet diamonds – these diamonds contain exceptionally high hydrogen 

and nitrogen concentrations through IR. The nitrogen is found in an advanced 

aggregation state (van der Bogert et al., 2009), with the diamonds usually being almost 

pure type IaB. The most common source of these diamonds is the Argyle mine in 

Australia. 

4. Chameleon diamonds – the most characteristic feature of these diamonds is their photo- 

and thermochromic properties, and the colour changes that this brings on. The nitrogen 

and hydrogen content is usually low-medium, with a low aggregation state. These 

diamonds are typically type IaA with Ib character (Hainschwang et al., 2005).  

5. Intense yellow to orange type Ia diamonds – diamonds in this group display intense 

colouration. An intense 3107 cm-1 peak and high Ib character is usually observed. These 

diamonds have a nitrogen content and are usually pure type IaA.  

6. Yellow to orange to brown type Ib and “ABC” diamonds – these samples are typically 

type Ib. They tend to exhibit a variety of peaks in the spectral regions corresponding to 

the hydrogen-related features (Hainschwang et al., 2006). These are very rarely found 

and are usually small in size and deep in colour. 
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This classification highlights the gemmological significance of hydrogen-related features in 

the IR spectra of diamonds and the importance of understanding the range of properties that 

they can display. 

1.3 Project Aims and Thesis Structure 

This project aims to extend our understanding of hydrogen in natural diamonds. Despite the 

common presence of impurity hydrogen within diamonds, there is surprisingly little knowledge 

of how much hydrogen there is within these crystals and within what environment it is 

contained. Water (and by extension, hydrogen) can affect mineralogical properties such as 

conductivity, strain rate and the deformation mechanism. Water content has implications for 

the bulk rock properties such as the location of the solidus, the viscosity and rheology which 

feed into the process of mantle convection. Given the importance of water in the mantle, the 

study of hydrogen in diamonds could potentially shed new light on unseen processes occurring 

deep within the Earth. Hydrogen and its incorporation also have a significant effect on the 

material properties for technological applications – for example, it can affect the electronic 

properties in ways which are crucial to understand for the potential use of doped diamond as a 

semiconducting material (Chevallier et al., 2002, 1998; Hutton et al., 2013). This means that 

there is a clear need to learn more about the incorporation of hydrogen into the structure of 

diamonds. 

Chapter 2 describes the methodology used for preparing diamond plates for optical studies and 

their analysis using FTIR, the core technique used within this thesis. FTIR studies form the 

basis of all subsequent chapters. 

Chapter 3 looks at the relationship between the 3107 cm-1 feature and the bulk hydrogen content, 

as measured using proton-proton scattering. This is a novel technique that has not been 

previously applied to the study of natural diamond samples. This chapter addresses the question 
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of whether or not the 3107 cm-1 peak can be used as a proxy for bulk hydrogen content, and by 

extension whether or not the majority of hydrogen is contained within this defect. Also 

examined is the accuracy of previous attempts to generate an extinction coefficient for H-

containing defects in diamond. 

Chapter 4 looks at the role hydrogen may play in the nitrogen aggregation sequence, and 

whether the formation of the N3VH centre comes primarily through the protonation of an N3 

centre. This chapter uses a combination of IR and UV-vis measurements to study systematics 

across a range of samples from different localities. 

Chapter 5 provides a detailed characterisation of a minor H-related IR peak at 3236 cm-1. This 

chapter uses comparisons between a number of IR-measurable features to provide clues as to 

the origin of this feature, and what sort of defect it may represent. 

Chapter 6 compares IR studies with photoluminescence results in order to probe the growth 

conditions in internally zoned diamonds at high spatial resolution. Links between nickel- and 

hydrogen-related features are investigated. 

Chapter 7 contains discussion about the impact of the work presented here and ideas for future 

work that can continue the investigations started within this thesis.  
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2. Methods 
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2.1 Sample Preparation 

Original studies on diamonds used whole stones in their research, using properties such as 

birefringence of photoluminescence in order to provide information, although the internal 

inhomogeneity of diamonds means that this can be insufficient when attempting to draw 

conclusions from such data. Although it results in loss of a significant portion of the diamond 

crystal, the use of polished plates provides the opportunity to study and constrain the growth 

history through the comparison of properties throughout the zones. Thus, samples within this 

work were studied as thin plates. 

The diamonds, predominantly octahedral in morphology, were polished on two parallel {110} 

faces on an industrial diamond impregnated scaif, in order to yield thin plates (Bulanova et al., 

2005), according to the anisotropic hardness of diamond as a material. A schematic of this 

process is displayed in Figure 2.1. The thickness of the plates varies between 300 µm and ca. 

1000 µm, in order to provide optimal thickness for Fourier Transform Infrared (FTIR) analysis 

– thin enough to provide sufficient signal when passing the light through, but not thin enough 

to suffer any significant negative effects from interference fringes. 

 

 

Figure 2.1: A schematic of the polishing of an octahedral diamond along the {110} direction in order to 

produce a parallel plate. The face being polished is indicated by the thick, red line and the crystal indices are 

displayed at the bottom of the figure on the left. 
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2.2 Optical Spectroscopy 

Optical spectroscopy techniques, involving the transitions between electronic states within the 

sample being studied, are undeniably valuable in the study and identification of point defects 

in diamond (Walker, 1979). Optical spectroscopy encompasses two main areas, emission-

based techniques (also known as luminescence) and optical absorption. A schematic of these 

is displayed in Figure 2.2. For emission techniques, a number of different sources can be used 

to generate the luminescence which is measured. This includes photoluminescence – where a 

photon beam (or light) acts as the source – and cathodoluminescence, which generates emission 

using an electron beam. Other excitation modes are possible, such as chemiluminescence (the 

production of light via a chemical reaction), triboluminescence (where light is produced 

through material stress), or thermoluminescence, where light emission is stimulated through 

heating a sample. Luminescence techniques can be highly sensitive. It can be possible to detect 

optical centres present at levels below 1 ppb. However, optical absorption is unaffected by non-

radiative processes at the luminescence centres (Willardson et al., 1998). This means that it can 

be thought of as the more fundamental technique. Photoluminescence techniques will be 

discussed in greater detail in section 6.2. 

Figure 2.2: A schematic of the processes involved in optical spectroscopy. The techniques involve either 

excitation to an excited electronic state through absorption of a photon (in red), such as in IR, or the relaxation 

of an excited state through emission of a photon (in green), such as in photoluminescence. 
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2.2.1 Fourier Transform Infrared Spectroscopy 

FTIR Spectroscopy was performed according to previous work (Kohn et al., 2016). Prior to 

analysis, diamonds were cleaned using laboratory-grade ethanol in order to remove surface 

contaminants such as dust or adhesive residue. Samples were dried and then secured on to a 

knife-edge aperture over the hole in the sample holder, as displayed in Figure 2.3. This 

procedure ensures that spectra collected do not contain any signal from organic material, and 

the lack of a carrier material eliminates the possibility of reflections from the interface between 

carrier and sample obscuring the spectra. All FTIR analyses in this work were performed using 

a Nicolet iN10 MX microscope, with a liquid nitrogen cooled mercury cadmium telluride 

(MCT-A) detector. 

Two modes of data collection were used: either a 1-dimensional high-resolution line scan or a 

2-dimensional high-resolution map. In the former, a fast, low-resolution map was initially 

obtained via the instrument’s ultrafast mapping capability, using a 16 cm-1 spectral resolution 

between 650 – 4000 cm-1. This can produce a map with high spatial resolution (typically a step 

size of 20 µm and a 30 µm aperture) in less than 30 minutes for the majority of samples. Whilst 

these maps cannot be used for quantification, they provide a good overview of zonation within 

Figure 2.3: A schematic of the sample holder used during FTIR analyses, with the polished diamond plate 

secured on a knife-edge aperture. 
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a sample, which can be used to target high quality line scans acquired at a higher spatial 

resolution of 2 cm-1, typically using 64 or 128 scans per spectrum and a step size of 30 µm and 

a 40 µm aperture. For high quality 2D maps, a spectral resolution of 2 cm-1 was used, with a 

typical step size of 50 µm and a 60 µm aperture. Depending on the size of the specific sample, 

these maps can consist of up ca. 7000 individual spectra. As the liquid nitrogen tank used to 

cool the detector lasts for approximately 21 hours, any measurement lasting longer than this 

required the data acquisition to be paused in order to replenish the liquid nitrogen. 

2.2.2 Spectral Deconvolution 

In order to quantify the components that compose a spectrum, spectral deconvolution must be 

performed. An IR spectrum of a typical diamond is displayed in Figure 2.4. There are 3 main 

regions of interest when studying the IR spectra of diamonds. The region below 1500 cm-1 

contains a variety of peaks which arise because of different nitrogen species present within the 

diamond, as well as the platelet peak, which varies in position with the size of the platelets. 

The region from 1800 – 2700 cm-1, known as the two-phonon region, contains the main 

absorptions associated with the intrinsic diamond lattice. The 3107 cm-1 peak associated with 

the N3VH defect is also indicated (J P Goss et al., 2014). This is typically the predominant 

high-wavenumber feature in IR spectra of natural diamonds. 

The most prevalent method of IR spectral deconvolution uses the CAXBD97n Excel 

spreadsheet produced by David Fisher (De Beers Technologies, Maidenhead). Whilst this is 

useful for smaller datasets of up to 100 spectra, the large number of data points acquired during 

map collection requires automated processing. This processing is accomplished using the 

program Quantification of Infrared active Defects in Diamond and Inferred Temperatures 

(QUIDDIT) (Speich, 2017; Speich and Kohn, 2020).  
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As an initial preparatory step, the dataset is split into individual CSV files. The OMNIC Picta 

(Thermo Scientific) software attached to the IR spectrometer is capable of dividing the map 

files into SPA files, which are a proprietary format used by Thermo Scientific. These are 

converted to CSV files using a simple macro that preserves spatial information by setting each 

file name to the x-y coordinates from which the spectrum was collected, e.g. “X-123.4 Y 567.8”. 

Spectra from the edge of the samples or on inclusions are removed manually in order to 

minimise the influence of certain artefacts in the spectra. 

Baseline correction must then be performed. The initial correction consists of a constant 

baseline subtraction, which is based off of the absorption at 4000 cm-1 in the collected spectrum. 

Alongside this, a simultaneous normalisation is performed to 1 cm diamond thickness. This is 

achieved by locating the absorption value at 1992 cm-1
 and calculating a normalisation factor, 

which is then used to normalise to an absorption value of 12.3 at 1992 cm-1. 

Figure 2.4: A typical IR spectrum of a diamond. Indicated on the diagram are the three primary regions of 

interest: the nitrogen containing region below 1500 cm-1, the intrinsic diamond region at 1800 – 2700 cm-1 and 

the 3107 cm-1 peak. 
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Three areas of this spectrum are then linearly interpolated before a final correction is applied. 

These are the regions spanning 1500 to 2312 cm-1, 2391 to 3000 cm-1 and 3800 to 4000 cm-1. 

Interpolation ensures that data with any data spacing can be processed. The two-phonon region 

contains features arising from the intrinsic diamond, but the low wavenumber tail of this 

absorption can extend below 1500 cm-1, potentially obscuring several features of interest. This 

baseline correction is aimed at eliminating the effect of this tail in order to accurately measure 

features within the one-phonon region. The three regions mentioned above are fitted to a 

spectrum of a Type IIa diamond which contains no IR-active nitrogen. This spectrum is 

normalised as discussed above to 1 cm thickness and only contains the intrinsic diamond peaks, 

with no other absorptions present. This fitting uses a least-squares routine (Zhu et al., 1997) 

implemented in SciPy (Virtanen et al., 2020). A first order polynomial baseline is also included. 

The reference spectrum and calculated polynomial baseline are subsequently subtracted from 

the corrected spectrum. Figure 2.5 displays an example of this process. The corrected spectra 

are produced as CSV files for further processing. 

Figure 2.5: An illustrative example of the baseline correction and normalisation procedure used in the 

processing of FTIR data. At the top, in black, is a collected spectrum from one of the diamonds studied here, 

Argyle 78. In the middle, in blue, is the type IIa spectrum used as a reference for fitting, and at the bottom, in 

red, is the result of the fitting, subtraction and normalisation to 1 cm-1 thickness. 



 

55 

 

Once corrected spectra have been obtained, several distinct regions of the spectrum are 

analysed to interrogate factors such as nitrogen impurities, the width and position of the platelet 

peak and the 3107 cm-1 peak. This involves the fitting of a pseudo-Voigt function to the 

collected data. In IR spectra, the bands should be Lorentzian in shape, although instrumental 

factors can potentially add a Gaussian component to the peak shape (Seshadri and Jones, 1963), 

and thus a pseudo-Voigt function is used. This is a linear combination of a Gaussian (G(x)) and 

a Lorentzian (L(x)) distribution, which takes the form 

𝑃(𝑥) =  𝜂 . 𝐿(𝑥) + (1 −  𝜂). 𝐺(𝑥) (2.1) 

Where η is the Lorentzian contribution to the peak shape, and 0 ≤ η ≤ 1.  

The 3107 cm-1 peak will be used as an illustration on how to fit high wavenumber peaks, as the 

technique is analogous for other peaks studied. Initially, the region between 3000 and 3200 cm-

1 is extracted, before fitting a third order polynomial baseline. The area around the peak itself 

is excluded. The baseline is subtracted from the spectrum, and the peak is fitted using a pseudo-

Voigt function. Peak height and area are written into the results file produced by QUIDDIT. 

This file also contains features such as peak width, along with any parameters produced by the 

local correction around the 3107 cm-1 peak. 

The one-phonon region is fitted using the CAXBD97n Excel spreadsheet from David Fisher 

(De Beers Technologies, Maidenhead). This spreadsheet contains spectra of the A, B and D 

components, which can be interpolated and used as references. The area of the spectrum from 

1000 to 1400 cm-1 is then extracted and subsequently interpolated. A least-squares method is 

used to minimise the difference between the collected spectrum and a combination of the 

individual component spectra. This takes the form 

𝑎 . 𝐴(𝑥) + 𝑏 . 𝐵(𝑥) + 𝑑 . 𝐷(𝑥) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.2) 
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Where A(x), B(x) and D(x) are the reference spectra of the individual components (A, B and 

D) respectively and a, b and d are their respective absorption coefficients. The constant 

accounts for any remaining non-zero component after the baseline correction. The coefficients 

are constrained as positive as they relate to defect concentration. The concentrations of A- and 

B- centres are determined with the absorption coefficients at 1282 cm-1 (Boyd et al., 1995, 

1994). The C component can be added to this procedure. However, in the majority of diamonds 

the concentration of C-centres is negligible, meaning that this is usually unnecessary.  

Uncertainty assessment in the determination of nitrogen concentrations by FTIR can pose an 

issue when considering quantification, and it is not straightforwardly resolved. Several sources 

of random error exist, including interference fringes (which can be significant if the polished 

plate is thinner than ca. 200 µm), the inadequate removal of baselines and instrumental noise. 

These can interfere with automated fitting and reduce precision, particularly if total nitrogen 

concentration is low, although diamonds such as that are uncommon among those studied 

within this work. 

There are also some systematic errors introduced by uncertainty in the absorption coefficients 

used to convert intensities into concentrations of A- and B- centres. A number of other factors 

also introduce uncertainties, including the determined activation energy and pre-exponential 

component, which are used in the kinetic equations determining nitrogen aggregation within 

diamonds. The calibration coefficients involved in the determination of A- and B- centre 

concentrations have uncertainties of ca. 6 and 10 % respectively (Boyd et al., 1995, 1994). 

 2.2.3  UV-vis spectroscopy 

Due to the wavelength of the N3 absorption, which will be considered in detail in chapter 4, a 

UV-visible spectrometer is required to study the centre. Single measurements in chapter 4 were 

undertaken using a PerkinElmer LAMBDA 1050 UV-vis/NIR spectrometer at De Beers 
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Technologies, Maidenhead. Samples were mounted on a 1.5 mm aperture in order to increase 

signal by minimising signal loss from specular reflection and transmission through the 

transparent samples. The samples were then scanned over a range of wavelengths at room 

temperature. The thickness of the samples was also measured using calipers to allow for 

conversion between absorbance (A) and the attenuation coefficient (µ, in cm-1) using the 

following relationship 

𝜇 =
l n(10)

𝑡
 × 𝐴 (2.3) 

Where t is the thickness in cm. Line scans, where obtained, were collected using a JASCO 

MSV5200 instrument in the Gemmological Institute at the China University of Geosciences in 

Wuhan, China. These used a 100 µm aperture and collected spectra using a step size between 

50 – 15 µm. In order to quantify the N3 concentration, the following calibration can be used 

(Davies, 1999) 

𝐴𝑁3 (77 𝐾) =  8.6 × 10 −17 [𝑁3] (2.4) 

Where AN3 (77 K) is the area of the zero-phonon line of the N3 absorption in meV cm-1 and [N3] 

is the concentration of N3 in cm-3. Areas are determined in nm.cm-1, but this can be converted 

to meV.cm-1 using the following equation (personal communications, David Fisher, De Beers 

Technologies, 2019) 

𝐴𝑁3 (𝑚𝑒𝑉. 𝑐𝑚−1) =  −0.0339 ×  𝐴𝑁3(𝑛𝑚. 𝑐𝑚−1)2 + 7.2209 ×  𝐴𝑁3(𝑛𝑚. 𝑐𝑚−1) (2.5) 

As this calibration has been determined for samples at 77 K, the following empirically derived 

equation can be used to convert from room-temperature to 77 K (personal communications, 

David Fisher, De Beers Technologies, 2019) 

𝐴𝑁3 (77 𝐾) = 1.4928 × 𝐴𝑁3 (𝑅𝑇) (2.6) 
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The concentration can now be converted to ppm using the following relationship 

[𝑁3](𝑝𝑝𝑚) =  
[𝑁3](𝑐𝑚−3)

1.76 × 1017
 (2.7) 

Where 1.76 x 1017 is the number of carbon atoms per cm3 in diamond. This provides a way of 

quantifying N3 content in a similar way as other nitrogen aggregates, which, combined with 

the quantification of 3107 cm-1 as described in section 3.1 (Coxon et al., 2020) can be used to 

study nitrogen aggregation and the role hydrogen plays. 

All UV-vis spectra were obtained as .csv files and were analysed using Origin 2019b. These 

were subsequently analysed and processed using the methods described above in order to 

produce [N3] values in ppm. A script was written to fit and subtract a linear baseline between 

410 and 420 nm prior to numerical integration to produce a peak area. The peak area was then 

processed as discussed above to produce [N3] in ppm. Efforts were made to correlate features 

on the samples such as visual inclusions in order to accurately match the directions of the line 

scans for the FTIR and UV-vis experiments. 

 2.2.4 UV-vis data processing 

When attempting to compare data from two separate analytical techniques, several factors must 

be considered. Firstly, in the majority of cases, it was only possible to collect a single UV-vis 

spectrum for each sample, using a 1 mm aperture. However, the collected IR data consists of 

high-quality line scans. Therefore, when comparing between the two, consideration must be 

given as to how best to represent the IR data. One simple way to do this is to simply average 

out all the individual points from the line scan, with the standard error then acting as a 

representative of inhomogeneity within an individual diamond. As the aperture size on the UV-

vis instrument is known, points from outside this aperture can be excluded to provide a more 

representative comparison. 
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When correlating the UV-vis and IR line scans, it must be noted that there is potentially 

significant uncertainty introduced by human error. In order to match the directions as 

accurately as possible, features such as visual inclusions and the asymmetric shape of some of 

the diamonds were used. UV-vis spectra were provided with attached xy values. These can be 

assessed to provide a total length of the line scan. The IR line scan can be cropped to match 

this length, with visual inspection being used to assess where the discrepancy in length lies. 

Due to this element of visual inspection, there is potentially some errors introduced due to the 

human nature of the approach. In cases where a discrepancy was present in length, a best fit 

approach was used to attempt to correlate the line scans as best as possible.  Where this has 

been undertaken, it will be noted within the text. 

2.3 Proton-proton scattering 

Proton-proton scattering (also known as hydrogen microscopy (Reichart et al., 2002)) 

experiments were performed using the Superconducting Nanoscope for Applied Nuclear 

(Kern-) physics Experiments (SNAKE) microprobe at the Maier-Leibnitz Laboratory of the 

Technical University of Munich in Garching, Munich. The technique involves the firing of a 

proton beam with energy Eo towards a hydrogen-containing sample within an evacuated 

chamber. The incoming protons collide with the nuclei of atoms within the sample, and 

collisions with protons lead to a unique scattering event due to the involvement of two particles 

of equal mass. The conservation of energy and momentum dictates that upon impact, the two 

protons will be deflected away at an angle of 90° from each other (see figure 3.1). The two 

scattered nuclei can be detected on time-coincidence detectors, and thereby any two protons 

arriving at 90° within a certain time interval at the detectors can be considered as referring to 

a hydrogen within the sample. The energy of the incident proton will be split upon the collision 

with a hydrogen nucleus within the sample, according to the following equation 

𝐸0 =  𝐸1 +  𝐸2 (2.8) 
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Where E0
 is the energy of the incident proton and E1 and E2 are the energies of the two scattered 

protons. In an ideal case where the protons are scattered at 45°, these two energies would be 

equal. However, some energy will be lost from the energy of the incident protons upon passing 

through the sample, leading to 

𝐸1 +  𝐸2 =  𝐸0 −  ∆𝐸 (2.9) 

Where ΔE is the amount of energy lost during transmission through the sample. The value of 

this energy loss, determined by the detector, is dependent on the distance travelled through the 

sample and the energy of the incident protons. It is therefore also dependent on the position at 

which the collision takes place within the sample, allowing a spatial distribution of hydrogen 

in three dimensions to be reconstructed (Reichart et al., 2004; Wegdén et al., 2005).  

If a sample with thickness t is considered, with scattering events A and B at the surface closest 

to and furthest from the detectors respectively, the change energy can be described as follows: 

Figure 3.2: A schematic of the set-up for proton-proton scattering experiments. A proton beam is fired towards 

a hydrogen-containing sample. When the incident protons collide with hydrogen atoms within the sample, the 

nuclei are scattered at 90° to each other. 
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∆𝐸𝐴 = (
𝑑𝐸

𝑑𝑥
)

𝐸0 
𝑡 (2.10) 

∆𝐸𝐵 = 2 (
𝑑𝐸

𝑑𝑥
)

𝐸0
2

 

𝑡

𝑐𝑜𝑠𝜃
 (2.11) 

Where (
𝑑𝐸

𝑑𝑥
)

𝐸𝑥𝑦 
is the rate of energy loss per unit of distance at a certain energy, which is 

inversely proportional to E, and θ is the scattering angle of the particle relative to the direction 

of the incident beam. A particle scattered at point A will only experience loss by movement 

through the sample in the direction of the incident beam, but at point B, the energy loss will be 

due to diagonal movement of the two protons through the sample. If we consider a scattering 

event at a point, X, within the sample at a distance d from point A, the total energy change will 

contain a horizontal and diagonal component, resulting in the following equation: 

∆𝐸𝑋 =  (
𝑑𝐸

𝑑𝑥
)

𝐸0 

(𝑡 − 𝑑) +  2 (
𝑑𝐸

𝑑𝑥
)

𝐸0
2

 

𝑑

𝑐𝑜𝑠𝜃
(2.12) 

As 
𝑑𝐸

𝑑𝑥
 ∝ 1/E, if a sufficiently high E0 is used, the change in energy will be very small. It can 

also be assumed that (
𝑑𝐸

𝑑𝑥
)

𝐸0/2 
≈ 2 (

𝑑𝐸

𝑑𝑥
)

𝐸0 
, and equation 2.12 can thereby be simplified to 

∆𝐸𝑋 ≈  (
𝑑𝐸

𝑑𝑥
)

𝐸0 

(𝑡 − 𝑑) +  4 (
𝑑𝐸

𝑑𝑥
)

𝐸0 

𝑑

𝑐𝑜𝑠𝜃
 (2.13) 

This constitutes the basic principle of the method, although other factors must be considered 

when undertaking full analyses. As the incident protons enter the sample, they will not only hit 

hydrogen atoms within the sample, but also other nuclei. This can lead to multiple scattering 

events for both the incident and outgoing protons. If a proton undergoes a non-proton collision 

before a proton-proton collision, the consequences are minimal; while the emerging protons 

will propagate at different angles than the ideal, the overall angle sum will still be 90 °, and an 
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appropriate time coincidence interval can still be used to determine that a scattering event took 

place. The steepest deflection of the scattering angles, alongside the change in energy 

dependent on the path determine the maximum sample thickness that can be used with this 

technique. More issues arise when considering multiple scattering events on the emerging 

protons, since this could lead to them escaping detection. It is possible to undertake some 

correction for these multiple collisions during the analysis, to minimise the effects on the 

acquired data. The deflection angle of a proton (α) in a collision depends on the rough 

relationship 

𝛼 ≈ (1.8 
𝑍 ∆𝐸

𝐸
)

0.5

  (2.14) 

Where Z is the atomic number of the atom involved in the collision. This provides some 

evidence that knowledge of the sample composition can help when undertaking the corrections. 

An exponential decay in count rate can also be assumed from the entrance of the beam to exit 

of the sample. The value of this exponent can be measured by observing the difference in signal 

upon rotation of the sample through 180°, and can be corrected for as such (Cohen et al., 1972). 

Analytical error due to multiple collision events can be minimised by using as large a detector 

area as possible, in order to capture events from all scattering angles and avoiding the escape 

of particles. 

This technique, with the potential to provide 3D spatial resolution of hydrogen, offers a number 

of advantages over other techniques used to measure hydrogen content within solid samples. 

Due to its depth resolution, it can distinguish between hydrogen adsorbed to the surface of the 

sample and hydrogen within the sample itself, and can determine trace concentrations of 

hydrogen (< 1 ppm) on a micrometre depth resolution (Reichart et al., 2004). This is a clear 

advantage in terms of sensitivity compared to the techniques previously discussed. Unlike 

secondary mass-ion spectrometry (SIMS), which is a technique commonly used to study 
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elemental distributions within solid samples, including diamonds (Bulanova et al., 2002; 

Hogberg et al., 2016), this technique is not matrix-dependent, and so does not require 

independent analytical calibration. Alongside this, the radiation damage inflicted through the 

use of the proton beam is minimal, and is the lowest possible irradiation damage of all ion beam 

analysis methods (Reichart et al., 2002). A negative aspect of this technique compared to others 

is the need for samples to be thin. Due to the stopping power of diamond, the samples are 

required to be freestanding and ≤ ~ 100 µm in order to allow the beam to pass through the 

sample, and to allow for the collection of sufficient statistics to be able to reduce uncertainties 

as much as possible. 

The results are obtained in the form of integrated density of hydrogen, ρH (in cm-2), which can 

be converted into ppm via the following equation: 

[𝐻] (𝑝𝑝𝑚) =  

𝜌𝐻
𝑙⁄

𝜌𝑀  ×  𝑁𝐴
 (2.15) 

Where l is the thickness of the sample in cm and ρM is the density of the matrix (in this case 

diamond) in g cm-3. 

Details of the data analysis and experimental parameters will be discussed in Chapter 3. 

2.4 Laser machining 

In order to study the samples using proton-proton scattering, a sample thickness of as close to 

100 µm as possible is optimal due to the penetration of the proton beam at the energies used. 

Table 2.1: A table of the laser machining parameters used to mill diamonds. These parameters remove ~ 10 µm of material. 
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Samples of up to ~ 200 µm can be studied, although the uncertainties will be greater. Due to 

the brittle nature of diamonds, mechanical polishing down to this thickness is not possible 

without risking fracture of the sample, so laser-milling was used. This was performed on an 

Oxford Lasers A Series Laser micromachining system, which is equipped with a 1064 nm 

neodymium-doped yttrium orthovanadate (Nd:YVO4) solid state laser, frequency doubled to 

532 nm. The nominal power output is ~ 11.4 W at 40 kHz, with a pulse width of < 30 ns. The 

pulse energy is 250 µJ at 40 kHz, providing a peak power of approximately 8.3 kW. In order 

to determine appropriate parameters for milling the diamond down to ~ 100 µm, experiments 

were undertaken on faulty diamonds intended for diamond anvil cell (DAC) experiments and 

polishing off-cuts from some of the plates intended for further study. The variations in material 

properties between different samples lead to slight changes in experimental parameters for each 

sample, but initial parameters used are summarised in table 3.1. These parameters were for one 

pass using the in-built ‘mill rectangle’ macro and were found to be capable of removing 10 µm 

of material. Regions of the samples measuring approximately 300 x 300 µm were thinned down 

to the appropriate thickness in order to preserve the majority of the material for further study. 

 2.4.1 Acid cleaning 

As the use of laser etching leaves a layer of graphitic material on the sample due to the nature 

of the ablation, the samples were acid cleaned to attempt to minimise surface contamination. 

This utilises a powerful oxidising agent to remove any sp2 or sp3 impurities (also known as 

non-diamond carbon - NDC). The procedure used in this work uses potassium nitrate (KNO3) 

and sulphuric acid (H2SO4) to produce nitric acid as an oxidising agent. Care must be taken not 

to use more than the required amount of KNO3, as the nitrate can degrade to form oxygen, 

which can hinder the cleaning process. The acid and diamond samples were heated under reflux 

conditions to temperatures of over 200 °C for up to three hours, before being cooled, washed 

with deionised water, and subsequently dried. This procedure not only removes NDC left from 



 

65 

 

the micromachining process (Prado et al., 2003), and has the additional effect of leaving the 

diamond surface oxygen terminated (Bachmann et al., 1991), which helps to minimise the 

effects of hydrogen on the diamond surface. 
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3. The relationship between the 3107 cm-1 

peak and bulk hydrogen content in 

diamonds as measured by proton-proton 

scattering – is it a viable proxy? 
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3.1 Introduction 

The most well-characterised and widely observed hydrogen-containing defect in natural 

diamonds is the defect responsible for the 3107 cm-1 feature in the IR spectrum. This feature 

was originally observed and attributed to hydrogen in the 1970s (Runciman and Carter, 1971), 

and has since been recognised as the stretching mode of the tri-nitrogen vacancy hydrogen 

(N3VH) defect. This consists of three substitutional nitrogen atoms around a carbon vacancy, 

with a single hydrogen atom decorating the remaining carbon (J. P. Goss et al., 2014), and is 

discussed in greater detail in section 1.2.3.1. 

When the IR intensity of this feature is higher than that of the intrinsic diamond peaks, 

diamonds are referred to as being ‘hydrogen-rich’ (Fritsch et al., 2007; van der Bogert et al., 

2009). However, in spite of its use as an indicator of hydrogen content, it is not currently known 

what proportion of hydrogen within the bulk is captured within the 3107 cm-1 centre, and what 

proportion may be in optically inactive sites. Despite the 3107 cm-1 defect being relatively well 

understood, the quantification of hydrogen content via optical experiments has poses a 

significant challenge, with no firm grasp of the amount of hydrogen present within diamonds. 

A number of techniques have previously been used to study hydrogen concentration in 

diamonds; these will be discussed below. 

 3.1.1 Ion beam spectrochemical analysis 

Ion beam spectrochemical analysis (IBSCA) has been used to study the hydrogen concentration 

in diamond samples. This technique is a sputtering-based surface technique, somewhat 

analogous to secondary ion mass spectrometry. This involves the use of an ion beam, typically 

of positive noble gas ions (e.g. Ar+), which penetrates the surface of a sample and produces 

excited sputtered particles, the fluence of which is considered as representative of the elemental 

composition of the near-surface region (Rupertus, 2011). Once sputtering has occurred, the 

mass loss can be weighed, and hydrogen concentration determined by measurement of a 
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specific hydrogen-related line and comparison with a standard, for example a mica sample with 

a known hydrogen content (Tsong and McLaren, 1975). Experiments found that all diamonds 

studied appeared possess ~ 1 atomic % of hydrogen, no matter the type or locality (Hudson and 

Tsong, 1977). This is inconsistent with expected results from optical studies, but it could be 

explained by the fact that IBSCA is a surface-specific technique, only studying the layers down 

to a depth of ca. 200 nm. The diamond surface naturally adsorbs hydrogen if under air, so this 

could be responsible for the lack of agreement with optical techniques. The discrepancy could 

also potentially arise from the result of luminescence excitation driving photon emission which 

could obscure the true value of hydrogen content. 

 3.1.2 Nuclear reaction analysis 

Nuclear reaction analysis (NRA) is a technique that uses MeV ion beams to measure hydrogen 

content in samples using reactions that occur upon collision with protons, such as: 

𝑁 
15 +  𝐻 

1  →  𝐶 
12 +  𝐻𝑒 

4 + 𝑔𝑎𝑚𝑚𝑎 𝑟𝑎𝑦 (3.1) 

The yield of characteristic gamma rays is detected, and due to the proportionality of the gamma 

rays with hydrogen concentration, the hydrogen concentration can be measured as a function 

of depth (Lanford, 1992). NRA studies on diamonds have previously suggested that diamonds 

can contain anywhere between 500 – 3500 ppm of hydrogen (Sideras-Haddad et al., 2001). 

With these measurements, the migration of hydrogen from the volume of the sample is believed 

to be significant, and hydrogen content measured by this method is also believed to be 

inconsistent with optical studies, with the bending and stretching vibrations observed only 

accounting for a small part of the total hydrogen present (Sellschop et al., 1992). It is worth 

noting that NRA is only capable of sampling depths of ca. 2000 Å (0.2 µm). This means that 

issues similar to those discussed above for IBSCA must also be considered due to the surface 

specific nature of the technique. 
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 3.1.3 Elastic recoil detection analysis 

Another technique that has been used to study hydrogen content within diamonds is elastic 

recoil detection analysis (ERDA). The energy-angle dependence of scattered particles in an 

elastic collision is well known (Chu et al., 1978). A depth profile of hydrogen within a thin 

sample can be measured through the use of an energetic ion beam being directed at a sample 

and detection of the recoiled atoms and their energies. In diamonds, the detection limit has been 

estimated at both trace level (< 1 wt %) (Doyle et al., 1997) and approximately 50 ppm 

(Sweeney et al., 1999). This technique has been applied to a number of diamond samples, 

including a range of hydrogen-implanted areas (10, 40, 150 and 1000 atomic ppm) within a 

natural type Ib sample (Sweeney et al., 1999). In this work, the 10 and 40 ppm implants were 

not resolved from the diamond background, suggesting sensitivity issues for the use of this 

technique if the concentration proves to be lower than 50 ppm. In the same study, the intensity 

of the 3107 cm-1 was also correlated with ERDA measurements within a series of natural 

samples from the Muskox (Canada) and Roberts Victor and Venetia (South Africa) localities. 

No correlation was observed between the infrared absorbances and bulk H as measured by 

ERDA. A potential issue arises in terms of the sensitivity of ERDA with respect to the expected 

hydrogen concentrations via optical studies, and also to relating the 3107 cm-1 peak to bulk 

hydrogen within diamonds. This chapter aims to investigate this further. 

 3.1.4 The NVH0 defect 

Before the recent calibration of N3VH concentration from the IR absorption intensity, an 

estimate was derived for the neutral nitrogen-vacancy hydrogen (NVH0) concentration. This 

defect has only been observed in synthetic diamonds, but is thought to be an intermediate 

involved in the formation of the N3VH defect in CVD diamond (J. P. Goss et al., 2014). This 

calibration is based off its IR-active stretching mode at 3123 cm-1 and the change in the 
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absorption intensity with varying temperature (Liggins, 2010). The empirical relationship 

derived is as follows: 

[𝑁𝑉𝐻0]𝑝𝑝𝑏 = 200(15)𝑝𝑝𝑏 𝑐𝑚2  ×  𝐼3123 𝑐𝑚−1  (3.2) 

where I3123 cm
-1 is the integrated intensity of the 3123 cm-1 local vibrational mode and [NVH0] 

is the concentration of the NVH0 defect. Given that the 3123 and 3107 cm-1 both arise from C-

H stretching modes within trigonal (C3v) defects. Although the NVH0 defect is ostensibly C1h 

symmetry, the hydrogen atom is believed to tunnel the 3 available sites, providing an average 

of a C3v symmetry on spectroscopic timescales (J. P. Goss et al., 2003a). This means that it 

could be reasonably assumed that the extinction coefficients would be similar, and so it would 

be possible to provide an estimate of [N3VH] using the equation and calibration displayed 

above. As this estimate only considers the 3107 cm-1 defect, there is an inherent assumption 

that the majority of the hydrogen within natural diamonds is contained in the form of the 3107 

cm-1 defect. This must be considered when drawing conclusions and interpreting trends based 

upon this estimate. 

 3.1.5 Characterisation of the 3107 cm-1 extinction coefficient 

Recent work has utilised time-resolved infrared spectroscopy in order to attempt to provide 

insight into the vibrational dynamics of the C-H stretch upon excitation using infrared light 

(Coxon et al., 2020). This work provided information about the energies of the vibrational 

states involved in the defect stretching mode, and, tied with theory, allowed for the generation 

of an extinction coefficient for the conversion of 3107 cm-1 peak area to defect concentration 

within diamond. This relationship was found to take the form 

[𝑁3𝑉𝐻0]𝑝𝑝𝑏 = 110(10)𝑝𝑝𝑏 𝑐𝑚2  ×  𝐼3107 𝑐𝑚−1  (3.3) 

Where I3107 cm
-1 is the integrated intensity of the 3107 cm-1 local vibrational mode and [N3VH0] 

is the concentration of the N3VH0 defect. This result was verified using two approaches. The 
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first was by corroboration with the known relationship between absorption strength and 

concentration for the NVH0 defect as described in section 3.1.4, which provided values similar 

in magnitude to the results calculated for a specifically grown CVD sample, HPHT annealed 

to produce the N3VH centre. The second method was to produce an estimate for a maximum 

[N3VH0] from the total nitrogen content in the synthesised sample, specifically any nitrogen 

concentrations which cannot be accounted for in defects other than N3VH0 after the sample had 

been HPHT annealed. This provided an estimate for maximum concentration consistent with 

the other results for the synthetic sample, providing some evidence of the produced extinction 

coefficient’s accuracy. 

An independent method of measuring bulk hydrogen would be able to investigate whether or 

not the intensity of the 3107 cm-1 peak can be used as a reliable proxy for bulk hydrogen content, 

and if so, whether or not the calibrations produced for [NVH0] and [N3VH0] are useful when 

considering the amount of hydrogen present within diamonds. Obtaining a proxy for bulk 

hydrogen would allow for further study of how and why hydrogen content varies with locality, 

which could potentially shed light into differences in mantle chemistry across the parts of the 

world in which diamonds can be found. 

The work in this chapter contains one main hypothesis to be tested. This is that the bulk of the 

hydrogen within natural diamonds is contained within the N3VH centre, and thereby the 3107 

cm-1 peak attributed to the N3VH centre can be considered a viable proxy for the bulk hydrogen 

content in diamonds. If this hypothesis is true, then the expected results would be a linear trend 

when plotting 3107 cm-1 peak area vs. proton-proton [H]. In order to conclude that the majority 

of the hydrogen is indeed present in the N3VH centre, then the results obtained from the proton-

proton experiments would be expected to agree with the previous results for extinction 

coefficients for the relevant point defects in diamond. Either way, the results from these studies 

provide significant context as to the presence of this ubiquitous impurity within diamond, and 
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knowing whether or not there is one dominant hydrogen sink within the crystal is valuable 

information that can be taken forward by further work. 
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3.2 Materials and methods 

 3.2.1 FTIR 

Section omitted for brevity. A full write up can be found in chapter 2. FTIR maps were 

collected over the regions of the diamond that were subsequently thinned using the laser 

machining techniques discussed below. 

3.2.2 Samples 

Samples were chosen based on the results of FTIR studies. The decision was taken to study 

samples which had regions of homogenous 3107 cm-1 intensity in order to test the relationship 

between the 3107 cm-1 intensity and bulk hydrogen concentration. The samples used in this 

work were RTD002 and RTD003 – two ‘hydrogen-rich’ samples from the Argyle mine in 

Australia – Argyle 16 which has a very low 3107 cm-1 intensity and Argyle 78 and Diavik 127 

which have intermediate peak intensities. The hypothesis can thus be tested across a wide range 

of hydrogen contents. Microscopy images of the samples with the regions of interest 

highlighted are displayed in figure 3.1. 
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Figure 3.1: Microscopy images of the samples studied. The regions thinned for study via proton-proton 

scattering are highlighted in red. 
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3.2.3 Proton-proton scattering – data analysis 

The experimental parameters for the proton beam for each sample are indicated below in table 

3.2: 

Analysis of the data was performed using a set of programs developed by Patrick Reichart at 

the Universität der Bundeswehr München. A list of the steps involved in this analysis is 

presented below. This will be presented for Arg 16 in the results section as an illustrative 

example of the analysis procedure (see figures 3.3 and 3.4). 

1. Filter scattering events to isolate coincident protons using a time window of ~ 5 ns. 

2. Angular filtering using vertical detector strips in order to produce a scattering plane. 

3. Filter using horizontal detector strips to only include protons scattered at 90 ° to each 

other. 

4. Correct the path length effect in the energy spectra in order to prepare a depth scale. A 

higher energy loss has been observed for protons scattered at higher angles, leading to 

a curved distribution of counts from any one depth (Moser et al., 2016; Reichart and 

Dollinger, 2009). This has been calculated using a Monte Carlo simulation to provide 

a correction. All deviations are then corrected to the zero point in order to remove the 

path length effect from the detector. 

Table 3.2: A table displaying the parameters of the proton beam used for each sample studied, along with the 

time each run took to collect the data. 
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5. Correct for signal loss due to depth-dependent filter efficiency. For this work, many of 

the diamonds were too thick for previous efficiency corrections. RTD002 was used to 

produce a new calibration which can be applied to the other samples in this dataset. 

This requires the assumption of a constant H depth profile for this diamond. Based upon 

the FTIR studies, this is a reasonable assumption due to the homogeneity of the sample, 

but nevertheless must be considered. This will be discussed further in section 3.3.1. 

6. Normalise coincidence counts to H-at/cm2 using a well-known H-rich sample. The 

sample used in these analyses is a zoisite crystal of ~ 100 µm sample thickness. This 

sample is well-studied but still provides a significant source of uncertainty in the final 

values. 

7. Produce a depth scale using the energy loss from the back surface, providing an 

approximation of the diamond thickness. The depth axis can then be rescaled using this 

thickness. This is a linear approximation but falls within the uncertainties of the 

technique. 

8. Subtract the background. In the thicker samples presented here, the low energy 

background is ignored. This is due to the accidental coincidences from nuclear reactions 

with the carbon atoms in the diamond. These produce significant noise that must be 

corrected for. 

Studies using this technique on natural diamonds have not been previously attempted. 

Alongside the geological processes investigated by the work, this study also tests whether or 

not proton-proton scattering is a viable technique for the analysis of natural diamonds. 
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3.3 Results 

 3.3.1  Proton-proton scattering 

When studying natural diamonds using this technique, a number of problems arise. First is that 

the highest proton energies achievable using this set up of 25 MeV cannot be used to the nuclear 

resonances from carbon within the diamond (Reichart and Dollinger, 2009). Second is the 

difficulty of providing samples of a thickness below 100 µm due to the brittle nature of 

diamond. This means that the energy-loss of deep protons is too high to separate the signal 

from the front of the diamond from the accidental coincidences produced through nuclear 

reactions. In order to study these samples, a new depth-dependent calibration for signal loss 

was needed. RTD002 was selected to provide this calibration due to its assumed homogenous 

hydrogen depth profile. 

 Figure 3.2 shows the depth-dependent filter efficiency calibration derived from the 

measurements on RTD002. Assuming that the distribution of hydrogen is homogenous with 

depth, an exponential decay can be observed (linear on the logarithmic scale in the diagrams). 

This correction can then be applied to other diamonds in the data set to enable analysis of 

diamonds thicker than those that have been previously measured. 

Figures 3.3 and 3.4 show an illustrative flow-chart of the analysis steps involved to produce a 

depth profile for Arg 16.  

Figure 3.2: The measurements on RTD002 used to produce a calibration for the filter efficiency as a function of 

depth in thick diamonds. The count scale on the y-axes is logarithmic. 
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Figure 3.3: An illustrative flow chart displaying the analysis of proton-proton data for Arg 16. The initial 

diagram displays the total events using a time coincidence of 500 ns. Next is the scattering events once a 

coincidence filtering window of ~ 5 ns is applied. A filter using the vertical detectors to filter by scattering plane 

is applied. The final filtering uses the horizontal detectors to select events with a total angle of 90 °. A path 

length effect correction is then applied, and a depth profile is produced on the bottom right. 
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Figure 3.4: The second part of the flow chart for proton-proton analysis. Once a depth profile is produced, the 

depth-dependent filter efficiency calibration calculated from RTD002 is then applied. The counts are then 

normalised based on a zoisite standard. The depth scale is then generated through energy loss analysis from the 

back surface. Finally, a background is selected for subtraction as an average of the low- and high-energy 

backgrounds. The remaining counts are integrated to produce a final [H] in ppm. 
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Figure 3.5 displays the collected proton-proton data for RTD003. Fig. 3.5a shows the region 

of study, with the red crosshair indicating the area illuminated by the proton beam. The 

dimensions of the area studied are 50 x 50 µm. 3.5b displays the depth profile of integrated 

hydrogen concentration, in cm-2, with contamination from the front and back surfaces 

highlighted. The region of interest (ROI) lies between these surfaces and is indicated by the 

grey shaded area. The hydrogen content appears homogenous with depth and in the xy plane. 

Figure 3.5: (a) An image of the thinned region of RTD003. The area scanned using the proton beam is indicated 

by the red crosshair. Its dimensions are 50 x 50 µm (b) an xy plot of the hydrogen counts within the ROI (c) A 

depth profile of the H density in cm-2 vs. the energy sum of the coincident protons, functioning as a measure of 

depth within the sample. The region of interest (ROI) is indicated by the grey box and the front and back 

surfaces are indicated. 
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Figure 3.6 displays the same data as figure 3.5 for RTD002. This sample was ~ 200 µm thick; 

to account for this a ROI was selected as far from the low energy background as possible. In 

this case, the low-E background contains noise from the nuclear reactions of carbon. To 

account for this, the low-E background was negated for background subtraction, and the high-

E background was extrapolated in order to provide a baseline for the hydrogen content. The 

hydrogen content appears homogenous in depth and in the xy plane. 

Figure 3.6: (a) An image of the thinned region of RTD002. The area scanned using the proton beam is indicated 

by the red crosshair. Its dimensions are 100 x 100 µm (b) an xy plot of the hydrogen counts within the ROI (c) A 

depth profile of the H density in cm-2 vs. the energy sum of the coincident protons, functioning as a measure of 

depth within the sample. The region of interest (ROI) is indicated by the grey box and the front and back 

surfaces are indicated. 
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Figure 3.7 shows the results for Arg 16. This sample shows very low statistics in the ROI, 

which can be clearly seen by the relative size of the surface peaks to the signal from within the 

diamond. These are not significantly above the background, and so the statistical error of the 

background and signal provide the limit for the result when producing [H]. It is not possible to 

comment on the homogeneity of the hydrogen distribution due to the low count rate. 

  

Figure 3.7: (a) An image of the thinned region of Arg 16. The area scanned using the proton beam is indicated 

by the red crosshair. Its dimensions are 100 x 100 µm (b) an xy plot of the hydrogen counts within the ROI (c) A 

depth profile of the H density in cm-2 vs. the energy sum of the coincident protons, functioning as a measure of 

depth within the sample. The region of interest (ROI) is indicated by the grey box and the front and back 

surfaces are indicated. 
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Figure 3.8 shows the DVK 127 results. It is apparent that the front surface is much rougher 

than the other samples, with the difference between the front and back surfaces being quite 

distinct. The ROI can be chosen closer to the back surface in order to reduce uncertainties 

introduced by the rough front surface. There could be some inhomogeneity present in figure 

3.8b, but the count rate is too low to state this with certainty. 

Figure 3.8: (a) An image of the thinned region of DVK 127. The area scanned using the proton beam is 

indicated by the red crosshair. Its dimensions are 100 x 100 µm (b) an xy plot of the hydrogen counts within the 

ROI (c) A depth profile of the H density in cm-2 vs. the energy sum of the coincident protons, functioning as a 

measure of depth within the sample. The region of interest (ROI) is indicated by the grey box and the front and 

back surfaces are indicated.  
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Figure 3.9 displays the proton-proton results for Arg 78. Once again, the sample is nearly 200 

µm thick, meaning that the high energy background must be extrapolated in order to provide a 

background for the ROI. There appears to be some inhomogeneity with depth in this sample, 

as can be seen in the depth profile. There also appears to be some inhomogeneity in the xy 

plane, as presented in 3.9b and 3.9c, with some regions of the diamond seeming to have a 

higher concentration of hydrogen than others. 

 

  

 

Figure 3.9: (a) An image of the thinned region of Arg 78. The area scanned using the proton beam is indicated 

by the red crosshair. Its dimensions are 100 x 100 µm (b) an xy plot of the hydrogen counts within the ROI 

towards the front surface (c) an xy plot of the hydrogen counts within the ROI towards the back surface (b) A 

depth profile of the H density in cm-2 vs. the energy sum of the coincident protons, functioning as a measure of 

depth within the sample. The region of interest (ROI) is indicated by the grey box and the front and back 

surfaces are indicated. 
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3.3.2  IR 

Table 3.3 displays the results of the IR studies on the samples across the thinned regions. 

Presented are the concentrations of the various nitrogen aggregates, along with the integrated 

area of both the 3107 cm-1 peak and the platelet peak (B’). Uncertainties are derived from the 

standard deviation across the regions studied.  

RTD002 and RTD003 show a very high concentration of nitrogen in its aggregated form, along 

with a very intense 3107 cm-1 and platelet peak. Arg 16 shows a significant amount of nitrogen 

and platelets, but a low 3107 cm-1. Arg 78 also contains a significant amount of nitrogen, along 

with a moderately intense 3107 cm-1 peak, but has the lowest platelet content of all the samples. 

DVK 127 contains a less aggregated nitrogen content, a low platelet content and a low 3107 

cm-1 intensity. The platelet degradation is also displayed, with Arg 16 containing the least 

degraded platelets, and Arg 78 containing the largest variation from expected behaviour. 

 

  

Table 3.3: A summary of the results from the IR scans over the regions that were subsequently thinned down in 

preparation for proton-proton scattering. 
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3.3.3  IR vs. proton-proton 

Figure 3.10 is a plot of the 3107 cm-1 intensity in cm-2 against the concentration in ppm. The 

black squares represent the results from the proton-proton scattering experiments discussed 

within this chapter. The red circles and blue triangles represent the expected concentrations of 

the N3VH centre as predicted by the Liggins and Coxon extinction coefficients respectively. 

Uncertainties on the x-axis are representative of inhomogeneity in the intensity of the 3107 cm-

1 peak. These results are also summarised below in table 3.4. Immediately apparent is that the 

predicted values of [N3VH] do not correlate with the values observed using proton-proton 

scattering. The values predicted using IR alone are typically 20 times lower than the values as 

measured by proton-proton scattering. The predicted trend from the IR experiments would be 

that the [H] for Arg 78 would be somewhere between the values measured for DVK 127 and 

RTD003. However, Arg 78 is observed to contain the highest [H] of all samples within this 

study. As such, there is no observation of a linear trend between 3107 cm-1 intensity and [H] 

when the whole data set is considered.  

Figure 3.10: A plot of the 3107 cm-1 area in cm-2 against concentration in ppm. Black squares are from the 

proton-proton experiments, red circles are predicted [N3VH] from Liggins, 2011 and blue triangles are 

predicted [N3VH] from Coxon 2020. X-error bars are a representation of inhomogeneity in the 3107 cm-1 area 

within the region of interest and y-error bars are technique-specific. 
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Figure 3.11a displays the relationship between the intensity of the platelet peak against the 

observed [H]. There is no observable relationship between the two, with the sample with the 

lowest I(B’), Arg 78 containing the highest [H]. Fig. 3.11b shows the relationship between % 

platelet degradation and the measured [H]. There appears to be a slight positive correlation, 

with the least platelet degraded diamond, Arg 16, containing the lowest [H], and the most 

platelet degraded, Arg 78, containing the highest [H]. Aside from this, there is some spread, 

with the three intermediate diamonds not falling on the trend between the two endmembers. 

  

Table 3.4: A summary of the results of the proton-proton scattering experiments within this study and how they compare to 
the predicted concentrations of the N3VH defect previously discussed. 

Figure 3.11: (a) A plot of the integrated area of the platelet peak (B’) in cm-2 against hydrogen concentration in 

ppm as measured by proton-proton scattering. (b) percent platelet degradation against [H] in ppm 
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Figure 3.12 shows the concentrations of the various nitrogen aggregates against the [H] in ppm. 

Once again there appears to be no correlation between the concentrations of any specific 

nitrogen aggregate and the concentration of hydrogen measured. 

 

 

 

  

Figure 3.14: A plot of the concentrations of the various nitrogen aggregates in ppm against hydrogen 

concentration in ppm as measured by proton-proton scattering. Black squares represent [NA], red circles 

represent [NB] and blue triangles represent [Nt]. 
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3.4 Discussion 

One factor that must be noted about this work is the assumption that the hydrogen distribution 

within the diamond remains unchanged after laser machining to provide thinned regions. While 

the effect of the hydrogen beam used in proton-proton scattering is known to be the lowest of 

the ion-beam techniques (Reichart, 2004), the effect of the laser on hydrogen distribution is 

unknown.  In order to test the behaviour of the 3107 cm-1 feature, it would be preferable to 

obtain FTIR spectra before and after thinning. Due to the surface left after laser machining, this 

was not possible, and it is therefore not known with certainty that the peak would maintain its 

intensity after thinning. It is also possible that the heat transfer from the laser would facilitate 

short-range hydrogen diffusion if the hydrogen is present in a form that can easily migrate. 

While the high thermal conductivity of diamond suggests that heat would be quickly transferred 

away from the diamond and in to the metal on which it is mounted, it has not been possible to 

rule out this scenario during this work. 

The key results of this study are presented in figure 3.10. The values observed via proton-

proton scattering indicate that the intensity of the 3107 cm-1 peak does not appear to provide a 

good indicator of the bulk hydrogen content within a sample. In all samples (aside from Arg 

16, for which only an upper limit of [H] could be produced), the concentration of hydrogen 

present is at least order of magnitude higher than would be expected from IR studies alone.  

The results from this study are lower than the estimates from past NRA studies of diamonds 

containing between 500 – 3500 ppm of hydrogen (Sideras-Haddad et al., 2001). In this work, 

the highest concentration of hydrogen observed was 820 ppm, with three out of five samples 

displaying a concentration below 100 ppm. This is also lower than previous ERDA studies, 

which showed a range of 100 – 4000 ppm (Sweeney et al., 1999). While these studies were 

only able to study the near-surface of the diamond, the results presented in this chapter have 

demonstrated the first measurements of bulk hydrogen within 100 – 200 µm of diamond. This 
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work supports the conclusions drawn within the ERDA and NRA studies that a significant 

portion of the H present in diamonds is not infrared-active. This suggests that determining the 

amount of hydrogen present in a diamond through the use of optical techniques alone may not 

be possible.  

The value observed in Arg 16 is notably low, with a hydrogen content indistinguishable from 

the background of accidental coincidences leading to a value of < 3.3 ppm. This is comparable 

with the amount of hydrogen observed within the grain of polycrystalline CVD diamond of < 

0.08 ppm (Reichart, 2004), although the difficulties involved in obtaining regions of diamond 

at ~ 100 µm lead to greater uncertainties when studying natural diamonds rather than synthetic 

samples. 

If the 3107 cm-1 peak does not provide a good indicator, then this calls in to question the 

assignment of diamonds with a 3107 cm-1 peak more intense than the intrinsic diamond 

absorption as ‘hydrogen-rich’ (Fritsch et al., 2007). In this work, two of the diamonds would 

be classed as ‘hydrogen-rich’ through their IR spectra: RTD002 and RTD003. However, the 

diamond with the highest bulk hydrogen content measured by proton-proton scattering was 

Arg 78, which would not be ‘hydrogen-rich’ according to the classification proposed by Fritsch 

et al. This highlights an issue in terms of the classification of diamonds by their optical 

properties and how these properties relate to the presence of bulk impurities within the crystals. 

It must be noted that, aside from Arg 78 there is a general increase of hydrogen content with 

increasing 3107 cm-1 intensity. However, the fact that Arg 78 is so far from the trend suggests 

one of two things: either Arg 78 is unique in its capability for hydrogen storage or there is not 

a consistent trend between samples. A possibility is that Arg 78 contains micro- and smaller 

fluid inclusions. Fluid inclusions have previously been observed to contain significant water 

contents (Klein-BenDavid et al., 2009; Logvinova et al., 2015; Navon et al., 1988), potentially 
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in the form of CH4 (Smit et al., 2016b). If there are fluid inclusions present in this sample, then 

the value of [H] obtained through proton-proton scattering could not be considered as 

representative of the bulk. In the image of the scanned region of Arg 78 in figure 3.8a, a line 

can be seen parallel to the edge of the laser-milled region across the illuminated region. The 

cause of this is unknown. It may be a result of a change in material properties in the diamond 

across the milled region, leading to heterogenous absorbance of the laser and therefore 

variation in the amount of material removed. There is no obvious reason as to why this would 

be the case, but the fact that the line is parallel to the edge of the milled region, and not the 

edges of the diamond, suggest it is related to the milling rather than being a property of the 

diamond itself. For example, if it were caused by a different growth zone, it would be expected 

to lie parallel to the edges of the polished diamond plate. 

The fact that the two diamonds containing the highest and lowest bulk [H] come from the 

Argyle mine indicates that the factors controlling the incorporation of hydrogen into the 

diamond can vary significantly on a local scale. The question then arises as to what causes this 

variation. There is clearly a difference in the availability of hydrogen during diamond growth 

for different samples. The consequences of this and how it may relate to the nitrogen 

aggregation sequence – specifically how it may affect the formation of the N3VH defect – are 

discussed further in chapter 4. 

An initial aim of this work was to assess the viability of the calibrations for the [N3VH] 

previously produced (Coxon et al., 2020; Liggins, 2010). If the value from Arg 78 is indicative 

of the bulk [H] content then this is not possible to evaluate, as the calibration from proton-

proton scattering does not appear to be possible. However, if Arg 78 is excluded from the 

dataset (due to the potential sampling of inclusions and inhomogeneities that may not be 

representative of the bulk diamond) then a value can be produced from the linear trend observed 
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within the other samples. Linear regression via an ordinary least-squares method, using a forced 

zero y-intercept due to assumed proportionality provides the following trend 

[𝐻] (𝑝𝑝𝑚) = 2.30(0.15)  × 𝐼(3107 𝑐𝑚−1) (𝑐𝑚−2) (3.4) 

This has an R2 value of 0.9868 within a 95% confidence interval. This calibration is ~ 20 times 

higher than the values that are expected from the Coxon and Liggins calibrations. This has two 

potential connotations. The first is that the Coxon and Liggins calibrations provide an 

underestimation of the actual concentration of the hydrogen-containing defects within the 

diamond (assuming that the majority of hydrogen in natural diamonds is present in the form of 

the N3VH centre). A simple consideration of the relative amounts of N3VH expected compared 

to B-centre concentration tells us that the Coxon calibration is unlikely to have an error that 

significant. The second is predicated on the Coxon calibration being correct. If this is the case, 

then, while the 3107 cm-1 intensity is proportional to the bulk hydrogen content, there is still a 

significant amount of hydrogen contained within the crystal that cannot be accounted for. The 

question then arises as to where this hydrogen is stored. It could be possible that the numerous 

smaller peaks observed in the optical spectra of diamonds (Fritsch et al., 2007) are caused by 

defects with much larger extinction coefficients than that of the 3107 cm-1 peak. This would 

mean that the smaller peaks account for much larger amounts of hydrogen than would be 

expected. It is also possible that the excess hydrogen is not stored within optically active 

configurations. This could take the form of extended defects – see below – or potentially 

through nanometre-scale fluid inclusions that are unobservable via optical techniques. 

Platelets have been theorised as potential reservoirs of hydrogen storage within diamonds (Gu 

et al., 2020). Arg 78 contains the smallest platelet peak but the largest concentration of 

hydrogen, suggesting that in this example, the platelets do not contain the hydrogen within the 

bulk of the diamond that cannot be accounted for by the optically observed features. It is 
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possible that incorporation of hydrogen into the platelet structure could quench the observable 

platelet features, leading to a lower platelet peak than would be expected from the nitrogen 

content.  This will be discussed in greater detail in chapter 5, along with a candidate for a defect 

structure within which hydrogen could be contained. Aside from platelets themselves, there 

appears to be a slight positive correlation with the amount of platelet degradation and the [H] 

observed in the samples, with Arg 78 containing the most degraded platelets and the highest 

[H]. This could suggest that an aspect of the platelet degradation forms defects capable of 

trapping hydrogen. Platelet dissociation can lead to the formation of two primary features: 

voidites and dislocation loops. Voidites, described as such due to their appearance as small 

empty spaces, were initially studied in diamond in the 1980s (Barry, 1986; Hirsch et al., 1986). 

They are octahedral in shape and found inside or near the dislocation loops formed during 

platelet degradation. Their size ranges from a few nm up to several hundred nm, and large 

voidites have often been observed as elongated in {110} directions (Navon et al., 2017; 

Rudloff-Grund et al., 2016). Despite the term voidite, they are not in fact empty, and can in 

fact be considered as nano- and micro-scale inclusions. They have been observed as containing 

significant nitrogen contents theorised to be possibly NH3-related (Rudloff-Grund et al., 2016) 

along with the observation of solid molecular N2 under high pressure (Navon et al., 2017). This 

nitrogen has been theorised as either arising from platelet degradation (Kiflawi and Bruley, 

2000) or from the breakdown of B-centres at high temperatures (Navon et al., 2017). If the 

voidites can function as a trap for hydrogen, then it could be possible that these nano-scale 

features contain a significant amount of hydrogen not accountable through IR alone. This could 

potentially explain the discrepancy from predicted trends, but confirmation of the presence of 

voidites within these samples, and the presence of hydrogen within them, would be needed to 

confirm this. It is also worth noting that, in the voidites in which nitrogen has been observed, 

the concentrations have been significant, with up to 350 ppm of nitrogen in some 
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nanoinclusions. Even if 10 % of that amount of hydrogen were to be incorporated, it would still 

not account for the discrepancies between IR and bulk [H] observed within this study. 

The implications of this work may have significant consequences for the relation of spectral 

features to bulk impurity concentrations, with the presence of hydrogen-related features 

possibly not being indicative of the true hydrogen content. Significant work is needed in order 

to make inferences as to the nature of the fluids from which the diamonds are formed, including 

the speciation and availability of hydrogen. The range of bulk hydrogen concentrations 

observed within the four samples studied here from the Argyle locality indicate the wide variety 

of local conditions conducive to diamond growth, and the varying availability of hydrogen 

within diamond-forming fluids. It could be that the diamonds containing lower hydrogen 

concentration simply formed from hydrogen-poor fluids, or it may well be the case that 

hydrogen incorporation is dependent on trapping at optically inactive defects. For example, an 

as-yet unidentified extended defect could trap hydrogen within the crystal structure. Specific 

candidates for this are currently unknown.  
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3.5 Conclusions and future work 

The primary conclusion of this study is clear: the 3107 cm-1 peak is not a viable proxy for bulk 

hydrogen concentration within diamonds, and the concentration of hydrogen does not appear 

to be significantly correlated with any IR-active features in the diamonds. This has significant 

gemmological implications and raises an issue when considering ‘hydrogen-rich’ diamonds, 

which are classed as such based on the intensity of the 3107 cm-1 peak. A theory has been 

discussed for voidites as a possible trap of hydrogen within diamonds, based upon the high 

hydrogen concentration in Arg 78, which contains the most degraded platelets. 

A geological impact of this is that significant study is still needed to constrain the hydrogen 

content (both in terms of speciation and availability) within diamond-forming fluids in the 

lithospheric mantle. The production of a proxy would lead to a useful source in terms of probing 

this and how it varies with other observable features within diamonds, but this has not been 

possible from this work. 

The fact that the majority of hydrogen does not appear to be contained within one defect lends 

itself to further study to determine the environment in which it is situated. Due to the 

decommissioning of the Munich facility in which this work was undertaken, further 

experiments at the SNAKE microprobe are not currently possible, but a similar technique has 

been developed at the Lund Ion Beam Analysis Facility (Borysiuk et al., 2013; Ros et al., 2015). 

This could be used to further the sample size for comparison between IR-active features and 

bulk hydrogen. The facility at Lund can only be used for samples with a thickness of ~ 15 µm, 

which would pose significant issues in the production of appropriate samples from natural 

diamond. Building up a larger dataset would likely provide further insights into this. Further 

experiments could build up the dataset to provide a better idea of how bulk hydrogen contents 

vary across localities. Further study could also potentially investigate inhomogeneity across 
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diamonds. One example would be to examine the variation in hydrogen content in different 

growth sectors of mixed habit diamonds. 

Atom probe tomography (APT) has recently been developed as a promising technique for 

geochemical applications, capable of isotope analysis on an atomic scale (Reddy et al., 2020). 

This has been applied to the study of bulk diamond as grown by CVD (Schirhagl et al., 2015), 

but studies on natural diamonds could be used to add to the information on the environment of 

hydrogen. Typically, APT samples are studied as needle-like structures of < 100 nm in diameter. 

Due to this small size, targeting would be very important when considering sample selection 

for potential studies. For example, it may be possible to study hydrogen dynamics at the 

boundaries between growth zones within diamonds if an appropriate sample can be produced. 

However, locating a zone boundary with enough accuracy to produce an APT sample may 

prove difficult. Several APT samples could also be produced from one diamond in order to 

examine the variation in bulk hydrogen within one crystal. APT also has the added benefit of 

being able to study isotope distributions for all elements at once, and so studies not specifically 

aimed at the hydrogen contents could also be used to provide additional information. APT 

could also potentially investigate the idea of voidites containing significant hydrogen content, 

although sample selection and preparation could pose the same issues as discussed above. 

Clearly there is still much to be learned from the study of hydrogen within diamonds, and many 

questions remain unanswered. This work has increased the knowledge around this pervasive 

impurity, but the implications suggest that hydrogen concentration within natural diamonds is 

a complex issue, and one that will not be resolved with ease.  
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4. The N3 and N3VH centres and the role of 

hydrogen in the nitrogen aggregation 

sequence 
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4.1 Introduction 

As discussed in section 1.2.2, the nitrogen aggregates in diamond are most commonly found 

as pairs of neighbouring substitutional atoms (the A aggregate) or as groups of four 

substitutional atoms around a vacancy (the B aggregate). This nitrogen aggregation sequence 

has been discussed at great length due to its significance in determining the thermal history of 

diamonds. Alongside these major aggregates, however, there are lesser concentrations of minor 

aggregates. The minor aggregate that this chapter is concerned with consists of three 

substitutional nitrogen atoms in the (111) plane, bonded to a common carbon vacancy. This 

configuration gives rise to the optically active N3 centre (Davies, 1974) – given the N prefix 

to indicate that it is naturally occurring, which has an EPR analogue in the P2 centre (Smith et 

al., 1959), also known as the N3V centre. The structure of the defect is displayed in Figure 4.1. 

The presence of the N3 centre in EPR and luminescence spectra of natural diamonds poses 

many questions in relation to the nitrogen aggregation process. A correlation has been observed 

between the intensity of the N3 absorption and the absorption due to B centres (Woods, 1986). 

Woods attributed this correlation to the N3 defect being a side-product, occurring during the 

aggregation of A centres to B centres, which necessitates the assumption that the A centres 

Figure 4.1: The structure of the N3 defect. This consists of three substitutional nitrogen atoms (red) around a 

carbon vacancy (dashed line). The black atoms are the carbon atoms constituting the host diamond lattice. 
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migrate as a unit. It has, however, also been suggested that this migration is unlikely to take 

place, and that instead A centres migrate through dissociation (Kiflawi and Bruley, 2000; 

Mainwood, 1994). Apart from the observed formation of N3 centres, there is no proof of this 

sort of dissociation. However, due to the fact that the N3 centre is seen to be absent during 

annealing experiments in which the formation of B centres is observed(Kiflawi and Bruley, 

2000), it has been proposed that the N3 centre is an intermediate in this process, via the 

following method: 

𝐴 → 𝑁 + 𝑁 (4.1) 

𝑁 + 𝐴 → 𝑁3 +  𝐶𝑖 (4.2) 

𝑁 + 𝑁3 → 𝐵         𝑂𝑅        𝑁 + 𝑁 + 𝐴 → 𝐵 + 𝐶𝑖 (4.3) 

Where Ci is a carbon interstitial (Kiflawi and Bruley, 2000). The fact that the concentration of 

nitrogen present as N3 centres is very small compared to the major aggregates could suggest 

that it is thermodynamically favourable for the N3 to capture a migrating N, compared to the 

analogous process for A centres. However, it must be noted that there is no direct proof of this. 

Also of note is that there are no single nitrogen centres observed in N3 and B centre-containing 

natural diamonds. This could potentially be due to the higher temperatures used in laboratory 

experiments compared to the temperatures involved in geological processes. It is as yet 

unknown whether the N3 centre is present in natural diamonds as a set fraction of the B centre 

concentration or whether there are other factors contributing to N3 content within diamonds. 

It has been shown that N3 centres can be produced in diamonds through a number of annealing 

procedures. They can be introduced by heating diamonds which contain A centres and isolated 

N (Chrenko et al., 1977). They cannot be introduced in pure type IaA diamonds. However, they 

can also be produced by heating type IaB diamonds or type IaA + Ib diamonds at temperatures 

above 1960 °C (Brozel et al., 1978), or by annealing diamonds which contain only isolated N 
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atoms (Collins and Stanley, 1985; Satoh and Sumiya, 1995). The N3 centre can also be grown 

in to Type IIa diamonds through nitrogen ion implantation and then subsequent annealing at 

temperatures of over 1200 °C (Zaitsev, 2001). Once again, the temperatures considered here 

are significantly above the temperatures diamonds are stored at within cratons, which are 

typically in the region of 1000 – 1200 °C. 

It has also been postulated that N3 centres can be formed due to plastic deformation of 

diamonds containing aggregated nitrogen, resulting in the destruction of the B centres which 

are present, due to the N3 luminescence often being seen localised at cracks or regions of plastic 

deformation (Kanda and Watanabe, 1999, 1997). Within these samples, the observed EPL and 

PL spectra of the N3 centre are broadened due to a distortion of the lattice near the dislocations 

present in highly plastically deformed diamond (Nadolinny et al., 2009; Rakhmanova et al., 

2015). However, this does not account for the presence of the N3 centre in diamonds that do 

not contain any of the signs of plastic deformation, from direct observations to defects 

commonly associated with plastic deformation such as the H3 and H4 defects (Stepanov et al., 

2011). This information has been used in experiments on samples from Kholomolokh in the 

northeast Siberian craton, which suggested that, at high temperatures (an annealing temperature 

of 2200 °C in this case), it is possible for B centres to dissociate into N3V and C centres (often 

referred to as P1 centres when discussing their presence in EPR (Smith et al., 1959)), meaning 

that a high intensity of N3 absorption could possibly be an indication of a high-temperature 

annealing event after the aggregation of nitrogen into B centres. This has been attributed to a 

result of tectono-thermal events when superplumes rise (Nadolinny et al., 2020), although the 

temperatures considered here are significantly higher than the typical temperatures of diamond 

storage. The N3 center has also been observed to arise in brown diamonds containing stacking 

faults in (111) planes (Graham and Buseck, 1994). 
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A calibration has been produced for conversion of the integrated absorption in the zero-phonon 

line at 415.2 nm to a defect concentration (Davies, 1999); the full method of this conversion 

will be discussed in Section 4.2.2. This calibration was produced by comparing the strength of 

the P2 EPR signal (the EPR analogue of the N3 centre) and the P1 EPR signals. The P1 signal 

derives from N0, and a calibration to [N0] is known (Kiflawi et al., 1994); confirmation of this 

is provided in the form of charge-transfer effects, when excitation using a 514.5 nm Ar+ light 

source produces an increase in N3 absorption, along with an increase in N0 (Davies, 1999). 

Assuming the mechanism of N3- + N+ → N30 + N0, then the change in N+ was shown to confirm 

the N3 calibration value. 

As the most common hydrogen containing defect in diamonds, the N3VH defect, takes the form 

of an N3 defect with the lone carbon atom surrounding the vacancy decorated with a hydrogen 

atom, it is easy to envisage a situation where the N3VH defect is simply formed by the trapping 

of a hydrogen atom at an N3 centre. Computational studies have indeed suggested that the 

N3VH can likely be formed either by the direct trapping of a hydrogen atom by an N3 centre 

or through the alternative mechanism of an NVH trapping an A-centre (J. P. Goss et al., 2014). 

While it is generally thought that the former would be the case in natural diamonds, and the 

latter in synthetic samples, there has been observation of the formation of NVH in HPHT-

treated natural samples, along with a strong increase in 3107 cm-1 intensity within samples that 

do not generate B-centres (Lai et al., 2019). This possibly indicates the trapping of generated 

A-centres by NVH within these samples, thereby quenching the nitrogen aggregation process 

and leading to a reduced B-centre concentration. This also suggests that neither reaction 

pathway to N3VH formation can be discounted in natural samples. There has yet to be any 

direct evidence of which proposed mechanism, if any, is the primary mechanism by which the 

N3VH centre is formed. This means that it is difficult to provide proof as to the role that the N3 
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and N3VH defects play in the wider nitrogen aggregation sequence, and whether hydrogen can 

potentially quench the aggregation. 

Detailed optical study of a single diamond from the Ichetju placer in the northern Urals 

provided some more clues as to the N3 defect’s place in the nitrogen aggregation scheme 

(Vasilev et al., 2019). In this unique sample, the core contains no N3 absorbance and a high 

3107 cm-1 intensity (75 cm-1), whereas the outer regions of the sample contain significant N3 

absorbance and the associated blue luminescence. These observations could potentially be 

explained by the conversion of N3 to N3VH through the trapping of a hydrogen atom. The 

authors of this study suggested that high-temperature annealing studies could be a useful way 

of examining and possibly confirming the supposed transformation of N3 centres to N3VH. 

This has also been suggested in a subsequent study including two more diamonds from Uralian 

placers, which showed roughly inverse correlations between N3 and 3107 cm-1 intensity 

(Vasilev et al., 2020). 

A relationship has previously been observed between the 3107 cm-1 peak area and the NB 

concentration found in diamonds (Melton, 2013). This relationship takes the form of a ‘limiting 

envelope’, where for a diamond with a specific concentration of NB, there is a maximum 

possible area of the 3107 cm-1 feature that could observed, seemingly entirely independent of 

the locality or paragenesis of the diamonds – this relationship is displayed in Figure 4.2. Such 

a defined limit is only weakly observed with A-centre concentrations, suggesting that the B-

centre is crucial to whatever process is controlling the presence of this envelope. This 

relationship has been independently corroborated (Speich, 2017), and could be explained by 

the nitrogen aggregation mechanism affecting hydrogen defects, in order to convert them into 

optically active and therefore readily observable defects. If this is indeed the case, then the 

maximum 3107 cm-1 peak area could be considered a function of the amount of hydrogen 

available within the diamond, along with the nitrogen concentration and the degree of nitrogen 
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aggregation within the sample. Small 3107 cm-1 peak areas in diamonds with a high content of 

highly aggregated nitrogen could be accounted for by low concentrations of available hydrogen 

during growth. This could provide additional information about the conditions from which 

diamonds from different localities were grown. 

 

The work in this chapter is aimed at investigating the role of the N3 centre in the formation of 

the N3VH defect, along with what role these two defects play in the nitrogen aggregation 

sequence in natural diamond. There are two main hypotheses to be tested:  

• The N3 centre is formed at a set fraction of B-centre concentration. 

• The primary formation mechanism of the N3VH defect is from direct protonation of an 

N3 centre. 

Along with these hypotheses come several predictions. If both hypotheses are correct, a plot of 

[N3] + [N3VH] vs. [NB] should produce a straight line fit, determining the proportionality 

constant. Due to the relative speed of hydrogen diffusion within diamonds (see section 1.2.3.3 

Figure 4.2: The 3107 cm-1 peak area versus [NB] for a number of samples of differing parageneses, plotted on a 

logarithmic scale. This highlights the relationship between maximum 3107 cm-1 peak area and [NB] 

concentrations, and the presence of a limiting envelope (Melton, 2013). 
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for more detail), the amount of H present can be considered the limiting factor in N3VH 

formation. Thereby, the limiting envelope displayed in figure 4.2 could be rationalised and 

explained with points closest to the limit containing no unprotonated N3, and points further 

away containing appreciable N3 contents. A schematic of these predictions is displayed below 

in figure 4.3 for ease of visualisation.  Studying a number of diamonds from various points 

within this sample space should be able to shed light on whether or not the hypotheses provided 

above are accurate, and what this means in terms of how hydrogen fits into the nitrogen 

aggregation sequence as currently understood. The inclusion of spatially resolved studies will 

provide further detail as to the behaviour of the N3 and N3VH defects. This can potentially add 

to our knowledge of the relationships between these optically active features in diamond. If the 

hypotheses are correct, then the relative abundance of N3 and N3VH can function as a 

hygrometer within a diamond. 

Figure 4.3: a schematic of the predictions made using the hypotheses presented in this work. The distance from 

the limiting envelope can potentially act as a hygrometer for the conditions under which the diamond was 

formed. 



 

107 

 

4.2 Methods 

 4.2.1 FTIR 

A full, detailed write-up of the experimental setup used for FTIR studies can be found in 

chapter 2. 

This section contains high quality line scans taken to study the inhomogeneity in 32 samples 

from a number of localities in order to probe systematics across these sample suites. A list of 

the diamonds and their thickness as measured by calipers is presented below in table 4.1: 

Locality Sample Thickness (mm) UV-vis line scan? 

Argyle, Australia Arg 13 1.09 N 

 Arg 16 1.12 N 

 Arg 25 1.13 N 

 Arg 46 1.11 N 

 Arg 56 1.06 N 

 Arg 65 0.63 N 

 Arg 72 1.09 N 

 Arg 74 1.03 N 

 Arg 75 0.85 N 

 Arg 78 0.69 N 

 Arg 90 0.88 N 

 Arg 92 0.87 N 

 Arg 93 0.93 N 

 Arg 117 1.46 N 

 Arg 118 1.20 Y 

 Arg 136 1.70 N 

 Arg 158 1.60 N 

 Arg 167 1.47 N 

Diavik, Canada DVK 044 0.59 N 

 DVK 076 0.44 N 

 DVK 127 1.07 N 

 DVK 143 0.54 Y 

 DVK 159 0.55 Y 

 DVK 160 0.39 Y 

Mir, Russia Mir 1164 0.54 N 

Murowa, Zimbabwe Mur 083 0.34 N 

 Mur 112 0.28 N 

 Mur 235 0.85 N 

 Mur 265 0.34 N 

Udachnaya, Russia Udachnaya 2100 1.87 N 

 Udachnaya 3009 0.63 N 

 Udachnaya 3097 

Udachnaya 3143 

1.29 

0.71 

N 

Y 

Table 4.1: A list of the samples used for this study, with indications as to whether or not a UV-vis line scan 

was collected. 
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4.3 Results 

 4.3.1 Single spectra 

For measured values from both IR and UV-vis, see Appendix B.1. Figure 4.4 shows an example 

UV-vis spectrum displaying a moderately intense N3 centre absorption with the zero-phonon 

line (ZPL) highlighted, along with the vibronic sideband – specifically from Udachnaya 3097. 

Once the ZPL was fitted and the procedure described in Section 2.3 was carried out, the 

resulting concentration for this specific peak comes out as 1.6 ppm (2 s.f.).  

In the data set of single spectra, the concentrations observed range from 0 to the highest 

calculated [N3] of 5.2 ppm. By comparison, the [NB] concentrations range from 47 to 1084 

ppm. This emphasises the relatively low abundance of the N3 defect compared to the B centre. 

Figure 4.5 displays a version of the plot in Figure 4.2 for this selection of 32 samples, with the 

summation from each IR line scan displayed as I(3107 cm-1) in cm-2 against [NB] in ppm. Each 

point is then colour-coded to show the observed [N3] (ppm) with the colour scale displayed to 

the right. Whilst there does appear to be an increase in samples with < 0 ppm of N3 towards 

the bottom-right of the plot (further from the limiting envelope), it is not a clear relationship, 

likely hindered by the lack of spatial resolution in the UV-vis measurements. One of the two 

diamonds with the highest [N3] – Udachnaya 3009 – appears close to the limit at the top of the 

envelope. This is contrary to what would be predicted by the hypotheses discussed earlier. 

Figure 4.4: An example spectrum collected from Udachnaya 3097, displaying a moderately intense N3 

absorption, with the zero-phonon line and vibronic sideband highlighted.  
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Figure 4.6 displays plots of [NB] vs. [N3], [N3VH] and ([N3] + [N3VH]), and table 4.1 

underneath displays some descriptive statistics from the fitting of the data. Error bars are 

representative of the standard error for the IR line scans, where the standard error = σ/√n where 

σ is the standard deviation and n is the number of points averaged from the line scan. The 

extinction coefficient used to produce [N3VH] is derived from studies of the vibrational 

dynamics of the infrared absorption (Coxon et al., 2020). Inspection of the data shows that all 

three plots show some element of a positive correlation, with the strongest relationship being 

observed in Fig. 4.5c for [NB] vs. [N3] + [N3VH]. This is also shown by the statistics in 

table 4.2. Fig. 4.5c produces the highest PMCC of 0.7026, indicating the strongest 

correlation. Linear regression of the data using a forced zero y-intercept produces an R2 

value of 0.4078 for [NB] vs. [N3] + [N3VH]. While this is the highest R2 out of the three 

figures, it also shows that there is significant variation in the data that cannot be 

interpreted by a simple linear plot. This means that, while there is some evidence 

Figure 4.5: A graph showing the [NB] (ppm) vs. 3107 cm-1 peak area (cm-2) on a logarithmic scale. The data is 

colour-coded according to the [N3] (ppm) measured for each sample. 
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supporting the hypothesis, the trend observed is not capable of quantifying the 

relationship between these three optical centres. 

 

Figure 4.6: Plots of the various relationships between [NB] (ppm) and (a) [N3] (ppm), (b) [N3VH] (ppm) and (c) 

[N3] + [N3VH] (ppm). The extinction coefficient used to produce [N3VH] is derived from Coxon et al. (2020) 

Table 4.2: Descriptive statistics for the data presented in Figure 4.6. This shows the PMCC values obtained 

along with the R2 value obtained after linear regression with a forced zero y-intercept. 
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Figure 4.7 shows the observed relationship between the ratio between the intensity of the 3107 

cm-1 peak and the [NB] vs. the observed [N3]. There appears to be an indication that the 

concentration of N3 centres is only significant when the relative intensity of the 3107 cm-1 

feature compared to the concentration of B centres is low. A plot of [N3]/[NB] vs. [N3VH]/[NB] 

displays no observable relationship and so has not been included. 

  

Figure 4.7: A plot showing the observed relationship between the ratio between the intensity of the 3107 cm-1 

peak and the [NB] vs. the observed [N3]. 
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4.3.2 Line scans 

Figure 4.8 displays the results from Arg 118. The diamond shows a higher [NB] in the core of 

the diamond, and generally decreases in [NB] from core to rim. There is a similar trend observed 

in [N3]. This sample is dominated by [N3]. The concentrations of N3VH are very low, with the 

maximum concentration observed being two orders of magnitude lower than that of N3. 

 

Figure 4.9 displays the results of the line scans for DVK 143. This sample has a higher [NB] in 

the core of the sample, with a low nitrogen rim. The N3 and N3VH concentrations are similar 

in magnitude, with a max concentration of N3 of ~ 3.5 ppm and a max concentration of N3VH 

of ~ 2 ppm. The peak observed in [N3VH] to the left of the core occurs at a point when the [N3] 

lies lower than would be expected based on a proportional relationship with [NB]. A similar 

trend can be seen in the centre, where a decrease in [N3] correlates with a spike in [N3VH] in 

the core of the diamond. 

Figure 4.8: (a) an image of Arg 118 showing the testing direction for the line scans (b) a plot showing how the 

IR and UV-vis features vary spatially through the sample. The black line and squares represent [N3], the red 

line and circles represent [NB] and blue triangles are [N3]. All numbers are in ppm. The line scans in 4.8b are 

across a length of 1575 µm. 
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Due to the symmetric shape of this diamond, there is slight uncertainty in terms of ensuring the 

scans were collected on the same face of the sample. While efforts have been made to ensure 

that this is the case, it must be noted. 

 

Figure 4.10 presents the data from the line scans for DVK 159. This sample shows complex 

zonation, with a number of high and low nitrogen zones. The trend in [N3VH] is clear, with a 

high intensity at both rims, and a low intensity within the core of the diamond. The [N3] shows 

a similarly complex zonation to [NB], although of note is the point on the right of the diagram 

where the [N3] is low (~ 1 ppm), but the [N3VH] peaks to ~ 4 ppm. The trend generally follows 

the trend observed in [NB] aside from this point.  

In this sample a discrepancy in the length of the IR and UV-vis line scans was observed. Visual 

inspection suggested that this lay to one end of the IR line scan. The data was cropped to 

produce both line scans across the same length scale.  

Figure 4.9: (a) an image of DVK 143 showing the testing direction for the line scans (b) a plot showing how the 

IR and UV-vis features vary spatially through the sample. The black line and squares represent [N3], the red 

line and circles represent [NB] and blue triangles are [N3]. All numbers are in ppm. The line scans in 4.9b are 

across a length of 1600 µm. 
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Figure 4.11 displays the trends of the variation in the IR and UV-vis features of DVK 160. The 

[NB] shows a high nitrogen core and a low nitrogen rim. The [N3] shows a similar trend, with 

a much higher concentration of N3 in the core. However, the concentration at the edge of the 

core is slightly diminished compared to what would be expected from a simple correlation with 

[NB]. The [N3VH] does not follow the same trend, with a similar concentration in the centre of 

the core as is found in the low nitrogen rim. The points at which an increased concentration of 

the [N3VH] is found are those making up the boundary between the high nitrogen core and low 

nitrogen rim. Of particular interest is the distinct spike observed at the boundary between the 

high nitrogen core and the low nitrogen rim, where the [N3VH] is ~ 4.5 ppm on one side and ~ 

7 ppm on the other. This coincides with the point mentioned above where the [N3] is reduced 

compared to what would be expected from a simple correlation with [NB]. Of note is that the 

spatial resolution of the UV-vis line scan is significantly lower than the IR, with only 10 points 

across the diamond. This could potentially obscure some nuances in the measured 

concentrations. 

Figure 4.10: (a) an image of DVK 159 showing the testing direction for the line scans (b) a plot showing how 

the IR and UV-vis features vary spatially through the sample. The black line and squares represent [N3], the 

red line and circles represent [NB] and blue triangles are [N3]. All numbers are in ppm. The line scans in 4.10b 

are across a length of 1660 µm. 
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In this sample, the IR line scan contained several points outside the length of the UV-vis 

measurements. These were cropped out in order to match the length scales of the two 

techniques and to allow for ease of visualisation. 

 

  

Figure 4.11: (a) an image of DVK 160 showing the testing direction (b) a plot showing how the IR and UV-vis 

features vary spatially through the sample. The black line and squares represent [N3], the red line and circles 

represent [NB] and blue triangles are [N3]. All numbers are in ppm. The line scans in 4.10b are across a length 

of 1160 µm. 
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Figure 4.12 shows the measured data for Udachnaya 3143. The zonation in this sample is 

complex, much like the Diavik samples. There is a high nitrogen core and a low nitrogen rim, 

but there is additional complexity between these regions. The trends in [NB] and [N3] correlate 

very well, with the concentration of N3 almost exactly following the trend in [NB]. This is not 

the case for the [N3VH]. The concentration of N3VH is near-zero within the core. There are 

only significant concentrations in the low nitrogen rims. The rim to the left of the diagram 

shows a peak corresponding to the boundary between the high and low nitrogen zones. The 

only areas with appreciable concentrations of N3VH contain very low concentrations of N3 

compared to the rest of the sample. It is worth noting that the concentration of B-centres is also 

low at the points at which the peaks in [N3VH] are observed, which goes against the predicted 

trends. 

  

Figure 4.12: (a) an image of Udachnaya 3143 showing the testing direction (b) a plot showing how the IR and 

UV-vis features vary spatially through the sample. The black line and squares represent [N3], the red line and 

circles represent [NB] and blue triangles are [N3]. All values are in ppm. The line scans in 4.12b are across a 

length of 5035 µm. 
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 4.2.3  Attempts at quantification 

In order to attempt to quantify the relationship between these nitrogen-containing defects, the 

line scans from the separate techniques must be combined. The IR line scans have a higher 

spatial resolution than those from UV-vis. In order to compare the two, points from the IR line 

scan can be selected that corresponded to the points from the UV-vis line scan. In the case of 

spectra not falling exactly on the same point, a simple linear interpolation can be used to 

provide a method of comparing the two. This comes with inherent uncertainties but enables an 

attempt at quantification to be made. Each sample will be discussed and evaluated individually, 

and then all samples will be considered as a combined dataset. 

Figure 4.13 shows a plot of [NB] vs. [N3] + [N3VH] for Arg 118. The concentration of N3VH 

is negligible, so the values are dominated by [N3]. 

A linear regression of this data with a forced zero y-intercept provides the following 

relationship with a 95 % confidence interval 

[𝑁𝑁3+𝑁3𝑉𝐻](𝑝𝑝𝑚) = 0.017(0.004)  × [𝑁𝐵] (𝑝𝑝𝑚) (4.9) 
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Figure 4.13: A plot of [NB] vs. [N3] + [N3VH] for Arg 118. 
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This relationship has an R2 value of 0.95. This indicates that in this sample the concentration 

of nitrogen present as N3 and N3VH centres is around 1.7 % of the nitrogen present as B centres. 

Figure 4.14 shows a plot of [NB] vs. [N3] + [N3VH] for DVK 143. There is some scatter in 

terms of the proportionality between the defect concentrations compared to other samples.  

 

Linear regression of this with a forced zero y-intercept provides the following relationship 

[𝑁𝑁3+𝑁3𝑉𝐻](𝑝𝑝𝑚) = 0.030(0.002)  × [𝑁𝐵] (𝑝𝑝𝑚) (4.10) 

The R2 of this relationship is 0.89, indicating a slightly less linear trend than for some of the 

other samples, which is consistent with what would be expected from simple visual inspection. 

In this sample, the concentration of nitrogen present as N3 and N3VH centres is around 3.0 % 

of the nitrogen present as B centres. 
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Figure 4.14: A plot of [NB] vs. [N3] + [N3VH] for DVK 143. 
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Figure 4.15 displays a plot of [NB] vs. [N3] + [N3VH] for DVK 159.  

Linear regression produces a relationship of the following form  

[𝑁𝑁3+𝑁3𝑉𝐻](𝑝𝑝𝑚) = 0.021(0.001)  × [𝑁𝐵] (𝑝𝑝𝑚) (4.11) 

With an R2 value of 0.98. In this sample, the concentration of nitrogen present as N3 and N3VH 

centres is around 2.1 % of the nitrogen present as B centres. 
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Figure 4.15: A plot of [NB] vs. [N3] + [N3VH] for DVK 159. 
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Figure 4.16 shows the plot of [NB] vs. [N3] + [N3VH] for DVK 160. The spatial resolution is 

lower for this sample, and so there are only 10 points used to produce a quantification. This 

means that there are likely additional uncertainties due to the smaller sample size. 

Linear regression produces the following relationship 

[𝑁𝑁3+𝑁3𝑉𝐻](𝑝𝑝𝑚) = 0.018(0.002)  × [𝑁𝐵] (𝑝𝑝𝑚) (4.12) 

With an R2 value of 0.92. This means that, in this sample, the concentration of nitrogen present 

as N3 and N3VH centres is around 1.8 % of the nitrogen present as B centres.  
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Figure 4.16: A plot of [NB] vs. [N3] + [N3VH] for DVK 159. 
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Figure 4.17 displays the results for Udachnaya 3143. The rim of the diamond is excluded from 

this plot due to the high concentrations of N3VH in order to attempt to produce an estimate for 

the relative proportions of the defects. There is a clear linear relationship between the variables 

within the core of the diamond. 

Linear regression of the data for Udachnaya 3143 provides the following relationship 

[𝑁𝑁3+𝑁3𝑉𝐻](𝑝𝑝𝑚) = 0.034(0.005)  × [𝑁𝐵] (𝑝𝑝𝑚) (4.13) 

With an R2 value of 0.99. This suggests that the concentration of nitrogen present as N3 and 

N3VH centres in this sample is around 3.4 % of the nitrogen present as B centres. 

Table 4.3 displays a summation of the proportionality constants in percent of [NB] generated 

for each sample in this work. The range of values observed ranges from a concentration of N3 

+ N3VH of ~ 1.7 % of the [NB] in Arg 118 to a maximum of 3.4 % of the [NB] in Udachnaya 

3143. The quality of linear fit varies between samples, with some, such as Udachnaya 3143 

displaying a very linear relationship, while others such as DVK 143 which contains a 

significant amount of scatter within the data. 

0 100 200 300 400 500 600 700

0

1

2

3

4

5

6

7

[N
3
] 
+

 [
N

3
V

H
] 
(p

p
m

)

[NB] (ppm)

Figure 4.17: A plot of [NB] vs. [N3] + [N3VH] for Udachnaya 3143. 
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Sample Proportionality constant (%) R2 

Arg 118 1.7 0.95 

DVK 143 3.0 0.89 

DVK 159 2.1 0.98 

DVK 160 1.8 0.92 

Udachnaya 3143 3.4 0.99 

 

Figure 4.18 shows the results of the line scans, combined and plotted as [NB] vs. (a) [N3], (b) 

[N3] + [N3VH] and (c) [N3VH]. A strong positive correlation is observed in both 4.13a and 

4.18c, but 4.18b does not appear to show a correlation of any sort. This is consistent with the 

results displayed for the single spectra in figure 4.6. Linear regression of the data from figure 

4.18c with a forced zero y-intercept provides the following relationship within a 95% 

confidence interval: 

[𝑁𝑁3+𝑁3𝑉𝐻] (𝑝𝑝𝑚) = 0.024(0.01)  × [𝑁𝐵] (𝑝𝑝𝑚) (4.14) 

Where [𝑁𝑁3+𝑁3𝑉𝐻] is the amount of nitrogen present in the form of N3 and N3VH centres. This 

relationship has an R2 value of 0.87 and a PMCC of 0.93 to two decimal places. This suggests 

that the percentage abundance of nitrogen present as either the N3 or N3VH centre is ~ 2.5 % 

of the amount of nitrogen present as B-centres. This value considers the 5 samples studied here 

as a whole in order to assess a proportionality constant for the relationship between N3, N3VH 

and B-centres across the entire dataset.  

Table 4.3: A summation of the results of the quantification attempts presented within this chapter. Included 

is the calculated proportionality constant along with the R2 value, used as a goodness-of-fit measure of the 

linear regression. 
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Figure 4.18: Plots of the various relationships between [NB] (ppm) and (a) [N3] (ppm), (b) [N3] (ppm) and (c) 

[N3VH] +  [N3VH] (ppm) for the combined UV-vis and FTIR line scans. Black squares are Arg 118, red circles 

are DVK 143, blue upward-facing triangles are DVK 159, pink downward-facing triangles are DVK 160 and 

green diamonds are Udachnaya 3143. 
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Figure 4.19 shows the combined line scan results plotted onto a log-log plot and colour-coded 

for [N3] in an analogous way to Figure 4.5. 

The [N3] values appear to be enhanced in the points towards the lower right-hand corner of the 

diagram, as was predicted in the hypotheses laid out earlier in the chapter. This is not entirely 

the case, with a number of points displaying lower values of N3 than may be expected, but 

generally meets the prediction that, the further away from the ‘limiting envelope’ a point lies, 

the higher the concentration of N3.  

Figure 4.19: a log-log plot of [N3VH] vs. [NB], colour-coded for [N3]. All units in ppm. 
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4.4 Discussion 

The comparison of IR line scans with single UV-vis measurements provided some evidence 

for the formation of the majority of N3VH from protonation of an N3 centre in the form of a 

strong correlation between [NB] and [N3] + [N3VH], backed up by the statistics presented in 

table 4.2. While there was a more linear relationship between these than was observed for either 

[N3] or [N3VH] alone – the B-centre concentration does appear to provide a better predictor 

for the sum of the concentrations of N3 and N3VH than either alone. However, this was not as 

clear as would be predicted from the hypothesis described at the beginning of this chapter. This 

could suggest that there is another reaction pathway for the formation of N3VH other than the 

simple protonation discussed here, potentially the trapping of an A-centre by NVH0 as 

proposed in earlier theoretical work as the predominant mechanism in CVD diamond (J. P. 

Goss et al., 2014). It is also possible that the comparisons between a spatially resolved line scan 

and a single point encompassing several growth zones lead to the obfuscation of trends that 

could otherwise be observed.  

From this evidence alone, it cannot be determined whether the N3 centre is formed in a set 

proportion to the amount of B centres. The correlation does suggest an element of 

proportionality, but the relationship is not linear enough to conclude definitively. It has also 

not been possible to generate the constant of proportionality that would be expected if there 

was indeed a set fraction of nitrogen aggregates produced as N3. The relationship in Figure 4.6 

provides some further evidence to substantiate the hypothesis, as the observed N3 

concentration is only significant when there is a relatively weak 3107 cm-1 peak compared to 

the observed B-centre concentration. 

A plot investigating the presence of N3 across the [NB] vs. 3107 cm-1 area sample space as 

discussed earlier appears to show some limited evidence of increased [N3] the further away 

from the ‘limiting envelope’ (Melton, 2013) within the space an individual diamond lies. 
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However, a lack of spatial resolution in the UV-vis measurements means all points attributed 

to a single sample have the same value for [N3], despite the often significant variation in the 

other features across the various growth zones in the diamonds. This highlights the need for 

spatially resolved UV-vis measurements in order to provide a stronger test of the hypotheses 

investigated within this work. 

The FTIR and UV-vis line scans show significant complexities in terms of the zonation of these 

optical features. This illustrates the potential issues with using single spectra. Some samples 

are more homogenous than others; more homogenous samples may be suitable for single 

spectra. However, the samples presented here are very heterogenous across the line scans, and 

clearly the collection of single spectra lead to a large amount of information being overlooked. 

The line scans allow for a more thorough test of the hypotheses discussed earlier.  

As the line scans were collected on two different instruments, there is some uncertainty in terms 

of the collection of spectra from exact locations within the diamond. However, with careful 

collection and the use of visible features such as inclusions as markers, it is possible to obtain 

line scans with confidence in the location. There are uncertainties introduced in terms of 

quantification efforts from line scans collected on different instrumentation through human 

error, but both quantitative and qualitative studies of the variation in features are, in theory, 

possible. 

These line scans provide further evidence as to the primary formation mechanism of the N3VH 

defect. DVK 143, DVK 159 and DVK 160 all display trends of increases in [N3VH] when there 

is a decrease in [N3] relative to the [NB]. This is especially pronounced at the boundaries 

between high nitrogen zones and lower nitrogen zones, as highlighted in Fig. 4.8b for DVK 

159. This fits with the hypothesis that the formation of N3VH centres is dependent on the 

presence of hydrogen within the diamond-forming fluids. The differences in the detected 
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concentrations of the defects can be rationalised by changes in the environment in which the 

diamonds are growing. For example, if we consider DVK 159, the observations can be 

explained by the growth of the nitrogen-rich core occurring under conditions with relatively 

little hydrogen. This leads to the preservation of an amount of nitrogen in the form of N3 centres. 

In the nitrogen-poor rim, the conditions are clearly different; not only is there less nitrogen 

incorporated but there is now a significant concentration of N3VH centres. This can be 

rationalised by the growth event occurring in fluids containing significant concentrations of 

hydrogen in forms conducive to incorporation within the diamond. This hydrogen, once 

incorporated, would diffuse through the diamond and attach to the dangling carbon bond at the 

N3 centre, forming N3VH. 

An interesting trend is also observed in Udachnaya 3143, with the amount of N3 showing a 

significant degree of proportionality with the concentration of B-centres. This is clearer here 

than in any of the other samples studied. There is an enrichment of N3VH towards the low-

nitrogen rim of the diamond. While this qualitatively supports the trends observed in the Diavik 

samples, the concentration of B-centres is close to zero. It is therefore surprising that there is a 

significant concentration of N3VH, as this would not be predicted by a proportional relationship. 

This could suggest that the formation of N3 centres is not strictly proportional to the 

concentration of B-centres in the diamond. It may be the case that the reaction pathways leading 

to the formation of N3 centres are dependent on other parameters. This is consistent with the 

mechanisms proposed in equations 4.1 – 4.3. Given that equation 4.3 proposes two mechanisms 

for the formation of B-centres, only one of which requires a N3 centre as an intermediate, it 

may not be unsurprising that the relationship is not as quantitatively simple as the hypotheses 

explored here. The growth history of this diamond can be explained similarly to the Diavik 

samples, with the initial growth event responsible for the core of the diamond taking place 

under conditions where very little hydrogen is present. This is then followed by a different 
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growth event, responsible for the formation of the rim of the diamond. The anomalously high 

concentrations of N3VH towards the rim could be caused by overgrowth features such as 

cuboid growth, which could potentially lead to the preferential incorporation of certain defects 

such as N3VH. If this is the case, it could be possible that the hypotheses discussed here are 

only consistent for diamonds exhibiting regular octahedral growth. The fluids responsible for 

this overgrowth would appear have a significant concentration of available hydrogen, and 

therefore the concentration of N3VH increases. 

Arg 118 is unique in this data set, as the concentration of N3VH is very small compared to the 

other samples; a maximum concentration of only 0.02 ppm is observed. The general correlation 

of the N3 centre to the B-centre concentration can therefore be observed. In line with the 

hypotheses discussed here, this diamond may have formed from fluids that contain very little 

hydrogen available for incorporation. There appears to be no significant difference in the 

availability of hydrogen from the core to the rim of the diamond. 

An additional piece of evidence for the formation of N3VH directly from N3 centres is the 

relative concentrations of the two defects. In this work, both defect concentrations range from 

negligible to a maximum of ~ 7 ppm. The fact that both centres are present in similar quantities 

is consistent with the formation mechanism proposed here. It also fits with the suggestion that 

the controlling factor in the relative amounts of each centre is a separate quantity, in this case 

the amount of hydrogen present during diamond growth. Alongside this, the fact that N3 and 

N3VH are present in roughly the same concentrations could be considered as a secondary 

verification for the calibration produced for [N3VH] by Coxon et al., 2020. It is also possible 

to attempt to refine the Coxon results via optimisation of the fit in Fig 4.18c. When the 

absorption coefficient for [N3VH] is varied, the best linear fit is provided with the following 

relationship 
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[𝑁3𝑉𝐻0]𝑊𝑜𝑜𝑑(𝑝𝑝𝑚) = 0.07 𝑝𝑝𝑚 𝑐𝑚2  ×  𝐼3107 𝑐𝑚−1  (𝑐𝑚−2) 

This can potentially be considered as a refined extinction coefficient for the N3VH centre. The 

verification and refinement of the Coxon calibration are predicated on the accuracy of the 

hypotheses presented within this work. 

The quantification attempts provide slightly different relative abundances for the different 

samples. All the attempts provided here, and the data set as a whole, provide a relative 

abundance of N3 and N3VH of between 1.5 – 3.5 % of the total B-centre concentration. For 

Udachnaya 3143, this involved excluding the rim of the diamond. When the rim of the diamond 

is excluded, a very strong linear relationship is observed. 

There is a clear link between the B-centre concentration and the concentration of the N3 and 

N3VH centres. However, the variation in proportionality constants for each sample suggests 

that the exact proportion in which N3 and N3VH are formed can vary between each sample. 

The values are all of similar magnitude, but the exact value varies within the range observed. 

This indicates that there is likely another factor that can affect the relative abundances. As the 

behaviour of the N3 centre in terms of the kinetics of the interconversions between the 

aggregates is not well constrained, this could potentially be temperature of storage within the 

mantle. This could lead to a situation in which, storage at certain temperatures promotes 

favourable formation of N3. This would then explain the variation in relative abundance 

observed within this work. 

When considering the line scans as a combined data set, a significantly stronger positive 

correlation is observed for [NB] vs. [N3] + [N3VH] than for the single spectra. This is consistent 

with previous work which correlated the N3 centre alone with the B’ and, by extension, the B-

centre concentration (Woods, 1986). This allows for the generation of an estimate that the 

concentration of nitrogen present in the form of N3 or N3VH is approximately 2.5 % of the 
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amount of nitrogen present in the form of B-centres. While clearly still a minor aggregate 

compared to the B-centre, there is a significant amount of nitrogen present in the form of these 

centres. It must be noted that this correlation is not perfect but does provide further evidence 

as to the proportionality involved in this reaction process. From the results presented here, it is 

likely that a correlation is more easily observed when considering a single sample than a set of 

samples. This can be rationalised, as for each individual sample there is less variation in terms 

of further history of the diamond than within a group of diamonds. If there are indeed other 

processes that can affect the relative abundance of these centres, a collective data set across 

multiple localities would not be expected to provide a dataset capable of quantifying this. If the 

data set were expanded significantly then a better idea of the processes governing this could 

potentially be observed. 

From the results of this work, it appears that hydrogen can indeed play a role in the quenching 

of the nitrogen process. If the N3 centre is an intermediate in B-centre formation, and can be 

removed from the aggregation sequence through the capturing of a hydrogen atom, then the 

more hydrogen present within the growth medium, the more nitrogen would be removed from 

the aggregation sequence by generation of N3VH centres. Due to the multiple reaction 

mechanisms proposed for B-centre formation, not all of which contain N3, it is difficult to 

quantify the exact amount to which hydrogen can impact the aggregation state of nitrogen 

within a diamond. 

While the results presented within this chapter are indicative of the potential use of the relative 

abundance of N3 and N3VH as a hygrometer, it is worth noting the pitfalls. Udachnaya 3143 

highlights the fact that irregular growth conditions may obscure these trends. This means that 

the results presented here can only be applied to regular diamonds, or regular growth zones 

within heterogenous diamonds. There is also the inherent uncertainty introduced through the 
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collection of two separate line scans. Development of instrumentation that could 

simultaneously collect UV-vis and IR spectra would minimise these uncertainties.  
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4.5 Conclusions 

There were two primary hypotheses discussed earlier, and these will be discussed in turn. The 

first was that the N3 defect is formed in a set proportion to the concentration of B-centres. This 

work has provided evidence to support this, with the results from single spectra showing 

proportionality. This was also supported by the results from the line scans, in particular those 

of Arg 118 and Udachnaya 3143. These samples showed a significant correlation between the 

N3 and B-centre concentrations. The single spectra did not show a perfect relationship between 

the two features, and the Diavik samples showed complex zonation where a correlation could 

still be observed. This suggests that the proposals of multiple formation mechanisms for B-

centres, not all of which contain an intermediate in the form of N3, is likely correct. The results 

from the line scans allowed for an estimate of the proportionality to be produced for each 

sample. This suggests that the amount of nitrogen present as N3 and N3VH centres is between 

1.5 – 3.5 % of the amount of nitrogen present as B-centres. The exact factor controlling the 

value within this range is unknown, but a possible relation to storage temperature of the 

diamond was discussed. It is likely that proportionality is the case in samples exhibiting normal 

octahedral growth, but that the exact value of the relative abundances can vary between 

different diamonds. 

The second hypothesis is that the primary formation mechanism of the N3VH centre is through 

protonation of an N3 centre. This work has provided evidence that this is the case. With the 

single spectra, a sum of the N3 and N3VH centre concentrations provided a stronger 

relationship with the B-centre concentration than either component alone. Alongside this, the 

spatially resolved line scans demonstrated a consistent trend of enrichment in the N3VH centre 

concentration at regions of the diamond in which there was a lower relative concentration of 

N3. Along with the concentrations of both defects ranging from negligible to ~ 6 ppm, this 
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strongly indicates that the formation of the two defects are heavily linked. This is consistent 

with the formation mechanism proposed above. 

A rationale has been discussed for the variations in concentrations being based upon the relative 

availability of hydrogen during diamond formation. This can explain the trends observed across 

the line scans. Continuation of this work could expand this data set, and the relative abundance 

of the N3 and N3VH defects discussed here may provide information about the availability of 

hydrogen in diamond-forming fluids across various localities. For example, the observation of 

high [N3VH] with low/zero [N3] would perhaps be considered a better indicator of hydrogen 

content in the diamond-forming fluids than observation of high [N3VH] alone, with no 

consideration of N3 concentrations. The relative abundance can therefore be considered as a 

form of hygrometer. The differences observed in the Diavik samples studied here also suggest 

a significant change in fluid composition and relative availability of hydrogen with time. 

Future work could probe the value of the relative abundances further, building a data set that 

may allow for comparisons to be made between localities. By doing this, the factors that control 

the relative abundance of NB, N3 and N3VH could be further interrogated.  
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5. A study of a minor hydrogen-related 

peak in diamond – clues as to the origin of 

the 3236 cm-1 feature 
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5.1 Introduction 

Although the 3107 cm-1 feature is by far the most dominant hydrogen-related peak in the IR 

spectrum for the majority of samples, there are over 90 lines or absorption systems in the IR 

and UV-visible range that have been at least tentatively attributed to hydrogen (Fritsch et al., 

2007). When the intensity of the 3107 cm-1 feature is high, peaks at 2786 cm-1 and 3236 cm-1 

(sometimes reported as 3237 cm-1) can often be observed. The intensity of the 2786 cm-1 has 

been observed to correlate well with the intensity of the 3107 cm-1, and is therefore thought to 

be part of the same system, specifically attributed to an overtone of the bending mode at 1405 

cm-1. The fact that the peak is observed at a slightly lower frequency than would be expected 

by a simple arithmetic sum can be explained by slight anharmonicity in the vibration (Davies 

et al., 1984).  

Whilst the 3107 cm-1 is well-characterised, likely due to its intensity and ubiquity, the origin 

of the 3236 cm-1 feature is a lot more unclear. Originally thought to possibly be a part of the 

same system as the 3107 cm-1 peak, it has since been shown that its intensity is entirely 

independent of the 3107 cm-1 peak, such as in asteriated diamonds with sector-dependent IR 

signatures (Rondeau et al., 2004), where the relative intensity does not show any preference 

for certain growth sectors, unlike the 3107 cm-1 peak itself. The peak is seen in many types of 

diamond, but an unusually intense 3236 cm-1 is a characteristic of ‘grey-blue-violet’ diamonds 

from the Argyle mine in Australia (van der Bogert et al., 2009). The intensity of the feature is 

often higher in Type IaB diamonds, whatever the colour of the stone, and it has previously been 

suggested that the feature is less frequently observed in low-nitrogen diamonds (Fritsch et al., 

2007). These diamonds are thought to be some of the most hydrogen-rich natural samples in 

existence, due to the dominance of hydrogen-related features in the IR spectra. An example 

spectrum from such a sample, RTD002, can be seen in Figure 5.1. The features labelled show 
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the intensity of the hydrogen-related features in comparison with the intrinsic absorption in the 

two-phonon region that is characteristic of diamond.  

Previous studies have suggested that the feature could be due to an amine (N-H) vibration due 

to the lack of correlation with various C-H vibrational features (Woods and Collins, 1983). It 

has also been suggested that the peak could be attributed to an alkyne (C≡C-H) stretch 

(Iakoubovskii and Adriaenssens, 2002), although, beyond a simple comparison of the 

vibrational frequency with reference data tables (e.g. Socrates, 2004), no evidence supporting 

this has been provided. An increase in the intensity of the feature has been observed upon 

annealing a number of grey diamonds, previously attributed to the mobilisation of hydrogen 

within the diamond via the breaking down of C-H bonds in graphitic impurities at the 

temperatures involved (typically around 1800 °C) (Vins and Kononov, 2003). These H atoms 

can then be trapped at pre-existing defects within the diamond lattice. 

Figure 5.1: An example IR spectrum of a grey-blue-violet 'hydrogen-rich' diamond (in this case RTD002), with 

the 2786 cm-1, 3107 cm-1 and 3236 cm-1 features highlighted. The intensity of the 3107 cm-1 and 3236 cm-1 is 

exceptionally high compared to that of the intrinsic diamond absorption. 
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Not solely found in natural diamonds, the feature has been observed in synthetic samples, and 

can be annealed in. High-pressure high-temperature (HPHT) diamonds have also been grown 

using 13C, and upon this, no isotopic shift was observed in the frequency of the 3236 cm-1 peak, 

which is consistent with the proposal of an N-H stretch being responsible for the feature. The 

N-H vibration is normally much broader than the observed feature in diamond (Socrates, 2004). 

However, for a very dilute impurity species, the absorption could be sharp due to the lack of 

hydrogen bonding with neighbouring groups within the structure, as is seen in substances such 

as polymers (Fritsch et al., 2007 and ref. within). Furthermore, if a stretching vibration is 

observed, a corresponding bending mode should be seen around 1600 cm-1 (Socrates, 2004). 

Although this vibration would likely be weaker than the stretching mode, as is the case in the 

3107 cm-1 system, no likely candidate has been observed. A peak has been observed at 4703 

cm-1, the intensity of which correlates well with that of the 3236 cm-1 feature, and has thus been 

attributed to a combination band of the system (Fritsch et al., 2007). If this feature does indeed 

represent the first combination band, the other fundamental would, through a simple arithmetic 

sum, be expected to be present at an energy slightly above 1467 cm-1, which is consistent with 

an amine group being responsible for the feature, although as mentioned above, no likely 

candidate for this feature has as yet been identified.  

The 3236 cm-1 feature has been commonly observed in type IaB diamonds from the Mir pipe 

in Yakutia, observed as having a highest intensity in diamonds with the highest B-centre 

content (Yuryeva et al., 2017), in accordance with some previous studies of cut gem-quality 

diamonds (Ferrer and Nogués-Carulla, 1996). It has also been preferentially observed in so 

called ‘milky’ type IaB diamonds; samples which are cloudy in appearance have been shown 

to preferentially exhibit the 3236 cm-1 feature in comparison to their non-milky type IaB 

counterparts (Gu and Wang, 2018). In this study, ~ 53 % of milky diamonds contained the 

feature as opposed to ~ 12 % of non-milky samples. These milky diamonds also commonly 



 

139 

 

contained a number of optical features associated with plastic deformation, such as deformation 

lamellae (Hanley et al., 1977). The peak has even been observed in presolar diamonds found 

in meteorites, such as the Allende meteorite (Braatz et al., 2000). 

Recent theoretical work has investigated the possibility of the 3236 cm-1 peak being caused by 

the trapping of a hydrogen atom by a VN4 defect centred within a platelet (Gu et al., 2020) – 

see section 1.2.2 for a more in depth discussion of platelets. The computational studies of this 

configuration suggested that it could be a possible candidate for this IR feature. In addition, it 

was shown that inclusion of the platelet-centred VN4H defect quenched other platelet-related 

IR features, which could be an explanation for the observation of this feature in diamonds not 

displaying prominent platelet peaks. This suggestion led to the proposal that platelets, with 

their unique structure and potential for a number of dangling bonds, could act as significant 

reservoirs of hydrogen within diamonds. The predicted quenching could be thought to make it 

difficult to test this hypothesis using IR alone, as, if this were true, there would be no observable 

correlation between the observed platelet peaks and the 3236 cm-1 peak. However, due to the 

possibility of examining the irregularity of diamonds and the amount of platelet degradation, 

this could be possible to examine. If a platelet-centred defect is responsible for this feature, 

then it could be expected that the more platelet-degraded a diamond is, the smaller the 3236 

cm-1 peak would be compared to the 3107 cm-1 peak. However, it must be noted that the 

quenching would naturally lead to the observation of more degraded platelets than may be the 

case, which must be considered. The study of the platelet feature and how it corresponds to the 

relative intensity of the 3236 cm-1 peak could still provide some information as to the viability 

of the claim, although there are some issues in terms of quantifying this relationship. 

In-depth studies of diamonds from various localities could potentially shed more light on the 

nature of this feature. By investigating spatial variations of the feature alongside other features 
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that can be studied through IR, further information may be gleaned as to what is causing this 

widely observed peak. 

5.2 Materials and methods 

 5.2.1 Samples 

A large sample set of previously studied samples was filtered down to a set of 36 parallel plates 

using the presence of the 3236 cm-1 feature in their IR spectra as the selection criterion. These 

samples originate from four localities: Argyle (Western Australia), Diavik (Canada), Murowa 

(Zimbabwe) and Bunder (India). The diamonds were polished to thin, central plane-parallel 

plates oriented parallel to {110}, as discussed in chapter 2 to be most suitable for FTIR studies. 

A full list of the samples used in this work is presented below in table 5.1. 

Locality Sample Single spectrum? Line scan? 

Argyle, Australia Arg 10 N Y 

 Arg 31 Y N 

 Arg 51 N Y 

 Arg 70 Y Y 

 Arg 71 Y N 

 Arg 78 N Y 

 Arg 81 Y N 

 Arg 83 Y N 

 Arg 86 Y N 

 Arg 103 Y N 

 Arg 128 Y Y 

 Arg 143 Y N 

 Arg 164 Y N 

Diavik, Canada DVK 076 Y Y 

 DVK 098 Y N 

 DVK 115 Y N 

 DVK 122 Y Y 

 DVK 127 Y Y 

 DVK 131 Y N 

 DVK 135 Y N 

 DVK 159 Y Y 

 DVK 160 N Y 

 DVK 166 Y N 

Murowa, Zimbabwe Mur 65 Y N 

 Mur 107 Y N 

 Mur 112 Y N 

 Mur 122 Y N 

 Mur 141 Y N 

 Mur 173 Y N 
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 Mur 182 Y N 

 Mur 265 Y N 

 Mur 279 Y N 

Bunder, India Bunder 9 Y N 

 Bunder 12 Y N 

 Bunder 17 Y N 

 Bunder odd Y N 

 5.2.2 FTIR 

A full write up of the procedure used can be found in chapter 2. 

This section contains two approaches to looking at how the spectral features can vary in the 

samples compared to each other. The first is simply to look at the change in 3236 cm-1 peak 

area with other measurable features such as the various nitrogen aggregate concentrations, and 

the second is to look at the relative area of the 3236 cm-1 peak to the 3107 cm-1 peak. Where a 

ratio is referred to within this chapter, this is meant in the form of log(3236 area/3107 area) 

for ease of visualisation. In practical terms this means that the closer to zero the value of the 

ratio is, the higher the relative intensity of the 3236 cm-1 peak. This chapter contains single 

spectra collected from individual diamonds, and line scans collected on 10 heterogenous 

samples. 

  

Table 5.1: A list of the samples used for this study. The table contains the locality and name of each sample, 

along with whether or not they are part of the single spectra dataset, the line scan dataset, or both.  
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5.3 Results 

 5.3.1 Single spectra 

Values calculated from the IR spectra in this section can be found in Appendix A.1. Figure 5.2 

presents the intensity of the 3236 cm-1 peak, provided as peak area in cm-2, plotted against the 

concentrations of the various nitrogen aggregates and aggregation state, i.e. the percent of 

nitrogen present as B-centres, with a diamond containing only B-centres falling at 100 % 

aggregated. The diagrams appear to show a weak positive correlation with [NA] and a stronger 

correlation with [NB], with a Pearson product-moment correlation coefficient (PMCC) of 0.282 

and 0.677 respectively. The correlation with [Nt] appears to be stronger still, with a PMCC of 

0.809. There is no correlation observed with aggregation state, with the peak being observed 

in diamonds with low, moderate and highly aggregated nitrogen. There do not appear to be any 

trends observed within diamonds of specific localities. Figure 5.3 shows the same data as 

Figure 5.2 but using the ratio of the 3107 cm-1 and 3236 cm-1 peaks. 
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Figure 5.2: A series of plots displaying various nitrogen related features vs. I(3236) in cm-2 in order: (a) [NA], 

(b) [NB], (c) [Nt] and (d) displaying percent aggregation. Each point represents a single diamond, black 

squares are Argyle, red circles from Diavik, green triangles from Murowa and blue diamonds represent stones 

from Bunder. Error bars are omitted for clarity as they are roughly the same size as the symbols. 
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Figure 5.4 shows two relationships: in 5.4a the 3107 cm-1 peak area is plotted against the area 

of the 2786 cm-1 peak; thought be to an overtone of the N3VH bending mode found at 1405 

cm-1, as discussed in Section 5.1, and in 5.4b, the area of the 3107 cm-1 peak is plotted against 

the area of the 3236 cm-1 peak. Figure 5.4a shows the linear relationship expected from two 

peaks part of the same system, with a PMCC of 0.993. By contrast, the relationship with the 

3107 cm-1 peak is more complex, agreeing with previous studies that the two features are not 

part of the same system. However, whilst not as strong a relationship as with the 2786 cm-1, 

there does seem to be a link between the two peaks, having a relationship that appears roughly 

as strong as the relationship in Fig. 5.2c above, with a PMCC of 0.873.  

 

Figure 5.3: series of plots displaying various nitrogen related features vs. log(3236/3107). In order: (a) [NA], 

(b) [NB] and (c) [Nt]. Error bars are omitted as they are roughly the same size as the symbols. 
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5.3.2 Linescans by region 

Figure 5.5 shows the observed relationships between [NA], [NB] and [Nt] and the area of the 

3236 cm-1 peak in 5 heterogeneous diamonds from Argyle. It is worth noting that the diamonds 

here are highly aggregated, and so have a low concentration of A-centres, in particular Arg 70 

and a large number of points from within Arg 78 and Arg 128. Also of note is that Arg 51 

contains a number of points that appear anomalously high when compared to the trends 

observed in the other samples. Whilst not clear-cut, it appears that in general the same trends 

are observed as in the single spectra, with a general trend of increasing peak area with 

increasing [NB] and [Nt]. 

Figure 5.4: (a) the area of the 3107 cm-1 peak against the 2786 cm-1 peak, thought to be an overtone within the 

same system (b) the area of the 3107 cm-1 peak against the 3236 cm-1 peak. Black squares are from Argyle, red 

circles from Diavik, green triangles from Murowa and blue diamonds are from Bunder. Error bars are omitted 

as they are roughly the same size as the symbols. 
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Figure 5.6 shows the relationships of the various nitrogen aggregates with the relative intensity 

of the 3236 cm-1 peak as compared to the 3107 cm-1 peak. In a similar way as Figure 5.5a, the 

concentration of A-centres is low due to the high aggregation states of the nitrogen in theses 

samples, and so it is difficult to discern trends in the data in Fig 5.6a. However, using a peak 

area ratio makes it possible to use the anomalously high points discussed above from Arg 51, 

as calculating a ratio removes the effect of the increased path length due to the crack. Arg 10 

shows a distinct trend of an increasing relative intensity of the 3236 cm-1 peak with increasing 

concentrations of all nitrogen aggregates, particularly B-centres and the total nitrogen, before 

reaching a plateau at a certain concentration and levelling off. Whilst not as clearly displayed 

as in Arg 10, a similar trend can be seen to be loosely followed in all the Argyle samples, 

Figure 5.5: plots of the various nitrogen aggregate concentrations against the area of the 3236 cm-1 peak for 

some heterogeneous samples from Argyle; (a) shows [NA], (b) [NB] and (c) [Nt]. Black squares represent Arg 

10, red circles are Arg 51, green triangles are Arg 70, dark blue diamonds are Arg 78 and light blue stars are 

Arg 128. 
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although interestingly the value on both the x and y axes at which the plateau is reached seems 

highly variable, with no consistent trend being observed between different samples. 

Figure 5.7 shows the relationship between the 3107 cm-1 peak and the 3236 cm-1 peak. A similar 

trend is present as in the single spectra in Figure 5.4b, with a loose positive correlation being 

observed across all samples when considered as a whole, although Arg 78 seems to show no 

correlation, with the intensity of the 3236 cm-1 peak appearing independent of 3107 cm-1 area 

entirely. 

  

Figure 5.6: plots of the various nitrogen aggregate concentrations against the ratio of the 3236 cm-1 and 3107 

cm-1 peak areas for some heterogeneous samples from Argyle; (a) shows [NA], (b) [NB] and (c) [Nt]. 
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Figure 5.8 shows the relationship between the intensity of platelet related features vs. the 3236 

cm-1 peak area. 5.8a shows the platelet peak area and 5.8b displays the platelet degradation. 

There appears to be a general trend of increasing 3236 intensity with increasing platelet peak 

intensity. However, increased platelet degradation appears to lead to a slight decrease in 3236 

peak area in all samples other than Arg 128, which is completely degraded. 

Figure 5.7: The relationship between the area of the 3107 cm-1 and 3236 cm-1 peaks as observed in 5 

heterogenous Argyle diamonds. 

Figure 5.8: plots of the platelet related features against the area of the 3236 cm-1 peak for some heterogeneous 

samples from Argyle; (a) shows I(B’) and (b) % degradation. 
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Figure 5.9 displays the same platelet features but plotted against the ratio of the 3236 and 3107 

cm-1 peaks. 5.9a displays a similar trend as observed as between [NB], [Nt] and the peak ratio, 

with a trend towards a plateau, best illustrated by Arg 10. The degradation plot in 5.9b appears 

to show a decrease in the relative intensity of the 3236 cm-1 peak as degradation increases 

within each sample.  

 Figure 5.10 shows the relationships of the various nitrogen aggregates with 5 heterogenous 

diamonds from the Diavik mine in Canada. Compared to the Argyle samples the trends 

displayed are more complex, with no observable correlation between any of the aggregates and 

the intensity of the 3236 cm-1 feature. Of note is the fact that, whereas all the Argyle samples 

contained predominantly B-centres – i.e. highly aggregated nitrogen, this is not the case for the 

Diavik samples, some of which contain up to 1000 ppm of A-centres with negligible B-centre 

content.  

 

 

Figure 5.9: plots of the platelet related features against the ratio of the 3236 cm-1 and 3107 cm-1 peaks for some 

heterogeneous samples from Argyle; (a) shows I(B’) and (b) % degradation. 
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Figure 5.11 shows the relationship of the nitrogen aggregates against the relative intensity of 

the 3236 cm-1 peak. Unlike the Argyle samples, the 3236 cm-1 peak does not appear to grow in 

relative intensity with increasing [Nt], with no appearance of the distinct trend of an increase 

and then plateau. By contrast, there appears to be no correlation with any of the various nitrogen 

aggregates, with a range of relative peak intensities being displayed. 

 

  

Figure 5.10: plots of the various nitrogen aggregate concentrations against the area of the 3236 cm-1 peak for 

some heterogeneous samples from Diavik; (a) shows [NA], (b) [NB] and (c) [Nt]. Black squares represent DVK 

076, red circles are DVK 122, green triangles are DVK 127, dark blue diamonds are DVK 159 and light blue 

stars are DVK 160. 
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Displayed in Figure 5.12 is the relationship observed between the 3107 and 3236 cm-1 peaks 

in the Diavik samples. The figure displays the data with a trendline plotted and assorted 

statistics shown in the legend. A clear correlation between the intensities of the two peaks is 

observed, with a PMCC of 0.851. This behaviour is much more distinct than in the Argyle 

samples. 

Figure 5.11: plots of the various nitrogen aggregate concentrations against the ratio of the 3236 cm-1 and 3107 

cm-1 peak areas for some heterogeneous samples from Diavik; (a) shows [NA], (b) [NB] and (c) [Nt]. 
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Figure 5.13 shows the platelet-related features vs. 3236 cm-1 area for the Diavik samples. There 

is no observable trend in either plot, with each sample displaying a range of platelet features 

that seem independent from the 3236 cm-1 area. 

Figure 5.12: a plot of the relationship between the 3107 cm-1 and 3236 cm-1 peaks in the Diavik samples. This 

displays all points as one dataset, with a linear trendline plotted and some statistical values annotated on the 

graph, including the PMCC and R-squared value. 

Figure 5.13: plots of the platelet related features against the area of the 3236 cm-1 peak for some heterogeneous 

samples from Diavik; (a) shows I(B’) and (b) % degradation. 
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Figure 5.14 displays the platelet data against the ratio between the 3236 cm-1and 3107 cm-1 

peaks. Similarly to figure 5.13, there is no observable trend between these platelet features and 

the relative intensity of the 3236 cm-1 peak. 

5.3.3 Spatial variation within samples 

Alongside the results in the previous section, it can be useful to consider the way in which the 

spectral features vary spatially. Figure 5.15 displays the results for the Argyle samples 

considered above. All the samples contain a low nitrogen rim and a higher nitrogen core, as is 

commonly observed in diamonds from this locality (Speich, 2017). Consistent with the overall 

trend seen in the dataset above, a correlation can be seen with nitrogen, with the high nitrogen 

core often containing a more intense 3236 cm-1 peak, which decreases upon transition to the 

lower nitrogen rim. The trend is similar in the 3107 cm-1 peak intensity, with the exception of 

Arg 70 and 78, in which the intensity of the 3107 cm-1 feature shows an increase in the rim that 

is not observed in the 3236 cm-1.  

Figure 5.14: plots of the platelet related features against the ratio of the 3236 cm-1 and 3107 cm-1 peaks for 

some heterogeneous samples from Argyle; (a) shows I(B’) and (b) % degradation. 



 

154 

 

 

Figure 5.16 shows the same plots as 5.15 for the peak ratio. A similar trend can be observed, 

with a higher relative intensity of the 3236 cm-1 peak in the high-nitrogen core of the diamonds. 

This is consistent with the overall trends observed in the dataset of Argyle samples. The 

relationship between total nitrogen and a higher relative intensity can be seen more clearly than 

in figure 5.15.  

Figure 5.15: A series of plots showing the spatial variation in a number of IR studies of heterogenous diamonds 

from Argyle. The black lines represent nitrogen, with squares being [NA], circles being [NB] and triangles being 

[Nt]. The upside-down red triangles are the area of the 3107 cm-1 peak and the blue diamonds represent the 

area of the 3236 cm-1 peak. (a) is Arg 10, (b) is Arg 51, (c) is Arg 70, (d) is Arg 78 and (e) is Arg 128. 
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Figure 5.16: A series of plots showing the spatial variation in a number of IR studies of heterogenous diamonds 

from Argyle. The black lines represent nitrogen, with squares being [NA], circles being [NB] and triangles being 

[Nt]. The upside-down red triangles are the logarithmic ratio of the 3236 cm-1 and 3107 cm-1 peaks. (a) is Arg 

10, (b) is Arg 51, (c) is Arg 70, (d) is Arg 78 and (e) is Arg 128. 
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Figure 5.17 shows the same variables as Fig. 5.15, but for the Diavik samples. Immediately 

apparent is that the zonation of the Diavik samples is generally more complex than in the 

Argyle ones, with more convoluted trends being observed. For example, DVK 076 in Fig. 5.12a 

shows zonation that is complex enough to make it difficult to discern the number of individual 

growth zones present using the IR data alone, compared to the Argyle samples which show a 

much clearer core-rim relationship. The trend of a higher nitrogen core containing a more 

intense 3236 cm-1 feature is not present here, aside from in DVK 127. It is also clear how the 

3107 cm-1 and 3236 cm-1 features correlate more strongly in the Diavik samples than those 

from Argyle. An interesting feature can be seen in DVK 160, where both the 3107 cm-1 and 

3236 cm-1 peaks can be seen to have a much greater intensity at the boundary between the high 

nitrogen core and the low nitrogen rim. This behaviour is not observed in other samples. 
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Figure 5.18 displays the same data for the peak ratio. A number of points where the intensity 

of the 3236 cm-1 peak is zero are omitted for clarity. DVK 076 and DVK 159 clearly illustrate 

the complex zonation present in these samples. DVK 127 and 160 are the only samples 

displaying a similar relationship as observed in the Argyle samples, with a higher relative 

intensity in the high-nitrogen core of the diamond.  

Figure 5.17: a series of plots showing the spatial variation in a number of IR studies of a series of diamonds 

from Diavik. The black lines represent nitrogen, with squares being [NA], circles being [NB] and triangles being 

[Nt]. The upside-down red triangles are the area of the 3107 cm-1 peak and the blue diamonds represent the 

area of the 3236 cm-1 peak. (a) is DVK 076, (b) is DVK 122, (c) is DVK 127, (d) is DVK 159 and (e) is DVK 

160. 
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Figure 5.18: a series of plots showing the spatial variation in a number of IR studies of a series of diamonds 

from Diavik. The black lines represent nitrogen, with squares being [NA], circles being [NB] and triangles being 

[Nt]. The upside-down red triangles represent the logarithmic ratio of the 3236 cm-1 and 3107 cm-1 peaks. (a) is 

DVK 076, (b) is DVK 122, (c) is DVK 127, (d) is DVK 159 and (e) is DVK 160. 
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5.4 Discussion 

When considering the previous assertion that a C-H (and specifically, an acetylene C≡C-H 

bond (Iakoubovskii and Adriaenssens, 2002)) could be responsible for the peak, there appears 

to be no evidence within this data set consistent with this claim. As such, and given the presence 

of a correlation with nitrogen, it would seem appropriate to say that the most likely cause of 

the IR features is an amine-like stretching mode of some form rather than a C-H stretch. 

The results from the single spectra would seem to indicate that nitrogen is involved in the 

structure of the defect responsible for the feature, which is consistent with the feature being an 

N-H stretch (De Weerdt et al., 2003; Woods and Collins, 1983). However, the fact it does not 

seem to correlate strongly with any specific nitrogen aggregate, but instead with [Nt], suggests 

the potential of a complex defect structure compared to the A- and B-centres. This is 

emphasised by the fact that an intense 3236 cm-1 peak can be seen in diamonds that have a low 

aggregation state. This does not necessarily prohibit some sort of nitrogen aggregate being 

present in the defect structure but does suggest that the defect could be formed via a separate 

mechanism than the nitrogen aggregation sequence traditionally observed.  

When considering the assertion of a platelet centred VN4H stretch as a candidate for the peak, 

the relationship between [Nt] and the peak intensity could be deemed as evidence for this. 

However, a strong relationship is not observed between the concentration of B centres and the 

intensity of this peak. If this were indeed the defect responsible for this peak then a reasonable 

hypothesis would be that a higher concentration of B centres would lead to a higher intensity 

of the 3236 cm-1 feature, however a stronger correlation is observed between [Nt] and the peak 

intensity. This does not preclude this defect being the cause of this peak, as it could be the case 

that significant concentrations of the platelet centred VN4H decrease the observable B centre 

concentration enough to obscure the relationship that would be observed. 
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The results from the Argyle line scans paint a clear picture, with all samples appearing to follow 

a clear trend where the 3236 cm-1 feature grows in relative to the 3107 cm-1 as total nitrogen 

increases, before reaching a point and levelling off. This suggests that, whatever the defect 

structure, nitrogen is likely present in the environment. This further supports the claim of an 

N-H stretch being responsible for the feature. The fact that the trend appears also to be present 

when looking at [NB] may be of significance, potentially indicating a high-order nitrogen 

aggregate comprising part of the defect system. However, it is worth noting that the diamonds 

here contain aggregation states upwards of 90 %, and so this trend could simply be a 

representation of the trend observed in [Nt].  

The fact that the plateau is reached at differing nitrogen levels between samples, also lying at 

different intensities on the y-axis, suggest that there is another controlling factor at play in the 

relative abundance of the defects causing the two infrared features than can be studied via a 2D 

plot such as this one. This could potentially be the inclusion of another element in the defect 

structure that is invisible in the IR spectrum, such as a transition metal or an element such as 

boron, which, where observed, is commonly seen as a substitutional impurity with a 

characteristic IR signature (Gaillou et al., 2012; Mainwood, 1979). This could also be caused 

by the presence of nitrogen in another form than the aggregates measured here, such as a less 

common, possibly infrared-inactive species in the nitrogen aggregation process. The Argyle 

samples all contain highly aggregated nitrogen, which also suggests the presence of some form 

of higher-order nitrogen aggregate, present in significantly lower concentration than the 

nitrogen aggregates usually observed within diamonds.  

The general trend observed in the Argyle samples of a decreasing relative intensity of the 3236 

cm-1 peak as the platelet degradation increases within the samples can be considered as 

supporting evidence for the platelet-centred VN4H defect structure. A trend can also be seen of 

increasing 3236 cm-1 peak intensity with increasing I(B’), however, as discussed in the 
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introduction, the theorised quenching of the platelet peak causes some difficulty when 

assessing the hypothesis. This means that, although this could be considered tentative evidence 

to support the claim, further, more detailed studies of the platelets through methods aside from 

IR may be needed to confirm the defect structure. 

There are numerous species that have been observed in the EPR spectra of diamonds that have 

not yet been identified as being optically active that could potentially be responsible for a peak 

such as this. One such candidate is a series of nickel-nitrogen vacancy complexes known as the 

NEn centres (Johnston and Mainwood, 2003; Nadolinny et al., 1999). These centres are 

generally found within diamonds that have been grown in nickel-containing catalysts and then 

subsequently annealed. Whilst there has been observation of the coexistence of nickel-related 

defects and the 3236 cm-1 peak in diamonds (Iakoubovskii and Adriaenssens, 2002), there has 

not been concrete observation of nickel as a part of this defect structure. Detailed studies of 

these nickel related features are often undertaken using EPR, which suffers from a lack of 

spatial resolution compared to optical techniques – for example, the Ns
0 defect is one of the 

most widely studied EPR-active forms of nitrogen in diamonds, and yet obtaining spatial 

resolutions lower than 100 µm proves difficult (Newton, 2006). This is a potential barrier when 

attempting to study the spatial distribution of these NEn centres compared to IR studies, as the 

spatial variation achievable in IR is significantly higher. If this were able to be undertaken, it 

may be possible to gain further understanding as to whether or not a nickel-nitrogen related 

centre could be related to the defect structure causing the 3236 cm-1 feature. 

However, the samples from Diavik do not appear to show similar relationships, with no clear 

trend being observed other than a distinct correlation between the 3107 cm-1 and 3236 cm-1 

peaks. This does not support the conclusions drawn from the Argyle samples, but could be a 

consequence of the more complex zonation that is present within the Diavik samples. This 

zonation could potentially mask relationships that are clearer in two-stage diamonds such as 
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many of the Argyle samples. A number of the Diavik samples studied for spatial variation 

contain lower concentrations of aggregated nitrogen than those in the Argyle dataset. If the 

platelet centred VN4H defect is responsible for the peak, then the low concentrations of B 

centres could mask the relationship that would be expected between the B centre concentration 

and the 3236 cm-1 peak intensity. 

5.5 Conclusions and Future Work 

The results presented in this chapter shed some light on to the behaviour of this peak, although 

the problem is by no means completely solved. Whilst the results from one set of samples 

appear to paint a picture of the behaviour this defect exhibits when considered with other IR-

active defects, the inclusion of data from other localities merely muddies the waters. Work of 

this nature can provide suggestions as to the components of various defects, although 

complementary techniques are required in order to confirm the validity of the ideas that have 

arisen. 

The relationships observed between the various nitrogen aggregates and the peak intensity 

strongly indicate the presence of some form of nitrogen within the defect structure. The results 

from Argyle suggest the possibility of a higher-order nitrogen aggregate possibly being present, 

which does not preclude the recent assertion that a platelet-centred VN4H stretch is a candidate 

for the feature.  

The differences between the Argyle and Diavik samples – specifically the link between 

nitrogen aggregates in the Argyle samples and the 3107 cm-1 peak in the Diavik samples – are 

stark. This likely means that, whatever the requisite conditions are for growth of this defect, 

the mantle storage conditions vary enough across these two localities to lead to significantly 

different behaviour in the various intensities of the IR active features discussed within this 

chapter. 
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Future work into this peak and defect system could include studies of diamonds from other 

localities in order to expand the range of samples investigated and build a larger dataset to draw 

from. Building a larger library of diamonds could allow for relationships to be observed that 

are not able to be accounted for when studying smaller groups of samples. The use of EPR 

studies could also provide additional information, which could potentially suggest whether or 

not any of the myriad EPR-active features (such as the NEn centres discussed above) could be 

potential candidates for this defect, along with whether or not there are any other elements 

aside from nitrogen and hydrogen that could be included within the defect structure.   
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6. Conclusions and outlook 
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The aim of this work was to add to the knowledge of hydrogen within natural diamonds, a 

ubiquitous but elusive impurity. The most common observation of hydrogen within diamonds 

comes from the 3107 cm-1 peak in infrared spectroscopy, which arises from the N3VH centre. 

However, it has been suggested that there may be other IR-inactive forms of hydrogen within 

diamonds, and the amount of hydrogen present is poorly understood. Based upon the proton-

proton scattering measurements described within chapter 3 of this thesis, it appears that the IR 

features are not a valid representation of bulk hydrogen contents within diamonds, with the 

amount of hydrogen predicted by IR alone falling at least 20 times below the observed 

concentrations. This raises the question of where the hydrogen is located, which is a clear area 

for further study. A number of ideas such as extended defects, including voidites, were 

discussed as potential traps of IR-inactive hydrogen. These could signal directions for future 

work. 

The rest of this thesis has focussed on the use of IR to interrogate environments in which 

hydrogen is incorporated. This was achieved using IR alone in chapter 5; a minor H-containing 

feature at 3236 cm-1 was investigated, with some clues provided as to the underlying cause. 

The results here are somewhat consistent with a platelet-centred nitrogen aggregate as part of 

the defect structure. This, along with the discussion around chapter 3, further highlight the 

possibility of extended defects as candidates for hydrogen incorporation within diamonds.  

In chapter 4, evidence from IR and UV-vis was provided for the formation of N3VH centres 

through direct protonation of N3. The links between the N3 centre and N3VH likely plays a 

direct role in the nitrogen aggregation sequence in diamonds, and these findings indicate the 

potential of hydrogen to quench this process. This chapter explored using the relative 

abundances as indicators of hydrogen availability during different diamond growth events 

within samples. The relative abundance of N3 and N3VH centres can, from the methodology 
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discussed here, be taken forward as a way of investigating this across different samples and 

localities, essentially functioning as a hygrometer. 

Photoluminescence and IR studies were used to investigate diamond growth events in a number 

of samples in chapter 6. This used the coexistence of peaks in hydrogen and nickel-related 

features at zone boundaries to suggest a small cuboid period of growth between the standard 

octahedral growth zones within these samples. While not diagnostic, this highlights the 

valuable information that can be learned from the correlation and PL and IR features within 

diamonds. 

This project has advanced our understanding of hydrogen in natural diamonds and provided 

new ways in which hydrogen can be used to shed light on the geological conditions under 

which diamonds form and are stored within the mantle of the Earth. However, many questions 

around hydrogen remain unanswered, with a significant amount of work needed to fully 

understand this impurity in diamonds. Given the ubiquity of hydrogen as an impurity, it is 

likely that there is a lot still to be learned about the mantle from the incorporation of this light 

element into diamonds.  
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Appendix A – Supplementary material for 

Chapter 4 
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A.1 FTIR and UV-vis summary table 

This section contains a table summarising the results of the UV-vis and IR results for all samples studied as single UV-vis spectra. All values are 

presented to 2 d.p. 

Sample 
Thickness 
(mm) 

[N3] 
(ppm) 

[NA] 
(ppm) 

[NB] 
(ppm) 

[Nt] 
(ppm) 

3107 cm-

1 
intensity 
(cm-2) 

[N3VH] 
(Liggins) 
(ppm) 

[N3VH] 
(Coxon) 
(ppm) 

[N3] + 
[N3VH] 
(Liggins) 
(ppm) 

[N3] + 
[N3VH] 
(Coxon) 
(ppm) 

Aikhal 
2100P 1.87 3.51 119.48 231.23 350.71 3.15 0.63 0.35 4.14 3.86 

Arg 117 1.46 3.26 193.01 486.03 679.04 3.49 0.70 0.38 3.96 3.64 

Arg 118 1.2 1.77 361.42 354.16 715.59 0.09 0.02 0.01 1.78 1.78 

Arg 13 1.09 0.09 6.21 20.97 27.18 7.19 1.44 0.79 1.53 0.88 

Arg 136 1.7 0.00 1.68 207.62 209.30 12.36 2.47 1.36 2.47 1.36 

Arg 158 1.6 0.21 149.21 79.73 228.94 0.06 0.01 0.01 0.22 0.21 

Arg 16 1.12 3.83 239.24 591.83 831.07 3.59 0.72 0.39 4.55 4.22 

Arg 167 1.47 0.16 236.08 234.89 236.08 20.43 4.09 2.25 4.25 2.41 

Arg 25 1.13 0.03 5.36 22.88 27.12 3.81 0.76 0.42 0.79 0.45 

Arg 46 1.11 0.12 8.30 89.61 97.91 7.03 1.41 0.77 1.53 0.90 

Arg 56 1.06 0.11 14.42 112.80 127.22 10.83 2.17 1.19 2.27 1.30 

Arg 65 0.63 0.00 2.05 383.66 385.71 25.28 5.06 2.78 5.06 2.78 

Arg 72 1.09 0.30 63.69 77.81 141.50 3.86 0.77 0.42 1.07 0.72 

Arg 75 0.85 0.00 3.73 12.10 15.82 1.51 0.30 0.17 0.30 0.17 

Arg 78 0.69 0.09 0.00 769.49 769.49 43.83 8.77 4.82 8.86 4.91 

Arg 90 0.88 0.03 16.49 46.62 63.11 20.39 4.08 2.24 4.11 2.27 

Arg 92 0.87 0.17 0.00 39.38 39.38 3.05 0.61 0.34 0.78 0.51 

Arg 93 0.93 0.09 0.08 64.91 64.99 7.68 1.54 0.84 1.62 0.93 

DVK044 0.59 0.28 133.07 145.88 278.94 10.77 2.15 1.18 2.43 1.46 
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DVK076 0.44 0.00 643.36 59.94 703.31 18.12 3.62 1.99 3.62 1.99 

DVK127 1.07 0.14 820.18 34.72 854.90 25.32 5.06 2.78 5.21 2.93 

DVK143 0.54 1.00 111.92 178.99 290.90 5.40 1.08 0.59 2.08 1.60 

DVK159 0.55 1.38 25.02 485.62 510.64 25.37 5.07 2.79 6.45 4.17 

DVK160 0.39 3.90 139.74 506.30 646.03 11.83 2.37 1.30 6.27 5.20 

Mir 1164 0.54 0.34 758.42 113.12 871.54 1.34 0.27 0.15 0.61 0.49 

Mur 112 0.28 0.00 8.11 219.18 227.29 7.75 1.55 0.85 1.55 0.85 

Mur 235 0.85 1.48 238.88 304.21 543.09 3.53 0.71 0.39 2.19 1.87 

Mur 265 0.34 1.36 165.19 164.53 329.72 7.53 1.51 0.83 2.87 2.19 

Mur 83 0.34 0.25 124.77 90.22 214.99 1.48 0.30 0.16 0.55 0.42 

Uda 3009E 0.63 5.17 246.89 433.53 680.43 30.01 6.00 3.30 11.17 8.47 

Uda 3097 1.29 1.69 367.23 293.24 660.48 28.33 5.67 3.12 7.35 4.80 

Uda 3143P 0.71 2.68 63.58 338.31 401.89 5.06 1.01 0.56 3.70 3.24 
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A.2 Representative FTIR spectra 
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A.3 Representative UV-vis spectra 

  



 

174 

 



 

175 

 

  



 

176 

 

  



 

177 

 

  



 

178 

 

Appendix B – Supplementary material for 

Chapter 5
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B.1 FTIR results for single spectra 

This section contains the FTIR results for the single spectra used in chapter 5. All values are presented to 2 d.p. 

 

Sample 
[NA] 
(ppm) 

[NB] 
(ppm) 

[Nt] 
(ppm) 

Percent 
aggregation 

I(3107) 
(cm-2) 

I(3236) 
(cm-2) log(3236/3107) 

Platelet 
peak 
area 
(cm-2) 

Arg 31 14.65 267.58 282.23 94.81 3.72 0.02 -2.18 66.81 

Arg 70 0.58 403.48 404.07 99.86 33.21 1.70 -1.29 55.61 

Arg 71 5.24 28.51 33.75 84.47 10.29 0.16 -1.80 4.25 

Arg 81 4.97 53.61 58.57 91.52 15.39 0.33 -1.66 7.02 

Arg 83 17.21 1.04 18.25 5.70 10.37 0.02 -2.72 1.98 

Arg 86 0.00 63.44 63.44 100.00 7.25 0.20 -1.55 7.49 

Arg 103 46.04 421.46 467.50 90.15 10.78 0.77 -1.15 307.10 

Arg 128 0.00 709.46 709.46 100.00 14.48 1.78 -0.91 0.00 

Arg 143 95.90 111.90 207.80 53.85 10.72 0.12 -1.94 94.15 

Arg 164 1.62 39.53 41.15 96.07 6.15 0.13 -1.69 0.00 

DVK 76 708.49 19.18 727.67 2.64 28.43 2.26 -1.10 7.29 

DVK 98 1054.65 36.94 1091.59 3.38 34.71 5.78 -0.78 10.39 

DVK 115 82.65 282.72 365.38 77.38 18.73 0.81 -1.36 114.17 

DVK 122 1.76 263.38 265.14 99.34 16.27 1.00 -1.21 68.47 

DVK 127 759.64 66.33 825.97 8.03 36.05 2.57 -1.15 19.03 

DVK 131 21.99 224.99 246.98 91.10 15.92 0.91 -1.24 192.30 

DVK 135 0.00 431.51 431.51 100.00 11.95 0.83 -1.16 86.88 

DVK 159 20.70 471.40 492.09 95.79 48.29 3.07 -1.20 396.79 

DVK 166 50.68 577.95 628.64 91.94 45.82 2.62 -1.24 483.76 
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Mur 65 50.93 389.25 440.19 88.43 5.23 0.23 -1.35 338.75 

Mur 107 53.64 569.68 623.33 91.39 5.00 0.25 -1.30 438.87 

Mur 112 0.00 1437.96 1437.96 100.00 93.26 11.62 -0.90 1202.59 

Mur 122 1.42 261.53 262.95 99.46 21.74 0.32 -1.83 4.01 

Mur 141 181.20 352.38 533.58 66.04 11.76 0.57 -1.32 341.24 

Mur 173 222.09 253.12 475.22 53.27 46.81 1.56 -1.48 215.90 

Mur 182 406.83 340.17 747.00 45.54 12.11 0.39 -1.49 302.21 

Mur 265 169.65 227.48 397.13 57.28 6.84 0.13 -1.72 218.70 

Mur 279 13.92 388.15 402.07 96.54 20.78 0.51 -1.61 0.00 

Bun 9 315.01 372.34 687.35 54.17 3.46 0.15 -1.37 267.96 

Bun 12 187.74 177.85 365.59 48.65 4.67 0.20 -1.37 138.40 

Bun 17 57.32 235.01 292.33 80.39 9.20 0.82 -1.05 190.49 

Bun odd 287.18 818.13 1105.32 74.02 29.39 5.09 -0.76 1072.18 
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B.2 Representative spectra 

Single spectra were obtained and are presented as corrected. 
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Appendix C – Photoluminescence studies 

and attempts at correlation with IR 
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This appendix covers the results of a series of photoluminescence studies on some of the 

diamonds presented within the body of this thesis. Along with IR line scans, these PL 

experiments provide some minor indications of cuboid growth events within the growth history 

of the crystals. 

As was discussed in Section 1.2.6, the growth mechanism of natural diamonds is understood 

to be a layer-by-layer crystallisation. This mechanism leads to the presence of internal growth 

structures which can be complex, containing any number of different growth zones. The most 

commonly observed growth mechanism is octahedral growth. However, there are other 

mechanisms observed, such as non-faceted growth on curved surfaces, which averages out to 

a mean orientation defined by simple cubic crystal axes, e.g. {100} (Bulanova, 1995), but 

locally could be inclined at up to 30 ° from true cube orientation. This non-faceted growth is 

known as ‘cuboid growth’. 

The features associated with hydrogen in natural diamonds are often found associated with 

cuboid growth within diamonds – see section 1.2.3.2 for details. This has been observed in both 

pure cuboid and pure cubic crystals (Welbourn et al., 1989), as well as having been observed 

in the cuboid sectors of mixed-habit diamonds, such as the visually striking growth sectors in 

asteriated diamonds (Rondeau et al., 2004). However, they cannot serve as a unique fingerprint 

of cuboid growth due to their prevalence in other growth environments as discussed at length 

within this thesis, along with their presence within the fibrous structures of diamond coat 

(Chrenko et al., 1967). 

Features related to transition metals – including the focus of this study, nickel – have been 

observed in diamonds for many years (Yelisseyev and Kanda, 2007). Due to the common use 

of nickel within the growth media for HPHT diamond, nickel is often found as an impurity 

within synthetic samples (Collins, 2000; Kanda and Watanabe, 1999). The effect of nickel on 
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nitrogen aggregation within HPHT samples has also been studied (Fisher and Lawson, 1998). 

Nickel has even been proposed as being responsible for the optical features of chameleon 

diamonds (Fritsch and Delaunay, 2018). One common form of nickel incorporation is as a 

series of atomic scale defects containing both nickel and nitrogen, termed the NEn series. Much 

of the detailed knowledge of these complexes comes from studies of synthetic HPHT diamonds 

(Wentorf, 1971). The first of the series, named NE1, NE2 and NE3, exhibit a characteristic 

EPR signal as well as a bright yellow PL signal under near-UV illumination, containing a 

number of vibronic systems already well known (Nadolinny and Yelisseyev, 1994). Further 

EPR investigations expanded this family, adding NE5 – NE8 to the family (Nadolinny et al., 

1999, 1997; Yelisseyev and Nadolinny, 1995). These Ni-N complexes are all derived from the 

basic structure of NE4, displayed in figure C.1. The defining feature of this family of defects 
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is a Ni ion occupying a distorted site at the centre of a carbon divacancy (Lang et al., 2004). 

These vacancies allow for the inclusion of the large Ni ion without major distortion of the host 

diamond lattice. 

Through the comparison of EPR and optical properties in certain samples, the optical analogues 

of the NE1 – NE3 centres have been identified, aided by PL-excitation spectroscopy and decay-

time measurements in order to distinguish between overlapping vibronic systems. These are 

presented in table C.1. 

Figure C.1: A schematic of the NE4 defect structure, shown in projection on a (110) plane. This consists of a 

chain of carbon atoms (solid black circles), two carbon vacancies (dashed circles) and the Ni ion (open square) 

in between the sites of the carbon vacancies. Hatched circles represent carbon atoms distant a0/2√2 above and 

below the plane. The six nearest neighbours are indicated by the numbers 1 to 6 and are represented as 

undistorted from their normal positions in the lattice for ease of visualisation.  
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A variety of other PL features have been observed in diamonds and related to the presence of 

nickel within the crystal. One worthy of discussion is found at 613 nm (sometimes referred to 

as the 612 nm system). This has been observed and related to nickel in the past within natural 

samples (Lindblom et al., 2005), including purple diamonds from Siberia (Titkov et al., 2008). 

This PL feature has also been observed in polycrystalline diamonds from the Mengyin 

kimberlite in China (Yang et al., 2012) and samples from Yakutia, alongside other nickel-

related features such as the 523 system (Stepanov et al., 2017). Among diamonds from the Mir 

kimberlite, the peak was observed in high-nitrogen IaB stones. However, it was also observed 

in colourless diamonds with low A and B centre content (Yuryeva et al., 2017), which 

potentially poses an issue when considering the optical system as a nickel- and nitrogen-related 

feature. 

Given the preferential incorporation of nickel under certain growth conditions, the study of the 

distribution of nickel-related features within diamonds could provide an insight into the 

prevalence of unique diamond growth such as cuboid growth. Along with this, the higher 

observed intensity for hydrogen-related IR features, specifically the 3107 cm-1 centre, can 

allow for further study into these conditions. A correlation between high 3107 cm-1 intensity 

and nickel-related features, while likely not diagnostic, could provide indications as to periods 

of cuboid growth within the formation of specific diamonds.  

Table C.1: The names and ZPLs of the optical analogues corresponding to the EPR centres NE1 – NE3. 
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Methods 

 Samples 

Samples were selected based on existing IR studies with variable intensity of the 3107 cm-1 

peak. This included several samples with a peak observed in the 3107 cm-1 intensity at the 

boundary between growth zones within the diamond. 

 FTIR 

A full write-up of the methods used to collect FTIR data can be found in chapter 2. This section 

contains high quality line scans. 

Photoluminescence (PL) spectroscopy 

Photoluminescence (PL) spectroscopy is a non-destructive optical technique in which a 

material is illuminated by a light source, and the resulting emission is collected and recorded 

as a plot of emitted intensity against wavelength. A perfect, defect-free diamond would be 

transparent to light in the visible to near-UV spectrum due to its high band gap energy of 5.5 

eV, however, impurities can introduce defect states within this band gap, and can allow 

transitions to take place. 

PL maps were collected using a Thermo Scientific DXRi Raman Microscope, which has the 

ability to use several modular lasers. The possible excitation wavelengths are 455 nm, 532 nm, 

633 nm and 780 nm. Measurements were collected with spatial resolutions of 3 – 10 µm using 

a typical collection time of 8 hours for each excitation wavelength in order to increase the 

signal-to-noise ratio. The availability of different excitation wavelengths is useful when 

determining whether or not a spectral feature is a Raman or PL feature; a Raman feature, such 

as the intrinsic diamond peak at 1332 cm-1, is present regardless of the excitation wavelength 

used, whereas a PL feature will only be present if a sufficient excitation wavelength is used. 

The live spectrum feature was used to determine sufficient experimental parameters in order to 
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maximise signal without saturating the detector. Peaks observed were fitted with a linear 

baseline within the OMNICxi software in order to produce maps of intensity of the relevant 

feature. 

Combining IR and PL measurements 

In order to assess the distributions in various optical features across different techniques efforts 

must be made to ensure that the spectra are taken across the same place in the diamond. In this 

work, microscopy images were used to make sure that the measurements were collected on the 

same face of the diamond. Line scans were collected in IR, and then PL measurements were 

collected along the same area of the diamond. Features such as the edge of the diamond and 

visual inclusions were used to identify the same areas and ensure that they were studied across 

both techniques. The uncertainties involved in this have been discussed in chapter 4 

surrounding the correlation of IR and UV-vis line scans; the same uncertainties are present here. 

As PL is an inherently non-quantitative technique, some of these uncertainties are reduced by 

collecting PL maps around the IR line scan instead of attempting to match specific points. 

There are still uncertainties associated with using data from two separate techniques, but a 

qualitative evaluation of trends is possible.  
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Results 

Figure C.2 presents the results of some optical studies of DVK 143. Fig. C.2a shows a plot of 

the 3107 cm-1 intensity as you move from the rim of the diamond to the core. Aside from the 

high intensity in the core, a region of higher-intensity 3107 cm-1 can be observed in the middle, 

corresponding to the boundary between a high-nitrogen core and a lower-nitrogen rim. C.2b 

displays a map of the 613 nm feature (discussed in section 6.1) along the path of the IR line 

scan. This feature shows a strong increase in intensity at the edges of the 3107 cm-1 rich zone. 

C.2c shows another PL feature at 576 nm which has been observed in nitrogen-containing 

natural diamonds (Zaitsev, 2013), which shows a similar enrichment towards the edges of the 

3107 cm-1 rich zone. The increased intensity of these PL features does not directly correlate 

with the increased 3107 cm-1 intensity but instead appears to be present towards the edge of the 

3107 cm-1 rich zone. 

Figure C.2: A selection of optical studies of DVK 143. (a) A map of the area of the 3107 cm-1 feature. (b) A map 

of the 613 nm feature (associated with the S2 and S3 defects) along the path of the FTIR line scan. (c) A map of 

a PL feature observed at 576 nm in nitrogen-containing natural diamonds. 
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Figure C.3 shows data for DVK 076. C.3a is the variation in 3107 cm-1 area. Clearly visible is 

the complex zonation present in this sample. There is significant difficulty distinguishing 

between growth zones through the IR results alone. C.3b shows a map of a feature observed at 

710 nm under 633 nm excitation. This feature could be one that has previously been reported 

in synthetic diamonds grown using nickel catalysts, and has been correlated to other nickel 

containing features (Yeliseyev and Nadolinnyy, 1992; Yelisseyev and Nadolinny, 1995). C.3c 

shows a map of a ZPL at 496 nm under 455 nm excitation that is associated with the S3 defect 

(Nadolinny and Yelisseyev, 1994; Zaitsev, 2013). The 710 nm feature can be seen to spike in 

intensity at areas that also contain spikes in 3107 cm-1 intensity. There also appear to be peaks 

at other points that do not correspond to peaks in the 3107 cm-1 intensity. The S3 defect can be 

seen to behave similarly at two points, indicated by the outer dashed lines on the diagram. 

However, the S3 defect appears to have a higher intensity outside of these regions. The complex 

zonation in the IR makes visualisation of these trends difficult. The enrichment towards the 

edges of the spikes in 3107 cm-1 intensity observed in DVK 143 are not observed here. 

Figure C.3: a selection of optical studies from DVK 076. (a) A map of the area of the 3107 cm-1 feature (b) A 

map of a PL feature observed at 710 nm along the path of the FTIR line scan (c) A map of the 496 nm feature 

(associated with the S3 defect) along the path of the FTIR line scan.  
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Figure C.4 displays optical studies of a621-17-02. C.4b shows the distribution of a feature at 

760 nm under 633 nm excitation that has previously been observed in natural type I diamonds 

(Solin, 1972). C.4c displays a map of the 467 nm feature under 455 nm illumination. This 

feature has been associated with the S3 centre, and is related to the NE1 and NE2 centres 

(Nadolinny et al., 1997; Yelisseyev and Nadolinny, 1995). Both of these features show a 

significant increase in intensity across the region with the largest 3107 cm-1 intensity. There is 

also inhomogeneity in intensity within the enriched zones of both features, suggesting 

complexity in the structure of the zone. 

  

Figure C.4: a selection of optical studies from a621-17-02. (a) A map of the area of the 3107 cm-1 feature (b) A 

map of a PL feature observed at 760 nm along the path of the FTIR line scan (c) A map of a feature at 467 nm 

along the path of the FTIR line scan, which is associated with the S3 centre. 
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Figure C.5 shows results for a621-02-01. The map in C.5a displays the spatial variation in the 

ZPL at ~ 503 nm under 455 nm illumination. This could be the H3 centre, which is associated 

with the N2V
0 defect (Zaitsev, 2013). However, the ZPLs of the H3, 3H (a characteristic centre 

present in irradiated diamond (Zaitsev, 2013)) and S1 centre are all at ~ 503 nm. This makes 

distinguishing between the different centres difficult, and in many cases impossible. The H3 is 

often a dominant feature, but it is not possible to state with certainty which of the features is 

being observed here. Fig. C.5c shows a broad luminescence observed from 650 – 750 nm under 

633 nm excitation. This broad luminescence corresponds to the core of the sample where there 

is low 3107 cm-1 and H3 intensity. The two bands of H3 intensity at the left of C.5b correspond 

to a spike in the 3107 cm-1 intensity. These are indicated by the dashed lines on the diagrams. 

By contrast, the region on the right of C.5a with an increased 3107 cm-1 intensity compared to 

the core of the diamond does not see a similarly enriched 503 nm absorption. This is indicative 

of a complex growth history. 

Figure C.5: a selection of optical studies from a621-02-01. (a) A map of the area of the 3107 cm-1 feature (b) A 

map of what is likely the ZPL of the H3 defect at 503 nm along the path of the FTIR line scan (c) A map of a 

broad luminescence observed under 633 nm excitation along the path of the FTIR line scan. 
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Figure C.6 displays the results for DVK 044. C.6b shows the variation in the absorbance from 

the feature at 503 nm under 455 nm excitation. This feature is likely either the H3 centre, S1 

centre or 3H centre (Zaitsev, 2013). The 3107 cm-1 intensity is high in the core of the diamond. 

The intensity also peaks at the boundaries between the core and the rim, indicated by the lines 

on the diagram. These peaks coincide with regions with significant H3 intensity, although there 

is negligible H3 intensity in the core. The H3 luminescence is more diffuse than the peaks 

observed in the 3107 cm-1 intensity. 

  

Figure C.6: a selection of optical studies from DVK 044. (a) A map of the area of the 3107 cm-1 feature (b) A 

map of what is likely the ZPL of the H3 defect at 503 nm along the path of the FTIR line scan. 
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Figure C.7 shows the results for DVK 122. C.7b shows a map of a feature observed at 572 nm 

under 532 nm illumination. This could be either a feature observed in natural diamonds which 

exhibit yellow luminescence (Field, 1992; Zaitsev, 2013) or a line previously observed in 

synthetic diamonds grown in a Ni-containing catalyst (Nadolinny et al., 1999; Zaitsev, 2013). 

The core shows significant intensity of this feature, whereas the rim does not. This coincides 

with the trend observed in the 3107 cm-1 defect, which has a significantly higher intensity in 

the core of the sample. C.7c shows the variation in the intensity of the 503 nm feature under 

455 nm illumination (Zaitsev, 2013). There is appreciable intensity throughout the majority of 

the diamond, but there is a noticeable peak in the intensity at the rim on the right-hand side of 

the diagrams.  

Figure C.7: A selection of optical studies from DVK 122. (a) A line scan of the area of the 3107 cm-1 feature (b) 

A map of a feature at 572 nm under 532 nm excitation (c) A map of what is likely the ZPL of the H3 defect at 

503 nm under 455 nm excitation along the path of the FTIR line scan. 
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Figure C.8 displays the results for DVK 160. C.8b shows a map of the intensity of a feature 

observed at 656 nm under 633 nm illumination. This could be a feature previously observed in 

synthetic diamonds grown in  nickel- and silicon-containing media (Sittas et al., 1996; Zaitsev, 

2013). Figure C.8c then shows the variation in the intensity of the H3 feature at 503 nm. The 

656 nm defect shows a high intensity in the core, along with two thin bands of increased 

intensity corresponding to the two peaks observed in the 3107 cm-1 intensity. By contrast, the 

H3 defect is not present in the core of the diamond, or the boundary between the growth-zones. 

Instead, the H3 feature is only observed in the rim of the diamond. 

 

Figure C.9 shows the data for Mur 265. The IR shows a high 3107 cm-1 intensity in the core, a 

low intensity in the rim and two peaks at the zone boundary. C.9b shows a feature at 467 nm 

under 455 nm illumination, that has a high intensity in the core, along with smaller peaks 

Figure C.8: A selection of optical studies from DVK 160. (a) A line scan of the area of the 3107 cm-1 feature (b) 

A map of a feature at 572 nm under 532 nm excitation (c) A map of what is likely the ZPL of the H3 defect at 

503 nm under 455 nm excitation along the path of the FTIR line scan. 
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corresponding to the zone boundaries. This is likely the same feature observed in a621-17-02, 

which has been associated with the S3 centre (Nadolinny et al., 1997; Yelisseyev and 

Nadolinny, 1995). C.9c shows the intensity of two features, observed at 658 and 788 nm under 

633 nm illumination. The 788 nm feature could be a feature previously observed in natural 

diamonds of mixed cubo-octahedral habit that correlates with the S2 centre (Zaitsev, 2013), 

and therefore may be nickel related. The 658 nm feature could be one observed in synthetic 

diamonds grown in Ni-containing media (Sittas et al., 1996; Yelisseyev and Nadolinny, 1995). 

These show a narrow band of intensity at the zone boundary. Fig. C.9d shows a narrow band 

of intensity of a feature at 613 nm under 532 nm excitation, corresponding with a zone 

boundary. This could be a feature that has previously been associated with the S2 and S3 

centres (Zaitsev, 2013). 

  

Figure C.9: A selection of optical studies from Mur 265. (a) A line scan of the area of the 3107 cm-1 feature (b) 

A map of the distribution of a feature at 467 nm under 455 nm illumination (c) A map of the distribution of two 

features: a peak at 658 nm and a peak at 788 nm, both under 633 nm illumination (d) A map of a feature at 612 

nm under 532 nm excitation along the path of the FTIR line scan. 
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Table C.2 summarises the results from this work. This displays the wavelength of the features 

observed, and their locations within the diamond. This also shows the relative intensity of the 

3107 cm-1 peak at the same locations within the diamonds. The * for DVK 076 indicates that 

the intensity of the 3107 cm-1 peak at the rims is asymmetric, with one side containing high 

intensity and the other low. A † indicates that the exact identity of the centre responsible for the 

luminescence is uncertain. 

  

Locality Sample 3107 cm-1 intensity (relative) PL features observed 

Core Boundary Rim Core Boundary Rim 

Orapa, 

Botswana 

A621-02-

01 

 

A621-17-

02 

Low 

 

 

High 

High peaks 

 

 

Low 

High 

 

 

Moderate 

633 nm  

 

 

S3, 467 

nm 

H3† 

 

 

None 

None 

 

 

None 

Diavik, 

Canada 

DVK 044 

DVK 076 

 

DVK 122 

 

DVK 143 

 

DVK 160 

High 

High 

 

High 

 

High 

 

Low 

High peak 

Complex 

 

Moderate 

 

Moderate 

peak 

High peaks 

Low 

High* 

 

Low 

 

Low 

 

Low 

None 

710 nm 

 

572 nm, 

H3† 

None 

 

656 nm 

H3† 

710 nm, 496 

nm 

H3† 

 

613 nm, 576 

nm 

656 nm 

None 

None 

 

H3† 

 

None 

 

H3† 

Murowa, 

Zimbabwe 

Mur 265 High Moderate 

peaks 

Low 467 nm 467 nm, 658 

nm, 788 

nm, 612 nm 

None 

Table C.2: A summary of the results from this work, showing the locality of each sample and the PL features 

observed in the core and rim, along with the boundary between the core and rim. Features that have been 

related to nickel or cuboid growth are highlighted in bold italics. The * indicates asymmetry in the distribution 

of the 3107 cm-1 intensity. The † indicates that, while represented as the H3 centre, this could potentially be 

either the S1 or 3H centre. 
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Discussion and Conclusions 

The samples studied here primarily show nickel-related features in the PL spectra. Using the 

known relationship between nickel and cuboid growth, a correlation between these features 

and the intensity of the 3107 cm-1 centre discussed at length within this thesis could be an 

indicator of cuboid growth. 

All diamonds studied here contain very heterogenous distribution of the PL features studied. 

This highlights the complex zonation that can provide a substantial amount of information on 

growth history. The significant variation in PL intensity reinforces that studies using single PL 

spectra encompassing a whole diamond are insufficient to truly understand the growth 

conditions of a significant portion of diamonds, with a large amount of information potentially 

being obscured. 

The diamonds presented here all show features that have been previously related to the 

presence of nickel within the diamond lattice. As the diamonds are from several different 

localities, this supports the idea that nickel is present in the growth media of diamonds from 

many places across the world. While there are many other transition metals that have been 

introduced into synthetic diamond, only a few, including chromium, cobalt and nickel have 

been observed as optical centres (Yelisseyev and Kanda, 2007; Zaitsev, 2000). This does not 

mean that other metals such as iron are not incorporated into the diamond lattice. It may be the 

case that any iron-based defects are optically inactive and diamagnetic, meaning that they 

cannot be observed with ease. This could lead to ideas of an overabundance of nickel in 

diamond-forming fluids. As such, it is important to note the possibility of an oversampling of 

nickel due to the ease at which it is incorporated into optical centres. 

DVK 044, 076, 143 and 160 and Mur 265 all contain peaks in 3107 cm-1 intensity at the 

boundary between growth zones. In these diamonds, this corresponds to a similar peak in 

nickel-related features. The exact nature of the nickel-related feature observed can vary, with 



 

202 

 

a number of different centres being seen in the PL spectra. This suggests the possibility of a 

small period of cuboid growth in between two zones of standard octahedral growth. The fact 

that diamonds often contain zones of different ages and growth conditions likely indicates that 

the conditions under which an individual diamond forms can change significantly, with 

geologically significant periods of time between growth events. Between these growth events 

it is possible that there are periods of diamond growth followed by resorption events that are 

not recorded in the diamond that is exhumed to the Earth’s surface. 

The zones show different behaviour in terms of the shape of the luminescence at the boundary. 

In DVK 143, the Ni-related features appear to grow in sharply at the edges of the 3107 cm-1-

rich zone before decaying as you move away from this region. This could suggest a small 

octahedral growth event captured between small regions of cuboid growth indicated by the Ni-

related features. In the majority of samples, this is not the case. For most samples, the Ni-

related features appear to grow synchronously with the 3107 cm-1 peak. This more strongly 

suggests the possibility of a small period of cuboid growth contained between octahedral 

growth zones.  

It is not possible from this work to determine the exact sequence of growth events. For example, 

it could be possible that there are three separate growth sequences: an octahedral event, some 

cuboid overgrowth, succeeded by another octahedral growth event. It is also possible that there 

is a slight discontinuity between the crystal structures of the two octahedral events. In this case, 

it might be expected that there could be a small period of defective growth in between these 

two zones. Any defective growth could lead to the preferential incorporation of impurities such 

as nickel or hydrogen. Both of these scenarios are possible, and it is difficult to determine 

which is more likely. 



 

203 

 

The variation in exact behaviour of the nickel-related luminescence in the different samples is 

distinct. For example, a number of the diamonds such as DVK 122 and a621-17-02 exhibit 

nickel-related features in the core of the diamond, and DVK 143 shows Ni-related features that 

grow in at the edges of the H-rich zone. This reinforces that these defects are not diagnostic of 

cuboid growth and can be present in other areas of the diamonds. 

A number of the diamonds here display what is most likely the H3 centre in their PL spectra. 

This is observed all throughout DVK 122, at the zone boundary in a621-02-01 and DVK 044 

and in the rim of DVK 160. This feature is the most common naturally occurring optical feature 

in nitrogen-containing diamonds (Zaitsev, 2013). This is often accompanied by the N3 centre, 

which is discussed at length in chapter 4. The N3 centre could not be studied here due to the 

unavailability of a laser with a sufficient excitation wavelength. The H3 defect has been thought 

to decorate individual dislocations (Lang, 1977; Zaitsev, 2013). The incorporation of 

dislocations decorated with H3 centres could potentially explain the complex zonation of this 

luminescence within a621-02-01. In synthetic diamonds, the H3 defect has also been observed 

to form preferentially in {100} growth sectors (Dismukes, 1993; Malogolovets et al., 1979; 

Zaitsev, 2013). This could suggest that the presence of H3 in the zone boundaries may be 

another indicator of periods of cuboid growth. Once again, this cannot be considered diagnostic, 

but the combination of several features that are preferentially incorporated in cuboid zones 

provides a stronger suggestion of the presence of this defective growth event. 

It is important to emphasize, as has been stated previously, that the presence of nickel and 

hydrogen concurrently is not necessarily diagnostic of cuboid growth, but merely a suggestion. 

The defect distributions and speculations here do, however, provide suggestions of 

explanations as to why these defects are found in such thin bands of increased intensity within 

the diamonds studied here. It is also clear that this is not the case in many diamonds. Those 

samples presented here are a selection of a larger dataset, many of which were not observed to 
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contain any significant luminescence features. This is perhaps expected for diamonds 

containing homogenous IR features, indicative of only one growth event. It is likely that the 

conditions leading to small periods of defective, possibly cuboid growth are unique, and that 

they can occur across a wide range of localities. 

This work has presented optical studies of eight inhomogeneous diamonds from three localities 

and attempted to correlate the 3107 cm-1 peak intensity with PL centres. A variety of different 

PL features have been observed, with all diamonds exhibiting luminescence from centres that 

have previously been linked to the presence of nickel within the crystal. 

Many of the diamonds show peaks in 3107 cm-1 intensity at the boundary between growth 

zones. This correlates with an enhanced intensity in many of the nickel-related features. Due 

to the known preferential incorporation of both nickel-related features and the 3107 cm-1 peak 

into cuboid growth zones, this is a possible indication of a small period of cuboid growth 

between growth zones in these diamonds. 

While not diagnostic, a rationale has been discussed for the preservation of a small cuboid 

growth event in between periods of standard octahedral growth. The exact nature of this is 

likely to vary between samples, as indicated by the range of behaviours exhibited by the Ni-

related luminescence features. The correlation of PL and IR features can provide an additional 

source of information into diamond growth events. Further study could expand the dataset and 

examine additional inhomogeneous diamonds that exhibit a peak in 3107 cm-1 intensity at 

growth zone boundaries. This could validate the ideas discussed here and use the study of 

hydrogen to further probe diamond growth events. 
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