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Abstract  

 

The prototypic and ubiquitous microtubule motor, kinesin-1, uses a variety of adaptor proteins 

to facilitate the selective transport of diverse cargo within the cell. These cargo adaptors bind 

to the motor complex through interactions with the kinesin light or heavy chains (KLCs or 

KHCs). In this issue of Genes and Development, Dimitrova-Paternoga et al. present the first 

structural characterisation of a KHC-cargo adaptor interface. They describe an antiparallel 

heterotrimeric coiled-coil complex between the carboxy-tail of KHC and Tm1-I/C (aTm1), the 

atypical tropomyosin that is important for oskar mRNA transport in Drosophila oocytes. This 

interaction enhances direct binding between KHC and RNA. Their findings demonstrate the 

structural plasticity of the KHC tail as a platform for protein-protein interactions and reveal 

how a cargo adaptor protein can modify a motor-RNA interface to promote transport.    

 

Main  

 

Kinesin-1 family microtubule motor proteins play a key role in intracellular transport in most 

cell types. They can engage diverse cargos including membrane bound organelles (MBOs), 

proteins, and RNA, as well as many viruses and slide microtubules to control the organisation 

of the microtubule network itself (Verhey and Hammond 2009; Lu and Gelfand 2017; Cross 

and Dodding 2019). To meet these complex functional requirements, kinesin-1 must 

specifically, and selectively, recognise cargos, and those interactions must be regulated. This 

is achieved, in part, through the binding of cargo adaptor proteins. These can be loosely defined 

as molecules that interact directly or indirectly with cargo and directly with a motor protein 



complex. As such, they define a key motor-cargo interface, acting as bridges and regulatory 

hubs that control motor recruitment and activation.  Recent structural studies have begun to 

show how these adaptors support selective MBO recognition via the KLCs (Cross and Dodding 

2019), but much less is understood about how they enable recognition, recruitment, and 

transport of RNA.  

 

Dimitrova-Paternoga et al. (2021) explore the role of the atypical tropomyosin, aTm1 (Tm1-

I/C), that is important for oskar mRNA localisation to the posterior pole of the Drosophila 

oocyte. They solve X-ray crystal structures of an antiparallel homodimeric aTm1 coiled coil in 

addition to a heterotrimeric complex consisting of two parallel KHCs and one antiparallel 

aTm1 chain. The structure of the trimeric complex is validated by mutagenesis and biochemical 

and in vivo RNA transport assays. The KHC-aTm1 complex is shown to bind RNA with higher 

affinity than KHC only, suggesting a new mechanism by which kinesin-cargo (RNA) transport 

can be modulated through stabilisation by a KHC cargo adaptor. This is likely due to the 

positively charged binding surface formed in the trimeric KHC-aTm1 complex and possible 

stabilisation of an extended helical region of the KHC tail. To our knowledge, this is the first 

structural characterisation of a direct cargo adaptor-KHC interface, giving important new 

insight into the mechanism of RNA recognition. 

 

The region of KHC shown to bind aTm1 immediately follows the sequences of KHC that are 

responsible for binding the KLCs (Diefenbach et al. 1998) (Figure 1A, B). This region also 

interacts with several other cargo adaptors and contains the ATP-independent microtubule 

binding site required for microtubule-microtubule sliding (Verhey and Hammond 2009; Lu and 

Gelfand 2017; Sanger et al. 2017). It will be important to explore if and how the mode of 

binding aTm1 extends to other adaptors and if this influences motor-microtubule interactions. 

It is notable that RNA interaction with the KHC-aTm1 complex is most likely enhanced due 

to presentation of an expanded positively charged binding surface; it seems possible that a 

related mechanism could also promote binding to the acidic tubulin carboxy-terminal tails. 

 

Previous studies have suggested that KLC is also important for Staufen/oskar localisation (Lu 

et al. 2018), through interplay with another tetratricopeptide repeat protein, PAT1 (Loiseau et 

al. 2010).  In addition to their role in cargo recognition, KLCs are also important for mediating 

kinesin-1 autoinhibition, in a manner dependent on sequences containing their KHC binding 

heptad repeats (Verhey et al. 1998). Therefore, if some cargos are transported in a truly KLC-



independent mechanism (i.e. KLC is not a component of the complex), this may suggest a 

secondary role for KHC tail-binding cargo adaptors such as aTm1 in motor regulation, akin to 

that described for the KLCs. This seems plausible given that the aTm1 binding site is 

sandwiched between the KLC binding site and the IAK region which interacts with the motor 

domains to mediate autoinhibition (Figure 1B).  However, a recent study in mammalian cells 

also mapping RNA/cargo adaptor binding determinants showed that SFPQ-RNA granules are 

transported by kinesin-1 tetramers comprised of KIF5A (a neuronal mammalian KHC 

paralogue, also implicating the KHC tail in binding) and KLC1, suggesting that the picture 

may be quite complex and could differ between RNA cargo and/or species (Fukuda et al. 2020).  

 

Coiled coils most commonly form dimers, trimers and tetramers in nature, with control over 

oligomeric state and orientation largely directed by patterns of isoleucine (Ile, I), and leucine 

(Leu, L) in the core (heptad a and d positions) and salt bridges formed by adjacent residues (g 

and e positions). As the authors note, the finding that the aTm1 constructs crystallise as 

antiparallel coiled coils is in itself interesting; the received wisdom is that tropomyosins form 

exclusively parallel coiled-coil dimers (Hitchcock-DeGregori and Barua 2017). Therefore, for 

these constructs to behave differently from the norm is worth reflection.  First, the a and d sites 

that define the hydrophobic part of the helix-helix interface are predominantly aliphatic 

hydrophobic with few obvious features that might discriminate between different coiled-coil 

structures. In addition, we note that the acidic and basic side chains at the g and e positions 

(Fig. 4a Dimitrova-Paternoga et al. (2021)) could possibly be better accommodated in a parallel 

arrangement.  Thus, it is possible that these regions of the aTm1 sequence are somewhat 

promiscuous or agnostic with regard to coiled-coil-partner selection and orientation.  In turn, 

this could contribute to its adaptability as the authors elegantly and persuasively show. In 

contrast to aTm1, the two KHCs retain a parallel interaction in the complex (Figure 1C). 

Nonetheless, to form a trimeric hydrophobic core with the additional aTm1 helix, the KHC 

coils must also show conformational flexibility to open-up the interface. This must also be true 

of the adjacent KLC binding site, where the KHCs presumably undergo a transition from a 

homodimeric to heterotetrameric coiled-coil assembly to accommodate the KLC heptad repeats 

(Figure 1B). It is not clear whether this interaction is parallel or antiparallel. It will be 

interesting to discover whether KLC-heterotetramer and cargo adaptor-heterotrimer states can 

occur simultaneously.   

 



Together, these data form a picture of the KHC stalk as a dynamic and flexible platform for 

protein-protein interactions. This is in contrast to the rigid spacer-like properties with functions 

limited to oligomerisation sometimes associated with coiled-coil domains. This could play an 

important role in the larger conformational changes associated with transition from a compact 

autoinhibited state to an extended active form of the motor, capable of motility on the 

cytoskeleton. Dimitrova-Paternoga et al. (2021) provide important molecular insight into how 

RNA cargos are recognised by this crucial molecular machine. Their findings suggest that it is 

now time for the often-neglected kinesin-1 coiled-coils to move to the fore as we expand our 

understanding of regulation and its coupled, remarkably versatile, cargo selection mechanisms. 
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Figure 1: Structural and functional plasticity of the KHC coiled-coils (A) Schematic of the 

kinesin-1 heterotetramer. KHC is in cyan, KLC in purple. Orange boxed region highlights the 

KHC tail (B) Marcoil (https://toolkit.tuebingen.mpg.de/tools/marcoil) coiled-coil prediction 

for KHC, tail region is boxed orange (top). Detailed coiled-coil prediction for the KHC tail that 

contains the binding sites for KLC and Tm1-I/C (middle). Potential structural plasticity and 

associated function in the KHC coils (bottom). (C) Crystal structure of the KHC-KHC-Tm1-

I/C complex (PDB:7BJS) from Dimitrova-paternoga et al.  KHCs are cyan, Tm1-I/C is brown. 

 

 

 

 

https://toolkit.tuebingen.mpg.de/tools/marcoil
https://toolkit.tuebingen.mpg.de/tools/marcoil


REFERENCES (max 10). 

 

Cross JA, Dodding MP. 2019. Motor-cargo adaptors at the organelle-cytoskeleton interface. 
Curr Opin Cell Biol 59: 16-23. 

Diefenbach RJ, Mackay JP, Armati PJ, Cunningham AL. 1998. The C-terminal region of the 
stalk domain of ubiquitous human kinesin heavy chain contains the binding site for 
kinesin light chain. Biochemistry 37: 16663-16670. 

Fukuda Y, Pazyra-Murphy MF, Silagi ES, Tasdemir-Yilmaz OE, Li Y, Rose L, Yeoh ZC, 
Vangos NE, Geffken EA, Seo H-S et al. 2020. Binding and transport of SFPQ-RNA 
granules by KIF5A/KLC1 motors promotes axon survival. Journal of Cell Biology 
220. 

Hitchcock-DeGregori SE, Barua B. 2017. Tropomyosin Structure, Function, and Interactions: 
A Dynamic Regulator. in Fibrous Proteins: Structures and Mechanisms (eds. DAD 
Parry, JM Squire), pp. 253-284. Springer International Publishing, Cham. 

Loiseau P, Davies T, Williams LS, Mishima M, Palacios IM. 2010. Drosophila PAT1 is 
required for Kinesin-1 to transport cargo and to maximize its motility. Development 
137: 2763-2772. 

Lu W, Gelfand VI. 2017. Moonlighting Motors: Kinesin, Dynein, and Cell Polarity. Trends 
Cell Biol 27: 505-514. 

Lu W, Lakonishok M, Serpinskaya AS, Kirchenbüechler D, Ling S-C, Gelfand VI. 2018. 
Ooplasmic flow cooperates with transport and anchorage in Drosophila oocyte 
posterior determination. Journal of Cell Biology 217: 3497-3511. 

Sanger A, Yip YY, Randall TS, Pernigo S, Steiner RA, Dodding MP. 2017. SKIP controls 
lysosome positioning using a composite kinesin-1 heavy and light chain-binding 
domain. J Cell Sci 130: 1637-1651. 

Verhey KJ, Hammond JW. 2009. Traffic control: regulation of kinesin motors. Nat Rev Mol 
Cell Biol 10: 765-777. 

Verhey KJ, Lizotte DL, Abramson T, Barenboim L, Schnapp BJ, Rapoport TA. 1998. Light 
chain-dependent regulation of Kinesin's interaction with microtubules. J Cell Biol 
143: 1053-1066. 

 

 

 

 

 


