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Abstract 

Emerging outbreaks of airborne pathogenic infections worldwide, such as the current Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, have raised the urgency 

to explain the parameters affecting the survival of airborne microbes in order to develop 

effective infection control strategies. Conventional techniques for investigating bioaerosol 

survival in vitro have systemic limitations that prevent the accurate representation of conditions 

that these particles would experience in the natural environment. Therefore, some basic 

questions about the fundamental mechanisms influencing the airborne transmission of disease 

remain unknown. 

This thesis describes a laboratory-based approach to explore the synergistic interactions 

between the physicochemical and biological processes that impact the survival of airborne 

microorganisms. This novel experimental strategy combines two complementary techniques 

for probing aerosol particles directly: the CK-EDB (Comparative Kinetics Electrodynamic 

Balance) and CELEBS (Controlled Electrodynamic Levitation and Extraction of Bio-aerosol 

onto a Substrate) technologies. Both are based on the electrodynamic levitation of charged 

droplets and utilize droplet-on-demand dispensers to produce droplets with high monodisperse 

size distribution. By using the CK-EDB, it is possible to measure the changes in the 

physicochemical properties of the bioaerosol droplets during and after evaporation with the 

aim to ultimately interrelate this information to the biological decay responses measured by the 

CELEBS system. 

Therefore, the presented methodology provides a detailed understanding of the processes 

taking place from aerosol droplet generation through to equilibration and biological decay in 

the environment, elucidating decay mechanisms not previously described. The impact of 

evaporation kinetics, solute hygroscopicity and concentration, particle morphology, 

evaporative cooling, surface enrichment and equilibrium particle size on the airborne survival 

of microorganisms are reported, using Escherichia coli (MRE-162) as a benchmark 

microorganism. This new approach can enable direct studies at the interface between 

aerobiology, atmospheric chemistry, and aerosol physics to determine the main mechanisms of 

death of airborne pathogens under the unique microphysical properties of the aerosol droplets. 
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Chapter 1  

 

Introduction 

As of January 1st, 2021, near 2 million deaths have been confirmed due to the novel coronavirus 

pandemic which emerged in China in late 2019. Originally, direct and respiratory droplet 

transmission had been indicated as the main transmission pathways. However, there is now a 

growing scientific consensus that the airborne transmission of Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2) (via aerosols) can play a more significant role than 

initially considered, presenting enormous challenges for effective control over transmission 

and spread.1–8 Therefore, knowledge of the fundamental mechanisms that define the 

transmission of airborne pathogens is critical to limit the risk of infection and develop 

mitigation strategies to prevent the spread of disease. 

The dynamics involved in the airborne transmission of disease concerning human, animal or 

plant health relies on the ability of pathogens to survive aerosol transport and, subsequently, 

cause infection when interacting with a host. The length of time airborne microorganisms 

remain infectious in the aerosol phase is a function of a wide range of variables (e.g. 

atmospheric, microbiological, compositional, etc.) that affect their viability/infectivity9 and, 

therefore, have the potential to impact the dissemination of the disease outbreak. 

The presented thesis reports the development and utilisation of a new approach to probe the 

fundamental mechanisms that define the transmission of airborne pathogens. The work 

presented in here includes experimental measurements of mass and heat transfer from liquid 

aerosol droplets combined with airborne survival data under a wide range of environmental 

conditions, droplet compositions and microbiological conditions, to demonstrate the 

importance of understanding the complex interrelationship between aerosol microphysics and 

bioaerosol survival. Specifically, our data consists of the correlation of a wide range of 
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physicochemical properties (e.g. evaporation dynamics, hygroscopicity, droplet morphology, 

compositional changes, etc) with airborne viability decay to measure the impact of aerosol 

microphysics on airborne bacterial survival. The approach developed, named TAMBAS 

(tandem approach for microphysical and biological assessment of airborne microorganism 

survival), was used allowing the determination of the main mechanisms of death of 

microorganism under the unique microphysical properties of the aerosol droplets.10 As a proof 

of concept, Escherichia Coli (E. coli) MRE-162 was primarily selected as the microorganisms 

of choice due to its safely use in a non-containment environment as it has been previously 

utilized with different systems in bioaerosol studies which makes it a suitable benchmarking 

organism. Additionally, E. coli MRE-162 was also chosen as a representative bioaerosol due 

to its high persistence in hotspots for bioaerosol generation, such as toilets, water waste 

treatment plants, and polluted rivers where a severe risk of infection for humans via the airborne 

route is presented.11 This thesis aims to describe a novel framework to predict the survival of 

airborne pathogens as a function of fundamental mechanisms characterized by a range of 

biological, microphysical, environmental and aerosol-generation processes allowing us to 

better understand the transmission of airborne infection.  

The present chapter focuses on the general motivation for studying the bioaerosol survival in 

the context of airborne disease outbreaks, introducing some relevant facts from previous and 

the current SARS-CoV-2 pandemic, before describing the key mechanisms and bioaerosol 

properties behind the spread of airborne transmission of disease which leads to the different 

types of control measurements. Moreover, a summary of the conventional techniques for 

conducting measurements of bioaerosol viability is also presented.  
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1.1 An Overview of Bioaerosols 

Bioaerosols are a suspension of airborne particles emitted directly from the biosphere into the 

atmosphere which represent a quarter of the total atmospheric aerosols.12 These airborne 

particles are composed of  different biological units and structures, including living or dead 

organisms (e.g. bacteria, viruses, algae), dispersal units (e.g. pollen, fungal spores) and 

fragments of plants, animal matter and other microorganisms (e.g. plant debris,  brochosomes 

and endotoxins).13 The term primary biological aerosol (PBA) refers to airborne particles 

emitted from a biological source whereas secondary bioaerosols are the result of atmospheric 

oxidation and condensation of gaseous volatile organic compounds emitted from a biological 

source.14 Bioaerosol particles can be released into the atmosphere from natural (e.g. sea-sprays) 

or anthropogenic (e.g. agricultural practices) sources, both actively (e.g. viruses emitted by 

sneezing) or passively (e.g. wind-driven pollen emissions). The composition and concentration 

of microorganisms in bioaerosol particles depend on the source and the dispersion in the air 

while they are airborne, which will be affected by their physical properties and the 

environmental parameters that they encounter in the air until deposition.15 

Primary bioaerosol particles can cover a broad range of sizes from nanometers up to about 

hundreds of micrometres as shown in Figure 1-1. Large bioaerosol particles (> 1µm diameter) 

belong to the coarse mode and have a short lifetime in the atmosphere due to their rapid 

sedimentation, while small bioaerosol particles are found in the nucleation and accumulation 

modes (from 0.001 to 1 µm ) and remain airborne for extended periods. Particle size is an 

important factor that determines not only the particle’s lifetime in the atmosphere but also their 

deposition in the respiratory tract,16 the survival of microbes enclosed in aerosol particles,17 as 

well as the likelihood of a biological particle to become and remain airborne.12 

The role of bioaerosols is especially important in human health, atmospheric and ecological 

impacts.15 This thesis focuses on bioaerosols containing only viable (capable of living) 

microbes and the interrelationship between environmental, microbiological and compositional 

factors governing their survival that are associated with the spread of airborne infectious 

respiratory diseases. 
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Figure 1-1. Scale describing the size ranges of different biological units and bioaerosols with exemplary insets 

images: (a) protein, (b) virus, (c) bacteria, (d) fungal spores, and (e) pollen. This figure was reprinted with permission 

from Refs.13. 

 

1.2 Aerobiology: The Study of Airborne Biological Particles 

The study of airborne microorganisms was first reported in 1833 when mould spores were 

detected by Charles Darwin in air samples taken on the Cape Verde Islands.15 Later in 1859, 

Pasteur demonstrated the presence of airborne microbes that can contaminate and cause disease 

by conducting his swan-necked vessels experiment (Figure 1-2). This essay was based on the 

use of the long, twisted neck flasks to allow the entrance of air within the vessel but prevent 

the introduction of any dust particle-containing microorganisms which would remain in the 

twists of the flasks’ necks. Thus, he correctly proved that the sterile broth contained inside the 

vessels would remain sterile as long as the broth was not in contact with the atmospheric dust 

particles containing airborne microbes which were trapped in the neck of the vessels, even if 

allowing air inside the flasks. In 1861, his paper “Memoir on the organized bodies which exist 

in the atmosphere” was published, irrefutably disproving the ancient theory of spontaneous 

generation.14,18 
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Figure 1-2. Schematic of the swan neck experiment of Louis Pasteur in 1859. (a) the unique swan neck of the flask 

allows air in but prevents airborne microbes to enter in contact with the sterile broth, therefore no contamination 

occurs. (b) the neck of the flask is removed, and the sterile broth becomes contaminated. 

 

Biological aerosol particles play important roles in human health, epidemiology, ecology, 

agriculture, biosecurity, climate, and even atmospheric processes, to mention a few.15 For 

example, microbial aerosols may result in plant, animal, and human diseases, the exacerbation 

of allergies and the colonisation of new habitats. However, despite these important effects, the 

bioaerosol field is still understudied in comparison to other fields in aerosol science and little 

is known about their composition, abundance and reactivity which are not yet well 

characterized and understood.13,18 Fortunately, in recent decades, there has been an increased 

interest in bioaerosol research due to recurrent cases of new airborne pathogenic outbreaks 

such as SARS in 2003, H1N1 in 2009 and the on-going SARS-CoV-2 worldwide pandemic. 

Moreover, the development of more advance instrumentation allowed the interdisciplinary 

approach necessary to understand the heterogeneity of these biological airborne particles.19 

Therefore, a multidisciplinary collaboration across a wide variety of scientific fields started to 

emerge to tackle fundamental questions concerning the influence of bioaerosol in climate and 
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atmospheric processes as well as to develop an improved understanding of their impacts in 

human health by disentangling their main mechanisms of transport and innactivation.14,15 

Nowadays, aerobiology is a developing field of scientific research that brings together a large 

group of biological, physical and medical science disciplines, impacting applied sciences such 

as epidemiology, air quality, microbiology, physics, climate, engineering and immunology. 

The SARS-CoV-2 pandemic has highlighted the present limitations in the field and the 

importance of developing a better understanding to improve measures for effective infection 

control. 

 

1.3 A Brief History of Pandemics 

Throughout history, infectious diseases have deeply moulded our societies and cultures, 

determined the outcome of wars and even eradicated entire populations. However, they also 

defined the very basic principles of modern medicine, public health, political systems and even 

economy.20 Interestingly, although the most well-known plagues are those referred to in the 

Old Testament and the Qur’an, the greatest catastrophe in the entire history of humanity was 

the outbreak of the Black Death, which led to the death of one-third of the entire world’s 

population.21,22 

Table 1-1 outlines the deadliest airborne pandemic outbreaks across history, from the earliest 

recorded Athenian Plague, occurred in 430-26 B.C, to the current SARS-CoV-2 pandemic. It 

is important to note that all the pathogens involved in the most lethal pandemics throughout 

history are airborne and only the HIV/AIDS, yellow fever and the Cholera pandemics were 

excluded from this list due to different modes of transmission. 
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Table 1-1. List of the main pandemics in history (including both viral and bacterial pathogens) transmitted via the 

airborne route (large and aerosol droplets). Note that some of the estimated death tolls are subject to debate based on 

new evidence. 

Disease Name Period Disease-Causing Pathogen Death Toll 

Athenian Plague 430-426 B.C. Unsure 100000 

Antonine Plague 165-180 Variola or measles virus 5M 

Japanese Smallpox Epidemic 735-737 Variola major virus 1M 

Plague of Justinian 541-542 Yersinia pestis bacteria 30-50M 

Black Death 1347-1353 Yersinia pestis bacteria 200M 

New World Smallpox 1520-1980 Variola major virus 56M 

Great Plague of London 1665 Yersinia pestis bacteria 100000 

Italian Plague 1629-1631 Yersinia pestis bacteria 1M 

Third Plague 1885 Yersinia pestis bacteria 12M 

Russian Flu 1889-1890 H2N2 virus 1M 

Spanish Flu 1918-1919 H1N1 virus 40-50 M 

Asian Flu 1957-1958 H2N2 virus 1.1 M 

Hong Kong Flu 1968-1970 H3N2 virus 1M 

Swine Flu 2009-2010 H1N1 virus 200000 

SARS 2002-2003 Coronavirus 770 

MERS 2015-Present Coronavirus 850 

SARS-CoV-2 2019-Present Coronavirus 2.2 M 

 

Briefly, the second-largest outbreak of the Bubonic plague is referred to as the Black Death. It 

began in China in 1347 and quickly spread across Europe, entering the continent through Sicily 

in 1347. With a mortality rate of 70%, this disease killed more than 200 million people, usually 

within the first 8 days of showing symptoms. Against the common believe about the Black 

Death being a bubonic plague, scientists working at Public Health England in Porton Down 

argued that the associated high number of deaths together with its fast pace of infection across 

Europe are more characteristic of airborne transmission. 23,24 The effects of such as large-scale 

catastrophe influenced wars, economic systems and even all forms of art across in Europe 

during this period.21  
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Although smallpox is related to the Athenian plague occurring in 430 B.C, a relevant outbreak 

of smallpox emerged with the arrival of European in the New World in 1520, killing 90% of 

the Native Americans and 400,000 Europeans each year, reporting a mortality rate of 

approximately 30%.25 Most of the infected cases of smallpox were fatal, death occurring within 

10-16 days after onset of symptoms, being especially devastating in previously isolated 

populations, and thus, helping the big empires to pave the way of colonization.26  

The overall historic death toll of smallpox is so large that it is often compared to the Black 

Death. Smallpox has had a major impact on the global history of medicine for several reasons: 

the smallpox vaccine, developed at the end of the 18th century by the British surgeon, Edward 

Jenner,27 was the first vaccine developed in history which remarkably increased the life 

expectancy over that period.28 Although being an endemic disease, it is the only human disease 

that has been completely eradicated.26  

During the 17th and 18th centuries, several outbreaks of Great Plagues regularly emerged across 

Europe. The flu of 1918 or Spanish flu represents the deadliest pandemic of the entire 20th 

century with approximately 50 million deaths worldwide, reporting a mortality rate of 2.5%, 

especially high among young and healthy individuals.29 The spread of this virus was intensified 

by the movements of troops during World War I. The name of “Spanish” flu arose from the 

fact that the Spanish newspapers (which were not censored to the extent they were in other 

countries) reported the Spanish king fell seriously ill with this virus. However, the true country 

of origin for this outbreak remains unknown.30,31  

Recently, on March 11 2019, the Wealth Organization (WHO) officially declared the current 

state of a pandemic caused by SARS-CoV-2. The lack of information about this new disease 

and the fact that the data is still being generated, restrict current estimations of the overall 

impact of this disease. SARS-CoV-2 has been reported to be more infectious and have a higher 

fatality rate than influenza (~1%), especially affecting older adults (>65 years).32 

Importantly, a trend showing a progressive reduction in the mortality rate of these pandemics 

is consistent over time due to the advances in medicine and healthcare sciences. The presented 

timeline of historical pandemics (Table 1-1), allows us to envision the devastating impact of 

having experienced an exponentially worse infectious pathogen than SARS-CoV-2 without the 

benefits of modern sciences and healthcare systems. 
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1.4 The Dynamics of Disease Transmission 

1.4.1 Expiratory Events and Other Aerosol Generating Procedures 

Bioaerosol particles are emitted into the natural environment throughout several generation 

mechanisms usually classified into two groups: anthropogenic (e.g. from sneezing, coughing, 

compost facilities) or natural (e.g. from waters, mechanical wind, active release).33 

Violent expiratory events such as coughing and sneezing play a critical role in the 

dissemination of respiratory infectious diseases such as SARS-CoV-2,6 so much so that the 

slogan “Coughs and Sneezes Spread Diseases” was coined in the USA during the 1918 flu.34 

Extensive research before and during the current pandemic has been focused on the 

characterisation of this type of respiratory processes to improve the physical understanding of 

these airborne transmission mechanisms.34–38 Observations indicate that coughs and sneezes 

are generated from a high-momentum, multiphase, buoyant cloud that produces the 

fragmentation of the respiratory tract fluid into microdroplets.35 Thus, the physical properties 

of this “puff cloud” dictate the range of dispersal of pathogens, reporting significant larger 

distances (i.e. up to 8 m for a sneeze and 6 m for a cough) than the conventionally accepted 1-

2 m for the deposition of large droplets.37 Other exhalation mechanisms such as speaking and 

breathing are also reported to generate significant amounts of bioaerosols. The experimental 

data from these studies has shown that vocalization increases the generated particle 

concentrations by one order of magnitude and the mean particle size. Furthermore, a recent 

study has characterized the size distributions and concentrations of aerosols generated from 

different types of vocalization procedures (i.e. singing, speaking and breathing). Interestingly, 

the effect of volume is reported to have a more significant impact on aerosol production than 

the type of vocalization itself, increasing aerosol concentrations more than an order of 

magnitude depending on the examined volume range.39–41 Besides, aerosols generated while 

breathing produced smaller particles than those generated by speaking and singing, which 

generated similar particle size distributions and whose concentrations proportionally increased 

with the loudness.40  

An aerosolization mechanism that has received little attention is the emission of pathogen-

containing droplets from toilets. Bourouiba et al.42 reported the characterisation of the fluid 

dynamics governing droplet generation during toilet flushing events employing high-speed 
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recordings. The flow visualization reported significant quantities of large and small droplets 

generated as a result of fluid fragmentation induced during toilet flushing. These findings agree 

with previous studies reporting small droplets suspended in the air containing C. difficile 

spores, among other pathogens, even an hour after flushing.43,44 Interestingly, Bourouiba et al. 

also found that the generated aerosol concentrations dramatically increased with the use of 

high-pressure flushes and cleaning products commonly used in hospitals, therefore, 

aggravating the spread of bioaerosol particles in these settings.42 These findings pose an 

important concern in North America due to the lack of lids in hospital toilets. 

One of the most relevant mechanisms of bioaerosol generation is bursting bubbles on watery 

surfaces (e.g. oceans, fresh water bodies, rain puddles, water treatment plants). It has been 

estimated that a total of 1019 bubbles are naturally emitted every second from the Earth’s oceans 

and seas, being produced during wave breaking or rainfall impacts.45 These generated droplets 

carry what the waters contains, including microorganisms, salts and organic materials. As they 

burst, each bubble can emit hundreds of droplets. The important factors governing the 

concentration of droplets emitted when bursting bubbles are the ageing and the thickness of the 

bubble. Thus, older bubbles, being thinner, generate more, smaller and faster-moving droplets 

than do younger, thicker bubbles.45 Moreover, the presence of bacteria can also stabilise 

bubbles, increasing their lifetimes by producing secretions that may impact the concentration, 

composition, ejection speed and size of the droplets generated by orders of magnitude, 

producing a similar effect to that of adding surfactant molecules to liquid films.45,46 Similarly 

to bursting bubbles, the generation of bioaerosols via splashes from wet surfaces (e.g. rainfall 

impacting on plant leaves, soil, etc) remains especially important for pathogens transmission 

from plant to plant (e.g. crop systems) which presents an important threat to the global food 

industry.47–49  

Importantly, aerosol-containing microorganisms are easily dispersed in high populated areas 

associated with agriculture and livestock practices as well as vulnerable indoor environments 

such as healthcare facilities with ventilation or heating systems, leading to important health, 

economic and social consequences.50 Therefore, the information provided by these type of 

studies, such as the effect of loudness on the generated concentrations of aerosols, should be 

thoughtfully taken into consideration to develop effective public health guidelines. 
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1.4.2 Size Distribution 

The distributions of bioaerosol particle size are crucial to understand airborne disease 

transmission since they determine how far the droplets can travel, how many microorganisms 

a droplet can contain (which would determine the infectious dose), and the site of deposition 

in the respiratory tract after inhalation (which also dictates the pathogenicity).37,51 Thus, small 

particles (1-5µm in diameter) experience the highest retention in the alveolar region producing 

an acute infection, while bigger particles (>5µm) are more likely to be deposited in the upper 

respiratory tract and can be more easily removed by mucociliary action or sneezing.16 The 

probability of infection will also be influenced by the tropism of microbe receptors in the 

different regions of the respitaroty system. 

Despite the importance of particle size distributions for evaluating the risk of infection, 

discrepancies related to the size distribution of both coughs and sneezes persist. A series of 

techniques have been used over the years to measure droplet size distributions of expiratory 

droplets, including glass slides,52 optical counters,53 laser diffraction,54 aerodynamic particle 

sizers,55 scanning mobility droplet sizer 56 and interferometric Mie imaging.56 However, the 

reported droplet sizes have significant uncertainties due to the measurement challenges 

associated with the dynamic nature of aerosol droplets, the difficulty of time-zero 

measurements, the continually evolving local conditions and the low concentrations.36,55 

Measurements published by Johson et al. 55 reported multimodal distributions associated with 

the particle size distributions of coughs and speech. The different modes have been associated 

with distinct processes of droplet generation occurring in different regions of the respiratory 

tract (lower respiratory tract, larynx region and upper respiratory tract including the oral 

cavity).55 

The size of microorganisms spans the nanometre and micrometre scales (e.g. SARS-COV-2 is 

~0.12 m and E. coli bacteria is ~1.5 m).57 However, microbes are never emitted in the 

atmosphere by themselves but may be accompanied by fluids, solutes and/or solid materials 

during aerosol transport before eventually settling out. Therefore, the droplet composition is 

an important factor governing the particle size distribution, both interconnected at the same 

time with the ambient RH.10 
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Figure 1-3. Droplet distribution for respiratory fluids (cough) from Johnson et at (2011). 55 This figure was reprinted 

with permission from Refs. 56.  

 

In terms of the spread of infection, the absolute dose is key. Consider the size distribution of 

respiratory droplets (Figure 1-3b). While the vast majority of the droplet numbers reside in the 

smallest size regime, the largest volume (e.g. microbe dose), resides in the larger size fraction 

(Figure 1-3a). Thus, in order to understand and predict the spread of disease vias the 

aerosol/droplet phase, many aspects of aerosol science must be considered simultaneously. 

 

1.4.3 Modes of Transmission: Direct, Indirect and Airborne 

Acute respiratory infections lead to most of 7% of total fatalities worldwide associated with 

lower respiratory tract infections mostly in low-income countries.58 Understanding the 

different routes of transmission is critical for implementing effective public health measures. 

There are four main transmission routes for respiratory pathogens, 59,60 including: 

• Direct contact, which requires person-to-person contact (e.g. shaking hands) to 

transfer the pathogen between the infected individual and the susceptible host. 
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Subsequently, the infected host must transfer the infectious pathogen from the 

contaminated area (e.g. hands) onto conjunctiva or mucous membranes (Figure 1-4a). 

• Indirect contact, which involves transmission throughout direct contact with 

contaminated objects named “fomites” (e.g. elevator buttons, balls). Specifically, 

fomites are high-touched surfaces where the pathogens are deposited by an infected 

individual and then taken by a susceptible host (Figure 1-4b). 

• Droplets, which requires the infectious case to generate large droplets by coughing or 

sneezing that impact onto the mucous membranes or conjunctiva of a susceptible host 

by following a ballistic trajectory. The droplet spray is traditionally defined as 

involving droplets bigger than 5 m in diameter and taking place at close-range 

distances (< 2m). Current physical distancing guidance is based on the definition of 

large droplet transmission (Figure 1-4c). 

• Aerosol transmission or airborne transmission, which requires a susceptible person to 

inhale respirable bioaerosols generated by an infected individual (i.e. by talking, 

coughing, sneezing) directly transmitting the pathogens into the alveolar region. This 

transmission route typically involves droplets smaller than 5 m in diameter which 

can remain suspended in the air for long periods and takes place mainly at long 

distances between individuals. Importantly, it does not require face-to-face contact 

between the infected person and the susceptible host (Figure 1-4d). Besides, the 

resuspension of bioaerosol from solid surfaces due to aerodynamic or mechanical 

disturbances can lead to the risk of infection once being airborne again.61,62 
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Figure 1-4. Schematic of the different routes of transmission. a) direct contact, b) indirect contact, c) droplets and 

d) aerosols. 

 

Perhaps surprisingly, the delineation between large and aerosols, in which current social 

distancing and other infection control strategies are based, dates back to a model of disease 

transmission developed in 1930 by William F. Wells.63 This dichotomous classification 

between respirable and large droplets employs a 5-10 m diameter boundary, categorizing 

aerosol routes by the differences in suspension times and deposition regions after inhalation. 

Thus, and according to Wells, large droplets travel shorter distances since they fall on a shorter 

timescale than they evaporate while smaller droplets evaporate over a shorter timescale than 

they fall, even leading to equilibrated  droplet nuclei which can be suspended for long periods 

and travel further.63 However, this arbitrary delineation of droplet sizes ejecta hampers 

understanding of disease transmission. Recent studies have demonstrated that exhalation 

events (e.g. coughing, sneezing, breathing) are composed of a turbulent gas cloud that traps the 

polydisperse cluster of droplets, allowing them to avoid evaporation and increase their lifetime 

by a factor of 1000 than if they were emitted individually. Moreover, owing to the high-

momentum of the cloud, droplets are propelled longer distances, with large droplets being able 

to reach up to 8 meters and remain suspended longer than 10 min, depending on atmospheric 

conditions.37 The current 1-2 m recommendations for social distancing does not take into 

account the effect of the turbulent “puff cloud” dynamics and therefore underestimates the 
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distances and timescales that these emissions can travel, posing important exposure risks for 

the public and healthcare professionals. Recently, Prather et al. have proposed 100 µm diameter 

as a more appropriate size threshold between droplets and aerosols. This size reflects more 

accurately the difference in aerodynamic behaviour and the ability to be inhaled of respiratory 

droplet emissions.6,64,65 

 

1.4.4 Parameters Influencing Bioaerosol Survival 

A large number of environmental and microbiological factors can affect the survival of 

microbes during aerosol transport (Table 1-2). The viability of airborne microorganisms is 

dependent on physical and chemical environmental parameters such as temperature, pressure, 

ultraviolet light, nutrients composition, pH conditions and pollutant concentrations .66,67 Many 

studies have been published in the last decades to investigate the parameters that control the 

inactivation of airborne pathogens. However, these factors will affect various organisms 

differently, and the diversity of the methodologies employed for either generation, suspension 

and sampling, the bioaerosol composition, the microbial species and the environmental 

conditions lead to results that are challenging to compare.14,67,68 

Table 1-2. List of environmental and microbiological parameters  impacting the survival of airborne microorganisms. 

Environmental Factor Description References 

Temperature 
Wide ranges examined (subzero 

to above 60℃) 
67,69–74 

Relative Humidity Between 0-100% RH 67,69,75–83 

UV light 
Variability in spectra studied 

(100-399nm wavelength) 
82,84–87 

Atmospheric Composition Description References 

Gas-phase Atmospheres N2, Air, O2, Helium, Argon, etc. 78–81,84,88–91 

Oxygen Generation of free radicals 78,80,81,84,88,90–92 

Atmospheric Gases OH, NO3, SO2, O3, etc. 19,93–99 

Microbiological Factor Description References 

Culture Conditions Various growth phases 33,67,84,90,100–103 

Microbial Load Wide range of concentrations 17 

Solute Composition Proteins, sugars, mucin, etc. 69,78,88,89,91,92,104 
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Note that the presence of some components such as proteins, mucin, glucose, nutrients, growth 

conditions and surface-active compounds in the aerosol droplets can influence the impact of 

these parameters on the viability of microbes, providing some protection against RH, UV light, 

oxygen toxicity, high salt concentrations and even the droplet surface forces at the air-particle 

interface.83,88,102,105–107 The reason for such compositional effects are still unknown. Some 

hypothesis suggest that these components, such as mucus and proteins, can coat the bacteria 

and viruses with their highly viscous and hydrophobic properties providing some protection 

through a viscous layer that limits loss of water on exhalation from the high humidity of the 

respiratory tract.69,83,88,89,92 

To fully understand the effect of environmental factors on airborne microbial survival, these 

parameters need to be further explored under in vitro conditions, facilitating data comparison 

and validation among laboratories by using standardized methodologies, conditions and 

biological agents. 

 

1.4.4.1 Environmental Factors 

The impact of relative humidity (RH) and temperature on the survival of airborne pathogens 

constitute the greater part of aerobiological studies on the transmission of infectious disease, 

with the aim of understanding the seasonality of some airborne pathogens.83,108 The changes in 

temperature and RH, together with the bioaerosol solute composition, determine the mass flux 

of water from and to the bioaerosol particles as well as the final particle size at equilibrium 

with the gas-phase atmosphere.109 These evaporation and rehydration processes are associated 

with loss of viability due to osmotic and desiccative stresses.110  

Briefly, in the case of viruses, the impact of high temperature on survival has been associated 

with reduction in the integrity of the viral protein and the viral genome (DNA or RNA), 

reporting an inversely proportional correlation. Thus, the exposure to temperatures above 60 

℃ for short periods is sufficient to ensure the inactivation of most viruses.67 The effect of RH 

on the viability of respiratory viruses has been extensively investigated, reporting various 

contradictory outcomes among studies. A broad concept is that enveloped viruses (e.g. 

coronavirus, influenza, measles, rubella and varicella ) are less stable to the environment than 

non-enveloped viruses and tend to survive longer under low RHs (20-30%).67,111 For instance, 
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the airborne transmission of influenza virus was shown to be more favourable under cold and 

dry ambient conditions (~6-8℃ and <50% RH).112 However, some enveloped viruses such as 

the SARS-CoV reported high stability under a broad range of environmental conditions.113 In 

contrast, non-enveloped viruses (e.g. rhinoviruses, adenoviruses) reported longer survival at 

high RHs (70-90%).67 A number of studies using different techniques for measurements of 

airborne survival reported a more complex relationship between RH and survival, a V-shaped 

curve, for both enveloped and non-enveloped viruses, reporting the lowest virus viability at 

mid-range RHs (40-70%).65,102,75,83 

The study of airborne bacteria survival as a function of atmospheric parameters is more 

complex than with viruses due to their bigger size which is associated with a higher sensitivity 

to the aerosolization, suspension and collection techniques.69,115 Besides, bacteria can be 

structurally different (e.g. gram-negative and gram-positive) and present specific growth 

requirements (e.g. aerobic and anaerobic). These factors can introduce a great variability in the 

length of time the microorganisms are capable of surviving in the aerosol phase. Generally, 

airborne bacteria have been reported to be more resistant to ambient temperature than viruses, 

showing also a linear inverse relationship between survival and temperature, reporting a 

reduction in bacterial viability with a temperature increase above 24 ℃ for gram-negative, 

gram-positive and intracellular bacteria.70–72,110,116 However, results on the impact of RH on 

airborne bacterial survival are more complex and highly inconsistent. Thus, the viability of 

some airborne gram-negative bacteria such as E. coli, Salmonella sp, and Serratia marcescens 

have been found to decrease at intermediate-to-high RH ranges (~50-90%)102,117 while another 

aerosolized gram-negative bacteria, Pasteurella, showed great stability at high RH ranges.118 

Besides, some gram-positive bacteria such as Staphylococcus albus and vegetative Bacillus 

subtilis are reported to survive poorly at intermediate RHs (50-70%).102,117,119 Even bacteria 

with the same structural type (e.g. gram-negative) have reported different survival outcomes 

under similar ranges of gas-phase RHs and temperature.67  

In contrast to viruses and bacteria, the study of environmental parameters affecting airborne 

fungi survival has been relatively limited. Exposure to airborne fungi and their spores can lead 

to hypersensitive reactions such as sinusitis, asthma and rhinitis and even potentially life-

threatening conditions when infecting immunocompromised hosts.67,116 Generally, fungi and 

spores are more resilient to environmental parameters than viruses and bacteria, being able to 
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remain viable even during greater stresses associated with rehydration and desiccation 

processes as well as UV radiation.67 Therefore, fungal spores are commonly used as physical 

traces in bioaerosol studies to determine the physical loss of particles in aerosol systems.68,69,110  

Another important environmental factor to take into consideration when studying the viability 

of airborne pathogens is the effect of UV light, which has been generally found to be harmful 

to both viruses and bacteria.87,120 The wavelengths of UV light are most commonly used to 

inactivate microorganisms.85,86 However, some studies suggested that high values of RH 

function as a protective thick water coat against UV radiation allowing the survival of Serratia 

marcescens to be increased at high RH levels.67  

 

1.4.4.2 Atmospheric Composition and Chemistry 

The atmosphere is a very oxidative environment, particularly at low RHs values. The presence 

of oxygen has been demonstrated to drive one of the main death mechanisms for airborne 

bacteria, particularly at a RH below 40%.88 Numerous studies have compared the survival of 

airborne microorganisms (mostly airborne coliform bacteria) in different gas-phase 

atmospheres (e.g. nitrogen, air, nitrogen-oxygen mixtures and oxygen), observing similar 

survival at high RHs (above 70% RH other death mechanisms prevail).80 On the contrary, the 

survival in oxygen alone was reported to be the lowest among all the different atmospheres at 

low RHs,81 followed by the survival in air when only nitrogen and air atmospheres were 

compared.77,79–81,84,88,89,91,92 Besides, small additions of oxygen into a nitrogen atmosphere 

produced a large reduction in the survival  of airborne E. coli B and Serratia marcescens.88,91 

Hence, this difference in survival was attributed to the lethal action of oxygen dependent on 

the loss of water from the microorganisms. Bateman et al. showed early in 1962 that the 

exposure to RHs below 70% leads to the loss of strongly bound water from Serratia 

marcescens.77 Thus, it is hypothesized that the loss of bound water can generate free radicals 

producing changes in the accessibility and reactivity of macromolecules to oxygen, leading to 

the inactivation of some enzymes/coenzymes and ultimately to the disturbance of some 

important metabolic activities.80,88,92 It is important to note that most of the bioaerosol survival 

work, including the studies stated above, have been done from wet dissemination. When 

considering dry dissemination of bioaerosols, where the evaporation of water from the aerosol 
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does not occur, airborne survival might not depend on the microbial water content since 

survival decay between dry and wet disseminations were not equivalent in comparative 

studies.78,90 Therefore, further work is required to understand the exact mechanisms influencing 

the survival of airborne pathogens from both types of disseminations. 

Moreover, the reactivity of biological aerosols with some atmospheric oxidants such as OH, 

SO2, NO3, and O3 is largely unknown. Many atmospheric trace gases and SOA (secondary 

organic aerosols) have been found to significantly reduce the survival of airborne 

microorganisms. 96–98,110 Many of these atmospheric components constitute the phenomenon 

known as open-air factors (OAFs), where airborne microorganisms exposed to open 

atmospheric conditions report a more rapid biological decay than those studied under in vitro 

conditions. The impact of OAFs is not completely understood although it is often associated 

with the rapid oxidation and degradation of macromolecules such as lipids, nucleic acids, 

proteins, etc. 93,94,96–99 

The heterogeneous and multiphase chemistry between bioaerosol and atmospheric gases may 

not only influence the survival of airborne pathogens in the atmosphere but also modify the 

bioaerosols composition and its physicochemical properties affecting also their roles in 

atmospheric physics and climate, altering the cloud droplet numbers and the radiative forcing 

of natural aerosol. Improving our knowledge of how biological aerosols are chemically 

transformed in the atmosphere at the process level is crucial to predict their impact on health 

and climate. 

 

1.4.4.3 Microbial Factors 

Microbiological properties including the phase of growth, cell line, microbial concentration 

and culture conditions such as temperature, humidity, aeration, growth media as well as the 

incubation time may also impact the capability of microorganisms to survive in the aerosol 

phase.33,67,100,101 These parameters have the potential to affect the particle size, composition, 

cell phenotype and, generally, the quality of the sample to be aerosolized which would 

ultimately impact their survival.33 Therefore, the detailed characterisation of these species is 

key for an effective comparison among in vitro studies and minimize variability in bioaerosol 

data.33 
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Various studies have evaluated the effect of culture conditions on the survival of 

bioaerosols.90,101–103 For instance, Lever et al. performed some comparative studies reporting 

that plate-grown Salmonella species survived longer in the aerosol phase than broth-grown 

equivalents.67 Such studies are complicated by potential variation from downstream methods. 

For example,  some studies investigated the effect of using different diluents in the enumeration 

assay, on the viability of the airborne microorganisms, reporting both lethal and protective data. 

Interestingly, even the lowest concentration of diluent can exert a significant impact on the 

decay rate, implying the enumeration method could impact the reported data. 102 

Moreover, some studies have compared the impact of the microbial phase of growth 

(physiology) on their survival during aerosol transport under the same experimental conditions. 

Thus, E. coli B in the stationary phase (~18hr incubation)  has been reported to be more aerosol 

stable in comparison with the log phase (~4hr incubation).84 These results agree with 

subsequent studies performed in the liquid phase where different adaptation mechanisms to 

osmotic and temperature stresses, through changes in the gene expression pattern, were 

observed in stationary-phase E. coli which were not present during exponential growth.121–123 

Finally, the effect of microbial load in bioaerosol droplets is another variable to take into 

consideration when studying bioaerosol survival which has not been yet properly addressed in 

the literature. Lighthart and Shaffer reported three times higher survival in bacteria-containing 

particles loaded with higher concentrations of microorganisms. The hypothesized reason for 

this survival increase is associated with the slower evaporation rates of the larger and more 

loaded bioaerosol droplets which will eventually acquire a monolayer of microorganisms on 

the evaporative surface of the droplet. Consequently, the surface monolayer will protect the 

bacteria located in the deepest interior of the particle from the inactivation processes undergone 

in the air-particle interface.17 These mechanisms of surface inactivation are associated with 

surface forces impacting the infectivity of microorganisms through the extrusion of the 

hydrophobic part of macromolecules.106,107 
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1.4.5 Difference in Physicochemical Conditions in the Aerosol Phase and 

Bulk Phase  

Understanding the aerosol state is critical since the conditions that a microorganisms 

experiences in a bioaerosol droplet are dramatically different to those in the bulk liquid phase, 

representing a challenging environment for the airborne pathogens which can impact their 

viability and consequently their infectivity potential.68,124 

For nearly all ambient conditions at RHs below 70%, the evaporation of an aerosol droplet can 

lead to extremely high solute supersaturation states due to the absence of a solid surface onto 

which crystallization can occur. Therefore, rapid changes in water content, particle size and 

solute concentrations during droplet evaporation can vary several orders of magnitude (Figure 

1-5),125   leading to unique physicochemical conditions in the aerosol phase (e.g. supersaturated 

solute, high salt concentrations, ionic strengths and even ultraviscous and glassy states).124 

Further, these properties enable unique chemical reactions with rates that can be orders of 

magnitude larger than in the bulk state.126,127 Moreover, the surface area-to-volume ratios of 

aerosols are also significantly higher than those for the macroscopic solutions, increasing the 

importance of reactivity at the air-particle interface.124  

 

Figure 1-5. Example of evaporation of five Luria-Bertani (LB) broth solution droplets containing 109 colony-forming 

units (CFU) mL-1 (~100 CFU droplet -1) into a gas-phase RH of 70%. Figures show changes in a) droplet radius and 

b) solute concentrations. 
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Therefore, it is expected that the extreme aerosol conditions impact the microbial physiology 

of the airborne pathogens, presenting two potential and probably interacting effects: (i) 

increasing the concentration of toxic compounds (e.g. salts, metabolites) and detrimentally 

impacting the viability of the microorganisms which are hypothesized to be encased within a 

‘crust’ derived from the droplet fluid or (ii) promoting protective aggregation of micro-

organisms where the survival of the microbes located in the deepest core of the particle will be 

increased. 17  

Moreover, the evaporation and rehydration processes can produce desiccative and osmotic 

stresses on the microorganisms.75,128 Both processes are reflective of the water content present 

in the bioaerosol particles, which is a function of the ambient RH and the droplet solute. 

Therefore, a detailed understanding of the hygroscopic properties of bioaerosols as a function 

of solute composition (including the biological components) is critical to understand and 

predict survival and transmission between hosts.110 

Consequently, it is critical to take into consideration that the physicochemical properties of an 

aerosol droplet during bioaerosol survival studies cannot be simulated in the liquid phase 

sample. Therefore, performing survival measurements in the aerosol phase is crucial to 

improve our understanding, at the process level, of how these unique chemicals and physical 

properties impact bioaerosol survival. 

 

1.5 Conventional Techniques for Bioaerosol survival Studies 

A variety of techniques can be used in the laboratory to perform bioaerosol studies (Table 1-3). 

Laboratory studies of bioaerosol survival must consider three fundamental steps to investigate 

the viability of airborne microbes accurately and produce consistent results: 

• Reproducibly simulate the initial droplet size and microbial concentrations generated 

at source for the natural system being experimentally replicated (e.g. cough, sneeze) 

whilst minimizing the stresses associated with the aerosolization. 

• The prolonged suspension in the true airborne state of the population of bioaerosol 

droplets in a stable and controllable environment with a wide range of environmental 

parameters (e.g. temperature, RH, UV light, gaseous species), whilst avoiding the 
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physical loss of particles and size limitations characteristic of conventional 

methodologies. 

• The collection mechanisms must readily remove the bioaerosol population from the 

gas phase with a 100% efficiency (e.g. all the bioaerosol particles should be sampled) 

and deposit it onto an appropriate substrate for further analysis (e.g. enabling a variety 

of options to test viability and infectivity), whilst reducing the stresses associated with 

high sampling flow rates, rapid rehydration of the particles, prolonged sampling times, 

particle bounce, etc which are characteristic of common sampling techniques. 

 

Figure 1-6. Schematic of the three fundamental steps to investigate airborne survival  of microorganisms in a 

laboratory environment. 

 

The reproducible generation of a population of bioaerosol droplets with consistent size and 

microbial concentration coupled with a 100% efficiency during the sampling process, would 

enable the quantification of the absolute number of microorganisms probed in each experiment. 

Therefore, processes for the experimental aerosol generation, suspension and sampling require 

careful consideration and understanding so that they are representative of the conditions the 

bioaerosol would experience during the natural transmission mechanism of airborne disease.  
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Table 1-3. In vitro systems used to study the survival of airborne pathogens  with a summary of their operational 

mechanisms. 

Generation Description References 

Refluxing Nebulisers 
Recirculation via Venturi effect and wall 

impaction 

70,84,103,115,129–

138 

Non-refluxing Generators Atomization avoiding wall impaction 137 

Aerosol bubblers Aerosolization by bursting bubbles 132,137,139 

Flow Focusing Pumping liquid through a capillary needle 137,140,141 

 Droplet-on-deman (DoD) 

dispenser 

Application of a square waveform to the 

piezoelectric tip of the DoD 
10,68,142 

Suspension Description References 

Rotating Drum Suspension by different rotation speeds 
9,133,135,138,143–

145 

Microthread Capture on ultra-fine spiders’webs 96–98,146,147 

Aerosol Chamber Suspension by mixing air with fans 148 

Sphere Steel sphere with mixing fans 93,97 

Greenhouse No mixing fans 149,150 

CELEBS Electrodynamicbalance (EDB) levitation 10,68 

Sampling Description References 

Impaction Inertial collection onto a range of substrates 140,151–153 

Filtration and Impaction 
Airflow drawn filtration and posterior elution 

of the sample 
140,151,154,155 

Impinger Inertial impaction into liquid 141,151,156–163 

Cyclonic Separation 
Collection on walls via centrifugal forces into 

a rotating cylinder  
103164 

Electrostatic Precipitators 
Gentle electrostatic deposition onto collection 

substrate 
165–167 

CELEBS Electrodynamicbalance (EDB) collection 10,68 

 

1.5.1 Generation  

The laboratory generation of aerosol containing microorganisms is conducted with a wide 

range of techniques. In most bioaerosol studies, the refluxing nebuliser is the common aerosol 

generator normally used in combination with impingers as the sampling method. Collison 

nebulisers are highly pressurized systems that generate the bioaerosols particles by using a 
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high-speed airflow through a small orifice to produce a negative pressure that pulls-up the 

liquid from the reservoir into the jet stream (Venturi effect) and therefore disperse the liquid 

into thin sheets, ligaments and eventually droplets. The jet flows towards the vessel wall where 

the impaction produces the settlement of the larger particles back to the liquid reservoir which 

is in constant recirculation causing accumulated stress to the cell suspension.168 Besides, 

pneumatic nebulization has been found to produce the greatest loss of culturability (replication 

capacity to a detectable level) among aerosol generators as a function of time in both bacteria 

and viruses.115,137 The damage is associated to the physical shear, wall impaction and 

recirculation of microorganisms that do not become fine enough to flow out as the output mist, 

mainly causing the membrane damage, cell fragmentation and reduction in the ATP 

activity.115,137,169 The nebuliser generates high concentrations of small-particle bioaerosols with 

a  size distribution between 1 and 3µm of initial mass median aerodynamic diameter and is 

commonly used in inhalation studies.115,137 

Nevertheless, other aerosolization systems have been developed in recent years aiming to 

reduce damage to microorganisms, including: 

• Flow-focusing aerosol generators such as the FFAG (flow-focusing aerosol generator) 

and the C-Flow nebuliser generate the aerosol particles using the partitioning of 

microjets which are driven by the aerodynamic suction of an accelerated airflow. 

These systems reported a significantly lower impact on the cell membrane and 

respiratory enzymes activities than the Collison nebuliser115 as well as a good 

monodisperse size distribution of the bioaerosol plume.110 

• Aerosol bubbling generators such as the LSA (Liquid Sparging Aerosolizer) are based 

on the principle of bursting bubbles to generate bioaerosol particles. Some 

comparative studies with the collison nebulisers also showed that the bubbling 

generators maintain bacteria culturability at 50% higher after the same aerosolization 

periods.137 

• Non-refluxing generators (e.g. single-Pass Aerosolizer) share the same aerosol 

generation method as the Collison nebuliser (pneumatic nebulization) but avoids the 



Chapter 1. Introduction 

48 

 

recirculation of the cell suspension as well as the impaction onto the vessel wall, 

reducing the stresses associated with both mechanisms. 

• DoD microdispersers are recently introduced devices in bioaerosol research based on 

the application of a small pulse voltage to the piezoelectric tip of the device resulting 

in the formation of a jet that breaks-up into single micro-droplets, providing a high 

reproducibility in the initial radii (~20 µm ±0.25 µm).68 Moreover, the complete 

chemical and biological composition (e.g absolute number of microorganisms per 

droplet) can be varied across various orders of magnitude and has shown to not impact 

the viability of the microorganisms enclosed within the generated droplets.10,68 

Generally, these alternative systems to refluxing nebulisers have shown better preservation of 

the physiology of the cells due to the lack of recirculation of the microbial suspension, passing 

the microbes through the nozzle only once.115,132,137  

These nebuliser effects may be species dependent and therefore, when selecting a bioaerosol 

generator, is important to take into consideration not only the performance of the device (e.g. 

provided droplet size, bioaerosol particle concentration, microbial load in the droplets, 

monodisperse size distribution) but also its impact on microbial viability. Otherwise, the 

aerosolized cells can be damaged to a degree that may influence the subsequent aerosol decay 

and infectivity results and not represent the natural transmission mechanisms involved in the 

airborne transmission of disease. 

 

1.5.2 Suspension 

Techniques for investigating the survival of bioaerosols in vitro as a function of time and 

environmental conditions tend to either suspend the particles in the air (e.g. rotating drum, 

static chambers, wind-tunnel chambers and electrodynamic levitation) or capture the 

bioaerosol on a fine substrate assuming to reproduce the physicochemical properties of the true 

aerosol state (e.g. spider silk threads and hydrophobic surfaces) (Table 1-3). 110,170 The number 

of viable microorganisms is determined at different time intervals which enable the calculation 

of the biological decay. Importantly, the viability assays together with the stresses associated 

with the generation, suspension and sampling process, can impact the number of recovered 

microorganisms, and therefore, the survival data. The main “dynamic” (e.g. suspended in the 
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air) and “stationary” (e.g. deposited on a substrate) techniques for bioaerosol survival studies 

are illustrated in Figure 1-7 and include: 

• The rotating drum chamber is probably the standard system used for bioaerosol 

survival studies since it was designed by Goldberg and colleagues in 1958. In these 

systems, the competition between centrifugal and gravitational forces maintains the 

bioaerosol particles airborne. The rotation speed and the suspension periods are a 

function of the particle size.171,172 The physical loss of particles is due to the 

gravitational settling and diffusion of the bioaerosol particles on the walls of the 

chamber. Various modifications have been implemented in the original design 

allowing accessibility to a wider range of environmental parameters as well as the 

suspension of larger particles for longer suspension periods.9 Unfortunately, 

limitations such as the physical loss of particles and the uncertainties in the absolute 

composition of the particles are unavoidable.171 

• A similar technique for bioaerosol ageing studies is the static aerosol chamber, where 

the maintenance of the dynamic aerosol is achieved in large chambers by the 

utilisation of mixing fans, providing shorter suspension periods than the rotating drum. 

The loss of bioaerosol particles due to gravitational settling is characteristic of these 

systems.148,173 

• The wind-tunnel chamber requires a continuous feed of airflow and enables the 

control of the RH and the temperature in the tunnel. These systems are mostly used to 

develop and assess the performance of new bioaerosol sampling devices as well as 

optical sensors.174,175 The physical loss of particles as a function of size-dependence, 

gravitational settling and turbulence needs to also been taken into account in data 

analysis when utilizing these systems.176 

• The Controlled Electrodynamic Levitation and Extraction of Bio-aerosol onto a 

Substrate (CELEBS) is a recently developed technology which combined a DoD 

generator as aerosolization method and the electrodynamic collection and the 

sampling techniques. The development of this novel approach is the subject of this 

thesis. This technique uses an electrodynamic field to suspend the bioaerosol particles 

in a controlled atmosphere. To enable suspension in the electrodynamic field, each 
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bioaerosol particle holds a small net charge imparted by an induction electrode. After 

the desired suspension period,  the waveform of the electrodynamic field is decreased 

and the bioaerosol particles extracted onto a substrate with 100% sampling efficiency 

for subsequent off-line viability/infectivity analysis.68 Some current limitation of the 

technique is the range of initial droplet sizes that can be investigated which depends 

on the diameter of the commercial DoD dispenser available in the market, diameter 

ranging from 20 to 80 m. With these devices, it is possible to generate droplets with 

an initial diameter ranging from <25 m to >100 m. This size range encompasses 

those commonly associated with bioaerosol. 

• The microthreads (e.g. spiderwebs or synthetically made) technique was developed in 

1967 by May and Driett147 and used to capture bioaerosol particles and expose them 

to various environmental conditions for extended periods of time trying to simulate 

the aerosol state.147 The utilisation of microthreads avoid the issue related to the 

physical loss of particles and therefore enables the study of large particles which have 

high physical loss rates in the static and rotating drums. Limitations related to the 

stationary state of the bioaerosol particles on the surface of the threads difficulty the 

complete exposure to the environmental conditions on the adhered side of the aerosols, 

leading to experimental differences, especially for small size aerosols.170 Other 

limitations of this technique are associated with the potential reactivity, toxicity and 

diameter of the microthreads. However, this technique has shown comparable results 

to those obtained with the rotating drum when measuring the airborne survival of 

filoviruses.146  

• Hydrophobic surfaces have been used to investigate the effect of RH and chemical 

composition of droplets on the viability of viruses contained in evaporating droplets 

which are deposited on superhydrophobic surfaces.104 Observation of the drying 

process is performed by using optical and fluorescence microscopy.177 Results derived 

from this technique can only be extrapolated qualitatively to the real airborne state 

since it is not known how the surface material may affect the viability of the virus, the 
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heat conduction and mass transport between the particle and gas phases, and the 

deposited droplets do not experience airflow. 177 

 

Figure 1-7. Different experimental methods to study bioaerosol survival (both dynamic and stationary) as a function 

of time and environmental conditions. (a) Rotating Drum, (b) Static Aerosol Chamber, (c) Wind-tunnel Aerosol 

Chamber, (d) CELEBS, (e) Microthreads and (f) Hydrophobic Surfaces. Note that the particles in grey colour 

represent the physical loss due to gravitational settling in some conventional systems. 

 

1.5.3 Collection  

Methods for sampling airborne microorganisms include impingement, impaction, filtration, 

cyclonic separation, electrostatic precipitation and electrodynamic collection. A small 

description of the operational mechanisms for the main collection devices is included in Table 

1-3 and further details can be found in the literature.178 Each sampling technique has advantages 

and disadvantages for collecting airborne microorganisms, presenting the potential to damage 

the microbial viability. The stress imparted to the microorganisms depends on the utilized 

technique, the sampling times (ranging between 1 to 10 min for the determination of decay 

rates) and the species under study (related to the microbial structure).110 Stresses imparted by 

sampling processes include: 
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• Structural damage normally caused by the utilisation of impingers and impactors due 

to the inertial deposition and the high collection velocities. 

• Rapid rehydration linked to increased osmotic stress in the microbial cells, 

characteristic of impingers. 

• Desiccation stresses commonly observed with filtration methods as air is continuously 

drawn across the filter. 

• Loss of culturability/viability and particle bounce caused by impactors. 

The effects of microbial damage related to the above-mentioned stresses can be reduced in 

several ways: the addition of non-selective media, scavenging enzymes and compatible solutes 

can increase survival following stresses; the reduction of the sampling times has been reported 

to promote cell recovery in numerous studies;151,179 the addition of a thick layer of mineral oil 

in impactors can significantly reduce particle bounce;152 and the use of a gelatine membrane 

during filtration retains moisture and improve bio-efficiency. 137,140 Both the electrostatic 

precipitation and electrodynamic sampling use similar collection velocities onto the substrates 

(~ 0.01-0.05 m s-1) which are between two and four orders of magnitude lower than those use 

by inertial samplers, reducing the detrimental effect on cell physiology while providing 

excellent collection efficiencies.68,165,166,180 

In conclusion, the characterisation of the collection device is crucial since previous studies 

have demonstrated the deleterious effects on microorganisms associated with different 

sampling processes which significantly affect the variability in the survival of different 

aerosolized microbes.140 Moreover, the collection efficiency among sampling systems can vary 

significantly. This variation has been associated with the destruction of the microbial cells 

during the sampling processes, the re-aerosolization of microorganisms from the collection 

media (leading to an underestimation of the sampled material), rapid rehydration and high 

collection velocities impacting the microbial integrity and, therefore, this variation not being 

caused by the actual efficiency in the transfer of biological material from the inlet to the 

collection medium.140,181 The full understanding of the collector efficiency is critical to develop 

relationships between biological and physical efficiencies, and to completely understand the 

losses within the system (decay in viability vs physical loss of particles). Recognizing the 

impact caused by different collector devices on the viability of microorganisms and the need 
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of fully characterizing the systems used in in vitro studies, will enable an accurate comparison 

of data among laboratories and the adequate development of the field. 

 

1.6 An Ideal Solution 

Conventional techniques for investigating the survival of bioaerosol under laboratory 

conditions present several limitations that can impact the accurate representation of the natural 

processes that these particles would experience in the environment, introducing uncertainties 

at each step of the method.  In particular, the in vitro study of bioaerosols is challenging and 

requires careful consideration of various experimental points:  

• Quantifying the complete droplet composition, from the individual droplet to the 

population level, reducing the uncertainties in the number of microbes per droplet 

associated with bioaerosols of polydispersed size distributions. Conventional 

techniques normally sample bulk aerosol (the unknown composition of the plume), 

making it difficult to develop an appreciation of the microenvironment heterogeneity 

occurring within individual aerosol droplets from the physicochemical and biological 

perspective. For instance, each individual aerosol droplet may have a different 

chemical composition, exacerbated by differences in the particle size. 

• The complete control and characterisation of the atmospheric variables (e.g. 

temperature, relative humidity, gas atmosphere, etc) where the droplets are suspended 

for prolonged periods of time. The detailed characterisation of the experimental 

environment is critical since these parameters interact with the biological aerosols 

potentially changing their properties and therefore the outcome of the survival studies. 

In additions, this environment needs to be constant whilst avoiding the physical loss 

of the particles.9,170 

• Minimizing all stresses occurring during the aerosol generation, suspension and 

sampling processes which cause damage to the microbial cells before the biological 

decay and infectivity studies are performed. Especially, a reliable and gentle 

generation and collection of a bioaerosol are essential to produce consistent results 

since most of these systems have been demonstrated to impart mechanical stresses to 
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the microbial cell in different degrees affecting their viability. 137 The influence of all 

these detrimental processes on bioaerosols viability, and subsequently on their 

infectivity potential, is yet not well characterized.110,140 

• The distinction among the physical, chemical and biological processes in 

aerobiological studies. For instance, the particle loss due to gravitational settling of 

particles in an experimental system must be considered separately from the biological 

decay.170 

Moreover, during the past 60 years, there have been many publications whose outcomes are 

difficult to compare even on the same organisms.68 This incompatibility is a result of the 

heterogeneity in experimental approaches used for survival studies together with the variability 

produced by microbiological analysis. Therefore, the standardization between laboratories is 

critical for producing reproducible and comparable data between laboratories that relates to the 

natural aerosol emission being investigated.170 

The absence of a comprehensive tool capable of making reliable measurements while 

minimising the amount of damage caused to the microorganism during generation, suspension 

and sampling has limited the understanding in this field. Therefore, some basic questions about 

the fundamentals of airborne disease dynamics remain unknown. Consequently, the 

development of a novel technology was the necessary starting point for this research.  

 

1.7 Aims and Thesis Overview 

The transmission of infection via the airborne route has been identified as the major 

transmission mode in indoor environments in many epidemics. Understanding the parameters 

that determine the survival of pathogens during atmospheric transport is critical for public 

health applications, ranging from the development of strategies to mitigate the impact of 

disease outbreaks, understand the seasonality of infectious diseases, and also improve treatment 

of respiratory infections. The work described in this thesis aims to investigate the fundamental 

mechanisms that control the transmission of airborne infection between hosts. Specifically, this 

thesis aims to: 



Chapter 1. Introduction 

55 

 

• Develop a novel instrument for investigating the decay in viability of bioaerosols as a 

function of atmospheric parameters, bioaerosol compositions and microbiological 

properties while minimizing the generation and sampling stresses as well as exploring 

the influence of droplet size, all characteristic of conventional techniques used in 

bioaerosol research. 

• Develop a new approach which combines two complementary experimental tools to 

explore the complex interconnections between aerosol microphysics and biological 

decay.   

• Elucidate the fundamental mechanisms reducing the viability of airborne respiratory 

pathogens to identify the parameters that control the transmission of airborne disease. 

The structure of this thesis is mostly chronological, providing an account of the development 

and application of the CELEBS instrument. Following an introductory overview describing the 

context for these studies, Chapter 2 focuses on the description of the complete methodology 

developed throughout my studies to interconnect the physicochemical and the biological 

properties of bioaerosols. Chapter 3 describes the development and validation of a novel 

instrument to accurately measure bioaerosol survival as a function of a wide range of 

conditions. This chapter also includes the first survival curve reported with this system a 

function of the gas-phase RH. Chapter 4 continues the investigation of decay in bacterial 

viability in the aerosol phase complementing it with measurements for the physicochemical 

characterisation of the same bioaerosol particles, aiming to determine the mechanisms of 

inactivation for airborne pathogens. Chapter 5 describes a more complete and representative 

investigation of the fundamental mechanisms of airborne transmission of respiratory pathogens 

by including not only a wider range of environmental and compositional parameters, but also 

different microbiological properties as well as the use of representative respiratory secretions. 

Finally, a summary of the findings and directions for future work are presented in Chapter 6.



 

 

 



 

 

Chapter 2  

 

Novel Experimental Approach to Investigate the 

Synergistic Interactions Between Physicochemical and 

Biological Processes Impacting Airborne Microbe 

Survival 

The content of this chapter contains material published in Ref. [10]. I confirm that the 

published manuscript is all my own work and acknowledge Jonathan P. Reid, Allen E. Haddrell 

and Richard J. Thomas for project supervision and contributions to instrument development. 

 

Understanding the parameters that determine the survival of airborne microorganisms is crucial 

to controlling disease outbreaks. The methodologies currently employed are based on 

techniques often developed in the 1950s and have numerous limitations. Therefore, a new 

approach to answer the fundamental questions about the interplay of aerosol microphysics and 

the viability decay of airborne pathogens with the associated impact on disease transmission 

remains required. The electrodynamic balance has been proved to be a powerful tool for the 

study of aerosol particles.182 In this chapter, a summary of the established techniques based on 

electrodynamic levitation to conduct aerosol research will be discussed. Moreover, the 

development of the experimental methodology based on electrodynamic levitation for the work 

presented in this thesis will be also described. Specifically, the TAMBAS (Tandem Approach 

for Microphysical and Biological Assessment of Airborne Microorganisms Survival) approach 

allows the investigation of the synergistic interactions between the physicochemical and 

biological processes that impact the survival of airborne microbes. This innovative method 

provides a detailed understanding of the processes taking place during aerosol transport, 

elucidating mechanisms of inactivation not previously described.  
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2.1 Historical Development of Aerosol Levitation: A Summary of 

Levitation Techniques 

The development of electrodynamic trapping techniques originally started from the motivation 

to determine the charge of a single electron in the early 20th century. Although providing 

significant lower values than the current accepted value 1.6021892×10-19 C due to various 

assumptions associated with the charges and monodisperse distribution of the cloud droplet, a 

series of efforts to measure the value of the elementary charge were first performed in the 

Cavendish Laboratory at the University of Cambridge. These experiments led to the Wilson 

cloud chamber and to the Nobel Prize in Physics in 1927, preluding the development of the 

first electrodynamic trap.182 

The first successful experiment which provided a remarkable precise value (1.591×10-19 C) for 

the charge of an electron was performed by Millikan at the University of Chicago in 1909.183 

The Millikan Oil Drop Experiment (MODE) was technically an electric-field  trap based on a 

chamber composed of two parallel metal plates connected to a 10000 V battery. Single 

atomized oil droplets were isolated from the cloud and confined within the electric field (Figure 

2-1a). Major limitations of this technique were related to the vertical and lateral stability of the 

droplets. Although not able to counteract fully the gravitational force by adjusting the Direct 

Current (DC) field to trap droplets in a stationary position, Millikan was able to use the rate of 

falling droplets with and without the electric field to determine the mass of the particle to the 

order of 10 pg. He received the Nobel Prize in Physics for this work in 1923.182 The addition 

of a central disk to one electrode, introduced by Fletcher, reduced the horizontal perturbation 

of the particles, presenting a significant improvement to the Millikan condenser.184  

In 1953, Paul and Steinwedel developed the first quadrupole ion trap (QIT) for mass 

spectrometry studies, initially named electric mass filter.185 The introduction of an Alternate 

Current (AC) field applied to a hyperbolic electrodes configuration finally enabled the stable 

trapping of ions along the central axis between the four cylindrical rods (Figure 2-1b) whose 

trajectories are dictated by the Mathieu’s equation. The analytical potential of this technique 

was not exploited until the 1980s when the design was incorporated into gas chromatography-

mass spectrometry. It was in 1989 that Paul and Dehmelt (who used the QIT as an ion storage 

device by applying radio frequencies)186 were awarded the Nobel Prize in Physics.182  
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Figure 2-1. Historical development of different electrodynamic balance techniques . (a) set-up of the Millikan’s Oil 

Drop Experiment (MODE),183 (b) set-up of the Quadrupole Ion Trap,185 (c) set-up of the double-ring EDB187 and (d) 

set-up of the Concentric Cylindrical EDB.188 

 

The first electrodynamic balance apparatus (EDB) was presented by Straubel in 1956, who 

implemented an ac electrode characteristic of the QIT in between the two DC electrodes of a 

Millikan instrument, ensuring lateral and vertical stabilities.182 Over the succeeding decades, 

numerous modifications of the EDB have been developed in the field of aerosol science. A 

popular adaptation of the Strauble trap was presented by Ray et al. in 1989,187 introducing the 

double-ring configuration. The elimination of the endcap electrodes and application of 

superposed AC and DC voltages to two parallel rings electrodes was especially useful to 

increase the optical accessibility of the levitated particles (Figure 2-1c). This EDB geometry 

has been adapted to develop the device employed throughout this thesis to study the survival 

of airborne pathogens: The CELEBS instrument.68 Finally, a different EDB electrode 

configuration  developed by Heinisch et al., 188 consisting of two concentric cylindrical 

electrodes, was also employed in this thesis to study the hygroscopic response and dynamic 

behaviour of bioaerosol droplets.10,189 

  



Chapter 2. Novel Experimental Approach to Investigate the Synergistics between 

Physicochemical and Biological Processes Impacting Airborne Microbe Survival 

60 

 

2.2 Comprehensive Methodology for Bioaerosol Survival Studies 

The TAMBAS approach was developed to elucidate the fundamental mechanisms responsible 

for degrading the viability of airborne microorganisms and, thus, identify the parameters that 

define the transmission of airborne infection. The complementarity of two methodologies is 

used to resolve the complex interrelationship between the physicochemical and biological 

processes taking place from the production mechanism such as coughing and sneezing,55 until 

the droplet reaches equilibrium with the surrounding environment and through to rehydration 

during the inhalation process. The CK-EDB (Comparative Kinetics Electrodynamic Balance) 

method can be used to study the evaporation/condensation processes, the solute hygroscopic 

properties and the evolving particle morphology during drying of single levitated aerosol 

particles.190 These data can be used to develop a detailed understanding of the processes that 

take place during the evaporation and condensation cycle occurring in a droplet lifespan.  

Additionally, the determination of survival of microorganisms in populations of bioaerosol 

droplets as a function of atmospheric conditions, biological and chemical composition, and 

other biological factors such as the microbial concentration and cell physiology, can be 

performed with the novel CELEBS method.68 An overview of both methodologies is included 

in Section 2.2.3 (Table 2-1). Some of the key features accessible with the CELEBS technique 

are the suspension of particles in the true airborne state under a regulated atmosphere for a 

well-defined and unlimited period (~3 seconds to days) and with high-time resolution (<1s); a 

quantifiable number of individual microbes containing droplets probed in each experiment; and 

control over the number of microbial cells hosted within each droplet. Importantly, the main 

elements of this methodology (e.g. the use of DoD generation to produce droplets of tailored 

composition, the imposition of low levels of charge on the particles to levitate particles) do not 

impact the viability of the microorganisms.68 Details of the set-up, operation and data analysis 

for both methodologies are detailed in Figure 2-11 and Sections 2.2.1 and 2.2.2, respectively. 

Unique to the comprehensive TAMBAS methodology is the ability to combine our 

understanding of the microphysics and microbiology in the airborne state with time resolutions 

between 10 ms and 1s, respectively. Not only can this understanding be achieved in the aerosol 

phase, but the methodology allows us to investigate the repeatability and reproducibility for 

many droplets with the same desired initial conditions while minimizing stresses affecting 
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microbial viability during aerosolization, leading to low experimental uncertainties. This 

valuable alternative to conventional technologies will allow researchers to develop more 

accurate strategies to control the airborne transmission of disease. 

 

2.2.1 Comparative Kinetics Methodology for Physicochemical 

Characterisation of Bioaerosols: The CK-EDB Instrument 

The ability to measure the dynamic behaviour of single levitated droplets using the cylindrical 

electrodynamic balance (EDB) has been discussed in the literature.189 A schematic of the 

experimental set-up is provided in Figure 2-2. Briefly, a sample solution of known chemical 

and biological composition is introduced in the reservoir of a DoD micro-dispenser (Microfab 

MJ-ABP-01, 30 µm orifice). Single droplets are generated with a high level of size 

reproducibility (Figure 2-3) by applying a pulse voltage to the piezoelectric tip of the DoD. A 

small net charge is induced during droplet formation employing a high-voltage induction 

electrode located 2-3 mm from the tip of the DoD, allowing the droplet to be manipulated in 

the EDB. Approximately 100 ms after generation, the droplet is confined in the null point of 

the electrodynamic field within the flow from a 200 mL/min gas inlet at a temperature of 20℃ 

which regulates the RH (in a range between 10 and 90%) inside the CK-EDB chamber by 

altering the mixing ratio of wet and dry nitrogen flows.  

 

Figure 2-2. Schematic of the CK-EDB system. 
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The trapped droplet is illuminated with a 532 nm laser beam (Laser Quantum, Ventus 

continuous wave [CW]) and a CCD camera (Thorlabs) records the light scattering pattern 

referred to as “phase function” at a central viewing angle of 45° every ~10 ms. By using the 

Geometrics Optics Approximation, the angular separation between fringes in the phase 

function pattern is used to determine the absolute radius of the droplet as a function of time. 

From the droplet evaporation measurements, the hygroscopic growth properties at the 

thermodynamic equilibrium can be retrieved by using a comparative kinetics approach 

described in the literature.191 Besides, the hygroscopicity data derived from the above process 

can be used to predict the evaporation dynamics for droplets of any size, composition, gas-

phase RH, and temperature. Finally, combining the information from the evaporation rates with 

the diffusion coefficient of E. coli cells, it is possible to estimate the subsequent surface 

enrichment of E. coli on the particles as a function of the RH. The methodologies utilized in 

the determination of the mentioned physicochemical properties are detailed in the sections 

below.  

 

Figure 2-3. An example of the reproducibility in the droplet size of the particles generated with a DoD micro 

dispenser. SEM images of E. coli MRE-162 cells at a concentration of ~109 CFU mL-1 levitated in Phosphate buffer 

saline (PBS) droplets at 30% RH. Scale bars represent 10 m. 

 

2.2.1.1 Determination of Droplet Evaporation Kinetics 

Once a droplet is confined, the light scattering pattern is collected every ~10 ms with an angular 

range from 32° to 58°, centred at 45° to the forward direction of the laser, allowing the 
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applicability of the Geometrics Optics Approximation for the determination of the particle size 

with the following equation (Eq.(2-1)).192 

 r =  
𝜆

𝛥𝜗
 

(

 cos (
𝜗

2
) + 

𝑛 sin (
𝜗
2)

√1 + 𝑛2 − 2𝑛 cos (
𝜗
2))

 

−1

 (2-1) 

 

r is the radius of the droplet, λ is the wavelength of the laser, ϑ is the central viewing angle, 𝑛  

is the real part of the refractive index (RI) of the droplet medium and Δϑ is the average angular 

difference between the fringes of the scattering pattern for a spherical and homogeneous 

droplet. This approximation presents an associated accuracy of ±100 nm for droplets <10 m. 

109  

During data acquisition, the estimation of the radius in real-time is performed by using the RI 

of pure water at a wavelength of 532 nm (1.335) as a constant value, 𝑛. In a post-analysis 

process, firstly the initial droplet size is extrapolated to t=0 s from a linear r2 vs time relationship 

to correct for the period between the production of the droplet and the trapping moment, ~ 100 

ms from the tip of the DoD to the EDB inside the chamber. Secondly, the variation in the 

droplet RI with the mass fraction of solute (MFS) is accounted for by applying a solute RI 

parametrisation generated by using the molar refraction mixing rule (Eq. (2-2)):193  

 𝑅 = (
𝑛2 − 1

𝑛2 + 2
)(
𝑀


) (2-2) 

 

n is the RI of the solution, R is the molar refraction, M is the molecular weight and  is the 

density of the solution at that composition. When working with multi-component solutions, the 

solution molar refraction, R, is calculated by the sum of the molar refractions of each 

component (𝑅𝑖) multiplied by its mole fraction (𝑥𝑖), assuming the solution is an ideal mixture 

where the properties of the single constituents are conserved:194 



Chapter 2. Novel Experimental Approach to Investigate the Synergistics between 

Physicochemical and Biological Processes Impacting Airborne Microbe Survival 

64 

 

 𝑅 =  ∑𝑥𝑖𝑅𝑖

𝑁

𝑖=1

 (2-3) 

 

To determine the evolution of the solution RI as the droplet evaporates, a parametrization for 

the variation of solute density with the MFS is performed according to the solubility of the 

compound. Bulk measurements of RI and density performed with a density meter and a 

refractometer respectively need to be extrapolated beyond the compound solubility limit to 

cover the supersaturated solute concentration regimes achieved in the aerosol state, including 

an MFS range from 0 to 1 (pure or “melt” component). In the case of solubilities greater than 

0.4, the bulk density measurements are preferably fit by plotting density against the square root 

of MFS and using a third-order polynomial density treatment. However, for solubilities lower 

than 0.4, the density parametrization is generated by using the ideal mixing density treatment 

(Eq. (2-4)) which has been demonstrated to minimize uncertainties when MFS approaches 1.20 

 
1

(1 − 
𝑠
)
=  


𝑠

(1 − 
𝑠
)
𝑠

+
1


𝑤

 (2-4) 

Where  is the density of the mixture, 
𝑠
 is the MFS, s is the melt density of the pure 

component and w is the density of water. From the density treatment, the RI values of the 

mixture can be corrected as a function of the evolving MFS solving for n in Eq. (2-2).  

For a first estimation of the changes in droplet size and consequently in solute concentration 

during evaporation, the light scattering pattern is analyzed by using Eq. (2-1) with 𝑛 =1.335, 

then extrapolated to t=0. From the initial droplet radius data, the original MFS of the solution 

introduced in the DoD is used to determine the variation of solute concentration during 

evaporation (assuming none of the solutes is volatile)189 and consequently calculate the 

corresponding density dependence in order to obtain the corrected RI values calculated as a 

function of the evolving MFS by using Eq. (2-2). This revision process is repeated over 2-3 

iterations until the radii and corresponding refractive indices values converge, providing 

accurate data for the droplet radius.109 

Note that surface enrichment and inhomogeneity in the droplet composition are not considered 

in the estimation of the refractive index values, producing an associated error in the calculation 
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of the droplet radius. The error resulting from this assumption remains under 5% and only 

affects the last ~0.1s of the lifetime of the droplet, showing no impact on the estimation of 

crystallization times.195 This approach presents a rapid and less computationally demanding 

alternative than the analysis of light scattering patterns from the trapped particle using the 

Lorenz-Mie theory,196 where the radius is estimated by fitting the experimental phase functions 

with a library of Mie theory simulations. 

 

2.2.1.2 Determination of Droplet Hygroscopicity Properties 

A comparative kinetics approach is used to accurately determine the RH of the trapping 

atmosphere. Measurements are performed with a probe droplet formed by well-known system 

such as pure water or aqueous NaCl solutions. This is followed by the retrieval of the 

equilibrium hygroscopicity response of the unknown sample droplet. Specifically, sequences 

of ten pairs of probe and sample droplets with a different chemical composition are sequentially 

dispensed by two separate DoD micro-dispensers.  

After all the radii data for probe and sample droplets is corrected, the mass and heat transport 

equation of Kulmala et al.197 Eq. (2-5) is applied to calculate the mass-flux of water, 𝐼, during 

evaporation and condensation kinetics from/to aerosol droplets of different composition under 

a range of conditions as a function of the concentration gradient of water vapour from the 

droplet surface to infinitive distance: 

 𝐼 =  −2𝑆ℎπr(𝑆∞ − 𝑎𝑤) [
𝑅𝑇∞

𝑀𝛽𝑀𝐷0𝑇∞𝐴
+ 
𝑎𝑤 𝐿

2𝑀

𝐾𝑅𝛽𝑇𝑇∞2
]

−1

 (2-5) 

 

The thermophysical terms of this equation and their associated errors have been described in 

detail in previous work.109,198,199 Briefly, the main parameters used to define the droplet are the 

radius, 𝑟,  and the water activity, aw. The gas-phase is characterized by  𝑆∞, the equivalent to 

the RH in the surrounding atmosphere, 𝑅 represents the ideal gas constant, 𝑇∞is the gas phase 

temperature, 𝐿 is the latent heat of vaporization of water, 𝐾 represents the gas-phase thermal 

conductivity, 𝐷 is the binary diffusion coefficient of water in nitrogen, 𝑝0 is the saturation 

vapour pressure of water, 𝑀 is the molecular mass of water and 𝐴 is the Stefan flow correction 



Chapter 2. Novel Experimental Approach to Investigate the Synergistics between 

Physicochemical and Biological Processes Impacting Airborne Microbe Survival 

66 

 

factor. 𝑆ℎ represents the Sherwood number used to account for a mass-flux increment related 

to the gas-flow surrounding the trapped droplet. Finally, 𝛽𝑀  and 𝛽𝑇  are the transition 

correction factors for mass and heat, respectively, which are assumed to be the unity and show 

an insignificant impact in the uncertainty of the method for the droplet size under study. 

The determination of the gas-phase RH is performed by matching simulations generated using 

Eq. (2-5) and the Extended Aerosol Inorganic Model (E-AIM)200  thermodynamic model for 

inorganic salts with the evaporation profile of water probe droplets (when RH > 80%) or the 

equilibrated size of aqueous NaCl probe droplets (when 45% < RH < 80%). Once the gas-phase 

RH is known (S∞), Eq. (2-5) is rearranged to determine the water activity of the measured 

sample droplet, 𝑎𝑤 as shown in Eq. (2-6) at each time-resolved measurement of the droplet 

size: 

 𝑎𝑤 = 𝑆∞ − [
𝐼𝑅𝑇∞

2𝑆ℎπr𝑀𝛽𝑀𝐷0𝑇∞𝐴
+ 

𝐼𝐿2𝑀

2𝑆ℎπr𝐾𝑅𝛽𝑇𝑇∞2
]

−1

 (2-6) 

 

Thus, it is possible to retrieve the hygroscopic response of the sample droplet by transforming 

the corrected radius over time data to mass using the density parametrization. From these data, 

the mass flux as a function of time is calculated and used to determine the water activity at the 

droplet surface by using Eq. (2-6). Finally, the droplet hygroscopicity is represented as the 

variation in MFS (calculated from the initial size and droplet composition) against the variation 

in water activity, providing the whole hygroscopicity curve. 

It is important to note that when the droplet evaporates, the mass transfer of water from the 

droplet to the gas phase is accompanied of a heat transfer, decreasing the droplet temperature 

proportionally to the evaporation rate due to the associated latent heat absorbed by the droplet. 

This temperature suppression has an impact on the vapour pressure of water at the droplet 

surface which affects the evaporation rate. The mass-flux equations of Kulmala and co-

workers197 use an approximation for the temperature dependence of the water pressure of water 

which is only accurate when the temperature difference between the droplet (Tdroplet) and the 

surrounding atmosphere (Tgas) is less than ~3K (Eq. (2-7)).191 Therefore, all the data is re-

analyzed and only data points where ∆T<3 K in Eq. (2-6) are used to retrieve the final 

hygroscopicity curve as a relationship between MFS and  𝑎𝑤. 
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 𝑇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 − 𝑇𝑔𝑎𝑠 = −
𝐼 𝐿

4π𝛽𝑇𝐾𝑟
 (2-7) 

 

Measurements of the solute hygroscopicity are limited to  𝑎𝑤 between ~0.5 and 0.99 due to the 

crystallization of solutes al low RH, therefore it is not possible to extract the final equilibrated 

size from the phase function pattern. The validation of the method for the retrieval of the 

hygroscopic response of sample droplets has been reported in the literature.109,191 This approach 

presents the possibility to accurately measure the hygroscopic growth curve over a wide range 

of RH within seconds, being the only single particle-based method able to measure 

hygroscopicity close to saturation states, presenting significant lower uncertainties than 

conventional techniques.191 

 

2.2.1.3 Simulations of Droplet Evaporation Kinetics 

Once the hygroscopic properties of the sample droplet are determined, it is possible to generate 

simulations by using the Kulmala et al.197 model in order to study the evaporation dynamics 

under a wider range of conditions such as initial solute concentrations, droplet size and gas-

phase RH and temperature. The possibility to build models that enable the prediction of 

evaporation kinetics of aerosol droplets containing microorganisms as a function of the initial 

droplet radius and composition allows further exploration of the interplay between all the 

physiochemical parameters affecting airborne bacteria survival (Figure 4-10), assuming a 

minimal role of the microbe in the dynamics of the aerosol. 

The relationship between the relative droplet radius across a broad range of aw can be estimated 

from experimental data (evaporation profile of droplets of known composition into an airflow 

of a known relative humidity) and the equation developed by Kreidenweis et al 201 (Eq. (2-8)). 

This equation is used to generate a solute hygroscopicity parametrization with aw values 

between 1 and 0 for aqueous droplets of any composition in terms of radial growth factor 

(droplet radius at a given water activity divided by the dry radius, GFr) as a function of the gas-

phase RH (equivalent to the aw assuming thermodynamic equilibrium is established for the 

droplet composition). Thus, by using Eq. (2-8), the experimental data is fitted across the entire 
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range of RH, allowing to estimate the continuous hygroscopic behaviour in aqueous aerosol 

droplets represented by the relative change in particle size (radial growth factor, GFr,). 

 𝐺𝐹𝑟(𝑅𝐻) =  [1 + (𝑎 + 𝑏𝑅𝐻 + 𝑐𝑅𝐻
2)

𝑅𝐻

1 − 𝑅𝐻
]
1/3

 (2-8) 

 

The coefficients a, b and c are calculated to minimize the difference between the GFr 

experimental data and the GFr calculated with Eq. (2-8). Finally, the GFr parametrization 

together with the density treatment of the specific solution droplet is introduced into Eq. (2-5) 

to generate the predictions of mass-transfer kinetics. Simulations resulting from this approach 

have shown an excellent agreement with experimental data. Associated errors with the 

thermodynamic predictions have been also discussed in previous work.109  The morphology 

changes occurring at RHs below 50% are not taken into account when using the model and the 

modelled particle sizes are hence overestimated. 

 

2.2.1.4 Assignment of Particle Morphology 

The same light scattering pattern employed in the calculation of the droplet size has been also 

used to qualitatively assess and categorise the morphology of single levitated particles.202,203 

Based on qualitative characteristics of the phase function, a new methodology to differentiate 

among four main particle structures has been recently developed by us.190 This robust approach 

relies on over one million experimental observations of individual light scattering patterns to 

develop an algorithm which categorizes the morphology as particles that are homogeneous, 

core-shell in structure, droplets containing inclusions or crystal/non-spherical. Specifically, a 

homogeneous and spherical evaporating droplet produces a regular and smooth structure in its 

light scattering pattern which is characterized by equally angularly spaced peaks. In the case 

of droplets containing inclusions, the regularity in the spacing between the peaks is maintained 

but the intensity pattern can be randomly enhanced or reduced depending on the location of the 

inclusions within the droplet volume. The sensitivity of this method for the detection of 

inclusion within a particle was measured by their concentration. The absolute number of 

inclusions and their size were shown to be irrelevant in the determination of the lower detection 

limit.190 The phase function for droplets within a concentration gradient or core-shell structure 
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is characterized by a repetitive fluctuation in the intensity of the peaks due to the presence of a 

secondary structure, this time, showing a pattern within the variation in the intensity. Finally, 

non-spherical or crystalline particles report a highly irregular phase function over time which 

makes the determination of the particle size near impossible, although the sphere-equivalent 

size can be inferred from the size and solute concentration of the initial droplet. Fig. (2-4) 

shows the primary phase functions patterns used to infer the droplets morphology. The ability 

to detect different morphologies on an individual bioaerosol droplet allows studies of the 

impact of particle phase and structure on microbial viability. 

 

Figure 2-4. Cumulative phase functions over ~20s for single particles with a) homogenous, b) core-shell, c) inclusions 

and d) non-spherical morphologies. Each cumulative phase function consists of ~2,000 individual phase functions. 

 

2.2.1.5 Estimating Surface Enrichment 

The Peclet number (Pe) associated with an evaporation rate can be used to assess the likelihood 

of a surface enrichment in solutes, or microbes, developing during evaporation, providing 

insight into the different final particle morphologies that form.204 When the drying rate 

(inferred from the rate of retraction in the droplet surface boundary) surpasses the diffusional 
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mixing rate of the microbe (Pe>>1), the homogenous composition through the evaporation 

process is lost leading to a surface enrichment of the droplet with microbes. The diffusion 

coefficient, D, of E. coli bacteria cells was reported in the literature to be 1.210-12 m2 s-1.205 

Calculations of the corresponding Peclet numbers were obtained using Eq. (2-9). 

 𝑃𝑒 =
𝑘

8𝐷
 (2-9) 

 

The evaporation rate, k, is estimated using Eq. (2-10) as the change in surface area over time.204 

In this work, k was estimated using a model prediction of the changing diameter (d(t)) of an 

evaporating droplet injected into an airflow of a given RH: 200 

 𝑘 = −
𝑑(𝑑2)

𝑑𝑡
 (2-10) 

 

Thus, combining the information from the evaporation rates with the diffusion coefficient of 

E. coli cells, it was possible to determine the Peclet number and estimate likelihood of surface 

enrichment of E. coli on the particles as a function of the RH. Surface enrichment can be 

verified offline through SEM analysis of evaporated and collected particles. 

 

2.2.2 Levitation and Sampling Methodology for Biophysical 

Characterisation of Bioaerosols: The CELEBS Instrument 

The ability to determine the biological decay of bioaerosols as a function of time, atmospheric 

conditions and chemical and biological composition has been recently developed.68 The 

CELEBS apparatus is an adaptation of the double-ring electrodynamic trap182 with important 

modifications that enable the generation, levitation and sampling of populations of bioaerosol 

droplets while minimizing the stresses associated with these processes when using 

conventional techniques for bioaerosol studies.115,206 All components are enclosed in a 3D 

printed chamber to avoid the disturbance of the levitated particles in a conditioned 

environment. CELEBS utilizes the same method of bioaerosol generation used in the CK-EDB 

with the difference that a population of droplets is generated and levitated in this case. A high-
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voltage induction electrode induces a small net charge in each particle allowing the population 

of droplets to be trapped in the electrodynamic field generated by applying an AC voltage 

(1000-2700V) to the two parallel ring electrodes located in the centre of the chamber. The like 

net charge on all particles prevents coalescence among the population of droplets. The particles 

are confined in a directed flow from a gas inlet, which enables the control of the atmospheric 

conditions (i.e temperature, RH, gas, etc) inside the chamber. A 580 nm LED light illuminates 

the population of droplets allowing particle enumeration by using a LabView program 

developed in-house. A probe connected to the gas inlet registers the % RH and temperature 

that the droplets are exposed to. 

After the desired levitation period, the sampling area and the EDT are connected by removing 

the safety plate. The particles are extracted from the EDT onto the substrate holder in a smooth 

fashion by gradually reducing the amplitude of the waveform applied to the electrodes. The 

CELEBS instrument provides a 100% efficiency in the collection of the levitated particles 

utilizing similar sampling velocities to the ones used with electrostatic precipitators,207 

consequently reducing the stresses associated with conventional bioaerosol samplers such as 

impingers.151,179 Besides, this methodology presents the possibility to probe 

viability/infectivity when deposited on any type of substrate (i.e lung cells, microbiological 

media, ATP assays, etc). In this work, the bioaerosol was sampled onto Petri dishes containing 

a ~3mm layer of LB agar and 300 µL volume of LB broth located in the centre of the plate. 

Finally, the Petri dishes were removed from the instrument, the LB broth containing the 

sampled bioaerosol was spread over the agar surface and the plates were incubated during 24h 

at 37℃. The approach used to calculate the survival of bioaerosol was previously described68 

and is also explained in Section 2.2.2.3. 

  



Chapter 2. Novel Experimental Approach to Investigate the Synergistics between 

Physicochemical and Biological Processes Impacting Airborne Microbe Survival 

72 

 

 

 

Figure 2-5. Schematic describing the processes involved in the determination of survival  decay with the CELEBS 

system. 

 

2.2.2.1 Development of the CELEBS Methodology 

The entire instrument, including the chamber that encases the EDT, the LED light, the DoD 

dispenser for bioaerosol generation, the CCD camera and the substrate holder for bioaerosol 

sampling, resides on a small square plate. Its compact design provides high portability across 

biosafety cabinets. 

From the beginning of this research, the design of the system underwent significant 

modifications to improve the systematization, accuracy and reproducibility of the experiments 

(Figure 2-6), common challenges encountered in method development projects.  
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Figure 2-6. Evolution of CELEBS systems during the PhD. 

 

Figure 2-6 shows the evolution of the CELEBS instrument throughout the work described in 

this thesis. The main breakthroughs in the development of the system include: 

• The introduction of the safety plate between the EDT and the substrate holder 

(modification implemented between Figure 2-6a and Figure 2-6b), ensuring that only 

the particles levitated are sampled (i.e. avoiding other generated particles, which were 

not trapped, immediately depositing in the collection media). 

• The removal of a ground bottom electrode used to pull the droplets to the centre of the 

substrate (modification implemented between Figure 2-6a and Figure 2-6b). However, 

this element raised various issues. Therefore, the sampling process is now controlled 

by lowering the amplitude of the waveform applied to the ring electrodes, causing the 

particles to fall onto the substrate. 

• The addition of a CCD camera for top-down imaging of the EDT which facilitates the 

enumeration of the population of bioaerosol droplets throughout an opening in the top 

wall of the chamber. This feature allows more rapid measurements by avoiding the 
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manual enumeration of the particles (modification implemented between Figure 2-6b 

and Figure 2-6c). 

• A change in the location of the DoD dispenser from the top wall of the chamber to 

one sidewall (modification implemented between Figure 2-6b and Figure 2-6c), 

avoiding the sedimentation of bacteria cells in the DoD reservoir (Figure 2-7). When 

generated from above, a concentration gradient of bacterial cells within the DOD 

reservoir developed over time which affected the survival data by reducing the 

reproducibility of the composition of the droplets and producing clogging problems 

in the DoD device. 

• An increase in the optically open design of the device was introduced to better 

facilitate the enumeration of the aerosol droplets and ensure the deposition of the 

particles onto the substrate (modification implemented between Figure 2-6a and 

Figure 2-6b). In the latest prototypes, the open glass design of the chamber was 

replaced by an encased plastic chamber (modification implemented between Figure 

2-6d and Figure 2-6e). This later modification allowed the collection of sharper 

images from the CCD camera by avoiding light scattering on the glass walls. To 

ensure the deposition of the particles, a second CCD camera was positioned sidewise 

(see both CCD cameras on Figure 2-6f) above the safety plate. 

 

Figure 2-7. Concentration gradient inside DoD due to bacteria sedimentation. Line is to guide the eye. 
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One of the most recent designs of the CELEBS chamber is shown in Figure 2-8, including a 

close-up of the main device components and an image from the enumerating CCD camera. 

This prototype, built-in 2017, already incorporates the main improvements in the development 

of the instrument. From 2018 onwards, the systems have been built in PLA filament plastic by 

using a 3D printer instead of the more conventional metal fabrication. This has allowed more 

rapid response to the growing needs for both the users and the work environments while 

maintaining a low economic impact on the project. Especially, when performing work under 

containment, which has created the need of incorporating many new features in a short period 

of time. 

 

Figure 2-8. CELEBS prototype with a close-up of the device main components. 

 

Other steps in the development of the methodology (e.g harvest technique, sample preparation 

and off-line viability assessment) were also improved to establish a robust and reproducible 

technique. For instance, the culture technique was optimized by introducing shaker rotation at 

180 rpm while harvesting the bacterial culture, enhancing the availability of oxygen. An 

increase in the volume of the flask used for cell culturing was included to prevent bacterial 
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clumps. Finally, the use of glycerol stocks and consistent inoculum concentrations avoid 

culture contamination and plasmid mutations. A comparison between the initial culturing 

technique and the improved version is shown in Figure 2-9. The influence of these factors was 

observed in the growth speed of the bacterial culture (i.e. reaching the stationary phase faster 

with the new method) and the cell concentration achieved in the stationary phase of growth 

(i.e. being higher and steadier). Consequently, the optimization of growth conditions led to 

healthier and more consistent bacterial cultures which achieved higher survival and more 

consistent results. 

 

Figure 2-9. Optimization of culture technique  and its effect on bacterial growth. Each data point represents a single 

measurement Optical Density (OD) of the culture. Lines are included as guidance. 

 

In conclusion, the optimal conditions for each step of the methodology were determined and a 

complete methodology was implemented.  

 

2.2.2.2 Offline Viability Assessment 

For the determination of viability, the method developed has been slightly modified during the 

course of the work described here. 

Initially, the population of bioaerosol droplets was collected onto a plastic 35mm Petri dish 

containing 1 mL of liquid LB broth. Bacterial aggregation was reduced by vigorous pipetting 

before solidifying the suspension by adding 4 mL of LB agar at a temperature below 45℃ to 
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avoid bacterial inactivation. The mixture of bioaerosol particles, LB broth and LB agar was 

stirred to ensure blending and solidification. This method enabled the enumeration of colony-

forming units (CFU) in the same Petri dish where the bioaerosol sample was collected, without 

the added risk of transferring to a separate plating media. Plates were air-dried before 

incubation for 24 h at 37℃. The number of colonies which develop were taken as a measure 

of the number of viable cells (colony-forming unit, CFU) after specific aerosol suspension 

times, enabling calculation of the bioaerosol survival. However, this technique presented some 

limitations related to the suitable solidification of the plates: the formation of a cloudy layer on 

the agar on some occasions led to non-countable numbers of CFU on the agar. 

Therefore, the enumeration method was subsequently changed and the bioaerosol sampling is 

now performed into a petri dish containing a thin layer (>3 mm) of agar and 300 µL of LB 

broth positioned in the centre of the plate. The substrate holder is then removed from the EDT 

chamber and the 300 L of LB broth containing the bioaerosol particles was gently spread 

along the agar surface by using an L-shaped spreader. The Petri dishes were then incubated at 

37ºC for 24 hrs in a static incubator. 

 

Figure 2-10. Schematic notation of the determination of biological decay  in E. coli MRE-162 with the CELEBS 

system. 
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Figure 2-10 shows a schematic diagram of the off-line viability assessment used in this work 

to assess biological decay, presenting the relationship between the concentrations of viable 

bacteria within the droplets over time spent in the aerosol phase. Decline in culturability due 

to the time spent in the aerosol phase can be determined by comparing recoverable CFU in 

bioaerosol harvested immediately after production (control-short suspension) and after specific 

times in aerosol suspension (test-long suspension). 

 

2.2.2.3 Quantitative Characterisation of Survival 

Survival in the aerosol phase as a function of time are usually represented by the loss of 

culturability. 68 Thus, loss of viability of airborne pathogens is represented as a reduction in 

their ability to form CFU on plating media as a function of time in the aerosol phase by using 

the following equation:  

 % Survival =  
𝐶𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑏𝑙𝑒(𝑇𝐸𝑆𝑇)

𝐶𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑏𝑙𝑒(𝐶𝑂𝑁𝑇𝑅𝑂𝐿)
 ×  100 (2-11) 

 

Cculturable (TEST) is the number of CFU obtained after the incubation of the bioaerosol 

population that was levitated for a set time interval. This measurement is normalized by using 

a Cculturable (CONTROL) measurement to facilitate data comparison. Two options are valid as 

control measurements: one is the absolute number of bacteria cells contained in the droplets 

calculated from the correlation with the bacterial concentration introduced in the DoD. The 

second option is the number of culturable cells (CFU /droplet) obtained after a levitation time 

under 7 s in a preceding measurement. In this case, the levitation period is too brief to impact 

the viability of the microorganisms and therefore is considered as a non-exposure 

measurement. The validation of this assumption has been confirmed by comparing a series of 

CFU/droplet obtained after 5 s “harmless” levitations with the original CFU/droplet estimated 

by using the concentration of the cell suspension pipetted in the DoD (this comparison will be 

fully evaluated in Section 3.4.1Figure 3-8).68 

 

 



Chapter 2. Novel Experimental Approach to Investigate the Synergistics between 

Physicochemical and Biological Processes Impacting Airborne Microbe Survival 

79 

 

2.2.3 Overview of Techniques 

In this section, a brief overview of the parameters under control during the performance of 

experiments is presented together with the attainable properties to determine with both 

techniques (Table 2-1). 

Table 2-1. Summary of the parameters controlled during experiments  and determinable properties with both the CK-

EDB and CELEBS systems. 

Controlled Variables CELEBS CK-EDB 

Initial droplet size ✓ ✓ 

Temperature ✓ ✓ 

Relative Humidity ✓ ✓ 

Microbial Load ✓ ✓ 

Number of Droplets ✓ ✓ 

Levitation Time ✓ ✓ 

Measurable or Inferred Properties CELEBS CK-EDB 

Size Changes  ✓ 

Inferred Droplet Temperature  ✓ 

Inferred Hygroscopicity  ✓ 

Inferred particle morphology ✓ ✓ 

Biological Decay ✓  

Viability / Infectivity ✓  

 

Figure 2-11 shows images of both set-ups highlighting the main components for the CELEBS 

system( Figure 2-11a, b and c) and the CK-EDB (Figure 2-11d, e and f). 
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Figure 2-11. Images of the 3D printed CELEBS prototype  located in the biosafety cabinet. From left to right, arrows 

point: (a) DoD, top CCD camera and sidewise CCD camera; (b) L.E.D. light, safety plate and substrate holder; (c) 

induction electrode, EDT and aperture for the sidewise CCD camera. Images of the CK-EDB. From left to right, 

arrows point: (d) Laser beam path, trap chamber, CCD camera and laser blocker, (e) DoD (sample), Induction 

electrode (sample), DoD (probe) and induction electrode (probe) and (f) gas inlet and concentric cylindric electrodes 

in the centre of the trap chamber. 

 

2.2.4 Generic Materials and Methods for Bioaerosol Survival Studies 

2.2.4.1 Microbiological Media 

The Luria-Bertani (LB) broth was prepared by dissolving 5 g of yeast extract (Sigma-Aldrich 

Ltd., UK), 10 g of NaCl (Fisher Scientific, UK) and 10 g of Tryptone (VWR International Ltd, 

UK) in 1000 mL of sterilized deionized (DI) water and then sterilizing the mixture in an 

autoclave (Classic, Prestige Medical, UK). Luria agar was prepared by adding 20g L-1 of 

Granulated Agar (BD DifcoTM Dehydrated Culture Media, Fisher Scientific, UK) to the 

previous mixture before sterilization. 
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The Luria agar was prepared by adding 20 g L-1 of Granulated Agar (BD DifcoTM Dehydrated 

Culture Media, Fisher Scientific, UK) to the LB broth solution before autoclaving. 

The Phosphate Buffered Saline (PBS) was prepared by dissolving 1 tablet of PBS (Dulbecco 

A, Thermo Scientific Oxoid, UK) in 100 mL of distilled water and then sterilizing the solution 

by autoclaving. The formula contains 8 g L-1of sodium chloride, 0.2 g L-1of potassium chloride, 

1.15 g L-1of di-sodium hydrogen phosphate and 0.2 g L-1 of potassium dihydrogen phosphate. 

Thus, the mass of solute for PBS is 9.506 g. 

The artificial saliva and artificial sputum media were prepared from a ready-to-go powder 

obtained from the Defence Science & Technology Laboratories (Dstl, Porton Down, Salisbury, 

United Kingdom) whose compositions are presented in Table 2-2 and Table 2-3, respectively. 

Both artificial secretions have been reported in the literature as surrogates for in vitro 

simulation studies. 208–210 Specifically, 6.79 g of the artificial saliva powder and 170.36 g of 

the artificial sputum powder were dissolved in 100 mL of deionized water. From these neat 

solutions, the 1:10 dilutions for both artificial sputum and saliva were prepared.  

Table 2-2. List of components for the artificial saliva media . 209 

Chemical Species Mol. Wt Concn (g per 100 mL) 

MgCl2 203.21 0.004 

CaCl2.H2O 110.99 0.013 

NaHCO3 84.006 0.042 

0.2M KH2PO4 136.09 2.7218 

0.2M K2HPO4 174.2 3.484 

NH4Cl 53.49 0.011 

KSCN 97.18 0.019 

(NH2)2CO 60.06 0.012 

NaCl 58.44 0.088 

KCl 74.55 0.104 

Mucin N/A 0.3 

DMEM N/A 0.1 mL 
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Table 2-3. List of components for the artificial sputum media . 208 

Chemical Species Mol. Wt Concn (g per 100 mL) 

DNA (fish sperm) N/A 0.4 

Mucin N/A 0.5 

L-tyrosine 181.19 0.025 

L-cysteine 121.16 0.025 

L-alanine 89.09 0.025 

L-arginine 174.2 0.025 

L-aspartic acid 133.1 0.025 

L-glutamic acid 147.1 0.025 

L-glutamine 146.1 0.025 

L-glycine 75.07 0.025 

L-histidine 155.2 0.025 

L-isoleucine 131.2 0.025 

L-leucine 131.2 0.025 

L-lysine.HCl 182.6 0.025 

L-methionine 149.2 0.025 

L-phenylalanine 165.19 0.025 

L-proline 115.1 0.025 

L-serine 105.1 0.025 

L-threonine 119.1 0.025 

L-tryptophan 204.23 0.025 

L-ornithine 168.62 0.025 

L-valine 117.1 0.025 

DTPA 393.55 0.0059 

NaCl 58.44 0.5 

KCl 74.55 0.22 
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For the preparation of artificial saliva media containing different concentration of mucin, the 

mucin powder was added on top of the standard artificial saliva composition. Thus, mucin 

concentrations of 0.3, 0.5 and 2.5 % w/v in artificial saliva aim to simulate the mucin 

concentrations in artificial saliva, artificial sputum, and infected artificial sputum, respectively. 

 

2.2.4.2 Bacteria Strains and Cell Culturing 

The microorganisms used to evaluate this methodology were Bacillus atrophaeus spores and 

E. coli MRE-162. Both strains were kind donations from the in-house culture collection at the 

Defence Science & Technology Laboratories (Dstl, Porton Down, Salisbury, United 

Kingdom).  

The B. atrophaeus stocks in water with a microbial concentration of 6.5 ± 0.3 × 109 spores    

mL-1 (triple washed in distilled water). 

Stock cultures of E. coli MRE-162 with a microbial concentration of 1.4 ± 0.2 ×109 (mean ± 

standard deviation) CFU mL-1 were maintained at -20℃ in LB broth containing 20% (w/w) 

glycerol. Routinely, 200 mL of LB broth was inoculated with 2 L of E. coli MRE-162 stock 

and cultured at 180 rpm and 37℃ for ~24 h until reaching the stationary phase, producing a 

concentration of 2.7 ± 1.7×109 CFU mL-1.  Figure 2-12 shows the growth curve for E. coli 

MRE162 over 50h of harvesting. 

 

Figure 2-12. Growth curve for E. coli MRE-162 showing the different phases of growth: log, exponential, stationary 

and death phases. 
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Finally, culture enumeration after 24 h was performed before aerosol experiments by using a 

serial dilution and plating on agar plates, producing concentrations of (2.6±0.6)109 CFU     

mL-1. The number of CFU per droplet estimated from the culture enumeration was used to 

normalise the survival data as explained in Section 2.2.2.3. 

 

2.2.4.3 Sample Preparation for Determination of Aerosol Dynamics, 

Aerosol Particle Morphology and Bioaerosol Decay 

To perform the viability studies, a B. atrophaeus stock culture with a microbial concentration 

of 6.5 ± 0.3 × 109 spores mL-1 (triple washed in distilled water) was prepared for aerosolization 

by diluting 50 µL of original water stock in 450 µL of Phosphate-Buffered Saline (PBS). The 

original LB broth bacterial cultures in stationary phase were used to prepare ten-fold serial 

dilutions in LB broth and PBS solutions, giving a bacterial concentration of (2.6±0.6) 108 

CFU mL-1 (28±11 CFU droplet-1). For survival experiments with LB broth bacteria solutions, 

100 L from the original culture were directly transferred into 900 L of non-metabolized LB 

broth. In the case of PBS bacteria solutions, 1 mL of the original LB broth bacteria culture was 

centrifuged and resuspended in 1 mL of autoclaved PBS solution, then 100 L were transferred 

into 900 L of the same autoclaved PBS solution. For survival measurements in artificial 

respiratory secretions, 1 mL of the original culture was resuspended in the specific artificial 

fluid (artificial saliva, diluted saliva, artificial sputum and diluted sputum) and finally a 10-fold 

dilution was prepared in the same solution. All samples were vortexed for 10 s before being 

introduced in the DoD to ensure homogenization.  

For hygroscopicity measurements, non-metabolised and metabolized LB broth and also PBS 

solutions with concentrations of 25, 23 and 9.506 g L-1 were diluted to 1% w/w solute in water 

for evaporation measurements. In the case of spent LB broth, 1 mL of the supernatant of the 

centrifuged culture was dried out in an oven for 24 hours and the dry weight of solute was 

measured, obtaining 23 g L-1. In the case of the artificial respiratory secretions, dilutions of 1 

and 5% w/w solute and 1 and 2% w/w solute in water were prepared for the hygroscopicity 

measurements for artificial saliva and artificial sputum, respectively. See Sections 4.2 and 5.2.1 

for results and discussion. 
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For the studies with LB broth bacteria solutions containing surfactants, LB broth solutions were 

saturated by adding 0.0203 g of heptadecanol (Acros Organics, Fisher Scientific, UK), 0.0100 

g of 1,2-dypalmitoyl-rac-glycero-3-phosphocholine (DPPC) (Insight Biotechnology, UK) and 

1.5363 g of Tween80 (Acros Organics, Fisher Scientific, UK) to 10 mL, 3 mL and 10 mL of 

autoclaved LB broth, respectively. Then, the maximum amount of surfactant was dissolved by 

vortexing the samples for 2 minutes, sonicating for 15 minutes and filtering by using 0.22 m 

pore size sterilized filters (JET Biofil, UK). For measurements of evaporation kinetics (Figure 

5-14), particle morphology (Figure 5-15) and survival (Figure 5-14d), 1 mL of the original LB 

broth bacteria culture was centrifuged and resuspended in 1 mL of the corresponding LB broth 

surfactant solution. For the dynamic measurements with the water solutions saturated with 

surfactants (Figure 5-17), samples were prepared by saturating 5 mL of DI water samples with 

the different surfactants followed by vortexing, sonicating and filtering as previously described 

for the saturated LB broth solutions. 

To study the impact of droplet size (Figure 4-8), 1 mL of the original bacteria culture was 

resuspended in 1 mL of LB broth with the concentration of interest (50, 25 and 12.5 g L-1). 

Then, the serial dilution was performed in 900 L of the corresponding LB broth concentration.  

To investigate the effect of mucin impacting airborne bacterial viability (Figure 5-10), three 

different solutions were prepared by adding different amounts of mucin to the standard saliva 

composition (Table 2-2). The chosen proportions of mucin on the artificial saliva solutions 

represent the mass fractions of mucin in standard artificial saliva (0.3%), artificial sputum 

(0.5%) and artificial sputum with higher mucin concentration representative of infection 

(2.5%). The composition of these artificial respiratory fluids (e.g. artificial saliva, artificial 

sputum and infected artificial sputum) were obtained from the literature208–210 and are detailed 

in Section 2.2.4.1. 

Bacterial suspensions to evaluate the effect of cell physiology on airborne survival (Figure 5-6) 

were prepared by harvesting E. coli MRE-162 for 6, 24 and 48 h. Besides, before the aerosol 

generation, all bacterial suspensions were adjusted to an OD of 0.5 with freshly autoclaved LB 

broth. 

To determine the impact of microbial load in aerosol dynamics, airborne bacterial survival and 

particle morphology (Figure 5-20 and Figure 5-16), a serial dilution to 106 CFU mL-1 was 
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prepared from the original LB broth bacteria culture which presented a concentration in the 

order of 109 CFU mL-1. To prepare the bacteria suspension at a concentration of 1010 CFU    

mL-1, 5 mL of the original bacteria culture in different tubes were centrifuged, the supernatant 

was removed and the bacterial pellets were resuspended in 200 mL of autoclaved LB broth. 

Finally, the five bacterial suspensions were transferred to the same vial before aerosolization. 

 

2.2.5 Confocal Microscopic Analysis of Bioaerosols 

Bulk suspensions containing three types of particles (i.e.  fluorescent beads, 1 mm diameter; E. 

coli MRE612; B. atrophaeus spores) at specific concentration ranges were aerosolized by 

means of a DoD microdispenser. The generated aerosol droplets were collected on gelatine-

coated microscope slides for microscopy visualization. All samples were analyzed with a dual-

mode (confocal/widefield) imaging system at the Wolfson Bioimaging Facility, University of 

Bristol (SPE single-channel confocal laser scanning microscope attached to a DMi8 inverted 

epifluorescence microscope, Leica Microsystems, Germany). Fluorescent samples were 

excited by the 488nm-spectral line and detected using the green and red channels (590nm LP, 

425nm LP). ImageJ software 211 was used to process all images acquired with the 

confocal/widefield system for both the determination of bacterial viability (proportions of cells 

exhibiting green fluorescence) after aerosolization and the enumeration of particles 

encapsulated within the aerosol droplets.  

 

2.2.6 Scanning Electron Microscopy (SEM) Analysis of Bioaerosols 

Bioaerosol droplets containing E. coli MRE-162 cells at a concentration of 109 cell mL-1 in 

water, LB broth and Phosphate buffered saline (PBS) (Figure 2-13), and at a concentration of 

108 cell mL-1 in artificial saliva and artificial sputum, were levitated for 120 s under 10, 30 and 

50% RH in the CELEBS apparatus and subsequently sampled on an empty Petri dish 

containing one polycarbonate filter paper (Whatman® Nucleopore™, 25mm, Sigma-Aldrich, 

UK). The filters containing the bioaerosol particles were coated with high-purity silver (High-

Resolution Sputter Coater, Agar Scientific, UK) to a thickness of approximately 15 nm. A 

scanning electron microscope (SEM, JSM-IT-300 from JEOL, Japan), with an acceleration 
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voltage of 15 kV and 10- and 15-mm working distances was used to visualize the bioaerosol 

particles. 

 

Figure 2-13. An example of SEM and backscattered images of levitated droplets  at 30%RH whose composition is 

a) pure LB broth c) pure PBS and d) E. coli MRE-162 cells at a concentration of ~109 CFU mL-1 in PBS. Scale bars 

represent 5 m. 

 

2.3 Summary 

The development of the TAMBAS approach as a tool for combining studies on aerosol 

dynamics and airborne microbial survival has been presented in this chapter. The general 

principles, instruments operation and interpretation of the experimental data have been 

described. The methodology described in this chapter sets the foundation for the experimental 

work performed in the proceeding chapters.
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Chapter 3  

 

Developing a Next-Generation Electrodynamic Balance 

Technique to Assess the Survival of Airborne Pathogens  

The content of this chapter is based on a publication, entitled  “Assessing the Airborne Survival 

of Bacteria in Populations of Aerosol Droplets with a Novel Technology”, for which I am the 

first author.68 The manuscript was featured on the January 2019 cover of the Journal of the 

Royal Society Interface (issue 150). The work involved in this publication was reviewed by 

more than 15 different websites worldwide including Healthline Networks and ScienceDaily 

as well as aired in the BBC Radio4 Inside Science programme (https://tinyurl.com/u97rf6o). I 

confirm that the published work is all my own and I performed all data collection, analysis and 

manuscript writing. I acknowledge Richard J. Thomas from DSTL for providing bimestrial 

support throughout a collaborative scholarship. I also acknowledge Jonathan P. Reid, Richard 

J. Thomas and Allen E. Haddrell for contributing to the editing of the manuscript for 

publication and the design of the study, without their support the results in the manuscript may 

have not come to be. Finally, I acknowledge Natalie J. Garton and Andrew Hudson from the 

University of Leicester who provided me with training in basic microbiological techniques. 

 

Having developed a methodology to study bioaerosols from a physicochemical and biological 

perspective, chapter 3 focuses on the validation of the novel CELEBS instrument to enable 

studies of bioaerosol survival as a function of atmospheric conditions and particle compositions 

to identify the factors that may affect the survival of pathogens. The characterisation of each 

step of the methodology (generation, levitation and sampling) will demonstrate that CELEBS 

presents an alternative approach to elucidate the fundamentals of airborne disease dynamics by 

implementing unique features and several benefits to existing technologies. 

https://tinyurl.com/u97rf6o
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3.1 Introduction 

Bioaerosols have been studied since the late nineteenth century to determine the sources of 

epidemic diseases. Interest in bioaerosol has increased in recent decades due in part to a high 

number of airborne disease outbreaks and concern about the potential roles that airborne 

microorganisms play in atmospheric processes.19,212 The multitude of adverse health effects 

derived from human exposure to bioaerosols particles are not yet fully understood despite their 

impact in public health and national defence.213,214 This is mainly due to the present limitations 

in the current techniques used for bioaerosol studies for exploring aspects of atmospheric 

transport.215  

Viability has already been shown to be influenced by aerosol particle size, the presence of air 

pollutants, solar radiation, ambient temperature and environmental relative humidity, as 

described in Section 1.4.3 and summarized in Figure 3-1.17,67 During atmospheric transport, 

bioaerosol droplets undergo a series of evaporative and rehydration processes which result in 

changes in their metabolism and physiology. The conditions of atmospheric transport cannot 

be simulated under bulk conditions in bacterial cultures as aerosol droplets may exist in a state 

of metastable solute supersaturation not accessible in the bulk phase. 216,217 Further, chemical 

reaction rates in the aerosol phase can be several orders of magnitude higher than in the bulk 

state.126,127,218 It is, therefore, more than conceivable that the microbial physiology is quite 

different in the aerosol phase (Section 1.4.3). Thus, a “bottom-up” approach to measuring the 

role of atmospheric process on bioaerosol survival is key to improving the representation of 

these processes in the true aerosol state extending from the individual cell to the population 

scale. Understanding the interplay of all the processes that determine microbial responses is 

key to develop more accurate predictive models of infection transmission and control 

strategies.  
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Figure 3-1. Representation of the key areas explored in this thesis , showing the interplay between biological aerosols 

and atmospheric factors during aerosol transport. Examples of factors include environmental conditions such as the 

temperature and relative humidity, day and night-time atmospheric chemistry, bioaerosol composition and mixing 

with anthropogenic and other natural aerosols found in the atmosphere. 

 

Historically, the study of bioaerosol survival in vitro has been limited to two main different 

methodologies: the rotating drum and the use of microthreads. The rotating drum, referred to 

as an environmental chamber, is the most established approach, based on the aerosol chamber 

developed by Goldberg et al. in 1958.219  These systems have been used to generate survival 

decay rates for bacteria and viruses by suspending the bioaerosol using centrifugal forces to 

counteract gravity.80,171,172,220,221 Several improvements have allowed the levitation of particles 

larger than 1-2 µm in diameter for longer suspension periods under a wider range of 

environmental parameters.7,19 However, limitations in the suspension times and particle sizes 

persist due to the gravitational deposition of particles on the walls of the vessel. For instance, 

the suspension of particles more representative of initial droplet sizes (~360 m-diameter) 

produced during coughing and sneezing is difficult in these systems.222 In the case of 

microthread techniques, the presence of turbulence can result in a loss of particles on the 

surfaces of the instrument and antimicrobial compounds on the spider silk can result in a 

reduction in viability.110,223 Further disadvantages of these techniques are the stresses to which 
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the bacteria are subjected during aerosol generation and sampling. Nebulization is typically the 

preferred method for aerosol generation, but this technique has been proven to cause loss of 

culturability in some bacterial species130,132,140 and structural damage.110,115,137,224 These 

techniques also lead to polydisperse aerosol droplets, subjecting the contained microorganisms 

to different surface-to-volume ratios at equilibrium size and potentially produces different 

biological responses. Hence, the reported results reflect the average behaviour encompassing a 

range of initial droplet sizes. Finally, the sampling methods used with these techniques involve 

the use of prolonged sampling periods (i.e. combination of loading, mixing and extraction 

times) and high collection velocities, a proven cause of reduced viability.151,158,159,225 

The aim of this work is to adapt an electrodynamic trap (EDT) 226 into a next-generation tool 

for investigating the decay dynamics of bioaerosols. Utilizing this approach minimizes 

generation and sampling stresses and reduces the influence of droplet polydispersity. 

Environmental conditions are readily controlled and timescales of bacteria in the aerosol phase 

are accurately known and can be varied from seconds to days. Firstly, the new technique is 

introduced, referred to as Controlled Electrodynamic Levitation and Extraction of Bioaerosol 

onto a Substrate (CELEBS), before presenting measurements for the validation of each step of 

the methodology and finalising with contrasting data of the viability of E. coli MRE-162 cells 

and B. atrophaeus spores. The results presented in this chapter were obtained during the 

development of the methodology and represent an indicator of how this technology could be 

applied in bioaerosol studies to answer some of the fundamental questions regarding the 

dynamics of bacteria and viruses in the aerosol phase. 

 

3.2 Controlled Electrodynamic Levitation and Extraction of Bioaerosol 

onto a Substrate (CELEBS) Instrument 

The CELEBS instrument is shown in Figure 3-2a and allows routine capture and levitation of 

single or multiple bioaerosol droplets of monodisperse size in the aerosol phase under 

controlled environmental conditions for an indefinite time, and subsequent deposition onto a 

substrate for off-line analysis. A grounded glass-metal chamber confines all the components of 

the EDT to avoid disturbance of the suspended droplets within a controlled atmosphere. 

Bioaerosol droplets containing bacterial species are generated on-demand using a commercial 
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DoD dispenser (Microfab MJ-ABP-01 with 30µm orifice) fixed outside one of the sidewalls of 

the chamber and facing a small aperture which leads to the EDT. A DC electrode is located 2-

3 mm away from the nozzle of the DoD dispenser to induce a charge on bioaerosol particles 

during formation. The EDT located in the interior of the chamber is composed of two horizontal 

ring electrodes (30 mm diameter) set in parallel with an intermediate distance of 20 mm where 

the droplets are suspended. A safety plate separates the EDT volume from the substrate holder 

to prevent premature exposure of the substrate to the bioaerosol particles. The positional 

arrangement between a CCD camera, an LED light and the top opening of the chamber 

facilitates imaging of the EDT from above. The image recorded by the CCD is analyzed to 

count the number of levitated particles in the EDT using a LabView program developed in-

house. The LED light (White LED, 580 nm, RS Components, UK) was tested in the bulk phase 

to ensure no impact on the viability of bacteria as assessed by CFU determination (Table 3-1). 

Exposure to the LED light did not show any bactericidal effect. The whole CELEBS instrument 

resides on a small 20 cm × 20 cm metal plate, allowing its safe operation in a microbiological 

safety cabinet (MSC) (LabGard model NU-425 Class II Type A2 Biosafety Cabinet, NuAir, 

UK). 

Table 3-1. The impact of LED light on bacterial viability. Comparative studies of recovered CFU between a bacterial 

culture exposed to the 580nm LED and a non-exposed culture located in a dark area under the same atmospheric 

conditions. No significant difference in culturability was observed. 

Time (hours) Exposed Culture Non-Exposed Culture 

 Mean value (CFU mL-1) 

0 2.18±0.17×109 2.26±0.16×109 

1 2.29±0.57×109 1.92±0.26×109 

2 2.68±0.29×109 2.35±0.22×109 

3 2.47±0.13×109 2.25±0.10×109 

4 2.93±0.20×109 2.75±0.24×109 

5 2.59±0.22×109 2.33±0.92×109 

6 2.53±0.17×109 2.15±0.91×109 

24 2.52±0.26×109 2.14±0.21×109 
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Figure 3-2. Schematic of CELEBS set-up and operation , (a) Expanded view of the main components of the CELEBS 

apparatus. (b) Schematic diagram of CELEBS operation. (c) and (d) Consecutive close-up images for levitation and 

initial deposition of the same bioaerosol population. The levitated droplets appear as lines due to the slower shutter 

speed of the camera compared to the oscillatory motion of the droplets driven by the AC waveform applied to the 

ring electrodes. 

 

3.3 Bioaerosol Generation 

Bacterial culture (10 µL aliquot) is pipetted into the reservoir of the DoD dispenser. A square 

waveform is applied to the piezoelectric crystal of the micro-dispenser tip, propelling a small 

volume of fluid out through the dispenser orifice as a jet that divides into an individual micro-

droplet with a high reproducible size (27.8±0.08 µm radii). The waveform parameters together 

with the composition of the loaded suspension determine the characteristics of the drop 

generation process such as size and speed.142 A schematic for the whole process of bioaerosol 

generation is shown in Figure 3-2b(i). 
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Figure 3-3. Schematic of droplet generation with a DoD . a) A water droplet generated with a commercial DoD 

micro-dispenser with a 30 µm orifice diameter, b) a schematic of the mechanism used to induce a small net charge 

in every droplet by means of ion imbalance. Figure 3-3a is reprinted with permission from the author, Dr. Jim 

Walker. 

 

To enable the suspension of droplets in the EDT, a net charge is induced to every droplet by 

the DC potential applied to the induction electrode (-100 to -500 V) as shown in Figure 3-3a. 

During the formation of micro-droplets, the induction electrode produces an ion imbalance in 

the liquid jet formed at the tip of the DoD dispenser, resulting in a net charge on the droplet of 

opposed polarity to the induction electrode (Figure 3-3b). The magnitude of the net charge 

induced to the droplets has been reported previously (<5 fC)227 producing a chemically 

insignificant shift in the original ion concentration of the droplets (~ 7×10-6 % more sodium 

than chloride ions), but sufficient for the droplets to be confined by the electrodynamic 

potential in the centre of the EDT.  

 

3.3.1 Establishing the Number of Bacteria Cells Contained Within 

Bioaerosol Droplets 

Aerosol generation using the DoD dispenser enables the microbial concentration in aerosol 

droplets to be varied across several orders of magnitude by modifying the concentration of 
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particulates (i.e. bacteria) in the spray suspension (Figure 3-4). Droplets containing three 

different types of particles (yellow-green fluorescent beads, 1 µm diameter; E. coli MRE162; 

B. atrophaeus spores) were generated from bulk suspensions at specific concentration ranges 

by using a DoD disperser. Specifically, Yellow-green fluorospheres beads (1 µm diameter; 

Molecular Probes, United Kingdom) with a commercial concentration of 3.6×1010 beads mL-1 

were used as a surrogate of bacterial cells. Sequential dilutions were prepared in LB broth 

creating fluorosphere suspensions with concentrations down to 3.6×106 beads mL-1. To cover 

a similar range of concentration, an E. coli MRE162 culture in the stationary phase was 

concentrated by centrifugation of 4 mL of culture at 2000 RCF for 5 minutes and resuspended 

in 1 mL of fresh LB broth to a cell suspension of 9.3109 CFU mL-1 following staining with 

SYTO-9 (Molecular Probes, United Kingdom) by adding 4 µL of 3.34mM SYTO9 to 1mL of 

a four-times concentrated bacterial culture for 24h at 4°C Ten dilutions were prepared in LB 

broth with concentrations between 9.3×105 and of 9.3109 CFU mL-1. A stock of B. atrophaeus 

spores in water with a concentration of 4.0 ×109 CFU mL-1 was stained with 2.56 µM 

fluorescein isothiocyanate (FITC, Sigma-Aldrich Ltd., UK) for 24h at 4°C and five different 

dilutions were prepared in water from this stock down to a concentration of 3.0×105 CFU       

mL-1.  In addition, 1% (vol/vol) of aqueous Tween 80 was added to give a final concentration 

of 0.1% (vol/vol) to promote the separation of cells in all samples. For samples in the order of 

107 CFU mL-1 or lower, 1% (vol/vol) of a FITC water solution with 0.5% (vol/vol) 

concentration was added to enhance the visibility of the aerosol droplets under the confocal 

microscope. 

All solutions were aerosolized using a DoD dispenser with aerosol droplets collected on 

gelatine coated microscope slides and visualized by confocal microscopy (Section 2.2.5).  

Independent of particulate type (fluorescent bead, bacteria or spore), the correlational data in 

Figure 3-4 between the number of particulates in the bulk solution and the number delivered in 

each aerosol droplet indicate that the droplet composition can be varied reliably over a wide 

range in concentration. Such a capability makes it possible to explore the role of microbial 

concentration in bioaerosol droplets plays in the airborne transmission of infection. The effect 

of droplet size and microbial concentration in bioaerosol droplets have been previously 

investigated showing a significant impact on airborne survival.22817 Additionally, the 

monodispersity (i.e. reproducibility) of the aerosol generated by the DoD dispenser allows 
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investigation of solute stresses on micro-organisms incorporated in the droplets. Contrary to 

polydisperse bioaerosols, monodisperse droplets achieve the same microbial concentration and 

are therefore expected to create a homogeneous biological response whose average represents 

the behaviour of all aerosolized microorganisms across the population. 

 

Figure 3-4. Determination of microbial load per droplet  by correlating the number of cells per droplet (i.e. 

fluospheres, bacteria and spores) and the cell concentration of the suspension loaded in the DoD dispenser. 

 

3.3.2 Probability Distribution Function for Low Microbial Cell 

Concentration in Bioaerosol Droplets 

For the statistical analysis of the determination of the number of particles enclosed in the 

bioaerosol droplets, the particle concentration of at least 20 different droplets was determined.  

For each concentration of cell suspension pipetted in the DoD, the average and standard 

deviation values of cells in the droplet were calculated. The Probability Distribution Function 

(PDF) curves for cell concentration in bioaerosol droplets were produced by using the Poisson 

Distribution Equation (3-1) where λ represents the Poisson coefficient (average of cells per 

droplet for the culture concentration loaded in the micro-dispenser) and k the number of cells 

contained in a droplet. 

 
𝑃𝐷𝐹 =  

𝑒−𝜆 𝜆𝑘

𝑘!
 (3-1) 
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In this case, the volume fraction of the particulates within a droplet generated by the DoD is 

very small and, indeed, the presences of cells can even be a rare event at sufficiently low 

concentrations. As particle concentration increases, the probability that aerosol droplets contain 

a larger number of particulates increases proportionally, and the PDF curves move towards a 

Gaussian distribution. We illustrate this transition for the three types of particles (i.e. 

fluospheres, E. coli MRE-162 cells and B. atrophaeus spores) in Figure 3-5, with the curves 

indicating the fitted the Poisson distributions. Therefore, the number of particulates (i.e.1 µm 

yellow-green fluospheres, E. coli MRE-162 cells and B. atrophaeus spores) within a bioaerosol 

droplet must be described by the Poisson distribution for loaded suspensions with particle 

concentrations less than 108 CFU mL-1 (Figure 3-5).  

 

Figure 3-5. PDF curves for microbial concentration in bioaerosol droplets, showing experimental results and 

confocal microscopy images for particle concentration. Scale bar is 30 µm. Diameters of the deposited droplets are 

larger than the initial droplet sizes due to impaction on the gelatine used to coat the microscope slides. (a) Modelled 

curves and experimental results for the number of fluospheres per aerosol droplet. The PDFs for the averages of 

fluospheres per droplet, λ=0.795, λ= 2.62, λ=5.70 and λ= 20.6, are shown by the black, yellow, maroon and turquoise 
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curves, respectively. Experimental values for the number of beads per droplet are (), (), () and () at solution 

concentrations of 8.0106, 2.5107, 3.64107 and 1.14108 cells mL-1, respectively. (b) Modelled curves and 

experimental results for the number of E. coli MRE-162 cells per aerosol droplet. The PDFs for λ=1.14, λ= 5.83, 

λ=8.96 and λ= 51.3 are shown by the black, yellow, maroon and turquoise curves, respectively. Experimental values 

for the number of bacteria cells per droplet are (), (), () and () at solution concentrations of 9.32106, 

4.66107, 9.32107 and 4.66108 CFU mL-1, respectively. (c) Modelled curves and experimental results for the 

number of B. atrophaeus spores per aerosol droplet. The PDFs for λ=0.54, λ= 3.09 and λ=31.49 are shown by the 

black, yellow and turquoise curves, respectively. Experimental values for the number of spores per droplet (), () 

and ()  at solution concentrations of 3.0106, 3.0107 and 3.0108 cells mL-1, respectively. (d), (e) and (f) show 

confocal microscopy images for different particle concentrations in aerosol droplets containing fluospheres beads, 

E. coli MRE-162 cells and B. atrophaeus spores, respectively. 

 

3.3.3 Determining the Effect of Aerosolization on Bacteria Viability 

Aerosolization may cause damage to bacterial cell structure.137 The percentages of E. coli 

MRE-162 cells possessing intact membranes were obtained for cultures subjected to two 

methods of aerosolization (the DoD and the 1-jet refluxing nebuliser), as well as for the non-

aerosolized control sample was measured.  

For the evaluation of membrane integrity, samples containing E. coli MRE-162 or B. 

atrophaeus spores were subjected to different staining processes to determine the physiological 

condition of bacteria cells after aerosolization: Live/Dead BacLight bacterial viability and 

counting kit (Molecular Probes, United Kingdom) was used to determine the aerosolization 

effect on bacterial viability as measured by a decrease in observed cellular SYTO-9 signal. 

Bacteria with intact cell membranes fluoresce bright green (SYTO-9) while bacteria with 

compromised cell membranes fluoresce red (propidium iodide [PI]). Thus, a stationary phase 

culture of E. coli MRE-162 (1.7± 0.7×109 CFU mL-1), was split into two samples for 

aerosolization using the two different aerosol generators to demonstrate any effect of 

aerosolization on bacterial membrane integrity. For ‘live’ and ‘dead’ controls, E. coli cultures 

were either untreated (not aerosolized) or treated with 75% (vol/vol) ethanol for one hour at 

room temperature, respectively. Staining procedures for the samples were performed 

immediately after collection following the manufacturer’s protocol. Specifically, bacterial cells 

were stained by adding 3 µL of a 10-3 dilution of a 1:1 mixture of 8 µL of 3.34 mM SYTO9 

with 8 µL of 20 mM PI from the Live/Dead BacLight bacterial viability kit to the 20 µL 

samples. Subsequently, samples were placed on microscope slides coated with 5% (vol/vol) 
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porcine gelatine (Sigma-Aldrich Ltd., UK) for microscopic and image analysis (Section 2.2.5). 

The control showed a high percentage of green-fluorescing viable cells (99 ± 1%). 

Firstly, measurements examined the dependence of bacterial viability on the waveform 

parameters applied to the DoD required to generate droplets (i.e. pulse voltage, frequency and 

width) and the DC voltage applied to the induction electrode (Figure 3-6). A comparative study 

was performed by examining the influence of standard (low) and magnified (high) values of 

all parameters involved in droplet generation. Droplets were collected into an Eppendorf tube 

containing 10 µL of LB broth and the dye mixture described below for viability analysis. 

Secondly, bioaerosol droplets were generated from 150 mL of the bacterial culture using a 1-

jet refluxing nebuliser for 20 min at 30 psi pressure to assess the effect of nebulization on 

bacterial viability. Samples were collected from the refluxed bacterial culture remaining in the 

liquid reservoir of the nebuliser at 5 and 20 min.  

For the statistical analysis of the viability of bacterial cells (assessed as those with detected 

Syto9 fluorescence) enclosed in aerosol droplets, at least 200 cells from five different field of 

views were analyzed following deposition onto slides. The percentage of viable cells with an 

intact cell membrane was calculated by dividing the green-stained cells by the total number of 

cells for each field of view. The average and standard deviations were calculated for each 

parameter under evaluation. No significant difference between control cells and those 

aerosolized using the low and high values of the waveform and induction electrode parameters 

was observed. In contrast, bacteria experiencing conditions within the 1-jet refluxing nebuliser 

demonstrated significant effects on membrane integrity. Membrane integrity decreased 

markedly as a function of time, from 100% ± 1% to 33% ± 12% at 5 and 20 min nebulization 

times respectively. Assuming the aerosol generated with the 1-jet refluxing nebuliser is a direct 

sample of the culture contained in the reservoir, then the aerosolized bacteria would show the 

same proportion of adversely affected cells. This difference is a result of fundamental 

differences between the aerosolization mechanisms. Piezoelectric aerosolization using the DoD 

dispenser does not involve high pressures or recirculation of the sample contained in the 

reservoir, reducing stresses associated with shear forces and wall impaction, characteristic of 

reflux nebulization systems. In addition, the larger volume of the droplets generated by the 

DoD in comparison with the size of the enclosed bacterial cells may mitigate shear forces 

providing a greater proportion of bacterial cells assessed as having intact membranes.229 
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Figure 3-6. Effect of DoD aerosolization on bacterial viability , showing the percentage of cells with intact cell 

membranes obtained by using different aerosolization devices. In consecutive order, bars represent for each set of 

values: the non-aerosolized control (green) bacterial culture, the bacterial culture aerosolized by using the DoD with 

a pulse voltage of 3.5 and 8 V (blue), a frequency of 10 and 1000 Hz (pink), a width of 25 and 45 µsec (yellow) and 

an induction voltage of 250 and 1050 V (grey), respectively. Finally, the refluxed bacterial culture after 5- and 20-

minutes nebulization by using the 1-jet refluxing Nebuliser respectively are shown (maroon). The average and 

standard deviation for each parameter were calculated by counting at least 200 cells from five different fields of 

view. 

 

3.4 Bioaerosol Levitation 

The fundamentals of micro-particle levitation in the EDT have been previously described.230–

233 The electrodynamic fields used for particle levitation in the EDT is similar to those of the 

electrodynamic balance182 or quadrupole ion trap28. However, no DC potential is applied 

directly to the ring electrodes or any of the EDT components in this study.   

Dispensed droplets travel horizontally about 30mm towards the interior of the chamber, before 

getting trapped (Figure 3-2b(ii)). Oscillating forces from the electrodynamic field, created by 

applying an AC potential (1,000-2,700V) to the ring electrodes, enable the stable confinement 

of charged particles in the centre of the EDT. Additionally, the electrostatic repulsions among 

the population of positively charged droplets (up to >200 droplets) prevent their coalescence 

(Figure 3-2c). The population of trapped droplets reside in or near the null point of the trap.188 
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The glass-metal chamber isolates the trapping region from surrounding air currents and 

ambient laboratory conditions. The droplets are suspended while a gas inlet enables control of 

atmospheric conditions in the EDT. The accessible RH range in the system is >10 to <90 % 

RH and can be readily controlled by adjustment of the ratio of humidified and dry air flows 

delivered by an air purifier (Precision Air Compressor, Peak Scientific, UK) using two flow 

valves. The airflow mixture enters the EDT from above the electrodynamic trap where the 

droplets are levitated. Accurate RH and temperature values are registered by a probe (Humidity 

and Temperature Meter HMT331, Vaisala, UK) immediately before entering the EDT 

chamber.  

 

3.4.1 Determining the Effect of Electrodynamic Levitation on Bacteria 

Viability 

The effect of the AC field on the viability of bacteria contained in droplets and suspended in 

the EDT chamber was investigated. During levitation, the droplets decrease in size by losing 

water until they reach an equilibrium size of ~5 µm radius, depending on the relative humidity 

in the cell.  Here, bioaerosol particles were initially generated with a size of 27.8 ± 0.08 µm in 

radius, determined from measurements with the CK-EDB system described in detail in Section 

2.2.1.189 Figure 3-7 shows an example of the variability in the initial droplet size from droplets 

generated from LB containing E. coli cells with a concentration of 6.67108 cells mL-1 until 

they reach the equilibrium at 33.2% RH. 
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Figure 3-7 Measurements of the initial droplet size and evaporation rate of water using the Comparative Kinetics 

Electrodynamic Balance for nine droplets generated from LB containing E. coli cells with a concentration of 6.67108 

cells mL-1 into a gas phase at a RH of 33.2%. The initial droplet size is 27.8±0.08 m. 

 

The CFU per droplet generated from an E. coli culture (1.7±0.9108 CFU mL-1) aerosolized 

and levitated for 5 seconds in the AC field were compared with the estimated value of the 

number of bacteria cells per droplet for that culture concentration (following the linear 

correlation reported in Figure 3-4). Assuming that aerosol generation, 5-second suspension and 

sampling would not impact the microbial viability when using the CELEBS system, the 

experimental and estimated values of bacterial cells/CFU in the droplets should be equivalent. 

Ten replicates of brief levitation (<5 secs) were performed consecutively under the same 

conditions (50 ± 2 % RH and 24 ± 1 ºC temperature). The number of CFU per droplet obtained 

after levitation and incubation (39.2 ± 24.4) compares well with the calculated number of 

bacterial cells per droplet (43.5 ± 20.8). The concurrence between both bacterial concentrations 

shows that the culturability of E. coli cells in solid media was not significantly affected by short 

suspension periods in the AC field (2 kV) (Figure 3-8). The impact of electric fields on 

microbial viability has been previously shown to not reduce the culturability of at least three 

different bacterial species exposed to an electric field of 4.2 kV as long as 2 hours.166  
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Figure 3-8. Effect of suspension in the AC field on the viability of E. coli MRE-162  incorporated in droplets of 27.8± 

0.08 µm radii. The graph shows the relationship between the predicted number of CFU per droplet () (mean +/- 

Std dev) and the number of CFU per droplet formed after the incubation of bioaerosol populations levitated in the 

EDT for 5 seconds (•). 

 

3.5 Bioaerosol Sampling 

After the desired suspension period, the safety plate between the EDT and the substrate holder 

is removed connecting the trapping and sampling areas. By lowering the amplitude of the 

waveform applied to the ring electrodes, the levitated droplets are extracted (Figure 3-2b(iii)) 

from the EDT onto the substrate (i.e. LB broth) in a short period of time (1-3 sec, Figure 3-2d). 

Collection velocities onto the substrate can be controlled and are typically 0.01 - 0.05 m s-1, 

avoiding damage to sensitive microorganisms. Calculated velocities (determined by measuring 

the distance between the EDT and the substrate holder, and the time taken for the droplet to 

fall at different deposition rates) are equivalent to the velocities of an electrostatic sampler. 

These sampling methods based on electrostatic precipitation have shown particle velocities 

between 2 and 4 order of magnitude lower than velocities in inertial samplers reducing the 

impact on cell viability while providing high collection efficiency.165–167 

In rotating drums studies, liquid impingers with collection velocities reaching 265 m s-1 are 

used.166 CELEBS methodology presents 3×104 times slower sampling velocities and, 

consequently, a gentler collection process. A smooth deposition is critical as different sampling 

techniques have been reported to reduce microbial viability due to high impaction velocities 

and reduce the sensitivity of measurements to the parameters under study.110,151,179,234  
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Moreover, the CELEBS collection process provides 100% sampling efficiency: every droplet 

trapped in the electric field is sampled on the collection medium (which can be any substrate, 

including liquid, gel, glass, and cell culture). This 100% sampling efficiency is unique to 

CELEBS. Finally, the substrate can be removed from the apparatus and the viability and 

infectivity of bacteria assessed. 

 

3.5.1 Evaluation of Sampling Efficiency 

The correlation between the number of droplets trapped in the EDT and the number of droplets 

ejected from the AC field and collected in an empty plastic Petri dish was measured (Figure 

3-9). The populations of particles collected in each Petri dish were counted with a conventional 

microscope and compared to the number of droplets levitated. This relationship was determined 

for four different types of biological and non-biological particles: droplets made of a 

suspension of 3.6109 fluospheres mL -1 in LB broth; a FITC-labelled E. coli MRE-162 culture 

in stationary phase; a 20% NaCl solution in DI water and a 20% sucrose solution in DI water. 

The correlation between trapped and collected droplets was excellent reporting an R2= 0.999. 

The efficient particle collection of the CELEBS technology, together with the generation of 

droplets with high reproducibility in size and biological composition (i.e. the number of 

microorganisms enclosed within the droplets), allows quantification of the absolute number of 

microorganisms probed in each experiment. 
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Figure 3-9. Determination of sampling efficiency of the CELEBS instrument (a) The correlation between the 

number of droplets levitated and the number of droplets collected. Each data point represents a single experiment. 

(b) Images of different sizes of bioaerosol populations levitated inside the EDT (left image 12 and right image 40 

bioaerosol droplets). (c) Representative image of droplets containing fluospheres collected on the substrate 

immediately after aerosolization. The actual size of the particles at generation was measured with the CK-EDB 

system (27.8 ± 0.08 µm radii).189 The enlarged diameter of the impacted droplets provided by the image software 

is due to droplet spread at impaction on the coated gelatine slide. 

 

3.6 Quantitative Characterisation of Bioaerosol Survival of Bacteria 

Exposed to 30% RH 

To measure the survival, it is important to first confirm that negligible physical loss of particles 

occurs inside the EDT chamber during particle levitation. Bacillus spores are commonly used 

as physical tracers to distinguish between the biological decay and physical loss in aerosol 

systems since they remain viable under a wide range of environmental conditions.90,150,235 

Therefore, to evaluate the physical loss of particles during suspension, B. atrophaeus spores 

(triple washed in distilled water) were diluted ten-fold in PBS (6.5 ± 2.5 × 108 spores mL-1), 

aerosolized and captured in the CELEBS for one hour (33 ± 2 % RH, 23 ± 2 °C). The initial 

droplet size and spore concentration was 25 ± 0.25 µm radius and 65 ± 12 spore cells per 

droplet respectively. 
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In addition, E. coli MRE-162 was cultured to stationary phase in LB broth (24 h, 180 rpm, 

378C) and diluted ten-fold (2.1 ± 0.2 108 CFU mL-1). Bioaerosols produced with the DoD and 

suspended for different time periods (i.e. 2, 5, 10, 15, 20, 30 and 60 min) under similar 

atmospheric conditions (33 ± 0.91% RH, 24 ± 1℃) to measure airborne bacterial survival as 

the ability to form a CFU on collection. The initial particle size was 27.8±0.08 µm radius and 

microbial concentration of 23 ± 11 bacterial cells per droplet. 

The survival (Section 2.2.2.3) of B. atrophaeus and E. coli MRE-162 are referenced to initial 

control measurements at 2 minutes and 30 seconds (longer than usual due to the early 

development state of the technique), respectively, as shown in Figure 3-10. The physical loss 

of particles as a function of time is absent in the CELEBS system over the timescale of an hour 

since the number of spores does not decay; therefore, only the biological decay needs to be 

considered when performing ageing experiments which is referred to as survival (Section 

2.2.2.3). Consequently, it is possible to directly evaluate the microbial response to specific 

atmospheric conditions without comparing decay rates between the microorganism of interest 

and physical tracers. 

The interpretation and comparison of data from aerosol survival studies in the literature are 

complicated due to the diversity of the employed methodologies (generation and sampling), 

biological species, bioaerosol composition and atmospheric conditions used. Our data shows a 

41.5% decrease in recovered E. coli MRE-162 cells within the first 2 minutes of aerosol 

suspension, followed by a less-pronounced decay. The rapid 2-minute decline may be due to 

evaporative cooling and mass transfer processes experienced within the droplets during the 

early stages of the aerosol state until equilibrium is reached. Bi-phasic decay has been 

previously reported in the literature, demonstrating that the majority of decay occurs within the 

first 1-2 minutes of aerosol suspension.73,90 Interestingly, previous studies spraying E. coli K12 

from distilled water have compared survival between nitrogen and air atmospheres. Results 

reported 10% survival at 35% RH and 26 ℃ after 30 minutes of suspension and collection in 

PBS.92 Our methodology reported 24% survival at the same aerosol age. Differences may be 

due to the presence of dissolved solids in the LB broth together with reduced impact of stresses 

during generation and sampling. Comparison between these results highlights the value in 

understanding methodology and validation in bioaerosol research which is critical to facilitate 

the interpretation of data and standardization between laboratories. 
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Figure 3-10. Survival percentage for E. coli MRE-162 and B. atrophaeus spores at 33% RH and 24°C temperature. 

All the survival data are expressed as the average and standard deviation values for at least three biological 

replicates (samples from independent E. coli cultures) per experiment. 

 

3.7 Summary: Advantages over Conventional Techniques for Bioaerosol 

Analysis 

We have presented a new methodology for measuring microbial survival in aerosol particles 

as a function of different atmospheric conditions and particle compositions (both biological 

and chemical). The technology couples a piezoelectric droplet dispenser with an 

electrodynamic trap to create highly monodisperse bioaerosol droplets with defined 

composition followed by their suspension in an electric field under controllable atmospheric 

conditions. CELEBS presents an alternative approach for understanding variables which 

impact natural transmission mechanisms by more accurately representing initial droplet sizes 

generated by sneezes/coughs,236  and minimising stresses involved in the analysis. Ultimately, 

this will lead to more accurate epidemiological and risk analysis modelling.  

The approach we report here presents significant advantages over more conventional 

approaches used in bioaerosol analysis: 

• A quantifiable number of bioaerosol droplets containing bacteria can be generated on-

demand with a reproducibility in the initial droplet size of  0.25 µm (1 standard 

deviation)189 utilizing a DoD micro-dispenser. Moreover, the complete chemical and 
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biological composition of the bioaerosol droplets can be varied across several orders 

of magnitude (i.e. number of particulates per droplet). The DoD does not impact cell 

membrane integrity as measured by Syto9/PI staining and CFU determination, in 

contrast with a standard methodology of bioaerosol generation.132,137,138 The 

technology could be applied to other micro-organisms such as fungi or viruses. 

• CELEBS represents a valuable alternative to the rotating drum and micro-thread 

techniques. Due to using an electric field to levitate droplets, CELEBS does not suffer 

from the same restrictions on droplet size and hence, airborne suspension times 

required to avoid physical loss of particles in rotating drums. Furthermore, the 

CELEBS holds the bioaerosol in the true airborne state in contrast with the micro-

thread technique.9,146,147,171 Short exposures (<5 secs) to the EDT did not impact the 

ability of levitated microorganisms to form colonies after sampling. Hence, CELEBS 

incorporates a less physically damaging approach. In addition, the glass design of the 

EDT chamber enables the visualization and enumeration of the bioaerosol droplets 

during suspension. Future studies using CELEBS will explore its accessibility to a 

wider range of atmospheric parameters (i.e. relative humidity, temperature, gaseous 

species, UV light, etc.).  

• High sampling flow rates and long sampling times can reduce the viability of collected 

microorganisms.179,237,238 The sampling mechanism in CELEBS based on electrostatic 

forces uses particle velocities perpendicular to the collection substrate similar to the 

ones involved in electrostatic precipitation, which are 2-4 orders of magnitude lower 

than collection velocities used in more standard aerosol samplers (i.e. impactors, 

filters and impingements).167 This presents a new “gentle” alternative for microbial 

collection potentially more representative of the natural mechanisms in the 

environment. Moreover, the population of bioaerosol droplets can be sampled onto a 

platform containing any type of substrate (e.g. culture media, lung tissue cells, bacteria 

cells etc.) enabling numerous options for viability and infectivity analysis. 

• The small and open design of the EDT trap offers other advantages in terms of 

flexibility and easy manipulation of the instrument, particularly for research in 

microbiological containment. The capability to study multiple types of bioaerosol 
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concurrently by “daisy-chaining” multiple levitation chambers together is both 

advantageous and unique to this methodology.  

• The small volume of sample required (~10µL) and the small number of the bioaerosol 

droplets generated, enable safely study airborne micro-organisms in a highly 

controlled fashion. The likelihood of being exposed to infectious doses of micro-

organisms is dramatically reduced. 

• We have demonstrated the utility of CELEBS to probe the survival of bioaerosols 

using E. coli MRE-162. Moving forward, the physicochemical properties and dynamic 

behaviour of the particles produced with a DoD dispenser can be probed via 

alternative methods, such as a comparative kinetic electrodynamic balance.52,63 

Understanding the processes that drive changes in the physicochemical properties of 

bioaerosols (i.e. hygroscopicity, surface tension, viscosity, etc.) will enable 

exploration of the impact of these properties on bioaerosol survival. This will be a 

fundamentally new and comprehensive approach to studying the transmission of 

infectious micro-organisms in the aerosol phase.109,239 Indeed, we also anticipate that 

this device will be ideally suited to studying the influence of atmospheric oxidants on 

the viability of bacteria in the aerosol phase. 

In conclusion, CELEBS represents a new tool for bioaerosol survival studies with the potential 

to elucidate the fundamentals of airborne disease dynamics by implementing several benefits 

to existing technologies.  

 

 



 

 



 

 

Chapter 4  

 

Microphysical Factors Influencing the Airborne 

Transmission of Pathogens 

Chapter 4 is based on a publication in Applied and Environmental Microbiology, entitled 

“Transformative Approach to Investigate the Microphysical Factor Influencing Airborne 

Transmission of Pathogens”, for which I am the first author.10 I confirm that I performed the 

laboratory work, analyzed and interpreted all the experimental data presented in the mentioned 

manuscript. I acknowledge Richard J. Thomas from DSTL and Henry Oswin for contribution 

in data acquisition of the hygroscopicity curves and the RH-dependence of the survival for E. 

coli MRE-162 in LB broth and PBS solution droplets, respectively. I also acknowledge Allen 

Haddrell and Jonathan P. Reid for their project supervision and advice on the interpretation 

of experimental results. Finally, I would like to acknowledge Jean-Charles Eloi, who trained 

me in electron microscopy and contributed to acquiring the SEM images used in this study.   

 

The development and validation of a comprehensive approach to identifying the 

physicochemical processes that impact the survival of bacteria in aerosol droplets were 

introduced in chapters 2 and 3. This chapter will discuss how using this approach can provide 

an increased mechanistic understanding of how changing the evaporation conditions such as 

the initial solute concentration, droplet composition and relative humidity can affect the droplet 

evaporation rates, equilibrium droplet size, and particles morphology. Ultimately, we will 

discuss how all these intrinsically interrelated changes can impact aerosol survival. Therefore, 

this new approach will be assessed in this chapter through combined measurements of the 

dynamics driving the evolving size, composition, morphology, and hygroscopic response with 

their corresponding biological outcome, using E. coli (MRE-162) as a benchmark system. 



Chapter 4. Microphysical Factors Influencing the Airborne Transmission of Pathogens 

114 

 

4.1 Introduction 

The substantial impact of the airborne transmission of disease on human health, agricultural 

productivity, ecosystems stability and livestock has been widely recognized.240–242 

Transmission of respiratory infectious diseases via the airborne route has been identified as the 

major transmission mode in many epidemics, and a significant mode of transmission in indoor 

environments including occupational, residential and transportation settings.215,236,243–245 

Nevertheless, little is known about the mechanisms that control the survival of airborne 

pathogens due to the complex multifactorial processes which are involved and the lack of 

suitable data for comparison of studies.67 Therefore, further investigation is critical to 

determine the fundamental mechanisms of airborne disease transmission, necessary not only 

to develop strategies to mitigate the impact of disease outbreaks but also to understand the 

seasonality of infectious diseases,114 improve treatment of respiratory infections,246 determine 

synergistic effects of air pollution on the atmospheric microbial community,247 and even 

elucidate the role of bioaerosols on atmospheric processes.248 

The critical factors that are thought to affect microbial survival in the aerosol phase include 

relative humidity (RH), temperature, particle size and microbial load.12,71,75,76,80,117,119,135,228 

However, the mechanisms that describe airborne transmission dynamics for most respiratory 

pathogens remain largely unknown.241,243 This knowledge gap is mainly due to several 

challenges involved in undertaking laboratory aerobiological studies. Firstly, the natural 

transmission mechanisms for the generation (i.e. coughing, sneezing), suspension (i.e. aerosol 

transport) and deposition in the respiratory tract are not properly represented by the current in 

vitro studies due to the complexity of the interacting physicochemical and biological processes 

and the technological limitations of conventional methodologies.116,249 Defining the aerosol 

ageing timeframe while simultaneously avoiding particle loss (e.g. sedimentation) can be 

especially challenging since airborne bacteria and viruses require well-defined suspension time 

intervals to investigate their survival.250 Secondly, the viability and infectivity of airborne 

microorganisms are likely dependent on the size, composition and origin of the host droplets 

and replicating these properties in a laboratory environment is challenging.236,251 The viability 

of freshly generated airborne microorganisms can be dependent on the aerosolization 

method.33,137 Finally, data comparison between studies is difficult due to the diversity of 

pathogens, environmental conditions and methodologies employed in survival studies.68 An 
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approach that accurately represents, and can clarify, the complex interrelated physicochemical 

and biological aerosol processes taking place during the generation, atmospheric transport and 

deposition in the respiratory tract are necessary to fully understand the dynamics of airborne 

transmission of infection. 

To address the fundamental mechanistic questions central to understanding airborne disease 

transmission, a novel approach that utilises two complementary technologies is applied. First, 

the aerosol droplet evaporation kinetics, changes in particle morphology during drying and 

changes in the solute hygroscopicity are fully quantified using a CK-EDB, providing a detailed 

understanding of the dynamic behaviour of aerosol particles.109,189 Second, the bioaerosol 

survival as a function of time, particle composition and environmental conditions, of identical 

particle types are measured with CELEBS.68 This next-generation apparatus for bioaerosol 

survival analysis has the potential to identify the factors that impact the survival of airborne 

pathogens allowing accurate control and representation of bioaerosol in the atmosphere.68  

When used in combination, these particle levitation technologies can be used to interrogate the 

true airborne state of airborne microorganisms. Understanding this state is critical since the 

physicochemical conditions that microorganisms are exposed to within an aerosol host droplet 

can differ dramatically from those in a bulk phase sample,216 potentially impacting their 

viability and consequently, their transmission between hosts (Figure 4-1). Combining the 

strengths of these complementary methodologies for probing aerosol particles directly, the 

TAMBAS approach enables an exploration of the complex interconnections between airborne 

microphysics and biological decay. 
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Figure 4-1. Interplay between some biological and physicochemical properties and processes which impact on 

microorganism viability during aerosol transport. The graph illustrates the typical changes in physicochemical 

properties that occur during the evaporation of a saline (NaCl, 9 g L-1) droplet injected into ambient RH (50 %). 

Note that t=0 (time of droplet generation) would represent bulk phase concentrations prior to droplet generation. 

 

In this chapter, these complementary approaches, are used to explore directly for the first-time 

interconnections between aerosol droplet microphysics and biological decay. The dynamic 

behaviour and physicochemical properties of the bioaerosol determined with the CK-EDB are 

used to inform the biological responses measured with CELEBS. The aim of this study is to 

use this complementarity to elucidate the mechanisms responsible for degrading the viability 

of airborne bacteria and identify parameters that define their survival.  

 

4.2 The Water Content of Microbiological Media: Bacterial Processing of 

Growth Media Affects Aerosol Hygroscopicity 

The retrieval of equilibrium hygroscopic properties of microbial media from mass-transfer 

kinetics measurements was performed in the CK-EDB,109,191 utilizing a comparative 
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evaporation kinetics approach previously described in Section  2.2. The relationship between 

water activity and aerosol composition for common microbial media are compared to 

thermodynamic model predictions for NaCl (E-AIM,252, Figure 4-2). The hygroscopic 

responses of the typical culture media used in microorganism survival measurements are 

crucial to the exploration of the relationship between hygroscopicity and airborne bacterial 

survival in later sections. The composition and concentrations of the different media solutions 

are described in Section 2.2.4. Freshly autoclaved LB broth and LB broth previously used to 

culture bacteria over 24h with subsequent withdraw of E. coli MRE-162 cells, are referred to 

as non-metabolized and metabolized, respectively.  The hygroscopic growth as a function of 

water activity (equivalent to RH) is shown in Figure 4-2 in three different forms, typical of this 

type of measurement: as a mass fraction of solute (MFS, represented by the mass of solute 

divided by the combined mass of the solute and water), and as both mass and radial growth 

factors (GFm and GFr), the ratio between the wet and dry masses of the particle, and the wet 

and dry radii, respectively. 

The hygroscopic growth curves in Figure 4-2 show that PBS has similar hygroscopicity to 

NaCl alone (NaCl makes up 83% of the mass of PBS), examples of high hygroscopic growth. 

However, both LB broth solutions, with 60% of the solute mass arising from organic 

components, are much less hygroscopic. Interestingly, non-metabolized and metabolized LB 

broth display different hygroscopicity, suggesting that the metabolization of LB broth by 

bacteria alters the solute composition and, thus, the water content of aerosol droplets at a 

particular RH. Although it is well known that bacteria alter the composition of media through 

metabolism, the effect that this has on aerosol hygroscopicity is a novel observation.  

Ostensibly, microbes affect the physicochemical properties of bioaerosol altering the initial 

solute composition. 
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Figure 4-2. Hygroscopic response of different culture media  with variation in solution water activity (ɑw), equivalent 

to RH, presented in terms of (a) mass fraction of solute (MFS), (b) radial growth factor (GFr) and (c) and mass 

growth factor (GFm).  Predicted curves for NaCl hygroscopicity (line) from the Extended Aerosol Inorganic model 

(E-AIM) (for reference purposes) are also shown. Uncertainties on the hygroscopicity measurements corresponding 

to an error in ɑw of ±0.002 at ɑw >0.9 and ±0.001 at ɑw <0.9. 109,253 

 

The estimation of the original dry mass of solute for droplets composed of metabolized LB 

broth was performed after removing the bacteria cells from the suspension using a micro-

centrifuge. Then, 1 mL of the supernatant solution was dried out in an oven for 24 hours and 

the dry weight of solute was measured. Figure 4-3 shows the slight difference in the evaporation 
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kinetics of LB broth solution droplets containing ~109 CFU mL-1 produced by the variation in 

composition between metabolized and non-metabolized LB broth in. 

 

Figure 4-3. Effect of bacterial metabolization of media on aerosol dynamics. Comparison of the dynamics between 

droplets composed of non-metabolized LB broth (cyan, 5 droplets) and metabolized LB broth (dark blue, 5 droplets) 

containing ~109 CFU mL-1. 

 

4.3 Modelling Dynamics of Evaporating LB broth and PBS Solution 

Droplets into a Wide Range of RHs 

The condensation and evaporation of water from bioaerosol particles are dictated by the 

conditions in the surrounding atmosphere.254 The equilibration of the water content of aerosol 

droplets with the moisture content of the gas-phase environment can lead to unique conditions 

that are not accessible in macroscopic solutions, reaching significantly higher solute 

concentration, reactivity and even singular phase behaviour.124 Therefore, understanding the 

dependence of airborne survival with ambient parameters is critical to control the spread of 

airborne disease. 

The simulations of droplet evaporation kinetics were performed for LB broth and PBS droplet 

compositions at different RHs by using an approach previously described in Section 2.2.1.3. 

Briefly, predictions of mass transfer kinetics were generated by using the Kulmala equation197 

together with the density treatment and hygroscopicity parametrization of the solution droplet. 

The kinetic simulations reported in Figure 4-4 and Figure 4-5 provide information about the 

rapid changes in particle size, solute concentration, surface-to-volume ratio and evaporative 



Chapter 4. Microphysical Factors Influencing the Airborne Transmission of Pathogens 

120 

 

cooling undergone during drying of LB broth and PBS droplets, respectively, under a wide 

range of RHs (30-90%) in short periods (<30 s) after droplet generation. Additionally, the size 

distribution of the generated droplets in this study is representative to some of the droplet sizes 

found in a cough or a sneeze.55 Importantly,  different droplet size distributions would 

experience different dynamics. 

 

Figure 4-4. Modelled dynamics for LB broth solution droplets . Specifically, model results of the time-dependent (a) 

evaporation profiles, (c) droplets concentration, (c) surface/volume ratio and (d) droplets temperature for droplets 

equilibrating over a range of gas-phase RHs values between 30 and 90% at 20℃. Simulations were obtained using 

the mass and heat transport equations from the Kulmala model.109,197 
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Figure 4-5. Modelled dynamics for PBS solution droplets . Specifically, model results of the time-dependent (a) 

evaporation profiles, (b) droplets concentration, (c) surface/volume ratio and (d) droplets temperature for droplets 

equilibrating over a range of gas-phase RHs values between 30 and 90% at 20℃. Simulations were obtained using 

the mass and heat transport equations from the Kulmala model. 

 

These dramatic changes in the physicochemical properties of the aerosol droplets can affect 

not only the viability of the airborne microorganisms but also the droplet lifetime in the aerosol 

phase (e.g. loss rates dues to sedimentation) as well as their deposition in the respiratory 

system.254–256 Therefore, it is critical to understand the impact that aerosol dynamics have on 

the transmission of airborne pathogens. 
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4.4 Changes in Phase/Morphology and Solute Concentration During 

Droplet Evaporation at Varying RH Affect Microorganism Viability 

The evaporation kinetics (including changes in morphology) of non-metabolized individual LB 

broth droplets (Figure 4-6a) and PBS droplets (Figure 4-6b) into RHs of 30%, 50% and 70% 

have been investigated. For evaporating LB broth solution droplets, the light scattering 

analysis190 suggests the formation of NaCl inclusions (NaCl makes up 40% of the mass of LB 

broth) during evaporation into RHs of 30 and 50% while complete homogeneity is sustained 

when evaporating at 70% RH (Figure 4-6a). The PBS solution droplets remain homogenous 

during evaporation into RHs of 50 % and above, but crystal formation is observed when 

evaporating at an RH of 30% (red point in Figure 4-6b); at this RH, the determination of the 

size of the crystallized non-spherical particle is not possible.189 As expected, the efflorescence 

of PBS was observed to occur at an RH between 30 and 50% which agrees with the known 

efflorescence RH for NaCl (45-50%).198 In both Figure 4-6a and Figure 4-6b, the morphology 

analysis is most certain after the droplets reach equilibrium with their environment, i.e. once 

the cumulative phase functions become consistent making the phase identification more robust. 

To further explore the morphologies formed from the drying of PBS and LB broth droplets at 

30% RH, particles were captured for SEM (scanning electron microscopy) analysis (Figure 

4-6c and Figure 4-6d). The morphologies are as expected from the light scattering analysis 

performed in the CK-EDB measurements. Briefly, LB broth particles are broadly spherical in 

shape (Figure 4-6c and Figure 2-13a) with clear evidence of dendritic salt inclusions, reflecting 

the likely diffusional limitation due to elevated particle viscosity of these organic-rich droplets 

formed on rapid drying as inclusions form (60% MFS of organic compounds).257,258 By 

contrast, PBS droplets form multiple crystals (Figure 4-6d and Figure 2-13c) as the droplet 

rapidly dries with multiple nucleation events occurring as the solute concentration surpasses 

critical supersaturation for efflorescence.195 

The rapid changes in particle size and water content during drying lead to conditions in the 

aerosol phase that are not accessible in the bulk liquid (e.g. supersaturated solute, high salt 

concentrations, ultra-viscous and even glassy states) for nearly all ambient conditions when the 

RH falls below 70%, potentially impacting the survival of enclosed microorganisms. 

126,216,217,259,260 In Figure 4-6e and Figure 4-6f, the time-dependent changes in solute 



Chapter 4. Microphysical Factors Influencing the Airborne Transmission of Pathogens 

123 

 

concentrations accompanying evaporation of non-metabolized LB broth and PBS droplets into 

gas-phases of 30, 50, 70 and 90% RHs are compared. The dynamics for these solution droplets 

are simulated using a quasi-steady evaporation model that accounts for the interplay of mass 

and heat transport during drying and is benchmarked against the experimental 

measurements.197  

The impacts on E. coli MRE-162 survival of the interconnected changes in size, particle 

morphology and solute concentrations taking place during evaporation of PBS and LB broth 

droplets at 300 s are reported in Figure 4-6g and Figure 4-6h. Bacterial survival is reported as 

the ability of a bacterium to form a colony (colony-forming unit, CFU) after suspension, 

collection and 24 hr incubation. Overall, an inverse correlation between the final equilibrated 

solute concentration and E. coli MRE-162 survival is observed. 

At high RH (90-70%), where all droplets remain homogeneous during evaporation for both 

droplet compositions, bacteria survival shows a significant decrease in LB broth droplets with 

a decrease in RH, potentially due to the high solute concentration at 70%. In the case of PBS 

droplet composition, the reduction in survival with RH is moderate. When comparing LB broth 

and PBS compositions, there was not a significant difference between survival over this range 

of RHs. A higher survival at 70% RH (Figure 4-6h) is reported in PBS droplets, possibly due 

to the higher mass of water, larger droplet size and lower solute concentration when achieving 

equilibrium with the gas-phase composition (c.f. Figure 4-4 and Figure 4-5). 

Under the driest conditions (50 to 30% RH), a significant decline in E. coli MRE-162 survival 

is observed in PBS droplets (Figure 4-6h) compared with a smaller decrease for LB broth 

droplets (Figure 4-6g). This sudden reduction in survival in PBS coincides with a transition in 

particle phase, in this case from homogenous droplets to salt crystals (Figure 4-6b and Figure 

4-6d). Comparing droplet compositions, a statistically significant difference survival was 

observed at 50% RH, also matching a difference in droplet morphologies between composition, 

showing lower survival in LB broth droplets where inclusions where observed in contrast with 

the homogeneity of the PBS droplets (c.f. Figure 4-6a and Figure 4-6b). Conversely, the 

survival reported in LB broth droplets at 30% RH is marginally higher than for PBS, likely due 

to the presence of organic components in LB broth which potentially enhances survival 

(compare Figure 4-6g and Figure 4-6h). 
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Figure 4-6. Evolution of size and morphology for evaporating droplets of (a) non-metabolized LB broth, (b) PBS 

into 30%, 50% and 70% gas-phase RHs. Slopes for the linear trend in the radius-squared are -216.7, -118.1 and -

90.4 in the case of LB broth droplets and -221.9, -153.4 and -108.7 for PBS droplet composition, each at 30, 50 and 

70% RHs, respectively. SEM and backscattered electron images for particles formed from (c) non-metabolized LB 

broth and (d) PBS at 30% RH are shown. Predicted time-dependent solute concentrations for evaporation of 

droplets into RHs spanning from 30 to 90% RHs and 20 ℃ for droplets solutions of (e) non-metabolized LB broth 

and (f) PBS are shown. To simulate the evaporation profiles, a starting radius of 25 m and concentration of 25 g L-
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1 and 9.5 g L-1 for LB broth and PBS were used, respectively. The impact of morphology and solute concentration 

on airborne bacteria viability at 300 s from droplet generation under RHs of 30 to 90% RH are shown for (g) LB 

broth and (h) PBS droplets containing E. coli MRE-162 (starting concentration of (2.6±0.6)108 CFU mL-1, 28±11 

CFU droplet-1). p-values obtained when comparing LB broth and PBS compositions at 90, 70, 50 and 30% RHs by 

applying a two-sample t-test are 0.137, 0.079, 0.00 and 0.22, respectively, showing only a significant difference on 

survival between compositions at 50% RH. 

 

4.5 No loss of Viability is Observed during the Rapid Drying Phase of 

Bioaerosol Droplets; Bacteria Act as a Crystallization Nuclei 

Time-dependent measurements of the viability for E. coli MRE-162 ((2.6±0.6) 108 CFU mL-

1, 28±11 CFU droplet-1) enclosed in LB broth and PBS droplets equilibrated at 30, 50, 70 and 

90% RH were performed over 1h, as shown in  

Figure 4-7. Due to the gentle aerosolization processes and high-resolution sampling achieved 

with CELEBS, the CFU observed for the shortest survival measurements (<5s suspension time) 

agree with the estimated microbial concentrations in the droplets. This expected concentration 

is estimated from the cell concentration in the suspension loaded into the DoD dispenser, 

described with a Gaussian distribution when cell concentrations are in the order of 108 cells 

mL-1 (Figure 3-4 and Figure 3-5). The efficiency of the sequence of processes (biological 

sample solution to aerosol droplet creation to aerosol droplet sampling/recovery) has been 

discussed in detail in Chapter 3. 68 Thus, only the biological decay processes occurring in the 

aerosol phase need be considered.  

Little decline in biological viability over a timescale of 5 s is observed at any of the droplet 

compositions and RHs (Figure 4-7a and Figure 4-7b). This holds even for the very rapid 

evaporation and equilibration time at the lowest RHs where the evaporative cooling and rise in 

solute concentration at the droplet surface can be expected to be most severe (e.g. Figure 4-4 

and Figure 4-5). Thus, the dynamic processes taking place (e.g. water evaporation, surface 

cooling, rapid changes in size and solute composition) seem to not immediately impact E. coli 

MRE-162 survival.  The lack of impact of the dynamics occurring during evaporation can be 

contrasted with current assumptions whereby two different decay constants have been reported, 

suggested as arising from a rapid initial decay attributed to the drying process and subsequent 

slower secondary phase associated with oxidative stress and the effect of environmental 
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conditions. 80,117,119,261–264 These studies were performed by using reflux atomization for aerosol 

generation and various methodologies for particle suspension such as the rotating drum and the 

static and dynamic storage chambers. 117,119,261,262,264.  

The marginal decay observed up to 5 s suggests that previous reports of a rapid initial loss of 

viability (with decay constants of 1 sec) 117,262 are likely not occurring in the aerosol phase, but 

may be a systematic artefact of the aerosolization process used since many aerosol generators 

impact the structural integrity of microorganisms when nebulized.33,137 Further, the disturbance 

in gas-phase conditions produced by the cumulative mass of water introduced to the system by 

the cloud of droplets from nebulisers is often not contemplated and, therefore, the conditions 

studied are not often precisely reported during droplet evaporation (tens of minutes may be 

necessary for the droplet cloud to reach equilibrium).265 The ability to determine microbial 

decay during dynamic microphysical processes in the aerosol phase is unique to TAMBAS 

approach. 

 

Figure 4-7. Relationship between solute compositions and survival for E. coli MRE-162  (2.6±0.6 108 CFU mL-1) as 

a function of RH in (a) LB broth and (b) PBS droplets. Note that in (b), the data points for 50% and 70%RH at 

3600s overlap. Insets show the survival during a timeframe of 60 s levitation. SEM and backscattered electron images 

for (c) LB broth and (d) PBS droplets containing E. coli MRE-162 at (2.6±0.6) 109 CFU mL-1 at 30% RH. Scale 

bars represent 5 m. 
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The time for the first decay is apparent in Figure 4-7 and is considerably longer that the time 

required for the droplets to reach thermodynamic equilibrium, a time that is dependent on RH 

(Figure 4-4 and Figure 4-5). Interestingly, a significant decrease in airborne bacteria viability 

(compared to 5s measurement) is observed only at the lowest RHs (30 and 50%) for droplets 

composed of PBS during the first 60 s of suspension (p-values of 0.00004 and 0.00015 

respectively). In contrast, the loss of viability was significant only at the highest RHs (70 and 

90%) (p-values of 0.0013 and 0.0001 respectively) in the case of LB broth droplets. This 

general trend describing greater survival in PBS droplet composition at high RHs is maintained 

at longer timescales. Thus, no significant decay is observed at 90% RH after 1h suspensions 

for droplets composed of PBS (p-values of 0.2) while the reduction on viability is significant 

for droplets with LB broth composition (p-values of 0.00005). This divergence in survival in 

droplets of different compositions may be a result of the higher solute hygroscopicity of PBS, 

linked to greater water content in the droplets and lower solute concentrations (Figure 4-4b and 

Figure 4-5b). 

Interestingly, the structure of bacteria containing PBS particles dried at 30% RH observed in 

the SEM analysis show E. coli MRE-162 cells embedded in the salt crystals, coinciding with a 

considerable increase in the overall number of crystals when compared with pure PBS droplets 

(compare Figure 4-6d with Figure 4-7d and Figure 2-13c with Figure 2-13d), consistent with 

bacteria acting as crystallization nuclei. Conversely, little change in the phase behaviour of LB 

broth is observed when containing bacteria (compare Figure 4-6c with Figure 4-7c and Figure 

2-13a with Figure 2-13b). 

 

4.6 Droplet Size Affects Airborne Bacterial Viability 

To isolate the effects of different factors (such as solute concentration and droplet size) 

impacting airborne bacterial survival, the viability response of E. coli MRE-162 levitated for 

300s in droplets of LB broth with different initial solute concentrations equilibrating at 50%RH 

are compared in Figure 4-8c. 
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The evaporation profiles of three different starting concentrations of non-metabolized LB broth 

are reported in Figure 4-8a. The different initial concentrations lead to different equilibrated 

sizes although each achieves the same concentration of LB broth and moisture content when 

reaching an equilibrium at a specific RH (Figure 4-8b), thereby having the same density. Thus, 

evaluation of solely the effect of different particle sizes containing the same solute 

concentration at equilibrium is possible. This is a unique and important element of this 

approach. The data in Figure 4-8c suggests that either particle size and/or the dynamic 

processes during evaporation plays a crucial role in the survival response of E. coli MRE-162. 

 

Figure 4-8. Effect of droplet size on airborne bacterial survival . (a) Comparison of the measured (a) particle size 

and (b) changes in solute concentration (g L-1) of LB broth droplets with different initial solute concentrations 

evaporating into 50% RH and 20 ℃. (c) The effect of the equilibrium particle size on bacteria viability. All the 

survival data are expressed as the average and standard deviation for three replicates per experiment were 

populations from 2 to 6 droplets were levitated. 
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4.7 Outline of the Relationships Between Aerosol Microphysics and 

Bacteria Viability 

The relationship between ambient RH and airborne E. coli bacteria viability can be summarized 

in three different regimes for LB and PBS particle compositions:  

• Dry conditions (< 50 % RH). Most of the water is rapidly lost during evaporation, 

producing important changes in particle size, solute concentration, phase and particle 

morphology. In this humidity regime, salt concentrations reach supersaturated states 

which are not accessible in the bulk liquid phase and usually crystallize. A reduction 

in the viability of E. coli MRE-162 was observed in this region, but this reduction was 

not directly a function of the phase change itself. The survival of bacteria in LB broth 

droplets at 30% RH is slightly higher than in PBS droplets, likely due to 60% of 

organic solute content contained in the LB broth solution, mostly amino acids and 

long-chained fatty acid which lead to fundamentally different phase behaviour. The 

differences in survival trends for both compositions in this RH regime might be due 

to the different solute hygroscopicity producing different changes in the particle size, 

solute concentration and the relative mass of water intake when increasing the RH. 

The relative change between wet and dry particle size for PBS and LB broth particles 

(i.e. change in the radial growth factor) at RHs below 50% is estimated by a using a 

correlation between GFr and RH (Figure 4-9),201 observing a steeper change in the 

relative particle size for PBS droplets, undergoing a higher increase in volume. A 

detailed comparison of the hygroscopic properties for LB broth and PBS droplet 

solutions are also presented in Figure 4-2. 

• Intermediate conditions (~50 to 70% RH). Here, the difference in survival is not 

significant for both LB and PBS compositions in this range of RH. There are no 

significant changes taking place in the morphology of the droplets, with little change 

in water content with RH and little variation in the ratio of wet and dry particle mass 

(mass growth factor) for both PBS and LB broth droplets (Figure 4-2). For RHs above 

50%, the higher solute hygroscopicity of PBS promotes greater water retention (and 

hence larger droplet size) than for LB broth particles at the same RH and for particles 
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containing the same dry solute mass. Thus, lower solute concentrations exist in PBS 

droplets perhaps explaining the observed greater survival. 

• Wet conditions (>70%). Greater retention of water mass takes place for both 

compositions, particularly in the case of PBS due to its higher hygroscopicity (Figure 

4-2) coupled with a reduction in evaporation rate (Figure 4-5a). The size of the 

particles at 90% RH is much larger than at lower RHs and hence the salt concentration 

is at levels that are not harmful to the microorganisms. In this regime, the E. coli MRE-

162 survival in PBS droplets seems to be independent of RH up to one hour in the 

aerosol phase (Figure 4-7). 

 

Figure 4-9. Comparison of the GFr for LB broth (orange) and PBS (grey) droplets  . The fitting does not account for 

the change in morphology therefore the real equilibrium size is smaller than that obtained by using the model. The 

morphology change leads to the formation of inclusions and crystals in the case of LB broth and PBS respectively 

(Fig. 4); this event takes place in a water activity (equivalent to RH) interval between 0 and 0.4 where the estimated 

equilibrium size is not accurate. Thus, the relative change in the size of the particle during water intake is steeper 

than estimated for both droplets’ compositions. 

 

The capability of this approach to further explore the connection between aerosol microphysics 

and the survival of airborne microbes is shown in  Figure 4-10. Here, three physicochemical 

properties (e.g. salt concentration, volume reduction and temperature suppression) are 

correlated with the viability decay of E. coli MRE-162 at different suspension time intervals in 

the aerosol phase (i.e 120, 600 and 1800). Generally, the more stochastic correlations shown 

in the shortest suspension times (i.e. 120 s) are notably sharped as a function of time in the 
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aerosol phase for the properties related to the evaporative process (Figure 4-10b and Figure 

4-10c).  

 

Figure 4-10. Relationship between physicochemical and biological properties  . Specifically, the effect of (a) NaCl 

concentration (b) evaporation rates and (c) droplet cooling on the viability of E. coli MRE-162 contained in LB broth 

and PBS solution droplets at 120, 600 and 1800 seconds (from top to bottom) of suspension in the aerosol phase is 

reported. 

 

Figure 4-11 shows E. coli MRE-162 viability at 300 s of suspension as a function of six 

different parameters (droplet cooling, volume reduction, surface-to-volume ratio, 

concentration of NaCl, concentration of solute and droplet volume) where only three (Figure 

4-11b and Figure 4-11e) demonstrate a large collective correlation for both particle types (e.g. 

PBS and LB broth) reporting R2 values of 0.78, 0.80 and 0.87 for droplet cooling, volume 
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reduction and solute concentration, respectively. These correlations of viability with droplet 

cooling, volume reduction and solute concentration, are all associated with the initial water 

mass flux from the droplet at the point of generation. Thus, although there is no apparent loss 

in viability during the drying phase (first 5-10 seconds), the impact of the initial mass flux from 

the droplet on microbe longevity, and overall change in size (Figure 4-8), is consistent with an 

impact on viability over longer timescales. Put simply, the data suggest that the initial 

evaporation dynamics of the bioaerosol have a pronounced and predictable delayed effect on 

bioaerosol survival and should be further explored. 
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Figure 4-11. Correlation between changes in physicochemical properties and survival  of E. coli MRE-162. 

Specifically, (a) Maximum droplet cooling, (b) Evaporation rates in terms of change of droplet volume within the 

first second after aerosolization, (c) Surface-to-volume ratio, (d) NaCl concentration in the droplets at the 

thermodynamic equilibrium, (e) Total solute concentrations (organic and inorganic compounds) and (f) Droplet 

volume when evaporating at 30, 50, 70 and 90% RH. Note that the values for the physicochemical properties were 

estimated using the kinetic model for a droplet of 25 m initial radius and concentration of 25 and 9.5 g L-1 for LB 

broth (orange circles) and PBS respectively (grey squares). 
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4.8 Summary and Conclusions 

The novel TAMBAS approach presented provides the opportunity to explore the effect of 

individual parameters on airborne survival which could be crucial for fully understanding the 

fundamental mechanisms that control the transmission of airborne diseases. The ability to 

measure the impact of aerosol dynamics on the survival of microorganisms in the aerosol phase 

while reducing stresses involved in the generation, suspension and sampling processes is 

unique to this technique. Previous studies performed with evaporating sessile droplets (i.e. 

droplets deposited on surfaces) 177 or conventional technologies 116,266 are often not 

representative of the natural mechanisms involved in the airborne transmission of disease. 

Therefore, data comparison becomes challenging due to the wide variety of methodologies, 

bioaerosol compositions and environmental conditions employed in survival studies. 

Ultimately this transformative approach will contribute to a more complete understanding of 

the fundamental factors influencing the airborne transmission of pathogens enabling the 

development of refined hazard mitigation strategies. 



 

 



 

 

Chapter 5  

 

Inactivation Mechanisms of Airborne Pathogens in 

Biologically Representative Respiratory Droplets 

The results presented in this chapter are subject of two manuscripts in preparation for 

publication. I confirm that the presented work is all my own and I acknowledge Jonathan P. 

Reid, Allen E. Haddrell and Richard J. Thomas for their supervision and advice on the 

interpretation of experimental data. 

 

The preceding chapters discuss the methodology developed to investigate the survival of 

airborne pathogens. In Chapters 2 and 3, the theory and validation of this approach were 

introduced. The experimental data provided in Chapter 4 consolidated the methodology as well 

as elucidated some of the key microphysical parameters impacting the viability of airborne 

pathogens. In this chapter, aerosol microphysics and microbiological properties are correlated 

with the survival of airborne bacteria contained in biologically representative solutions in 

aerosol droplets. First, experimental measurements of the physicochemical properties of these 

complex mixtures (e.g. hygroscopicity, evaporation dynamics and droplet morphology) will be 

presented. This work aims to fully understand the equilibrium, dynamic and surface properties 

of artificial respiratory secretions in aerosol droplets. Secondly, the biological response of 

airborne bacteria as a function of time and RH in the same droplet compositions will be studied. 

The chapter also reports the experimental measurement of the impact of relevant 

physicochemical and microbiological properties (e.g. presence of surfactants, microbial 

concentration, cell physiology, changes in the droplet chemical composition, surface 

enrichment, etc) on airborne survival, allowing the determination of the main mechanisms of 

death for airborne respiratory pathogens.  
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5.1 Introduction 

The current SARS-CoV-2 pandemic presents an enormous health and economic challenge for 

the entire world. To develop public health strategies, epidemiological models are used to 

predict the progression of infectious diseases and the success of mitigation measures such as 

non-pharmaceutical interventions, reporting a range of potential outcomes which can be 

conflicting. These models are dependent on numerous parameters which, in the case of a novel 

pathogen, are unknown and in turn limits their performance. With the on-going pandemic and 

recurrent cases of new outbreaks in the last decades,267,268 there is an emerging need to fully 

and rapidly understand the underlying complexity and interconnectivity among the different 

mechanisms that drive the transmission of airborne pathogens. This deeper understanding 

would enable prediction of the longevity of pathogens across a wide range of conditions 

eluding the need to measure the impact of every single parameter independently. The ability to 

measure bioaerosol survival at the detail which enables one to characterize these processes 

individually in the aerosol phase has not been possible until recently.10,68 

We propose here a comprehensive and robust in vitro approach to predict pathogen longevity 

as a function of specific mechanisms that can be grouped into 5 contributing and competing 

rates (Figure 5-1). The overall microbial death rate is a result of the cumulative effect of each 

one of these processes, where each impacts the viability of the airborne microorganisms 

through different processes. The overall aim of this approach is to be able to predict longevity 

through a better understanding of the underlying mechanisms of pathogen inactivation. The 

effect that each of these subcategories has on E. coli MRE-162 longevity within the TAMBAS 

approach has been explored independently.10 For example, consider the impact of the 

aerosolization device on the viability of the microorganisms: the effect of conventional 

aerosolization devices on viability has been assessed in the literature, reporting a loss of 

physiological function which is linked to mechanical stress caused by high aerosolization 

pressures and shear forces.130,137,250  In addition, a comparative study to examine the effect of 

two aerosolization methods (using the 1-jet refluxing nebuliser and the DoD dispenser) on 

membrane integrity of E. coli MRE-162 was previously published.68 Results showed that the 

waveform and induction electrode parameters used with the DoD dispenser caused no 

structural damage to bacteria cells, on the contrary, membrane integrity was reduced 67% after 

20 min of nebulization when using the 1-jet refluxing nebuliser, demonstrating that both 
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mechanisms are fundamentally different. Thus, an extensive body of evidence about the impact 

of different aerosolization devices on airborne microbial viability has been reported.115,130,137,250 

However, while it is clear that the aerosolization process itself affects microbe health, what is 

unclear is the knock-on effect that this damage has over time, and across conditions. For 

example, the effect of solute concentration, droplet size, temperature, microbial concentration, 

and surface to volume ratio has on bacterial longevity needs to be considered. 

 

Figure 5-1. Novel in vitro approach to predict the death rate of airborne pathogens  as a cumulative effect of different 

mechanism impacting the viability of microbe’s viability. Note that aerosol generation and sampling effects will 

occur at either end of the experimental system. The primary effect is the driving parameter (e.g. RH) while the 

secondary effect is the property of the aerosol affected by the primary parameter (e.g. viscosity). 

 

The paradigm illustrated in Figure 5-1 describes a sequence of mechanistic steps by which one 

can systematically accumulate individual effects on longevity through an understanding of the 

underlying mechanisms of microbial harm/death. With this more complete comprehension, one 

should be able to accurately predict microbe survival in various environments/aerosol 

compositions/timescales without needing to make numerous measurements and enable 

extrapolation between laboratory datasets by understanding some fundamental aspects of the 

aerosol system. 

In this work, the effect of drying kinetics, surface enrichment, particle morphology, solute 

composition, microbial concentration, and bacterial physiology on airborne bacterial survival 

are reported. With this approach, it is possible to explore the role of each of the various 
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categories (specifically 1 to 4) described in Figure 5-1 and obtained the combined impact of 

the main parameters affecting the survival of bioaerosols by using the proposed equation 

(Figure 5-1). This is a comprehensive approach to describe the real-world airborne disease 

transmission whose outcomes will potentially enable more impactful control strategies. 

 

5.2 Physicochemical Properties of Representative Respiratory Aerosol 

Droplets 

5.2.1 At Equilibrium: The Water Content (Hygroscopicity) of Artificial 

Respiratory Secretions 

The hygroscopic properties of artificial respiratory droplets (i.e. artificial saliva and artificial 

sputum) were characterized for the first time by using the comparative kinetics technique with 

the CK-EDB (Section 2.2.1). In Figure 5-2, the relationships between solute composition with 

the ambient RH for droplets made of representative respiratory secretions are compared with 

previously published hygroscopicity measurements for common microbiological media (i.e. 

LB broth and PBS solution droplets)10 and the E-AIM (extended aerosol inorganics model) 

model predictions for NaCl.200  

In general, aerosol droplets containing a large solute fraction of inorganic compounds, such as 

phosphate-buffered saline (PBS) and NaCl, have higher hygroscopicity than droplets 

containing a significant organic solute fraction. Both LB broth (60% of the mass arising from 

organic components) and artificial sputum (80% of organics by mass) report similar 

hygroscopic responses. Unexpectedly, the artificial saliva droplets were the least hygroscopic 

of the series despite high salt content (approximately 95% of salts by mass). Once the 

hygroscopicity is determined, it is possible to assess the impact of solute concentration changes 

on the survival of the microbial components of the aerosol. For instance, considering an 

artificial saliva droplet, its solute weight percent will change from 15% to 50% when the 

ambient RH decreases from 90% to 50%. This dramatic change in concentration will be 

expected to influence microbial health. Developing these interconnections between 

physicochemical parameters and microbial viability is crucial to fully understand the 

inactivation of microorganisms in the aerosol phase.  
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Figure 5-2. Hygroscopic response of various droplet solutions  (e.g. PBS, LB broth, artificial saliva and artificial 

sputum) as a function of droplet water activity (ɑw), equivalent to the gas-phase RH, presented in terms of (a) mass 

fraction of solute (MFS), (b) mass growth factor (GFm) and (c) and radial growth factor (GFr). The predicted curve 

for the hygroscopicity properties of NaCl (line) from the Extended Aerosol Inorganic model (E-AIM) is shown for 

reference purposes. 

 

Changes in equilibrium composition of aerosol droplets, principally changes in water content, 

as a function of atmospheric conditions are likely to impact on airborne transmission 

mechanisms. Linking equilibrium solution compositions with airborne survival data enables 

determination of the key physicochemical parameters of airborne particles (e.g. water mass, 
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solute concentration, particle size) impacting bioaerosol survival. This capacity to predict the 

important parameters for survival/infectivity/viability in the aerosol phase will support a faster 

implementation of mitigations (i.e. tailor the RH and temperature in indoor environments, 

identify the risk factor that enhance the spread of disease, etc) 

 

5.2.2 Mass Transport During Evaporation: Modelling Aerosol Droplets 

Composed of Artificial Respiratory Secretions 

An accurate understanding of the mass and heat transport accompanying the evaporation or 

condensation of water from aerosol droplets composed of respiratory fluids is increasingly 

recognized to be critical to predict the risks in the airborne transmission of disease.10,110,124,269 

Aerosol droplets expelled when speaking, coughing and sneezing will evaporate to equilibrate 

with the surrounding atmosphere. The rate of mass and heat transfer to and from respiratory 

droplets is determined by the conditions of the gas-phase and the droplet composition, 

specifically the water activity of the solution phase. Evaporation on exhalation frequently leads 

to rapid and dramatic changes in solute concentration, droplet size and even droplet 

temperature. Thus, aerosol particles can exhibit supersaturated states with solute concentrations 

higher than the solubility limit for macroscopic solutions, enhanced reactivity rates270,271 and 

even unique phase behaviour255 due to their chemical and physical characteristics. The kinetics 

of mass and heat transfer will not only impact the viability of the microorganisms enclosed in 

a respiratory droplet but also the lifetime of the droplets during aerosol transport and even their 

deposition in the respiratory system when droplets are inhaled by an exposed 

individual.35,63,254,256 These unique attributes highlight the need to understand the effect that the 

microphysical properties of aerosols play in airborne disease transmission. 

Our model predictions of evaporating artificial respiratory droplets into a wide range of RHs 

(Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6) yield the time-dependent changes in size, 

solute concentration, surface-to-volume ratio and temperature suppression experienced by 

aerosol droplets as a function of the gas-phase RH. The kinetic simulations reported here were 

obtained using the mass and heat transport equations from the Kulmala model197 and the 

parametrization of density for each droplet solute. Specifically, the model predictions included 

in Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6 are for droplets composed of artificial 
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saliva, artificial diluted (1:10) saliva, artificial sputum and artificial diluted (1:10) sputum, 

respectively. All the dynamic changes take place over a time period of less than 30 s regardless 

of the ambient RH. Note that the simulations presented in this section are for relatively large 

droplets (similar to those in a sneeze). 

 

Figure 5-3. Modelled dynamics for artificial saliva droplets  (neat concentration). Specifically, model results of the 

time-dependent (a) evaporating radius, (c) solute concentration, (c) surface-to-volume ratio and (d) temperature 

suppression for droplets equilibrating over a RH interval between 30 and 90% at 20℃.  
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Figure 5-4. Modelled dynamics for diluted artificial saliva droplets . Specifically, model results of the time-dependent 

(a) evaporating radius, (c) solute concentration, (c) surface to volume ratio and (d) temperature suppression for 

droplets equilibrating over a RH interval between 30 and 90% at 20℃.  



Chapter 5. Inactivation Mechanisms of Airborne Pathogens in Biologically Representative 

Respiratory Aerosol Droplets 

144 

 

 

Figure 5-5. Modelled dynamics for artificial sputum droplets. Specifically, model results of the time-dependent (a) 

evaporating radius, (c) solute concentration, (c) surface to volume ratio and (d) temperature suppression for droplets 

equilibrating over a RH interval between 30 and 90% at 20℃.  
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Figure 5-6. Modelled dynamics for diluted artificial sputum droplets. Specifically, model results of the time-

dependent (a) evaporating radius, (c) solute concentration, (c) surface to volume ratio and (d) temperature 

suppression for droplets equilibrating over a RH interval between 30 and 90% at 20℃.  

 

5.2.3 Surface Properties and Morphologies of Bioaerosol Droplets/Particles 

with Different Respiratory Fluids 

The TAMBAS approach10 presents the unique possibility of connecting microphysics with 

bioaerosol survival measurements made in the aerosol phase by combining the CK-EDB and 

CELEBS instruments, while allowing  subsequent extraction of the aerosol particles from the 

gas-phase atmosphere for analysis off-line. To compare the particle morphology of dried 

bioaerosol particles with different compositions, we generated populations of bioaerosol 

particles and levitated them for 120 s in varying gas-phase RHs in the CELEBS system. The 

micro-dispenser parameters have similar values to the ones used during the evaporation 

measurements in the CK-EDB system, aiming to correlate the particle morphologies observed 

under SEM microscopy with the corresponding Peclet values (Pe) characteristic of the dynamic 

drying process studied in the CK-EDB (Section 2.2.1.5). Once dried, the particles were 
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collected onto a nitrocellulose membrane filter placed in a Petri dish located in the substrate 

holder of the CELEBS instrument and analyzed offline using an SEM microscope as described 

in the Section 2.2.6. Figure 5-7 shows the SEM and backscattered micrographs of different 

bioaerosol particle compositions obtained after evaporation under 10 and 30% RH.  

Under 30% RH, an agglomerate of E. coli cells is obtained as a result of levitating the bacteria 

at a concentration of ~108 cells mL-1 in water solution droplets (Figure 5-7a). Under 10% RH, 

the evaporation of LB broth solution droplets containing ~109 cells mL-1 leads to the formation 

of spherical microparticles with dendritic salt inclusions more noticeable in the backscattered 

images (Figure 5-7b). The complex mixture of salts and nutrients (40% and 60% by mass 

respectively) in the LB broth solution appears to form a surface shell surrounding the bacteria 

cells in the interior of the particle. The organic components of LB broth, when dried become 

more viscous125 and are likely to produce a diffusional limitation in the evaporation of droplets 

with this composition.  

Under the same drying conditions, the PBS solution droplets containing bacteria at a 

concentration of 109 cells mL-1
 show the formation of multiple crystals (Figure 5-7c). The 

backscattered images show the bacteria cells confined on the surface of the salt crystals, 

reflecting the location of the bacteria when the crystallization event occurs. Finally, the droplets 

composed of artificial saliva and E. coli cells at a concentration of 109 cells mL-1
 show clear 

surface deformations resembling buckled morphologies typical of drying at high Pe number 

when dried at 30% RH. The changes in particle structure of PBS droplets containing E. coli 

MRE-162 cells transitioning across 10, 30 and 50 % RH are presented in Figure 5-8 where a 

clear diffusion of bacteria cells from the crystal-particles surface is observed as a function of 

the increasing RH due to the longer crystallization times, increasing the chances of bacteria to 

diffuse towards the centre of the bioaerosol droplets. 

The interplay between Peclet number, droplet viscosity and microbe location will be discussed 

in great detail in Section 5.4.2.2. 
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Figure 5-7. SEM images of the particle morphology for various droplet compositions containing E. coli MRE-162 

cells. Specifically, a) both SEM images of bacteria at a concentration of ~10-8 CFU mL-1 sprayed in water at 30% 

RH; b) SEM and backscattered images of bacteria at a concentration of ~10-9 CFU mL-1 in LB broth droplets at 

10% RH, c) SEM and backscattered images of bacteria at a concentration of ~10-9 CFU mL-1 in PBS droplets at 

10% RH and d) SEM and backscattered images of bacteria at a concentration of ~10-8 CFU mL-1 in artificial saliva 

droplets at 30% RH. Scale bars represent 5 m. 

 

The impact of particle morphology in bioaerosol survival is largely unknown. Previous studies 

have linked changes in particle morphology with sudden reductions in the survival of airborne 

bacteria. 10  The effect of particle morphology and surface properties of aerosols has been 

demonstrated to play an important role in the optical properties of aerosols affecting radiative 

forcing and climate,272,273 the atmospheric chemistry underwent at the surface of aerosol 
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particles274 and even the spray-drying industrial processes of pharmaceuticals and food 

products.275 Inherently, different surface composition/chemistry will have a fundamentally 

different impact on the biological properties of the particles.  

 

Figure 5-8. SEM images of E. coli MRE-162 cells at a concentration of ~109 CFU mL-1 levitated in PBS droplets at 

(a) 10%RH, (b) 30% RH and (c) 50% RH. Scale bars represent 5 m. 

 

5.3 Biological Response of Airborne Bacteria in Representative 

Respiratory Aerosol Droplets as a Function of Time and RH 

5.3.1 Time-Dependent Measurements of the Viability of Bacterial Survival 

in Artificial Respiratory Secretions as a Function of the RH 

Bioaerosol survival studies are normally conducted as a function of time, RH and temperature 

to understand the seasonality of infectious diseases.114,276 When measuring airborne survival, 
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commonly used techniques such as the rotating drum need to take into consideration the 

particle loss during suspension172 and the impact of the aerosolization device on the microbial 

viability.137 Other techniques use evaporating droplets on hydrophobic surfaces177 or spider 

webs146 that are assumed to reproduce the physicochemical properties of the true aerosol state. 

The CELEBS instrument has been designed to only consider the biological decay as a function 

of time and environmental conditions while suspending the particles airborne in an atmosphere.  

Damage to microorganisms by both aerosol generation and sampling process has been 

minimized. Further, the conditions the microorganisms experience are not complicated by the 

cloud of droplets generated by nebulisers.265 The detailed methodology has been discussed in 

Chapter 2 (Section 2.2.2) and previous publications.10,68 

In this study, E. coli MRE-162 at a concentration of 2.32±0.6  108 CFU mL-1 was aerosolized 

in different artificial respiratory fluids (i.e. artificial saliva, diluted artificial saliva and diluted 

sputum) and suspended under 30, 50 and 90% RHs for 5, 120 and 600s (extra data points at 60 

and 300s were included in the graphs for some of the droplet compositions).  As shown in 

Figure 5-9, the resulting viability percentages are compared to previously reported E. coli 

MRE-162 survival in PBS droplets for reference.10 Note that the new survival data presented 

here have been normalized by using the number of CFU per droplet after a suspension time 

under 5 s as the control measurement. For all droplet compositions, the impact of this short 

suspension period is negligible on the bacteria viability, therefore, it is used as a non-exposure 

reference measurement.  
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Figure 5-9. Survival percentages for E. coli MRE-162 (2.32±0.6  108 CFU mL-1) over time in: artificial saliva (blue), 

diluted artificial saliva (light blue), diluted artificial sputum (green) and PBS (grey) droplets compositions at a) 30, 

b) 50 and c) 90% RH. Each data point is expressed as the average and standard deviation of at least three replicates. 

 

Under the driest conditions (30% RH), the most significant decrease at early time, regarding 

the survival at <7 s, was observed for E. coli MRE-162 at 120s levitations in droplets composed 

of diluted artificial saliva (p, 4.410-3). After 600s, the decay in airborne bacteria viability 

becomes also significant in both diluted saliva and diluted sputum compositions (p values 

1.610-4 and 1.110-2 respectively).  
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As an RH of 50 or 90%, E. coli MRE-162 viability in droplets of diluted sputum experiences 

a significant (p<0.05) decrease after all the suspensions times performed on this study (p values 

1.610-4 and 3.4010-7 for 120 s and 600 s respectively at 50% RH and 1.410-4  and 6.110-4
 

for 120s and 600s respectively at 90% RH) while only the longest levitation periods 

significantly impact the survival of airborne E. coli MRE-162 in diluted artificial saliva 

droplets (P values 2.610-5 and 2.910-2 at 600s for 50 and 90% RH respectively).  

Interestingly, no significant decay is observed for E. coli MRE-162 in artificial saliva droplets 

at any of the RH and suspension times over 10 minutes. This may be a result of the low 

hygroscopicity coupled with the high initial mass fraction of solute presented in this respiratory 

fluid, leading to smaller changes in solute concentration and size when equilibrating with the 

gas-phase RH. In summary, E. coli MRE-162 has reported greater survival in droplets 

composed of artificial saliva than in droplets made of PBS and diluted respiratory fluids 

(sputum 1:10 and saliva 1:10). To understand why this relationship exists, the data from 

Sections 5.2 and 5.3 must now be considered in conjunction. 

 

5.4 Correlation Between Airborne Bacterial Survival and Physicochemical 

Properties of Bioaerosols 

5.4.1 The Effect of Aerosol Droplet Chemical Composition on Airborne 

Viability 

In order to more accurately study the risk of airborne disease transmission in natural conditions, 

the use of respiratory secretions should be used. In this section, the role that droplet solute alone 

plays on airborne bacterial survival will be explored.  

 

5.4.1.1 The effect of Mucin on Airborne Bacterial Survival 

Mucin glycoproteins are the main constituents of respiratory mucus, a viscous biological 

compound that protects and lubricates portions of the human respiratory airways.277 The 

biophysical properties of respiratory secretions depend on the concentration of mucus which is 

a function of the type of disease (e.g. sinusitis, pneumonia), disease state (e.g. healthy, 
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asymptomatic and infected individuals) and the anatomical location (e.g. nasal, bronchial) in 

the respiratory airways.250,278 Different viscoelastic properties of respiratory mucin have been 

reported to affect the size distribution and concentration of droplets generated during coughing 

or breathing.279 It is, therefore, expected that these varied rheological properties will affect the 

evaporation rates, settling velocities and even the biological processes dictating the airborne 

survival of pathogens enclosed in these droplets. 

The evaporation profiles of artificial saliva droplets with different mucin concentrations (0.3, 

0.5 and 2.5% mass to volume ratio (m/v)) into a gas-phase RH of 30% are shown in Figure 

5-10a. The data are presented in the form of a normalized change in the radius-squared at 

normalized time t relative to the initial droplet radius r0
2

 (Eq. (5-1), (5-2)),  

 𝑟2 = 𝑟0
2 − 𝑘𝑡 (5-1) 

 

or 

 
𝑟2

𝑟0
2 = 1 − 𝑘

𝑡

𝑟0
2 (5-2) 

 

where k is the gradient of the resulting straight-line and is the rate of evaporation (units of m2 

s-1) until equilibration in the composition is approached. The normalization of data is performed 

to remove the effect of slight variations in the initial size of the droplets at generation and is 

consistent with the use of the often applied radius-squared rule for steady droplet 

evaporation.217 Despite the potentially different physical properties among droplet 

compositions, the changes in mucin concentrations do not significantly affect aerosol 

dynamics, reporting similar linear trends in the radius-squared than pure water droplets (Figure 

5-10a).  

The same artificial saliva compositions were used to resuspend an E. coli MRE-162 culture at 

a concentration of (2.3±0.3)108 CFU mL-1. The bacterial suspension was aerosolized and 

levitated for 120 and 1800 s at 30% RH. The impact of different simulant mucin concentrations 

on the survival of E. coli MRE-162 is reported in Figure 5-10b, showing no significant change 

on the survival of E. coli MRE-162 (corresponding p-values in  
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Table 5-1). Despite reported studies showing that the presence of respiratory mucus provides 

a protective effect that remarkably increases the survival of human influenza viruses under dry 

conditions, the reasons for this previous observation are not completely clear.83,105,111,280 The 

relationship between airborne bacterial viability and mucin concentrations in aerosol droplets 

has yet not been investigated in detail in the literature and needs to be further explored, but our 

results here suggest that mucin does not play a significant role for droplets of the size 

considered here. 

 

Figure 5-10. Effect of mucin concentrations on evaporation and survival of E. coli MRE-162. a) normalized 

evaporation rates of artificial saliva droplets composition containing three different mucin concentrations and pure 

water droplets and b) Survival of E. coli MRE-162 in artificial saliva droplets containing the same three different 

mucin concentrations, both at 30% RH. The mass fractions of mucin in artificial saliva represent the mucin 

concentrations in standard artificial saliva (0.3%), artificial sputum (0.5%) and artificial sputum with higher mucin 

concentration representative of infection (2.5%). 

 

Table 5-1.  Calculated p-values comparing the impact of different mucin concentration on the survival percentages of 

E. coli MRE-162 after levitation periods of 120 and 1800 s.  

m/v mucin / %  p-values for survival at 120 s p-values for survival 1800 s 

Between 0.3 and 0.5 0.938 0.111 

Between 0.3 and 2.5 0.161 0.196 

Between 0.5 and 2.5 0.216 0.337 
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5.4.1.2 The effect of Gas-to-Particle Partitioning of Pyruvic Acid on 

Airborne Bacterial Survival  

Little is known about the reactivity of bacteria with trace gases present in the atmosphere, such 

as atmospheric oxidants (e.g. OH, NO3, and O3). This relationship is further complicated by 

both the oxidants and the microbes potentially modifying the composition and physicochemical 

properties of the droplet itself through heterogeneous and multiphase reactions,19 and 

biological processing. Incorporating this information to improve our quantitative 

understanding at the process level of how bioaerosols interact with atmospherically relevant 

species and how these reactions impact their survival, lifetime and physicochemical properties 

(e.g. hygroscopicity) is crucial to develop a complete understanding of the mechanisms 

determining the airborne transmission of disease and should be considered when building 

infection models.  

In this section, pyruvic acid is used as a surrogate representation of a secondary organic aerosol 

(SOA) component to investigate the effect of gas/aqueous-phase partitioning and reactions on 

airborne bacterial survival. In the atmosphere, pyruvic acid is generated as an isoprene 

oxidation product, characterized by its high solubility and strong dissociation constant (pKa) 

which enhances its partitioning potential into the aqueous aerosol phase. 281 In this work, a 

bubbler containing aqueous solutions with different volume fractions of pyruvic acid was 

connected to the gas inlet; this sets the gas-phase RH to 30% while simultaneously introducing 

pyruvic acid to the levitated droplets (Figure 5-11). 

 

Figure 5-11. Diagram of the gas flow set-up for pyruvic acid studies on bacterial viability. 
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Estimated saturation concentrations of pyruvate compounds as a function of its gas-phase 

partial pressures (which were calculated with the Raoult’s law) are shown in Table 5-2; these 

estimates assume a gas/aqueous-phase equilibria within the dilute limit, evading the 

dependence of the low RH in the particle phase to avoid large uncertainties arising from various 

non-idealities when using Henry’s law. For these calculations, a Henry-constant value of 

(3.1±0.8)105 mol kg-1 atm-1 was used to estimate the concentration of pyruvate compounds in 

the aqueous phase.281 Both, the partial pressures, and concentrations of condensed pyruvic acid 

were found to be increased by the addition of pyruvic acid into the bubbler (Table 5-2).  

Table 5-2. Equilibrium saturation concentrations of pyruvic acid in the aqueous phase as a function of the volume 

fraction of pyruvic acid introduced in the gas inlet at 30% RH. 

Volume percentage of 

Pyruvic Acid in bubbler as 

aqueous solution (% v/v) 

Vapour pressure of 

pyruvic acid above 

equilirated solution (atm) 

Solution phase 

concentration of Pyruvic 

acid in bubbler and 

equilibrated in droplet 

(mol kg-1) 

0 0.00 0.00 

0.01 4.3410-08 0.01 

0.1 4.3410-07 0.13 

100 1.7010-03 527.55 

 

The survival of the airborne bacteria is only affected when pure pyruvic acid is added to the 

bubbler (not representative of real atmospheric conditions), which increases the concentrations 

of condensed pyruvate compounds by 4103 times when compared to the 0.1% v/v of pyruvic 

acid in the bubbler, reporting an immediate lethal effect on airborne bacteria (Figure 5-12).   
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Figure 5-12. Effect of different volume fractions of pyruvic acid on survival  of E. coli MRE-162 at a concentration 

of (2.8±0.3)108 CFU mL-1in droplets composed of artificial saliva at 30% RH. Survival was obtained by introducing 

pure water in the bubbler are shown for reference purpose. 

 

One potential explanation is that the high concentration of pyruvic acid produces a change in 

the pH of the droplet decreasing the bacterial survival after 120 s of levitation. Pyruvic acid 

exists as its keto and diol forms when dissolved, maintaining a naturally acidic pH (~2.3) in 

diluted solutions.282 However, the extent of hydration to the diol form is pH-dependent, which 

is also likely to vary as the droplet evaporates and the solution concentration evolves. Note that 

the gas-particle equilibration time for the pyruvic acid partitioning is likely to be shorter than 

the drying time/loss of water to achieve equilibrium. Although the effect of pH on pathogens 

suspended in the aerosol phase has not yet been documented in the literature, previous studies 

on evaporating droplets deposited onto polystyrene surfaces investigated the impact of this 

parameter on microbial viability. They show a significant inactivation of enveloped viruses 

generally more noticeable than in non-enveloped ones under acidic and basic conditions due to 

the denaturing of the membrane proteins and the hydrolysis of the viral genome caused by 

extreme pHs.104 Concerning E. coli bacteria, a study in the liquid phase has reported the pH-

dependent inhibitory effect of anionic products of sulphur dioxide (SO2) on bacteria viability, 
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increasing their toxicity as the pH of the environment decreases. However, the stress generated 

by hydrogen ion concentrations (pH) differs widely among microbes, some being able to grow 

under acidic (acidophilic bacteria), neutral (neutralophilic bacteria) and basic (alkalophilic 

bacteria) conditions while others being able to regulate their internal pH by producing enzymes 

(pH homeostasis).283 Therefore, extrapolation of results from laboratory experiments between 

different microorganisms needs to be considered with caution. Moreover, determining the real-

time pH in evaporating aerosol droplets, and therefore explain the impact of pH and 

photochemistry on the viability of airborne pathogens, is challenging and needs the 

implementation of new tools.104 Certainly, given the known pH sensitivity of some virus since 

spike, these tools would be extremely useful. 

 

5.4.2 The Effect of Evaporation Rates on Airborne Bacterial Viability  

The dynamic processes occurring within single aerosol particles during evaporation and drying 

can drive changes in physicochemical properties and reaction rates across several orders of 

magnitude.125,195,216 For example, aerosol particles commonly reach supersaturated solute, 

ultra-viscous and even glassy states, 126,216,217,260 and this can potentially influence the survival 

of microorganisms in aerosol particles.259  To what extent are any biological processes taking 

place in an aerosol droplet governed by these physicochemical changes?  

In previous work10 (Chapter 4), the effect of solute concentration as a function of the ambient 

RH, on airborne bacterial survival was explored. An inverse correlation between survival and 

the equilibrated solute concentration for both LB broth and PBS solution droplets was obtained. 

Also, the impact of droplet size alone on survival was investigated, showing a significant 

increase in bacterial survival directly proportional to the equilibrated droplet size when the 

solute concentrations and moisture content achieved at equilibrium were the same.10 Moreover, 

if the effect of particle size alone determines survival, all viability decay data would be highly 

dependent on the generation techniques (e.g. nebulisers, micro-dispensers, atomizers, etc). 

However, some studies in the literature explore changes in viability with smaller droplets than 

the ones used in our work (initial radius of ~25 µm with the DoD dispenser68 and final radius 

~ 1-3µm with the nebuliser),284 reporting longer survival,10,68,73,94,117,261,285 suggesting that size 

does not solely  drive microbe death. 
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Thus, at a glance, relationships between physicochemical properties (e.g. equilibrated solute 

concentration and droplet size) and airborne bacterial death (e.g. smaller droplets die quicker) 

that when taken together, they all seem to contradict each other; for example, higher solute 

concentrations lead to lower bacterial survival but bigger droplet sizes with same solute 

concentrations lead to higher survival. However, when the dynamics are considered all of the 

apparent contradictions clarify: size and solute concentration are interlinked predictably. 

Proposed here is that it is not the size or solute concentration at equilibrium affecting microbe 

health, rather it’s the rate and extent of size change from the generation to equilibrium. 

Regardless of the source, the evaporation profile of a given aerosol of an identical starting 

formulation/generation technique will follow a similar trend. This hypothesis will be explored 

in the following sections.  

 

5.4.2.1 The Presence of Surfactants in LB broth Droplets Has No Effect 

on Bioaerosol Dynamics or Airborne Bacterial Survival 

Previous studies have reviewed the effect of monolayers of surface-active species on mass 

transfer of water in aerosols, limiting the rate of water transport from and to the droplet, and 

impacting atmospheric processes.198,257,286–291 The inhalation of surfactants with the aim of 

modifying the surface tension properties of the lung airway has been shown to impact the 

concentrations of exhaled bioaerosol providing a simple way to reduce the spread of potential 

airborne outbreaks.292 More importantly, and related to this work, recent studies have 

investigated the role of pulmonary surfactants on the activation of virulence pathways and 

survival of Staphylococcus aureus in host lung tissue.293 

The influence of three commercially available surfactants (Tween80, dipalmitoylphosphati-

dylcholine and heptadecanol, Figure 5-13) on the normalized evaporation profiles of LB broth 

droplets containing E. coli MRE-162 at concentration of ~ 108 CFU mL-1 drying under 30, 50 

and 70% gas-phase RHs, is reported in Figure 5-14. Dipalmitoylphosphatidylcholine (DPPC) 

was included as an example of a component naturally occurring in lung epithelial lining 

fluid.294 Tween80 is a common surfactant used in biological studies, while heptadecanol is a 

more well understood aerosol surfactant. The preparation of LB broth solutions containing 

surfactants and E. coli MRE-162 bacteria cells is described in the Generic Materials and 

Methods for Bioaerosol Survival Studies section 2.2.4.  
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Figure 5-13.  Chemical formulas, structures and molar masses of surfactants  a) Tween 80, b) DPPC and c) 1-

Heptadecanol.  

 

The data indicates that the mass transfer of water from the droplet is not limited by the addition 

of surfactants, reporting similar evaporation rates to the ones observed for pure LB broth 

droplets (black and magenta lines in Figure 5-14). Figure 5-14 shows that the starting 

(saturated) concentrations of surfactants in LB broth are far too low, due to their insolubility in 

water, to play a significant role in the evaporation kinetics of the droplets. The presence of 

Tween80, which has the highest water solubility (5-10 g per 100 mL), shows a larger 

equilibrium size due to the higher solute concentration present in the droplet, but no kinetic 

limitation is imposed on the mass transfer of water. This is consistent with earlier work on 

long-chain alcohols which suggests that limitations to mass transfer rates only occur for 

droplets larger than 1 m diameter once a solid condensed film form at the droplet surface.289 

Tween80 is a water soluble surfactant, as such appears to not limit mass transfer of water across 

the surface of the droplet during evaporation.  
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The effect of the presence of surfactants on the viability of E. coli MRE-162 cells at a 

concentration of (2.6±0.6) 108 CFU mL-1 after being suspended at 50% RH for 300 s in 

surfactant saturated LB broth droplets is reported in Figure 5-14d. No significant difference in 

E. coli MRE-162 survival among bioaerosols containing saturated levels of surfactants and 

non-metabolized LB broth droplets was observed. This was consistent with the hypothesis that 

dynamics are affecting survival; the concentration of the surfactants was too low to affect the 

aerosol dynamics in any way. 

 

Figure 5-14. Effect of surfactants on aerosol dynamics and bacterial survival  a) Comparison of evaporation kinetics 

among droplets composed of autoclaved LB broth (magenta), LB broth saturated with DPPC and containing 

(4.5±2.4)108 CFU mL-1 E. coli MRE-162 bacteria mL-1(orange), LB broth saturated with heptadecanol and 

containing (3.6±2.1)108 CFU mL-1 E. coli MRE-162 bacteria mL-1 (grey) and LB broth saturated with Tween80 

and containing (3.0±0.8)108 CFU mL-1 E. coli MRE-162 bacteria mL-1 (violet) into a gas-phase RH of a) 30%, b) 

50% and c) 70% RH. Experimental measurements are compared with simulations for pure LB broth droplets 

obtained using the evaporation/condensation kinetics model (black lines). Model predictions agree with the 

experimental measurements of LB broth particles without surfactants for all gas-phase RHs. Small variations on 

the evaporation profiles are due to minor fluctuation in the gas-phase RH. (d) For the same particles, comparison 

of E. coli MRE-162 survival to evaluate the impact of the presence of surfactants on airborne bacteria viability at 

50% RH. 
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To further explore the effect of surfactants on bioaerosol droplets containing airborne bacteria, 

a more extensive investigation on the particle morphology, evaporation kinetics and droplet 

composition was performed:  

 

a) The Presence of Surfactants in LB broth Droplets Has No Effect on the Particle 

Morphology during Evaporation  

A comparison of the changes in morphology that occur during the evaporation of the same LB 

broth solutions droplets saturated with Tween90, DPPC and heptadecanol and containing E. 

coli MRE-162 at a concentration of ~ 108 CFU mL-1 when drying at 30, 50 and 70% RH are 

reported in Figure 5-15. Morphology changes during water evaporation are identified from the 

temporal changes in angular light scattering pattern (the phase function) observed in CK-EDB 

measurements, an approach recently reported190 and detailed in Section 2.2.1.4 

Figure 5-15 reports that the LB broth solution droplets that contain surfactants show an 

appreciable departure from homogeneity immediately after aerosolization before the 

equilibrium is reached, reporting the formation of inclusions (potentially micelles). This 

suggests that the solubility of the low surfactant concentration could lead to the formation of 

an emulsion inside the droplets, rather than forming a complete surfactant monolayer or shell 

on the surface of the droplet which could lead to a limitation on the evaporation rate. However, 

the emergence of inclusions could be also due to the presence of bacterial cells reaching a 

sufficient concentration during evaporation to be detected as inclusions. Specifically, saturated 

solution droplets present an initial concentration of (4.5±2.4)108, (3.6±2.1)108 and 

(3.0±0.8)108 CFU mL-1 when saturated with DPPC, heptadecanol and Tween80, respectively. 

What is unclear is the source of the inclusions: is it bacteria or micelles? 
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Figure 5-15. Phase function analysis for LB broth solution droplets containing surfactants  (e.g. Tween80, DPPC 

and heptadecanol)  while evaporating into gas-phase RHS of 30%, 50% and 70 % RH. Symbols: ▲ –70% RH, ● – 

50% RH and ■ – 30% RH. a) Comparison of the evolving particle morphology of drying droplets composed of LB 

broth containing Tween80, b) Comparison of the evolving particle morphology of drying droplets composed of LB 

broth containing helptadecanol and c) Comparison of the evolving particle morphology of drying droplets composed 

of LB broth containing DPCC.  

 

A comparison of the general trends observed in the particle morphology of single LB broth 

droplets containing initial bacteria cell concentrations ranging from 106 to 109 cell mL-1 (~1±1 

to 1000±150 CFU per droplet) was performed (Figure 5-16b). The phase function analysis for 
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droplets composed of pure LB broth evaporating into 30, 50 and 70% RHs (Figure 5-16a) are 

included for comparison in order to evaluate the impact of the presence of bacteria cells on the 

particle morphology. Figure 5-16a shows that the pure LB broth droplets are completely 

homogeneous during the early evaporation independent of the RH, only forming inclusions 

when reaching the equilibrium size at gas-phase RHs of 30 and 50%, likely due to the formation 

of NaCl inclusions (efflorescence of NaCl takes place between 45-50% RH).198  

The changes in morphology during evaporation at 50% RH for LB broth droplets containing 

varying numbers of bacteria at 106, 107, 108 109 and 1010 CFU mL-1 is reported in Figure 5-16b. 

Inclusions can be detected from the phase function at a limit of only ~0.04% volume fraction 

of the droplet (for 450 nm polystyrene spheres).190 For the first time (Figure 5-16b), the 

minimum detectable total percentage volume of bacteria in the droplet as inclusions is  

determined to be at a volume fraction of ~ 0.14 % of E. coli MRE-162 cells for evaporating 

droplets containing an initial number of ~45 CFU per droplet with an estimated cell volume of 

0.7 m3 (0.25-1.0 m diameter). Therefore, the reported inclusion in Figure 5-15 is likely due 

to the presence of bacteria cells since the concentration of bacteria used in this figure is in the 

order of the detection limit of bacteria cells in the phase function analysis. However, the impact 

of surfactants and bacteria cells on the droplet’s morphology should be further investigated.  

 

Figure 5-16.Phase function analysis of LB broth droplets with different microbial loads  a) Comparison of the phase 

functions for LB broth solution droplets while evaporating into gas-phase RHS of 30%, 50% and 70 % RH. Symbols: 

▲ –70% RH, ● – 50% RH and ■ – 30% RH.  b) Changes in morphology in terms of radii as a function of % 

volume of bacteria for droplets composed of LB broth containing 106 E. coli MRE-162 cells mL-1 (spheres), LB broth 

containing 107 E. coli MRE-162 cells mL-1 (triangle), LB broth containing 108 E. coli MRE-162 cells mL-1 (squares) 

and LB broth containing 109 E. coli MRE-162 cells mL-1 (stars), evaporating into a 50% gas-phase RH. 
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Note that the difference in the phase function between a droplet containing inclusions and a 

core-shell structured droplet is sometimes subtle and misidentified by the algorithm. It is, 

therefore, necessary to analyse several droplets to determine the dominant morphology. In this 

case, the analysis concludes that the droplets all contain inclusions. 

 

b) The Presence of Surfactants Has No Effect on the Evaporation of Saturated Water 

Droplets  

To more fully explore the role of surfactants on the evaporation profile of droplets under 

biologically relevant (e.g. ethanol free) conditions, the effect of the presence of different types 

of surfactants (Tween80, DPPC, heptanol, heptadecanol, decanol, octadecanol, pentadecanol 

and tetradecanol) on the evaporation dynamics of saturated pure water solution droplets is 

reported in Figure 5-17.  No impact on the mass transfer rates due to their low solubility was 

observed. A comparison with droplets containing heptanol in a 1:1 water-ethanol mixture is 

included to show the clearly discernible effect that a surfactant can have on the evaporation 

rate when at sufficient concentration to form a complete and cohrenet solid film on the surface 

of the evaporating droplet. Here, the ethanol is added as a solubilising component that aids the 

dissolution of sufficient  surfactant to generate a condensed organic film that impedes the 

kinetics of water transport through the surface layer.289 

Thus, it can be concluded that for many surfactants, their concentrations in aerosolized droplets 

of 10’s micrometres size were insufficient to impact on mass transfer rates and consequently 

bacteria viability. This is a consequence of their often-low solubility in water (Figure 5-17) and 

the continuum-dominated gas-diffusion limited kinetics for mass transport in such large 

droplets. Besides, it is highly unlikely in the natural environment to have a starting solute 

concentration low enough such that the droplet can be reduced in size to the point that the 

surfactant will be able to form a monolayer on the droplet surface. To put it succinctly, 

surfactants will probably not affect airborne bacterial survival through altering particle 

evaporation kinetics (e.g. evaporation rate). However, biologically generated surfactants 

required further investigation. 
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Figure 5-17. Physicochemical changes of water droplets containing various surfactants  (a) Measured radii of a series 

of 7 saturated water solutions droplets containing different surfactants compared to that of pure water solution 

(light blue) and to that of heptadecanol dissolved in a 1:1 water-ethanol mixture (black) into the same conditions. 

(b) For the same droplets, change in the volume-average concentration as a function of time inferred from the 

experimental measurements of radii. Colours for the different water solution compositions under study: Orange, 

violet, magenta, green, navy blue, grey and brown – saturated water solutions with DPPC, Tween80, heltadecanol, 

decanol, octadecanol, pentadecanol and tetradecanol, respectively. 

 

5.4.2.2 The Effect of Surface Enrichment on Airborne Bacteria Survival  

The surface-to-volume ratios of aerosols (<100 microns) is several orders of magnitude higher 

than those of macroscopic solutions.124 As a result, microorganisms enclosed in aerosol 

droplets will spend a larger fraction of their time at the air-particle interface when compared to 

the bulk phase. The interface is a unique microenvironment in comparison with the droplet 

core; mechanisms of loss of viability, such as exposure to gaseous oxygen and ozone, direct 

solar radiation, surface tension and open-air factors (OAF),94,295 will occur only at the interface. 

This makes the surface-to-volume ratio an important property of aerosols to consider when 

studying microbe survival. Biological decay of microorganisms due to surface inactivation has 

been reported in various studies performed in shaking solutions and in aerosol droplets. 106 The 

rate of inactivation seems to be dependent on the RH, salt concentrations, the protective effect 

of surface-active amino acids and the presence of air, and has been attributed to the extrusion 

of hydrophobic parts of the microorganisms into the air phase.106,295,296 Benbough et al. 

demonstrated the toxicity of oxygen on airborne bacteria at low RH which was connected to 

the loss of bound structural water from the microorganism, producing changes in the reactivity 

of macromolecules (throughout free-radical formation) and, consequently, the inactivation of 

oxidative enzymes.80,88 All these studies suggest that the occupation of the droplet surface is 
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potentially more hazardous to the microorganisms than residence at the core. However, little is 

known about the processes governing the inactivation of pathogens in airborne particle 

interface.  

Figure 5-18a and Figure 5-18b show that both rapid evaporation (linked to high Peclet 

numbers) coupled with large volume change (1-Vf/Vi) is required for E. coli MRE-162 to 

significantly decay in a short time period. The initial solute concentration dictates the degree 

to which the droplet will shrink followed aerosolization and the gas-phase RH determines its 

evaporation rate. Thus, both factors control the percentage of microorganisms that are subject 

to the conditions in the droplet surface for at least some period of time, which also depends on 

the diffusivity of the microbes within the droplet. This hypothesis is supported when evaluating 

the survival data of airborne bacteria in both saliva and diluted 1:10 saliva. The same solute 

compositions but at different initial solute concentrations yield dramatically different 

dynamics; when the concentration of solute is low, the total volume change during evaporation 

is greater than when the initial higher solute concentrations are high (resulting in larger particle 

size at equilibrium). The survival data for bacteria in these droplets are extremely different, 

showing a pronounced decay for the diluted saliva due to the greatest change in volume 

immediately on droplet generation, leading to a survival of 4% against the 73% for the standard 

saliva droplets at 30% RH.  
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Figure 5-18. The effect of the size change rate on airborne bacterial survival after (a) 120s levitation for 3 different 

particle composition, (b) 600s levitation for 5 different particle composition. (c) The effect of different drying kinetics 

as a function of the gas-phase RH resulting in subsequent particle morphologies. The impact of phase/morphology 

changes on airborne bacteria viability occurring when decreasing the gas-phase RH for LB broth and PBS droplets. 

 

The only condition measured where the bacterial cells are immobile on the surface of the 

particle (and not just near the surface) due to the formation of NaCl crystals is for PBS droplets 

at 30% RH (see Figure 5-8). In all other cases, the bacterial cells can diffuse in some degree to 

the interior of the droplet before or after nucleation (see also Figure 5-7). This rapid 

crystallization and the capture of bacteria cells on the droplet surface produce significant harm 

to the microbes as they are exposed at the surface, resulting in a dramatic death rate after 600 

s of suspension (only 9% survival at 30% RH). Hence, the degree of volume change coupled 

with the information of the Peclet numbers are excellent predictors of the survival of airborne 

bacteria. 
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The evaluation of the different drying kinetics and crystallization processes of bioaerosol 

droplets with different compositions as a function of the gas-phase RH is shown as a schematic 

in Figure 5-18c and is presented in more detail in Table 5-3. The evaporation rates (k) were 

obtained as described in the Estimating Surface Enrichment section, resulting in drying rates 

of 9.410-10, 6.610-10 and 4.710-10 m2 s-1 for PBS particles at 10, 30, and 50% RH, 

respectively, and 7.010-10 for LB broth droplets at 30% RH (Figure 5-18c). To determine the 

degree of surface enrichment during evaporation, Peclet numbers for the different droplet 

compositions and RHs were calculated by using Eq.(2-9) and a diffusion coefficient value of 

1.210-12  m2 s-1 for E. coli bacteria cells (in water) (Table 5-3).205  The evaporation kinetics 

during the first second was used to determine the Peclet numbers; during this same short time 

period the viscosity of the solution was expected to be similar to that of water. For PBS solution 

droplets evaporating at 10, 30, and 50% RH, Peclet numbers of 98, 68 and 49 were obtained, 

respectively. For LB broth solution droplets drying at 30% RH, the calculated Peclet number 

is 73 (Figure 11c). Given these values are >>1 and a 93-99% reduction of volume occurs during 

droplets evaporation between 90 and 30% RH, the majority of the bacteria cells are expected 

to be located on the surface of the droplets during evaporation.   

Table 5-3. Dynamic processes taking place during droplet drying for different droplet compositions and RHs. 

PBS droplets 10% RH 30% RH 40% RH 50% RH 70% RH 90% RH 

Evaporation Rate / m2 s-1 9.410-10 6.610-10 5.610-10 4.710-10 2.810-10 8.910-11 

Peclet Numbers 98.1 68.3 58.5 48.8 29.1 9.3 

Eq. Solute 

Concentration/ gL-1 
1068.7 688.4 590.4 523.5 395.0 128.3 

Eq. Radius / m 5.2 6.0 6.3 6.6 7.2 10.5 

Vf/Vi / % 0.9 1.4 1.6 1.8 2.4 7.4 

Total Volume Change/ % 99.1 98.6 98.4 98.2 97.6 92.6 

Survival at 600 s / % - 16.2 - 69.1 73.4 92.3 

LB broth droplets 10% RH 30% RH 40% RH 50% RH 70% RH 90% RH 

Evaporation Rate / m2 s-1 9.010-10 7.010-10 6.010-10 5.010-10 3.010-10 9.410-11 

Peclet Numbers 93.5 72.8 62.3 51.9 30.8 9.8 

Eq. Concentration/ g L-1 1106.8 849.6 755.2 685.5 555.4 270.5 

Eq. Radius / m 7.1 7.7 8.0 8.3 8.9 12.1 
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Vf/Vi / % 2.3 2.9 3.3 3.6 4.5 9.2 

Total Volume Change/ % 97.7 97.1 96.7 96.4 95.5 90.8 

Survival at 600 s / % - 11.9 - 8.1 52.2 64.7 

Saliva droplets 10% RH 30% RH 40% RH 50% RH 70% RH 90% RH 

Evaporation Rate / m2 s-1 8.710-10 6.810-10 5.810-10 4.810-10 7.010-10 7.010-10 

Peclet Numbers 90.9 70.4 60.2 49.9 29.4 8.7 

Eq. Concentration/ g L-1 1254.3 922.6 857.8 821.5 754.2 390.5 

Eq. Radius / m 9.3 10.3 10.6 10.7 11.0 13.7 

Vf/Vi / % 5.2 7.0 7.6 7.9 8.6 16.6 

Total Volume Change/ % 94.8 93.0 92.4 92.1 91.4 83.4 

Survival at 600 s / % - 73.4 - 79.4 - 89.2 

1:10 Saliva droplets 10% RH 30% RH 40% RH 50% RH 70% RH 90% RH 

Evaporation Rate / m2 s-1 8.710-10 8.710-10 8.710-10 8.710-10 8.710-10 8.710-10 

Peclet Numbers 91.3 71.3 61.1 50.9 30.5 10.1 

Eq. Concentration/ g L-1 1314.7 967.0 899.1 861.0 790.5 409.6 

Eq. Radius / m 4.3 4.8 4.9 5.0 5.1 6.4 

Vf/Vi / % 0.5 0.7 0.8 0.8 0.9 1.7 

Total Volume Change/ % 99.5 99.3 99.2 99.2 99.1 98.3 

Survival at 600 s / % - 3.8 - 30.1 - 63.9 

1:10 Sputum droplets 10% RH 30% RH 40% RH 50% RH 70% RH 90% RH 

Evaporation Rate / m2 s-1 8.410-10 6.610-10 5.610-10 4.710-10 2.810-10 9.110-10 

Peclet Numbers 87.9 68.4 58.6 48.9 29.2 9.5 

Eq. Concentration/ g L-1 1732.2 1430.1 1203.2 980.6 602.4 268.1 

Eq. Radius / m 5.3 5.7 6.0 6.5 7.6 9.96 

Vf/Vi / % 1.0 1.2 1.4 1.7 2.8 6.3 

Total Volume Change/ % 99.0 98.8 98.6 98.3 97.2 93.7 

Survival at 600 s / % - 51.5 - 37.4 - 54.6 

 

While the bacteria may be on the surface during the evaporation process, the length of time the 

bacteria remain on the surface at equilibrium will be dependent on the efflorescence time, the 

bacterial cells diffusion coefficient and the viscosity of the droplet. At equilibrium, for more 

complex solutions, such as artificial saliva, the diffusion coefficient will be much lower which 
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will in turn further limit the diffusivity of the microbe from the surface. Based on the viscosity 

of PBS at 70% RH 4.38 mPa s-1 (data collected by Young Song, private communication), the 

expected diffusion coefficient would be 6.0x10-14 m2s-1. This reduction in the diffusion 

coefficient would result in the bacteria remaining on the surface for a longer period of time.  

The time that the concentrations surpass a threshold for the water activity at which 

efflorescence has previously been seen in measurements to occur abruptly is simplified here to 

the term efflorescence time. The efflorescence times for PBS droplets were estimated from 

when the evaporating droplet reached a GFr of 1.673; at a water activity (aw) of 0.45 NaCl 198 

which makes up 83% of the mass of PBS is expected to effloresce.10 Efflorescence times of 

2.8, 3.7, 4.3 and 5.3 s were obtained for PBS at RHs of 10, 30, 40 and 50% respectively. If the 

volume of the droplet deemed to be the surface contains solely the outer 0.1 m layer, we 

speculate that these periods of over a second are long enough for the bacteria cells to diffuse 

(whose diffusion coefficient is <0.6 m2/s) from the droplet surface prior to crystallization at 

medium-high RHs;  the majority of cells are locked at the droplet surface inside NaCl crystals 

at 10% RH, as observed in the SEM images included in Figure 5-18c.  

The presence of organic components coupled with higher overall solute concentrations in the 

LB broth droplets results in the retention of water mass which increases the evaporation times 

and allows a further diffusion of the bacteria from the surface during the evaporation process 

(where the diffusion rate is nearer to that of water) without reaching a complete crystallization 

of the salts.10 Thus, the survival reported for LB broth droplets at 30% RH is slightly higher 

than for PBS (24% vs 16% in PBS and LB broth respectively), supporting the theory that 

greater diffusivity of bacteria cells from the surface enhances airborne bacteria survival by 

reducing their exposure to droplet surface. These findings were supported by SEM images 

collected of the dried PBS and LB broth particles, wherein various degrees of bacteria were 

observed at the surface of the particle as a function of RH and solute composition (Figure 

5-18c), increasing the visible bacteria cells at the droplet surface when decreasing the RH. 

These results suggest that the time for crystallization to occur rather than the phase change 

itself (crystallization) could affect airborne bacteria survival; the crystallization time 

determines the final location of the microorganisms within the particle and their degree of 

exposure to the air-particle interface. These findings suggest that the mechanisms of death 

could be more related to the evaporation of cellular water from the bacterial cells on the droplet 
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surface than to the water and heat transfer between the droplet surface and the gas-phase 

environment. Further study is necessary to identify mechanistically what is driving bacteria 

death. 

 

5.4.3 The Effect of Microbiological Properties on Airborne Survival 

The fate of airborne pathogens is likely to be dependent on the microbiological conditions, 

including the cell physiology and the microbial load in the aerosol droplets. Culture conditions 

such as incubation time, temperature and growth media can influence the phenotype of the cells 

and therefore their airborne survival.84,101 The microbial concentration contained in the aerosol 

droplets used in experimental systems can impact the droplets composition, size, dynamics and 

even their microphysical properties. Besides, the biological component in aerosol survival 

studies can impact the quality of the sample to be aerosolized and introduce variability in the 

outcome of the study. A detailed characterisation of these variables should be taken into 

consideration to successfully compare bioaerosol research between laboratories.33,250 

 

5.4.3.1 The effect of Bacteria Physiology on Airborne Survival. 

To investigate the effect of cell physiology on the survival of E. coli MRE-162 suspended in 

LB broth droplets after 5, 120 and 600s at 30% RH (Figure 5-19), the bacteria were cultured 

for 6, 12, 24 and 48 hours in LB broth before aerosolization and adjusted to an OD=0.5, as 

detailed in the Generic Materials and Methods for Bioaerosol Survival Studies section. The 

calculation of survival is described in Section 2.2.2.3. Interestingly, a significant biological 

decay after 120 s suspension was observed for all the aerosolized bacterial cultures (P values 

0.035, 0.005 and 0.036 for 6, 24 and 48 hours respectively) except for the bacterial suspension 

incubated for 12 hours (P, 0.871) which reports no impact on the airborne bacteria viability 

(Figure 5-19). For longer suspension times (600s), the highest survival was also reported for 

the culture incubated for 12 hs and no significant decay in survival was observed (P, 0.097) in 

comparison with the survival at 120 s.  

Generally, the doubling rate of E. coli is 20 min when cultured in a nutrient-rich medium. In 

this case, the 12 hours incubation period corresponds to the early stationary phase for this 
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particular strain. The growth curve of E. coli MRE-162 is included in Section 2.2.4.2. It has 

been reported that the bacterial response to starvation when cells enter into the stationary phase 

can trigger different adaptation mechanisms altering gene expression through alternative RpoS 

sigma factors and regulators which prepare the cells to survive under difficult 

conditions,122,123,297 in some cases protecting against osmotic stress121 and temperature stress.298 

Besides, the cell wall (peptidoglycam layer) thickens upon entry in the stationary phase 

providing greater tolerance to stresses. The results presented in Figure 5-19 agree with a 

comparative study of E. coli aerosol survival between the log and resting phases of growth 

which was performed by Cox et al. in air and nitrogen atmospheres at 20% RH, reporting 

higher aerosol stability in bacteria in the stationary phase.84 

 

Figure 5-19. The effect of incubation times on airborne bacterial survival  . Colours represent cell age being 6h 

(grey), 12h (cyan), 24h (light blue) and 48h (dark blue). Each data point represents the mean and standard deviation 

of at least three replicates. 

 

5.4.3.2 The Effect of Microbial Load on Airborne Bacterial Survival. 

The evaporation dynamics of LB broth droplets containing different bacterial concentrations 

ranging over five orders of magnitude (from 105 to 1010 cells mL-1) into a gas-phase RH of 

30% are shown in Figure 5-20. Each evaporation curve represents the average of 6, 15, 4, 2, 4 

and 11 droplets for 105, 106, 107, 108, 109 and 1010 cells mL-1, respectively. Increased E. coli-

MRE-162 counts showed no impact on the evaporation rates of the aerosol droplets, reporting 

only a subtle effect on the kinetics for the droplets generated with cell suspension containing 
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the highest bacterial concentration (1010 cells mL-1). The faster evaporation of this droplet 

composition is possibly due to the elevated number of bacteria cells on the surface of the 

droplets affecting the surface tension. Under low RHs, the rate of evaporation can surpass the 

diffusion rate of the E. coli cells, leading to the enrichment of the droplet surface (Figure 

5-20b). Thus, the surface of the droplets generated with the 1010 cells mL-1 suspension is 

covered by a monolayer of bacteria cells 3 s after generation (black dotted lines in Figure 5-20b) 

which prevent the rest of cells to reach the droplet surface. Although the formation of a 

monolayer is not achieved for droplets with lower microbial load, a percentage of the droplet 

surface will be also filled with the bacteria cells after complete evaporation (28% and 3% for 

droplets containing 108 and 109 cells mL-1 respectively) which also prevent, to a smaller extent, 

additional bacterial cells from reaching the droplet surface. Even though the enrichment of 

bacteria at the droplet surface has no relevant impact on the evaporation dynamics (Figure 

5-20a), it inhibits a significant percentage of the bacteria cells from reaching the surface of the 

droplet which in turn appears to increase overall airborne bacterial survival (Figure 5-20c). The 

inactivation of E. coli MRE-162 due to surface processes shows a time-lag effect, reporting a 

pronounced decay after 600 s and not immediately after evaporation at 120s.  

Perhaps the reason for enhanced survival of bacteria in aerosol particles with higher bacterial 

load is that a greater fraction of bacteria remain in the droplet core where they are more resilient 

to processes that occur rapidly at the surface (e.g. oxidative stress, dehydration). Previous 

studies have also shown bacteria survive up to three times better in droplets when containing 

larger proportions of bacterial spores to vegetative cells (the aerosolized bacteria suspension 

were composed of different cell to spore ratios).228 Interestingly, in the case of viruses, several 

studies have shown the effect of surface processes in the inactivation of viruses at high RH in 

both aerosol droplets and shaking solutions.106,111,280 The mechanisms of inactivation are 

proposed to be due to the denaturation of the hydrophobic lipid bilayer contained in some 

viruses due to surface forces, removing the property of infectivity. 106,107 Saturation of the gas-

liquid interface with proteins has been reported to lead to protection over viral inactivation by 

reducing access of the virus to the air-liquid interface and therefore preventing the loss of 

infectivity.296 Also, surface inactivation of viruses increases with increasing acidity and salt 

concentrations.106,111,296 
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Figure 5-20.Impact of microbial load on aerosol dynamics and bacterial survival  a) Evaporation dynamics for 

droplets composed of LB broth with different bacterial cell concentrations ranging from 105 cells mL-1 to 1010 cells 

mL-1. b) Percentage of droplet surface covered by bacteria cells as a function of the microbial concentration 

introduced in the DoD. Note that these calculations assume that the surface area for a bacteria cell is 0.5 m2, 

considering 1 m length and 0.5 m width as the section of the surface area of bacteria covering the droplet surface, 

and c) Effect of the microbial cell concentration in the droplets on the survival of E. coli MRE-162 bacteria, all at a 

gas-phase RH of 30%. Colours: grey (1010 cells mL-1), brown (109 cells mL-1), orange (108 cells mL-1), magenta (107 

cells mL-1), turquoise (106 cells mL-1) and blue (105 cells mL-1). 
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The data presented in Figure 5-20 show the importance not only of the microbial content of 

aerosol particles but the precise location of the microorganisms after the evaporation process 

is complete which will determine their disposition to a variety of phenomena at the air-droplet 

interface. These results support the interpretation of data shown in the previous section (Figure 

5-18). The importance of surface processes driving the inactivation of pathogens in the air-

droplet interface is critical to understand airborne survival and should be explored further. 

 

5.5 Connecting the Outcomes 

To understand the impact of particle morphology on airborne bacteria viability, the survival 

percentages of E. coli MRE-162 levitated for 600s in aerosol droplets with three different initial 

NaCl concentrations (5, 10 and 20 g L-1) equilibrating at 30 and 70% RH are compared in 

Figure 5-21. The evaporation dynamics of LB broth droplets containing different initial NaCl 

concentrations are reported in Figure 5-21a and Figure 5-21b. The higher initial NaCl 

concentrations lead to higher particle sizes at the equilibrium in both RHs. Due to the different 

overall compositions in the LB broth droplets (25, 40 and 57% w/w of initial NaCl leading to 

75, 60 and 43% w/w of organic content), the NaCl concentrations at the equilibrium also 

increase with the initial NaCl concentrations, presenting different moisture contents at the same 

RH (same aw) Figure 5-21c shows the effect of the equilibrated NaCl concentrations on 

airborne bacterial survival, reporting opposite trends between RHs. Figure 5-21d shows the 

same trends as a function of RHs in bacteria survival as a function of the initial NaCl 

concentrations. 
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Figure 5-21. Connecting the dots.  Comparison of the measured particle size for droplets composed of LB broth with 

three different initial NaCl concentrations into gas-phases of a) 30% and b) 70% RH, showing the corresponding 

particle sizes at equilibrium. c) The effect of the equilibrium NaCl concentrations on the survival of airborne E. coli 

MRE-162. d) RH dependence of the survival of E. coli MRE-162 at 600s as a function of the initial NaCl 

concentration in LB broth droplets. 

 

The data indicate that the overall viability of airborne bacteria is higher in solution droplets 

(above the efflorescence RH) at 70% than in dry particles at 30% RH. Specifically, at 70% RH, 

airborne survival decreases with the increase in salt concentrations on the droplet composition, 

possibly due to osmotic stress caused on the microorganisms.250 Interestingly, the equilibrated 

particle size seems to have minimal effect on the viability response (Figure 5-21b and Figure 

5-21d). Rather, higher survival was observed in droplets with smaller equilibrated particle sizes 

whose salt concentrations at equilibrium were lower (Figure 5-21c). In our previous work,10 

when particles were larger at equilibrium the higher survival was reported for droplets with the 

same equilibrated solute concentrations at 50% RH. On the contrary, at 30% RH, the survival 
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of airborne bacteria increases proportionally to the NaCl concentrations at the equilibrium 

which also leads to bigger equilibrated particles sizes (shown as insets in Figure 5-21a and 

Figure 5-21b). In this case, the bioaerosol particles present higher solute concentrations than at 

70% RH and lower water activity than the efflorescence point for NaCl (44-45 % RH).195 

Therefore, the salts contained in the bioaerosols present a different particle morphology than 

in the previous aqueous solution droplets, forming salt crystals with numerous nucleation 

events (Figure 5-7 and Figure 5-8). The higher survival is likely due to a smaller shrinkage in 

the droplets containing higher salt concentrations. Consequently, the equilibrium size and the 

surface area of these droplets will be bigger, leading to a smaller percentage of bacteria cells 

exposed on the surface of the droplets. In addition, higher salt concentrations allow further 

diffusivity of the bacteria cells from the particle surface before the efflorescence takes place 

(longer crystallization times for higher solute concentrations). 

 

5.6 Summary of the Interconnections Between Aerosol Microphysics and 

Bacteria Viability 

Figure 5-22 summarises the relationship between aerosol dynamics and airborne bacteria 

viability. The viability of airborne E. coli MRE-162 at 600s of suspension is shown as a 

function of six different physicochemical variables: equilibrated droplet volume, the surface to 

volume ratio, equilibrate solute concentration, the concentration of salts at equilibrium, the 

equilibrated concentration of Na+ and temperature suppression of the droplet when 

equilibrating with the gas-phase atmosphere. From all correlations, only three (Figure 5-22a, 

Figure 5-22b and Figure 5-22f) report a significant collective correlation (with =0.05) for the 

five different particle compositions (e.g. diluted sputum, saliva, diluted saliva, LB broth and 

PBS) reporting R values of 0.631 for droplet volume, -0.626 for surface to volume ratio and 

0.595 for droplet cooling with corresponding p-values of 0.006, 0.007 and 0.011 respectively. 

Besides, correlation coefficients were also calculated for other parameters not included in 

Figure 5-22, obtaining significant collective correlations also for evaporation rates, Peclet 

numbers, RH, final to initial volume ratio and surface area with R values of -0.607, -0.607, 

0.589, 0.631 and 0.595 and p-values of 0.010, 0.010, 0.013 and 0.007, 0.012 respectively. The 

majority of these correlations are related to the evaporation dynamics (e.g. evaporation rates, 
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temperature cooling, etc) undergone by the aerosol particles immediately after generation, 

reflecting a delayed impact in survival over longer times in the aerosol phase (e.g. 600s) instead 

of after few seconds of suspension (e.g. 5 or 120 s). It is important to note that these processes 

will dictate the final phase and morphology of the bioaerosol particles, determining the location 

of the microorganisms in the particles once equilibrated with the gas-phase and, therefore, 

dictate the different degrees of exposure to open-air and other toxic factors they will 

experience. 

 

Figure 5-22. Correlations between bacterial survival and physicochemical changes  in a) droplet volume at 

equilibrium, b) surface area to volume ratio, c) solute concentration at equilibrium, d) concentration of salts at 

equilibrium, e) concentration of Na+ at equilibrium and f) maximum droplet cooling for droplets of 5 different 
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compositions evaporating into RHs of 30, 50, 70 and 90%. Note that in the case of Saliva, 1:10 Saliva and 1:10 

Sputum the correlations at 70% RH are not reported. The droplet dynamics for all droplet composition were 

calculated using the mass-transfer kinetic model for droplets with an initial size of 25 m and an initial solute 

concentration of 25 g L-1 for LB broth, 9.59 g L-1 for PBS, 67.99 g L-1 for Saliva, 6.79 g L-1 for 1:10 Saliva and 

17.04 g L-1  for 1:10 Sputum. 

 

This innovative approach to study bioaerosol survival enables a detailed understanding of the 

synergistic interaction between the physicochemical and the biological processes that occur 

from droplet generation to the equilibrium with the surrounding atmosphere. Expending the 

knowledge of the dynamics of real respiratory fluids and across respiratory pathogens such as 

SARS-CoV2, Neisseria meningitisdis, Streptococcus pneumoniae and Mycobacterium 

tuberculosis, will enable the development of effective prevention policies. 

 

5.7 Summary and Future Work 

This chapter aims to identify the main mechanisms of inactivation of airborne bacteria to 

predict survival as a function of the physicochemical properties of the aerosol and the 

microorganisms. Thus, a phenomenological model (Figure 5-1) to quantify bioaerosol survival 

is formulated as the sum of the effect of predictable processes based on experimental 

measurements. The degree at which each of the processes included in the equation drive 

microbial death is dependent on the environmental conditions, the strain of microorganisms, 

compositional parameters of the aerosol particles, etc. 

With this approach, it is possible to some degree of certainty predict the survival one would 

expect for E. coli MRE-162 in a solution droplet where the starting formulation is known (e.g. 

very diluted solution droplets) and it is injected into a known gas-phase RH. For example, 

considering saliva as a solute, we should be able to predict the combination of the initial saliva 

concentration needed to equilibrate in a specific RH to produce a significant biological decay 

in the microorganisms. In this particular case, the dynamic processes required include an 

overall reduction in the volume of >95% coupled with a Peclet number greater than 50 (Figure 

5-18). These dynamics trends suggest that microbes with similar behaviour to E. coli MRE-

162 injected into the same atmosphere from a freshwater lagoon would die faster than those 

produced from a WWTP (wastewater treatment plant) due to the higher concentration of 
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suspended solids. Thus, it is critical to consider the source and how it impacts on droplet 

composition when predicting microbe survival in the aerosol phase. This could explain 

common diseases such as the “sewage worker’s syndrome” and the high infection risk via 

bioaerosols associated with WWTP.11,299 Briefly, considering a  microbe which appears to be 

sensitive to the surface of the droplet (like E. coli MRE-162), its survival will be dependent on 

the difference in water activity between the starting droplet solution and the gas-phase instead 

of on the gas-phase RH itself. These type of detailed predictions (e.g. predict the evaporation 

dynamics for different concentrations of the starting solute compositions) are not possible by 

using the standard survival curves (e.g. time-dependent bioaerosol survival as a function of 

environmental conditions) reported in the literature. Importantly, when probing a 

microorganism which is not sensitive to the processes included in one of the subcategories (e.g. 

1 to 5), the equation (Figure 5-1) becomes simplified. For instance, in the case of spore-forming 

bacteria such as B. atrophaeus spores; in general spores are much more resistant than vegetative 

bacterial cells. 

Previously, it was reported that the concentration of solute was altered through the 

manipulation of the gas-phase RH where the droplets were levitated, also impacting the 

physicochemical properties.10 Subsequently, here we cover the effect of surface enrichment 

which is described by a competition between the evaporation and diffusion processes taking 

place within the droplet. This drying process determines the enrichment of microbes at the 

droplet surface together with the morphology of the final particles. The data establish that both 

parameters are correlated to the degree of harm inflicted on the E. coli MRE-162 during the 

droplet evaporation. The degree and rate of volume reduction in the droplets as they equilibrate 

with the gas-phase is a function of the RH and the solute concentration. This evaporation rate 

is independent on the generation device, and droplet generated with both nebulisers and micro-

dispensers will experience the same dynamic changes, therefore the same survival response is 

expected although the final particle sizes are orders of magnitude different. 10,68,73,94,117,261,285 

However, the impact of the aerosol generator and sampling system on microbes viability are 

factors that differ between experimental systems (Figure 5-1) affecting the survival of airborne 

microbes. Also, the effect of biological factors, such as the microbial concentration in the 

particles and the bacterial physiology, on survival were explored. These physicochemical and 
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biological processes are included in the subcategories 3 and 4 of the proposed equation (Figure 

5-1), respectively.  

Finally, the effect of solar irradiation on airborne viability has been studied by using 

conventional techniques for bioaerosol ageing such as the rotating drum and spider 

webs.82,147,300 Results have shown that microbial death rates are proportional to the exposure 

time and the intensity of the light. Besides, the lethal effect of sunlight irradiance appears to 

decrease with increase in particle size, with smaller particles reporting a higher sensitivity to 

solar exposure.250 Several studies in the bulk phase have reported microbial eradication under 

high-intensity visible light while the low-intensity stimulates bacterial growth, consistent with 

results from the aerosol phase.301,302 The investigation of the effect of sunlight by using 

CELEBS will be a focus of investigation in the near future. 



 

 



 

 

Chapter 6  

 

Summary and Future Directions 

The principal aim of this thesis was to develop, characterise and utilize a novel technique based 

on the electrodynamic levitation of populations of bioaerosol droplets (with particle diameter 

varying from ~50 to < 5 µm) within a controlled environment to investigate the main 

parameters (i.e. RH, temperature, droplet composition, etc) impacting the survival of airborne 

pathogens enclosed as a function of time. As a result, most of the nature of the work undertaken 

throughout this thesis was related to method development. This aim was achieved and reported 

in Chapter 3, with the development and characterisation of the next-generation EDT for 

aerobiological applications, named CELEBS. Furthermore, this work also aimed to investigate 

the complex interconnections between aerosol dynamics (e.g. changes in size, solute 

concentration and temperature during the evaporative process), aerosol physicochemical 

properties at the equilibrium (e.g. hygroscopicity, particle size and particle morphology), 

microbiological factors (e.g. microbial load and cell physiology) and the biological response 

of the microorganisms enclosed in aerosol droplets. Therefore, a comprehensive approach that 

combines the CELEBS instrument with the CK-EDB was developed. A detailed study of the 

effect of aerosol microphysics on airborne bacterial survival was presented in Chapter 4. The 

complexity of the solution droplets was increased towards more representative biological 

secretions in Chapter 5, where the studies were also extended to evaluate the impact of 

microbiological factors on airborne survival. 

The following chapter will summarise the different stages of this research work, describing the 

starting point of this technique and how it was developed to gain insight at the interface between 

aerobiology, aerosol physics and atmospheric chemistry. Then, a description of the current 

experiments employing the developed approach will be introduced. Finally, some potential 

experiments and future applications for this new technique will be also discussed.  
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6.1 Initial Work 

Conventional techniques for bioaerosol analysis present experimental limitations to 

disentangle the interconnections between the processes taking place during aerosol transport 

and bioaerosol survival, mainly due to the bulk analysis of polydisperse aerosols. Briefly, the 

dynamics occurring during processes of aerosol generation, transport and inhalation impart a 

series of stressful conditions (e.g. evaporative stress, osmotic stress, high salt and solute 

concentrations, etc) on the microbes that can alter their physiology, viability and ultimately 

their infection capacity. Thus, this thesis aimed to elucidate these synergistic interactions 

between physicochemical and biological properties of aerosol by developing a novel 

experimental system to be initially used with low hazard bacteria falling into the Hazard Group 

1 (HG1).  

At the starting point of this project, the only capability of the original EDT prototype was to 

provide qualitative data on the survival of airborne E. coli BL21 at gas-phase RHs under 50% 

for periods up to 90 min. After the desired suspension time, the bioaerosol particles were 

collected into 1 mL of LB broth and the survival of the airborne bacteria was determined by 

the cloudiness of the broth where the bioaerosol was collected after 24 hs incubation (Figure 

6-1). 

 

Figure 6-1. Petri dishes showing the initial qualitative survival data generated in CELEBS  . The survival of airborne 

E. coli BL21 was based on the turbidity of the incubated LB broth containing levitated populations (< 200 droplets) 

of bioaerosols which were suspended for different time intervals. Note that broth turbidity is observed up to 110 min 

levitations when all the bacteria is assumed to have died in the aerosol phase under these conditions. 
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During this thesis, important advancements included the development of the technique and the 

first steps in using this novel capability to understand how a wide variety of parameters (e.g. 

biological, environmental, compositional) dictate the length of time microorganisms remain 

viable in the aerosol phase.  

Initially, the main focus of this work was to completely characterize the experimental system 

as well as its impact on the viability of the microorganisms, aiming to generate robust 

quantitative survival data. Thus, some of the main findings achieved during the first half of the 

PhD are described in Chapter 3 and include: the incorporation of key modifications in the 

experimental system to improve the overall operation and reproducibility in the results; the 

development of an off-line viability assay to calculate airborne survival; the determination of 

the effect of aerosolization with the DoD micro-dispenser and suspension in the electrodynamic 

field on bacteria viability; the characterisation of the microbial load in the generated aerosol 

droplets; the determination of the sampling efficiency of CELEBS and the initial 

characterisation of survival for airborne bacteria as a function of the atmospheric RH and time. 

During the last years of this work, the focus turned into increasing the complexity of the 

experimental systems and extending the parameters being proved to impact airborne survival. 

These results are included in Chapters 4 and 5 and investigate how the particle size, spray fluid, 

particle morphology, presence of atmospheric gases and other relevant parameters, affect the 

viability of airborne bacteria contained in more representative biological droplet compositions 

(i.e using artificial respiratory secretions). 

 

6.2 Current Applications 

The outbreak of the current SARS-CoV-2 pandemic has catalyzed the integration of CELEBS 

into high-level microbiological containment to investigate the environmental parameters 

impacting SARS-CoV-2 and, therefore, generate important information to reduce the risk of 

infection during the current pandemic by integrating this data in risk infection models. The 

transitioning and development of the CELEBS instrument for use with HG2, 3 and 4 pathogens 

has been carried out since March of 2020. Currently, two different instruments are located in a 

biosafety cabinet at containment level 3 and another CELEBS system is located at containment 

level 2 to enable experimental work with the novel SARS-CoV-2 and its proxy, the Mouse 
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Hepatitis Virus (MHV). An important number of instrumental adaptations have been 

incorporated into the previous CELEBS prototype to enable the manipulation of the instrument 

under high containment, including for example the automatic load/unload of the DoD dispenser 

using an in-house developed LabView programme combined with a vacuum system which 

prevents the manual manipulation of the DoD and thus reducing the risk of infection, the 

implementation of wider control of the chamber atmosphere (i.e. combining both temperature 

and RH control) and the systematic operation of several instruments by using a single PC and 

a single programme. 

Importantly, the development of novel assays for the determination of viral infectivity rates 

have been also performed. This has presented some challenges associated with the low viral 

concentrations in the aerosol droplets (~1 virus per droplet) which are distributed across a 

droplet population according to Poisson statistics, and therefore impact the reproducibility of 

the data. Therefore, efforts have been made to increase the viral concentration by generating 

larger aerosol droplets able to contain a higher number of viral particles (i.e. modifying the 

DoD parameters during generation, decreasing the viscosity of the viral suspension before 

aerosolization and even increasing the titre of the original stocks). These limitations required 

the tailoring of conventional microbiological techniques to determine the virus infectivity rates 

to fit the requirements of this novel methodology. Specifically, the number of viral particles 

per droplet is calculated by plating the media containing the levitated droplets into a 96-well 

plate containing VERO E6 TMPRSS 2 cells by using a Poisson distribution equation. 

In addition to the experimental adaptations of the instrument and the methodology, a large 

number of control and containment procedures have been developed to reduce the risk of 

exposure to the viruses via inhalation or direct contact and ensure the safety of the laboratory 

workers. To mention a few: the whole lab is maintained under negative pressure and all direct 

work with the viruses is undertaken either in a class three biosafety cabinet (i.e. for experiments 

with SARS-CoV-2) or in a class two biosafety cabinet (i.e. for experiments with MHV); the 

adequate pressure inside the cabinets is checked daily before the performance of experiments 

and all the equipment used to protect the workers, including the PPE, HEPA filters, autoclave 

and biosafety cabinets are regularly maintained following COSHH regulations. Moreover, 

emergency procedures for spillages and personal contamination have been also implemented 

as well as specific procedures for waste disposal. Importantly, extensive and suitable training 
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has been provided in both the theoretical and practical aspects of the work before performing 

any type of laboratory work. 

 

6.3 Future Work 

Other than the past and current applications already addressed, there are a few other studies I 

believe could be performed by using the methodology developed during this thesis. Firstly, I 

believe it is important to perform comparative studies of CELEBS with standard experimental 

systems such as the rotating drum and micro-threads to provide a full characterisation of the 

experimental techniques and enable the comparison of airborne survival data across 

laboratories. Secondly, to enable the complete development of a robust predictive tool based 

on the main mechanisms of inactivation of airborne microorganisms, studies should be 

extended across a wider number of infectious respiratory pathogens, both bacterial and viral 

microorganisms (e.g. SARS-CoV-1, Ebola virus, Influenza virus, Yersinia Pestis, Neisseria 

meningitis, Mycobacterium tuberculosis, etc). Importantly, the study of the molecular response 

of airborne microorganisms to the processes taking place in the aerosol phase, by comparing 

the response of genetically modified strains of a pathogen to the wild type, enabling the 

identification of genes influencing the microbe airborne survival. Finally, investigating the 

impact of atmospheric pollutant, Secondary Organic Aerosols (SOA), the interplay between 

RH and temperature, sunlight and Open-Air Factors (OAF) on bioaerosol survival would be 

crucial to fully understand all the atmospheric processes occurring in the natural environment. 

These factors have been previously reported to have a deleterious effect on airborne 

survival.97,98  

Besides, future work should be carried out to improve some experimental limitations currently 

presented in this methodology. For instance, the use of very viscous materials such as the 

artificial sputum becomes a tedious work by using the current DoD micro-dispensers. Although 

attainable, the continuous clogging of the DoD system with this type of solutions results in a 

time-consuming data acquisition process in comparison with the use of other loading 

suspensions. Additionally, the use of a DoD systems with a broader range of initial droplet 

sizes would be useful to further explore this parameter and generate more representative 

bioaerosols. This may require the development of an improved dispensing system that allows 
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the ready generation of aerosol droplets from solutions with a wider range of viscosities. Thus, 

ideally, it would be possible to further investigate the microphysical properties and bioaerosol 

survival in real respiratory fluids. Finally, the incorporation of UV light and increased 

accessibility to different gas atmospheres would enable to investigate the reactivity of 

bioaerosol particles and study its impact on the survival of airborne pathogens. Finally, linking 

aerosol survival with infectivity as well as investigating the effect of rehydration on evaporated 

droplets to mimic inhalation would provide valuable information to better understand the whole 

picture of airborne disease transmission. 

 

6.4 Closing Remarks 

Summarizing, we have developed a useful methodology to answer fundamental questions 

about the mechanisms dictating airborne disease transmission. A better understanding of the 

interactions between processes taking place during aerosol transport and biological survival at 

the empirical level will provide critical data for epidemiological and risk models together with 

additional confidence in the development of operational policies. Moreover, the predictive 

potential of this approach to determine what are the important factors affecting the viability of 

airborne pathogens could lead to quicker implementation of mitigation strategies (e.g. 

conditioning indoor environments such as hospitals to reduce the risk of infection). Therefore, 

the information provided by this methodology can be of high utility to both Public Health, 

epidemiology, ecology, agriculture, biosecurity, climate and atmospheric processes. 
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