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Abstract
The widely cited Haken–Kelso–Bunz (HKB) model of motor coordination is used in an enormous range of applications. In
this paper, we show analytically that the weakly damped, weakly coupled HKB model of two oscillators depends on only
two dimensionless parameters; the ratio of the linear damping coefficient and the linear coupling coefficient and the ratio of
the combined nonlinear damping coefficients and the combined nonlinear coupling coefficients. We illustrate our results with
a mechanical analogue. We use our analytic results to predict behaviours in arbitrary parameter regimes and show how this
led us to explain and extend recent numerical continuation results of the full HKB model. The key finding is that the HKB
model contains a significant amount of behaviour in biologically relevant parameter regimes not yet observed in experiments
or numerical simulations. This observation has implications for the development of virtual partner interaction and the human
dynamic clamp, and potentially for the HKB model itself.

Keywords Haken–Kelso–Bunz model · Motor coordination · Mechanical analogue · Nondimensionalisation · Bifurcation

1 Introduction

Coordinated human and animal movement is achieved
through complex vascular, skeletal, muscular and neural
interactions. The degrees of freedom problem (first recog-
nised by Bernstein (1967)) ask how the high dimensionality
of such systems is reduced, enabling an organism to per-
form macroscopic functional tasks. Coordination dynamics
(Fuchs and Jirsa 2007;Kelso 2009) has approached this ques-
tion through the study of the simplest observable quantity
that characterizes coordination: the relative phase φ of two
oscillators in periodic motion (Kelso 1995). These oscilla-
tors may, for example, represent the fingers or limbs of one
or more experimental subjects, teams in group sports or neu-
ral oscillators. Stable in-phase (φ = 0) synchronisation is
often found to be the simplest to maintain (Buchanan and
Ryu 2006; Kelso 1981), while stable anti-phase (φ = π )
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motions are also commonly observed (Bourbousson et al.
2010). Stable phase-lagged (intermediate values of φ) states
are also found in a variety of situations (Collins and Stewart
1993; Duarte et al. 2012).

In 1985, Haken et al. (1985) proposed a model, which we
shall call the basic HKB model, for the potential function of
the relative phase φ of two oscillators, which has equilibria at
φ = 0 and φ = π . Variation of the model’s single parameter
induces changes in the one-dimensional dynamics derived
from the potential function, in particular a loss of stability of
the anti-phasemode causing an abrupt shift to the (always sta-
ble) in-phasemode. These dynamics have been used tomodel
phase transitions, analogous to the switching of an animal’s
gait, originally seen in bimanual finger experiments (Kelso
1981), but also later in interpersonal (Schmidt et al. 1990) and
sensorimotor (Kelso et al. 1990) contexts. The suitability of
the model for these applications (and its stochastic extension
Schöner et al. 1986) has been well established through mea-
surements of critical fluctuations and critical slowing down
around the transition (Kelso et al. 1986; Scholz et al. 1987).

The natural next step was to consider the dynamics
of the component oscillators. A self-sustaining so-called
hybrid oscillator (consisting of Rayleigh and Van-der-Pol
style damping terms) was found to fit an observed (inverse)
monotonic relationship between amplitude and frequency
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(Kay et al. 1987). This oscillator contains four intrinsic
parameters—one linear and two nonlinear damping coeffi-
cients and a natural frequency (considered to be a control
parameter set by the experimenter, for example a pacing
metronome). Many authors have commented on the diffi-
culty in ascribing physical significance to these parameters
(Peper et al. 2004). When coupled nonlinearly, two hybrid
oscillators were shown (Haken et al. 1985) to produce the rel-
ative phase dynamics of the potential in the basicHKBmodel
(under slowly varying amplitude and rotating wave approx-
imations, and considering equal and constant amplitudes).
The coupling contains additional parameters multiplying its
linear and nonlinear terms, whose physical significance has
again been difficult to determine. We call this model the full
HKB model.

Tomake analytical progress, anapproximateHKB(aHKB)
model was obtained by averaging the system of coupled
oscillators (Leise and Cohen 2007), under the assumption of
weakly nonlinear damping and weakly nonlinear coupling.1

Such analysis can then be used to verify any numerical work
and to shed light on the processes that give rise to the observed
behaviour.

A bifurcation analysis of the full HKB model has been
carried out (Avitabile et al. 2016). This approach considers
arbitrary coupling strengths, together with no constraints on
any other parameter. In this way, the full range of qualitative
behaviour in the model can be explored, as well as uncov-
ering the transitions (bifurcations) between such behaviours
as parameters are varied. This is part of the general approach
to studying such systems, known as nonlinear dynamics
(Strogatz 2018, which has had an extensive and prolonged
impact in many fields. Such an approach has already been
used to create a dynamical framework for motor behaviour,
using functional architectures and structured flows on mani-
folds (Huys et al. 2014).

As well as describing and predicting the dynamics of
social coordination between two people (Kay et al. 1987),
the HKB model has also been used to study real-time inter-
action between one human and a machine, via virtual partner
interaction (VPI) (Kelso et al. 2009), where novel behaviours
were found, and its extension to the human dynamic clamp
(HDC) (Dumas et al. 2014). Multiple human players mod-
elled as networks of HKB oscillators have also been studied
(Alderisio et al. 2016).

Hence, for VPI andHDC to be effective, or to aid in under-
standing the more complex situation of many coupled oscil-
lators, it is important that all the different types of behaviour
contained within the two-oscillator HKBmodel are explored
and catalogued and the overall dynamics understood. In par-
ticular, it is important to understand the parameter regimes

1 Sometimes referred to as the slowly varying amplitude and rotating
wave approximations.

where the approximate HKB model is valid and how results
differ when the full HKB model is considered.

In this paper, we extend work on the approximate HKB
model (Leise and Cohen 2007) and compare it to our own
bifurcation analysis of the full HKB system. We find that
the dynamics of the approximate HKB model are governed
by just two dimensionless parameters: μ (17) the ratio of
the linear damping to linear coupling and κ (18) the ratio
of nonlinear damping to nonlinear coupling. This nondimen-
sionalisation clarifies theweakly nonlinear regimeswherewe
see the emergence of two new synchronisation behaviours;
bistability of in-phase, anti-phase and phase-lagged solu-
tions, without the need for extensive computations. We
find excellent agreement between these analytical solutions
and numerical computations (for moderate amplitudes), and
through this process uncover extra solution branches not
present in the analysis of Avitabile et al. (2016), leading us to
provide, for the first time, the complete picture of the dynam-
ics in the parameter range chosen by these authors.

The new results in this paper are:

– the discovery of normal modes (5) in the linear HKB
model (4) and the mechanical analogy to which it corre-
sponds (Fig. 2),

– the nondimensionalisation (15) that reduces the aHKB
model (13) to an Eq. (16) with just two dimensionless
parameters,

– determination of the existence and stability of steady
states of this nondimensional aHKB model (16) in terms
of arbitrary parameter values,

– the use of these steady states (Fig. 4) to predict the dynam-
ics in the full HKB model in arbitrary parameter ranges,

– an alternative nondimensionalisationmore suited to com-
parison with numerical computations (Sect. 4.1),

– our own numerical computations that provide the full
picture (Sect. 4) of the dynamics in the parameter ranges
used in Avitabile et al. (2016),

– a mechanical analogue (Fig. 5) of the nondimensional
aHKB model (16),

– the reduction in a very general form of aHKBmodel (88)
to one with just two dimensionless parameters.

Our paper is organised as follows. InSect. 2,wepresent the
full HKB model (Haken et al. 1985). Then, we introduce the
linearHKBmodel and a correspondingmechanical analogue,
which does not appear to have been considered before. This
section also contains a nondimensionalisation that reduces
the aHKB model to a system with just two dimensionless
parameters.

In Sect. 3, we determine general existence and stability
criteria of the steady states of the nondimensionalised aHKB
model in terms of κ and μ that correspond to synchronisa-
tion. In Sect. 4, we use these results to explain and extend
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recent numerical continuation results (Avitabile et al. 2016)
of the full HKB model. This section contains Fig. 4, possi-
bly the most important figure in the paper. It can be used to
predict the behaviour of the weakly coupled, weakly damp-
ing aHKB system in an arbitrary range of parameters. Much
of this behaviour has not yet been seen in experiments or
numerical simulations to date. In Sect. 5, we discuss our
results and present our conclusions. The paper ends with a
number of appendices, includingAppendix Ewherewe show
that a large family of weakly damped, weakly coupled HKB
oscillators can be reduced to our nondimensional aHKB sys-
tem, suggesting that its dynamics are more universal than the
particular form of HKB model that is the current paradigm.

2 The Haken–Kelso–Bunzmodel

In its most general form, the Haken–Kelso–Bunz (HKB)
model (Haken et al. 1985) of two coupled nonlinear oscilla-
tors is given by the ordinary differential equations

ẍ1 + ω2x1 = h(x1, ẋ1) + J (x1 − x2, ẋ1 − ẋ2),

ẍ2 + ω2x2 = h(x2, ẋ2) + J (x2 − x1, ẋ2 − ẋ1). (1)

where differentiation with respect to time is denoted by a dot,
x1, x2 are the oscillator amplitudes, frequency ω > 0 (the
control or pacing parameter), h(x, ẋ) is a nonlinear damping
term and J (x1 − x2, ẋ1 − ẋ2) is a nonlinear coupling term.

Much work has been done in establishing the correct form
of h(x, ẋ) and J (x1 − x2, ẋ1 − ẋ2) to use when seeking to
explain human-human or human-virtual player interactions.
The following form covers all the different types of full HKB
model (Haken et al. 1985) studied in the subsequent litera-
ture:

ẍ1 + ω2x1 = (γ − αx21 − β ẋ21 )ẋ1

+ [a + b(x1 − x2)
2

+ c(ẋ1 − ẋ2)
2](ẋ1 − ẋ2),

ẍ2 + ω2x2 = (γ − αx22 − β ẋ22 )ẋ2

+ [a + b(x2 − x1)
2

+ c(ẋ1 − ẋ2)
2](ẋ2 − ẋ1), (2)

where γ is a linear damping coefficient, α is the Van der Pol
damping coefficient, β is the Rayleigh damping coefficient,
and a is a linear coupling coefficient, b and c are nonlinear
coupling coefficients. The dimensions of these coefficients
are given by

[γ ] = T−1, [α] = L−2T−1, [β] = L−2T ,

[a] = T−1, [b] = L−2T−1, [c] = L−2T . (3)

The rationale for the form of (1) and (2) is fully explained
in Haken et al. (1985), to which the interested reader is
referred. Terms in these equations are needed to describe
oscillations; these are given by the left hand side of both
(1) and (2). Then, since “movement has a more or less sta-
ble amplitude, the equations must be nonlinear” (Haken
et al. 1985, p. 351) and that experimentally this amplitude
“drops · · · with increasing ω” (Haken et al. 1985, p. 352).
One form of h(x, ẋ) that meets these criteria is given by
h(x, ẋ) = (γ − αx2 − β ẋ2)ẋ . The coupling term J was a
subject of great discussion in Haken et al. (1985), with the
form chosen “in the sense of a minimal model” (Haken et al.
1985, p. 353) that produced “the correct phase relationship
between the two oscillators” (Haken et al. 1985, p. 352).

In (2), the nonlinear damping term h(x, ẋ) is softening
for positive parameter values α, β, whereas the nonlinear
coupling term J (x1 − x2, ẋ1 − ẋ2) is hardening for positive
parameter values b, c. The values of γ, α, β, a, b, c are
either chosen by fitting with experimental data or selected
in parameter sweeps. In Table 1, we give representative val-
ues of the other parameters selected from the literature. All
authors except (Leise and Cohen 2007) set c = 0. In most
papers, the pacing frequency ω ∈ [1, 10], although values
as high as ω = 12π have been used. Theoretical analysis is
simplified under the assumption γ � ω (Haken et al. 1985).

2.1 The linear HKBmodel

We begin by studying the linear HKB model, obtained by
neglecting the nonlinear terms in (2) to get

ẍ1 + ω2x1 = γ ẋ1 + a(ẋ1 − ẋ2),

ẍ2 + ω2x2 = γ ẋ2 + a(ẋ2 − ẋ1). (4)

This model does not seem to have been considered before,
within the context of the HKB system. But it sheds important
light on both the origin of in-phase and anti-phase synchro-
nisation and the nature of the coupling.

The linear HKB model (4) consists of two normal modes,
given by ηI ≡ x1 + x2 and ηA ≡ x1 − x2, which satisfy the
equations

η̈I − γ η̇I + ω2ηI = 0,

η̈A − (2a + γ )η̇A + ω2ηA = 0, (5)

corresponding to in-phase and anti-phase motion, respec-
tively. The resulting instability chart in (γ, a) parameter
space is shown in Fig. 1 (left pane), with the analytic details
given in Appendix A. Our analytic results should be com-
pared with (Avitabile et al. 2016, Fig. 5a), reproduced here
in Fig. 1 (right pane) which was obtained by fixing the value
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Table 1 Representative values
of parameters γ, α, β, a, b
used in the full HKB model (2)
selected from the literature

References γ α β a b

Avitabile et al. (2016) ∈ [−2, 8] 1 1 ±0.5 ±0.5

Fink et al. (2000) 1 1 1 −0.2 0.5

Haken et al. (1985) 1 0 1 −0.2 0.2

Jirsa et al. (2000) 1 1 1 −0.2 0.2

Leise and Cohen (2007) 0.5 0.38 0.001 −0.05 0.036

Słowiński et al. (2016) 0.641 12.457 0.008 ∈ [−15, 15] 1

Varlet et al. (2012) 0.7 1 1 −3.2 3.2

All authors except (Leise and Cohen 2007) set c = 0

Fig. 1 (Left pane) Regions of (γ, a) parameter space in which in-phase
ηI and anti-phase ηA normal modes are unstable, where we find in-
phase and anti-phase synchronisation. In region S, we find stable steady
states only and hence no limit cycles. We find that HBI : γ = 0 and
HBA : 2a + γ = 0, both independent of the nonlinear coefficients.

(Right pane) Numerical continuation results from (Avitabile et al. 2016,
Figure 5a), with nonlinear coupling term b = 0.5. The lines BPI I ,
BPI L , SNA, BPAL and BPAA in this pane are nonlinear effects. Most
studies of the full HKB model (2) are carried out in the fourth quadrant
of these figures (see Table 1)

of the nonlinear coupling at b = 0.5 and performing a numer-
ical continuation in (γ, a).

These two panes show agreement in the lines HBI and
HBA (where unstable modes become saturated limit cycles).
We have shown that these lines, which are a fundamental part
of the model originating in the linear HKB equations (4), do
not change as the nonlinear coefficients α, β, b, c vary.

The lines BPI I , BPI L , SNA, BPAL and BPAA in the
right pane are all nonlinear effects, which do vary as the
nonlinear coefficients vary and so are absent from the left
pane. In Sect. 3 below, we will obtain analytic expressions
for the weakly nonlinear versions of these lines (except SNA

which occurs at very large amplitudes only, outside the range
of validity of that analysis).

2.2 Mechanical analogue of the linear HKBmodel

The form of (4) leads us to propose a mechanical analogue
of the linear HKB model, shown in Fig. 2.

Massm1 is connected to a rigid surface by a linear spring,
with spring constant ω2, and a linear dashpot, with damp-

ing coefficient2 −γ . Another mass m2 is connected in an
identical way to a separate rigid surface. The two masses are
themselves connected by a linear dashpot whose damping
coefficient is −a. When m1 = m2 = 1, the governing equa-
tions of the system in Fig. 2 are precisely those of the linear
HKB model (4).

In this analogy, the coupling term a(ẋ1 − ẋ2) can be seen
to be a form of damping. Clearly, when both a, γ > 0, there
is negative damping in the whole system and the equilibrium
x1 = x2 = 0 is impossible. Similarly, if both a, γ < 0, we
have positive damping, and all oscillations die out as energy
is taken out of the system. We see both these cases in Fig. 1
(in the first and third quadrants, respectively).

It is clear why the in-phase motion is independent of the
coupling coefficient a and dependent on the sign of γ . As
x1,2 move in phase, the coupling has no influence and the
only damping that can affect the motion is γ .

On the other hand, anti-phase motion is clearly dependent
on the relative size of the coefficients a, γ . As we shall see

2 By convention damping, coefficients are positive when energy is
removed from the system.
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Fig. 2 Mechanical analogue of the linear HKBmodel (4). Both masses
m1,2 are connected to rigid surfaces by a linear spring, with spring con-
stantω2, and a linear dashpot, with damping coefficient−γ . Themasses

themselves are connected by another linear dashpot, with linear damp-
ing coefficient−a. The governing equations of this system are precisely
the same as those of the linear HKB model (4), when m1 = m2 = 1

in Sect. 2.4, the ratio of these two coefficients plays a crucial
role in the dynamics of the full HKB model (2).

2.3 Hopf bifurcations

We now consider how in-phase and anti-phase motions man-
ifest themselves in the full (nonlinear) HKB model (2). For
in-phase motion, we set x1 = x2 = xI in (2) to find

ẍ I + ω2xI = (γ − αx2I − β ẋ2I )ẋ I . (6)

Under the assumption of weak nonlinearity, it can be
shown (Haken et al. 1985; Leise andCohen 2007) that a Hopf
bifurcation HBI occurs in (6) at γ = 0, to produce equal
amplitude in-phase synchronisation with amplitude xI = rI
given by

rI = 2
√

γ

α + 3βω2 , (7)

provided γ

α+3βω2 > 0. HBI is supercritical, degenerate, sub-

critical (Avitabile et al. 2016) for α + 3βω2 > 0, = 0, < 0,
respectively.

For anti-phase motion, we set x1 = −x2 = xA in (2) to
find

ẍ A + ω2xA = [(γ + 2a) − (α − 8b)x2A
−(β − 8c)ẋ2A]ẋ A. (8)

So, under the assumption of weak nonlinearity, by rela-
belling terms in (6), it can be seen that a Hopf bifurcation
HBA occurs in (8) at γ + 2a = 0, to produce equal ampli-
tude anti-phase synchronisation with amplitude xA = rA
given by

rA = 2

√
γ + 2a

(α + 3βω2) − 8(b + 3cω2)
, (9)

provided γ+2a
(α+3βω2)−8(b+3cω2)

> 0. Hence, HBA must be

supercritical, degenerate, subcritical for (α +3βω2)−8(b+
3cω2) > 0, = 0, < 0, respectively. Both HBI : γ = 0 and
HBA : γ + 2a = 0 are shown in Fig. 1.

2.4 The nondimensional approximate HKB (aHKB)
model

In this section, we present the approximate HKB (aHKB)
model, as derived in Haken et al. (1985) and show that it
can be represented by a set of equations involving only two
dimensionless parameters.

Let us rewrite (2) in terms of a small parameter ε � 1 and
suitably redefined damping and coupling coefficients:

ẍ1 + ω2x1 = ε[(γ − αx21 − β ẋ21 )ẋ1

+ [a + b(x1 − x2)
2

+ c(ẋ1 − ẋ2)
2](ẋ1 − ẋ2)],

ẍ2 + ω2x2 = ε[(γ − αx22 − β ẋ22 )ẋ2

+ [a + b(x2 − x1)
2

+ c(ẋ2 − ẋ1)
2](ẋ2 − ẋ1)]. (10)

We look for solutions of the form

x1(t, ε) = x01 (τ, T ) + εx11(τ, T ) + O(ε2)

x2(t, ε) = x02 (τ, T ) + εx12(τ, T ) + O(ε2), (11)

where τ = t and T = εt represent two time scales, and
xi1,2 = O(1), (i = 0, 1). Then, we take

x0i (τ, T ) = ri (T ) cos(ωτ + φi (T )), (i = 1, 2), (12)

corresponding to a limit cycle of slowly varying amplitude
r(T ) and phase φ(T ).

Using averaging (Leise and Cohen 2007, eq. (8)–(10)) or
two-timing (Cass 2019), we obtain the approximate HKB
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(aHKB) model:

8ṙ1 = [4γ − (α + 3βω2)r21 ]r1
+ [4a + (b + 3cω2)(r21 + r22
− 2r1r2 cosφ)](r1 − r2 cosφ),

8ṙ2 = [4γ − (α + 3βω2)r22 ]r2
+ [4a + (b + 3cω2)(r21 + r22
− 2r1r2 cosφ)](r2 − r1 cosφ),

8r1r2φ̇ = (r21 + r22 ) sin φ[4a
+ (b + 3cω2)(r21 + r22 − 2r1r2 cosφ)], (13)

where

φ = φ1 − φ2 (14)

is the relative phase between the two oscillators.
The aHKB model (13) depends on six parameters:

a, b, c, α, β, γ . We have found a scaling that greatly sim-
plifies (13), leading to a model with just two dimensionless
parameters.

Assume, in line with experimental data, that each of
γ, α, β is positive (see Table 1). One solution of (13) is
given (Leise and Cohen 2007) by r1 = r2 = rI , φ = 0,
where rI is given by (7), corresponding to equal amplitude
in-phase synchronisation.

Let us introduce nondimensionalised amplitudes R1, R2

and time s as follows:

Ri = ri
rI

, (i = 1, 2); s = 1

2
γ t . (15)

Then, equations (13) become

Ṙ1 = R1 − R3
1 + (R1 − R2 cosφ)(μ

+ κ(R2
1 + R2

2 − 2R1R2 cosφ)),

Ṙ2 = R2 − R3
2 + (R2 − R1 cosφ)(μ

+ κ(R2
1 + R2

2 − 2R1R2 cosφ)),

R1R2φ̇ = (R2
1 + R2

2) sin φ(μ

+ κ(R2
1 + R2

2 − 2R1R2 cosφ)), (16)

where differentiation with respect to s is (still) denoted by a
dot and the dimensionless parameters μ, κ are given by

μ ≡ a

γ
, (17)

κ ≡ b + 3cω2

α + 3βω2 = d

δ
. (18)

We see that μ is the ratio of the linear damping coefficient γ
to the linear coupling coefficient a. We have already seen the

importance of μ in the mechanical analogue (Fig. 2) of the
linear HKB model (4). We can think of κ as being the ratio
of the combined nonlinear coupling coefficient d, where

d ≡ 1

4
(b + 3cω2), (19)

to the combined nonlinear damping coefficient δ, where3

δ ≡ 1

4
(α + 3βω2). (20)

To the best of our knowledge, the derivation of (15)–(18)
has not been reported before in the literature.4

In this section, we have considered the linear HKB model
(4). We have shown the presence of normal modes (5), how
their loss of stability corresponds to the generation of stable
limit cycles and the central role they play in understanding
the stability structure of the full HKB model (Fig. 1). We
have also shown that the linear HKBmodel has a mechanical
analogue, Fig. 2, which sheds light on the fundamentalmech-
anisms behind theHKBmodel.We conclude this sectionwith
a note of the importance of dimensionless parameters in the
HKBmodel. This significant development means (for exam-
ple) that we will get the same results for a = a0, γ = γ0
as we would for a = ka0, γ = kγ0 for any value of k �= 0.
Hence, we can search parameter space far more efficiently to
find dynamics relevant to the application of the HKB model
under consideration.

3 Steady states of the nondimensional aHKB
model

To understand the dynamics of (16) as dimensionless param-
eters μ, κ vary, we consider the existence and stability of
steady states of these equations. Stable steady states of the
dimensionless aHKBmodel correspond to stable limit cycles
of the full HKB model. We revisit and adapt the approach in
Leise and Cohen (2007) to obtain results in an arbitrary range
of parameters. Wewill see in the following analysis the emer-
gence of two new synchronisation behaviours not possible in
the linear HKBmodel; bistability of in-phase and anti-phase,
and phase-lagged synchronisation.

3 The factor of 1
4 in both d and δ is convenient when we consider the

general HKB model in Appendix E.
4 Other scalings are possible. The choice (15)–(18) is quite natural
since the damping coefficients γ, α, β are intrinsic to the oscillators. In
an experiment, it is hard to imagine that the linear damping coefficient
γ = 0, ensuring that μ would always be finite. On the other hand, the
coupling coefficients a, b, c are more likely to change, to include the
uncoupled case a = b = c = 0, corresponding to μ = κ = 0.
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3.1 Existence of steady states

Let us denote steady states of (16) by

(R1, R2, φ) = (R∗
1 , R

∗
2 , φ

∗),

corresponding to limit cycles of constant, possibly different,
amplitudes R∗

1 , R
∗
2 separated by a constant phase difference

φ∗. Since therefore φ̇ = 0, we must have from (16) either

sin φ = 0 (21)

or

μ + κ(R2
1 + R2

2 − 2R1R2 cosφ) = 0. (22)

If we assume (21) holds, then φ∗ = 0, π . Let φ∗ = 0,
corresponding to in-phase motion. From (16), we must have

0 = R1 − R3
1

+ (R1 − R2)(μ + κ(R2
1 + R2

2 − 2R1R2)) (23)

0 = R2 − R3
2

+ (R2 − R1)(μ + κ(R2
1 + R2

2 − 2R1R2)) (24)

We solve these equations to find three possibilities for
(R∗

1 , R
∗
2 , φ

∗) given by:

I := (1, 1, 0), (25)

N±
0 :=

(
1

2

√
1 + 3μ + 4κ

1 + κ
± 1

2

√
1 − μ

1 + κ
,

1

2

√
1 + 3μ + 4κ

1 + κ
∓1

2

√
1 − μ

1 + κ
, 0

)
, (26)

Z0 := (0, 0, 0). (27)

Steady state I has in-phase equal amplitudes, exists ∀μ, κ

and corresponds to rI in (9). Steady states N
±
0 have in-phase

unequal amplitudes and steady state Z0 is degenerate.
Still assuming (21), but now with φ∗ = π , this case

corresponds to anti-phase motion. Again there are three pos-
sibilities for (R∗

1 , R
∗
2 , φ

∗) given by :

A :=
(√

1 + 2μ

1 − 8κ
,

√
1 + 2μ

1 − 8κ
, π

)
, (28)

N±
π :=

(
1

2

√
1 − μ

1 + κ
± 1

2

√
1 + 3μ + 4κ

1 + κ
,

1

2

√
1 − μ

1 + κ
∓1

2

√
1 + 3μ + 4κ

1 + κ
, π

)
, (29)

Zπ := (0, 0, π). (30)

Steady state A has anti-phase equal amplitudes. Steady
states N±

π have anti-phase unequal amplitudes, and steady
state Zπ is degenerate.

Finally, if (22) holds, there are three possibilities for
(R∗

1 , R
∗
2 , φ

∗) corresponding to phase-lagged steady states
given by:

L± :=
(
1, 1,± cos−1

[
1 + μ

2κ

])
, (31)

N 1
± π

2
:=

(
1, 0,±π

2

)
, N 2

± π
2

:=
(
0, 1,±π

2

)
, (32)

Zφ := (0, 0, φ). (33)

Both of L± have equal oscillation amplitudes, whereas
the N (1,2)

± π
2

have unequal oscillation amplitudes. Steady state

Zφ is degenerate.
Table 2 summarises the steady states of (16), togetherwith

those regions of (κ, μ) parameter space in which they exist.
A similar table was given in (Leise and Cohen (2007),

Table 1). However, there are some differences5 and our
nondimensionalisation was not carried out.

3.2 Stability of steady states

In this section, we consider the stability properties in the
(κ, μ) plane of the steady states of (16) found in the previous
section. The regions of stability/instability we identify in this
section are given in Fig. 3. As before, we adapt the approach
of Leise and Cohen (2007).

First, we consider the three cases of equal amplitude syn-
chronisation I , A, L± (the first three rows of Table 2) given
by (25), (28) and (31), respectively.

For I , the case of equal amplitude in-phase synchroni-
sation, the eigenvalues λi , (i = 1, 2, 3) are given by Cass
(2019)

λ1 = −2, λ2 = 2(μ − 1), λ3 = 2μ. (34)

Hence, I is stable for μ < 0 and unstable for μ > 0.
For A, the case of equal amplitude anti-phase synchroni-

sation, the eigenvalues are given by Cass (2019)

λ1 = −2(1 + 2μ), λ2 = 2

(
1 + 3μ + 4κ

8κ − 1

)
,

λ3 = 2

(
μ + 4κ

8κ − 1

)
. (35)

5 Table 2, rows 1–5 correspond to (Leise andCohen 2007, Table 1, rows
2–6). Table 2, rows 7–9 cover (Leise and Cohen 2007, Table 1, row 1).
But (Leise and Cohen 2007, Table 1) has no equivalent of Table 2, row
6. It can be shown that (Leise and Cohen 2007, Table 1, row 7) is not a
solution of (16).
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Hence, A is stable when μ > − 1
2 between the lines κ = 1

8
and μ + 4κ = 0 and unstable either when κ > 1

8 , μ < − 1
2

or when κ < 1
8 between the lines μ = − 1

2 and μ + 4κ = 0.
From (17), we see thatμ = − 1

2 corresponds to the line HBA

in Fig. 1.
For L±, the case of equal amplitude phase-lagged syn-

chronisation, the eigenvalues are given by Cass (2019)

λ1 = −(1 + 2μ) + f (κ, μ),

λ2 = −(1 + 2μ) − f (κ, μ), λ3 = −2, (36)

where f (κ, μ) =
√

κ4(2μ−1)2−2κ3μ2

κ2
. It is straightforward to

show that L± is stable between the linesμ = 0 andμ+4κ =
0 when κ < 0 and unstable between the same lines when
κ > 0.

The cases N±
0 , N±

π , N 1,2
± π

2
, with unequal amplitudes are

all unstable where they exist (see Cass 2019 for details).
We plot existence and stability regions for solutions

I , A, L±, N±
0 , N±

π in Fig. 3. Regions of stable solutions
are shown on the left and regions of unstable solutions on the
right. Several lines have been labelled, as follows:

HBA : μ = −1

2
, (37)

BPAL : μ + 4κ = 0, (38)

BPI I : μ = 1, (39)

BPAA : 3μ + 4κ + 1 = 0, (40)

BPN : μ + κ = 0. (41)

A full explanation of the importance of these lines is given
in Appendix B.

We see that bistability and phase-lagging are possible only
when μ and κ take different signs. Note the co-existence of
stable equal amplitude in-phase I and anti-phase A synchro-
nisation between the lines μ = 0, κ = 1

8 , μ+4κ = 0 in the
(κ, μ) plane. Since we assume each of γ, α, β is positive,
this region in the (κ, μ) plane corresponds to the following
region in the (a, b) coupling plane:

a < 0, b <
1

8
(α + 3βω2),

a(α + 3βω2) + 4γ b > 0. (42)

Furthermore, the lines μ = 0 and BPAL mark the boundary
of stable phase-lagged solutions. The above simple charac-
terisation of these two important behaviours shows the power
of our dimensionless analytical approach.
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Fig. 3 Stability regions (on the left) and instability regions (on the
right) of steady states I , A, L±, N±

0 , N±
π of (16), where we assume

that γ, α, β > 0. The labelled lines correspond to HBA : μ = − 1
2 ,

BPAL : μ + 4κ = 0, BPI I : μ = 1, BPAA : 3μ + 4κ + 1 = 0,
BPN : μ + κ = 0. Stable I and A co-exist and are stable in the
fourth quadrant on the left in the purple region between the lines
μ = 0, κ = 1

8 , μ + 4κ = 0

3.3 Steady states for arbitrary parameter values

If we drop the assumption that each of ?, a, β is positive, for
example, when designing an HDC (Dumas et al. 2014), then
it can be shown that (16) becomes

Ṙ1 = (sγ − sδR
2
1)R1 + (R1 − R2 cosφ)

×
(
sγ μ + sδκ(R2

1 + R2
2 − 2R1R2 cosφ)

)
,

Ṙ2 = (sγ − sδR
2
2)R2 + (R2 − R1 cosφ)

×
(
sγ μ + sδκ(R2

1 + R2
2 − 2R1R2 cosφ)

)
,

R1R2φ̇ = (R2
1 + R2

2) sin φ
(
sγ μ

+ sδκ(R2
1 + R2

2 − 2R1R2 cosφ)
)
, (43)

where sγ = sgn(γ ), sδ = sgn(δ). Equations (43) have been
nondimensionalised using

rI =
√∣∣∣γ

δ

∣∣∣, s = 1

2
|γ |t . (44)

There are four cases to consider, according to the sign of
γ , the linear damping coefficient, and the sign of δ, the com-
bined nonlinear damping coefficient (20). Each case leads to
a separate stability diagram in the (κ, μ) plane. Results are
given in Appendix C.

In this section, we have extended older work (Leise and
Cohen 2007) on the steady states of the aHKB model (16),

corresponding to constant amplitude limit cycles, by present-
ing results in terms of our dimensionless parameters κ, μ

(see Table 2). We have also given expressions for bifurcation
curves lines BPAL , BPI I , BPAA and BPN found numeri-
cally in recent work (Avitabile et al. 2016).

4 Comparison with numerical continuation
methods

Adetailed bifurcation analysis of (2) using numerical contin-
uation methods. Doedel et al. (1997) was carried out recently
(Avitabile et al. 2016). In this section, we compare our ana-
lytical results for the aHKB model from Sect. 3 with our
own numerical continuation results using AUTO,6 for the
full HKB model, in order to validate that analysis and deter-
mine its region of validity. We will then show how to use our
results to predict behaviours in arbitrary parameter regimes.
We extend the results in Avitabile et al. (2016) to provide the
full picture of the dynamics in the parameter regime consid-
ered by these authors, by showing extra solution branches
not seen in Avitabile et al. (2016).

6 AUTO is a widely used computer package that detects bifurcations
and other nonlinear phenomena, by treating a set of parameterized ordi-
nary differential equations and their initial conditions as a boundary
value problem. There are currently more than a dozen similar packages
available.
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4.1 Alternative nondimensionalisation

In Avitabile et al. (2016), the bifurcation analysis was per-
formed with γ ∈ [−2, 8] (see Table 1). But with our current
nondimensionalisation (15)–(18), γ = 0 corresponds to μ

infinite. So we propose an alternative nondimensionalisa-
tion that is better suited for comparison with Avitabile et al.
(2016). We define new dimensionless parameters ν, σ given
by

ν ≡ 1

μ
= γ

a
, (45)

σ ≡ 1

κ
= δ

d
= α + 3βω2

b + 3cω2 . (46)

From (7), we have that

rI = 2
√

γ

α + 3βω2 =
√

κ

μ

√
a

d
. (47)

Now, we define r̃ I and s̃ as follows:

r̃ I =
√
a

d
= 2

√
γ

b + 3cω2 , (48)

s̃ = 1

2
|a|t, (49)

and redefine R̃i = ri
r̃ I

, (i = 1, 2), we find that (43) becomes

Ṙ1 = (saν − sdσ R2
1)R1 + (R1 − R2 cosφ)

×
(
sa + sd(R

2
1 + R2

2 − 2R1R2 cosφ)
)

,

Ṙ2 = (saν − sdσ R2
2)R2 + (R2 − R1 cosφ)

×
(
sa + sd(R

2
1 + R2

2 − 2R1R2 cosφ)
)

,

R1R2φ̇ = (R2
1 + R2

2) sin φ
(
sa

+ sd(R
2
1 + R2

2 − 2R1R2 cosφ)
)
, (50)

where we have dropped the tildes over the Ri , sa =
sgn(a), sd = sgn(d) and a dot now denotes differentiation
with respect to s̃.

4.2 Existence and stability of solutions

We present results for the existence and stability of solutions
to (50), corresponding to limit cycles of the aHKB model,
as dimensionless parameters ν, σ vary. The methodology is
identical to that in Sect. 3. Our aim is to use these results to
predict behaviour in an arbitrary range of parameters for the
full HKB model (2).

Our results are shown in Fig. 4, arranged in the four quad-
rants of (a, d) space.

In Avitabile et al. (2016), results are presented of numer-
ical continuation of the full HKB model (2) for damping
parameters γ ∈ [−2, 8], α = β = 1, coupling parameters
a = ±0.5, b = ±0.5, c = 0 and pacing frequency7 ω = 2.
From (45), (46), this corresponds to ν = ±2γ, σ = ±26.
Hence, in the first and second quadrants of Fig. 4, we have
included a dashed vertical line at σ = 26, and in the third
and fourth quadrants, a dashed vertical line at σ = −26.
These lines correspond to parameter values used in (Avitabile
et al. 2016, Fig. 4) when γ ∈ [−2, 8]. We emphasise here
that numerical studies of the parameter space are restricted
to studying one such line at a time. Along these lines, we
use the nondimensional aHKB model (50) to predict what
we might find for weakly nonlinear amplitudes in numerical
computations of the full HKB model (2).

Figure 4 is possibly themost important figure in this paper.
It can be used to predict dynamics along any line in (σ, ν)

space for arbitrary values of the coupling parameters a and
d.

4.3 Comparison between analysis and numerics

Our analytical results from Sect. 4.2 are valid for weakly
nonlinear amplitudes. We should not expect these results to
be valid for large amplitudes. To test this, we carried out our
own numerical continuations of the full HKB model (2) and
plotted these numerical results against our theoretical results
from Sect. 3.1, in dimensional form, given in (93)–(97) of
Appendix F. Detailed comparisons are given in Appendix D.
In summary, we find that

– for small amplitudes, our theoretical results are in com-
plete agreement with our numerical results;

– for intermediate amplitudes, our theoretical results are
qualitatively similar to our numerical results, which in
turn reveal additional solutions not seen in Avitabile et al.
(2016), Fig. 4;

5 Discussion and conclusions

The original HKB paper Haken et al. (1985) has attracted
considerable scientific attention, owing to its wide applica-
bility in the area of human coordination (see reference in
Avitabile et al. 2016).

In this paper, we have provided a fundamental understand-
ing of the HKB model that has significant potential for the
development of VPI and HDC.

7 In Avitabile et al. (2016), it is stated that ω = 0.2. However, we
reproduced their results by setting ω = 2. Other parameter values were
also used in that paper.
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Fig. 4 Stability regions of steady states I , A, L±, N±
0 , N±

π of (50).
The vertical dashed lines correspond to parameter sweeps in the corre-
sponding quadrant of (Avitabile et al. 2016, Figure 4). All curves are
labelled according to (37)–(41). This Figure shows how much varied
behaviour there is in the approximate aHKBmodel (16), and how to find

it in (σ, ν)-parameter space, for any value of a, d. We expect the full
HKB model (2) to contain even more solutions as the nonlinear terms
induce bifurcations. Bear in mind that each point in (σ, μ) corresponds
to many different parameter choices, thus allowing efficient design and
development of VPI and HDC

Our first contribution was to drop all the nonlinear terms
from the most widely used form of the HKB model (2) of
two coupled oscillators to give the linear HKB model (4).
A straightforward analysis yields the presence of two system
normalmodes; in-phase and anti-phasemotionwith differing
stability properties, see Fig. 1.

In turn, the linear HKBmodel led us to a mechanical ana-
logue (Fig. 2) where the coupling term is seen to be a form of

damping between the two subsystems. This analogue leads to
the notion that the ratio of linear damping γ to linear coupling
a must be important for the dynamics of the full HKBmodel
and that the in-phase normal mode must be independent of
the coupling, whatever form J (x1 − x2, ẋ1 − ẋ2) takes.

To solve the full HKB model (2), we make use of approx-
imation techniques, part of the method of multiple scales
Nayfeh (2008), in which a) any limit cycle has a slowly vary-
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ing amplitude and b) the linear coefficients γ, a � ω (the
rotating wave approximation). The resulting equations of the
approximateHKB (aHKB)model (16)were shown to depend
on just two dimensionless parameters: μ, the ratio of linear
coupling to linear damping (17) and κ , the ratio of combined
nonlinear coupling to combined nonlinear damping (18).

The discovery that aHKB dynamics is governed by just
two parameters has far-reaching consequences. As men-
tioned above, we know for example that dynamics at a =
a0, γ = γ0 will be the same as those at a = ka0, γ = kγ0
for any value of k �= 0. Hence, we can model a variety of dif-
ferent experimental observations using the same model. We
could even use results in one experiment to predict behaviour
in another.

This applies in particular to phase-lagged results. It iswell-
known Avitabile et al. (2016) that the relative phase in many
real-world applications can take values different from both
0◦ (in-phase) and 180◦ (anti-phase). For example, a stable
relative phase of 90◦ is seen in both the amble-to-walk gait
of quadrupeds Collins and Stewart (1993) and unsuccess-
ful defences in football Duarte et al. (2012). From Table 2,
we see that the general value of the phase-lag is given by
φ∗ = ± cos−1

(
1 + μ

2κ

)
. So when φ∗ = 90◦, we know that

such solutions lie on the line μ + 2κ = 0. We can often esti-
mate μ, so we have a value of κ where we can find these 90◦
solutions. That value then corresponds (18) to different non-
linear coefficients that we can select, based on the experiment
under consideration.

The existence and stability of solutions to the aHKBmodel
(16) were considered in Sect. 3. Some, but not all, of the exis-
tence results in that section have been derived earlier Leise
and Cohen (2007). But these authors made the restrictive
assumption that γ + 2a > 0, β > 8c and α > 8b, and only
worked with the dimensional form of the governing equa-
tions.

In Sect. 4, we used the dimensionless approximate HKB
model (16) to make predictions about the dynamics of the
full HKB model (2). The agreement was excellent for small
to moderate amplitudes, as expected, even when γ ∼ ω. In
addition, we discovered additional dynamic behaviour miss-
ing from Avitabile et al. (2016). This section contains Fig. 4,
possibly the most important figure in the paper.

Considering dynamics in (κ, μ) space can be thought of
as weakly nonlinear vs. linear space. Hence, we propose a
weakly nonlinear mechanical analogue, shown in Fig. 5.

This is the same as Fig. 2, except that we have added
three weakly nonlinear dampers (shown in red). Just as the
ratio μ = a

γ
is important in the linear mechanical analogue,

so the ratio κ = d
δ
in the weakly nonlinear analogue is also

important. Thus, the relative strengthμ of the linear dampers
is complemented by the relative strength κ of the weakly
nonlinear dampers.

One feature that can explained using Fig. 5 is the point
(μ, κ) = (1,−1), [(ν, σ ) = (1,−1)], visible in Fig. 3
(right hand side) and Fig. 4. This occurs when BPN , BPI I ,
and BPAA all intersect. In dimensional terms, this point
corresponds to γ = a (the linear damping and coupling
coefficients being equal) and d = −δ (this happens when
the combined nonlinear corrections to damping and coupling
are equal). At this point, the weakly nonlinear damping and
coupling are identical.

As mentioned in Sect. 2, much work has been done in
establishing the correct form of h(x, ẋ) and J (x1 − x2, ẋ1 −
ẋ2) in (1). In their original paper Haken et al. (1985), the
authors described establishing the form of the coupling term
J (x1 − x2, ẋ1 − ẋ2) as “…the central problem, namely to
derive a suitable coupling between …x1 and x2.”

We can now consider their two other choices within the
framework of our mechanical analogue. The first choice
(Haken et al. 1985, equation (3.11a)) was J (x1 − x2, ẋ1 −
ẋ2) = [a + b(x1 − x2)2](x1 − x2). When b = 0, this corre-
sponds to replacing the central dashpot in Fig. 2 with a spring
of stiffness a.When b �= 0, this corresponds to replacing both
the central dashpot with a spring of stiffness a and the central
red weakly nonlinear dashpot with a weakly nonlinear spring
of stiffness a + 3bω2. This choice of J (x1 − x2, ẋ1 − ẋ2)
was rejected because both linear and weakly nonlinear forms
failed to produce the correct type of equation for φ̇. The sec-
ond choice of (Haken et al. 1985, equation (3.11b)) added a
time delay to the first choice, in an integral sense that became
J̇ (x1 − x2, ẋ1 − ẋ2) = [a + b(x1 − x2)2](x1 − x2) under
approximation. So we can modify our analogue accordingly
to include mechanical elements that integrate resistance over
time. This second form of J (x1 − x2, ẋ1 − ẋ2) did produce
the correct relationship between x1 and x2 but was not con-
sidered further by the authors.

In Appendix E, we show that a very general form of the
aHKB equation (88) can be represented by one set of nondi-
mensionalised equations (16) involving only dimensionless
parameters μ, already given in (17), and a redefined κ , in
(90). This can be expected from Fig. 5, where the precise
form of the HKB equation is not important. These more
general models may be of use to the VPI/HDC community
in choosing models of coordination for experiments.

We end with some general observations about the form
of the HKB model (1). The methods of nonlinear dynam-
ics (including numerical continuation) are far more powerful
than the weakly nonlinear techniques used to study the HKB
equations to date. But the new solutions found by thesemeth-
ods are not just of passing interest. They are present in the
model and so should be seen in experiments. We hope that
experiments will soon be performed to test out these predic-
tions.

But, absent any experimental evidence, another possibil-
ity is that the HKB model itself needs revision. The original
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Fig. 5 A weakly nonlinear mechanical analogue of the HKB system.
This is the same as Fig. 2, except that we have added three weakly
nonlinear dampers (shown in red). The extra damping is not directly
proportional to the velocity. Instead the coefficients d, δ represent an
averaged effect. But since the averaging is the same for these new ele-
ments, it is only the ratio κ = d

δ
= 1

σ
that matters. This observation is

independent of the precise formofHKBmodel,which iswhy theweakly
nonlinear general HKB model (88) can also be written in terms of two
dimensionless parameters. Note that d and δ have opposite signs, since
the nonlinear damping term is softening for positive parameter values,
whereas the nonlinear coupling term is hardening

authors themselves already suggested another acceptable
form of J (x1−x2, ẋ1− ẋ2), as we have just mentioned. Does
that contain any of the solutions we see here? Then, there are
the extensions to the HKBmodel that explicitly include time
delays Banerjee and Jirsa (2006), Słowiński et al. (2016),
Słowiński et al. (2020). But these seem to include even more
behaviour than seen in experiments to date. Perhaps one place
to start is if we ask the question posed by the linear HKB
model (4) and its mechanical analogue, Fig. 2. What is the
physiological meaning of the damping that connects the two
oscillators?
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Appendix

A Normal modes

For in-phase motion x1 = x2, and we have ηA = 0; for
anti-phase motion x1 = −x2, we have ηI = 0. Note the
asymmetry between the dynamics of ηI ,A in (5). The normal
modesηI ,A are identical to the symmetric and anti-symmetric
coordinates ψ± of Fuchs and Jirsa (2000). But the connec-
tionwith normalmodeswas notmade in that paper. From (5),
if γ > 0, the in-phase normal mode ηI is always unstable.
Then, (i) if γ +2a > 0, both normalmodes ηI ,A are unstable;
(ii) if 2a + γ < 0, the anti-phase normal mode ηA is stable.
If γ < 0, the in-phase normal mode ηI in (5) is always sta-
ble. Then, (iii) if γ + 2a > 0, ηA is unstable—this happens
because the coupling coefficient a is strong enough to over-
come the damping, leading to instability; (iii) if 2a+ γ < 0,
then ηA is stable and we would not expect to see any form of
limit cycle in the fullHKBmodel (2) in this region of parame-
ter space. These four cases are shown in Fig. 1. FromTable 1,
we observe that nearly all studies of the full HKB model (2)
are carried out in the fourth quadrant, where γ > 0, a < 0.
The dynamics within the regions of Fig. 1 are as follows.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Biological Cybernetics

From (5), we have

ηI = C+
I e

λ+
I t + C−

I e
λ−
I t ,

ηA = C+
A e

λ+
A t + C−

A e
λ−
A t , (51)

where C±
I ,A are constants and

λ±
I = 1

2
(γ ± i

√
|4ω2 − γ 2|),

λ±
A = 1

2
((2a + γ ) ± i

√
|4ω2 − (2a + γ )2|), (52)

where we have assumed that γ, a � ω. Since x1 = 1
2 (ηI +

ηA) and x2 = 1
2 (ηI − ηA), we see that x1,2 are both stable in

S, but at least one of them is unstable elsewhere.

B Bifurcations

In Figs. 3–10, we labelled certain curves, following the con-
vention in Avitabile et al. (2016). We can now explain their
role in our approximate analysis and the relationship with the
numerical solutions. Expressions for them in terms of both
pairs of dimensionless parameters (κ, μ) and (σ, ν) and in
terms of the system parameters of (2) with c = 0 are given
in Table 3.

Curves HBI ,A, BPI I ,AA appear in all four quadrants in
Fig. 4 and appear to have identical roles in both analysis and
computations:

– HBI : Hopf bifurcation of the equal amplitude in-phase
solution I . It is well-known in the literature of the
HKB model and occurs when the linear damping term
γ changes sign.

– HBA: Hopf bifurcation of the equal amplitude anti-phase
solution A. It occurswhen the linear damping term2a+γ

of the anti-phase normal mode ηA (5) changes sign.
– BPI I : Symmetry-breakingbifurcationof the equal ampli-
tude in-phase solution I .

– BPAA: Symmetry-breaking bifurcation of the equal
amplitude anti-phase synchronisation A.

Curve BPAL : 4ν + σ = 0 appears in Fig. 4, where it
has two sets of four different roles in the second and fourth
quadrants. We have seen it, labelled BP(a)

AL , in one role in
Fig. 8 and in another role in Fig. 10. The numerical equivalent
of these roles is labelled BP( f )

AL in the same figures.
Curve BPN : ν + σ = 0 separates N±

0 solutions from
N±

π solutions. It features in Fig. 4, where it has a number of
roles in the second and fourth quadrants. We do not see it in
Figs. 7–10 since it occurs at very large values of γ .

Curve BPI L appears in (Avitabile et al. 2016, Figure 5(a)),
as the line a = 0. It corresponds to a phase bifurcation
between equal amplitude in-phase synchronisation I and
equal amplitude phase-lagged synchronisation L±.

Finally, we mention the point FH (a fold-Hopf bifurca-
tion) that appears in (Avitabile et al. 2016, Figure 5(b)).It
occurs around γ = −1, b ≈ 1.625 when a = 0.5
(Avitabile et al. 2016, p. 209). In our analysis, this corre-
sponds to the point (κ, μ) = ( 18 ,− 1

2 ) [ (σ, ν) = (8,−2), or
(a, b) = (− 1

2γ, 1
8 (α + 3βω2))]. When a = 0.5, we have

γ = −1, and substituting in the relevant parameter values,
we predict that FH occurs at b = 13

8 = 1.625, very close to
the stated numerical value Avitabile et al. (2016). In Fig. 3,
FH can be seen as the intersection of the three lines HBA,
BPAA and BPAL . FH also appears in the second and fourth
quadrants of Fig. 4. In our numerical computations, FHwould
correspond to varying parameters a, b in Fig. 8 so that the
bifurcation points HBA, BPAA and BP(a)

AL all coincide.

C Different cases

If we drop the assumption that each of γ, α, β is positive,
then it can be shown that the aHKB model (13) takes on a
new form given by (43). There are four cases to consider,
according to the signs of γ and δ (20).

The results for stable solutions are shown in Fig. 6, where
only the three cases of equal amplitude synchronisation
I , A, L± appear.

The plot in the first quadrant of Fig. 6 is identical to the
left hand figure in Fig. 3, since we assumed γ > 0 and taking
α, β > 0 ensures that δ = 1

4 (α + 3βω2) > 0.
In the second and third quadrants of Fig. 6, we have γ < 0.

Wefind regions of stable equal amplitude anti-phase synchro-
nisation A for all nonzero values of δ, as can be expected from
the analysis in Sect. 2.1.

Note that there is no stable equal amplitude synchroni-
sation I , A, L± in the fourth quadrant of Fig. 6, where
γ > 0, δ < 0. So all stable synchronisation for γ > 0
are captured in the first quadrant, corresponding to param-
eter values used in most experimental studies of the HKB
model (see Table 1).

D Comparison

In what follows, we organise our results according to the
quadrants of (Avitabile et al. 2016, Fig. 4), which correspond
directly to those in our own Fig. 4. Throughout this compar-
ison, we set α = 1, β = 1, ω = 2.
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Fig. 6 Stability regions of the three cases of equal amplitude synchronisation I , A, L±. There are four separate stability diagrams in the (κ, μ)

plane, according to the signs of γ, δ. The plot in the first quadrant is identical to the left hand figure in Fig. 3

D.1 First quadrant: a = 0.5, b = 0.5

Figure 7 is a bifurcation diagram of max(x1), r1 vs. γ ,
computed for coupling strengths a = 0.5, b = 0.5, using
AUTO Doedel et al. (1997), where r1 is defined in (12).

Thethicker lines represent numerical computations of the full
(f) HKB model (2): solid lines are stable solutions, dashed
lines are unstable solutions. Overlaid on each figure, using
thinner lines, are the dimensional formsof our analytic results
(93)–(97) of the approximate (a) aHKB model, given in
Appendix F. We compare these results with the analytic pre-
dictions in the first quadrant of Fig. 4, where d = 1

4b > 0,
along the line σ = 26, together with Table 3.
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Table 3 Analytic expressions for features seen in Figs. 3–10 and
(Avitabile et al. 2016, Fig. 4), in terms of both pairs of dimensionless
parameters (κ, μ) and (σ, ν), and in terms of the system parameters

γ, α, β, a, b, ω. The expressions involving system parameters are
obtained by undoing the scaling and setting c = 0

Label (κ, μ) (σ, ν) System parameters of (2) with c = 0

HBI μ infinite ν = 0 γ = 0

HBA μ = − 1
2 ν = −2 2a + γ = 0

BPI I μ = 1 ν = 1 a − γ = 0

BPAA 3μ + 4κ + 1 = 0 ν(σ + 4) + 3σ = 0 3a(α + 3βω2) + 4γ b + γ (α + 3βω2) = 0

BPAL μ + 4κ = 0 4ν + σ = 0 a(α + 3βω2) + 4γ b = 0

BPN μ + κ = 0 ν + σ = 0 a(α + 3βω2) + bγ = 0

BPI L μ = 0 ν infinite a = 0

FH (κ, μ) = ( 18 ,− 1
2 ) (σ, ν) = (8,−2) (a, b) = (− 1

2γ, 1
8 (α + 3βω2))

Fig. 7 Bifurcation diagram in γ computed for coupling strengths
a = 0.5, b = 0.5. The thicker solid/dashed lines represent sta-
ble/unstable states of the full (f) HKB model (2), obtained using our
own numerical methods. Overlaid on each figure, using thinner lines,
are our analytic results from Sect. 3 of the approximate (a) aHKBmodel

in dimensional form (93)–(97). Compare these numerical results with
the theoretical predictions in the first quadrant of Fig. 4 along the line
σ = 26, together with Table 3. The solution branches that emerge from
BPI I are I , N

±
0 ; all three are unstable. The upper branch N+

0 is missing
from Avitabile et al. (2016), Fig. 4

D.2 Second quadrant: a = −0.5, b = 0.5

Figure 8 is a bifurcation diagram for coupling strengths
a = −0.5, b = 0.5, to be compared with predictions in the
second quadrant of Fig. 4, along the line σ = 26, together
with Table 3. Although details are slightly different, both our
theory and numerics predict that stable I , A can co-exist in
the presence of unstable phase-lagged motion.

D.3 Third quadrant: a = −0.5, b = −0.5

Figure 9 is a bifurcation diagram for coupling strengths a =
−0.5, b = −0.5, to be compared with predictions in the

third quadrant of Figure 4, along the line σ = −26, together
with Table 3.

D.4 Fourth quadrant: a = 0.5, b = −0.5

Figure 10 is a bifurcation diagram for coupling strengths
a = 0.5, b = −0.5, to be compared with predictions in the
fourth quadrant of Figure 4, along the line σ = −26, together
with Table 3. Although details are slightly different, both our
theory and our numerics predict that stable A loses stability
and gives rise to stable phase-lagged motion.
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Fig. 8 Bifurcation diagram for coupling strengths a = −0.5, b = 0.5,
to be compared with predictions in the second quadrant of Fig. 4 along
the line σ = 26, together with Table 3. The solution branches that
emerge from BPAA are A, N±

π ; all three are unstable. The upper branch
N+

π is missing from (Avitabile et al. 2016, Figure 4), as is the lower

branch of unstable solutions that emerge from BP( f )
AL . Our analysis of

the aHKB model predicts a bifurcation BP(a)
AL at γ = 13

4 = 3.25 for

these parameter values (see Table 3). At BP(a)
AL , stable I and unstable A

collide to give rise to stable I , A and unstable equal amplitude phase-
lagged solutions L± (see inset for more detail) Note that I , L± have
the same amplitude at this level of approximation and so the solution
branches are indistinguishable

E Generalised HKBmodel

We show that the nondimensional version of the aHKB equa-
tion (16) holds for quite general forms of damping and
coupling, subject only to redefinition of rI (89) and κ (90).
The rescaled time s (15) and parameter μ (17) remain the
same.

E.1 Generalised nonlinear damping

To begin with, let us consider a general nonlinear damping
term of the form

β|x |2−2p|ẋ |2p ẋ, (53)

for p ∈ [0, 1]. The full HKB model (2) contains two such
terms: the Rayleigh and Van der Pol terms corresponding to
p = 1 and p = 0, respectively.

Before considering two coupled oscillators, let us demon-
strate our approach by considering a single uncoupled
oscillator, with one general damping term, of the form

ẍ + ω2x = ε(γ − β|x |2−2p|ẋ |2p)ẋ . (54)

We examine the dynamics of (54), using two-timing Cass
(2019). We give some details of our working, since the elim-

ination of secular terms is more involved than outlined in
Sect. 2.4. Taking x(t, ε) = x0(τ, T ) + εx1(τ, T ) + O(ε2)

as in (11), we have

O(1) : ẍ0 + ω2x0 =0, (55)

O(ε) : ẍ1 + ω2x1 = − 2∂τ ∂T x
0 + γ ∂τ x

0

− β|x0|2−2p|∂τ x
0|2p. (56)

Hence from (55), we have

x0(τ, T ) = r(T ) cos(ωτ + φ(T )) (57)

= 1

2
(A(T )eiωτ + A∗(T )e−iωτ ), (58)

corresponding to a limit cycle of slowly varying amplitude
r(T ) and phase φ(T ), where

A(T ) = 1

2
r(T )eiφ(T ) (59)

is the complex amplitude.
The next step is to substitute (57) into the right hand side

of (56). Let f (τ ) ≡ −β|x0|2−2p|∂τ x0|2p. Then using (57),
we find

f (τ ) = βω2p+1r3| cos(ωτ + φ)|2−2p
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Fig. 9 Bifurcation diagram for
coupling strengths
a = −0.5, b = −0.5, to be
compared with predictions in
the third quadrant of Figure 4,
along the line σ = −26,
together with Table 3. The
solution branches that emerge
from BPAA are A, N±

π ; all three
are unstable. The lower branch
N−

π is missing from (Avitabile
et al. 2016, Figure 4)

× | sin(ωτ + φ)|2p sin(ωτ + φ). (60)

To find the secular terms in f (τ ) at O(ε), we calculate the
complex Fourier series expansion of f (τ ). The coefficient
c1 of eiωτ in this expansion is given by c1 = 1

2 (a1 − ib1),
where

a1 = 2

T

∫ T

0
f (τ ) cosωτ dτ,

b1 = 2

T

∫ T

0
f (τ ) sinωτ dτ. (61)

Setting θ = ωτ + φ and substituting (60) into (61), we find

a1 = βω2p+1r3

π

∫ 2π

0
| cos θ |2−2p

× | sin θ |2p sin θ cos(θ − φ) dθ. (62)

The expansion cos(θ − φ) = cos θ cosφ + sin θ sin φ then
leads to two integrals on the right hand side of (62). The first
integral vanishes, since the integrand is an odd function. The
second integral can be simplified to become

a1 = 4βω2p+1r3 sin φ

π

∫ π
2

0
cos2−2p(θ) sin2+2p(θ) dθ. (63)

Then, using the identity

∫ π
2

0
cos2s−1 θ sin2z−1 θ dθ = 1

2

Γ (s)Γ (z)

Γ (s + z)
, (64)

we have

a1 = g(β, p)ωr3 sin φ, (65)

where

g(β, p) ≡ 1

π
Γ

(
3

2
− p

)
Γ

(
3

2
+ p

)
βω2p, (66)

Similarly, from (61) we find

b1 = g(β, p)ωr3 cosφ, (67)

and hence

c1 = 1

2
(a1 − ib1) = 1

2
g(β, p)ωr3(sin φ − i cosφ)

= −4ig(β, p)ω|A|2A (68)

where the complex amplitude A is defined in (59).
We then obtain an evolution equation for A(T ) by setting

to zero the secular terms in (56) to find

2 Ȧ =
[
γ − 4g(β, p)|A|2

]
A, (69)

and hence

ṙ = 1

2

[
γ − g(β, p)r2

]
r , (70)

φ̇ = 0. (71)

The amplitude of the resulting limit cycle is therefore

rI =
√

γ

g(β, p)
. (72)

We can compare this result with (7), since the equation
for a single oscillator is identical to the equation for equal
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Fig. 10 Bifurcation diagram for coupling strengths a = 0.5, b = −0.5
to be comparedwith predictions in the fourth quadrant of Figure 4 along
the line σ = −26, together with Table 3. The solution branches that
emerge from BPI I are I , N±

0 ; all three are unstable. The lower branch
N−
0 is missing from (Avitabile et al. 2016, Figure 4), as is the lower

branch of stable solutions that emerge from BP( f )
AL . Our analysis of

the aHKB model predicts a bifurcation BP(a)
AL at γ = 13

4 = 3.25 for

these parameter values (see Table 3). At BP(a)
AL , unstable I and sta-

ble A collide to give rise to unstable I , A and stable equal amplitude
phase-lagged synchronisation L± (see inset for more detail). Note that
I , L± have the same amplitude at this level of approximation and so
the solution branches are indistinguishable

amplitude in-phase oscillations (see Sect. 2.3). For the Van
der Pol oscillator, we have p = 0 and β = α. Hence, from
(66), g(α, 0) = 1

π
Γ 2( 32 )α = 1

4α since Γ ( 32 ) = 1
2

√
π . So

from (72), we have rI =
√

γ
g(α,0) = 2

√
γ
α
in agreement with

(7) when β = 0.
For the Rayleigh oscillator, we have p = 1. Hence,

from (66), g(β, 1) = 1
π
Γ ( 12 )Γ ( 52 )βω2 = 3

4βω2, since
Γ ( 12 ) = √

π and Γ ( 52 ) = 3
4

√
π . So from (72), we have

rI =
√

γ
g(β,1) = 2

√
γ

3βω2 in agreement with (7) when α = 0.

Now, consider a single general hybrid oscillator with n
general nonlinear damping terms of the form (53):

ẍ + ω2x = ε

[
γ −

n∑
i=1

βi |x |2−2pi |ẋ |2pi
]
ẋ, (73)

where pi ∈ [0, 1], i = 1 . . . n and βi , 1 = 1 . . . n are
damping coefficients.

The effect of these extra nonlinear terms is additive, so
that the amplitude equation (70) generalises to

ṙ = 1

2

[
γ −

n∑
i=1

g(βi , pi ) r
2

]
r , (74)

and the resulting limit cycle amplitude becomes

rI =
√

γ∑n
i=1 g(βi , pi )

. (75)

Equation (75) is the amplitude of the limit cycle that
occurs in a single general hybrid oscillator, subject to n
general nonlinear damping terms of the form (53). When
n = 2, β = α, p1 = 0, β2 = β, p2 = 1, (75) agrees with
(7).

E.2 Generalised nonlinear coupling

Now, we consider generalised nonlinear coupling of the form

b(ẋ1 − ẋ2)|x1 − x2|2−2q |ẋ1 − ẋ2|2q , (76)

where q ∈ [0, 1]. The full HKBmodel (2) contains two such
terms, one with q = 0 and the other with q = 1.

To demonstrate how to handle the secular terms in this
case, we consider Rayleigh damping only. Our equations
become:

ẍ1 + ω2x1 = ε
[
(γ − β ẋ21 )ẋ1 + (ẋ1 − ẋ2)

× (a + b|x1 − x2|2−2q |ẋ1 − ẋ2|2q)
]
,

ẍ2 + ω2x2 = ε
[
(γ − β ẋ22 )ẋ2 + (ẋ2 − ẋ1)
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× (a + b|x2 − x1|2−2q |ẋ2 − ẋ1|2q)
]
. (77)

Using two timingCass (2019),we set xi (t, ε) = x0i (τ, T )+
εx1i (τ, T ) + O(ε2), (i = 1, 2), where τ = t, T = εt . Then,
the generalised coupling term (76) contribution at O(ε) is

b(∂τ x
0
1 − ∂τ x

1
1)|x01 − x02 |2−2q |∂τ x

0
1 − ∂τ x

1
1 |2q . (78)

Setting x0i (τ, T ) = ri (T ) cos(ωτ + φi (T )), (i = 1, 2)
and Ai (T ) = 1

2ri (T )eiφi (T ), (i = 1, 2), (78) becomes

b(r2ω sin(ωτ + φ2) − r1ω sin(ωτ + φ1))

×|r1 cos(ωτ + φ1) − r2 cos(ωτ + φ2)|2−2q

×|r2ω sin(ωτ + φ2) − r1ω sin(ωτ + φ1)|2q . (79)

Now, we define new variables R̂ and Φ as follows

R̂ sinΦ = r1 sin φ1 − r2 sin φ2,

R̂ cosΦ = r1 cosφ1 − r2 cosφ2. (80)

Hence, R̂2 = (r21 + r22 − 2r1r2 cosφ). Equation (79) then
reduces to

− bω2q+1 R̂3| cos(ωτ + Φ)|2−2q | sin(ωτ + Φ)|2q sin(ωτ + Φ),

(81)

which has exactly the same form as (60). Hence, we can
immediately write down expressions for the Fourier coeffi-
cients a1, b1, as defined in (61), to find

a1 = −g(b, q) ω R̂3 sinΦ, b1 = −g(b, q) ω R̂3 cosΦ.(82)

where the function g(·, ·) is given in (66). Noting that

R̂3 sinΦ = (r21 + r22 − 2r1r2 cosφ)

× (r1 sin φ1 − r2 sin φ2)

R̂3 cosΦ = (r21 + r22 − 2r1r2 cosφ)

× (r1 cosφ1 − r2 cosφ2), (83)

the coefficient of eiωτ in the complex Fourier series is thus

c1 = 1

2
(a1 − ib1)

= −1

2
g(b, q) ω(r21 + r22 − 2r1r2 cosφ)

× [(r1 sin φ1 − r2 sin φ2) − i(r1 cosφ1 − r2 cosφ2)]
= 1

2
g(b, q) iω(r21 + r22 − 2r1r2 cosφ)(r1e

iφ1 − r2e
iφ2)

= −4 g(b, q) iω|A2 − A1|2(A2 − A1). (84)

Hence, the conditions to eliminate secular terms at O(ε) are,
in terms of the complex amplitudes A1, A2,

2 Ȧ1 =
(
γ − 3βω2|A1|2

)
A1

+ (a + 4 g(b, q) |A1 − A2|2)(A1 − A2),

2 Ȧ2 =
(
γ − 3βω2|A2|2

)
A2

+ (a + 4 g(b, q) |A2 − A1|2)(A2 − A1), (85)

and, in terms of the real amplitudes r1, r2 and relative phase
φ

ṙ1 = 1

2
[γ r1 − 3βω2r31

+ (r1 − r2 cosφ)(a + g(b, q) (r21 + r22
− 2r1r2 cosφ))],

ṙ2 = 1

2
[γ r2 − 3βω2r32

+ (r2 − r1 cosφ)(a + g(b, q) (r21 + r22
− 2r1r2 cosφ))],

r1r2φ̇ = 1

2
(r21 + r22 ) sin φ

[
a + g(b, q)(r21 + r22

− 2r1r2 cosφ)
]
. (86)

As with the general damping terms, any additional general
coupling terms (76) are additive.

E.3 The general class of HKBmodels

We now present the most general class of HKB model, for
coupled oscillators with n general nonlinear damping terms
and m general nonlinear coupling terms, of the form:

ẍ1 + ω2x1 = ε

[(
γ −

n∑
i=1

βi |x1|2−2pi |ẋ1|2pi
)
ẋ1

+ (ẋ1 − ẋ2)(a

+
m∑
i=1

bi |x1 − x2|2−2qi |ẋ1 − ẋ2|2qi
)]

,

ẍ2 + ω2x2 = ε

[(
γ −

n∑
i=1

βi |x2|2−2pi |ẋ2|2pi )ẋ2

+ (ẋ2 − ẋ1)(a

+
m∑
i=1

bi |x2 − x1|2−2qi |ẋ2 − ẋ1|2qi
)]

(87)
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Using two-timingCass (2019), these equations can bewritten
in terms of amplitude and phase variables r1, r2, φ:

ṙ1 = 1

2

[(
γ −

n∑
i=1

g(βi , pi )r
2
1

)
r1

+ (r1 − r2 cosφ)
(
a

+
m∑
i=1

g(bi , qi ) (r21 + r22 − 2r1r2 cosφ)
)]

,

ṙ2 = 1

2

[(
γ −

n∑
i=1

g(βi , pi )r
2
2

)
r2

+ (r1 − r2 cosφ)
(
a

+
m∑
i=1

g(bi , qi ) (r21 + r22 − 2r1r2 cosφ)
)]

,

r1r2φ̇ = 1

2
(r21 + r22 ) sin φ

[
a

+
m∑
i=1

g(bi , qi ) (r21 + r22 − 2r1r2 cosφ)

]
. (88)

We non-dimensionalise amplitudes r1,2 and scale the time
variable using

Ri = ri
rI

, (i = 1, 2); s = 1

2
γ t . (15)

where now

rI =
√

γ∑n
i=1 g(βi , pi )

, (89)

is the amplitude of the limit cycle, to give

Ṙ1 = R1 − R3
1 + (R1 − R2 cosφ)(μ (16)

+ κ(R2
1 + R2

2 − 2R1R2 cosφ))

Ṙ2 = R2 − R3
2 + (R2 − R1 cosφ)(μ

+ κ(R2
1 + R2

2 − 2R1R2 cosφ))

R1R2φ̇ =
(
R2
1 + R2

2

)
sin φ

[
μ

+ κ(R2
1 + R2

2 − 2R1R2 cosφ)
]

where μ = a
γ
as before, (17), and κ is now given by

κ = d

δ
=

∑m
i=1 g(bi , qi )∑n
i=1 g(βi , pi )

, (90)

where we now define the combined nonlinear coupling coef-
ficient d as

d =
m∑
i=1

g(bi , qi ) (91)

and the combined nonlinear damping coefficient δ as

δ =
n∑

i=1

g(βi , pi ), (92)

When n = 2, β1 = α, p1 = 0, β2 = β, p2 = 1 and
m = 2, b1 = b, q1 = 0, b2 = c, q2 = 1, (87) reduces
to (10). Also (89), (90) reduce to (7), (18), respectively, and
(91), (92) reduce to (19), (20), respectively.

Hence, we conclude that a very large class of biologically
relevant weakly damped, weakly coupled HKB models (87)
can be represented by one set of nondimensionalised equa-
tions (16) involving only two dimensionless parameters μ,
defined in (17), and κ , defined in (90).

F Dimensional quantities

In Table 2, we gave analytic expressions derived from the
approximate aHKB model (16) for I , A, L±, N±

0 , N±
π in

terms of the dimensionless parametersμ, κ . The dimensional
versions of these quantities that we use in our comparison
with our numerical results are given by:

Î = 2

√
γ

13
, (93)

Â = 2

√
γ + 2a

13 − 8b
, (94)

L̂± = Î = 2

√
γ

13
, (95)

N̂±
0 = 1√

13(b+13)

[√
13γ +39a+4bγ ± √

13(γ −a)
]
,

(96)

N̂±
π = 1√

13(b+13)

[√
13(γ −a) ± √

13γ +39a+4bγ
]
.

(97)

Note that (93), (94) is (7), (9) evaluated at α = β = 1, ω = 2
and (95) is the dimensional version of (31).
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