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Abstract
One-dimensional maps with discontinuities are known to exhibit bifurcations
somewhat different to those of continuous maps. Freed from the constraints of
continuity, and hence from the balance of stability that is maintained through
fold, flip, and other standard bifurcations, the attractors of discontinuous maps
can appear as if from nowhere, and change period or stability almost arbitrarily.
But in fact this is misleading, and if one includes states inside the discontinu-
ity in the map, highly unstable ‘hidden orbits’ are created that have iterates
on the discontinuity. These populate the bifurcation diagrams of discontinuous
maps with just the necessary unstable branches to make them resemble those
of continuous maps, namely fold, flip, and other familiar bifurcations. Here we
analyse such bifurcations in detail, focussing first on folds and flips, then on
bifurcations characterised by creating infinities of orbits, chaotic repellers, and
infinite accumulations of sub-bifurcations. We show the role that hidden orbits
play, and how they capture the topological structures of continuous maps with
steep branches. This suggests both that a more universal dynamical systems the-
ory marrying continuous and discontinuous systems is possible, and shows how
discontinuities can be used to approximate steep jumps in continuous systems
without losing any of their topological structure.
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(Some figures may appear in colour only in the online journal)

1. Motivation

Discontinuous maps play a widespread and important role in dynamical systems. If two states
of a system are able to lie arbitrary close, but subsequently evolve along significantly different
trajectories, then a map that integrates along those trajectories is necessarily discontinuous.
The source of such divergence is typically the straddling of some separatrix. One example is
a stable manifold that determines whether trajectories pass to one side or another of a saddle
equilibrium, in a differentiable system such as the Lorenz or Cherry flows [1–4]. Another key
example is a grazing orbit that determines whether trajectories hit or miss a control surface at
which a discontinuous action is triggered, commonly found in electronic control relays trig-
gered by a reference signal [5–7], homeostatic models where sleeping or waking are triggered
at distinct hormone thresholds [8], and other switching processes that occur on a faster time
scale than the system they affect, such as cell mitosis [9].

Although derivable from continuous systems, the dynamics of discontinuous maps differ
fundamentally from those of continuous maps. Freed from the constraints of continuity, they
are seemingly able to exhibit counterintuitive behaviours. Attractors can appear or disappear,
and change stability or periodicity, in almost arbitrary ways that are not possible in continuous
maps; see e.g. [10–12]. A fixed point or periodic orbit coming into contact with a discontinuity
can create global bifurcations, involving orbital structures reaching far from the site of the
bifurcation, such as broad band chaotic attractors [15].

In [16], however, it was suggested that one could sensibly define trajectories that posses
one or more iterates inside the discontinuity—dubbed hidden orbits—whose existence would
render the behaviours of discontinuous maps commensurate with their continuous cousins.
The purpose of [16] was merely to show the existence of hidden orbits and their significance
in a typical discontinuity-induced bifurcation sequence. In the present paper, we begin the
systematic study of bifurcations that involve hidden orbits. By doing so, we begin to understand
the connection between the behaviours of discontinuous and continuous maps, and see that a
unified theory of their bifurcations may in fact be possible. This shows moreover that nonlinear
systems can be approximated by discontinuous maps without changing the topology of the
bifurcations they exhibit, something that is not possible without hidden orbits, as we shall see.

When dealing with discontinuous maps, the question arises as to how the map is to be
defined at the point of discontinuity. Historically this question has not been considered deeply,
mostly because this definition does not affect the location of bifurcations in the map or the
structures of orbits that surround the discontinuity. It has therefore been common to assign a
specific value to the function at the point of discontinuity, motivated by convenience or mod-
elling application, and specific to the system under consideration. For example, in maps derived
from homoclinic connections in flows, it is natural to define the map as having a unique unsta-
ble fixed point at the discontinuity. In a system with a relay control, it is reasonable to define the
map at the discontinuity by the limiting value of the function corresponding to the switching.
In classification studies, it has been common to choose either the limiting value from one side
of the discontinuity, or the mid-value (the half-sum of the limiting values), or else to omit the
discontinuity altogether and leave the map undefined there.

In [17], for example, particular values of the map are permitted (namely fL(0), fR(0), and
their midpoint), that yield unstable orbits with points on the discontinuity, contributing to a
‘period doubling without flip’ bifurcation. In [18], so-called ‘discontinuous crossings’ are iden-
tified in an impact system, and it is noted that these are ‘not periodic solutions or equilibria’ of

6141



Nonlinearity 34 (2021) 6140 V Avrutin and M R Jeffrey

the system of interest. All such solutions are precisely what we elevate and generalise here to
precisely the status of periodic solutions or equilibria, albeit highly unstable, but nonetheless
important to a dynamical understanding of the system.

All of these different ways of defining a map at a discontinuity are valid to address specific
problems, but none of them is general or definitive. In fact none of these approaches is satis-
factory in the sense that they neglect the highly unstable influence of having a steep—indeed
vertical—branch in the map. Particularly in applications where the discontinuous map is meant
to approximate a continuous system, neglecting the discontinuity changes the topology of the
state space by removing an entire set of states that generates unstable cycles.

In [16] it was suggested that much would be gained by defining the map at the discontinuity
to be set-valued. In this way, the function remains discontinuous, but becomes connected in the
sense that there exist a continuum of states connecting the branches of the map across the dis-
continuity. Although the map is then multi-valued at the discontinuity, by treating iterates of the
map that lie on this set naively like any other, one obtains hidden orbits that have iterates inside
the discontinuity. It was suggested in [16] that these hidden orbits were precisely the unstable
orbits needed to restore the bifurcation structures that would be observed in an approximat-
ing continuous map. A specific example was given showing how a previously familiar period
incrementing sequence becomes populated by unstable hidden cycles, and these reveal the bor-
der collision bifurcations—in which branches of attractors are born as if from nowhere—to
be nothing but standard nonsmooth flip and fold bifurcations.

Rather than consider an extensive list of the many possible bifurcations in discontinuous
maps, we distinguish three key ‘orders’ of bifurcation, namely those that involve only finitely
many periodic orbits, those in which infinitely many branches of periodic orbits issue from
the bifurcation point, and those in which the primary bifurcation point is just the accumulation
point of infinitely many bifurcation sub-sequences. For each of these we show how they are
re-interpreted in familiar standard concepts when hidden orbits are taken into account, and
thereby show how nonlinear systems can be approximated by discontinuous maps in a more
complete way than it is commonly done. These steps also provide the foundations for a more
extensive re-consideration of the bifurcations of discontinuous maps in the presence of hidden
orbits.

To help interpret hidden orbits and their role in approximating nonlinear maps, we will dis-
tinguish four different approximations of the same system: a discontinuous map whose graph
has a jump between its left and right branches at x = 0, a connected map which duplicates
the discontinuous map for x �= 0 but connects its two branches with a vertical branch at x = 0,
a continuous map that approximates the vertical branch by a steep but finite gradient, and a
smooth map that approximates all of these by an infinitely differentiable map.

In summary, for connected maps we show:

(a) in bifurcations that involve finite number of periodic orbits only, hidden orbits provide
unstable branches necessary to recognise discontinuity-induced bifurcations as familiar
bifurcations such as a flip or fold,

(b) in bifurcations that involve infinite numbers of periodic orbits, concatenations of hidden
orbits provide the wide patterns of repelling periodic and aperiodic orbits to unify them
with bifurcations known in continuous maps,

(c) in bifurcations that occur at accumulation points of infinitely crowded sequences of bifur-
cations, hidden orbits restore the complete sequences found in period adding sequences
in continuous maps, and provide an easy way to calculate their unstable orbits.

We also relate these to the equivalent bifurcations in discontinuous, continuous, and smooth
maps, to see the unstable dynamics within them corresponding to hidden orbits.
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In sections 4–6, in turn, we will study specific examples of the three bifurcation scenarios
(a)–(c). In this respect, our purpose in this paper is modest, not to construct a general theory
of hidden orbits, since the concept was only introduced recently in [16], rather our purpose is
to provide prototypes and a basic understanding that can be made more general and rigorous
in future work. For this purpose it is useful to base the study around a piecewise linear map,
whose orbits can be found explicitly and whose bifurcations have been extensively studied.
For the same purpose we focus on bifurcations as a single parameter is varied, in this case
the size of the discontinuity, rather than attempt to classify all bifurcations of these maps.
While it is tempting to immediately seek more general results, they will necessarily be more
abstract and topological in nature, and more complex, as the range of different map classes and
types of bifurcation phenomena is far greater in nonsmooth maps than in smooth maps (though
our work here suggests that this is a distinction that could be narrowed in the future). As we
remark further in section appendix A, even for continuous maps the bifurcations exhibited bear
a complex relationship to map classes defined by their slopes and modality. It is precisely to
gain insight despite these complexities, that we focus on the three scenarios (a)–(c) here.

The remainder of this paper is organised as follows. In section 2, we define four prototypes
we will use to study discontinuous maps and related continuous or smooth maps. Hidden orbits,
which can be used to study discontinuous maps, are defined in section 3. The main results of
the paper follow in sections 4 to 7, setting out the role of hidden orbits in bifurcation scenarios
giving examples of types (a)–(c) above.

In section 4, we look at two successive border collision bifurcations in a monotonic map,
which are revealed to to be just familiar nonsmooth fold and flip bifurcations once hidden
orbits are included. In section 5, we look at a bifurcation that produces infinitely many hidden
periodic orbits in a unimodal map. In section 6, we show the role played by hidden orbits in
a period adding sequence in a bimodal map. We draw together these results in section 7 and
discuss their significance for both the study of discontinuous maps, and the approximation of
smooth maps with steep transitions, ending with some forward looking remarks in section 8.

2. Definition of the map

In each part of the paper below, we will take a prototype discontinuous map, then consider a
connected map, continuous map, and smooth map, derived from it (see figure 1). We use these
to study the role of hidden orbits (in the connected map) and their unstable counterparts (in the
continuous and smooth maps). Let us begin by defining these four map types below.

2.1. The discontinuous map

Consider the one-dimensional map defined by

xn+1 = f (xn) =

{
fL(xn) = aLxn + μL if xn < 0
fR(xn) = aRxn + μR if xn > 0

(1)

for some parameters aL, aR,μL,μR, where in general fL(0) �= fR(0), i.e. μL �= μR. An
example is given in figure 1(a).

We refer to this as the discontinuous map, noting that its value is undefined at x = 0.
Such maps have been extensively investigated in [10–12]. A unique value may be assigned
at xn = 0, for example the right or left limiting values f (0) = fR(0) or f (0) = fL(0), or the
midpoint f (0) = [ fR(0) + fL(0)]/2, without substantially altering our analysis below.
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Figure 1. Plots of the four maps: (a) discontinuous map (1); (b) connected map (2);
(c) continuous map (3); (d) smooth map (4). Illustrated for parameter values aL = 0.5,
aR = 1.3, μL = 1, μR = −1, ε = 0.1, dL = −0.1, dR = 0.1.

2.2. The connected map

We define the connected map as the augmented version of (1) given by

xn+1= f (xn) =

{
fL(xn) = aLxn + μL if xn < 0 ,
fR(xn) = aRxn + μR if xn > 0 ,

xn+1∈ J = [min{ fR(0), fL(0)}, max{ fR(0), fL(0)}] if xn = 0,

(2)

see figure 1(b). For convenience the vertical branch of the function f is denoted by f C , taking
a range of values f C(0) ∈ J, where obviously

f −1
C (x) = 0 ∀ x ∈ J.
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We should emphasise that the map (2) is discontinuous, like the map (1), but now the
branches fL and fR are connected across the discontinuity via a vertical branch f C .

By definition, the map (2) is set-valued at the discontinuity. Set-valued maps have been
studied by many authors, see e.g. [13, 14], but to our knowledge they have never been applied
within the scope of bifurcation analysis of discontinuous maps. As we will see, they can suc-
cessfully be applied for this purpose, as their dynamics is at once richer and yet more standard
than that of discontinuous maps similar to map (1).

2.3. The continuous map

We define the continuous map by the piecewise linear function

xn+1 = f (xn) =

⎧⎨
⎩

fL(x) = aLx + μL if x � dL,
fM(x) = aMx + μM if dL � x � dR,
fR(x) = aRx + μR if x � dR,

(3)

as shown in figure 1(c), which coincides with (2) everywhere except for a sufficiently small
interval (dL, dR) with dL < 0 < dR. To ensure the continuity of (3) at the border points
x = dL, dR, we impose the additional condition

aM =
μR − μL + aRdR − aLdL

dR − dL
, μM =

(aL − aR) dLdR + μLdR − μRdL
dR − dL

.

For an overview of the bifurcation structures in map (3) we direct the reader to [19, 20].

2.4. The smooth map

Lastly we consider a map that smoothly transitions between the functions fL and fR from (1),
in the form

xn+1 = fL(x) · (1 − g(x)) + fR(x) · g(x) (4)

which we refer to as the smooth map, where the function g is some smooth sigmoid
transitioning between g = 0 and 1 as x changes sign, which we take as

g(x) =
1

1 + e−
x
ε2

for small ε (see figure 1(d)).

2.5. The different maps compared

The four maps defined above clearly all possess similarities in their dynamics, but it is the
subtle differences associated with their differing continuity or differentiability that interests
us. By construction, any orbits that exist in (1) will exist also in (2), so they are topologically
semi-conjugate, but by including the vertical branch in (2) we introduce additional orbits that
map onto the vertical branch at the point xn = 0. Similarly, any orbits of (1) will exist also in
(3) provided they lie outside the interval (dL, dR). As (dR − dL) → 0 the map (3) tends to (2),
and likewise as ε→ 0 the map (4) tends to (2), so the vertical branch of (2) can be expected to
play a similar role in the dynamics as the steep branches of (3) and (4).

Of course we could derive more general maps that (1) is semi-conjugate to, to obtain a
more complete classification of their bifurcations. However, as discussed in section 1, our pur-
pose here is to study the hitherto unknown role of hidden orbits in already well understood
bifurcation sequences, and such sequences are provided by the specific maps (1)–(4).
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To study bifurcations of maps (1)–(4) we will mainly vary the offset μR while keep-
ing all other parameters fixed. Changing the height of the graphs of f by varying μR pro-
vides rich bifurcation sequences, with equivalent variations of μL obtained by the mapping
x �→ −x. Even for a piecewise linear map a complete classification of the possible bifurcations
is not simple. Different signs of the quantities aR, aL, and μL − μR, produce a number of dif-
ferent geometrical classes of the map, and we remark on these classes and the more general
classification problem in section appendix A. Our scope here is simply to examine examples
of typical bifurcation structures, showing the different ways that hidden orbits populate the
bifurcation diagrams of discontinuous maps, introducing unstable branches in just the right
way that they become consistent with the more standard sequences in continuous or smooth
maps.

2.6. Symbolic notation

To denote periodic orbits of maps (1) and (2), we will use the letters L and R to label points in
x < 0 and x > 0, respectively. Additionally, for map (2), we use the letter C to label the point
x = 0. Similarly, for map (3), the letters L, C, and R are used for the partitions x < dL, dL <
x < dR, and x > dR, respectively. For the smooth map (4), as there are no distinct branches,
the cycles are identified by referring to the symbolic sequences of the corresponding cycles
of the maps (1)–(3). A periodic orbit is denoted by O with a subscript given by the symbolic
sequence labelling the regions visited by iterates. So for example, OC refers to a fixed point on
the vertical branch at x = 0 in maps (1) and (2), and to a fixed point on the steep branch close
to x = 0 in maps (3) and (4). Similarly, OLR is a two-cycle with one point on the left and one
point on the right.

For unambiguity of the notation, we number the points of a cycle according to the associated
symbolic sequence, so, for example, the points xLR0 , xLR1 of a cycle OLR are some xLR0 � 0
and xLR1 � 0.

3. Hidden orbits

Let us briefly describe hidden orbits, introduced recently in [16], including how to calculate
them. We will define these only for the map (2).

3.1. Definitions

As introduced in [16], a hidden orbit is a solution of a dynamical system which includes at
least one point lying inside a discontinuity.

In the case of the map (2), an orbit with iterates {x0, x1, x2, . . .} is hidden if at least one
iterate lies at xn = 0, let us say x0 = 0. The first image of x0 = 0 is a point x1 = f (0) ∈ J. For
a given point x1 ∈ J the subsequent iterates xk = f k−1(x1) with k > 0 are then single-valued.
Each neighbouring point x1 ∈ J generates a distinct orbit {0, x1, f (x1), f 2(x1), . . . )}, which are
standard in every respect except they share the common iterate x0 = 0. They behave like any
regular orbit, converging to an attractor if one exists, and otherwise diverging.

There are uncountably many of these orbits (the set of all images of the discontinuity),
however, if a hidden orbit returns to the same discontinuity then it forms a hidden periodic
orbit, which we can define as follows.
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If a pre-image p of x0 = 0 exists such that f k(p) = 0, and if p ∈ J, then the sequence of
points

x0 = 0,

x1 = f (0) = p,

x2 = f 2(0) = f (p),

...

xk = f k(p) = 0

(5)

forms a cycle of period k � 1, termed a hidden periodic orbit or hidden cycle in [16]. By
definition, a symbolic sequence associated with a hidden cycle contains at least one letter C.

The simplest hidden cycle of map (2) is the hidden fixed point OC located on the vertical
branch. Clearly, OC exists if fL(0) and fR(0) have opposite signs. Further examples of hidden
cycles can be found throughout this paper, e.g. in figures 4(b), 5(b), and 8(b).

Evidently, every hidden cycle is unstable, as it contains a point at a vertical branch of the
function. In a continuous map of the form (3) or (4), that approximates the connected map (2)
sufficiently closely, any hidden orbit is replaced by a regular orbit with an iterate on a portion
of the map that is very steep, and any hidden cycle is replaced by a repelling cycle.

3.2. Calculation and pre-images

The pre-images of x0 = 0 are points x−k such that f k(x−k) = 0, for k > 0, and as with any other
point, their existence and uniqueness depends the existence and uniqueness of the inverse f −1.

To calculate the points of a hidden orbit by iterating forward from x = 0 one must confront
the set-valuedness of f (0). This can be avoided by instead iterating backwards from x = 0,
using the inverse functions f −1

L and f −1
R . For example, to find a hidden k-cycle it is sufficient

to assume xk = 0 for some k, and then iterate backwards until finding x1 ∈ J and hence x0 = 0.
Accordingly, each hidden cycle is given by a sequence of pre-images of zero. In this way, the
existence of hidden cycles is closely related to the existence of rank-one pre-images of zero: if
there are no such pre-images or if the pre-images exist but are not reachable from the interval
J, no hidden cycles can exist.

In addition, this provides us with an immediate clue about border collision bifurcations
of hidden orbits. A hidden cycle disappears if its first point x1 = f (0) ∈ J collides with a
boundary of its definition interval J, i.e. either with fL(0) or with fR(0).

3.3. Concatenations

By definition, if the interval J contains more than one pre-image of zero, the map (2) has
more than one hidden cycle. In fact, the existence of two distinct pre-images p1, p2 ∈ J implies
the existence of infinitely many hidden cycles as follows. Suppose that there exists a hidden
cycle Oσ with xσ0 = 0, xσ1 = p1 and a hidden cycle O� with x�0 = 0, x�1 = p2. Then the cycle
Oσ� formed by their concatenation also exists, as does every irreducible (i.e. corresponding
to a prime period of the cycle) concatenation of σ and �, each corresponding to a different
cycle.

So the existence of two hidden cycles OCL and OCR implies the existence of every pos-
sibly concatenated cycle OCLCR, O(CL)2CR, O(CL)2(CR)3 , and so on. Clearly, only irreducible
concatenations correspond to distinct hidden cycles (so for example CLCL corresponds to the
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Figure 2. Corresponding bifurcations shown in the: (a) discontinuous map (1); (b) con-
nected map (2); (c) continuous map (3); (d) smooth map (4). Shown for parameter values
aL = −0.6, aR = −0.4, μL = 1, ε = 0.15, dL = −0.1, dR = 0.1.

same hidden two-cycle as CL). The family of all finite concatenations of σ and � has a one-
to-one mapping to the rational numbers, while all infinite non-repeating concatenations of σ
and � have a one-to-one mapping to the irrational numbers, hence the existence of two dis-
tinct hidden cycles implies the existence of a countable number of further hidden cycles and
an uncountable number of aperiodic hidden orbits.

4. Bifurcations involving finitely many periodic orbits

The simplest bifurcations consist of connections between finitely many branches of attractors
or repellers. In a discontinuous map like (1), a single branch can terminate ‘in mid air’, i.e.
without connecting to another branch. This cannot happen in continuous maps like (3) and (4).
As we shall see, by rendering a discontinuous map connected as in (2), we obtain the missing
connecting branches necessary to interpret such events as standard bifurcations such as, in the
example we give below, simple nonsmooth fold and flip bifurcations.

To illustrate this with a general bifurcation scenario, consider the maps (1)–(4) with −1 <
aL, aR < 0. The corresponding bifurcation diagrams under variation of the offsetμR are shown
in figure 2, and we shall describe what happens in these diagrams from right to left, as μR
decreases.
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Figure 3. Orbits of the discontinuous map (1) at different places in the bifurcation dia-
gram from figure 2(a). In (a) before the border collision bifurcation ξLR, the fixed point
OR is the only attractor. In (b) between the border collision bifurcations ξR and ξLR, the
map has two coexisting attractors, namely the fixed point OR and the two-cycle OLR.
In (c) after the border collision bifurcation ξR, the two-cycle OLR is the only attractor.
Shown for parameter values aL = −0.6, aR = −0.4, μL = 1, μR = 0.8.

4.1. The discontinuous map

At the parameter value labelled ‘A’ in figure 2(a), the discontinuous map (1) has the stable
fixed point

OR =
μR

1 − aR
(6)

(see figure 3(a)). AtμR = 0 this fixed point collides with the border point x = 0 and disappears
in a border collision bifurcation marked in figure 2(a) by ξR. Prior to that, a stable two-cycle

OLR = {xLR0 , xLR1 } with xLR0 =
aLμR + μL
1 − aLaR

, xLR1 =
aRμL + μR
1 − aLaR

(7)

appears via a border collision bifurcation occurring at the parameter value marked by ξLR in
figure 2(a). This parameter value can easily be calculated from the condition

fR ◦ fL(0) = 0 (8)

which correspond to xLR0 = 0. Accordingly, in the parameter interval between the border col-
lision bifurcations ξR and ξLR, the map (1) has two coexisting attractors, namely the fixed
point OR and the two-cycle OLR (see figure 3(b)). After OR disappears in a border collision
bifurcation at ξR, the two-cycle OLR remains the only attractor (see figure 3(c)).

Such sequences of bifurcations are quite standard for discontinuous maps, but two distinc-
tions from continuous maps are worth noting. First, the only orbits involved in the border colli-
sion bifurcation are the fixed point and the two-cycle, and so these appear or disappear without
connecting to other fixed points or cycles. This is in contradiction to continuous maps where
such bifurcations must involve collisions of at least two such fixed points or cycles. Second,
neither the eigenvalue of the fixed point λ(OR) = aR < 0 nor the eigenvalue of the two-cycle
λ(OLR) = aLaR > 0 plays any role in determining the course of the bifurcations. This is con-
trary to smooth maps, where a negative eigenvalue is associated with a flip bifurcation, and
a positive eigenvalue to a fold, pitchfork, or transcritical bifurcation (this is also contrary to
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Figure 4. Orbits of the connected map (2) at different places in the bifurcation diagram
from figure 2(b). In (a) before the border collision bifurcation ξLR, the fixed point OR is
the only attractor. In (b) between the border collision bifurcations ξR and ξLR, the map
has two coexisting attractors, namely the fixed point OR and the two-cycle OLR. In (c)
after the border collision bifurcation ξR, the two-cycle OLR is the only attractor. Shown
for the same parameter values as in figure 3.

piecewise smooth continuous maps, although for such maps the necessary ‘eigenvalues’ are
harder to define due to lack of differentiability, see e.g. [10]).

4.2. The connected map

The connected map (2) has all of the same orbits as the discontinuous map (1), plus a num-
ber of hidden orbits in addition, that fundamentally alter the bifurcation’s appearance and
interpretation.

Take first the bifurcation at μR = ϕLR in figure 4(b). Not only does the stable two-cycle
OLR appear, but also an unstable hidden two-cycle

OCR = {xCR0 , xCR1 } with xCR0 = 0, xCR1 = f −1
R (0) = −μR

aR
. (9)

It can be easily be seen that these cycles coincide at the bifurcation, since the border collision
condition xLR0 = 0 implies at μR = ϕLR that xLR0 = xCR0 , while condition (8) implies fL(0) =
f −1
R (0), so that xLR1 = xCR1 . As μR decreases away from the bifurcation value, the iterates of

the cycles move apart as seen in figure 2(b), consistent with a fold border collision bifurcation
occurring in the connected map (2) at ϕLR.

At the bifurcation where μR = ψR, one can clearly see in figure 2(b) that as μR approaches
ψR from the right, the point xCR1 tends to zero, i.e. to the point xCR0 , so that the hidden cycle
OCR shrinks in size around the fixed point OR and at the bifurcation they coincide (since
the bifurcation occurs at μR = 0 where xCR1 = f −1

R (0) = 0 = xCR0 ). Moreover, for μR < 0 the
hidden fixed point Or appears. Therefore, the bifurcation occurring in the connected map (2)
at ψR is a subcritical flip border collision bifurcation.

4.3. The continuous and the smooth maps

In the continuous map (3), the bifurcation atϕLR is a fold border collision bifurcation occurring
at the border point x = dL, and leading to the appearance of the stable cycle OLR and the
unstable cycle OCR. At ψR the map undergoes a subcritical flip border collision bifurcation
occurring at the border point x = dR at which the stable cycle OLR collides with the unstable

6150



Nonlinearity 34 (2021) 6140 V Avrutin and M R Jeffrey

cycle OCR and disappears, and the unstable fixed point OC appears. As we let dL − dR → 0,
figures 2(b) and (c) therefore become indistinguishable. In fact, the only difference between the
bifurcation structures in maps (2) and (3) (shown in figures 2(b) and (c), respectively), is that
in map (3) the location of the points OC and xCR0 inside the middle partition [dL, dR] depends
on μR, while in map (2) these points are located at the border point x = 0, so that OC and OCR
are hidden orbits.

As is easily seen in figure 2(d), in map (4) the bifurcation sequence is similar to the con-
tinuous map except that, being smooth, the map exhibits standard fold and subcritical flip
bifurcations instead of the corresponding border collision bifurcations. As noted in section 2.6,
the symbolic notation for the cycles used in figure 2(d) is merely an echo of the discontinuous
maps (2) and (3), as there is no definitive way to partition the smooth map into right, left, and
centre regions.

4.4. The different maps compared

Although it now seems trivial for this simple example, we can see that these fold and flip
border collision bifurcations in the connected map (2) correspond to, and in fact approximate,
fold and flip border collision bifurcations in the continuous map (3), and standard fold and flip
bifurcations in the smooth map (4).

However we analyse these maps or describe them symbolically, the structures shown in
figures 2(b)–(d) are clearly topologically identical, but none is equivalent to figure 2(a) where
the unstable orbits are ‘missing’. For the two simple bifurcations here this distinction is
obvious, for more complicated scenarios it will be less so.

Note also that the connected map (2) preserves the relation between the signs of the eigen-
values of the cycles and the bifurcations these cycles undergo in the smooth map (4). Indeed,
the fixed point OR with a negative eigenvalue undergoes a flip bifurcation in map (4), and so
it does in map (2). Similarly, the two-cycles undergoing fold bifurcations in both maps have
positive eigenvalues.

One more feature that the connected map (2) captures and the disconnected map (1) does
not is clearly visible in the interval of bistability. In map (1), the basins of attraction of the
fixed point B(OR) and of the two-cycle B(OLR) are separated from each other by the point
of discontinuity and its rank-one pre-image (see figure 2(a)). This is a standard situation for
discontinuous maps, as described, for example, in [11], where it is stated that in continuous 1D
maps, the immediate basin of an attracting fixed point can be confined by two repelling fixed
points, by a repelling fixed point and its rank-one pre-image, or by the points of a repelling
two-cycle, and in discontinuous 1D maps it can also be confined by a point on a discontinuity
and its pre-image or by two points on a discontinuity. While the latter condition is obviously
necessary for discontinuous maps, we see it can be completely avoided by adding a connecting
vertical branch to the definition of the map (even if this branch does not exist in the modelled
system) and by taking into account the hidden orbits appearing by this extension.

Moreover, proceeding in this way one can obtain some additional information. Indeed, it
is clear that in a map with two discontinuities the points discontinuity may form the basin
boundary but need not do. The conditions under which this happens are not mentioned in [11],
but it is now quite obvious that this happens if the corresponding connected map has two hidden
fixed points at the corresponding discontinuities. Similarly, the basin in a discontinuous map
is confined by a point on a discontinuity and its pre-image if the corresponding connected map
has a hidden two-cycle at the basin boundary.

It can be easily seen in figure 2(b) that in map (2) the basins of attraction B(OR) and
B(OLR) are separated from each other by the points of the hidden two-cycleOCR (which are, in
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fact, given by the point of discontinuity and its rank-one pre-image). Therefore, the connected
map shows the same behaviour as the continuous maps (3) and (4) (see figures 2(c) and (d),
respectively) for which the basins are also separated by a repelling two-cycle OCR as well.

5. Bifurcations involving infinitely many periodic orbits

In the example discussed above, a just a few branches were missing in the bifurcations occur-
ring in the discontinuous map (1) compared with the bifurcations in the continuous maps (3)
and (4). As we have shown, these branches are restored in the connected map (2). In other situ-
ations, the difference between the bifurcations in the discontinuous map (1) and the continuous
maps (3) and (4) is even stronger, given by an infinite number of orbits, periodic and aperiodic.
As we shall see, the connected map (2) is able to restore these orbits as well.

Consider the map (1) with 0 < aL < 1, aR < −1, μL < 0, and μR increasing through zero.
As in the previous section we discuss the resulting bifurcations in the maps (1)–(4), in turn.

5.1. The discontinuous map

The bifurcation occurring in the discontinuous map (1) as μR increases is simple. For all values
ofμR, the map has an attracting fixed pointOL = μL/(1 − aL) in the left partition. For negative
values of μR, this fixed point is globally attracting, the map has no other invariant sets. As μR
increases through zero, the fixed point

OR =
μR

1 − aR
(10)

appears in the right partition, however, as aR < −1, it is repelling and so every orbit except
for this fixed point still converges to OL (see figure 6(a)). The oddity of this bifurcation is that
OR appears at μR = 0 with no other fixed points appearing or disappearing to accompany it.

5.2. The connected map

In the connected map (2), the bifurcation is more rich and more standard at the same time.
It is immediately clear from figure 5(a) that the fixed point OR appears simultaneously with
the hidden fixed point OC , as would be expected of a fold bifurcation in a continuous map.
However, an infinite number of repelling cycles also appear. For μR > 0 there exists the rank-
one pre-image of zero, f −1

R (0), and since aR < −1, there also exists the infinite sequence of
further pre-images f −k

R (0), k � 2 (see figure 5(b)) given by

f −k
R (0) =

μR
1 − aR

· ak
R − 1
ak
R

. (11)

It follows from (10) and (11) that that all these pre-images belong to the interval (0,μR) ⊂ J,
and in backward time the sequence of pre-images converges towards the repelling fixed point
OR. Accordingly, for each k � 1 there exists the hidden (k + 1)-cycle

ORkC =
{

f −k
R (0), f −k+1

R (0), . . . , f −1
R (0), 0

}
, (12)

as illustrated in figure 6(b) (see also a few examples in figure 5(b)). Together with the hidden
fixed point OC , the union of these cycles forms the family

FRkC = {Oσ|σ ∈ ΣRkC} , ΣRkC =
{
σk = RkC|k � 0

}
, (13)
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Figure 5. Orbits of the connected map (2). (a) The fold bifurcation creates the pair of
fixed points, OR and OC , plus an infinite number of further hidden orbits (cycles and
aperiodic orbits). (b) Magnification of the rectangle marked in (a), the rank-1, -2 and
-3 pre-images of zero are indicated. Additionally, hidden cycles OCRk , k = 1, . . . , 4 are
shown. aL = 0.5, aR = −1.5, μL = −1, μR = 0.5.

It is worth noting that at the bifurcation occurring at μR = 0, not only do the cycles belong-
ing to the familyFRkC appear, but also their concatenations, both finite and infinite, as discussed
below.

5.3. The continuous and smooth maps

In the continuous map (3), the bifurcation occurs at the value of μR defined by the condi-
tion fR(dR) = dR, i.e. μR = dR(1 − aR) (that means, at μR = 0.25 in the example shown in
figure 6(c)). It can be easily shown that in map (3) not only the repelling fixed pointOR appears
in the right partitions (coinciding with the corresponding fixed points of the discontinuous maps
(2) and (1)), but also the repelling fixed point

OC =
dLdR(aL − aR) + μLdR − μRdL

μL − μR − dR(aR − 1) + dL(aL − 1)
(14)

belonging to the middle partition. As expected, for both dL and dR tending to zero, the fixed
point OC of map (3) tends to zero as well, and hence to the hidden fixed point OC of map (2).
As the map (3) is continuous, this bifurcation is a standard fold border collision bifurcation
of the saddle-saddle type, leading to the appearance of two repelling fixed points and a set on
which the map is chaotic (a chaotic attractor if there is an invariant absorbing interval after the
bifurcation or a chaotic repeller otherwise). Since the values of aL, aR and μL satisfy the con-
dition f 2

R(dR) < Oc, the bifurcation does not lead to the appearance of an invariant absorbing
interval, so that the map after the bifurcation has a chaotic repeller.

In the smooth map (4), the bifurcation occurs when the function becomes tangent to the
diagonal. This is a standard fold (saddle-node) bifurcation leading to the appearance of the
attracting fixed point OR and the repelling fixed point OC (tending for ε→ 0 to the hid-
den fixed point of the connected map (2)). Then, for increasing μR the attracting fixed point
OR becomes repelling, the map undergoes the standard period-doubling cascade, followed
by the appearance of chaotic attractors (see figure 6(d)). At the parameter value where the
invariant absorbing interval of the map touches the repelling fixed point OC , a final bifur-
cation occurs (indicated by χ in figure 6(d)), turning the chaotic attractor into a chaotic
repeller.
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Figure 6. Corresponding bifurcations shown in the: (a) discontinuous map (1); (b) con-
nected map (2); (c) continuous map (3); (d) smooth map (4). In (a) the only orbit that
appears in the border collision bifurcation ξR is the repelling fixed point OR. In (b) at
the fold border collision bifurcation ψ, the usual fixed point OR appears (identical with
the fixed point OR in (a)), as well as the hidden fixed point OC , a countable number of
hidden cycles and an uncountable number of hidden aperiodic orbits. All hidden orbits
consist of the point zero and its pre-images f −k

R (marked for k = 1, . . . , 6). In (c) at the
fold border collision bifurcation ψ, a chaotic repeller appears, whose points are in a 1
to 1 correspondence with the points of the orbits (hidden or not) appearing in (b). In (d)
at the fold border collision bifurcation ψ, a pair of fixed points appear, the stable OR
and the unstable OC . The stable fixed point becomes unstable in the usual logistic map
scenario, and the eventually appearing chaotic attractor turn into chaotic repeller at the
final bifurcation marked by χ. After the final bifurcation, there is a 1 to 1 correspondence
between the orbits of maps with the points of orbits (hidden or not) appearing in (b). Sta-
ble fixed points and cycles are shown in red, unstable in blue for periods p = 1, 2, 3, 4
and in gray for p = 5, 6, 7, 8. Shown for parameter aL = 0.6, aR = −1.6, μL = −1,
ε = 0.1, dL = −0.1, dR = 0.1.

5.4. The different maps compared

As one can see for both the continuous and smooth maps, the bifurcations lead eventually to
the appearance of chaotic repellers (immediately after the saddle–saddle bifurcation in map (3)
or after all the flip and fold bifurcations following the initial saddle-node bifurcation in map
(4)). As the connected map (2) represents a limiting case for maps (3) and (4), for dL, dR → 0
the fold bifurcation value ψ in map (3) tends to zero, and for ε→ 0 both bifurcation values ψ
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and χ tend to zero as well. However, a chaotic repeller forms a Cantor set and consists of a
countable number of repelling cycles as well as an uncountable number of repelling aperiodic
orbits. As the connected map (2) represents a limiting case for maps (3) and (4) and can be seen
as an approximation for these maps, it is a natural question how this approximation maintains
these orbits. In fact, this question is quite natural since the family FRkC we have identified so
far is countable.

Perhaps the most non-trivial property of hidden orbits is that they can be concatenated so
that the existence of two distinct hidden orbitsOCσ and OCρ implies the existence of the hidden
orbitOCσCρ. The validity and interpretation of such concatenations is not immediately obvious,
but as we shall see all concatenations should be considered as valid orbits, as they are needed
to make the results for map (2) matching the corresponding results for maps (3) and (4).

As already mentioned, the fixed points OR andOC of maps (3) and (4) are preserved in their
approximation by the connected map (2), the former one as a regular fixed point and the latter
one as a hidden fixed point. The two-cycle OCR belongs to the family FRkC , as well as one
of the three-cycles, namely OCR2 . However, the other three-cycle, i.e. OC2R, does not belong
to FRkC (in map (4) both cycles appear via a smooth fold bifurcation at the beginning of the
period-3 window, while in map (3) they appear at the same fold border collision bifurcation
as the fixed points OR and Oc). Instead, the associated symbolic sequence is a concatenation
of two sequences belonging to ΣRkC , namely σ0 and σ1. In this sense, one can say that the
hidden three-cycle OC2R ≡ Oσ0σ1 appearing at the fold bifurcation in map (2) can be seen as a
concatenation of OC and OCR. Similarly, among the hidden four-cycles appearing at this bifur-
cation, the cycle OCR3 belongs to the family FRkC , and two other four-cycles OC2R2 and OC3R
result from the corresponding concatenations, namely OC2R2 ≡ Oσ0σ2 and OC3R ≡ Oσ0σ0σ1 ,
respectively. Proceeding in this way, one can easily show that for each repelling cycle belong-
ing to the chaotic repeller in maps (3) and (4) the corresponding symbolic sequence either
belongs to the family ΣRkC or can be obtained by a finite concatenation of the sequences
belonging to this family. Moreover, there is a one-to-one correspondence between the set of
these cycles and the set of hidden cycles of map (2). As for the uncountable set of repelling
aperiodic orbits belonging to the chaotic repeller in maps (3) and (4), the corresponding hidden
aperiodic orbits in map (2) result from infinite concatenations of hidden cycles belonging to
the family FRkC .

To summarise, this example shows how a fold bifurcation in the connected map (2) bridges
the gap between maps (1), (3) and (4) by capturing the unstable orbits of figures 5(c) and (d)
that are missing from (a) as hidden orbits, resulting in topologically standard structure.

6. Bifurcations at accumulation points

Finally we consider accumulation points, where a cascade of bifurcation curves accumulate
towards a particular parameter value. Here the hidden orbits play a role in the organisation
of the whole cascade, and not just a single bifurcation event. Such points were perhaps first
observed in [22] and various examples can be found in [11]. In sections 4 and 5, hidden orbits
provided a link between the discontinuous map and well understood bifurcation structures in
continuous or smooth maps. In this section, the corresponding cascades in the continuous or
smooth maps have not previously been studied to our knowledge, and hidden orbits not only
add structure to the bifurcations of the discontinuous map, but provide an approximation of
similar bifurcations in the continuous or smooth maps.

As before let us take the map (1), now with 0 < aL, aR < 1, μL > 0, and again, considering
μR increasing through zero, let us consider the bifurcations exhibited by the discontinuous,
connected, continuous, and smooth maps in turn. We will focus on the important phenomenon
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of period adding sequences in the discontinuous map. The discontinuous map (1) in this case
shows the well-known period-adding structure, and we will show that hidden orbits play a
role in this structure not only at the bifurcation at μR = 0, but throughout the period adding
sequence.

In order to present this structure in its complete form, below we discuss dynamics of maps
(1)–(4) under a simultaneous variation of μR and μL, fixing μL = μR + 2 without loss of
generality. (This particular coupling of parameters μL and μR makes the system for aL = aR
identical with the Σ−Δ modulator model introduced in [23] and investigated extensively in
[11, 15].) Note that this choice of parameters does not change the bifurcation occurring at
μR = 0 (since for parameter values close to this bifurcation, it holds that μR � μL) but does
conveniently provide a complete bifurcation sequence, being sandwiched between the stability
domain of two stable fixed points.

6.1. The discontinuous map: standard period adding

An example of the period adding structure in the discontinuous map (1) is shown in figure 7(a).
Let us briefly recall what is known about the organising principles of this structure. It is easy to
see that for μR > 0 the map has a stable and globally attracting fixed pointOR. As μR is varied
from positive to negative values, this fixed point disappears in a border collision bifurcation,
and a period adding sequence appears for which μR = 0 is an accumulation point.

The description of this structure goes back to the pioneering works by Leonov ([22, 24,
25]), who used a recursive approach following so-called complexity levels. According to this
approach, the two fixed points OL and OR form the complexity level zero, and between the
parameter regions associated with each two consecutive cycles Oσ and O� of complexity level
m, there are two infinite families of regions associated with cycles Oσkρ and Oσρk , k � 1.
It is worth noting that for k →∞ the sequence of regions associated with the cycles Oσkρ

converges towards a boundary of the region associated with Oσ , and the infinite sequence
of regions associated with Oσρk converges towards a boundary of the region associated with
O� (see [11] for details). It follows that for each m � 1 there are 2m families of cycles of
complexity level m. For example, the cycles of complexity level m = 1 are the well-known
basic (also called maximal, or principle) cycles OLkR and OLRk , k � 1, the cycles of com-
plexity level two are O(Lk1+1R)k2Lk1R, OLk1+1R(Lk1R)k2 , O(LRk1 )k2LRk1+1 , and OLRk1 (LRk1+1)k2 ,
k1, k2 � 1, and so on. For this reason, in the open parameter interval μR ∈ (−ε, 0) with an
arbitrary small ε > 0 there exists an infinite number of parameter intervals associated with
basic cycles OLRk , k � k0(ε), k0(ε) increasing with ε→ 0, as well as a countable set of inter-
vals associated with cycles of complexity levels higher than one, and also an uncountable set
of singular parameter values associated with Cantor set attractors (for details we refer to [11]).
For each of the cycles, the corresponding parameter interval is confined by the border col-
lision bifurcations, at which the cycle collides with the border x = 0 and disappears. Recall
that the points of the cycles colliding with the border are referred to as colliding points and
the corresponding letters in the symbolic sequences as colliding letters. As usual, below the
colliding letters are underlined, so that, for example, the symbolic sequences LRRRR and
LRLRR imply that the basic five-cycle OLR4 collides with the border by the first and the last
points, while the five-cycle OLRLR2 of complexity level two collides by the third and the last
points, respectively.

6.2. The connected map: augmented period adding

In the discontinuous map (1), the period adding structure does not involve any repelling cycles,
only attracting cycles and Cantor set attractors. In the connected map (1), all these attracting
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Figure 7. Corresponding bifurcations shown in the: (a) discontinuous map (1); (b) con-
nected map (2); (c) continuous map (3); (d) smooth map (4). Stable cycles are shown
in red, hidden ones in blue, chaotic attractors in green. The insets show magnifica-
tions of the rectangular regions indicated. Shown for parameter values aL = aR = 0.9,
μL = μR + 2, ε = 0.1, dL = −0.025, dR = 0.025.

cycles and Cantor set attractors are preserved, but in addition the map has an infinite number
of hidden orbits, which leads to a complex augmented period adding structure that relates
closely to continuous maps. Below we describe this structure in detail. In section 6.2.1, we
first identify the hidden orbits appearing at one particular border collision bifurcation in this
structure. In section 6.2.2, we briefly recall some basic facts about parent-child relations in
Farey trees, then we use these to identify the hidden orbits appearing at other bifurcations in
the augmented period adding structure, based on the connection to parents in section 6.2.3, and
the connection to children in section 6.2.4.

6.2.1. The hidden orbits appearing at the border collision bifurcation of OR. In map (2), the
period adding structure is supplemented by hidden orbits, as shown in figure 7(b). For μR >
0 no hidden cycles exist, although the map has a pre-image f −1

L (0), and in fact, an infinite
sequence of pre-images f −k

L (0), k � 1. However, as f −k
L (0) < 0 for all k and the values of f (0)

are positive, i.e. f −k
L (0) /∈ J, no orbit started at zero or at any of its pre-images can return to

zero. Still, it is not true that no hidden orbits exist in this case. In fact, there are an uncountable
number of distinct hidden orbits, starting at zero or any of its pre-images under f −1

L . Although
there exist only a countable set of initial values for these orbits, once an orbit arrives at zero,
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Figure 8. A closer look at the region μR ∈ [−1, 0] from figure 7(b). The magnified
bifurcation diagram (a) shows pre-images of zero f −k

R (0), k = 1, . . . , 150, appearing at
μR = 0 and disappearing at μ(k)

R . For μR ∈ [μ(k)
R ,μ(k+1)

R ), hidden cycles OCR, . . . , OCRk

exist. From this, (b) shows the stable cycle OLR3LR4 and the coexisting hidden cycles
OCR, OCR2 , OCR3 at the parameter value μ∗

R = −0.385 as marked in (a). Shown for
parameter values aL = aR = 0.9, μL = μR + 2.

it can take any value from the interval [μR,μL] (i.e. an uncountable set) and then the forward
iterations of this value will be performed by fR. Clearly all these orbits converge to the stable
fixed point OR. Nevertheless, their existence is a difference between the connected map (2)
and discontinuous map (1).

As μR passes through zero, the pre-image f −1
R (0) appears, as well as the infinite sequence

of further pre-images f −k
R (0), k � 1 (see figure 8(a)). Accordingly, at μR = 0 the infinite fam-

ily of hidden cycles OCRk , k � 1, appears, as given by equation (12). Note that for each k the
cycle OCRk exists not for all values of μR < 0, but only as long as all the involved pre-images
of zero are located inside the invariant absorbing interval [ fR(0), fL(0)] = [μR,μL]. Since the
sequence of pre-images f −k

R (0) of zero is monotonously increasing for increasing k, the con-
dition for a hidden cycle to exist is f −k

R (0) < fL(0) and the bifurcation causing this cycle to
disappear occurs when

f −k
R (0) = fL(0). (15)

It follows from equations (11) and (15) that for each k � 1 the hidden (k + 1)-cycle OCRk

exists in the parameter interval

[
μ(k)
R , 0

)
where μ(k)

R =
2(aR − 1)

a−k
R − aR

. (16)

The latter equation implies also that μ(k)
R < μ(k+1)

R for all k � 1 and limk→∞ μ(k)
R = 0. There-

fore, at each fixed μ(1)
R < μ∗

R < 0, a finite number of hidden cycles OCRk exists, with 1 � k �
kmax, and kmax depending on μ∗

R as determined by the condition

μ(kmax)
R � μ∗

R < μ(kmax+1)
R . (17)

As an example, figure 8(b) shows three hidden cycles OCR, OCR2 , OCR3 coexisting with
the stable cycle OLR3LR4 at the parameter value μ∗

R = −0.385 satisfying μ(3)
R � μ∗

R < μ(4)
R .
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Note also that these are not the only hidden orbits existing at the considered parameter
value. Indeed, the existence of at least two hidden cycles OCσ and OC� implies the exis-
tence of a countable number of further hidden cycles and an uncountable number of aperi-
odic hidden orbits associated with symbolic sequences resulting from finite and infinite con-
catenations of Cσ and C�, respectively. Evidently, all these orbits appear via the bifurcation
occurring at μR = 0.

6.2.2. Parent-child relations in Farey trees. So far we have described which hidden orbits
(periodic and not) appear at the parameter value μR = 0 where the fixed point OR undergoes
a border collision bifurcation and disappears. To generalise these results and to explain what
happens at border collision bifurcations of all other stable cycles forming the period adding
structure, we need to recall some basic facts about Farey trees. The classical Farey tree results
from a limiting case of Farey sequences. The Farey sequence Fm of rank m � 1 is defined as a
sequence of irreducible fractions with denominators not larger than k, increasing monotonically
from 0

1 to 1
1 . It is known that any three successive fractions a1

b1

a2
b2

, and a3
b3

in Fm, m � 2, satisfy

the Farey addition rule a2
b2

= a1+a3
b1+b3

(this result was proven initially by Haros [26] and indepen-
dently by Cauchy [27], not by Farey). In this context, the fraction a2

b2
is called the mediant of a1

b1

and a3
b3

. Then, the Farey tree is defined as a directed graph consisting of nodes corresponding
to fractions in the Farey sequence F∞ = limm→∞ Fm. For any three successive fractions a1

b1

a2
b2

,
and a3

b3
in Fm, m � 2, the graph contains the edges from the nodes corresponding to a1

b1
and a3

b3

to the node corresponding to their mediant a2
b2

.
A closely related structure, referred to in [11] as the symbolic sequence adding scheme, can

be obtained by replacing fractions in a Farey tree by symbolic sequences and the Farey addition
by their concatenation. In the simplest case, if the fractions 0

1 and 1
1 in the starting nodes of the

Farey tree are replaced by the letters L and R, this structure specifies the symbolic sequences
corresponding to cycles in a period adding bifurcation structure between the domains of the
fixed points OL andOR. If the graph contains edges from the nodes corresponding to symbolic
sequences σ and � to a node corresponding σ�, then σ and � are called the parent sequences of
σ�, and σ� the child sequence of σ and �. Basically, for any given sequence � in the symbolic
sequence adding scheme, its child-sequences are the sequences belonging to the nodes in the
graph to which there is an edge from the node associated with �. It can be shown that each
sequence σ� with the parent sequences σ and � has two infinite families of child-sequences,
namely

�(σ�) =
{
σ(σ�)k|k � 1

}
and r(σ�) =

{
(σ�)k�|k � 1

}
. (18)

For example, the sequence LR associated with a two-cycle is a child-sequence of the start-
ing sequences L and R (the only common child of these sequences). Hence, the families of
child-sequences of LR are

�(LR) =
{
L(LR)k|k � 1

}
and r(LR) =

{
(LR)kR|k � 1

}
. (19)

Each of the starting sequences L, and R has only one family of child-sequences, namely
r(L) =

{
LkR|k � 1

}
and �(R) =

{
LRk|k � 1

}
. The parent-child relationship between sym-

bolic sequences forming a symbolic sequence adding scheme is rarely used in nonlinear
dynamics, but turns out to be essential for the description below.

6.2.3. Connection of a cycle to its parents via hidden cycles. Let us consider now the hid-
den two-cycles OCR and OCL (see figure 9(a)). As already mentioned, the cycle OCR exists
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Figure 9. Bifurcation diagrams for the connected map (2) showing: (a) the two-cycle
OLR, surrounded by the hidden two-cycles OCL and OCR; (b) the five-cycles OLRLR2

and OLR4 , surrounded by the hidden five-cycles OCLRLR, OCRRLR, and OCLR3 , OCR4 ,
respectively. Show for parameters aL = aR = 0.9, μL = μR + 2.

in the parameter interval between μR = 0 (which corresponds to the border collision bifurca-
tion of the fixed point OR) and μ(1)

R (see definition in (16)). Recall that the latter bifurcation
is determined by the condition that the point of the hidden cycle given by xCR1 = f −1

R (0) col-
lides with the boundary of the invariant absorbing interval μL = fL(0). Clearly, the condition
f −1
R (0) = fL(0) implies fR( fL(0)) = 0, which is the condition causing the non-hidden two-

cycle OLR to collide with the border from the left side. In the discontinuous map (1), this
bifurcation is associated with the disappearance of a stable two-cycle OLR. In the connected
map (2), the colliding point of the two-cycle moves from a stable to a vertical branch, so that
the cycle persists but becomes hidden.

Similarly, for the other hidden two-cycle OCL we find that it exists in the parameter range
between the border collision bifurcation of the fixed point OL and the other border collision
bifurcation two-cycle OLR which is determined by the condition fL( fR(0)) = 0, or equiva-
lently f −1

L (0) = fR(0). Accordingly, in the connected map (2) the parameter interval corre-
sponding to the stable two-cycle OLR is surrounded by parameter intervals corresponding to
the hidden two-cycles OCR and OCL. These intervals extend from the border collision bifur-
cation of OLR to the border collision bifurcation of the fixed points associated with the parent
sequences of LR, namely L and R.

To describe the corresponding structure more generally, let us introduce the following
notation:

• For a cycle O�, let ξL� and ξR� be its border collision bifurcations from the left and from
the right side, respectively.

• For a symbolic sequence �, let κL(�) and κR(�) be symbolic sequences resulting from
� by replacing its colliding letters L and R, respectively, by the letter C.

Then, let us now consider a cycle Oσ� in the period adding structure of the discontinuous
map (1). Let σ and � be the parent sequences of σ�. Then

(p1) In the connected map (2), at the border collision bifurcations ξLσ� and ξRσ� the stable cycle
Oσ� disappears and the hidden cycles O

κ
L(σ�), Oκ

R(σ�) appear.
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(p2) The hidden cycle O
κ
L(σ�) exists in the parameter interval between the border collision

bifurcations ξLσ� and ξRσ . Similarly, the existence interval of the hidden cycle O
κ
R(σ�) is

confined by the border collision bifurcations ξRσ� and ξL� .

Let us illustrate this with a few examples. It is known that if fL and fR are increasing
functions, the basic cycles OLRk , k � 1, collide with the border by the first and the last points.
For the five-cycle OLR4 , replacing the colliding letter L and R by C, we obtain

κ
L(LRRRR) = CRRRR, κ

R(LRRRR) = LRRRC ≡ CLRRR.

(20)

Therefore, the hidden five-cycles appearing at the border collision bifurcations of OLR4 are
OCR4 and OCLR3 (see figure 9(b)). Since the points of hidden cycles are given by pre-images
of zero, it is easy to see that

xCR
4

0 = 0,

xCR
4

1 = f −4
R (0),

xCR
4

2 = f −3
R (0),

xCR
4

3 = f −2
R (0),

xCR
4

4 = f −1
R (0),

xCLR
3

0 = 0,

xCLR
3

1 = f −1
L ( f −3

R (0)),

xCLR
3

2 = f −3
R (0),

xCLR
3

3 = f −2
R (0),

xCLR
3

4 = f −1
R (0).

(21)

Taking into account that the hidden cycles exist if μR < 0 and the corresponding pre-images
of zero are located inside the absorbing interval I = [μR,μL], we conclude that the existence
condition for the cycle OCR4 is

μR < 0, f −4
R (0) < μL (22)

and the existence condition for the cycle OCLR3 is

μR < f −1
L ( f −3

R (0)), f −3
R (0) < μL. (23)

Indeed, these conditions follow immediately from the location of the points of the cycles
with respect to the boundaries of the absorbing interval I. In particular, for the cycle OCLR3

the points located most far away from the border point x = 0 and hence most closely to the
boundaries of I are xCLR

3

1 and xCLR
3

2 , which implies conditions (23).
Next, recall that the parent sequences of LR4 are LR3 and R. It follows from equation (22)

that the cycleOCR4 exists in the parameter interval confined by the parameter values determined
by the conditions

fR(0) = 0, (24)

f −4
R (0) = fL(0) ⇔ f 4

R( fL(0)) = 0. (25)

As one can see, equation (24) corresponds to the border collision bifurcation of OR (the
fixed point associated with one of the parent sequences of LR4), while equation (25) cor-
responds to a border collision bifurcation of OLR4 . Similarly, equation (23) implies that the
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existence interval of the cycle OCLR3 is confined by the parameter values determined by the
conditions

fR(0) = f −1
L ( f −3

R (0)) ⇔ f 3
R( fL( fR(0))) = 0, (26)

fL(0) = f −3
R (0) ⇔ f 3

R( fL(0)) = 0. (27)

Here, equation (26) corresponds to the other border collision bifurcation of OLR4 , and
equation (26) to the border collision bifurcation of the four-cycle OLR3 which is associated
with the other one of the parent sequences of LR4. This proves the statements of sections 6.2.1
and 6.2.2 in the particular cases σ = LR4.

In addition, figure 9(b) illustrates the appearance of hidden cycles at the border collision
bifurcations of the five-cycle OLRLR2. Here, it follows from

κ
L(LRLRR) = LRCRR ≡ CRRLR (28)

κ
R(LRLRR) = LRLRC ≡ CLRLR (29)

that the existence interval of the cycle OLRLR2 is surrounded by the intervals where the hidden
cycles OCR2LR and OCLRLR exist. As one can see in figure 9(b), these intervals reach from the
parameter values corresponding to the border collision bifurcations of OLRLR2 to the border
collision bifurcations of OLR and OLR2 (recall that LR and LR2 are the parent sequences of
LRLR2).

The connectedness of the map makes it possible to provide a general proof of sections 6.2.1
and 6.2.2, but this is beyond our scope here. To give a basic idea of the proof, it is simple to
show that hidden cycles O

κ
L(σ�), Oκ

R(σ�) appear at the border collision bifurcations ξLσ� and
ξRσ�, as the connectedness of the map implies that when a fixed point disappears from the x > 0
branch of the map, it must either persist as a hidden fixed point or else co-annihilate with
one. More involved is to prove that the cycles O

κ
L(σ�), Oκ

R(σ�) appear at the border collision
bifurcations ξLσ and ξR� , using the fact that any cycle is a concatenation of its parents, not only
in the sense of symbolic sequences, but the geometrical shapes of the parents that are glued
together (see figure 10(a)), meaning the most outer points of the child cycle are the images of
the colliding points which are common for the parent and child cycles.

6.2.4. Connection of a cycle to its children via hidden cycles. The results obtained so far
make it possible to specify the hidden orbits appearing at any border collision bifurcation in the
period adding structure in the connected map (2). Indeed, as already mentioned, each sequence
σ� in the symbolic sequence adding scheme which has the parent sequences σ and �, has two
infinite families of child-sequences, namely σ(σ�)k and (σ�)k�, k � 1. Applying (p1) and (p2)
to the corresponding cycles, we conclude that:

(p3) At the border collision bifurcations ξLσ�, in addition to the hidden cycle ξL
κ
L(σ�)

, also the
infinite family of hidden cycles O

κ
R(σ(σ�)k) appears. Similarly, at the border collision

bifurcations ξRσ�, in addition to the hidden cycle ξR
κ
R(σ�)

, also the infinite family of hidden
cycles O

κ
L((σ�)k�) appears.

(p4) Moreover, at the same bifurcations, all irreducible concatenations of cycles mentioned
in sections 6.2.1 and 6.2.3 appear, as well as their concatenations with other hidden
cycles existing at these parameter values.

As an example consider the hidden orbits appearing at the border collision bifurcations of
the two-cycle OLR. As already mentioned, the parent sequences of LR are L and R. Using
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Figure 10. (a) Parent cycles OLR (close to the border collision bifurcation ξLLR), OLR2

(close to ξRLR2 ), and their child cycle OLRLR2 . Colliding points are marked. (b) Bifurca-
tions diagram for the connected map (2), showing hidden cycles OC(RL)k and OC(LR)k ,
k = 1, 2, 3, 4, appearing at the border collision bifurcations ξRLR and ξLLR of the two-
cycle OLR. Additionally, the cycles OL(LR)k and O(LR)kR, k = 1, 2, 3, 4, are shown,
associated with the child-sequences of LR. Shown for parameter values aL = aR = 0.9,
μL = μR + 2.

a simple cyclic shift, it can be shown that the families of the child-sequences of LR given by
equation (19) can be written as

�(LR) =
{
L(LR)k|k � 1

}
≡

{
RLL(RL)k−1|k � 1

}
, (30)

r(LR) =
{

(LR)kR|k � 1
}
≡

{
LRR(LR)k−1|k � 1

}
. (31)

For k = 1, . . . , 4, these cycles associated with these sequences are shown in figure 10(b).
Using the algorithm described in [11], it is not difficult to determine the colliding letters in
these sequences:

RLL(RL)k−1, LRR(LR)k−1. (32)

Therefore, the hidden cycles appearing at the border collision bifurcations ξLLR and ξRLR are
associated with the symbolic sequences

κ
L(RLL(RL)k−1) ≡ C(RL)k, κ

R(LRR(LR)k−1) ≡ C(LR)k (33)

respectively. As before, the points of these cycles are given by the pre-images of zero and each
of the hidden cycles exists under the conditions that all the relevant pre-images are located
inside the invariant absorbing interval [μR,μL]. It follows from sections 6.2.2 and 6.2.3 that
for each k � 1 the hidden cycles OC(RL)k OC(LR)k exist in the parameter intervals

[
ξLL(LR)k , ξRLR

)
and

(
ξLLR, ξR(LR)kR

]
(34)

respectively (a few examples can easily be seen in figure 10(a)). Moreover, as the hidden fixed
point OC exists at the border collision bifurcations ξLLR, ξRLR, it follows from section 6.2.4
and (33) that these bifurcations lead to the appearance of hidden cycles OC j(RL)k , OC j(LR)k , for
j, k � 1, respectively.
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Figure 11. Bifurcations shown in (a) and (b) for the continuous map (3), and in (c) and (d)
for the smooth map (4), corresponding to those of the connected map (2) from figure 10.
Fixed points and two-cycles are shown in (a) and (c), three-cycles are shown in (b) and
(d). Insets show magnifications of the marked rectangular regions. Shown for the param-
eter values from figure 10 with ε = 0.1, dL = −0.025, dR = 0.025. These diagrams
more closely resemble figure 10 as we let ε→ 0 and dL = −dR → 0.

6.3. The continuous and the smooth maps: augmented period adding

In the continuous map (3) and smooth map (4) in the limiting cases (dR − dL) → 0 and ε→ 0,
respectively, the described structure persists with the obvious modification, namely that hidden
cycles become simply unstable. The discussion below applies only sufficiently close to these
limits, and in this manner hidden orbits provide a first step in approximating these structures
in the continuous or smooth maps, but we leave deeper study of the perturbation to (dR − dL)
and ε→ 0 values away from zero to future work. Under this assumption, in the continuous
map (3), all the cycles which appear hidden at a border collision bifurcation of a cycle Oσ in
the connected maps (2), appear at the same bifurcation as well. As an example, figure 11(a)
shows the appearance of the fixed point OC (at the border collision bifurcations ξLL and ξRR of
the fixed points), the two-cycle OCL (at the border collision bifurcations ξLL and ξRLR), and the
two-cycle OCR (at ξRR and ξLLR). Similarly, in figure 11(b) six three-cycles are shown, namely
OCL2 , OCR2 , OCLR, OCRL, OC2L, and OC2R. Among these three-cycles,

• the cyclesOCL2 ,OCR2 are associated with the symbolic sequencesκR(RL2) andκL(LR2)
(recall that RL2 and LR2 are the only children sequences with the length 3 of L and R,
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respectively). Therefore, the cycle OCL2 exists between the border collision bifurcations
ξLL and ξRRL2 and the cycle OCL2 between ξRR while ξLLR2 .

• the cycles OCLR, OCRL are associated with the symbolic sequences κ
L(RL2) and

κ
R(LR2), respectively. As RL2 and LR2 are children sequences of LR the existence

interval of the cycle OCLR is confined by the border collision bifurcations ξLRL2 , ξRRL and
the existence interval of OCRL by ξRLR2 and ξLLR.

• the cycles OC2L, and OC2R are associated with the symbolic sequences given by concate-
nations of C with CL and CR, respectively. Accordingly, the cycle OC2L exists if both the
hidden fixed point OC and the hidden two-cycle OCL exist. Since OC exists in the com-
plete parameter interval between ξLL and ξRR , while OCL does only between ξLL and ξRLR,
the existence region of the hidden three-cycle OC2L coincides with the existence region of
the hidden two-cycle OCL. Similarly, OC2R exists in the same parameter interval as OCR.

In the smooth map (4), the overall bifurcation structure remains similar, although the cycles
appear not in border collision but in smooth flip and fold bifurcations. It can clearly be seen
in figure 11(c) that the two-cycle appearing in a flip bifurcation of the fixed point OL has one
point located close to zero and the other point far away from zero in the negative domain.
Accordingly, this two-cycle can be referred to as OCL. For increasing μR the cycle undergoes
one more flip bifurcation, becomes stable with both points located far away from zero, i.e.
resembling OLR. Next, the cycle undergoes one more flip bifurcation, turns eventually into
OCR, and finally disappears in a flip bifurcation of the fixed point OR.

Similar transformations of three-cycles of map (4) are illustrated in figure 11(d). By contrast
to the two-cycle, these appear and disappear via fold bifurcations, but the overall structure
remains similar to the one in map (3), as both structures follow the same generic template
defined by the corresponding (hidden and non-hidden) cycles in the connected map (2).

It is also worth noticing that each cycle O�σ which appear stable in the period adding struc-
ture in the discontinuous map (1) is involved, in the continuous map (3) and smooth map (4),
into a generic pattern formed by four cycles of the same period. Two of these cycles (which
are hidden in map (2)), namely O

κ
L(�σ) and O

κ
R(�σ) have already been discussed above, and

it has been mentioned that these cycles appear (in map (2)) at the border collision bifurcations
ξRσ and ξL� . Additionally, at the same bifurcations one more cycle of the same period appears.
Clearly, as this cycle is complementary both to O

κ
L(�σ) and O

κ
R(�σ), the associated symbolic

sequence is

κ
L(κR(�σ)). (35)

As an example, figure 12(a) shows this pattern for the four-cycle OLR3 in map (4). The
symbolic sequences of all four involved cycles are provided by the following diagram:

LRRR
↙ ↘

LRRC CRRR
↘ ↙

CRRC

(36)

Similarly, for the patterns related to five-cycles OLRLR2 and ORLRL2 of map (4) shown in
figure 12(b), the corresponding diagrams are given by
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Figure 12. Generic bifurcation patterns formed by one stable and 3 unstable cycles in
the smooth map (4), showing: (a) four-cycles, and (b) five-cycles; for parameter values
aL = aR = 0.9, μL = μR + 2, ε = 0.1.

LRLRR
↙ ↘

LRLRC LRCRR
↘ ↙

LRCRC

RLRLL
↙ ↘

RLRLC RLCLL
↘ ↙

RLCLC
(37)

6.4. The different maps compared

As in the examples discussed earlier, the bifurcation structures in the continuous map (3) and
in the smooth map (4) are more complicated than the one in the discontinuous map (1). As
already mentioned, the standard period adding structure in map (1) is formed by attracting
cycles and Cantor set attractors. In maps (3) and (4), no Cantor set attractor exists, and not
every attracting cycle existing in map (1) is present in maps (3) and (4). Instead, these maps
exhibit other invariant sets, in particular, attracting and repelling cycles, chaotic attractors and
repellers.

Indeed, an attractor existing in the discontinuous map (1) is preserved in the continuous
map (3) if its points are located sufficiently far away from the border point x = 0. Therefore,
a transition from map (1) to map (3) destroys all Cantor set attractors and also many attract-
ing cycles (since these appear via border collision bifurcations at x = 0, sufficiently close to
these bifurcations a point of any cycle of map (1) is close to x = 0). Instead, map (3) exhibits
repelling cycles and moreover, robust chaotic attractors containing points located on the mid-
dle partition (dL, dR). As for the smooth map (4), is has non-robust chaotic attractors as well
as stable cycles with some points located sufficiently close to its smooth local minimum and
maximum surrounding the middle (steep) branch of the function. However, as maps (3) and (4)
approach map (2), i.e. for (dR − dL) → 0 and ε→ 0, respectively, the portion of the parameter
space occupied by chaotic attractors and stable cycles (but the parameter intervals associated
with repelling cycles) tends to zero measure. Therefore, the augmented period adding bifurca-
tion structure we reported above for map (2) is the limiting case of the bifurcation structures
in maps (3) and (4). Evidently, it includes all the stable cycles existing in map (1), and all the
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unstable cycles existing in maps (3) and (4) in the limiting cases (dR − dL) → 0 and ε→ 0,
respectively. A great advantage of map (2) is that all its unstable cycles, being given by pre-
images or zero, can be calculated much easier than the corresponding unstable orbits of the
continuous and smooth maps (omitted for that very reason). Already for this reason, the con-
nected map provides a useful approximation of the continuous and smooth maps. Moreover, the
diagrams (36) and (37) above show how intuitively simple hidden orbits can be specified and
tracked through border collisions, showing the organising principles of the overall bifurcation
structure.

7. Discussion: the role of hidden orbits

In sections 4 to 6, we have seen how hidden orbits provide unstable structures that help define
the structure of bifurcation diagrams for maps with discontinuities. In sections 4 to 5, the results
are intuitively consistent with standard bifurcations, suggesting that a topological equivalence
may be possible between connected and continuous maps. The more important conclusion
is that we can carry out such a bifurcation analysis entirely within the connected map, using
hidden orbits and their concatenations, without reference to continuous or any such equivalence
being necessary.

We have shown examples of continuous and smooth maps here merely to show qualita-
tively the correspondence between the bifurcations of the connected and continuous maps.
Regularisations that seek a continuous map equivalent in some limit to a discontinuous map
are non-unique, in terms of the gradients of the continuous maps sought and their order of
differentiability, and even how the limit is defined in which the discontinuity forms. Notably,
however, our results suggest that in the limit there exists a well-defined structure, and that it is
uniquely defined by the connected map.

In section 6, we saw not only how hidden orbits can be used to gain more information about
the structure of cascades known to occur in discontinuous maps, but also that this limit can be
used to study (as an approximation) the bifurcations of steep continuous maps that have not
been studied to date.

The results for the simple bifurcations in sections 4 to 5 in hindsight seem intuitive, and per-
haps even obvious: given that the connected map is clearly the limit of some continuous map,
as a segment of that map becomes increasingly steep, unstable orbits visiting that segment will
bunch up until they lie on the discontinuity. What is not obvious is that this limiting behaviour
should be useful, i.e. that it should provide well-defined orbits, but we have shown that hid-
den orbits provide precisely that, sequences of orbits that unambiguously form well-defined
branches of bifurcation diagrams. Importantly, the concatenations of hidden orbits are vital
to this, despite having peculiar properties such as the fact they they overlap and are infinitely
unstable.

Maps with discontinuities continue to find new applications in science and engineering,
from early abstract models to study chaos such as [28], to now appearing in the study of grazing
in impact oscillators such as [29], or due to grazing in models of homeostasis in sleep-wake
processes such as [8]. Examples like these exhibit a wide range of bifurcation sequences like
those studied here, but in which the presence of hidden orbits is yet to be studied. In many cases
like the impact maps in [29] and sleep-wake maps in [8], more detailed physical modelling
can suggest that a discontinuous map is merely an approximation for a continuous function,
and little study has so far been made of the bifurcations of those continuous and typically
highly nonlinear maps, for which connected maps and their hidden orbits, rather than strictly
discontinuous maps, may provide a useful first approximation.
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Interestingly, in order to usefully characterise the dynamics, hidden orbits do not necessar-
ily need to represent physically accessible states of the system being modelled. In the example
of the flip bifurcation in figure 2, the hidden orbit defines the basin boundary of the attrac-
tors. For a given application such an orbit need not necessarily represent a physical motion,
but might occupy a region of state space that is not reachable physically, or may only be
a pseudo-trajectory of the system. For example, in the return maps derived from Lorenz or
Cherry flows [1–4], a hidden orbit corresponds to a pseudo-trajectory that passes through a
saddlepoint between different branches of its stable and unstable manifolds, not a proper orbit
of the flow itself, and yet significant in defining a region of orbits that are not accessible in
the return map.

8. Closing remarks

We have presented the first steps towards an understanding of bifurcations in discontinuous
maps where the discontinuity is treated as a connecting vertical (i.e. set-valued) branch. We
have shown, as suggested in [16], that hidden orbits in such maps simplify the description of
these bifurcations by bringing them closer to the familiar bifurcations of continuous maps.
In particular, we have shown here how behaviours special to discontinuous maps—involving
border collisions where periodic points are seemingly able to appear as if from nowhere, in
finite or infinite quantities, or accumulating as infinite sub-sequences of such bifurcations—fit
with the behaviour of continuous maps when hidden orbits are taken into account.

It is worth emphasising that the connected map, and the introduction of hidden orbits, do not
undo what has been done in the study of discontinuous maps to date, indeed quite the contrary.
As remarked earlier (in section 2.2), adding connectedness across the discontinuity only adds
to, not subtracts from or alters, the bifurcation structures known from discontinuous maps.

What this does suggest, however, is that a more rigorous correspondence could be proven to
exist between the dynamics of connected discontinuous maps and continuous or differentiable
maps with a steep branch. This permits more rigorous and complete use of piecewise-linear
maps to approximate smooth nonlinear maps with steep changes.

The obvious advantage of piecewise-linear maps is that their orbits and bifurcations can be
expressed explicitly and exactly. Were one to analyse the smooth map presented here for its own
sake, it would be difficult to provide a complete description of its intricate and densely crowded
bifurcation structures. The connected map, on the other hand, has a bifurcation structure that
can be described explicitly and is easy to characterise. That structure is partly described by
standard theory of discontinuous maps, but the connected map ensures that the full topological
bifurcation structure of the smooth map (in particular highly unstable orbits created by the
steep branch) is preserved.

The clearest demonstration of this is in section 4 and figure 2. The border collision bifurca-
tions seen in figure 2(a) are not in any way comparable to the bifurcations of continuous maps,
and yet simply by including the discontinuity as a connecting vertical branch, we obtain the
‘hidden orbits’ of the discontinuous maps by which the bifurcations in figure 2(b) are recog-
nisable simply as fold and flip bifurcations, clearly approximating the fold and flip bifurcations
of the continuous and smooth maps in figures 2(c) and (d).

In section 4, omitting hidden orbits would miss only a small number of unstable branches
that help complete the bifurcation diagrams. In sections 5 and 6, by contrast, omitting hidden
orbits would miss an infinity of unstable branches, including a chaotic repeller in sections 5
and 6. Accepting the set-valuedness of the connected map would seem to be a small price to
pay to restore these features in the form of hidden orbits. In the period adding structure, we
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have shown how to provide a complete specification of all the existing hidden orbits using the
parent-child relationship in the symbolic sequence adding scheme.

A more ambitious goal in the future would be to derive estimates of how far the orbits of
a smooth map with a vertical branch lie from the hidden orbits of its discontinuous approx-
imation. At the very least, the connected map can provide initial values from which to seek
numerical solutions of a smooth map. But ultimately it may be possible to derive asymptotic
approximations of solutions of smooth maps, which to leading order are just the solutions of
a connected but discontinuous map, as suggested in [21, 30] for the corresponding situation in
dynamical flows.

We can also turn this picture around, and ask what continuous maps can tell us about discon-
tinuous ones. Continuity is of course a powerful property in forming theorems for dynamical
systems, and much of the extensive theory that exists for continuous maps is not known to
hold in the presence of discontinuity. The well-known proofs of the Sharkovsky ordering for
continuous maps, for example, do not hold for the discontinuous map (1), yet in [16] the order-
ing is conjectured to hold for the connected map (2). Indeed we expect, based on the results
we have presented here, that many important theorems of dynamical systems can be extended
to require only connectedness rather than continuity, something which would substantially
increase their applicability to nonlinear dynamical systems. This approach follows the philos-
ophy that A F Filippov applied so successfully to flows with discontinuities (as remarked in
[16]), but which has taken longer to be turned systematically to maps with discontinuities. The
promise that such extensions are possible is lent weight by the results here, which show how
closely the connected map reproduces all of the periodic structures of continuous or smooth
maps, through the most intricate of bifurcations.
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Appendix A. Classification of the maps

If ones seeks a complete classification of the bifurcations of the map (2) (or equivalently of
(1) or (3) or (4)), there are 32 distinct generic classes to consider, associated with different
stabilities of the three branches of the map (i.e. left, right, and vertical). These come from
having four cases for each slope aR and aL, namely whether they are positive or negative
and have modulus greater or less than unity, while the two possible signs of μL − μR deter-
mine whether the map has a ‘negative jump’ or ‘positive jump’ (i.e. a slope of +∞ or −∞)
at x = 0.

These generic classes can be represented as follows in figures A1 and A2. Within these we
can identify monotonic shapes (classes 1, 2, 5, 6, 27, 28, 31, 32), unimodal shapes (classes 3,
4, 7–10, 13, 14, 19, 20, 23–26, 29, 30), and bimodal shapes (classes 11, 12, 15–18, 21, 22).
Each is shown at the bifurcation value μR = 0. Sections 4–6, show examples taken from the
cases 27, 8, and 22, respectively.

Unfortunately, while we include these as a useful starting point for more general bifurca-
tion analyses, there is no simple connection between the slopes defining these classes and the
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Figure A1. Generic shapes of map (2) in the ‘positive jump’ configuration.

bifurcations they exhibit. It is not even simple to derive whether the bifurcations in each class
are local or global without some analysis. In a continuous map, a border collision bifurcation
is always local, since all the orbits involved in the bifurcation are located in a set of small
intervals around the border point and its pre-images, and these all shrink to zero size as the
bifurcation value is approached. In discontinuous maps, regardless of the slopes outside of the
discontinuity, this localisation no longer holds, because the jump at the discontinuity prevents
these intervals shrinking to zero. As a result, border collisions in discontinuous maps may be
global as well as local, and this remains so in the connected form (2).

A more useful classification would therefore consider the number of rank-one pre-images
of x = 0 before and after a bifurcation. In the connected map (2) this number may be zero,
one, two, or three (including that x = 0 can map to itself ). Note that only those pre-images
that are reachable from the interval J are involved in the creation of hidden orbits. Hence, a
classification may be based on the number of pre-images of zero (of any rank) appearing at a
bifurcation inside J. If, for example, this number increases from zero to one, the bifurcation
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Figure A2. Generic shapes of map (2) in the ‘negative jump’ configuration.

leads to the appearance of a single hidden orbit. But if at least two pre-images appear inside J
at the bifurcation, this leads immediately to the appearance of an infinite number of periodic
and aperiodic hidden orbits (see section 3.3).
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