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Abstract

Cyber-insecurity is a serious threat in the digital world. In the present paper, we argue that a subopti-

mal cybersecurity environment is partly due to organizations’ underinvestment on security and a

lack of suitable policies. The motivation for this paper stems from a related policy question: how to

design policies for governments and other organizations that can ensure a sufficient level of cyber-

security. We address the question by exploring a policy devised to alleviate information asymmetry

and to achieve transparency in cybersecurity information sharing practice. We propose a cyberse-

curity evaluation agency along with regulations on information disclosure. To empirically evaluate

the effectiveness of such an institution, we conduct a large-scale randomized field experiment on

7919 US organizations. Specifically, we generate organizations’ security reports based on their out-

bound spam relative to the industry peers, then share the reports with the subjects in either private

or public ways. Using models for heterogeneous treatment effects and machine learning tech-

niques, we find evidence from this experiment that the security information sharing combined with

publicity treatment has significant effects on spam reduction for original large spammers.

Moreover, significant peer effects are observed among industry peers after the experiment.

Key words: cybersecurity; policy design; randomized field experiments; information asymmetry; peer effects; regression tree;

random forest; heterogeneous treatment effects

Introduction

Cybersecurity has become a vital issue: our daily lives, businesses,

governments and society at large heavily rely on the Internet. In re-

cent years, the threat from cyber-attacks has been increasingly wit-

nessed around the world. Data from 2013 show that the average

cost of security breaches can be as much as 3.5 million—an increase

of 15% compared with that in the previous year (Data source: 2014

Cost of Data Breach Study: Global Analysis by Ponemon Institute

LLC). According to PWC’s global state of information security re-

port, the number of detected incidents increased by 25% in 2013

(http://www.whitehouse.gov/issues/foreign-policy/cybersecurity/eo-

13636). In addition, a popular book, “Spam Nation”, reported that

anti-virus companies are fighting an average of 82,000 new attacks

every day [1]. McAfee—which is now Intel Security Group—

detected 14 million new pieces of malware in the first quarter of

2013 alone. One conspicuous example that has brought wide public

attention is Target Corporation’s data breach, which affected 2.6

million consumers during the holiday season in 2013 (The data

come from the announcement of Target. The incident caused a sig-

nificant amount of business and reputation loss to the company.
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Target has taken a series of security measures after the data breach,

including promoting its system, issuing more secure chip-and-PIN

cards, and deploying more advanced technology). The ever-rising

trend of cybersecurity incidents—such as data breaches in retail, fi-

nancial services, and health service companies—which is parallel to

the emergence of ever-sophisticated cyber-attacks, calls for more ef-

ficient solutions to the problem.

A large body of literature has investigated the root causes and

countermeasures to mitigate the cybersecurity issues from technical

and economic perspectives. In the economics literature, there is a

general consensus that cyber-insecurity is partly due to organiza-

tions’ underinvestment on security as a result of distorted incentives

by asymmetric information, network externalities, and moral hazard

[2, 3]. Organizations strategically choose a security protection level

that minimizes their private costs, whereas a social planner is moti-

vated to minimize the social cost. Without adequate policy interven-

tions, a socially suboptimal cybersecurity level is thus achieved. One

potential solution to this cybersecurity issue is to introduce policies

that bolster the overall security of the defender side, namely,

organizational-level security protection, and this is the present

paper’s point of departure. Evidently, given the same level of at-

tacks, a defending organization with stronger protection is less likely

to be compromised by the attackers. Although Internet Service

Providers (ISPs) are suitable for protection from various malicious

cyber-activities [4, 5], many organizations in various sectors, both

private and public, do not rely on ISPs and manage their own on-

premises infrastructures. Thus, it is particularly important for these

organizations to be prepared themselves against cyber-attacks.

The motivation for this paper stems from the following policy

question: How can we design policies for governments and other or-

ganizations that can ensure a sufficient level of cybersecurity? We

argue that current policies or regulations are not sufficient to effect-

ively encourage or force organizations to protect their systems and

information. Taking the US federal government as an example, there

are three main cybersecurity regulations: the Health Insurance

Portability and Accountability Act in 1996, the Gramm-Leach-

Bliley Act in 1999, and the Homeland Security Act in 2002. These

regulations require health care organizations, financial institutions,

and federal agencies to take security measures to protect their sys-

tems and data. However, there are no regulations on other sectors,

especially for high-technology industries, in which companies man-

age large amount of valuable data. More recently, President Obama

signed Executive Order 13636, “Improving Critical Infrastructure

Cybersecurity,” which emphasizes the importance of information

sharing and cybersecurity framework development (http://www.

whitehouse.gov/issues/foreign-policy/cybersecurity/eo-13636).

However, programs initiated according to the Executive Order are

mostly voluntary (For instance, according to the Executive Order,

the US Department of Homeland Security will promote the adoption

of cybersecurity framework through a voluntary program with the

help of security experts from the private sector), and thus the success

of the programs highly depends on how to incentivize organizations

to participate in them. More importantly, most government regula-

tions that have been recently introduced tend to be knee-jerk reac-

tions to cyber-threats, under which compromised companies are

arbitrarily fined. Such a lump sum fine is not effective, because it

would have no binding power to bigger companies and would com-

pletely wipe out the profits of smaller companies (A recent article

from the Financial Times delivers a similar point: http://www.ft.

com/intl/cms/s/0/817f4146-7e4e-11e5-a1fe-567b37f80b64.html).

One method to provide sufficient motivation for organizations is

to introduce information disclosure in order to alleviate the

cybersecurity information asymmetry [2]. Previous works such as

Moore and Claytone [6] and Tang et al. [7] found evidence that se-

curity information publication helps improve cybersecurity condi-

tions on the country level [6, 7]. In the present paper, we design a

fine-grained policy to incentivize security level improvement at the

organizational level. Specifically, we propose a nationwide cyberse-

curity evaluation agency: (i) that monitors and evaluates the security

performance of all organizations on the Internet using various data

including spam, phishing, and distributed denial of service (DDoS)

attacks and (ii) that publishes organizations’ cybersecurity evalu-

ation reports to the public. In this way, the evaluation institution

would work the same way as Moody’s or S&P do for bonds.

The rationale behind this institution is as follows. First, the infor-

mation disclosure helps reduce the information asymmetry issue

within an organization. Due to insufficient internal resources and

policies, some organizations with budget constraints may not have a

full understanding of their security problems [8]. The proposed insti-

tution can alleviate this problem with evaluation reports. Second,

the theory of asymmetric information predicts that organizations

will underinvest on cybersecurity when their customers cannot dis-

tinguish companies with strong security from those with weak secur-

ity. Publication of a cybersecurity evaluation report can force

organizations to raise their security bars for fear of losing customers

from their competitors [7, 9]. Third, a peer-ranking system can

allow organizations to make direct comparisons with their industry

peers, so that peer pressures can induce overall security

improvements.

It is important to evaluate the effectiveness of a proposed public

policy, and we present a randomized field experiment (RFE) in the

present paper. RFEs are regarded as the gold standard to estimate

the causal treatment effects of proposed policy, since, with careful

experiment design, it can exclude other confounding factors [10, 11,

12]. Although a series of studies measure the impact of cybersecurity

information disclosure on remedies and countermeasures, they are

not based on rigorous randomization; thus, it may be hard to claim

causal effects of the information disclosure [6, 13–17]. In our experi-

ment, we use outbound spam data as a proxy to estimate the latent

security levels of 7919 US organizations (We note that spam is one

out of many ways of evaluating security and that other metrics can

be used as alternatives, provided they can be externally observable

by outside researchers without internal audits. More discussions

about the security indicator are in the “Data collection” section).

With careful randomization, we divide the subjects into three

groups. The first is the control group, to which we take no action.

The second is the private treatment group, to which we provide with

exclusive security reports via emails. The last is the public treatment

group, to which we provide emails with security reports including

explicit information that the report is publicly available on our ex-

periment website. The private treatment is to measure the informa-

tion awareness treatment effects, and the public treatment is to

estimate the publicity effects. Our empirical results show that the

combination of information and publicity successfully reduces the

outbound spam volume of large unwitting intermediaries (i.e. com-

promised organizations). However, the data show that security in-

formation disclosure by itself does not have a significant average

treatment effect. To evaluate the heterogeneous policy impacts, we

analyze treatment effects for different subgroups using causal tree

and causal forest [18, 19]. Furthermore, with the peer effect ana-

lysis, we find evidence that organizations’ security decisions are

influenced by the average outcome of their peers. This interesting

finding gives us confidence that our peer ranking system is effective

in spam reduction.
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The present paper has important contributions to the literature

and provides practical implications for policy makers. Our study

contributes to the literature by extending prior work on the effects

of security information disclosure and by providing potential poli-

cies to mitigate Internet insecurity problems. More importantly, our

experiment design and policy evaluation analysis could be a road

map for public policy evaluation in the cybersecurity area, which

can be generalized and extended to other potential security remedies

in different environments. Since our current experimental universe

includes only US organizations, the conclusions in this paper may

not be sufficiently applicable to organizations in other countries

with different economic and cultural environments. Researchers and

government staff in other countries can follow our large-scale field

experiment supported by the cloud computing to design effective

policies for their own countries. Finally, with the constructed secur-

ity metrics, we can potentially set up cybersecurity insurance pre-

miums for cyber risks.

The remainder of the paper is organized as follows. In the

“Experiment design and implementation” section, we describe the

experimental design for our RFEs, followed by hypotheses develop-

ment in the “Hypotheses development” section. In the “Empirical

analysis” and the “Robustness check” section, we deliver the empir-

ical analysis of our paper. In the “Extending experiments” section,

we discuss the future research direction and conclude the paper.

Experiment design and implementation

As discussed in the “introduction” section, one potential solution to

the security problem is to alleviate the information asymmetry of

cybersecurity. Following previous works such as Moore and

Clayton [6] and Tang et al. [7], we propose a cybersecurity evalu-

ation agency that actively monitors organizational security levels

and shares the evaluation reports to the focal organization and the

public [6, 7], thus reducing the cybersecurity information asym-

metry problem. Ideally, the institution would monitor all organiza-

tions’ security performances using externally observable data such

as spam, phishing, and DDoS attacks and publish them on its public

website. Since the institution evaluates and publicizes the latent se-

curity condition for each organization, consumers and investors can

make informed decisions by incorporating the available security

information.

This proposed institution could be quite costly, considering the

large number of involved organizations. Thus, a preliminary evalu-

ation of the proposition’s effectiveness is prudent. We conducted a

large-scale RFE from January 2014 to March 2014 on 7919 US

organizations to see the treatment effects of information sharing and

publication on spam reduction, although the potential effectiveness

of our experiment would not be so remarkable compared with the

“real” proposed institution. To be more specific, we had three treat-

ment groups with two different information disclosure methods to

distinguish publicity effect from information notification effect. The

whole experiment can be summarized in Fig. 1.

Randomization
Rigorous randomization is needed to extract causality from our ex-

periment. We divide organizations into three equally sized groups—

the control group, the private treatment group, and the public treat-

ment group—using a stratified, match-pair randomization [20].

Specifically, we first define 195 subgroups by Standard Industrial

Classification (SIC) codes (39 industry sectors) and number of IP

addresses (five segments). The detailed groups based on industry sec-

tors and numbers of IP addresses are listed in Tables A1 and A2 in

the Appendix. Then, we find clusters of three organizations within

each subgroup that minimize the sum of three pairwise differences

among them. After that, we randomly assign organizations in each

cluster into the control or treatment groups. Finally, we check the

distances between the control group and two treated groups with re-

spect to companies’ various characteristics (For more detailed infor-

mation, see the Appendix).

Data collection
As an organization’s cybersecurity level is a latent variable, we need

to find a good proxy that can be externally observable without any

internal audits. Our approach is to use outbound email spam gener-

ated from each organization’s autonomous system (AS). Spam is

defined as unsolicited bulk emails (https://www.spamhaus.org/con

sumer/definition/). As in Rao and Reiley [21] and Moore and

Clayton [6], most spam (over 90%) is sent from botnets, which are

the networks of virus-infected computers [6, 21]. These compro-

mised computers may also be used for even worse cyber-criminal

activities such as identity thefts, blackmails, and DDoS attacks.

Thus, we argue that organizations’ large outbound spam volumes

are an important indicator of their weak security levels.

Many security organizations maintain spam blocklists to black-

list IP addresses that actively engage in spam emission. These organ-

izations install various spamtraps, which are email-receiving

machines without valid users. Thus, any computers that attempt to

conduct email activities with the spamtraps are suspicious spam-

mers. Since these monitoring activities are done in the transmission

Figure 1. Design of randomized field experiment.
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control protocol level, spammer IP addresses are verified. In other

words, spam-sending IP addresses are not spoofed. In order to over-

come the potential biases on heterogeneous spamtrap settings [22],

we use two independent spam data feeds: Composite Block List

(CBL) (http://cbl.abuseat.org) and Passive Spam Block List (PSBL)

(http://psbl.org). Both blocklists provide us the list of spamming IP

addresses and their associated spam volumes on a daily basis.

From this raw IP-level data, we need to construct organization-

level data to evaluate each organization’s security condition. To do

that, we need three levels of mapping: from an IP to a netblock, to

an autonomous system number (ASN), then finally to an organiza-

tion. The data are based on the IPv4 address space, which uses class-

less inter-domain routing (CIDR) (http://tools.ietf.org/html/

rfc1519). Thus, the IP to netblock mapping, also known as IP

lookup, is a longest prefix matching problem, which has a well-

known efficient algorithm [23]. For netblock to ASN mappings, we

receive daily netblock-ASN data feeds from Team Cymru through

remote synchronization (rsync) (http://www.team-cymru.org). On

average, we have 584,000 netblocks and 49,000 ASNs in our map-

ping data. Finally, for ASN to organization mappings, we group

ASNs by the operating organization with manual inspections. Note

that we process only ASNs located in the USA for this experiment.

For each ASN group, we then find the corresponding organization

by searching the LexisNexis database (http://www.lexisnexis.com).

As a result, 7919 US organizations are identified for the experiment.

One may argue that spam is not a major cybersecurity threat for

organizations and that it can be largely solved using filtering and

blocklists. Also, there can be questions about whether outbound

spam volume is a comprehensive index of organizations’ security

level. However, we want to emphasize that, in our current experi-

ment, spam information is only a tool we apply to see how organiza-

tions’ security strategies will respond to our interventions. Given the

fact that spam is perceived as a less dangerous risk for those organ-

izations, we would expect that the treatment effects will be larger

and more significant if the security evaluation reports include other

cyber-attacks such as phishing and DDoS attacks.

In addition to the outbound spam data for each organization, we

collect organizations’ characteristics from the LexisNexis database,

including the industry codes (SIC and NAICS) and whether the or-

ganization is publicly traded.

Experiment treatments
Among the three groups in our experiment, the first one is the con-

trol group, to which we do not apply any treatments. For the two

treatment groups, we send treatment emails to relevant contacts in

various departments (from marketing to IT) within each organiza-

tion to inform them of their security evaluation reports. Treatment

emails were sent at the end of January and March 2014. Each treat-

ment email included (1) the organization’s spam volume, (2) peer

rankings, (3) a partial list of spamming IP addresses, and (4) a hyper-

link to a designated web page for the treated organization. The dif-

ference between the private and public treatment groups is whether

the information of the focal organization is publicly searchable on

our treatment website. For the publicly treated organizations, the

emails clearly mention that the spam information is publicized on

our treatment website (The link of our website: http://cloud.spam

rankings.net/). On the other hand, the privately treated organiza-

tions are notified that the web page directed by the link in the email

is not publicly available. With this setting, the difference of average

spam volumes between the control and the private treatment groups

is due to the information awareness effect. Similarly, we can

estimate the publicity treatment effect with the difference between

the private and public treatment groups.

Spam ranking for peer effects
In the security evaluation reports provided by the treatment emails

and website, we have our own peer ranking, which is different from

security rankings on other existing security evaluation websites.

Essentially, organizations within an industry sector are ranked ac-

cording to their spam metrics (Sectors are defined by the two digits

in two industry codes: SIC and North American Industry

Classification System [NAICS]. Note that high ranks indicate a low

security level and that all of the organizations with no spam will be

ranked equally with the lowest rank).

Currently, there are only a handful of websites that publish spam

information such as CBL, Spamhaus, and Cisco. These rankings pro-

vide information only for “top spammers.” And most of their infor-

mation is based on the unit of AS rather than organization

(Classic.SpamRankings.net presents the top 10 spammers per coun-

try [http://www.spamrankings.net/classic/]. Spamhaus posts top 10

spam-producing countries, ISPs, and spammers each day [http://

www.spamhaus.org/statistics/countries/]. Cisco, on the other hand,

has at most the top 100 spam senders by IP, network owners, and

country [http://www.senderbase.org/static/spam/]). Furthermore,

most companies are more likely to reactively disclose information

security issues in case of compromised customer information. This

may lead to underestimated information risk. Most importantly,

existing websites do not provide industry rankings. In other words,

an organization cannot directly compare its performance with its

close competitors. This lack of comparative information may

weaken peer effects.

Our peer ranking helps an organization to better evaluate its se-

curity performance against its competitors. The rationale of con-

structing peer ranking is as follows. First, there is substantial

heterogeneity across different industry sectors. For example, compa-

nies in financial and health sectors may have more sensitive cus-

tomer information that attracts more threats from cyber-attackers.

More importantly, it is well known that individuals’ and organiza-

tions’ behaviors are likely to be influenced by their peers [24]. Our

peer ranking can potentially provide a channel to enhance the peer

effects among organizations in the same industry sector, and can fur-

ther have an impact on organizational behavior. We demonstrate

the existence of peer effects in the following empirical analysis.

Hypotheses development

Information disclosure effect
The information disclosure effect refers to the treatment effect of

spam information provided in our treatment emails for organiza-

tions that previously neglected the importance or did not have a full

understanding of the security conditions due to insufficient internal

resources and policies [8]. In our present experiment, we send out

organization-specific spam report via email to each organization in

our treated groups. The detailed spam information includes spam

volumes, number of spamming hosts, specific infested IP addresses,

compositions of spam volumes over time, as well as its relative per-

formance (peer ranking) compared with close competitors within

the same industry. After receiving our emails, organizations without

good prior knowledge of their security levels can be better informed.

In addition, they also get information (e.g. infested IP addresses)

that helps them quickly isolate the problems. If our email treatment

with security information is helpful to treated organizations, we
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would expect the spam volume of organizations in the private treat-

ment group, who only receive private emails from the researcher,

will decrease, when compared with that in the control group.

Hence, we hypothesize:

Hypothesis 1. There will be a significant decrease of spam vol-

umes after the experiment for organizations in the private treat-

ment group as compared with those in the control group due to

the spam information disclosure in the email treatment.

Publicity effect
The publicity effect refers to the treatment effect on the public treat-

ment group by publishing security evaluation reports on our public

treatment website. Due to security information asymmetry [2], it is

difficult for customers and investors to get relevant security informa-

tion for a focal organization. Thus, organizations may lack motiv-

ation to make sufficient investment in cybersecurity, especially when

the cost of cybersecurity improvement is relatively higher than the

expected cost of data breaches. Security information publication can

alleviate the information asymmetry problem since we provide the

public access to more detailed security information. In this way, cus-

tomers and investors can reevaluate their choices with more trans-

parent information; furthermore, our treatment website creates

extra cost to the organizations through the threat of reputation dam-

age and customer loss [7, 9]. If our publicity treatment is effective,

we would expect to see a greater decrease of spam volume for organ-

izations in the public treatment group, who receive both information

sharing and publicity treatments, than for those in the private treat-

ment group. We therefore propose the following hypothesis:

Hypothesis 2. After the experiment, there will be a significantde-

crease of spam volumes for organizations in the public treatment

group as compared with those in the private treatment group,

due to the spam information publicity treatment.

In addition, organizations with large outbound spam volumes may

have security problems that are relatively easy to isolate and resolve.

From the reputational aspect, organizations with different ranks

may have heterogeneous levels of pressures from the publicity treat-

ment. Low-ranked organizations can be more embarrassed with the

publicity, whereas highly ranked organizations may view it as

praise, even though they still have positive outbound spam volumes.

These possible interpretations may lead to increased motivation for

large, unwitting intermediaries for spammers. Thus, our policy

interference may be more effective for organizations with larger pre-

experimental spam volumes.

Hypothesis 3. Organizations in the public treatment group with

higher spam volumes will have larger spam volume drops after

the experiment.

Peer effects
A peer effect refers to the change of an organization’s security level

that is influenced by its peer organizations’ performances.

Theoretically, a peer effect is driven by reputational concerns, obser-

vational learning, and other factors [25]. For example, organizations

in the same industry may have technical knowledge exchange among

their employers. Researchers have investigated peer effects in wide

variety of individual and corporate outcomes, including academic

achievement [26], product adoption [27], stock market behavior

[28], dividend payment [24], and managerial decision making [29].

In our case, organizations’ security strategies can also be influenced

by their peers.

In the security evaluation report, we try to induce peer effects by

providing industry rankings in addition to general spam metrics.

With the industry rankings, organizations and their customers can

make direct comparisons with competitors. Hence, an organization

may change its cybersecurity strategies in response to its peer organ-

izations’ security performance. Therefore, we hypothesize:

Hypothesis 4. Organizations’ outbound spam volumes are-

influenced by their peers’ performance after the experiment.

Empirically identifying the existence of a peer effect is important in

understanding the mechanism by which our treatment influences or-

ganizations’ security strategies. Although we do not have an

advanced experiment design of randomization on peer ranking, if

publicity’s only effect is to embarrass the focal organizations, then

peer ranking may not be necessary for an effective policy. In add-

ition, the outcome of the treatment may be different. With the exist-

ence of peer effect, organizations’ security protection levels may

tend to converge to the center. In other words, organizations with

the best initial security levels may lower their guard after the publi-

city. Also, our treatment effects estimated from the experiment will

be those for the treated organizations. An ideal way to check the ef-

fect of our peer ranking would be an experiment with random treat-

ment of peer ranking. However, due to the interactions among

organizations, it is difficult to design such an experiment.

Empirical analysis

Descriptive statistics
Changes in the outbound spam are the basis of our experiment, but

the spam volumes fluctuate dramatically from month to month.

Although the most relevant reason for the outbound spam volume

changes is the change of organizational security levels, there could

be alternative reasons, such as the change of spam demand in the

black market and botnets’ strategic change of target victims to avoid

being detected. Thus, we use the average spam volumes over mul-

tiple months in the statistical analysis. Our data show that more

than half of the organizations with positive spam volumes have

experienced one or two spamming episodes a year. Therefore, we

use the 6-month average spam volumes right before the experiment

started as the pre-experimental spam volumes. Since our experiment

started at the end of January 2014, we regard the time frame be-

tween July 2013 and December 2013 to be the pre-experimental

period, and the one between February 2014 and July 2014 to be the

post-experimental period.

We use the natural logarithm transform for the outcome vari-

ables (monthly spam volumes and spam hosts) and the covariate

(number of IP addresses). This is because the distributions of these

outcome variables and the covariate are highly positively skewed, as

shown in Fig. 2. The power of the experiment has significantly im-

proved with the natural logarithm transform.

From the experimental data, we observe that the spam volume of

all organizations in our sample decreases on average after the experi-

ment. This may be due to the rapid increase of data breach an-

nouncements at the end of 2013. These incidents attracted much

attention from the public, so organizations generally became more

cautious about cybersecurity. In addition, the difference between

pre- and post-experimental spam volumes is quite heterogeneous

across organizations.

From Fig. 3, we see that organizations with zero (quantile 1) or

small initial spam volumes (quantile 2) have more outbound spam after

the experiment started, whereas top 25% spammers’ (quantile 4)
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outbound spam volumes have decreased. This result may be due to the

fact that small spammers, especially the organizations with zero spam

volumes, could hardly improve their security condition any more. On

the other hand, large spamming organizations in the treatment groups

will face the risk of losing customers and investors with our experiment,

leading to more cautious cyber security. We also observe that the spam

performance of organizations varies among different industry groups, as

shown in Fig. 4. This finding can be explained by the distinct business

models and characteristics of different industries.

The summary statistics of the related variables are listed in Table 1.

Balance on observables
The advantage of a RFE is that the random assignment ensures the

exogeneity of the treatments and the exclusion of selection bias [10].

In the randomization process, each organization has the same prob-

ability to be in one of the three groups; hence, on average, organiza-

tions in the control and treated groups have homogeneous

characteristics. However, it is well known that a pure random as-

signment may have a probability of imbalance along some dimen-

sions [30].

To ensure that our randomization successfully balances on

observables, we conduct two tests for validity. With the RFE setting

in the “Experiment design and implementation” section, we have

three groups Gi based on two treatments (T1i and T2i) as follows:

Gi

1 if T1i ¼ 0 and T2i ¼ 0

2 if T1i ¼ 1 and T2i ¼ 0

3 if T1i ¼ 1 and T2i ¼ 1

;

8>><
>>:

(1)

where T1i¼1 indicates that organization i receives treatment emails,

and T2i¼1 indicates that organization i’s security evaluation report

is publicized in the treatment website. We run regressions of pre-

experimental characteristics of organizations on the treatment as-

signments using the following formula:

Xi ¼ h0 þ h1T1i þ h2T2i þ /i; /i � Nð0;r2Þ; (2)

where Xi represents organization i’s characteristics (listed below) be-

fore the experiment, T1i is a dummy variable indicating whether or-

ganization i is privately treated or not, and T2i is the public

treatment dummy. We also apply a Kolmogorov–Smirnov (K–S) test

and calculate the difference in the normalized standard deviation to

check the balance based on the whole distribution of Xi. The results

are shown in Table 2. We see that the differences of the average

characteristics between the treatment and control groups are mar-

ginal, and none of them is statistically significant. Therefore, our

randomization groups are balanced.

Average treatment effect analysis
First of all, we would like to see the average treatment for all compa-

nies in our data set. We use the linear model to estimate the coeffi-

cients in our model as follows:

Yi ¼ a0 þ a1T1i þ a2T2i þ a3Xi þ �1i; �1i � Nð0;r2
1Þ; (3)

where Yi is the spam volume for organization i post-experiment, Xi

is the k-dimensional vector that represents organization i’s charac-

teristics, such as pre-experimental spam volume, pre-experimental

number of spamming IP addresses, number of IP addresses, number

Figure 3. Spam performance within each quantile for all organizations.

Figure 2. Distributions of spam volumes and numbers of IP addresses.
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of IP addresses squared, whether the organization is publicly traded

or not, number of observed botnets, and industry dummies.

The results are reported in Table 3. Columns 1 and 2 present the

results from the regression model. As expected, all treatment effects

are negative, and the magnitude of public treatment effect is larger

than that of private treatment effect. However, the estimated treat-

ment effects lack statistical significance.

Most coefficients of the control variables are significant with ex-

pected signs. Organizations with more pre-experimental spam vol-

umes and larger number of botnets generally have more post-

experimental spam volumes, which can be evidence that the spam

volumes are a consistent indicator for the organizational latent se-

curity level.

Another interesting finding is that the relationship between spam

volumes and numbers of IP addresses is concave: As the number of

IP addresses increases, the spam volume first increases, then it de-

creases. The estimated largest spammer will have about 60,0000 IP

addresses. This phenomenon can be explained by two opposing

forces. On the one hand, organizations with large numbers of IP

addresses have wider attack surfaces because (i) institutions with

large IP counts generally have more potential targets for bot herders

(Bot herders are hackers who install malwares on victims’ computers

to gain unauthorized controls. https://www.fbi.gov/news/stories/

2007/june/botnet_061307/) and (ii) it costs more to maintain and

protect the system. On the other hand, larger organizations may

have stronger security protection since many of them are high-tech

companies that have more resources for security investment. We

also estimated the regression with industry dummies defined by two-

digit SIC codes.

Heterogeneous treatment effects
Due to the heterogeneity and diversity of organizations in our sam-

ple, our interference may result in different outcomes among organ-

izations. In addition to the overall policy impact estimation, it is

also important and significant for us to see which organizations

have been mostly influenced by the policy. As we observed in Fig. 3,

only large spammers tend to have reduced spam volumes after our

intervention. Spam volumes for smaller spammers—especially for

the initially “clean companies” actually increased. To see how the

treatment effects vary among different organizations, we use non-

parametric causal tree [18] and causal forest [19] to estimate the het-

erogeneous treatment effects. We first use our results from regres-

sion tree as a guidance to split the sample within which we calculate

the heterogeneous treatment effects presented in columns 3-6 of

Table 3. One common concern of exploring the heterogeneous treat-

ment effects is that researchers will arbitrarily divide samples into

subgroups, searching for extreme subsample results. The new meth-

ods we use are data-driven that do not need any subjective restric-

tion or judgment. We also use random forest to reduce variance of

the key treatment effect estimates. The models are revised regression

tree and revised random forest with a modified criterion for splitting

the data set. Rather than using the dependent variable as the

Figure 4. Spam performance in different industry groups.

Table 1. Summary statistics

Variable Observation Mean Standard deviation Min Max

log (Post-experimental spam volumeþ1) 7919 2.469 3.139 0 17.913

log (Post-experimental spam hostþ1) 7919 1.830 2.072 0 12.134

log (Pre-experimental spam volumeþ1) 7919 2.474 3.258 0 18.566

log (Pre-experimental spam hostþ1) 7919 1.738 2.064 0 12.261

log (Number of IP addresses) 7919 7.807 2.289 0 18.333

Number of infesting botnets 7919 1.175 2.677 0 40

Publicly traded or not 7919 0.0885 0.284 0 1

log (Number of employees) 7021 1.410 0.605 0 2.860

Journal of Cybersecurity, 2016, Vol. 2, No. 1 105

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/2/1/99/2733163 by guest on 06 M

ay 2021

Deleted Text: &thinsp;&minus;&thinsp;
Deleted Text: &filig;
Deleted Text: &filig;
Deleted Text: &filig;
Deleted Text: &filig;
https://www.fbi.gov/news/stories/2007/june/botnet_061307/
https://www.fbi.gov/news/stories/2007/june/botnet_061307/
Deleted Text: &filig;
Deleted Text: 4.4
Deleted Text: T
Deleted Text: E
Deleted Text: &filig;
Deleted Text: &fllig;
Deleted Text: &ndash;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &filig;


Table 2. Baseline comparison for internal validity

No control Industry fixed effects K–S prob. Ln(St/Sc)

Dependent variables Private Public Private Public Private Public Private Public

Pre-experimental spam volume �0.00016 �0.005447 �0.00476 �0.005676 1.000 0.998 0.008146 0.01713

(0.03833) (0.03646) (0.03542) (0.03357)

Pre-experimental number of

infested IP addresses

�0.00548 0.0009089 �0.00996 �0.000657 1.000 0.997 �0.01454 0.01798

(0.02933) (0.01993) (0.02791) (0.01989)

Number of IP addresses �0.03488 0.02178 �0.04225 0.01687 0.891 0.997 �0.02775 �0.03337

(0.04453) (0.04150) (0.04199) (0.03893)

Number of botnets 0.003922 �0.005299 0.001906 �0.003606 1.000 1.000 �0.00112 0.02757

(0.04076) (0.03692) (0.03943) (0.03397)

Publicly traded or not (¼1 if yes) �0.00145 �0.006752 �0.00206 �0.007416 1.000 1.000 �0.01439 �0.06947

(0.00707) (0.00705) (0.00702) (0.00716)

Notes: This table presents comparisons of organizations’ characteristics in the control and treatment groups. Columns 1 and 3 contain estimates of the average

differences in characteristics between the control and private treatment organizations, without controls and with industry group fixed effects. Columns 2 and 4

contain estimates of the average differences in characteristics between the control and public treatment organizations, without controls and with industry group

fixed effects. Columns 5 and 6 contain statistics from Kolmogorov–Smirnov test. Columns 7 and 8 contain the differences in normalized standard deviations be-

tween the treatment and control groups. Standard errors are clustered by industry group and shown in parentheses. * indicates statistical significance at the 10%

level, ** at the 5% level, and *** at the 1% level.

Table 3. Treatment effect estimation

Avg. treatment effects Heterogeneous treatment effects

Overall Private versus control Public versus control

Variables (1) (2) (3) (4) (5) (6)

Private treatment �0.0154 �0.00811 0.258 0.149

(0.0868) (0.0336) (0.2440) (0.1010)

Public treatment �0.0607 �0.061 0.310* 0.259***

(0.0862) (0.0408) (0.1740) (0.0663)

Indicator �6.887*** �0.688*** �5.154*** �0.539**

(0.1780) (0.1670) (0.1270) (0.2180)

Private treatment � indicator �0.265 �0.173

(0.2530) (0.1050)

Public treatment � indicator 0.309* 0.265***

(0.1820) (0.0755)

Pre-experimental spam volume 0.547*** 0.542*** 0.493***

(0.0230) (0.0174) (0.0169)

Number of IP addresses 0.393*** 0.333*** 0.386***

(0.0552) (0.0636) (0.0644)

(Number of IP addresses)2 �0.0144*** �0.0112*** �0.0140***

(0.0036) (0.0042) (0.0040)

Number of botnets 0.282*** 0.231*** 0.289***

(0.0406) (0.0368) (0.0330)

Stock 0.0724 0.189*** 0.0285

(0.0671) (0.0579) (0.0945)

Intercept 2.494*** �1.639*** 8.696*** �0.639** 6.277*** �1.103***

(0.0615) (0.2010) (0.1720) (0.2930) (0.1220) (0.2430)

Industry No Two-digit SIC No Two-digit SIC No Two-digit SIC

P-value for H0: a1¼ a2 0.7363 0.322

Observations 7919 7919 5280 5280 5280 5280

R-squared 0 0.744 0.434 0.751 0.501 0.745

Notes: This table displays the estimated private and public treatment effects with OLS model. Columns 1 and 2 report the estimates of the differences between

the spam volume of treatment groups and control controlling for pre-experimental spam volume, number of pre-experimental IP addresses, number of pre-experi-

mental IP addresses squared, number of pre-experimental infesting botnets, whether or not publicly traded, and industry fixed effects. Columns 3 and 4 report the

estimates of the heterogeneous treatment effects with organizations in control and public treatment group. The indicator equals to 1 if organization’s log pre-ex-

perimental spam volume is less than 3.6. Columns 5 and 6 report the estimates of the heterogeneous treatment effects with organizations in control and private

treatment group. The indicator equals to 1 if organization’s log pre-experimental botnet is less than 3.4. Standard errors are clustered by industry codes and

shown in parentheses. * indicates statistical significance at the 10% level, ** at the 5% level, and *** at the 1% level.
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criterion, the causal tree and causal forest use the average treatment

effect within each leaf. The confidence interval for the causal forest

estimator could be calculated following an infinitesimal jackknife

procedure [31]. These models allow us to estimate the conditional

average treatment effect (CATE) for subset sample (We would like

to thank Susan Athey for the R codes of causal forest and causal

tree).

Causal tree

In traditional machine learning techniques, a regression tree is a pre-

dictive model that maps observations to an item’s target value where

the target value is continuous. Fundamentally, a tree is learned by

splitting the source set into subsets in a recursive way. This process

will complete when splitting will not add value to the prediction.

Athey and Imbens [18] revised the criteria function to find that in

splitting the whole sample, the treatment effect of each observation

within each “leaf” would be the same.

The results of a causal tree for our whole sample are reported in

Fig. 5. We can see that for the subsample with organizations only in

the control and public groups, the main characteristics that may

influence the treatment effect are organizations’ pre-experimental

spam volume and number of IP addresses. For the subsample with

only the private and control groups, the essential variables that may

lead to heterogeneous treatment effects are the pre-experimental

number of botnet and number of IP addresses.

With the causal tree splitting available, for each leaf correspond-

ing to subset Xm, the average treatment effect within the leaf is:

sjXm
¼ E½Yið1Þ � Yið0Þjxi 2 Xm�: (4)

As in our experiment randomization design, we did the pair-wise

matching on organizations’ pre-experimental spam volumes.

Companies that have similar pre-experimental spam volumes have

the same probability to be in the control group or in any of the two

treated groups. As a result, when we divide the whole sample based

on pre-experimental spam volume, we can directly use the linear

model to compare the outcomes of control and treated organizations

in each leaf to estimate the CATE. In particular, we add a dummy

representing whether one organization’s log pre-experimental spam

volume is less than 3.6, which is the cutoff resulted from the regres-

sion tree, to show whether we would find heterogeneous treatment

effects among different subgroups. The estimation results are re-

ported in Table 3. Columns 3 and 4 show the estimation results

with the subsample of organizations in the control and private

groups, Columns 5 and 6 show the estimation results with the sub-

sample of organizations in the control and public groups. As we can

see, for the subsample of organizations whose log pre-experimental

spam volumes are larger than 3.6, public treatment significantly

reduces organizations’ outbound spam volume, an indicator of se-

curity condition improvement. However, for the subsample of or-

ganizations in the control and private groups, we do not observe

significant CATE after controlling other variables.

To ensure the causality, it would be more reliable to get the treat-

ment estimator using honest splitting, which means to get the split-

ting and treatment effect from different samples. Specifically, we

could randomly choose a subsample from the data set to find the op-

timal splitting first. Then, this splitting could be applied to estimate

the heterogeneous treatment effects from another subsample, with-

out the concern of sample randomness [18]. The main issue with

this method is that it is hard for us to choose the optimal training

and estimation subsamples.

Causal forest

Unlike one single causal tree, a causal forest is composed of B such

trees, which is only trained by a random subsample of organizations.

If each causal tree, indexed by b, gives us an estimate of the CATE

at x as ŝb ðxÞ, we could calculate the random forest CATE at x by

averaging the treatment effect over B causal trees:

ŝb xð Þ ¼ B�1
PB

b¼1 ŝb ðxÞ. According to Breiman [32], this aggre-

gation process over many trees helps reduce the variance of the

estimates.

In our present example, we set the number of trees to be 2000,

and estimate the treatment effect separately for the public and pri-

vate treatment groups. The estimated treatment effects and T-values

are reported in Figs 6 and 7, respectively. We find interesting pat-

terns for the heterogeneous treatment effects. For the public treated

group, we see positive treatment effects for organizations with an

initial low outbound spam volume, especially for those whose log

average pre-experimental outbound spam volume is less than about

3.6 (as in our result in the “Causal tree” section). For organizations

with larger initial outbound spam volume, the majorities have pre-

sented negative treatment effects. The results support Hypotheses 2

and 3. For the private treatment group, we do not observe signi-

ficant heterogeneity in treatment effects among organizations with

various pre-experimental spam volumes.

There can be multiple reasons why large spammers in the pub-

lic group will send out smaller outbound spam volumes after

receiving our treatment. First, these organizations may have larger

but shallower problems (e.g. compromised computers) with their

information systems. As a result, large spammers have a lower

cost to improve their security conditions than their counterparts

with subtle security issues. Second, these organizations may be

more embarrassed when their poor security performance reports

are publicly announced online. In addition, large spammers face

more pressure from their close competitors. Considering their

Figure 5. Result from causal tree for organizations in our experiment. (a) Public versus control and (b) private versus control.

Journal of Cybersecurity, 2016, Vol. 2, No. 1 107

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/2/1/99/2733163 by guest on 06 M

ay 2021

Deleted Text: &filig;
Deleted Text: &filig;
Deleted Text: .
Deleted Text: 4.4.1
Deleted Text: T
Deleted Text: (2015)
Deleted Text: &filig;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &fllig;
Deleted Text: &filig;
Deleted Text: &filig;
Deleted Text: &filig;
Deleted Text: &filig;
Deleted Text: &filig;
Deleted Text: &filig;
Deleted Text: 4.4.2
Deleted Text: the 
Deleted Text: ,
Deleted Text: -
Deleted Text: &filig;
Deleted Text: ,


relatively worse security levels, it is likely their customers will shift

their business to their competitors. We do not observe similar re-

sults from the private treatment effect, indicating that sending

treatment emails by itself lacks effectiveness in spam reduction

and changing organizational behavior on security measures. Our

results show that the combination of information sharing and pub-

lic announcement provides more economic motivation to the

organizations.

Discussions on empirical results
Although our work is a major first step forward to test the idea of a

security evaluation agency, our experiment has some limitations

that may undermine the treatment effects. However, the discovered

treatment effects can be further amplified if we mitigate the existing

shortcomings with the proposed nationwide independent institution.

The first limitation is the security evaluation metric; we only con-

sider outbound spam as a proxy for the latent security level.

However, organizations may pay more attention to other types of

cyber-attacks, such as phishing and DDoS attacks, since these are

more dangerous to organizations’ cybersecurity. Although the exist-

ing results with outbound spam are still valid, we expect organiza-

tions to be more responsive to our intervention if more

comprehensive security reports are provided in the experiment. The

second limitation of the experiment is the visibility of our website.

We had limited time to promote our website to attract attention,

which may have undermined our treatment effect given the

importance of the reputation effect. Also, some organizations may

not have paid enough attention to our emails. Fortunately, this limi-

tation will be largely alleviated if the website is sponsored by the

government. We want to note that the estimated treatment effects

are based on just two waves of treatment emails at the end of

January and March 2014. With constant and longtime notifications,

the influence of our treatment may increase over time.

To sum up, the data from the experiment show that large spam-

mers in the public treatment group sent out significantly smaller out-

bound spam volumes after exposure than those in the control group.

We expect the reason is that organizations in the public treatment

group have taken active measures to clean up existing malwares and

to improve their security protection for new malware prevention.

Our proposed policy with security information evaluation and pub-

licity effectively improve organizations’ security protection with re-

spect to the outbound spam volumes.

Peer effect analysis
From the previous results, we see that security information publicity

induced organizational security improvement, which is measured by

the reduced outbound spam volumes. We do further analysis to re-

cover the underlying mechanisms of organizations’ security strat-

egies. Organizations may improve their security protection due to

the shame of being spammers. On the other hand, they may also

change their strategies due to the peer pressure from their close com-

petitors. If customers and investors of an organization are aware of

Figure 6. Results of treatment effects from causal forest for organizations in our experiment. (a) Public versus control and (b) private versus control

Figure 7. Results of T-values from causal forest for organizations in our experiment. (a) Public versus control and (b) private versus control
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competing companies’ having better security levels, the poorly per-

forming organizations may experience churns.

With our peer ranking information available, we provide organ-

izations a convenient way to compare their security levels with those

of their peers, thus enhancing the peer influence in security manage-

ment. The existence of peer effects is important in understanding or-

ganizations’ security strategies. If peer effects are important, then

providing more comparisons between peers may be more effective in

pushing organizations to invest resources on their security protec-

tion. At the same time, organizations with strong security protection

may lack motivation to correct existing problems since they are al-

ready in the lead.

Peer effects exist if organizations’ behaviors are influenced by

their peers’ mean outcomes, which, in our context, represent the in-

dustry sector’s average security level. The identification of peer ef-

fects is difficult due to the reflection problem, unobservable

variables, and selection problem [33]. To overcome the difficulties,

we implement the excess-variance approach identification strategy.

Excess-variance approach

The identification strategy we use to analyze the existence and magni-

tude of peer effects is the excess-variance approach [24, 34]. The

main idea of this method is to take advantage of various sizes for each

industry group and the mathematical identity that the variances and

sizes do not change in the same proportion. The intuition is as fol-

lows. The unconditional between-group variance is equal to the sum

of (1) the variance of group-level heterogeneity (different industrial

characteristics), (2) between-group variance of individual-level hetero-

geneity (average organizations’ characteristics), and (3) the strength of

peer effects. With different sizes of industries, although the distribu-

tion of group-level heterogeneity is the same, we can use a method

similar to difference-in-differences to compare the between- and

within-group variance from different-sized industries to estimate the

peer effects. Since organizations are not randomly assigned to differ-

ent industry groups, the main issue in applying this identification

method is that the results may be biased if self-selection also makes

the variance change disproportionately to group size. We believe that

it is not a main issue to be considered since cybersecurity is not a

major factor to consider in making a decision to enter the market.

Moreover, it is hard to imagine that organizations will sort them into

peer groups differently, based on the group sizes. For example, finan-

cial services, retail organizations, and ISP will face a high risk of po-

tential cyber-attacks, but the sizes of the three industry groups vary a

lot, as shown in Fig. A1 in the Appendix.

With the typical linear-in-means model [33], organization i’s

spam behavior from industry j, Dij, will be:

Dij ¼ aj þ ðc� 1Þ��j þ ��ij ; (5)

where aj represents industry-level heterogeneity, eij represents

organization-level heterogeneity, and �ej represents the industry

mean of the firm-level heterogeneity. So c is the peer effect param-

eter to be estimated. If c>1, then organizations’ Internet security

levels are influenced by their peers. As in Graham [34] and Popadak

[24], the square of the peer influence, c2, can be identified as

follows:

c2 ¼
E Vb

j jSj ¼ 1
h i

� E Vb
j jSj ¼ 0

h i

E Vw
j jSj ¼ 1

h i
� E Vw

j jSj ¼ 0
h i ; (6)

where Sj indicates industry j’s size (large or small), and Vb
j and Vw

j

represent the between-group variance and within-group variance for

industry j, respectively. In the empirical analysis, we define Sj¼1 if

the size of industry j is equal to or larger than the median size (26

for two-digit SIC code and 149 for two-digit NAICS code) of all

industries in our data set, and Sj¼0 otherwise. To exclude other

characteristics, the variation attributed to other organizational and

industry-level average characteristics is removed.

The results from the excess-variance approach for spam volumes

are listed in Table 4. Since we report the peer rankings in the treat-

ments (emails and website) using the peer group defined by the two-

digit SIC and NAICS industry codes, we define organizations shar-

ing the same two-digit SIC and NAICS industry codes to be in the

same peer group. The estimated c2 is about 2, which is statistically

different from 1 using bootstrap, rejecting the null hypothesis that

there is no peer effect. Our results support Hypothesis 5—that there

are peer effects among organizations within the same industry

group.

Robustness check

Our estimates are based on a large-scale RFE, which helps us ex-

clude potential problems of omitted variables. But we conduct mul-

tiple robustness checks to provide more reliability of our estimates.

Tobit model
The distribution of the dependent variable—the outbound spam vol-

umes of each organization—is censored at 0, since 40% of the or-

ganizations did not emit any spam in the observed time period. This

may influence our estimation results in an average treatment effect

in linear regressions. We include a robustness check with Tobit

model, and the results are reported in Table A3 in the Appendix. We

verify that the results are quite consistent with those we find in the

main results section.

Table 4. Peer effect analysis on spam volume and number of spamming hosts

Spam volume Number of spamming hosts

SIC NAICS SIC NAICS

c2 2.021 2.179 2.095 2.682

P-value for H0: c2 ¼ 1 0.0002*** 0.0084*** 0.0000*** 0.0004***

c 1.422 1.476 1.447 1.638

Organization-specific covariates Yes Yes Yes Yes

Peer organization average covariates Yes Yes Yes Yes

Observations 7919 7919 7919 7919

Notes: This table displays the estimated peer effects using excess variance approach. Columns 1 and 2 represent the results using outbound spam volume.

Columns 3 and 4 represent the results using number of spamming hosts. We use two-digit SIC and NAICS codes to define peer groups. We use bootstrap to test

the null hypothesis of no peer effects for 5000 samples. * indicates statistical significance at the 10% level, ** at the 5% level, and *** at the 1% level.
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Placebo test
Our present experiment started at the end of January 2014. To dem-

onstrate the robustness of our estimated results, we assume that our

experiment started at the end of June in 2013 and re-estimate the

treatment effects. To be specific, we still use the 6-month average

spam volume before and after the assumed experimental start time

as the pre- and post-experimental metrics. For the analysis that

started at the end of June 2013, the post-experimental period will be

from July 2013 to December 2013. We should not find any signi-

ficant effect. The results are shown in Table A4 in the Appendix. We

can see that, when the assumed start time is closer to the actual

experiment start time, the treatment effects get larger (the magni-

tude of the public treatment coefficient is larger). The results support

the proposition that the spam reduction is actually due to our

intervention.

Alternative pre-experimental spam measure
In our experiment design and empirical analysis, we use the 6-month

(from June 2013 to December 2013) average spam volume right be-

fore the start of the experiment (January 2014) as the control of the

organization’s original security condition. To test the robustness of

our results, we re-run the regression with 2-month and 4-month

average spam volumes as the pre-experimental security levels. The

results are presented in Table A5 in the Appendix. We find similar

treatment effects, although the magnitudes of the public treatment

effects are smaller. This may be due to the fluctuation of spam vol-

ume over time.

Differences-in-differences analysis
In our treatment effect analysis in the “Empirical analysis” section,

there can be unobserved characteristics that can be correlated with

other main variables in our regression. To address this potential

problem, we also apply a difference-in-differences approach to find

the treatment effect. To test the robustness of the results, we use

both the Tobit model and linear model. The results are shown in

Table A6 in the Appendix. We can see that the results are consistent

with those in Table 3. As compared with the organizations in the

control group, large spammers tend to send out about 30% less

spam after the experiment.

Alternative security measure
We have multiple spam volume variables in our data set, with which

we can do further analysis to demonstrate the robustness of our main

results with CBL volume data. In addition to the volume data (CBL

volume), which measures the total number of emitted spam, we also

have host data that count the number of IP addresses with positive

spam volume (CBL host). Furthermore, we have the spam volume

measure from another spam data feed: Spamikaze’s PSBL (volume).

The estimation results using CBL host and PSBL volume are presented

in Table A7 in the Appendix. We observe, with both dependent vari-

ables, that large spammers in the public treatment group achieve a

large spam reduction when compared with those in the control group.

Data without ISPs
Since ISPs usually serve residential and business customers, they

generally have different security policies and capabilities than or-

ganizations that independently operate their own Internet infra-

structures. For example, ISPs have less control over their

customers’ behavior on the Internet. Intuitively, we would expect

them to be less responsive to our treatments. In our data set,

there are three industry groups that are related to ISPs: telephone

(group 6), unclassified communication (group 7), and other com-

munication (group 8). We re-estimate the regressions using ob-

servations without those three industry groups and the results are

listed in Table A8 in the Appendix. We can see that, as expected,

the magnitude of the public treatment effects is larger.

Extending experiments

We are currently pursuing possible extensions of our present experi-

ment. For example, we are now collaborating with local researchers at

City University of Hong Kong and KAIST to collect Asian organiza-

tional data. Using several other ASN lookup services on Google, we

have manually identified 2706 valid Asian organizations in China,

Hong Kong, South Korea, Malaysia, and Taiwan. In addition to US in-

dustry codes, we use the Hong Kong Standard Industrial Classification

(HSIC) and the Korean Standard Industrial Classification (KSIC) for

Asian organizations. We use the first two digits of industry codes to

group organizations, and then rank them according to their mal-

activity volume metrics—namely, the security metrics.

We are also implementing the treatment websites in two different

cloud platforms. In Google Cloud, we provide information with three

different languages: Chinese, English, and Korean. In addition, a sep-

arate Chinese website was created in Microsoft Azure, since Google

service is not accessible in China. The websites are supposed to be ac-

cessed by a large number of visitors. In the long run, multiple experi-

ments may be conducted in other countries. Cloud platforms can

efficiently be scaled to serve a large number of website visitors with ef-

ficient content-caching mechanisms.

Concluding remarks

Cyber-insecurity is a serious problem that calls for efforts from both

researchers and governments. The root causes of the issue can be or-

ganizations’ insufficient security investment and the lack of relevant

policies. We argue that the current practice with passive and reactive

security information disclosure does not provide sufficient motiv-

ations for organizations to resolve the problem. Thus, we propose to

set up a government sponsored, third-party institution that pro-

actively monitors organizations’ security levels and periodically pub-

lishes the evaluation reports for transparency. To evaluate the

effectiveness of such an institution, a large-scale RFE on 7919 US or-

ganizations was conducted to provide spam reports to the subjects

in either private or public ways. The results show that the combin-

ations of information sharing and publicity treatment can signi-

ficantly decrease large spammers’ outbound spam volumes, whereas

information awareness treatment by itself is not effective. The signi-

ficance of peer effect indicates that one of the spam reduction motiv-

ations is—peer pressure—from close industry competitors.

We believe that the empirical results of the present paper will

provide direct policy implications for governments as well as other

institutes devoted to cybersecurity issues—namely, policies that re-

duce information asymmetry and promote peer pressure and the es-

tablishment of a security evaluation measure. More broadly, the

results of our paper will benefit the members of cyber community,

including various private and public organizations and individuals,

by bringing their overall attention to cybersecurity issues and pro-

viding them with cybersecurity knowledge.

Cybersecurity research is a burgeoning area and there is still plenty

of work to be done. The approaches and results of the present paper

suggest some such future directions; our empirical work is just a start-

ing point for Internet security policy evaluation. The experiments
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described in the paper can be further extended to settings with more

comprehensive security evaluation metrics and in other economic en-

vironments. In addition, empirical strategies can be developed to ad-

dress the issue of the endogenous response of bot-herders. Our

ongoing project pursues these directions.

Acknowledgements

This work was supported by the National Science Foundation [award number

1228990]. We thank Yun-sik Choi, Ying-Yu Chen, Mark Varga, Zeyuan

Zhu, and Niyati Parameswaran from the University of Texas at Austin and

Markus Iivonen from the Helsinki Metropolia University of Applied Science

for technical support. We also appreciate all the helpful comments from the

participants on the 14th Annual Workshop on the Economics of Information

Security and Conference on Information Systems and Technology 2014. We

are very grateful for the comments on the experiment web design shared by

Sarah R. Benoist, Meredith Bethune from the University of Texas at Austin,

and Ping Zhang from the Syracuse University, as well as the comments on

statistical analysis shared by Dylan Walker from Boston University, Jason

Abrevaya, and Brendan Kline from University of Texas at Austin, and Susan

Athey from Stanford University. We thank Yuan Zhang from University of

Texas at Arlington for the help in converting the manuscript into Word for-

mat. We are responsible for all the possible problems in the paper.

Appendix 1: Randomization details

To get reliable treatment effect estimation from a RFE, we con-

ducted a stratified, pair-wise matching randomization on 7919 or-

ganizations [20]. Due to heterogeneity of legal regimes and

economic environment across countries, we only included US organ-

izations in the present experiment.

Stratification

One of the standard approaches to avoiding imbalance is stratificat-

ion on a few key characteristics [35]. In stratification, organizations

will be randomly assigned to different treatment groups within each

subgroup, defined by key characteristics. In our experiment, we

defined 195 subgroups by SIC codes (39 industry sectors) and num-

ber of IP addresses (5 segments). The detailed industry and number

of IP addresses groups are listed in Tables A1 and A2. Despite the

correlation between industry activities, we managed to divide firms

into mostly equal sized groups in order to get precise estimation.

The rationale of choosing the two characteristics is as follows.

First, organizations in different industries have different priorities on

security. For example, security should be particularly important for

software companies. Spammers may also have different incentives

based on the “value” of the data that different companies maintain.

In that sense, financial and health sectors may have a higher risk.

Second, organization size may affect the approaches on the system

protection. Organizations with a larger number of IP addresses, gener-

ally with larger size, may face more risks and potential problems. On

the other hand, large organizations usually have an independent IT

department with security experts. With more resources, large organ-

izations can afford better anti-virus software or firewalls to prevent

potential security attacks. Therefore, we divided the whole sample

into five groups according to their IP address counts.

Pair-wise matching

Stratification can only control for the balance of industry sectors

and IP counts and the two variables cannot explain a large share of

the spam volume’s variance. Since the baseline spam volumes can be

Figure A1. Distribution of communication companies’ sizes in our sample

(two-digit SIC code equals to 48).

Table A1. Industrial groups’ description

Group Industry sector Number of

organizations

1 Agriculture, mining, and construction 123

2 Electronic devices 103

3 Publishing 133

4 Chemical and measuring manufacturing 156

5 Other manufacturing 245

6 Telephone 836

7 Unclassified communication 164

8 Other communication 163

9 Transportation 253

10 Durable wholesale 215

11 Non-durable wholesale 126

12 Furniture retail 111

13 Non-classified retail 145

14 Other retail 158

15 Depository institutions 186

16 Credit and real estate 133

17 Security 255

18 Insurance 199

19 Holdings and other financial companies 179

20 Health services 337

21 Colleges 423

22 Education service other than colleges 214

23 Management consulting 181

24 Business consulting 150

25 Other management service 116

26 Engineer, accounting, and research 194

27 Non-classified business service 484

28 Computer programming 249

29 Prepackaged software 140

30 Computer integrated systems 157

31 Computer processing 162

32 Information retrieval 102

33 Non-classified computer service 167

34 Other business service 222

35 Legal service 108

36 Membership organization 93

37 Miscellaneous service 115

38 Other service 223

39 Public administration 199

Table A2. Groups based on the number of IP addresses

Number of IP addresses 0–427 428–1024 1024–104 104–105 >105

Group 1 2 3 4 5
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the best proxy of the organizations’ security condition, we did the

pair-wise matching on organizations’ pre-experimental spam vol-

umes. In practice, we found three organizations that minimize the

sum of three pairwise differences among them. One problem we

faced during this process was the distribution of spam volumes. We

found that the distribution for a given organization varies greatly

over time and both the distributions of spam volumes and the num-

ber of IP addresses for the whole sample was highly skewed. Thus,

we used the natural logarithm transformed 6-month average spam

volumes as our pre-experimental spam volumes to get higher prob-

ability of detecting the treatment effects.

Re-randomization

After the random assignment with stratification and pair-wise match-

ing, we checked the distances between the control group and two

treated groups with respect to companies’ various characteristics. We

followed the procedures in Morgan et al. (2012) to set the pre-

specified criteria. With 10,000 simple random draws from our sample

followed the previous two steps, we created a simulated distribution

of distance between any two groups and set the 5% quantile as the

criteria for randomization. Finally, with the 10,000 randomization as-

signments satisfying the re-randomization criteria for power calcula-

tion, we randomly chose one of them as our executed one.

Appendix 2: Additional figures and tables

Table A3. Treatment effects estimation

Avg. treatment effects Heterogeneous treatment effects

Overall Public versus control Private versus control

Variables (1) (2) (3) (4) (5) (6)

Private treatment �0.0243 �0.0114 0.258*** 0.139

(0.1480) (0.0655) (0.0998) (0.1070)

Public treatment �0.074 �0.0675 �0.332*** �0.244***

(0.1480) (0.0706) (0.0923) (0.0698)

Indicator �6.811*** �0.342 �8.276*** 0.028

(0.6290) (0.3480) (0.5310) (0.1420)

Private treatment � indicator �0.263*

(0.1340)

Public treatment � indicator 0.333** 0.256** �0.174

(0.1340) (0.1050) (0.1110)

Pre-experimental spam volume 0.702*** 0.671*** 0.711***

(0.0269) (0.0605) (0.0372)

Number of IP addresses 1.693*** 1.618*** 1.726***

(0.1610) (0.1840) (0.1410)

(Number of IP addresses)2 �0.0800*** �0.0756*** �0.0823***

(0.0076) (0.00931) (0.0065)

Number of botnets 0.280*** 0.278*** 0.276***

(0.0254) (0.0229) (0.0295)

Stock 0.328*** 0.23 0.474***

(0.1060) (0.1490) (0.1020)

Intercept 0.886*** �9.099*** 6.226*** �9.037*** 8.696*** �8.695***

(0.1080) (0.7590) (0.5230) (0.7500) (0.2770) (0.6460)

Industry No Two-digit SIC No Two-digit SIC No Two-digit SIC

P-value for H0: a1 ¼ a2 0.7363 0.3220

Observations 7919 7919 5280 5280 5280 5280

R-squared 0 0.744 0.434 0.751 0.501 0.745

Notes: This table displays the estimated private and public treatment effects with Tobit model. Columns 1 and 2 report the estimates of the differences between

the spam volume of treatment groups and control controlling for pre-experimental spam volume, number of pre-experimental IP addresses, number of pre-experi-

mental IP addresses squared, number of pre-experimental infesting botnets, whether or not publicly traded, and industry fixed effects. Columns 3 and 4 report the

estimates of the heterogeneous treatment effects with organizations in control and public treatment group. The indicator equals to 1 if organization’s log pre-ex-

perimental spam volume is less than 3.6. Columns 5 and 6 report the estimates of the heterogeneous treatment effects with organizations in control and private

treatment group. The indicator equals to 1 if organization’s log pre-experimental botnet is less than 3.4. Standard errors are clustered by industry codes and

shown in parentheses. * indicates statistical significance at the 10% level, ** at the 5% level, and *** at the 1% level.
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Table A4. Placebo test

Post-experimental spam volume

June 2013 July 2013 August 2013

Variables (1) (2) (3) (4) (5) (6)

Private treatment 0.0372 �0.00670 �0.00487

(0.0455) (0.0428) (0.0433)

Public treatment �0.00349 0.06500 �0.04360 �0.06450 �0.05090 �0.12600

(0.0465) (0.0600) (0.0431) (0.0702) (0.0433) (0.0988)

Indicator �3.545*** �3.093*** �2.830***

(0.1420) (0.1170) (0.1640)

Public treatment � indicator �0.114*** 0.0251 0.1000

(0.0574) (0.0635) (0.1060)

Pre-experimental spam volume 0.588*** 0.275*** 0.561*** 0.299*** 0.559*** 0.296***

(0.0151) (0.0364) (0.0149) (0.0361) (0.0151) (0.0257)

Number of IP addresses 0.259*** 0.134** 0.437*** 0.251*** 0.418*** 0.289***

(0.0413) (0.0546) (0.0396) (0.0536) (0.0372) (0.0557)

(Number of IP addresses)2 �0.00595** �0.00353 �0.0182*** �0.0107*** �0.0165*** �0.0116***

(0.0026) (0.0036) (0.0025) (0.0035) (0.0023) (0.0034)

Number of botnets 0.187*** 0.218*** 0.279*** 0.274*** 0.258*** 0.277***

(0.0176) (0.0274) (0.0194) (0.0343) (0.0188) (0.0289)

Stock �0.111 0.0767 �0.0548 0.0955 �0.0105 0.0984

(0.0677) (0.0925) (0.0659) (0.0714) (0.0681) (0.0785)

Intercept �1.002*** 3.116*** �1.746*** 2.199*** �1.688*** 1.734***

(0.2550) (0.3080) (0.1990) (0.2920) (0.1930) (0.3410)

Industry Two-digit SIC Two-digit SIC Two-digit SIC Two-digit SIC Two-digit SIC Two-digit SIC

Observations 7919 5280 7919 5280 7919 5280

R-squared 0.740 0.847 0.768 0.846 0.760 0.821

Notes: This table displays the robustness check with placebo test. Columns 1–2, 3–4, and 5–6 use October, November, and December 2013 as our experiment

start time, respectively. Standard errors are clustered by industry codes and shown in parentheses. * indicates statistical significance at the 10% level, ** at the

5% level, and *** at the 1% level.
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Table A5. Treatment effects with alternative measures of pre-experimental spam volume

Post-experimental spam volume

Two-month average pre-experimental Four-month average pre-experimental

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Private treatment �0.0196 �0.0176

(0.0357) (0.0317)

Public treatment �0.07310 �0.237** �0.226** �0.233** �0.06110 �0.208* �0.196*** �0.205**

(0.0442) (0.1120) (0.0895) (0.0925) (0.0407) (0.1120) (0.0732) (0.0836)

Indicator �0.983*** �0.965*** �0.967*** �0.735*** �0.728*** �0.737***

(0.1230) (0.1060) (0.1330) (0.1260) (0.0936) (0.1210)

Public treatment �
indicator

0.220* 0.203** 0.211* 0.194 0.177** 0.187*

(0.1200) (0.0976) (0.1090) (0.1200) (0.0852) (0.1050)

Pre-experimental

spam volume

0.585*** 0.497*** 0.479*** 0.477*** 0.597*** 0.536*** 0.517*** 0.515***

(0.0435) (0.0234) (0.0386) (0.0332) (0.0401) (0.0236) (0.0323) (0.0238)

Number of IP addresses 0.436*** 0.414*** 0.393*** 0.394*** 0.389*** 0.387*** 0.364*** 0.366***

(0.0567) (0.0508) (0.0496) (0.0436) (0.0522) (0.0498) (0.0511) (0.0434)

(Number of IP

addresses)2

�0.0168*** �0.0149*** �0.0144*** �0.0147*** �0.0145*** �0.0139*** �0.0131*** �0.0134***

(0.0039) (0.0031) (0.0033) (0.0026) (0.0037) (0.0030) (0.0033) (0.0025)

Number of botnets 0.306*** 0.304*** 0.308*** 0.311*** 0.288*** 0.289*** 0.291*** 0.293***

(0.0592) (0.0268) (0.0572) (0.0430) (0.0544) (0.0261) (0.0504) (0.0374)

Stock 0.0232 0.0224 0.0235 0.0446 0.0314 0.0218 0.015 0.0332

(0.0732) (0.0861) (0.1010) (0.0841) (0.0650) (0.0840) (0.0961) (0.0777)

Intercept �1.758*** �0.445* �0.726*** �0.716*** �1.679*** �0.650*** �0.862*** �0.852***

(0.1990) (0.2360) (0.2350) (0.2510) (0.1830) (0.2360) (0.2040) (0.2310)

Industry No No Two-digit

SIC

Three-digit

NAICS

No No Two-digit

SIC

Three-digit

NAICS

Observations 7919 5280 5280 5280 7919 5280 5280 5280

R-squared 0.741 0.740 0.746 0.748 0.747 0.744 0.750 0.751

Notes: This table displays the robustness check with alternative measures of pre-experimental spam volume. Columns 1–4 use monthly average spam volume

from November 2013 to December 2013 while Columns 5–8 use monthly average spam volume from September 2013 to December 2013. The results in Columns

2, 3, 4, 6, 7, 8 are from the subsample of organizations that are in control and public treatment groups. The indicator is a dummy variable that indicates whether

the company’s log pre-experimental spam volume is less than 3.6. Standard errors are clustered by industry codes and shown in parentheses. * indicates statistical

significance at the 10% level, ** at the 5% level, and *** at the 1% level.
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Table A6. Treatment effects with difference-in-differences model

Tobit model OLS model

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Public treatment �0.0118 0.00786 0.00895 0.01000 �0.0118 0.00898 0.0107 0.00961

(0.0756) (0.0553) (0.0397) (0.0562) (0.0756) (0.0577) (0.0385) (0.0582)

After �0.735*** �0.652*** �0.653*** �0.653*** �0.776*** �0.686*** �0.687*** �0.687***

(0.1620) (0.1100) (0.1600) (0.1500) (0.1650) (0.1150) (0.1690) (0.1590)

Indicator �6.181*** �3.785*** �3.714*** �3.696*** �7.668*** �4.535*** �4.421*** �4.399***

(0.1100) (0.1020) (0.2260) (0.1970) (0.1340) (0.1240) (0.3430) (0.3020)

Public treatment � after �0.287 �0.263* �0.264*** �0.264* �0.305 �0.277* �0.279*** �0.279**

(0.2310) (0.1570) (0.0660) (0.1350) (0.2350) (0.1640) (0.0697) (0.1410)

Public treatment � indicator 1.027*** 0.901*** 0.902*** 0.901*** 1.087*** 0.958*** 0.953*** 0.954***

(0.1680) (0.1160) (0.1520) (0.1440) (0.1960) (0.1400) (0.1590) (0.1520)

Indicator � after �0.0153 �0.0543 �0.0581 �0.0613 �0.08 �0.104 �0.12 �0.121

(0.1550) (0.1140) (0.0811) (0.1130) (0.1810) (0.1370) (0.0875) (0.1210)

Public treatment �
indicator � after

0.324 0.310* 0.310*** 0.310** 0.409 0.379* 0.382*** 0.380**

(0.2390) (0.1660) (0.0672) (0.1440) (0.2800) (0.2000) (0.0910) (0.1620)

Number of IP addresses 0.146*** 0.132*** 0.129*** 0.288*** 0.255*** 0.246***

(0.0081) (0.0213) (0.0172) (0.0133) (0.0380) (0.0333)

Number of botnets 0.569*** 0.563*** 0.565*** 0.571*** 0.568*** 0.572***

(0.0240) (0.0727) (0.0530) (0.0275) (0.0976) (0.0716)

Stock �0.0386 �0.0373 �0.0219 0.0899 0.0847 0.109

(0.0546) (0.1190) (0.0975) (0.0889) (0.1850) (0.1480)

Intercept �1.758*** �0.445* �0.726*** �0.716*** �1.679*** �0.650*** �0.862*** �0.852***

(0.1990) (0.2360) (0.2350) (0.2510) (0.1830) (0.2360) (0.2040) (0.2310)

Industry No No Two-digit SIC Three-digit

NAICS

No No Two-digit

SIC

Three-digit

NAICS

Observations 10,560 10,560 10,560 10,560 10,560 10,560 10,560 10,560

Notes: This table displays the robustness check with DID model on subsample of organizations in public and control groups. Columns 1–4 report the estimates

from Tobit models and Columns 5–8 report the estimates from OLS models. The “After” is a dummy variable indicates whether the outbound spam volume is

collected after our experiment has started. The “Indicator” is a dummy variable represents whether the organization’s log pre-experimental spam volume is less

than 3.6. Standard errors are clustered by industry codes and shown in parentheses. * indicates statistical significance at the 10% level, ** at the 5% level, and

*** at the 1% level.
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Table A7. Treatment effects with different security measures

CBL host PSBL volume

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Private treatment �0.0198 �0.0136 �0.0126 �0.01680

(0.0571) (0.0262) (0.0431) (0.0222)

Public treatment �0.02650 �0.03080 �0.12300 �0.0979* �0.05090 �0.0519** �0.218* �0.180**

(0.0570) (0.0264) (0.0984) (0.0517) (0.0422) (0.0223) (0.1270) (0.0889)

Indicator �3.375*** �0.330*** �1.945*** �0.318***

(0.0743) (0.0630) (0.0917) (0.0748)

Public treatment � indicator 0.1100 0.0888 0.217* 0.175*

(0.1070) (0.0604) (0.1280) (0.0886)

Pre-experimental spam metric 0.724*** 0.662*** 0.493*** 0.467***

(0.0162) (0.0242) (0.0255) (0.0320)

Number of IP addresses 0.160*** 0.150*** 0.145*** 0.121***

(0.0187) (0.0229) (0.0294) (0.0312)

(Number of IP addresses)2 �0.00453*** �0.00356** �0.00809*** �0.00723***

(0.0012) (0.0014) (0.0018) (0.0020)

Number of botnets 0.0842*** 0.0862*** 0.254*** 0.244***

(0.0101) (0.0120) (0.0151) (0.0176)

Stock 0.0592 0.0387 �0.0426 �0.0484

(0.0432) (0.0528) (0.0333) (0.0383)

Intercept 1.845*** �0.650*** 4.322*** �0.273 0.597*** �0.493*** 2.024*** �0.168

(0.0404) (0.1190) (0.0683) (0.1830) (0.0304) (0.1230) (0.0912) (0.1430)

Industry No No Two-digit

SIC

Three-digit

NAICS

No No Two-digit

SIC

Three-dig

NAICS

Observations 7919 7919 5280 5280 7919 7919 5280 5280

R-squared 0.000 0.792 0.505 0.792 0.000 0.685 0.284 0.689

Notes: This table displays the robustness check with different security measures. Columns 1–4 report the treatment effects for number of infesting hosts by

CBL in each quantile. Columns 5–8 report the treatment effects for spam volume by PSBL in each quantile. The results in columns 3, 4, 7, and 8 are from the sub-

sample of organizations that are in control and public treatment groups. The indicator is a dummy variable that indicates whether the company’s log pre-experi-

mental spam volume is less than 3.6. Standard errors are clustered by industry codes and shown in parentheses. * indicates statistical significance at the 10%

level, ** at the 5% level, and *** at the 1% level.
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Table A8. Treatment effects without ISPs

Average treatment effects Heterogeneous treatment effects

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Private treatment 0.0172 �0.00679 �0.00222 �0.0111

(0.0802) (0.0462) (0.0385) (0.0428)

Public treatment �0.03430 �0.05830 �0.05720 �0.06210 �0.31300 �0.306** �0.293*** �0.313**

(0.0795) (0.0465) (0.0472) (0.0498) (0.2030) (0.1440) (0.0984) (0.1210)

Indicator �4.429*** �0.274* �0.283 �0.287*

(0.1480) (0.1650) (0.1730) (0.1600)

Public treatment �
indicator

0.311 0.312** 0.293*** 0.310**

(0.2100) (0.1510) (0.1080) (0.1400)

Pre-experimental

spam volume

0.521*** 0.506*** 0.506*** 0.504*** 0.486*** 0.487***

(0.0240) (0.0251) (0.0206) (0.0372) (0.0239) (0.0297)

Number of IP

addresses

0.331*** 0.323*** 0.315*** 0.323*** 0.311*** 0.307***

(0.0437) (0.0404) (0.0385) (0.0537) (0.0440) (0.0512)

(Number of IP

addresses)2

�0.00985*** �0.0105*** �0.0102*** �0.00925*** �0.00958*** �0.00963***

(0.0027) (0.0029) (0.0023) (0.0032) (0.0029) (0.0030)

Number of botnets 0.361*** 0.377*** 0.375*** 0.353*** 0.369*** 0.367***

(0.0440) (0.0538) (0.0307) (0.0565) (0.0425) (0.0322)

Stock 0.0872 0.125** 0.134** 0.0828 0.0867 0.108

(0.0679) (0.0491) (0.0571) (0.0853) (0.0749) (0.0691)

Intercept 1.999*** �1.185*** �1.364*** �1.310*** 5.531*** �0.904*** �1.065*** �1.012***

(0.0566) (0.1740) (0.1430) (0.1510) (0.1430) (0.2560) (0.2680) (0.2690)

Industry No No Two-digit

SIC

Three-digit

NAICS

No No Two-digit

SIC

Three-digit

NAICS

Observations 6755 6755 6755 6755 4506 4506 4506 4506

R-squared 0.000 0.663 0.673 0.675 0.420 0.660 0.671 0.674

Notes: This table displays the robustness check without ISPs’ observations. Columns 1–4 report the average treatment effects and Columns 5–8 report the het-

erogeneous treatment effects. The results in Columns 5–8 are from the subsample of organizations that are in control and public treatment groups. The indicator

is a dummy variable indicates whether the company’s log pre-experimental spam volume is less than 3.6. Standard errors are clustered by industry codes and

shown in parentheses. * indicates statistical significance at the 10% level, ** at the 5% level, and *** at the 1% level.
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