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Model order reduction of geometrically nonlinear
dynamic structures is often achieved via a static
condensation procedure, whereby high-frequency
modes are assumed to be quasi-statically coupled to
a small set of lower-frequency modes, which form
the reduction basis. This approach is mathematically
justifiable for structures characterised by slow/fast
dynamics, such as thin plates and slender beams,
and has been shown to provide highly accurate
results. Nevertheless, selecting the reduction basis
without a priori knowledge of the full-order dynamics
is a challenging task; retaining redundant modes
will lead to computationally suboptimal reduced-
order models (ROMs), whilst omitting dynamically
significant modes will lead to inaccurate results, and
important features such as internal resonances may
not be captured. In this work, we demonstrate how
the error associated with static condensation can
be efficiently approximated during model reduction.
This approximate error can then be used as the basis
of a method for predicting when dynamic modal
interactions will occur, which will guide the reduction
basis selection process. Equivalently, this may serve as
a tool for verifying the accuracy of ROMs without the
need for full-order simulations. The proposed method
is demonstrated using a simple oscillator, and a finite
element model of a clamped-clamped beam.

1. Introduction
Engineering structures vibrating at large amplitudes
experience geometric nonlinearity, which couples the
underlying linear normal modes of the model via
nonlinear stiffness functions in the equations of motion.
These couplings foster energy exchange between modes
and can give rise to complex dynamic behaviours which
linear systems cannot exhibit, and hence cannot be
studied using methods from linear vibration theory.
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Examples of such behaviours include jump phenomena [1], limit-cycle oscillations [2,3], chaotic
vibrations [4], and internal resonances [5,6]. During an internally resonant motion, the energy
transfer between modes is significantly enhanced. This effect can be exploited for practical
applications such as energy harvesting using electromagnetic and piezoelectric devices [7,8], and
for enhanced stable micromechanical oscillators [9,10]. As such, the ability to reliably identify
such behaviours is of great importance.

Several analytical techniques have been developed for analysing nonlinear dynamic systems,
which allow approximate closed-form solutions to be obtained directly; three well-established
techniques are the harmonic balance, multiple scales and normal form methods [1,11,12].
Alternatively, the response of nonlinear systems may be computed efficiently and accurately
using numerical continuation packages, without the need for analytical treatment [13,14].
However, complex engineering structures are often modelled through a finite element (FE)
discretisation, for which the application of such methods is infeasible. This is both due to the
fact that the discretised equations of motion are not readily accessible when using commercial FE
software, and, more importantly, because the number of degrees-of-freedom (DOFs) of FE models
is often far too large for such methods to be applied directly. Reduced-order modelling enables
nonlinear FE models to be analysed using the aforementioned analytical and numerical methods
by capturing the salient dynamic behaviour of the system in a highly efficient manner.

A vast body of literature is devoted to so-called indirect reduced-order modelling methods [15],
which are the focus of this work. These methods can be used in conjunction with any commercial
FE software package, as they do not rely on access to the FE code or knowledge of the full-order
equations of motion. Instead, these methods make use of some standard outputs from the FE
model in order to construct parametric reduced-order models (ROMs). Due to their non-intrusive
nature, they are well-suited for industrial applications and complex structures whose equations
of motions cannot be derived analytically.

There exist two main families of indirect reduced-order modelling methods: displacement-
based and force-based. In the former one, the dataset used to calibrate the ROM is obtained
by constraining the structure into a series of prescribed displacements, and extracting the
corresponding internal restoring forces required to maintain each static configuration. This
technique is often referred to as the Enforced Displacement procedure, or Stiffness Evaluation
Procedure [16–18]. Using the static solution dataset, the coefficients of the nonlinear stiffness
terms are evaluated for a subset of the modal coordinates of the full-order model, which form
the reduction basis. The main drawback of this approach is its slow convergence, requiring
that a large number of modes are included in the reduction basis, and leading to large and
computationally expensive ROMs [15,19–22]. Specifically, in addition to the low-frequency,
dynamically important modes, a set of high-frequency in-plane modes must be retained, in order
to capture the effect of membrane stretching that occurs in flat structures such as beams and
plates. Alternatively, the reduction basis may be augmented with the so-called dual or companion
modes, but their identification is cumbersome [23–26]. Similarly, methods which augment the
reduction basis with so-called modal derivatives have recently been proposed [27,28].

In the second family of indirect methods, the dataset used for computing the nonlinear stiffness
coefficients is obtained by applying a set of static forces to the structure, which are proportional
to the reduced modeshapes, and extracting the corresponding displacement—this technique is
referred to as the Applied Loads procedure, or Implicit Condensation and Expansion (ICE)
[29–32]. This approach relies on static condensation in order to account for the effect of membrane
stretching, and thus removes the need for including any high-frequency in-plane modes in the
reduction basis as independent DOFs. Instead, these are assumed to be quasi-statically coupled
to the reduced modes, and their effect can be captured implicitly. The ICE method has been
successfully applied for the reduction of a range of flat structures, see for example [20,33],
however it has traditionally suffered from issues related to the lack of invariance of the reduced
subspace. A main drawback of the ICE method is the fact that the computed ROM parameters
vary with respect to the scaling of the forces used to obtain the static solution dataset, resulting
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in ROMs which lack robustness [32]. In addition, the ICE method assumes that the inertia of
the condensed modes is negligible—this assumption breaks down when considering structures
which can undergo large in-plane displacements, such as cantilever beams, and can lead to
significantly inaccurate results. Recent works have addressed these limitations. Specifically, it has
been shown that the quasi-static coupling between the reduced and condensed modes generates
higher-order nonlinear terms in the reduced dynamics. When these are taken into account, the
ROM parameter estimation procedure becomes robust with respect to the scaling of the static
solution dataset [33,34]. In addition, it has been shown how the effect of the inertia of the
condensed modes can be accounted for in the reduced dynamics—this additional treatment is
referred to as Inertial Compensation (ICE-IC) [35]. This introduces some additional acceleration-
and velocity-dependent terms in the reduced equations of motion, whose coefficients can easily be
computed using the existing static solution dataset. Similar expressions in the reduced dynamics
are seen in direct model order reduction techniques such as the quadratic manifold with modal
derivatives [36,37], as well as the more general concept of an invariant manifold based on the
theory of normal forms [38–41].

Nevertheless, a major challenge associated with the ICE method, as well as reduced-order
modelling techniques in general, remains: selecting the reduction basis without a priori knowledge
of the full-order dynamics. Retaining redundant modes will lead to computationally suboptimal
ROMs, whilst omitting dynamically significant modes will lead to inaccurate results, and
important features such as internal resonances may not be captured. In other words, the ICE
method relies on a slow/fast decomposition and is unable to capture any internal resonances
between the reduced and condensed modes [42]. In this work, we aim to address this limitation
and propose a method which can be used to predict the existence of internal resonances in
conservative systems, and thus guide the reduction basis selection process, without the need for
full-order simulations. Specifically, we represent each condensed coordinate as the superposition
of two components: one that is statically coupled to the reduced coordinates, and one that is
dynamically independent of them—the latter may be considered as the error associated with the
static condensation of the mode in question. Using this framework, we show how these errors
may be approximated during model reduction, in a computationally efficient manner. This may
serve as a tool for predicting internal resonances between the reduced and condensed coordinates,
or, equivalently, for verifying the accuracy of ROMs by ensuring that that static condensation
approximation is sufficiently accurate for all operating conditions of interest.

The rest of this paper is structures as follows. In §2, we explore the nature of quasi-static
and dynamic modal coupling in geometrically nonlinear systems using a simple oscillator as
a motivating example. In §3, we show how the error associated with static condensation may
be approximated during model order reduction, which can be used to predict the existence
of internal resonances. In §4 and §5, we demonstrate the proposed method using the simple
oscillator, and an FE model of a clamped-clamped beam, respectively. Finally, conclusions are
presented in §6.

2. Motivation
In this section we explore the nature of modal coupling in general conservative, geometrically
nonlinear systems. Specifically, we investigate the quasi-static coupling approximation, which is
often used in reduced-order modelling frameworks, and its applicability in different scenarios.
To this end, we consider a discrete 4-DOF system composed of two point masses, m, as a
motivating example. The masses are free to move in the x-y plane and are connected to a fixed
frame and to each other through a set of linearly elastic springs, with stiffness ki ∀i ∈ {1, 2, 3, 4, 5}
and unstretched length `0, as shown in figure 1. At the equilibrium position, all springs are
undeformed and oriented either horizontally or vertically. This system may be considered an
extension to the single-mass, 2-DOF oscillator previously studied in [34,43,44].
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Figure 1: Schematic diagram of the 4-DOF, two-mass oscillator used as a motivating example,
shown at equilibrium with the springs unstretched and of length `0.

Its equations of motion can be expressed in the form

MÜx +Kx + fx(x) = Fx, (2.1)

where x is the vector of physical displacements, M and K are the linear mass and stiffness matrices
respectively, and Fx and fx are the vectors of external and nonlinear restoring forces respectively.
These are given by

x =
©«
y1
y2
x1
x2

ª®®®®¬
, M =


m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 m


, K =


k4 0 0 0
0 k5 0 0
0 0 k1 + k2 −k2
0 0 −k2 k2 + k3


(2.2a)

fx(x) =

©«

−
k4`0(`0 + y1)

d4
−

k1y1(`0 − d1)

d1
−

k2(y1 − y2)(`0 − d2)

d2
+ k4`0

−
k5`0(`0 + y2)

d5
−

k3y2(`0 − d3)

d3
−

k2(y2 − y1)(`0 − d2)

d2
+ k5`0

−
k4x1(`0 − d4)

d4
−

k1`0(`0 + x1)

d1
−

k2`0(x1 − x2 − `0)

d2
+ (k1 − k2)`0

−
k5x2(`0 − d5)

d5
−

k3`0(x2 − `0)

d3
−

k2`0(`0 + x2 − x1)

d2
+ (k2 − k3)`0

ª®®®®®®®®®®¬
(2.2b)

d1 =
√
y2

1 + (`0 + x1)
2, d2 =

√
(y1 − y2)2 + (`0 − x1 + x2)2, d3 =

√
y2

2 + (`0 − x2)2,

d4 =
√
(`0 + y1)

2 + x2
1, d5 =

√
(`0 + y2)2 + x2

2,

(2.2c)

where di(x)∀i ∈ {1, 2, 3, 4, 5} are the lengths of the springs in the deformed configuration. The
derivation of these can be found in appendix A. Here, we consider the dynamics of the
system in its linear modal space, where the equations of motion are linearly uncoupled. The
modeshape (φn) and natural frequency (ωn) of the nth mode of the underlying linear system are

computed by solving the eigenproblem
(
K − ω2

nM
)
φn = 0. After applying the transform x =Φq

and premultiplying by ΦË, equation (2.1) can be rewritten as

Üq + Λq + f(q) = F, (2.3)

where Φ is the matrix containing the mass-normalised modeshapes1 in its columns, such that
ΦËMΦ = I, Λ =ΦËKΦ is the diagonal matrix containing the corresponding squares of the natural
frequencies along its leading diagonal, and F =ΦËFx and f(q) =ΦËfx(Φq) are, respectively, the
vectors of external and nonlinear restoring forces in the modal space.

For this motivating example, the physical parameters of the system are set to
the following values: m = 1 kg, `0 = 1 m, k1 = 1000 N m−1, k2 = 10 N m−1, k3 = 1000 N m−1,
k4 = 1 N m−1, k5 = 21.2 N m−1. Note that the horizontal grounding springs (k1 and k3) are
1Note that modeshapes have the same units as the physical displacement vector, such that all modal quantities are
dimensionless.
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Figure 2: Quasi-static modal response of the 4-DOF oscillator, plotted against (a) the static force
applied in the first mode and (b) the resulting response of the first mode.

significantly stiffer than the vertical grounding ones, which creates a dichotomy between the
natural frequencies of the first two modes (ω1 = 1.0 rad s−1, ω2 = 4.6 rad s−1), and those of the
other two modes (ω3 = 31.6 rad s−1, ω4 = 31.9 rad s−1). This system aims to emulate, in a highly
simplified manner, the slow/fast dynamics that characterise the low-frequency transverse modes
and high-frequency in-plane modes in plate- or beam-like structures.

Firstly, we consider the quasi-static behaviour of the system when only the first mode is forced
directly. We numerically solve the static equations Λq + f(q) = F for q, for a series of load cases
where F1 ∈ [−3,+3] and Fn = 0∀n ∈ {2, 3, 4}, where Fn denotes the nth element in F. Figures 2a
and 2b show the quasi-static modal response of the system against the static force applied to the
first mode, and against the corresponding response of the first mode, respectively. In reduced-
order modelling methods such as the ICE(-IC) [31,35], this dataset, or more commonly a subset
thereof, is used to approximate the functions describing the nonlinear stiffness of the reduced
mode(s), and sometimes the quasi-static relationship between the condensed modes and the
reduced mode(s). Specifically, the latter task is carried out only for a small set of high-frequency
in-plane (or membrane) modes, for which the inertial forces are assumed to be small relative to
the internal restoring forces. Here, we generalise this approach by treating all condensed modes
equally, irrespective of their natural frequency or characteristics of their modeshapes. We denote
the quasi-static relationship between the nth mode and the reduced mode using the function gn,
and approximate it as a Kth-order polynomial, i.e.

gn(q1) =
K∑
k=2

B(n)
k

qk1 , ∀n ∈ {2, 3, 4} , (2.4)

where the coefficients B(n)
k

are identified via least-squares regression based on the static solution
dataset, i.e. fitting to the curves shown in figure 2b.

Figure 3a shows the first backbone curve of the 4-DOF oscillator, computed according to
equations (2.1) and (2.2) (with Fx = 0) using the MATLAB-based numerical continuation toolbox
Continuation Core (COCO) [13]. The branch emerging near Ω = 1.55 rad s−1 corresponds to a 1:3
internal resonance between the first and second modes. Figure 3b shows the time history of the
modal response of the system (solid black lines), for three different NNMs associated with the first
backbone curve, which are represented by red dots in figure 3a and correspond to fundamental
response frequencies of 1.01 rad s−1, 1.39 rad s−1 and 1.53 rad s−1, respectively. The quasi-static
response of modes 2-4 is computed by evaluating the functions gn(q1) during the NNM motion—
this is represented by dash-dotted lines in figure 3b. The difference between the dynamic and the
quasi-static response of each mode, i.e. qn − gn(q1), is represented by dashed blue lines. This may
be considered as the error arising from the quasi-static approximation/implicit condensation.

It can be seen that, as expected, the quasi-static approximation is sufficiently accurate when
applied to the high-frequency modes, as qn ≈ gn(q1), ∀n ∈ {3, 4} , ∀t, ∀Ω. However, in the case of
the second, low-frequency mode, the quasi-static approximation is initially moderately accurate
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Figure 3: (a) First backbone curve of the 4-DOF oscillator, shown in the projections of the
maximum amplitudes of the first two modes, Q1 and Q2, against the response frequency, Ω.
(b,c,d) Three nonlinear normal modes of the system, corresponding to fundamental response
frequencies of 1.01 rad s−1, 1.39 rad s−1 and 1.53 rad s−1, respectively, and represented by red dots
on the backbone curves. These are plotted as modal displacement, qn, against time, t (solid black
lines). The dash-dotted red, purple and green lines show the quasi-static component of modes
2, 3 and 4, respectively, and the dashed blue lines show the corresponding error, qn − gn(q1),
∀n = {2, 3, 4}.

near the first linear natural frequency, but becomes increasingly inaccurate as the system
approaches internal resonance. Interestingly, for all NNM solutions, the error arising from this
approximation appears to be a single-harmonic signal of frequency 3Ω. This suggests that the
response of each condensed mode may be naturally decomposed into two parts: a component that
is quasi-statically coupled to the reduced mode(s), and a component that is dynamically independent
of the reduced mode(s). In the next section, we exploit this idea to show how the existence
of dynamic interactions can be predicted, and discuss how this is fundamentally relevant to
reduced-order modelling.
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3. Predicting dynamic interactions

(a) Derivation
We start by considering the semi-discretised equations of motion of a conservative, linearly
elastic, geometrically nonlinear structure, which are typically obtained through a finite element
procedure. As before, these can be written as a series of N second-order ordinary differential
equations in the form

MÜx +Kx + fx(x) = Fx, (3.1a)

Üq + Λq + f(q) = F, (3.1b)

in the physical and mass-normalised linear modal spaces, respectively, where N is the number of
DOFs of the FE model.

Following [35], but included here in condensed form for completeness, we now separate the
modal coordinates into three distinct classes. The first class, denoted by the subscript •r (reduced),
consists of a small set of modes which, for a given set of operating conditions, contain the majority
of the total energy in the system, and are dynamically independent—these modes must form
the basis of the ROM. The number of modes in this class, R� N , dictates the lower limit to the
number of DOFs that an accurate ROM must have. For a single backbone curve in the absence of
any internal resonance, R = 1. The second class, denoted by the subscript •s (static), is comprised
of S� N modes which may contain a substantial fraction of the energy of the full-order system,
yet their response can be approximated as being quasi-statically coupled to the reduced modes.
These modes need not be included as independent DOFs in the reduction basis, as their effects
can be incorporated implicitly in the reduced dynamics [30,31,35]. Finally, the third class, denoted
by the subscript •u (unmodelled), contains the remaining U = (N − R − S) modes which are very
weakly coupled to the reduced modes, such that they always contain a negligible amount of
energy under the operating conditions of interest. As such, it is assumed that these modes can be
ignored during the reduction process with negligible loss of accuracy. Using this framework, the
modal equations of motion of the FE model, equation (3.1b), can be rewritten as 2


Üqr

Üqs

Üqu

 +

Λr 0 0
0 Λs 0
0 0 Λu



qr

qs

qu

 +

fr (qr,qs,qu)

fs(qr,qs,qu)

fu(qr,qs,qu)

 =

Fr
0
0

 . (3.2)

Ignoring the third group of weakly-coupled modes, these can be approximated as[
Ür
Üs

]
+

[
Λr 0
0 Λs

] [
r
s

]
+

[
f̂r (r, s)
f̂s(r, s)

]
=

[
Fr
0

]
, (3.3)

where f̂r (r, s) := fr (r, s, 0) and f̂s(r, s) := fs(r, s, 0), such that qr ≈ r, qs ≈ s, qu ≈ u = 0, and
x ≈Φr r +Φss. Equivalently, the kinetic energy of the full-order system, T , can be approximated
as

T(r, s) =
1
2
(Ûr)Ë Ûr +

1
2
(Ûs)Ë Ûs, (3.4)

whilst the potential energy function,V(r, s), is such that

∂V

∂r
=Λr r + f̂r (r, s)

∂V

∂s
=Λss + f̂s(r, s).

(3.5a)

(3.5b)

2Note that, by definition, only the reduced modes have static forces applied during the model reduction procedure, i.e. Fs = 0
and Fu = 0.
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As discussed in [35], when the modes in the second group, s, can be expressed as functions of
the reduced modes, r, i.e. s = g(r), then equation (3.3) can be exactly reduced to

Ür +
(
∂g
∂r

)Ë ∂g
∂r
Ür +

(
∂g
∂r

)Ë ( ∂2g
∂r2
Ûr

)
Ûr + Λr r + f̃r (r) = Fr, (3.6)

where g(r) is an S × 1 vector of quasi-static coupling functions, ∂g/∂r is its S × R Jacobian matrix
and ∂2g/∂r2 is its S × R × R second derivative tensor, and f̃r (r) := f̂r (r, g). Reduced-order models
based on equation (3.6) were found to produce remarkably accurate results for systems where a
clear slow/fast dynamic behaviour can be observed, e.g. between the low-frequency transverse
modes and the highly stiff in-plane modes in thin plates and slender beams.

Here, we aim to broaden the scope of the implicit condensation approach, and seek to
quantify the error introduced by the static condensation. We define this error using the S × 1
time-dependent vector h(t), i.e.

s = g(r) + h. (3.7)

Using equation (3.7), and noting that Ûs = (∂g/∂r)Ûr + Ûh, the Lagrangian of the system, L, can be
expressed as

L(r,h) = T(r, g + h) − V(r, g + h)

=
1
2
(Ûr)Ë Ûr +

1
2
(Ûr)Ë

(
∂g
∂r

)Ë ∂g
∂r
Ûr + (Ûr)Ë

(
∂g
∂r

)Ë
Ûh +

1
2

(
Ûh
)Ë
Ûh −V(r, g + h).

(3.8)

From this, the equations of motion for r and h can be derived using the Euler-Lagrange equation.
This leads to

Ür +
(
∂g
∂r

)Ë ∂g
∂r
Ür +

(
∂g
∂r

)Ë
Üh +

(
∂g
∂r

)Ë ( ∂2g
∂r2
Ûr

)
Ûr

+ Λr r + f̂r (r, g + h) +
(
∂g
∂r

)Ë (
Λs(g + h) + f̂s(r, g + h)

)
= Fr

Üh +
∂g
∂r
Ür +

(
∂2g
∂r2
Ûr

)
Ûr +

(
Λs(g + h) + f̂s(r, g + h)

)
= 0,

(3.9a)

(3.9b)

as shown in appendix B.
Using a Taylor series expansion about s = g, the stiffness expressions in equations (3.9) can be

approximated as

Λr r + f̂r (r, g + h) =Λr r + f̂r (r, g) + B(r)h + O(h2)

Λs(g + h) + f̂s(r, g + h) =Λsg + f̂s(r, g) + C(r)h + O(h2)

=C(r)h + O(h2),

(3.10a)

(3.10b)

where

B(r) =
∂f̂r (r, s)
∂s

�����
s=g

C(r) =Λs +
∂f̂s(r, s)
∂s

�����
s=g

.

(3.11a)

(3.11b)

Note that, by definition, Λsg + f̂s(r, g) = 0, as g(r) is computed based on the static response of
the system, with a static force only applied to the reduced modes (i.e. Fs = 0). Substituting
equations (3.10) into equations (3.9), and noting that B +

(
∂g/∂r

)Ë C = 0 as shown in appendix C,
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leads to

Ür +
(
∂g
∂r

)Ë ∂g
∂r
Ür +

(
∂g
∂r

)Ë ( ∂2g
∂r2
Ûr

)
Ûr + Λr r + f̃r (r) = Fr −

(
∂g
∂r

)Ë
Üh + O(h2)

Üh + C(r)h + O(h2) = p(r, Ûr, Ür),

(3.12a)

(3.12b)

where

p(r, Ûr, Ür) = −
∂g
∂r
Ür −

(
∂2g
∂r2
Ûr

)
Ûr. (3.13)

As expected, it can be seen that, when h = 0, equation (3.12a) is equivalent to the reduced
dynamics obtained for the perfectly statically coupled case (equation (3.6)). The additional h-
and Üh-dependent terms that appear on the right-hand side of equation (3.12a) may be considered
as a forcing arising due to the dynamic coupling between r and s. In addition, when the kinetic
energy of the statically coupled modes is negligibly small (i.e. ÛsË Ûs ≈ 0), the g-dependent terms in
equation (3.6) are negligible, and the reduced dynamics can be simply expressed as

Ür + Λr r + f̃r (r) = Fr . (3.14)

As discussed in [35], this more traditional form of the ROM equations of motion is suitable for
structures in which in-plane displacements are limited.

The remainder of this paper demonstrates how the equations of motion for h (equation (3.12b))
may be used to efficiently predict the presence of dynamic coupling between the reduced modes
(r) and the condensed modes (s). This allows features such as internal resonances to be predicted,
and ROMs to be validated without the need for full-order FE simulations.

(b) Use in reduced-order modelling frameworks
The linear properties of the ROM, Λr , Φr and Φs , can be computed directly using the linear
mass and stiffness matrices of the FE model. The reduced nonlinear stiffness functions, f̃r (r), and
the quasi-static coupling functions, g(r), are approximated indirectly in a least-squares manner
using a force-displacement dataset for a series of nonlinear static solutions extracted from the FE
model, as detailed in [32,35]. These are approximated as Kth-order polynomials of the reduced
coordinates. Once the ROM parameters are identified, the reduced backbone curves can be
computed, e.g. using numerical continuation, based on either equation (3.6) or equation (3.14).

Using equation (3.12b), additional insight can now be gained by simulating the error dynamics
for each NNM of the ROM. Given that the static modal coupling is well-captured through the
functions g(r), then, in the absence or near the onset of a dynamic interaction, the error h is
expected to be relatively small such that any nonlinear monomials of h become negligible, i.e.
O(h2) ≈ 0. As such, the linearised version of equation (3.12b) may be considered, which can be
solved efficiently using, for example, the harmonic balance method [1]. To this end, the S × S
matrix containing the linear coefficients of h must be approximated as functions of r. As with f̃r (r)
and g(r), these can be computed based on least-squares polynomial regression. In this case, the
tangent stiffness matrix, Ktan, must be extracted for each nonlinear static load case, in addition to
the vectors of applied forces and resulting displacement, which are needed for the standard ICE(-
IC) method. The coefficients of each function in C(r) are then computed using the

{
r,ΦËsKtanΦs

}
dataset evaluated at each load case. The practical implications of this are considered later in §5,
where the proposed techniques are demonstrated using the commercial FE software Abaqus.

Once these functions are approximated, then the matrix C, as well as the vector on the right-
hand side of equation (3.12b), p, can be evaluated during a periodic solution of the ROM. These
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can then be expressed as summations of sinusoidal components, i.e.

Ci j = a(i j)0 +

Nh∑
n=1

[
a(i j)n cos (nωt) + b(i j)n sin (nωt)

]
pi = α

(i)
0 +

Nh∑
n=1

[
α
(i)
n cos (nωt) + β(i)n sin (nωt)

]
,

(3.15a)

(3.15b)

where Nh is the number of harmonics, and a(i j)n , α(i)n ∀n ∈ [0, Nh] ∩ Z, and b(i j)n , β(i)n ∀n ∈ [1, Nh] ∩ Z,
are coefficients which can be identified via a discrete Fourier transform for each element in C and
p, during an NNM motion with fundamental response frequency ω. Similarly, each element in h
can be expressed as a sum of its Fourier components, i.e.

hi = A(i)0 +

Nh∑
n=1

[
A(i)n cos (nωt) + B(i)n sin (nωt)

]
Ühi = −

Nh∑
n=1

(nω)2
[
A(i)n cos (nωt) + B(i)n sin (nωt)

]
.

(3.16a)

(3.16b)

Using equations (3.15) and (3.16), the terms in equation (3.12b) can be expanded, the coefficients
of like harmonic terms on either side of the equation equated, and the harmonic amplitudes of h
computed by solving the resulting set of simultaneous linear equations. This can be expressed as

ch =Υ−1cp, (3.17)

where ch and cp are vectors containing the harmonic coefficients of h and p, respectively, and Υ

is a matrix which can be algorithmically populated with the harmonic coefficients of C. Further
details are given in appendix D. Finally, the computed amplitudes in ch are used to estimate the
time history of the error corresponding to each condensed mode during a periodic motion of the
ROM (equation (3.16a)).

As discussed in §1, the main limitation of the ICE(-IC) method remains the fact that it relies on a
slow/fast decomposition between the reduced and condensed modes. With the method proposed
herein this limitation is overcome, as the condensed basis can now be formed using any modes,
irrespective of their natural frequency. This method can be used to monitor the error associated
with the static condensation, and thus identify if/when a condensed mode becomes resonant.
This would suggest the quasi-static coupling assumption is no longer appropriate for the mode
in question, and instead the mode must be included as an independent DOF in the reduction
basis (Φr ). Equivalently, this method can be used as a tool for validating ROMs, by ensuring that
the component of the condensed modes that is dynamically independent of the reduced modes
(i.e. h) remains sufficiently small for all operating conditions of interest.

4. Application to the 4-DOF oscillator

(a) Single-mode ROM results
We now revisit the 4-DOF oscillator considered in §2, in order to demonstrate our proposed
method. We first compute a 7th-order (K = 7), single-DOF ROM of the first mode using the
ICE-IC method (equation (3.6)), while the remaining three modes are included in the statically
condensed basis, i.e. Φr =

[
φ1

]
, Φs =

[
φ2 φ3 φ4

]
, and Φu is unpopulated as no modes are

unmodelled. The dataset used to calibrate the ROM consists of a series of static solutions where
the the static force applied to the first mode is equally spaced between −3 and +3. An example
of the fitting procedure for the reduced nonlinear stiffness function (f̃r (r)) and the quasi-static
coupling functions (g(r)) is shown in figures 4a and 4b, respectively.
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Figure 4: Examples of the calibration procedure for the single-DOF ROM of the oscillator:
(a) reduced nonlinear stiffness, (b) quasi-static coupling, and (c,d) tangent stiffness matrix
components, all approximated as 7th-order polynomial functions of the reduced coordinate.

Figure 5: Backbone curve of the 7th-order, single-DOF ICE-IC ROM of the oscillator (blue lines).
The backbone curve of the ROM when the static condensation error is taken into account, using
our proposed method, is represented by red lines. The first backbone curve of the full-order
system is also shown for reference (dashed grey lines).

Figure 5 shows the backbone curve of the computed single-DOF ROM, in the projection of
modal amplitudes against fundamental response frequency (blue lines). Note that modes 2-4
are not modelled directly, but their response is approximated using the quasi-static coupling
functions. It can be seen that the primary response of the reduced mode, and that of the high-
frequency condensed modes, can be accurately predicted by the ROM. As expected, however,
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the internal resonance near Ω = 1.6 rad s−1 cannot be captured. This is due to the dynamic energy
transfer between modes that takes place during an internal resonance—an effect that the static
condensation approach is unable to capture.

(b) Internal resonance prediction
Using equation (3.12b) and the harmonic balance method, as described in §3(b) and appendix D,
the error associated with the static condensation of each mode can now be estimated. To achieve
this, the elements of the tangent stiffness matrix corresponding to the condensed modes, i.e.
Λtan,s =Φ

Ë
sKtanΦs , must be approximated as functions of the reduced coordinates3. Similar to

the approximation of the reduced nonlinear stiffness functions and the quasi-static coupling
functions, these are computed in a least-squares manner, based on the same set of full-order
nonlinear static solutions. Examples of this are shown in figure 4c,d.

The improved prediction of the reduced backbone curves, which takes into account the
approximated error arising from the static condensation (with Nh = 7), is now represented by
red lines in figure 5. From this it can be seen that, as the response frequency increases, the
magnitude of h2 relative to g2 becomes increasingly large until Ω ≈ 1.6 rad s−1, before it rapidly
decreases again4. This singularity-type behaviour is caused by the third harmonic component of
h2, and it indicates that a dynamic interaction between the first and second modes exists, without
the need for simulating the dynamics of both modes simultaneously. This suggests that, in this
region, a single-mode ROM is no longer appropriate, and the second mode must be included
in the reduction basis. Note that, when considering FE models using commercial packages, the
backbone curves of the full-order model cannot readily be computed. As such, significant features
of the system, such as internal resonances, can often be overlooked during model reduction. With
our proposed method, the existence of such dynamic interactions can be predicted, without the
need for expensive full-order simulations.

(c) Two-mode ROM results
We now compute a two-DOF, 7th-order ROM (Φr =

[
φ1 φ2

]
, Φs =

[
φ3 φ4

]
) using the same

procedure. The dataset used to calibrate the ROM consists of a series of static load cases where
one or both of the reduced modes are forced directly—the amplitude of the maximum force
applied to either mode is |F1 | = 3, as before, and |F2 | = 8. The computed backbone curves are
shown in figure 6. The ROM is now able to accurately capture the dynamic behaviour of the full-
order system for the whole range of frequencies considered. In this case, the additional treatment
proposed herein acts as a tool for validating the ROM, as it indicates that the static condensation
approximation is sufficiently accurate—this is determined by observing that the contribution
from h is negligible for both condensed modes. In the next section, we demonstrate the proposed
method using a finite element model of a clamped-clamped beam.

5. Application to a finite element model
We now consider a geometrically nonlinear model of a clamped-clamped beam, constructed using
the commercial FE software Abaqus, with the Abaqus2Matlab [45] toolbox used for pre- and post-
processing. The beam model is identical to the one studied in [35]. It has a length of 300 mm and
a rectangular cross-section of 25 mm × 1 mm, and is made of steel with a Young’s modulus of
205 GPa, mass density of 7800 kg m−3 and Poisson’s ratio 0.3. The mesh consists of 120 shear
deformable, three-node quadratic beam elements (B32), resulting in 1434 DOFs.

3Note that Λ :=Λtan(q = 0).
4Note that, in the region where |h2 | is relatively large, the smallness assumption is violated, resulting in mispredictions of the
static condensation errors in modes 3 and 4. Nevertheless, the early growth of h2 indicates the onset of a dynamic interaction,
whilst the exact modal vibration amplitudes are of little importance.
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Figure 6: First backbone curve of the 7th-order, two-DOF ICE-IC ROM of the oscillator (blue
lines). The backbone curve of the ROM when the static condensation error is taken into account,
using our proposed method, is represented by red lines. The first backbone curve of the full-order
system is also shown for reference (dashed grey lines).

Figure 7: (a) Backbone curve of the quintic single-DOF ROM of the beam (top), and
the corresponding error associated with the static condensation of each mode (bottom).
(b) Comparison between the periodic responses predicted by the ROM and the responses of the
FE model, for 10 different sets of initial conditions which correspond to the black dots on the
backbone curve.

We compute a quintic5 single-DOF ROM of the first (bending) mode using the ICE method,
and include modes 3, 6, 72 and 129 in the condensed basis—these correspond to the second and
third symmetric bending modes, and the first and second symmetric axial modes, respectively.6

5Note that a quintic ROM is adopted, as it was found to be robust with respect to the scaling of the static forces used to
calibrate it. This suggests that, for the response range considered here, a higher truncation order is not necessary.
6Here, the condensed basis was chosen based on the relative amplitude of each mode evaluated at the static solutions, as
discussed in [35]. For more complex structures, more intricate methods of selecting good candidate modes for the condensed
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Figure 8: (a) First backbone curve of the quintic two-DOF ROM of the beam (top), and
the corresponding error associated with the static condensation of each mode (bottom).
(b) Comparison between the periodic responses predicted by the ROM and the responses of the FE
model, for 3 different sets of initial conditions which correspond to the black dots on the backbone
curve.

The static solution dataset used to calibrate the ROM consists of four load cases where the static
force applied to the first mode is F1 = {−45,−22.5,+22.5,+45}, resulting in a maximum static
transverse deflection of 1.13 mm at the beam midspan. For this model, the computation time for
each load case is about 25 seconds on a standard computer. As before, the fitting procedure for
the reduced nonlinear stiffness functions, the quasi-static coupling functions, and the tangent
stiffness functions for the condensed modes,7 is carried out in a least-squares manner.

Figure 7a shows the backbone curve of the single-DOF ROM (top), as well as the corresponding
normalised amplitude of the error in the condensed modes (bottom). As the backbone curves of
the full-order FE model cannot readily be computed, and thus cannot be directly compared to
those of the ROM, we assess the accuracy of the ROM by comparing a set of reduced NNMs to
the dynamic response of the FE model when the corresponding initial conditions are applied, for
a wide range of response frequencies. The initial conditions are enforced in the form of initial
applied modal forces, as proposed in [47]. The periodic orbits of the ROM are compared to the FE
response in the time domain, as shown in figure 7b. From this, it can be seen that the ICE method
can provide accurate results for the reduction of the clamped-clamped beam model, even with a
single-mode ROM—this agrees with observations seen in the literature [20,31,32].

Interestingly, while the standard ROM results, as shown in 7b, indicate good agreement with
the full-order model, the results obtained from the error-monitoring treatment suggest that there
is a strong dynamic interaction between the first and third modes of the beam near Ω = 410 rad s−1,
which the single-mode ROM is unable to capture. Note that, whilst the h components of modes
6, 72 and 129 are also large, the component of mode 3 is the largest, and begins its rapid growth
at a lower frequency than the other modes. As such, mode 3 is treated as the candidate for a
dynamic interaction. Specifically, this is associated with the amplitude of the fifth harmonic of the
third mode. This result points to the existence of a 1:5 internal resonance between the first and
third modes—a feature of flat clamped-clamped beams which has been widely observed in the
literature, e.g. [19,20].

basis may be necessary—this remains a topic for future investigation. The reader is referred to [46] for a recent work on
mode-selection criteria based on the theory of spectral submanifolds.
7For this additional step, the tangent stiffness matrix of the full-order model must be evaluated at each static solution—this
can be readily extracted from the FE package.
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Figure 9: Plot of the periodicity error of the FE model, for different sets of initial conditions given
by the single-DOF (blue crosses) and two-DOF (red circles) ICE ROMs of the clamped-clamped
beam.

In order to verify this observation, we compute a quintic two-DOF ICE ROM of the beam,
with Φr =

[
φ1 φ3

]
and Φs =

[
φ6 φ72 φ129

]
. The calibration dataset consists of 24 load cases,

where the maximum force applied in each reduced mode is F1 = 45 and F3 = 360. The resulting
backbone curve is shown in figure 8a. It can be seen that, the ROM now exhibits a 1:5 internal
resonance, whilst the error predicted using our proposed method remains relatively small. As
before, the accuracy of the reduced internally-resonant NNMs is verified by comparing them to
the corresponding set of responses of the full-order model (figure 8b).

It should be noted that, in addition to enabling the internal resonance to be modelled, the two-
DOF ROM also leads to more accurate response predictions on the primary backbone curve. We
quantify the accuracy of each reduced NNM using the periodicity metric ε , as defined in [48], i.e.

ε =
‖xT − x0‖

‖x0‖
, (5.1)

where x0 is the displacement vector of the FE model at t = 0, which is imposed as an initial
condition based on the reduced NNM, and xT is the displacement vector of the FE model after one
period. A smaller ε value indicates a response which is closer to being periodic, and thus a more
accurate ROM. The computed periodicity values for different NNMs on the primary backbone
curves, both for the single- and two-DOF ROMs, are shown in figure 9. The results suggest that the
third mode of the FE model becomes increasingly important for response frequencies higher than
∼ 420 rad s−1. This is in qualitative agreement with the results shown in 7a, and further confirms
the validity of the error-approximation procedure.

6. Conclusion
In this paper, we have shown how the existence of internal resonances may be predicted in
a computationally efficient manner during model order reduction of geometrically nonlinear
structures. Specifically, we have used a simple oscillator as a motivating example to show how
each modal coordinate in a nonlinear system may be represented as the sum of a component
that is quasi-statically coupled to a small number of coordinates, which must form the reduction
basis in a ROM, and a component that is dynamically independent of them. The latter part
may be considered as the error arising from static condensation, which is the concept on which
methods such as the Implicit Condensation and Expansion rely, and is typically applied to
structures characterised by slow/fast dynamics. We have employed the harmonic balance method
to approximate the error dynamics independently of the reduced dynamics, thus enabling any
dynamic interaction between the reduced and condensed modes to be identified. This can be
achieved in a very computationally efficient manner, as a linear approximation of the error
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dynamics is considered. We have demonstrated the proposed method using the simple oscillator,
as well as a finite element model of a clamped-clamped beam, and shown how the existence of a
1:3 and a 1:5 internal resonance, respectively, could be predicted based on single-mode ROMs.

The significance of this development is twofold. Firstly, the method presented herein enables
the identification of the modes which must form the reduction basis, without relying on
knowledge of the full-order dynamics. Secondly, this method can serve as a computationally
cheap validation of ROMs without the need for full-order simulations, which can sometimes be
infeasible to obtain. This removes the need for cumbersome trial-and-error processes and case-
by-case treatment guided by empirical rules, and is a key step towards developing reduced-order
modelling methods which can be applied systematically to a broad range of structures.
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A. Derivation of the equations of motion of the 4-DOF oscillator
The potential energy of spring i is given by

Vi =
1
2

ki(di − `0)
2, (A.1)

where di is its length in the deformed configuration, as defined in equation (2.2c). The Lagrangian
of the system can be expressed as

L = T(Ûx) − V(x) =
1
2

m
(
Ûy2
1 + Ûy

2
2 + Ûx

2
1 + Ûx

2
2

)
−

1
2

5∑
i=1

ki (di − `0)
2 , (A.2)

where T denotes the kinetic energy of the system. Applying the Euler-Lagrange equation,

d
dt

(
∂L

∂ Ûx

)
−
∂L

∂x
= Fx, (A.3)

and after some algebraic manipulation, leads to equations (2.1) and (2.2).

B. Derivation of the reduced and error dynamics
Using equation (3.8), the partial derivatives of L with respect to Ûr, Ûh, r and h can be written,
respectively, as

∂L̂

∂Ûr
= Ûr +

(
∂g
∂r

)Ë ∂g
∂r
Ûr +

(
∂g
∂r

)Ë
Ûh

∂L̂

∂ Ûh
=
∂g
∂r
Ûr + Ûh

∂L̂

∂r
=

(
∂g
∂r

)Ë ( ∂2g
∂r2
Ûr

)
Ûr +

(
∂2g
∂r2
Ûr

)Ë
Ûh −

(
Λr r + f̂r (r, g + h)

)
−

(
∂g
∂r

)Ë (
Λs(g + h) + f̂s(r, g + h)

)
∂L̂

∂h
= −

(
Λs(g + h) + f̂s(r, g + h)

)
.

(B.1a)

(B.1b)

(B.1c)

(B.1d)
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Differentiating equations (B.1a) and (B.1b) with respect to time gives

d
dt

(
∂L̂

∂Ûr

)
= Ür +

(
∂g
∂r

)Ë ∂g
∂r
Ür + 2

(
∂g
∂r

)Ë ( ∂2g
∂r2
Ûr

)
Ûr +

(
∂2g
∂r2
Ûr

)Ë
Ûh +

(
∂g
∂r

)Ë
Üh

d
dt

(
∂L̂

∂ Ûh

)
=
∂g
∂r
Ür +

(
∂2g
∂r2
Ûr

)
Ûr + Üh.

(B.2a)

(B.2b)

The equations of motion for r and h can be derived using the Euler-Lagrange equation, i.e.

d
dt

(
∂L

∂Ûr

)
−
∂L

∂r
= Fr

d
dt

(
∂L

∂ Ûh

)
−
∂L

∂h
= 0.

(B.3a)

(B.3b)

Substituting equations (B.1) and (B.2) into equations (B.3) leads to equations (3.9).

C. Relationship between B and C
Starting from equation (3.3), it can be seen that the quasi-static coupling functions, g(r), are
defined such that the following equation is satisfied:(

Λss + f̂s(r, s)
)���

s=g
= 0. (C.1)

Taking the partial derivative of equation (C.1) with respect to r, leads to

∂f̂s(r, s)
∂r

�����
s=g

+

(
Λs +

∂f̂s(r, s)
∂s

)�����
s=g

∂g
∂r
= 0. (C.2)

Substituting equation (3.5b), i.e. f̂s(r, s) = ∂V/∂s − Λss, and equation (3.11b), i.e. C(r) =Λs + ∂f̂s/∂s|s=g,
into equation (C.2) leads to

∂2V

∂r∂s

�����
s=g

+ C
∂g
∂r
= 0

(
∂2V

∂s∂r

)Ë�����
s=g

+ C
∂g
∂r
= 0

(C.3)

Finally, substituting equation (3.5a), i.e. (∂V/∂r) =Λr r + f̂r (r, s), and equation (3.11a), i.e.
B(r) = ∂f̂r/∂s|s=g, into equation (C.3), gives(

∂f̂r (r, s)
∂s

)Ë�����
s=g

+ C
∂g
∂r
= 0

BË + C
∂g
∂r
= 0,

(C.4)

This is equivalent to B +
(
∂g/∂r

)Ë C = 0, since C =CË.
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D. Estimation of the harmonic coefficients of h
Using equations (3.15a) and (3.16), and neglecting harmonics higher than Nhω, the left-hand side
of equation (3.12b) can be expressed as

Ühi +
S∑
j=1

Ci jhj =

S∑
j=1

c(i j)0 +

Nh∑
k=1

cos (kωt)
−(kω)2 A(i)

k
+

S∑
j=1

c(i j)
k


+

Nh∑
k=1

sin (kωt)
−(kω)2B(i)

k
+

S∑
j=1

d(i j)
k

 ,
(D.1)

where

c(i j)0 = a(i j)0 A(j)0 +
1
2

Nh∑
n=1

(
a(i j)n A(j)n + a(i j)n B(j)n

)
c(i j)
k
= a(i j)0 A(j)

k
+ a(i j)

k
A(j)0 +

1
2

k−1∑
n=1

(
a(i j)
k−n

A(j)n − b(i j)
k−n

B(j)n
)
+

1
2

Nh−k∑
n=1

(
a(i j)
n+k

A(j)n + b(i j)
n+k

B(j)n
)

+
1
2

Nh∑
n=k+1

(
a(i j)
n−k

A(j)n + b(i j)
n−k

B(j)n
)
, ∀k ∈ [1, Nh] ∩ Z

d(i j)
k
= a(i j)0 B(j)

k
+ b(i j)

k
A(j)0 +

1
2

k−1∑
n=1

(
a(i j)
k−n

B(j)n + b(i j)
k−n

A(j)n
)
+

1
2

Nh−k∑
n=1

(
−a(i j)

n+k
B(j)n + b(i j)

n+k
A(j)n

)
+

1
2

Nh∑
n=k+1

(
a(i j)
n−k

B(j)n − b(i j)
n−k

A(j)n
)
, ∀k ∈ [1, Nh] ∩ Z.

(D.2a)

(D.2b)

(D.2c)

Using equations (D.1) and (3.15b), the expressions on either side of equation (3.12b) can be directly
compared. The coefficients of like harmonic terms are equated and expressed in the form

Υch = cp, (D.3)

where the S(2Nh + 1) × 1 vectors ch and cp contain the harmonic amplitudes of h and p
respectively, i.e.

c(i)
h
=

[
A(i)0 A(i)1 B(i)1 A(i)2 B(i)2 . . . A(i)

Nh
B(i)
Nh

]
ch =

[
c(1)
h

c(2)
h

. . . c(S)
h

]Ë
c(i)p =

[
α
(i)
0 α

(i)
1 β

(i)
1 α

(i)
2 β

(i)
2 . . . α

(i)
Nh

β
(i)
Nh

]
cp =

[
c(1)p c(2)p . . . c(S)p

]Ë
.

(D.4a)

(D.4b)

(D.4c)

(D.4d)

The S(2Nh + 1) × S(2Nh + 1)matrixΥ
(
a(i j)n , b(i j)n

)
is populated according to equation (D.2). Finally,

the harmonic coefficients of h are computed by inverting equation (D.3), i.e. ch =Υ−1cp.
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