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Uncertainty aware protein-level quantification
and differential expression analysis of
proteomics data with seaMass

Alexander M Phillips, Richard D Unwin, Simon J Hubbard and Andrew W Dowsey

Abstract
seaMass is an R package for protein-level quantification, normalisation and dif-
ferential expression analysis of proteomics mass spectrometry data after peptide
identification, protein grouping and feature-level quantification. Using the concept
of a blocked experimental design, seaMass can analyse all common discovery pro-
teomics paradigms including label-free (e.g. Waters Progenesis input), SILAC (e.g.
MaxQuant input), isotope labelling (e.g. SCIEX ProteinPilot iTraq and Thermo Pro-
teomeDiscoverer TMT input) and data-independent acquisition (e.g. OpenSWATH-
PyProphet input), and is able to scale to studies with hundreds of assays or more.
By utilising hierarchical Bayesian modelling, seaMass assesses the quantification
reliability of each feature and peptide across assays so that only those in consensus
influence the resulting protein group quantification strongly. Similarly, unexplained
variation in each individual assay is captured, providing both a metric for qual-
ity control and automatic down-weighting of suspect assays. To achieve this, each
protein group-level quantification outputted by seaMass is accompanied by the stan-
dard deviation of its posterior uncertainty. seaMass integrates a flexible differential
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expression analysis subsystem with false discovery rate control based on the popu-
lar MCMCglmm package for Bayesian mixed-effects modelling, and also provides
uncertainty-aware principal components analysis. We provide a description for us-
ing seaMass to perform an end-to-end analysis using a real dataset associated with
a published clinical proteomics study.

Key words
quantitative proteomics, protein quantification, Bayesian modelling, differen-
tial expression analysis, false discovery rate control

1 Introduction

seaMass (https://github.com/biospi/seamass) is an R package which provides a com-
plete protein quantification, normalisation and differential expression pipeline for
discovery mass spectrometry data, after prior identification and feature-level quan-
tification. In particular, it is expected that protein grouping has been performed,
so that each “protein” to be quantified represents a “protein group” of accessions
that cannot be unambiguously identified given the peptide identification evidence.
seaMass consists of three main components: seaMass-sigma, which performs raw
protein group-level quantification from peptide and feature-level mass spectrometry
data; seaMass-theta, which performs protein group-level normalisation across assays
(label-free runs or iTraq/TMT/SILAC channels); and seaMass-delta, which performs
differential expression analysis and false discovery rate (FDR) estimation. All three
of these procedures use Bayesian hierarchical mixed-effects modelling in order to
estimate the uncertainty of the estimated quantities including: peptide and protein
group quantifications; normalisation effects; and differential expression fold change
estimates.

The mixed-effects modelling employed by seaMass-sigma includes so-called
“random effects” to account for variability at multiple levels: the variability of
peptides across samples (for example, due to poor or variable digestion) and the
variability of measurements across assays (due to contamination or matrix, for ex-
ample). seaMass-sigma wraps this model within an empirical Bayes procedure that
borrows strength across the population of protein groups: it uses those protein groups
with a large number of peptides and measurements to estimate informative prior dis-
tributions for the distribution of the variance of peptides and features across all
protein groups.

By estimating the uncertainty of each peptide, each peptide’s contribution to
the final protein group quantification estimate can be weighted according to their
inferred variance, such that highly variable peptides have a smaller contribution
to the overall protein group quantification. Similarly, where peptides are observed
via multiple features each feature has its variance estimated so that more variable
features contribute less to the peptide-level quantifications.
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This quantification uncertainty is propagated from the feature-level through the
peptide- and protein group-levels up to the differential expression estimates. seaMass
wraps external methods which leverage this additional uncertainty information to
provide robust significance testing.

seaMass also captures assay-specific variation not explained by variation at the
peptide or feature levels. In this way unreliable assays are identified and flagged
during processing, and their contribution towards differential expression analysis
and principal components analysis can be automatically down-weighted.

The model fitting is performed with Bayesian Markov chain Monte Carlo
(MCMC) sampling using theMCMCglmm [1] R package.MultipleMCMC “chains”
are fit for each protein group. False Discovery Rate (FDR) estimation is similarly
provided by the ashr [2][3] R package.

2 Material

2.1 Data Type

The input data generally consists of tabulated data in either comma-separated or
tab-separated values from a number of different preprocessing software (see Sub-
heading 2.2).

2.2 Data Format

seaMass has functions for reading data from each of the following formats:

1. SCIEX ProteinPilot
2. Thermo ProteomeDiscoverer
3. Waters Progenesis QI
4. MaxQuant [4]
5. OpenSWATH

For ProteinPilot, seaMass requires the PeptideSummary.txt file output by Pro-
teinPilot. For ProteomeDiscoverer, seaMass requires the PSMs.txt file output by
ProteomeDiscoverer. For data output by the ProgenesisQI software, seaMass requires
the pep_ion_measurements.csv file. For data output by MaxQuant, seaMass re-
quires both the evidence.txt and proteinGroups.txt files. For OpenSWATH,
seaMass takes in either the output of PyProphet or TRIC. Import routines for other
formats can be implemented on request.
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2.3 Hardware Requirements

seaMass can be run on either a desktop computer or on a high-performance com-
puting cluster. This tutorial focuses on running seaMass on a desktop machine. The
number of samples to be analysed determines the memory requirements of the soft-
ware; at least 16GB is preferable. Multiple CPU cores can be utilised, though this
will increase the memory footprint.

2.4 Software Requirements

1. Either of Linux, macOS or Windows operating systems.
2. A recent version of the R software; for version 1.0.2.0 of seaMass, version 4.0.4

or higher of R is required.

2.5 Software Installation

To install seaMass, enter the following into the R console:

> install.packages("devtools")
> devtools::install_github("biospi/seaMass",

ref = "v1.0.2.0", dependencies = TRUE)

which will install the devtools R package before downloading and installing seaMass
v1.0.2.0 and its dependencies (see Note 1). The following R packages should be
installed in this process:

ashr, data.table, bit64, doRNG, doSNOW, egg, emmeans,
extraDistr, FactoMineR, filelock, fitdistrplus, fst, ggplot2,
ggrepel, gridExtra, igraph, MCMCglmm, plotly, rmarkdown,
R.utils, utf8, uuid, zip

Additionally, to download the example dataset used in this tutorial, the osfr
package is required, which can be installed by running:

> install.packages("osfr")

3 Methods

This section details the typical workflow of using seaMass to perform analysis of a
quantitative proteomics dataset by walking through the process using data associated
with a clinical study on Alzheimer’s disease (AD) progression, which was first
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analysed using an earlier version of seaMass in [5] (see Note 2). Tissue samples
frommultiple brain regions were collected from the brains of eighteen subjects: nine
AD-affected patients (S1–S9) and nine age- and sex-matched controls (S10–S18).
For each brain region a pooled reference sample, R, was created by mixing equal
amounts of each of the eighteen samples together. Each region was processed as a
separate experiment of three iTRAQ 8-plexes. Mass spectrometry analysis was then
performed using a SCIEX QSTAR Elite Q-TOF instrument. Peak extraction, peptide
identification, protein grouping and iTRAQ reporter quantification was performed
using ProteinPilot v4.0. The PeptideSummary.txt file from ProteinPilot’s output
provides the quantitative feature-level data which is input into seaMass.

Here, to illustrate the robustness of seaMass, we analyse the middle temporal
gyrus brain region that was excluded from the original publication as the proteomics
data for this region did not pass quality control. Notes throughout this section provide
guidance for how the example data may be substituted for data from other sources.

3.1 Loading seaMass

First, load the seaMass package in R by entering into the R console:

> library(seaMass)

3.2 Data Loading

1. The mass spectrometry data from the Alzheimer’s disease study is openly avail-
able online and can be downloaded using the osfr R package by inputting the
following into the R console:

> osfr::osf_download(osfr::osf_retrieve_file("https://osf.io/vqcgz/"),
conflicts = "skip", verbose = T, progress = T)

which will download the mass spectrometry data for the middle temporal gyrus.
2. For data processed using ProteinPilot, seaMass requires the output file to

perform protein group quantification. We specify the location of the Pep-
tideSummary file and import it into the R environment, before using seaMass’s
import_ProteinPilot function (see Note 3) to extract the feature-level data
into a data frame that seaMass can use for subsequent processing:

> file <- "PeptideSummary_MiddleTemporalGyrus.txt"
> data <- import_ProteinPilot(file)
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3.3 Fractionation

1. For data which has been fractionated, it is necessary to specify which fractions
belong to which runs. Firstly, generate a skeleton run table:

> data.runs <- runs(data)

2. Next, we assign runs to each fraction:

> data.runs$Run[1:68] <- "A"
> data.runs$Run[69:152] <- "B"
> data.runs$Run[153:222] <- "C"

In this instance, fractions 1 through 68 belong to run A, 69 through 152 to run B,
and 153 through 222 to run C.

3. This fractionation information is then merged back to the imported data:

> runs(data) <- data.runs

3.4 Experimental Design

1. We can now create a skeleton design matrix from our data:

> data.design <- new_assay_design(data)

2. The biological sample associated with each assay can optionally be renamed.
The distinction between technical and biological replicates can be made; In this
instance, the pooled sample “R” is assigned to six different assays as six technical
replicates of the same sample. Each of the biological samples S1-S18 are also
assigned to separate assays (see Note 4):
> data.design$Sample <- factor(c(

"R","R","S1","S3","S7","S12","S17","S10",
"R","R","S2","S6","S9","S13","S15","S18",
"R","R","S4","S5","S8","S11","S14","S16"

))

The assays, in this case corresponding to each iTRAQ channel in each of the three
runs, can also be similarly renamed through data.design$Assay (see Note 5).

3. The condition to which each assay belongs is assigned, the levels argument can
be used to determine which conditions are to be compared. Here, we specify that
“Ct” is the first and therefore baseline condition. The pooled reference assays “R”
should also be excluded from differential expression analysis:

> data.design$Condition <- factor(c(
NA,NA,"AD","AD","AD","Ct","Ct","Ct",
NA,NA,"AD","AD","AD","Ct","Ct","Ct",
NA,NA,"AD","AD","AD","Ct","Ct","Ct"

), levels = c("Ct", "AD"))
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4. For experiments where runs are performed in batches or across multiple instru-
ments, it may be desirable to split the assays into multiple “blocks” (see Note
6); for iTRAQ and TMT experiments with multiple runs, seaMass automatically
splits each multiplex out into a separate block.

5. Additional covariates can be added to the experimental design at this stage by
adding additional columns to the data.design table.

6. Finally, “reference weights” can be assigned to specify reference assays. Con-
ventionally, replicated pooled sample assays are used as reference assays in each
block so that protein group quantifications can be standardised in relation to them
for direct comparison across blocks. As seaMass-theta allows for multiple refer-
ence samples per block, to standardise to the average of the two pooled sample
assays in each block, the reference weights are set as:

> data.design$RefWeight <- c(
1,1,0,0,0,0,0,0,
1,1,0,0,0,0,0,0,
1,1,0,0,0,0,0,0

)

For a blocked experimental design where each condition is represented in each
block, seaMass also allows standardisation using a suitable weighted average of
the samples themselves, so that no pooled samples are necessary. For example, to
standardise to the average of the AD and Ct samples (see Note 7):

> data.design$RefWeight <- c(
0,0,1,1,1,1,1,1,
0,0,1,1,1,1,1,1,
0,0,1,1,1,1,1,1

)

7. The complete experimental design can be viewed by typing data.design into
the R console. The complete table for the example dataset is shown in Table 1

3.5 Protein Group Quantification and Normalisation

1. After the initial setup and addition of experimental design, protein group quan-
tification can be performed by running seaMass_sigma, which takes as input
the feature-level data. Optionally, the output directory can be specified using the
path argument. The experimental design table can also be supplied; while not
required at this stage, it will be used to add design metadata to the automatically
generated plots:

> fit.sigma <- seaMass_sigma(
data,
data.design,
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Table 1 Experimental Design Table for the Middle Temporal Gyrus Dataset

Run Channel Assay RefWeight Sample Condition

A 113 R1 1 R <NA>
A 114 R2 1 R <NA>
A 115 S1 0 S1 AD
A 116 S3 0 S3 AD
A 117 S7 0 S7 AD
A 118 S12 0 S12 Ct
A 119 S17 0 S17 Ct
A 121 S10 0 S10 Ct
B 113 R3 1 R <NA>
B 114 R4 1 R <NA>
B 115 S2 0 S2 AD
B 116 S6 0 S6 AD
B 117 S9 0 S9 AD
B 118 S13 0 S13 Ct
B 119 S15 0 S15 Ct
B 121 S18 0 S18 Ct
C 113 R5 1 R <NA>
C 114 R6 1 R <NA>
C 115 S4 0 S4 AD
C 116 S5 0 S5 AD
C 117 S8 0 S8 AD
C 118 S11 0 S11 Ct
C 119 S14 0 S14 Ct
C 121 S16 0 S16 Ct

path = "MiddleTemporalGyrus",
control = sigma_control(nthread = 8)

)

2. After seaMass_sigma is finished, the derived raw protein group quantifications
can be normalised within blocks and standardised across blocks by executing
seaMass_theta :

> fit.theta <- seaMass_theta(
fit.sigma,
norm.groups = top_groups(fit.sigma)

)

The seaMass_theta normalisationmodel derives a normalisation factor for each
assay as to minimise protein group-level variance for the maximum number of
protein groups. For computational efficiency, by default only high-quality protein
groups are examined. If the user has some prior knowledge of the subset of
protein groups to normalise against, this can be specified by supplying a subset
of groups(fit.sigma)$Group to the norm.groups option instead.

3. Configuration of seaMass processing is achieved through the sigma_control
and theta_control objects. On multi-core systems with sufficient amounts of
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RAM, multiple CPU threads can be used; the number of threads can be specified
as the nthread option to sigma_control (see Note 8).

3.6 Protein Group Quantification Output

1. seaMass outputs a set of convenient CSV files of the results in the csv sub-folder
of the output folder "MiddleTemporalGyrus" . Alternatively, results can be
output within R. For instance, a table of normalised protein group quantifications
can be output using:

> proteinQuants <- group_quants(fit.theta)

2. In the resultingdata.frame , seaMass outputs each protein group quantificationm
(the posteriormean) alongwith its uncertaintys (the posterior standard deviation).
Subsequently, these protein group quantifications can be outputted to, for example,
a CSV file:

> write.csv(proteinQuants, file = "my_proteinQuants.csv")

3.7 seaMass-sigma and seaMass-theta Plots Output

seaMass outputs a full HTML report with a rich set of interactive plots as a zip
archive in the output directory (see Note 9). Below, we instead use the R package to
output specific plots. For some of the following examples we will generate the plots
for a single protein group, sp|P09211|GSTP1_HUMAN.

Each violin in the violin plots, such as in Figure 1, spans the 90% interval of
probable values for that variable (the Bayesian 90% credible interval), with the
median value represented as a vertical bar. Left of the median the girth of the violin
reduces in size, representing the local FDR for the variable being that value or less
(posterior probability that the variable is that value ormore), with the violin truncated
at 5% local FDR. Conversely, right of the median the girth also reduces, representing
the local FDR for the variable being that value or more, and is truncated similarly.
Wider violins therefore represent more uncertain estimations.

1. Local FDR violin plots showing the inferred normalisation factors (“assay
means”) and unexplained assay variation (“assay standard deviations”) can be
generated by typing in the R console:

> g1 <- plot_assay_means(fit.theta, output = "ggplot")
> g2 <- plot_assay_stdevs(fit.sigma, output = "ggplot")
> g <- gridExtra::grid.arrange(g1, g2)
> ggplot2::ggsave("assay_means_stdevs.pdf", g,

width = 7, height = 7)
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S12 : C,119 : 3
S11 : C,118 : 3
S7 : C,117 : 3
S3 : C,116 : 3
S1 : C,115 : 3
R : C,114 : 3
R : C,113 : 3

S17 : B,121 : 2
S15 : B,119 : 2
S10 : B,118 : 2

S9 : B,117 : 2
S6 : B,116 : 2
S2 : B,115 : 2
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Fig. 1 Local FDR violin plots of assay means and standard deviations for the example dataset.
Top: The estimated assay means are coloured by the number of quantified spectra for that iTraq
8-plex. It can be seen that the assays in iTRAQ 8-plex run C (block 3) are generally under-exposed
relative to the assays in runs A and B, except for sample S9 in run B which is even more under-
exposed. Bottom: Similarly, the estimated assay standard deviations are shown, together with the
inferred distribution of “explained” peptide standard deviations (green violins) and feature standard
deviations (grey violins). As a rule of thumb, unexplained assay variation should be substantively
lower than explained variation, and both should be less than the fold change of differential expression
you hope to discover. Hence here it illustrates that sample S9 in run B is a significant potential
quality control problem - as a result seaMass-delta will automatically down-weight this assay’s
contribution downstream.

In the above, setting the output option to "plotly" generates interactive plots,
whereas setting it to "ggplot" generates static plots potentially more suitable
for constructing publication figures. The PDF output of this code is shown in
Figure 1.

2. Principal Components Analysis (PCA) plots are generated for each block and
for the experiment as a whole automatically. These PCA plots down-weight
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Fig. 2 Robust Principal Component Analysis plot for the example dataset. Each assay in the exper-
iment appears as an ellipse, coloured by condition. Contours are shown for each assay indicating
the uncertainty in quantifications for that assay. Here it can be seen that the potential issues with
run C and sample S9 are reflected in larger uncertainty ellipses.

poorly quantified assays and protein groups, and are subsequently augmented
with ellipses indicating the 95% and 68% posterior regions of uncertainty in the
principal components for each assay. These can be used to determine whether any
assays exhibit more variation than the others, which would be indicative of issues
in sample preparation for example.

> g <- plot_robust_pca(fit.theta, colour = "Condition",
fill = "Condition", shape = 6, output = "ggplot")

> ggplot2::ggsave("robust_pca.pdf", g,
width = 7, height = 5)

The PDF plot generated for the example data is shown in Figure 2.
3. Plots of the raw and normalised protein group quantifications for any particular

protein group can be generated by running:

> g <- plot_group_quants(fit.theta,
"sp|P09211|GSTP1_HUMAN", output = "ggplot")

> ggplot2::ggsave("group_quants.pdf", g,
width = 7, height = 4)

The PDF plot generated for sp|P09211|GSTP1_HUMAN is shown in Figure 3.
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S14 : C,121 : 3
S12 : C,119 : 3
S11 : C,118 : 3
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S1 : C,115 : 3
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S15 : B,119 : 2
S10 : B,118 : 2
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Fig. 3 Local FDR violin plots of the raw (grey) and normalised (coloured by condition) protein
group-level quantifications for the protein sp|P09211|GSTP1_HUMAN in the example dataset.
Note that the quantifications for run C and sample S9 are more uncertain than the rest, which is
propagated down-stream to the seaMass-delta differential expression analysis phase.

4. We can also visualise how the peptide-level quantification estimates differ from
the protein-level quantifications. seaMass calls these “component deviations”:

> g <- plot_component_deviations(fit.sigma,
"sp|P09211|GSTP1_HUMAN", output = "ggplot")

> ggplot2::ggsave("component_deviations.pdf", g,
width = 10, height = 12)

The plot generated for the protein sp|P09211|GSTP1_HUMAN in the example
Alzheimer’s disease dataset is shown in Figure 4.

5. Plots of the mean intensity and standard deviation of each peptide observed for a
particular protein group can be generated by typing:

> g1 <- plot_component_means(fit.sigma,
"sp|P09211|GSTP1_HUMAN", output = "ggplot")

> g2 <- plot_component_stdevs(fit.sigma,
"sp|P09211|GSTP1_HUMAN", output = "ggplot")

> g <- gridExtra::grid.arrange(g1, g2)
> ggplot2::ggsave("component_means_stdevs.pdf", g,

width = 7, height = 4)

The plot generated for the protein sp|P09211|GSTP1_HUMAN in the example
Alzheimer’s disease dataset is shown in Figure 5.

6. Similar to the peptide-level plots we can also generate violin plots of the feature-
level (“measurement"") mean intensities and standard deviations:
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(8) TLGLYGK,iTRAQ8plex@N−ter... : S17 : B,121 : 2
(8) TLGLYGK,iTRAQ8plex@N−ter... : S15 : B,119 : 2
(8) TLGLYGK,iTRAQ8plex@N−ter... : S10 : B,118 : 2
(8) TLGLYGK,iTRAQ8plex@N−ter... : S9 : B,117 : 2
(8) TLGLYGK,iTRAQ8plex@N−ter... : S6 : B,116 : 2
(8) TLGLYGK,iTRAQ8plex@N−ter... : S2 : B,115 : 2
(8) TLGLYGK,iTRAQ8plex@N−ter... : R : B,114 : 2
(8) TLGLYGK,iTRAQ8plex@N−ter... : R : B,113 : 2

(7) PPYTVVYFPVR,iTRAQ8plex@N... : S17 : B,121 : 2
(7) PPYTVVYFPVR,iTRAQ8plex@N... : S15 : B,119 : 2
(7) PPYTVVYFPVR,iTRAQ8plex@N... : S10 : B,118 : 2

(7) PPYTVVYFPVR,iTRAQ8plex@N... : S9 : B,117 : 2
(7) PPYTVVYFPVR,iTRAQ8plex@N... : S6 : B,116 : 2
(7) PPYTVVYFPVR,iTRAQ8plex@N... : S2 : B,115 : 2
(7) PPYTVVYFPVR,iTRAQ8plex@N... : R : B,114 : 2
(7) PPYTVVYFPVR,iTRAQ8plex@N... : R : B,113 : 2

(6) LSARPK,iTRAQ8plex@N−term... : S18 : A,121 : 1
(6) LSARPK,iTRAQ8plex@N−term... : S16 : A,119 : 1
(6) LSARPK,iTRAQ8plex@N−term... : S13 : A,118 : 1
(6) LSARPK,iTRAQ8plex@N−term... : S8 : A,117 : 1
(6) LSARPK,iTRAQ8plex@N−term... : S5 : A,116 : 1
(6) LSARPK,iTRAQ8plex@N−term... : S4 : A,115 : 1
(6) LSARPK,iTRAQ8plex@N−term... : R : A,114 : 1
(6) LSARPK,iTRAQ8plex@N−term... : R : A,113 : 1

(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S17 : B,121 : 2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S15 : B,119 : 2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S10 : B,118 : 2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S9 : B,117 : 2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S6 : B,116 : 2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S2 : B,115 : 2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : R : B,114 : 2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : R : B,113 : 2

(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S18 : A,121 : 1
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S16 : A,119 : 1
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S13 : A,118 : 1
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S8 : A,117 : 1
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S5 : A,116 : 1
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : S4 : A,115 : 1
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : R : A,114 : 1
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : R : A,113 : 1

(4) EEVVTVETWQEGSLK,iTRAQ8pl... : S17 : B,121 : 2
(4) EEVVTVETWQEGSLK,iTRAQ8pl... : S15 : B,119 : 2
(4) EEVVTVETWQEGSLK,iTRAQ8pl... : S10 : B,118 : 2

(4) EEVVTVETWQEGSLK,iTRAQ8pl... : S9 : B,117 : 2
(4) EEVVTVETWQEGSLK,iTRAQ8pl... : S6 : B,116 : 2
(4) EEVVTVETWQEGSLK,iTRAQ8pl... : S2 : B,115 : 2
(4) EEVVTVETWQEGSLK,iTRAQ8pl... : R : B,114 : 2
(4) EEVVTVETWQEGSLK,iTRAQ8pl... : R : B,113 : 2

(3) DQQEAALVDMVNDGVEDLR,iTRA... : S17 : B,121 : 2
(3) DQQEAALVDMVNDGVEDLR,iTRA... : S15 : B,119 : 2
(3) DQQEAALVDMVNDGVEDLR,iTRA... : S10 : B,118 : 2
(3) DQQEAALVDMVNDGVEDLR,iTRA... : S9 : B,117 : 2
(3) DQQEAALVDMVNDGVEDLR,iTRA... : S6 : B,116 : 2
(3) DQQEAALVDMVNDGVEDLR,iTRA... : S2 : B,115 : 2
(3) DQQEAALVDMVNDGVEDLR,iTRA... : R : B,114 : 2
(3) DQQEAALVDMVNDGVEDLR,iTRA... : R : B,113 : 2

(3) DQQEAALVDMVNDGVEDLR,iTRA... : S18 : A,121 : 1
(3) DQQEAALVDMVNDGVEDLR,iTRA... : S16 : A,119 : 1
(3) DQQEAALVDMVNDGVEDLR,iTRA... : S13 : A,118 : 1
(3) DQQEAALVDMVNDGVEDLR,iTRA... : S8 : A,117 : 1
(3) DQQEAALVDMVNDGVEDLR,iTRA... : S5 : A,116 : 1
(3) DQQEAALVDMVNDGVEDLR,iTRA... : S4 : A,115 : 1
(3) DQQEAALVDMVNDGVEDLR,iTRA... : R : A,114 : 1
(3) DQQEAALVDMVNDGVEDLR,iTRA... : R : A,113 : 1
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S14 : C,121 : 3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S12 : C,119 : 3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S11 : C,118 : 3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S7 : C,117 : 3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S3 : C,116 : 3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S1 : C,115 : 3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : R : C,114 : 3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : R : C,113 : 3

(2) ASCLYGQLPK,iTRAQ8plex@N−... : S17 : B,121 : 2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S15 : B,119 : 2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S10 : B,118 : 2

(2) ASCLYGQLPK,iTRAQ8plex@N−... : S9 : B,117 : 2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S6 : B,116 : 2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S2 : B,115 : 2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : R : B,114 : 2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : R : B,113 : 2

(2) ASCLYGQLPK,iTRAQ8plex@N−... : S18 : A,121 : 1
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S16 : A,119 : 1
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S13 : A,118 : 1

(2) ASCLYGQLPK,iTRAQ8plex@N−... : S8 : A,117 : 1
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S5 : A,116 : 1
(2) ASCLYGQLPK,iTRAQ8plex@N−... : S4 : A,115 : 1
(2) ASCLYGQLPK,iTRAQ8plex@N−... : R : A,114 : 1
(2) ASCLYGQLPK,iTRAQ8plex@N−... : R : A,113 : 1

(1) ALPGQLKPFETLLSQNQGGK,iTR... : S17 : B,121 : 2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : S15 : B,119 : 2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : S10 : B,118 : 2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : S9 : B,117 : 2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : S6 : B,116 : 2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : S2 : B,115 : 2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : R : B,114 : 2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : R : B,113 : 2

(1) ALPGQLKPFETLLSQNQGGK,iTR... : S18 : A,121 : 1
(1) ALPGQLKPFETLLSQNQGGK,iTR... : S16 : A,119 : 1
(1) ALPGQLKPFETLLSQNQGGK,iTR... : S13 : A,118 : 1
(1) ALPGQLKPFETLLSQNQGGK,iTR... : S8 : A,117 : 1
(1) ALPGQLKPFETLLSQNQGGK,iTR... : S5 : A,116 : 1
(1) ALPGQLKPFETLLSQNQGGK,iTR... : S4 : A,115 : 1
(1) ALPGQLKPFETLLSQNQGGK,iTR... : R : A,114 : 1
(1) ALPGQLKPFETLLSQNQGGK,iTR... : R : A,113 : 1
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Fig. 4 Local FDR violin plots showing the peptide-level deviations from the parent protein group
quantification for the protein group sp|P09211|GSTP1_HUMAN. The difference is notable par-
ticularly for the top peptide in the plot, which could be due to a systematic technical issue or be
indicative of a differingly expressed proteoform.

> g1 <- plot_measurement_means(fit.sigma,
"sp|P09211|GSTP1_HUMAN", output = "ggplot")

> g2 <- plot_measurement_stdevs(fit.sigma,
"sp|P09211|GSTP1_HUMAN", output = "ggplot")

> g <- gridExtra::grid.arrange(g1, g2)
> ggplot2::ggsave("measurement_means_stdevs.pdf", g,
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Fig. 5 Local FDR violin plots showing peptide-level means and standard deviations for the protein
sp|P09211|GSTP1_HUMAN in the example dataset. Peptide-level means are a weighted average
of feature-level mean intensities. Each feature is weighted by its precision hence more variable
features contribute less to the peptide-level quantification. Peptide precisions affect the overall
protein group-level quantification similarly. Here the top peptide in the plot is particularly variable
in block 1 (run A).

width = 7, height = 9)

The generated PDF is shown in Figure 6.

3.8 Differential Expression and FDR Estimation

1. The differential expression analysis and FDR estimation component of seaMass,
seaMass-delta, can be run on the resulting seaMass-theta fit object:

> fit.delta <- seaMass_delta(fit.theta)

2. seaMass-delta will proceed to fit a differential expression model to the nor-
malised protein quantification estimates generated by seaMass-theta. By default,
this differential expression model is equivalent to performing a Welch’s t-test for
each pair-wise comparison of defined conditions. Different differential expression
models can be configured by supplying additional arguments to seaMass_delta
(see Note 10).

3. FDR estimation is then performed using the ashr R package [3]. Ash uses an
empirical Bayes approach to perform “adaptive shrinkage” on the estimated log2
fold changes generated by seaMass-delta and harnesses the extra uncertainty
information provided by seaMass to estimate the distribution of log2 fold changes
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(8) TLGLYGK,iTRAQ8plex@N−ter... : 90.1.1.2758.5
(8) TLGLYGK,iTRAQ8plex@N−ter... : 89.1.1.2842.3

(7) PPYTVVYFPVR,iTRAQ8plex@N... : 125.1.1.3733.4
(7) PPYTVVYFPVR,iTRAQ8plex@N... : 124.1.1.3677.4

(6) LSARPK,iTRAQ8plex@N−term... : 33.1.1.3156.2
(6) LSARPK,iTRAQ8plex@N−term... : 32.1.1.3018.2
(6) LSARPK,iTRAQ8plex@N−term... : 32.1.1.2998.3

(5) FQDGDLTLYQSNTILR,iTRAQ8p... : 91.1.1.2905.2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : 90.1.1.2949.2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : 30.1.1.3387.4
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : 29.1.1.3377.2

(4) EEVVTVETWQEGSLK,iTRAQ8pl... : 69.1.1.2909.3
(3) DQQEAALVDMVNDGVEDLR,iTRA... : 4.1.1.3113.2
(3) DQQEAALVDMVNDGVEDLR,iTRA... : 2.1.1.3262.2

(3) DQQEAALVDMVNDGVEDLR,iTRA... : 144.1.1.2761.2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 91.1.1.2753.5
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 90.1.1.2797.2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 32.1.1.3229.3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 31.1.1.3213.2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 30.1.1.3235.3

(2) ASCLYGQLPK,iTRAQ8plex@N−... : 181.1.1.3432.3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 180.1.1.3487.3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 105.1.1.2438.3
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 95.1.1.3463.5
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 44.1.1.4035.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 43.1.1.3725.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 42.1.1.4006.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 34.1.1.3833.3
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 34.1.1.3824.2

(1) ALPGQLKPFETLLSQNQGGK,iTR... : 119.1.1.3092.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 118.1.1.3471.3
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 117.1.1.3039.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 107.1.1.2948.4
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 104.1.1.3128.4
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 104.1.1.3126.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 103.1.1.3690.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 103.1.1.3689.3

3 4 5 6 7 8
log2 mean

Block

Block 1

Block 2

Block 3

(8) TLGLYGK,iTRAQ8plex@N−ter... : 90.1.1.2758.5
(8) TLGLYGK,iTRAQ8plex@N−ter... : 89.1.1.2842.3

(7) PPYTVVYFPVR,iTRAQ8plex@N... : 125.1.1.3733.4
(7) PPYTVVYFPVR,iTRAQ8plex@N... : 124.1.1.3677.4

(6) LSARPK,iTRAQ8plex@N−term... : 33.1.1.3156.2
(6) LSARPK,iTRAQ8plex@N−term... : 32.1.1.3018.2
(6) LSARPK,iTRAQ8plex@N−term... : 32.1.1.2998.3

(5) FQDGDLTLYQSNTILR,iTRAQ8p... : 91.1.1.2905.2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : 90.1.1.2949.2
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : 30.1.1.3387.4
(5) FQDGDLTLYQSNTILR,iTRAQ8p... : 29.1.1.3377.2

(4) EEVVTVETWQEGSLK,iTRAQ8pl... : 69.1.1.2909.3
(3) DQQEAALVDMVNDGVEDLR,iTRA... : 4.1.1.3113.2
(3) DQQEAALVDMVNDGVEDLR,iTRA... : 2.1.1.3262.2

(3) DQQEAALVDMVNDGVEDLR,iTRA... : 144.1.1.2761.2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 91.1.1.2753.5
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 90.1.1.2797.2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 32.1.1.3229.3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 31.1.1.3213.2
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 30.1.1.3235.3

(2) ASCLYGQLPK,iTRAQ8plex@N−... : 181.1.1.3432.3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 180.1.1.3487.3
(2) ASCLYGQLPK,iTRAQ8plex@N−... : 105.1.1.2438.3
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 95.1.1.3463.5
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 44.1.1.4035.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 43.1.1.3725.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 42.1.1.4006.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 34.1.1.3833.3
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 34.1.1.3824.2

(1) ALPGQLKPFETLLSQNQGGK,iTR... : 119.1.1.3092.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 118.1.1.3471.3
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 117.1.1.3039.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 107.1.1.2948.4
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 104.1.1.3128.4
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 104.1.1.3126.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 103.1.1.3690.2
(1) ALPGQLKPFETLLSQNQGGK,iTR... : 103.1.1.3689.3

0.5 1.0 1.5
log2 stdev

Block

Block 1

Block 2

Block 3

Fig. 6 Local FDR violin plots showing iTraq reporter ion-level means and standard deviations for
the protein sp|P09211|GSTP1_HUMAN in the example dataset. It can be seen that reporter ion
intensities range over 6 orders of magnitude and several exhibit high variance, however seaMass-
sigma is able to focus its quantification on the most stable.

across the dataset and, depending on the uncertainty of each log2 fold change,
moderate those estimated log2 fold changes. Protein groups for which there is
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Table 2 Excerpt of the outputted results with estimated global FDR (qvalue) and posterior mean
log2 fold-change and posterior standard devation of log2 fold-change for each protein (Group).

Batch Group qvalue PosteriorMean PosteriorSD

Condition.AD-Ct sp|P09211|GSTP1_HUMAN 2.120733e-09 0.5017938 0.06695361
Condition.AD-Ct sp|Q13228|SBP1_HUMAN 1.930646e-08 0.4427758 0.07636209
Condition.AD-Ct sp|Q9UEY8|ADDG_HUMAN 2.679536e-06 0.3380300 0.06532386
Condition.AD-Ct sp|P10909|CLUS_HUMAN 2.246470e-05 0.4554334 0.08949953
Condition.AD-Ct sp|Q13510|ASAH1_HUMAN 3.719622e-05 0.4149335 0.09259445
Condition.AD-Ct sp|Q16643|DREB_HUMAN 7.131150e-05 -0.4427733 0.10096924
Condition.AD-Ct sp|Q9NSD9|SYFB_HUMAN 1.099772e-04 -0.4478407 0.10202492
Condition.AD-Ct sp|Q99497|PARK7_HUMAN 1.526100e-04 0.3767814 0.07312156
Condition.AD-Ct sp|P49006|MRP_HUMAN 1.894262e-04 0.4266677 0.10103153
Condition.AD-Ct sp|Q9NZH0|GPC5B_HUMAN 2.255137e-04 0.4376124 0.10208458

high uncertainty have more shrinkage applied to their log2 fold changes than
those proteins whose log2 fold changes are less uncertain.

3.9 Differential Expression Output

1. Once seaMass-delta has completed processing, a data.frame containing estimates
of log2 fold change and quantitative false discovery rate can be obtained using:

> data.fdr <- group_quants_fdr(fit.delta)

An example of the results from theAlzheimer’s disease study are shown inTable 2.
2. This data frame can be saved as a CSV file e.g. for further downstream processing:

> write.csv(data.fdr, file = "MiddleTemporalGyrus-FDR.csv")

3.10 seaMass-delta Plots Output

seaMass-delta appends a number of interactive plots into theHTML report by default,
and more can be optionally generated after the fact. These include quantitative
volcano plots and FDR curves.

1. Volcano plots can be generated from the seaMass-delta results by inputting into
the R console:

> g <- plot_volcano(fit.delta, output = "ggplot")
> ggplot2::ggsave("volcano.pdf", g,

width = 7, height = 7)

A volcano plot for the “AD - Ct” comparison of the Alzheimer’s disease study is
given in Figure 7.
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Fig. 7 Volcano plotfor the AD - Ct comparison of the example dataset, with the x-axis denoting
the estimated log2 moderated fold-change and the y-axis denoting the FDR as -log10(qvalue). Each
point has horizontal error bars denoting the 95% credible interval of the estimated fold-change.
The 25 protein groups with the lowest qvalues are labelled and horizontal dashed lines are shown
at FDRs of 1% and 5%. 0.05 and 0.01.

2. A plot showing the predicted qvalue FDR against the number of discoveries at
that FDR can be plotted with:

> g <- plot_fdr(fit.delta, output = "ggplot")
> ggplot2::ggsave("fdr.pdf", g,

width = 7, height = 4)

The resulting PDF is shown in Figure 8.
3. Finally, local FDR violin plots of the FDR-controlled log2 fold changes can

be plotted for any number of protein groups. For example, to plot the 25 most
differentially expressed protein groups in the AD - Ct comparison:

> g <- plot_group_quants_fdr(fit.delta,
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Fig. 8 qvalue FDR vs number of discoveries curve for the example dataset, showing the number
of discoveries that would be declared at a given FDR cutoff. Horizontal dashed lines are shown at
1%, 5% and 10% FDR.

group_quants_fdr(fit.delta)$Group[1:25],
output = "ggplot")

> ggplot2::ggsave("group_quants_fdr.pdf", g,
width = 7, height = 5)

The plot generated is shown in Figure 9.

Notes

1. We are using v1.0.2.0 of seaMass to ensure compatibility with this tutorial. For
production use we always recommend you use the latest version of seaMass instead.
2. In [5], the version of the seaMass software used for quantitative analysis was

then named Bayesprot.
3. seaMass provides import functions for other input formats which are similarly

named, includingMaxQuant (import_MaxQuant), Progenesis (import_Progenesis),
ProteomeDiscoverer (import_ProteomeDiscoverer),OpenSWATH(import_OpenSWATH),
and MSstats (import_MSstats). The details for the input files required for these
import routines can be found by typing ? and the name of the function in the R
console and reading the documentation.
4. As an example, suppose that multiple technical replicates of sample “S1” were

included in the experiment. In this scenario, each should be assigned as sample “S1”
with different assay names.
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sp|Q9UI15|TAGL3_HUMAN : 0.000912
sp|P50502|F10A1_HUMAN : 0.000861
sp|P55072|TERA_HUMAN : 0.000807
sp|Q09666|AHNK_HUMAN : 0.000752
sp|P27338|AOFB_HUMAN : 0.000698
sp|P00441|SODC_HUMAN : 0.000644
sp|P07339|CATD_HUMAN : 0.000596

sp|Q14195|DPYL3_HUMAN : 0.000552
sp|P06703|S10A6_HUMAN : 0.000511
sp|Q13153|PAK1_HUMAN : 0.000471

sp|Q15019|SEPT2_HUMAN : 0.000428
sp|Q9Y617|SERC_HUMAN : 0.000384
sp|P52758|UK114_HUMAN : 0.000340

sp|Q06830|PRDX1_HUMAN : 0.000300
sp|O00429|DNM1L_HUMAN : 0.000262

sp|Q9NZH0|GPC5B_HUMAN : 0.000226
sp|P49006|MRP_HUMAN : 0.000189

sp|Q99497|PARK7_HUMAN : 0.000153
sp|Q9NSD9|SYFB_HUMAN : 0.000110

sp|Q16643|DREB_HUMAN : 0.0000713
sp|Q13510|ASAH1_HUMAN : 0.0000372

sp|P10909|CLUS_HUMAN : 0.0000225
sp|Q9UEY8|ADDG_HUMAN : 0.00000268

sp|Q13228|SBP1_HUMAN : 0.0000000193
sp|P09211|GSTP1_HUMAN : 0.00000000212
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Fig. 9 Local FDR violin plots of the estimated fold-change for the 25 protein groups with lowest
qvalue (given in y axis labels) in the AD - Ct comparison. The unmoderated fold changes from
the individual MCMCglmm Welch’s t-tests are shown in grey, while the fold changes moderated
through Ash modelling of the distribution of fold changes in the study are coloured by their local
FDR.

5. It is also sometimes desirable to remove an assay from the analysis, say because
only some of the iTRAQ reporter channels were filled in a particular run or a sample
is identified to have been contaminated. In these scenarios, the assay can be removed
by assigning its name as missing with NA .
6. Blocking can be specified by adding additional columns containing TRUE and
FALSE values to the the experimental design table with columns names of the form:
Block.1 , Block.2 etc. Assays may appear in multiple blocks. Also, On a HPC
cluster, protein group quantification with seaMass-sigma is able to run in parallel
across these blocks.
7. For the purposes of quality control, where e.g. a pooled sample is available,

it may be preferable to not use the pooled sample assays as reference assays. Then,
any deviation between pooled assays in different blocks can be inferred as a measure
of quality control. Conversely, when quality control has been assured, the reverse
can be done; and the pooled samples can be used as the references such that protein
group quantifications are calculated in relation to the reference samples.
8. Running seaMass on high-performance computing (HPC) clusters is also sup-

ported. This is achieved by specifying a scheduler in sigma_control . In sea-
Mass schedulers for SLURM-managed clusters (schedule_slurm), PBS-managed
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clusters (schedule_pbs) and SGE-managed clusters (schedule_sge) are imple-
mented. More details are given at http://github.com/biospi/seamass
9. Due to the large size of unzipped reports, it is preferred tomount the zip as a drive

for browsingwithout uncompressing, as described at https://github.com/biospi/seamass
10. By default, the differential expression model fitted is a Bayesian equivalent
to a Welch’s t-test, where each condition is assumed to have a separate residual
variance. This model can be altered by specifying different formulae and priors for
seaMass-delta. These formulae must comply to the syntax used by the MCMCglmm
package [1], which is similar to the formula syntax used by the lme4 R package[6].
For example, a Bayesianmodel equivalent to a Student’s t-test can be fit by specifying
rcov=~units and prior=list(R=list(V=1,nu=2e-4)) . If additional covari-
ates were entered into the data.design table, these can be included in the model
by overriding the fixed argument. For example, to include “Age” as a predictor:
fixed=~Condition+Age . Random effects can be included by specifying a random
formula argument. Care should be taken here to ensure that the prior argument is
modified accordingly; details of how the prior should be specified can be found in
the documentation for MCMCglmm [1].
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