

Crompton, L. A., McComish, S. F., Stathakos, P., Cordero Llana, O., Lane, J. D., & Caldwell, M. A. (2021). Efficient and Scalable Generation of Human Ventral Midbrain Astrocytes from Human-Induced Pluripotent Stem Cells. *Journal of Visualized Experiments*, (176), [e62095]. https://doi.org/10.3791/62095

Peer reviewed version

Link to published version (if available): 10.3791/62095

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via MyJove Corporation at 10.3791/62095. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

1 TITLE:

- 2 Efficient and Scalable Generation of Human Ventral Midbrain Astrocytes from Human-
- 3 Induced Pluripotent Stem Cells

4 AUTHORS AND AFFILIATIONS:

- 5 Lucy A. Crompton^{1*}, Sarah F. McComish², Petros Stathakos¹, Oscar Cordero-Llana³, Jon D. Lane^{1#},
- 6 Maeve A. Caldwell^{2#}
- 7 ¹Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
- 8 ²Department of Physiology and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland
- 9 ³Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
- 10
- 11 #These authors contributed equally.
- 12

13 ***CORRESPONDING AUTHOR**:

- 14 Lucy A. Crompton (Lucy.Crompton@bristol.ac.uk)
- 15
- 16 Email addresses of co-authors:
- 17 Sarah F. McComish (mccomiss@tcd.ie)
- 18 Petros Stathakos (petrosstathakos2017@gmail.com)
- 19 Oscar Cordero-Llana (oscar.corderollana@bristol.ac.uk)
- 20 Jon D. Lane (Jon.Lane@bristol.ac.uk)
- 21 Maeve A. Caldwell (Maeve.Caldwell@tcd.ie)
- 22

23 **KEYWORDS**:

- astrocyte, Parkinson's disease, ventral midbrain, neuroinflammation, reactive human induced
 pluripotent stem cell, differentiation
- 26

27 SUMMARY:

- 28 Here, we present a method for reproducible generation of ventral midbrain patterned astrocytes
- 29 from hiPSCs and protocols for their characterization to assess phenotype and function.
- 30

31 ABSTRACT:

- 32 In Parkinson's disease, progressive dysfunction and degeneration of dopamine neurons in the 33 ventral midbrain cause life-changing symptoms. Neuronal degeneration has diverse causes in 34 Parkinson's, including non-cell autonomous mechanisms mediated by astrocytes. Throughout 35 the CNS, astrocytes are essential for neuronal survival and function, as they maintain metabolic 36 homeostasis in the neural environment. Astrocytes interact with the immune cells of the CNS, 37 microglia, to modulate neuroinflammation, which is observed from the earliest stages of 38 Parkinson's, and has a direct impact on the progression of its pathology. In diseases with a chronic 39 neuroinflammatory element, including Parkinson's, astrocytes acquire a neurotoxic phenotype, 40 and thus enhance neurodegeneration. Consequently, astrocytes are a potential therapeutic
- 41 target to slow or halt disease, but this will require a deeper understanding of their properties and
- 42 roles in Parkinson's. Accurate models of human ventral midbrain astrocytes for in vitro study are

- 43 therefore urgently required.
- 44

We have developed a protocol to generate high purity cultures of ventral midbrain-specific astrocytes (vmAstros) from hiPSCs that can be used for Parkinson's research. vmAstros can be routinely produced from multiple hiPSC lines, and express specific astrocytic and ventral midbrain markers. This protocol is scalable, and thus suitable for high-throughput applications, including for drug screening. Crucially, the hiPSC derived-vmAstros demonstrate immunomodulatory characteristics typical of their in vivo counterparts, enabling mechanistic studies of neuroinflammatory signaling in Parkinson's.

52

53 **INTRODUCTION:**

54 Parkinson's disease affects 2%–3% of people over 65 years of age, making it the most prevalent 55 neurodegenerative movement disorder¹. It is caused by degeneration of ventral midbrain 56 dopamine neurons within the substantia nigra, resulting in debilitating motor symptoms, as well 57 as frequent cognitive and psychiatric issues². Parkinson's pathology is typified by aggregates of 58 the protein, α -synuclein, which are toxic to neurons and result in their dysfunction and death¹⁻³. 59 As the dopaminergic neurons are the degenerating population in Parkinson's, they were 60 historically the focus of research. However, it is apparent that another cell type in the brain, the 61 astrocytes, also demonstrate abnormalities in Parkinson's, and are believed to contribute to 62 degeneration in models of Parkinson's^{4–7}.

63

64 Astrocytes are a heterogenous cell population that can transform both physically and functionally 65 as required. They support neuronal function and health via a plethora of mechanisms, including 66 the modulation of neuronal signaling, shaping of synaptic architecture, and trophic support of neuronal populations via secretion of specific factors^{6,8-10}. However, astrocytes also have a 67 68 substantial immunomodulatory role, integral to the development and propagation of 69 neuroinflammation^{10,11}. Neuroinflammation is observed in the affected brains, and significantly has recently been shown to pre-empt the onset of Parkinson's symptoms^{12–15}, thereby taking the 70 71 center stage in Parkinson's research.

72

At a cellular level, astrocytes are said to become reactive in response to injury, infection, or 73 disease, as an attempt to facilitate neuroprotection^{9,6,10,16}. Reactivity describes a shift in astrocyte 74 phenotype characterized by changes in gene expression, secretome, morphology, and 75 mechanisms of clearance of cell debris and toxic byproducts^{9–11,17}. This reactive shift occurs in 76 77 response to inductive signals from microglia, which are the immune cells of the CNS and the first 78 responders to injury and disease⁹. Both astrocytes and microglia respond to inflammatory signals 79 by moderating their own function and can transduce inflammatory signals and thus directly influence neuroinflammation^{9,10}. However, the chronic nature of Parkinson's results in a 80 transition where reactive astrocytes become toxic to neurons, and themselves promote 81 degeneration and disease pathology^{6,9,10,18,19}. Significantly it was recently demonstrated that 82 blocking the transformation of astrocytes into the reactive neurotoxic phenotype prevents the 83 progression of Parkinson's in animal models¹¹. Astrocyte reactivity in the paradigm of 84 85 neuroinflammation has therefore become a major focus of Parkinson's research, and similarly relates to a wide spectrum of diseases of the CNS. Together these findings build a picture of 86

87 significant astrocytic involvement in the etiology of Parkinson's, emphasizing the need for 88 accurate research models that recapitulate the phenotype of the human astrocyte populations 89 that are involved in Parkinson's.

90

91 In the embryonic brain, neurons appear first, with the astroglial lineage, namely, the astrocytes and oligodendrocytes, appearing later in development⁶. In vivo and in vitro studies have 92 93 highlighted a number of signaling pathways that appear to control the potency of neural 94 progenitor cells from neuronal to astroglial derivatives. In particular, JAK/STAT, EGF, and BMP signaling play roles in the proliferation, differentiation, and maturation of astroglia^{20,21}. These 95 pathways have been the focus of in vitro protocols for the generation of astrocytes from 96 97 pluripotent cells, including hiPSC^{6,22,23}. There have been many successful examples of generating astrocytes from hiPSCs^{6,24,25}. However, it is apparent that in vivo astrocytes in the CNS possess 98 99 specific regional identities, which relate directly to their function, in accordance with the specific 100 requirements of those astrocytes in relation to their specialized neuronal neighbors^{17,24–26}. For 101 example, relating specifically to the ventral midbrain, it has been demonstrated that astrocytes 102 in this region express specific sets of proteins, including receptors for dopamine enabling 103 communication with the local population of midbrain dopamine neurons²⁶. Furthermore, ventral midbrain astrocytes demonstrate unique signaling properties²⁶. Therefore, to study the role of 104 105 ventral midbrain astrocytes in Parkinson's, we require an in vitro model that reflects their unique 106 set of characteristics.

107

108 To address this, we have developed a protocol to generate ventral midbrain astrocytes 109 (vmAstros) from hiPSCs. The resulting vmAstros exhibit characteristics of their in vivo ventral 110 midbrain counterparts such as expression of specific proteins, as well as immunomodulatory 111 functions. The results presented are from the differentiation of the NAS2 and AST23 hiPSC lines, which were derived and gifted to us by Dr. Tilo Kunath²⁷. NAS2 was generated from a healthy 112 control subject whereas AST23 is derived from a Parkinson's patient carrying a triplication in the 113 114 locus encoding α -Synuclein (SNCA). These hiPSC lines have been previously characterized and 115 used in a number of published research papers, including for the generation of various neural cell types^{27–31}. 116

- 117
- **PROTOCOL:** 118
- 119

120 1.

121

122 1.1. For coating hiPSC culture plates, dilute vitronectin to 5 μ g/mL (1:100) in PBS at 1 mL per 10 123

cm² cell culture plate surface area. Leave for 1 h at room temperature.

Human hiPSC line thawing, maintenance, and cryopreservation

124 1.2. Remove vitronectin and proceed immediately to adding hiPSCs/media to the culture plate. 125

126 NOTE: When removing vitronectin from the plate, it is crucial that the culture surface is not 127 allowed to dry out.

128

129 To thaw hiPSCs Remove cryovials containing hiPSCs from liquid nitrogen and place in a 37 1.3. 130 °C water bath until the contents have completely thawed.

131							
132 133 134 135 136	1.4. Prepare 9 mL of prewarmed cell culture medium (e.g., E8 or E8 Flex) containing supplement (e.g., Revitacell). Add 1 mL dropwise to the contents of the cryovial. Pla remaining 8 mL media into a 15 mL centrifuge tube and to this add the diluted cont the cryovial.						
137 138	CAUT	FION: Do not triturate the contents.					
139 140 141 142	1.5.	Centrifuge at 150 x g for 3 min. Aspirate the liquid without disturbing the cell pellet and resuspended in an appropriate volume of cell culture medium (e.g., E8 or E8 Flex) containing 1x cell supplement (e.g., Revitacell). For example, 2 mL per well of a 6-well plate.					
143 144	1.6.	Add resuspended hiPSCs to vitronectin coated dishes and place in 37 $^\circ\text{C}/5\%$ CO $_2$ incubator.					
145 146	NOTI	E: hiPSCs should start to attach to vitronectin coated plasticware in 30 min–2 h after thawing.					
147 148 149	1.7.	Maintain hiPSCs in cell culture medium (e.g., E8 or E8 Flex). Feed cells daily by media exchange. Always prewarm culture media for 30 min before feeding.					
150 151 152 153 154 155	NOTI can b cultu the c survi	E: If using E8 Flex, hiPSCs do not require media changes every 24 h and feeding increments be extended to 48 h, if needed. Either E8 Flex or E8 media yield equally high-quality hiPSC res. HiPSCs should be cultured for a minimum 14 days post-thawing, and prior to beginning differentiation steps. Culture periods of less than 14 days appear to negatively impact the val of the hiPSCs during the initial differentiation period.					
156 157	NOTI	E: Passage hiPSCs at approximately 80% confluency (Figure 1A: 3–4 day passaging interval).					
158 159	1.8.	1 h prior to beginning, add 1x cell supplement (e.g., Revitacell) to the hiPSC culture.					
160 161 162	1.9.	Wash hiPSCs once with PBS (without calcium or magnesium) and add 0.5 mM EDTA (diluted from stock in PBS without calcium or magnesium).					
163 164 165 166	1.10.	Incubate for 5 min at room temperature, or until the hiPSCs begin to detach from each other and take on a more rounded appearance, with the boundaries of each iPSC appearing brighter under a brightfield microscope.					
167 168 169 170	1.11.	Add 200 μ L EDTA on to a focused area of the hiPSCs with a pipette. If they readily detach, making a clear space in the cell layer, then they are ready to be harvested. If they do not readily detach, leave in EDTA and repeat after 1 min.					
171 172 173	1.12.	When ready to proceed, gently remove EDTA, and using a pipette, gently wash the hiPSCs twice with cell culture medium (e.g., E8 or E8 Flex).					

174 175	NOTE the sid	: To achieve this without the hiPSCs detaching, tip the plate and add media dropwise down de of the culture plate.
176		
177	1.13.	To harvest hiPSCs use 1 mL cell culture medium (e.g., E8 or E8 Flex) containing 1x cell
178	:	supplement (e.g., Revitacell). Release the media directly onto the hiPSC layer and the cells
179	:	should detach. If required, repeat with another 1 mL media.
180		
181	1.14.	View the hiPSCs under the microscope. Ideally, hiPSCs should appear in relatively uniform
182	(clusters as shown in Figure 1B . If hiPSC clusters are much larger, or very variable in size, use
183	1	the pipette to break up the larger hiPSC clusters (Figure 1B).
184		
185	NOTE	: Do not over-triturate hiPSCs. Although the supplement increases the overall cell survival,
186	over t	rituration negatively impacts on the survival of the hiPSC culture. 1–4 passes with a pipette
187	are re	commended.
188		
189	1.15.	Using a serological pipette, transfer the hiPSC suspension on to a vitronectin-coated plate
190	i	as prepared in step 1.1 . Return the hiPSC culture to the 37 $^{\circ}$ C/5% CO ₂ incubator.
191		
192	NOTE	: Cryopreserve hiPSCs at approximately 80% confluency.
193		
194	1.16.	1 h prior to beginning, add 1x cell supplement (e.g., Revitacell) to the hiPSC culture.
195		
196	1.17.	Detach hiPSCs from culture plates using 0.5 mM EDTA as described in step 1.4, collecting
197		cells in cell culture medium (e.g., E8 or E8 Flex) containing 1x cell supplement (e.g.,
198		Revitacell). Centrifuge at 150 x g for 3 min.
199		
200	1.18.	Resuspend pelleted hiPSCs in cell freezing media (see Table of Materials). Use 700 µL per
201		10 cm ² culture area, equivalent to 1 cryovial of cells per well of a 6-well plate.
202		
203	1.19.	Transfer cryovials into an appropriate cell freezing vessel (for details see Table of
204		Materials).
205		
206	1.20.	Transfer the freezing vessel to a -80 °C freezer for 24 h. After 24 h, cryovials can be
207	ł	transferred to liquid nitrogen (-196 °C) for long-term storage.
208		
209		
210	2.	vmAstro Differentiation protocol
211		
212	NOTE	: A schematic summary of the vmAstros differentiation protocol is shown in Figure 1A. A
213	detail	ed list of reagents required for the protocol and their preparation is given in Table 1 .
214		
215	2.1.	Induction of vmNPCs
216		
217	NOTE	: This protocol has been optimized to begin with a minimum with 1x well of a 6-well plate

 (10 cm^2) of hiPSCs 70%–80% confluency, which is approximately 4–5 x 10⁴ cells/cm² (Figure 1B)³⁰. 218 Starting cell number and density must be optimized for each hiPSC line as it significantly impacts 219 220 survival and differentiation efficiency. 221 222 2.1.1. Remove cell culture medium from hiPSCs and wash 3x in DMEM/F12 + glutamax. Replace 223 media with 2 mL vmNPC induction media (N2B27 + CHIR99021 + SB431542 + SHH(C24ii) + 224 LDN193189. See Table 1 for details of preparing media and reagents). 225 226 2.1.2. Feed on alternate days with a half media change after 24 h, and a full media change at 48 227 h. 228 229 NOTE: After 3–4 days the vmNPC culture will require passaging. A standard passaging ratio of 1:3 230 or 1:4 is recommended—this needs to be optimized for each hiPSC line used. 231 232 2.1.3. 1 h before passaging, add 1x cell supplement (e.g., Revitacell) to vmNPCs, and prepare 1x 233 basement membrane matrix (e.g., Geltrex) coated tissue culture plastic (see section 2.2 234 'Preparing basement membrane matrix and coating tissue culture plastic'). 235 236 2.1.4. Remove the media from vmNPCs and wash 2x with D-PBS. Add 1 mL pre-warmed cell 237 detachment solution (e.g., Accutase) per 10 cm² culture area (1 mL per well of a 6-well plate). 238 239 2.1.5. Place at 37 °C for 1 min and then examine vmNPCs using a phase contrast microscope. 240 241 NOTE: The vmNPCs will start to round up, their processes will re-tract, and gaps will appear in 242 the cell layer. This can take from 1–3 min depending on cell density. 243 244 2.1.6. When vmNPCs take on this appearance, add 100 μ L of cell detachment solution (e.g., 245 Accutase) on to the layer of vmNPCs. 246 247 NOTE: If the vmNPCs are ready to detach, a hole in the cell layer will appear. If this doesn't 248 happen, then the vmNPCs require further incubation with cell detachment solution. 249 250 2.1.7. If vmNPCs readily detach, then gently remove the cell detachment solution and wash 251 vmNPCs 2x with N2B27 media. Add N2B27 media gently down the side of the well or culture 252 vessel and gently swirl to wash, ensuring that vmNPCs do not detach. 253 254 NOTE: This step must be completed quickly to ensure vmNPCs do not reattach to the cell surface. 255 If vmNPCs start to detach in the wash steps, collect via centrifugation at 150 x g for 3 min. vmNPCs 256 are not centrifuged as standard when passaging as this can reduce their survival. 257 258 2.1.8. Finally, remove vmNPCs using a pipette, by vigorously ejecting vmNPC induction media 259 containing 1x cell supplement (e.g., Revitacell) directly on to the cell layer. This should remove 260 vmNPCs, which can then be transferred directly into the new matrix-coated coated culture vessel. 261

262 263 264	NOTE: this wi	Do not re-use media already containing resuspended vmNPCs to remove further cells as II result in their over-trituration, which reduces their survival.
265 266 267	2.1.9. surface cell su	Replace in 37 °C/5% CO ₂ incubator. vmNPCs should begin to attach to the matrix-coated e after 20–30 min. Replace half of the media with fresh vmNPC induction media (without pplement) after 24 h and continue the feeding schedule as earlier.
269 270 271	2.1.10	. Continue the regime of feeding and passaging for 10 days.
272 273 274	2.2.	Preparing basement membrane matrix and coating tissue culture plastic
274 275 276 277 278	NOTE: plastic used.	For maintaining vmNPCs 1x basement membrane matrix (e.g., Geltrex) is used for coating ware. For maintaining vmAPCs or vmAstros, 0.25x basement membrane matrix can be
279 280 281	2.2.1. overni	Remove basement membrane matrix stock from a -80 °C freezer and place in a 4 °C fridge ght to thaw.
282 283	2.2.2.	Dilute 1:10 with ice cold DMEM/F12 + glutamax, aliquot and store at -80 °C as a 10x stock.
284 285 286	2.2.3. or vm/	When coating plasticware dilute this 10x stock to 1x (for vmNPCs) or 0.25x (for vmAPCs Astros) with ice cold DMEM/F12 + glutamax.
287 288 288	2.2.4. of a 6-	Immediately add to tissue culture plastic at 1 mL per 10 cm ² , for example, 1 mL per well well plate.
290 291 292 293 294	2.2.5. from p out. M	Place at 37 °C for 1 h. The basement membrane matrix solution should not be removed plasticware until ready to add media/cells to ensure the coated plasticware does not dry atrix coated plates do not require washing before adding cells.
295 296 297	2.3.	Expansion of vmNPCs
298 299 300	2.3.1. (N2B2	On day 10 of the protocol, replace the induction media with vmNPC expansion media 7 + GDNF + BDNF + ascorbic acid. See Table 1 for details of preparing media and reagents).
301 302 303	NOTE: and as	The vmNPCs do not require the addition of mitogens to induce proliferation. BDNF, GDNF, corbic acid support the survival and maintenance of vmNPCs ³⁰ .
304 305	2.3.2. h.	Feed on alternate days with a half media change after 24 h, and a full media change at 48

- 307 NOTE: After 3–4 days, the vmNPC culture will require passaging. For passaging, a standard 308 passaging ratio of 1:3 or 1:4 is recommended (this needs to be optimized for each hiPSC line used. 309 Determine the ratio that gives the best survival, proliferation, and generation of vmNPCs). 310 311 2.3.3. 1 h before passaging, add 1x cell supplement (e.g., Revitacell) to vmNPCs, and prepare 1x 312 matrix coated plates/flasks in advance (see section 2.2 'Preparing basement membrane matrix 313 and coating tissue culture plastic'). Prewarm the cell detachment solution (e.g., Accutase) to 37 314 °C. Prewarm fresh vmNPC expansion media containing 1x cell supplement (e.g., Revitacell). 315 316 2.3.4. Remove media from vmNPCs and wash 2x with D-PBS. Add 1 mL cell detachment solution 317 (e.g., Accutase) per 10 cm² culture area (1 mL per well of a 6-well plate). Place at 37 °C for 1 min 318 and then examine vmNPCs using a phase-contrast microscope. 319 320 NOTE: The vmNPCs will start to round up, their processes will re-tract, and gaps will appear in 321 the cell layer. This can take from 1–3 min depending on the cell density. 322 323 2.3.5. When vmNPCs takes on a rounded appearance, add 100 μ L of cell detachment solution 324 (e.g., Accutase) on to the layer of vmNPCs. 325 326 NOTE: If the vmNPCs are ready to detach, a hole in the cell layer will appear. If this doesn't 327 happen, then the vmNPCs require further incubation with the cell detachment solution. 328 329 2.3.6. If vmNPCs do readily detach, then gently remove the cell detachment solution and wash vmNPCs twice with N2B27 media. Add the N2B27 media gently down the side of the well or 330 331 culture vessel and gently swirl to wash, ensuring that vmNPCs do not detach. 332 333 NOTE: If vmNPCs start to detach in the wash steps, collect via centrifugation at 150 x q for 3 min. 334 vmNPCs are not centrifuged as standard when passaging as this can reduce their survival. This 335 step must be completed quickly to ensure vmNPCs do not reattach to the cell surface. 336 337 2.3.7. Remove vmNPCs using a pipette, and vigorously eject vmNPC expansion media containing 338 1x cell supplement (e.g., Revitacell) directly on to the cell layer. This should remove vmNPCs, 339 which can then be transferred to a 15 mL centrifuge tube. 340 341 NOTE: Do not re-use media already containing resuspended vmNPCs to remove further cells as 342 this will result in their over-trituration, which reduces their survival. 343 344 2.3.8. Replace in 37 $^{\circ}C/5\%$ CO₂ incubator. vmNPCs should begin to attach to the matrix coated 345 surface after 20–30 min. After 24 h, replace half of the culture media with fresh vmNPC expansion 346 media (without cell supplement) and continue the previous feeding schedule. 347 348 2.3.9. Continue this regime of feeding and passaging for 10 days. vmNPCs can be expanded up
- 349 to day 50.

306

- 350
- 351

353

352 2.4. Differentiation and expansion of vmAPCs

- NOTE: vmNPCs can be used successfully for the generation of vmAPCs/vmAstros anywhere between 30 and 50 days from the initial hiPSC stage (**Figure 1A**).
- 356

357 2.4.1. Take a confluent vmNPC culture and wash vmNPCs 3x in advanced DMEM/F12 to remove
 358 traces of the components of vmNPC expansion media. Replace the media with vmAPC expansion
 359 media (ASTRO media +EGF +LIF. See **Table 1** for details of preparing media and reagents).
 360

2.4.2. After 72 h passage, the vmNPC culture is at a high ratio (1:7.5). For example, assuming
 vmNPCs were maintained in a single well of a 6-well plate, they should now be passaged into a
 1x matrix coated 75 cm² flask (coated as described in section 2.2 'Preparing basement
 membrane matrix and coating tissue culture plastic'). Passage using cell detachment solution,
 as described for vmNPCs in section 2.3 'Expansion of vmNPCs'.

366

367 2.4.3. Resuspend vmNPCs in an appropriate volume of vmAPC Expansion media (7.5–15 mL
 368 media per 75 cm² flask. Complete media changes every 3 days, or as the cells require.
 369

NOTE: From this point on, vmNPCs are referred to as vmAPCs and should be passaged as single cells rather than cell clusters. vmAPCs should be passaged every 3–7 days or as they become confluent to avoid becoming over confluent. From this point onward the reduced concentration of 0.25x matrix should be used to coat plasticware (as described in section 2.2 'Preparing basement membrane matrix and coating tissue culture plastic').

375

2.4.4. Expand vmAPCs until they reach day 90 (from the hiPSC stage), cryopreserving vmAPCs at
 various points in their expansion.

378 379

380 **2.5. Generation of mature vmAstros from vmAPCs**

381

NOTE: At this stage, vmAPCs can be grown in 175 cm² tissue culture flasks. This may be expanded
 for the generation of large numbers of mature vmAstros.

384

2.5.1. When vmAPCs reach 80% confluency, wash 3x with ASTRO media and replace with
vmAstros maturation media (ASTRO media +BMP4 +LIF. See **Table 1** for details of preparing
media and reagents).

388

2.5.2. Carry out a complete media change every 3 days, or as the cells require, for 10 days.

NOTE: a) At this point, characterization indicates that the vmAstros are mature, as confirmed by
 immunocytochemistry (Figure 2G–I) and by gene expression analysis (manuscript in preparation).

b) vmAstros used immediately after maturation should be re-plated on a newly prepared matrix-

394 395	coated surface. Maintaining either vmAPCs or vmAstros on the same culture surface for over 14 days could lead to suboptimal cultures, where cells begin to shrink in size and even detach, c) For						
396	applications examining neuroinflammatory modulation BMP and LIE are removed 72h prior to						
397	applications examining neuronmaninatory modulation, bive and the removed 72n phot to						
308	signalling and induced neuroinflammatory signalling						
300	Signaling and modecu neuronmanmatory signaling.						
399							
400	2.5.2 umAstros can now have plated for experimental accoust for example, ante coversities for						
401	2.5.5. VITASLIOS call now be re-plated for Externa explications						
402	immunocytochemistry of cryopreserved for future applications.						
403							
404	NOTE: Passaging should not be necessary at this stage of the protocol as proliferation should only						
405	occur at a very low rate. vmAPCs plated too densely at this stage maintain higher levels of						
406	proliferation. If this is the case, passage and split cells to achieve a density as is shown in Figure						
407	1F.						
408							
409							
410	3. Cryopreservation of vmNPCs, vmAPCs, and vmAstros						
411							
412	NOTE: Cryopreserve vmNPCs/vmAPCs/vmAstros at full confluency.						
413							
414	3.1. 1 h prior to beginning, add 1x cell supplement (e.g., Revitacell) to culture. Fill the						
415	cryostorage vessel (see Table of Materials) with isopropanol at room temperature.						
416							
417	3.2. Detach the cells from the culture plates using cell detachment solution as previously						
418	described, collecting cells in appropriate media (N2B27 or ASTRO media) containing 1x cell						
419	supplement (e.g., Revitacell). Centrifuge at 150 x g for 3 min.						
420							
421	3.3. Resuspend pelleted vmNPCs/vmAPCs/vmAstros in cell freezing media (see Table of						
422	Materials) volumes as follows:						
423	- vmNPCs: 700 μL per 10 cm ² culture area, into 1 cryovial.						
424	- vmAPCs: 700 μ L per 60 cm ² culture area, into 1 cryovial (approximately 1/3 of a T175						
425	culture flask).						
426	- vmAstros: Resuspend in a 2 mL of media and count the number of vmAstros. Re-						
427	centrifuge and resuspend in cell freezing media (see Table of Materials) at a number per						
428	cryovial appropriate to future applications. Assuming an approximate cell loss of 15% due						
429	to freeze-thawing, newly thawed ymAstros are counted and plated with a 15% excess cell						
430	number to compensate for cell death in the freeze-thaw process. This is, therefore,						
431	equivalent to 74,750 vmAstros per cm^2 . Thawed vmAstros are maintained for 72 h in						
432	ASTRO media prior to assaving						
433							
433	3.4 Transfer the cryovials into a cell freezing vessel (for details see Table of Materials) and						
435	transfer the freezing vessel to a -80 °C freezer for 24 h. Δ fter 24 h. cryovials can be transferred to						
436	liquid nitrogen (-196 °C) for long-term storage						
430 437							
,							

438		
439	4.	Characterization of vmAstro phenotype
440		
441	4.1.	Immunocytochemistry
442		
443	4.1.1.	Place 100–200 13 mm glass coverslips in glass Petri dishes on a layer of filter paper and
444	sterili	ze them in a dry autoclave.
445		
446	4.1.2.	Transfer the coverslips to wells of 4- or 24-well plates using sterile forceps. Add 1x matrix
447	soluti	on (e.g., Geltrex) on the coverslips as 50 μ L droplets and incubate at 37 °C for 1 h.
448		
449	4.1.3.	Passage or thaw vmAstros, resuspend in ASTRO media and carry out a count. Plate
450	vmAst	tros at 25–100,000 cells per coverslip in a 50 μL droplet.
451		
452	4.1.4.	Remove the matrix from the coverslip and immediately add vmAstros in a droplet of
453	media	I. Place at 37 °C for 30 min and then flood the wells with an additional 250 μ L ASTRO media.
454		
455	NOTE	: If carrying out immunocytochemistry to simply check for astrocyte and midbrain marker
456	expre	ssion, vmAstros can be fixed 24 h after plating.
457		
458	4.1.5.	Prepare 4% formaldehyde solution by diluting 36% formaldehyde solution 1:9 in D-PBS.
459		
460	4.1.6.	Wash vmAstros 1x with D-PBS. Immediately add 4% formaldehyde to the wells and leave
461	at roo	m temperature for 10 min.
462		
463	4.1.7.	Remove formaldehyde and replace with D-PBS. Either store at 4 °C or proceed to
464	immu	nocytochemistry.
465		
466	4.1.8.	Wash coverslips in wells 3x with D-PBS. Permeabilize and block in 10% goat serum, 1% BSA
467	10.1	% PBTx (D-PBS + 1:1000 Triton-X) for 1 h at room temperature.
468		Add a view and the diag (Table of Materiale) in 10(and service 0.10(DCA in 0.10(DDT. (D
469	4.1.9.	Add primary antibodies (Table of Waterials) in 1% goat serum, 0.1% BSA in 0.1% PBTX (D-
470	PB3 +	1.1000 Thton-X) and incubate overnight at 4 °C on a rocker.
471	4 1 10	On the payt day, remove primary antibodies and wash coversing 2y with D BBS
472 172	4.1.10	. On the next day, remove primary antibodies and wash coversilps 5x with D-PB5.
475	A 1 11	Add appropriate secondary antibodies (Table of Materials) in 1% geat serum 0.1% BSA
474 175	in 0 19	% PBTy, and incubate for 1–2 h at room temperature and protect it from light on a rocker
476	Wash	coverslips 3x with D-PBS
477	vv u SIT	
478	4,1.12	Add DAPI solution (0.1 ug/mL DAPI in D-PBS) and incubate at room temperature for 10
479	min. V	Vash coverslips 3x with D-PBS.
480		

481 **4.1.13.** To mount the coverslip, add a 5 µL droplet of Mowiol/DABCO mounting media [12% 482 Mowiol (w/v), 12% glycerol (w/v) dissolved overnight stirring in 0.2 M Tris (pH 8.5) with 25 mg/mL 483 1,4-diazabicylo[2.2.2]octane (DABCO)] to a glass microscope slide. Using forceps, carefully 484 remove the coverslip from the well; dab the edge of the coverslip on the tissue to remove the 485 excess liquid and place vmAstros side down onto the Mowiol/DABCO droplet. 486 487 **4.1.14.** Repeat for each coverslip and leave to dry for 8 h before microscopic examination. 488 489 490 4.2. ELISA measurement of vmAstro secreted IL-6 in response to cytokine treatment 491 492 NOTE: Following the 10-day maturation with BMP4 and LIF, vmAstros should be passaged, 493 counted, and plated on 0.25x matrix-coated tissue culture plasticware (as described in section 494 2.2 'Preparing basement membrane matrix and coating tissue culture plastic'), at a density of 495 65,000 vmAstros per cm² in ASTRO media. BMP4 and LIF should be removed from the vmAstros 496 72 h prior to cytokine treatment as active signaling from these factors can interfere with the 497 efficacy of the cytokine treatment. Alternatively, cryopreserved vmAstros can be thawed and 498 used for assays. 499 500 **4.2.1.** On the day of the assay, gently wash vmAstros 3x in non-redox media (DMEM/F-12 + 501 glutamax + N2). 502 4.2.2. Use an untreated control and cytokine-treated well for comparison. Add chosen 503 cytokine at optimized concentration. The data in **Figure 2J–L** were generated using IL-1 α at 504 3 ng/mL⁹ in non-redox media at 1 mL per 10 cm² cell culture area. 505 **4.2.3.** Replace vmAstros in 37 °C/5% CO₂ incubator for 24 h. After 24 h, collect culture media 506 into sterile microfuge tubes. 507 **4.2.4.** If ELISA will not be carried out immediately, snap freeze media samples by submerging 508 microfuge tubes in liquid nitrogen and store at -80 °C for future analysis. 509 510 NOTE: The following protocol is optimized specifically for use with the IL-6 ELISA kit detailed in 511 the Table of Materials. Antibodies and standards delivered as lyophilized powder in a new ELISA 512 kit must be reconstituted prior to first use, and aliquoted for future use. The data sheet provided 513 with the kit details the reagents and volumes required for reconstitution. The capture antibody 514 must be reconstituted in PBS (without carrier protein). 515 516 4.2.5. Perform the ELISA in a 96-well plate format and calculate the volumes of reagents 517 according to the wells used. On the day of ELISA, prepare capture antibody by diluting stock 518 1:120 in PBS. Coat the plate by loading 50 μ L of capture antibody per well. Cover the plate 519 with an adhesive strip and incubate at room temperature overnight. 520 521 4.2.6. Next day, wash plate. (3x with D-PBS-Tween (D-PBS with 0.05% Tween-20), 100 μL per 522 well. Blot dry). 523

- 4.2.7. Block the plate by loading 150 μL D-PBS/1% BSA per well. Incubate at room
 temperature for at least 1 h. Wash plate as described.
- 527 4.2.8. Thaw samples on ice (this can take 1–2 h). Dilute samples 1:5 by loading 10 μL sample
 528 and 40 μL D-PBS/1% BSA. Vortex every sample prior to loading.
- 530 NOTE: It is necessary to dilute samples when carrying out an IL-6 ELISA, dilutions should be 531 optimized.
- 4.2.9. Prepare the top standard (1,000 ρg/mL) by diluting stock 1:180 in D-PBS/1% BSA.
 Prepare 7 standards by carrying out a serial dilution of the top standard. Vortex between
 each dilution.
- 4.2.10. Add 50 μL of standards/samples to wells. Use D-PBS/1% BSA as the blank. Incubate at
 room temperature for 2 h on an orbital shaker to properly mix the diluted samples. Wash
 plate as described.
- 4.2.11. Prepare detection antibody by diluting stock 1:60 in D-PBS/1% BSA. Load 50 μL of
 detection antibody per well. Cover the plate and incubate at RT for 2 h. Wash plate as
 described.
- 545 4.2.12. Prepare streptavidin conjugated to horseradish peroxidase (Strep-HRP) by diluting
 546 stock 1:40 in D-PBS/1% BSA. Load 50 μL Strep-HRP per well and incubate at room
 547 temperature for 20 min in the dark. Wash plate as described.
- 548 549

550

551

552

554

526

529

532

536

540

544

4.2.13. Initiate the color reaction by loading 50 μL TMB substrate solution per well. Incubate at room temperature in the dark for 20 min (or until the standards and samples have developed a blue colour).

- 553 NOTE: TMB is stored at 4 °C but should be used at room temperature.
- 4.2.14. Stop the reaction by adding 25 μL stop solution (1 M H₂SO₄) per well and note the
 color change from blue to yellow.
- 557
- 4.2.15. Read the plate at 450 nm absorbance using a microplate reader. Set wavelength
 correction to 540 nm absorbance to maximize accuracy. Calculate the protein
 concentrations in the samples from the standard curve produced.
- 561
- 562

563 **REPRESENTATIVE RESULTS:**

564 Differentiation methodology and progression

Here we present the details of both the methods employed for the generation of vmAstros and the protocols used for their subsequent phenotypic characterization. The method for generation of vmAstros is made up of several distinct differentiation stages, which can be monitored by

568 microscopy and identifying distinct morphological characteristics (Figure 1A-F). A feeder-free 569 hiPSC culture (Figure 1B) is exposed to specific factors to induce their differentiation toward a 570 neural lineage (LDN193189, SB431542), specifically of the ventral midbrain (CHIR99021, SHH-571 C24ii). This results in the generation of a culture of vmNPCs, which are morphologically distinct 572 from hiPSCs-the vmNPCs are less rounded than hiPSCs and vmNPCs have an elongated 573 polygonal or triangular shape, typical of neural progenitors (Figures 1B,C). The morphological 574 distinction is apparent from day 7–10 onward. When vmNPCs are passaged, similar to hiPSCs, we 575 aim to maintain them as small cell clusters rather than single cells to increase cell survival (Figure 576 **1D**). However, whereas hiPSCs when passaged quickly form and remain as distinct colonies, vmNPCs readily form a monolayer (Figure 1C). From day 20 onward, vmNPCs can be used to 577 578 generate midbrain dopaminergic neurons (Figure 1A), which we have previously published^{30,31}. 579

580 Our strategy to generate vmAstros from the vmNPCs relied on an understanding of the 581 developing embryonic brain, the acquisition of astroglial fate in the embryo, and also how this has been applied to ex vivo neural progenitors and hiPSCs to generate astrocytes^{22,23,25,32–37}. 582 583 Elongated time in culture together with the activation of specific signaling pathways has been 584 demonstrated to be required by mammalian NPCs to recapitulate the timing enabling the shift in neuronal potency toward the astroglial lineage in vitro^{6,21–23,32}. Therefore, we used LIF and EGF 585 586 to support the elongated expansion of the cultures from day 30–90 (Figure 1A). Both JAK/STAT 587 signaling downstream of LIF, and EGF signaling are inducers of astroglial identity and also selectively act as mitogens on astroglial progenitors^{22,23,25,33,34}. Media components for the culture 588 of vmAPCs are modified from those demonstrated by²² to support the generation of astrocytes 589 590 from hiPSCs.

591

592 During the EGF/LIF mediated expansion, period cells are referred to as vmAPCs (**Figures 1A,E**). 593 We expect that between days 50 and 90 to culture the vmAPCs in 175 cm² tissue culture flasks, 594 passaging at ratios between 1:4 and 1:6 every 4 days, thus enabling rapid expansion of vmAPCs, 595 which can be cryopreserved for future use.

596

597 From day 90 onward, vmAstros are generated from vmAPCs via the application of BMP4 in 598 combination with LIF (**Figure 1F**). BMP signaling is required in vivo for mature astrocyte 599 differentiation and recapitulates this effect in vitro^{21,23,37,38}. In the culture flask, mature vmAstros 600 appear larger than vmAPCs (**Figure 1F**).

601

The protocol detailed here has been carried out over six independent repeats, reproducibly generating vmAstros from the hiPSC line NAS2 and AST23. In addition, the generation of vmNPCs (for producing ventral midbrain dopamine neurons) has been carried out on multiple hiPSC and hESC lines as detailed in³⁰.

606

607 Characterization of vmAstros differentiation and phenotype

The ventral midbrain identity of the vmNPCs was confirmed by co-expression of the neural progenitor marker Musashi1 (MSI1) and the ventral midbrain transcription factor FOXA2 (**Figure 2A**). vmNPCs readily generate midbrain dopamine neurons, which co-express FOXA2 and dopaminergic marker tyrosine hydroxylase (TH) (**Figure 2B**). Expansion of vmNPCs in the

612 presence of EGF and LIF leads to the appearance of vmAPCs (Figure 2C). From day 90 onward of 613 the protocol, vmAPCs are exposed to BMP4 in combination with LIF to induce maturation into 614 vmAstros (Figure 2D). Immunocytochemistry confirmed co-expression of the ventral midbrain 615 transcription factors LMX1A, LMX1B, and FOXA2 with the astrocyte marker S100 β (Figure 2E–G). 616 vmAstros also express the mature astrocyte marker GFAP (Figure 2H) and the novel marker CD49f, which has been shown to be specific to mature, functional astrocytes^{39,40} (Figure 2I). 617 618 Together these results confirm that treatment with BMP4 and LIF induces a mature astrocyte 619 identity, as demonstrated both in vivo and in vitro, and that mature vmAstros maintain the 620 regional ventral midbrain identity acquired in the primary stages of the differentiation protocol^{21,37,38} (Figure 2E–I). 621

622

623 To confirm that the vmAstros are capable of neuroinflammatory modulation in line with their in 624 vivo counterparts, we characterized their response to cytokine exposure. Exposure of vmAstros 625 to the cytokine IL-1 α for 24 h resulted in morphological changes similar to those demonstrated by ex vivo reactive mouse astrocytes⁹ (Figure 2J,K). Specifically, upon addition of IL-1 α , a large 626 627 proportion of the vmAstros demonstrated a smaller, rounded cell body with multiple projections 628 (Figure 2K). To confirm that these changes were representative of a reactive astrocyte phenotype 629 in response to the neuroinflammatory stimuli, we measured the level of IL-6 secreted by the 630 vmAstros. Increased IL-6 secretion is an indicator of reactivity in astrocytes. We measured IL-6 631 levels by ELISA after a 24 h treatment with IL-1 α , which confirmed a large and significant increase 632 in secreted IL-6, thus confirming the vmAstros were demonstrating a reactive phenotype (Figure 633 2L).

634

635 FIGURE AND TABLE LEGENDS:

636

637 Figure 1: HiPSC differentiation into vmAstros. (A) A schematic representation of the optimized 638 protocol to generate vmAstros from hiPSC. The protocol is made up of distinct stages; first a 639 neural, ventral midbrain fate is through dual-SMAD inhibition (with SB431542 and LDN193189) 640 in combination with ventral midbrain patterning molecules (SHH (C24ii) and CHIR99021). vmNPCs 641 proliferate rapidly in the absence of any exogenous mitogens during the vmNPC expansion stage. 642 The addition of BDNF, GDNF, and ascorbic acid promotes survival of vmNPCs, supporting an 643 increase in cell number. Addition of EGF and LIF sustains proliferation and promotes acquisition 644 of astroglial fate over an extended culture period. After a minimum of 90 days from the initial 645 hiPSC, vmAPCs form mature vmAstros upon exposure to BMP4. (B-F) Images of cells as they 646 should appear at different stages in the protocol. hiPSCs and vmNPCs cells are passaged as small 647 clusters, rather than single cells (C). Scale bars: B = 500 μ m; C = 250 μ m; D & E = 200 μ m.

648

Figure 2: Characterization of the phenotype of intermediate cells and vmAstros generated
 using the described protocol, confirming a ventral midbrain identity. (A) Immunocytochemistry
 demonstrated vmNPCs express the neural progenitor marker MSI1 (red) and the ventral midbrain

transcription factor FOXA2 (green). (B) vmNPCs are capable of generating midbrain dopamine

- 653 neurons co-expressing dopaminergic marker tyrosine hydroxylase (TH; red) and ventral midbrain 654 transcription factor FOXA2 (green) (previously published in³⁰). (**C**) High magnification phase
- 655 contrast images show the morphology of vmAPCs compared to (**D**) the mature vmAstros, which

656 have a larger area from nucleus to cell membrane. Immunocytochemistry demonstrated mature 657 vmAstros co-express astrocyte marker S100 β and ventral midbrain markers LMX1A (E), LMX1B 658 (F), and FOXA2 (G). (H,I) vmAstros express GFAP and CD49f, which are associated with a mature 659 astrocyte phenotype. (J,L) Representative images demonstrating the morphology of untreated 660 cultures of vmAstros (J), compared to those exposed to IL-1 α for 24 h (K). Exposure to IL-661 1α resulted in clear morphological changes (K). (L) In response to IL-1 α , vmAstros significantly 662 increased secretion of IL-6, indicating vmAstros are generating a reactive phenotype in response 663 to neuroinflammatory stimuli (n = 3 independent experiments, SEM, unpaired t-test p = 0.0227). 664 All immunofluorescence images were taken on a confocal microscope. Scale bars: A, B, I = 50 μ m; 665 C, D = 100 μ m; E, F = 25 μ m; G,H = 100 μ m.

667 **DISCUSSION:**

This method for the generation of vmAstros from hiPSCs is highly efficient, generating pure cultures of vmAstros, and being reproducible for the generation of vmAstros from different hiPSC lines. This protocol was developed around the recapitulation of the developmental events required in the embryo to correctly pattern the developing midbrain and generate astrocytes and comprises three defined stages: 1) neural ventral midbrain induction to generate vmNPCs, 2) generation and expansion of vmAPCs, and finally 3) maturation of vmAstros.

674

666

675 In our previous published work, we highlighted the importance of optimizing the concentrations 676 of CHIR99021 and SHH(C24ii) for each hiPSC line used to generate vmNPCs, to ensure optimal 677 expression of ventral midbrain markers^{30,31}; 200 ng/mL SHH (C24ii) and 0.8 μ M CHIR99021 yields 678 consistently reproducible results over multiple hiPSC lines. However, 300 ng/mL SHH (C24ii) and 679 0.6 μ M CHIR99021 can be more efficacious for particular hiPSC lines but can also affect cell 680 survival^{30,31}. Therefore, optimization by the user is recommended.

681

682 In developing this protocol for the generation of vmAPCs, it was apparent that cell density is critical at all stages. In the vmNPC induction stage, cell density must remain high to support cell 683 684 survival, as vmNPC density below 75% leads to the death of vmNPCs in large numbers. The rate 685 of proliferation of the vmNPCs is dependent on the rate of proliferation of the parent hiPSC 686 culture and does vary between lines; however, to maintain a proliferative population, vmNPC 687 density must remain high. Therefore, we recommend that vmNPCs are passaged at conservative 688 ratios until the user has optimized the passaging regime. In contrast vmAPCs should be passaged 689 at high ratios, achieving a cell density of around 30-40% after passaging, and passaging as soon 690 as the cells are confluent. We found in our preliminary experiments that maintaining vmAPCs at 691 very high confluency leads to greater heterogeneity in the resulting vmAstros as indicated by 692 varied morphology and expression of astrocyte marker GFAP (data not shown). Micrographs of 693 appropriate cell densities are included in this protocol for reference.

694

Both the vmNPCs and vmAPCs are highly proliferative, generating large number of cells from a relatively small starting population of iPSCs. For example, we usually begin this protocol with a single 10 cm² dish of iPSCs and when we reach day 60, we would expect to culture the APCs in 175 cm² flasks, with each passage generating 4-6 new flasks and this rate of expansion would continue until day 90. Extrapolating from this, at minimum we would have the ability to generate
 up to 4,000 flasks of vmAPCs. We cryopreserve the vmAPCs throughout this expansion period
 and thus can generate a large cryobank of cells for future generation of mature vmAstros. This is
 extremely advantageous as it enables high-throughput analysis required for applications such as
 drug screening.

704

705 The unique aspect of this protocol is the midbrain identity of the resulting vmAstros. In the brain, 706 specific regional astroglial populations, similar to their neuronal counterparts, possess specific characteristics^{25,26}. A major focus of Parkinson's research is the involvement of astroglial cells in 707 708 neuroinflammation and how this influences disease progression. Neuroinflammation is present 709 in early Parkinson's and many other injury or disease scenarios¹². As part of the 710 neuroinflammatory response, astrocytes transform in an attempt to protect neurons from 711 damage-this is referred to as the "reactive astrocyte". However, reactive astrocytes are themselves neurotoxic in chronic diseases such as Parkinson's^{9,11}. In animal and in vitro models 712 713 of Parkinson's, reactive astroglial mediated neuroinflammation is a catalyst for neurotoxic α synuclein pathology and neurodegeneration^{9,14,41–43}. Therefore, we created an in vitro 714 715 neuroinflammatory environment by treating vmAstros with pro-inflammatory cytokines IL-716 1α or IL-1 β . In response, the vmAstros demonstrated significant morphological changes and we 717 saw a significant increase in secretion of IL-6, which is also elevated in Parkinson's and is widely 718 used as a measure of astrocyte reactivity.

719

720 In conclusion, this protocol provides a reproducible and efficient method to generate large 721 numbers of hiPSC-derived vmAstros, which demonstrate a phenotype that parallels their in vivo 722 counterparts in the ventral midbrain. This protocol is therefore highly applicable to high-723 throughput applications such as drug screening, which require large numbers of human cells. 724 Recent work has highlighted the role of neuroinflammation in Parkinson's diseases, and how 725 pharmacological targeting of astroglia influences neuroinflammation, which in turn modulates 726 disease pathology¹¹. As demonstrated, the vmAstros generated with this protocol are 727 appropriately responsive to neuroinflammatory stimulation, providing a comprehensive cellular 728 model with which to study astroglial involvement in Parkinson's disease.

729

730 **ACKNOWLEDGMENTS**:

This work was funded by a Parkinson's UK project grant (G-1402) and studentship. The authors
gratefully acknowledge the Wolfson Bioimaging Facility for their support and assistance in this
work.

- 734
- 735 **DISCLOSURES:**
- 736 The authors have nothing to disclose.
- 737

738 **REFERENCES**:

- 1. Poewe, W. et al. Parkinson disease. *Nature Reviews Disease Primers*. **3**, 17013 (2017).
- 740 2. Lees, A. J., Hardy, J., Revesz, T. Parkinson's disease. *Lancet*. **373**, 2055–2066 (2009).
- 3. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. *Neurobiology of Aging*. 24, 197–211 (2003).

- 7434.Booth, H. D. E., Hirst, W. D., Wade-Martins, R. The role of astrocyte dysfunction in744Parkinson's disease pathogenesis. *Trends in Neurosciences*. **40**, 358–370 (2017).
- 5. Lindstrom, V. et al. Extensive uptake of alpha-synuclein oligomers in astrocytes results in
 sustained intracellular deposits and mitochondrial damage. *Molecular and Cellular Neuroscience*. 82, 143–156 (2017).
- 6. Crompton, L. A., Cordero-Llana, O., Caldwell, M. A. Astrocytes in a dish: Using pluripotent
 stem cells to model neurodegenerative and neurodevelopmental disorders. *Brain Pathology*. 27, 530–544 (2017).
- 751 7. di Domenico, A. et al. Patient-specific iPSC-derived astrocytes contribute to non-cell752 autonomous neurodegeneration in Parkinson's disease. *Stem Cell Reports.* 12, 213–229
 753 (2019).
- 7548.Zhang, Y., Barres, B. A. Astrocyte heterogeneity: an underappreciated topic in755neurobiology. *Current Opinions in Neurobiology*. 20, 588–594 (2010).
- 756 9. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia.
 757 *Nature*. 541, 481–487(2017).
- Liddelow, S. A., Barres, B. A. Reactive astrocytes: production, function, and therapeutic
 Potential. *Immunity*. 46, 957–967 (2017).
- Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models
 of Parkinson's disease. *Nature Medicine*. 24, 931–938 (2018).
- Stokholm, M. G. et al. Assessment of neuroinflammation in patients with idiopathic rapideye-movement sleep behaviour disorder: a case-control study. *The Lancet Neurology*. 16,
 764 789–796 (2017).
- Williams-Gray, C. H. et al. Serum immune markers and disease progression in an incident
 Parkinson's disease cohort (ICICLE-PD). *Movement Disorders*. **31**, 995–1003 (2016).
- 767 14. Gelders, G., Baekelandt, V., Van der Perren, A. Linking neuroinflammation and
 768 neurodegeneration in Parkinson's disease. *Journal of Immunology Research*. 2018,
 769 4784268 (2018).
- Hall, S. et al. Cerebrospinal fluid concentrations of inflammatory markers in Parkinson's
 disease and atypical parkinsonian disorders. *Scientific Reports*. 8, 13276 (2018).
- 772 16. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. *Journal of Neuroscience*.
 773 32, 6391–6410 (2012).
- 77417.Clarke, B. E. et al. Human stem cell-derived astrocytes exhibit region-specific775heterogeneity in their secretory profiles. *Brain.* **143** (10), e85 (2020).
- Sevenich, L. Brain-resident microglia and blood-borne macrophages orchestrate central
 nervous system inflammation in neurodegenerative disorders and brain cancer. *Frontiers in Immunology*. 9, 697 (2018).
- Friedman, B. A. et al. Diverse brain myeloid expression profiles reveal distinct microglial
 activation states and aspects of Alzheimer's disease not evident in mouse models. *Cell Reports.* 22, 832–847(2018).
- Viti, J., Feathers, A., Phillips, J., Lillien, L. Epidermal growth factor receptors control
 competence to interpret leukemia inhibitory factor as an astrocyte inducer in developing
 cortex. *Journal of Neuroscience*. 23, 3385–3393 (2003).
- Nakashima, K., Yanagisawa, M., Arakawa, H., Taga, T. Astrocyte differentiation mediated
 by LIF in cooperation with BMP2. *FEBS Letters*. 457, 43–46 (1999).

- Serio, A. et al. Astrocyte pathology and the absence of non-cell autonomy in an induced
 pluripotent stem cell model of TDP-43 proteinopathy. *Proceedings of the National Academy of Sciences of the United States of America*. **110**, 4697–4702 (2013).
- Gupta, K. et al. Human embryonic stem cell derived astrocytes mediate non-cellautonomous neuroprotection through endogenous and drug-induced mechanisms. *Cell Death and Differentiation*. **19**, 779–787 (2012).
- Krencik, R., Ullian, E. M. A cellular star atlas: using astrocytes from human pluripotent
 stem cells for disease studies. *Frontiers in Cellular Neuroscience*. **7**, 25 (2013).
- Krencik, R., Weick, J. P., Liu, Y., Zhang, Z.-J., Zhang, S.-C. Specification of transplantable
 astroglial subtypes from human pluripotent stem cells. *Nature Biotechnology*. 29, 528–
 534 (2011).
- 79826.Xin, W. et al. Ventral midbrain astrocytes display unique physiological features and799sensitivity to dopamine D2 receptor signaling. Neuropsychopharmacology. 44, 344–355800(2019).
- 27. Devine, M. J. et al. Parkinson's disease induced pluripotent stem cells with triplication of
 802 the alpha-synuclein locus. *Nature Communications*. 2, 440 (2011).
- 28. Chen, Y. et al. Engineering synucleinopathy-resistant human dopaminergic neurons by
 CRISPR-mediated deletion of the SNCA gene. *European Journal of Neuroscience*. 49, 510–
 524 (2019).
- 29. Crompton, L. A. et al. Stepwise, non-adherent differentiation of human pluripotent stem
 cells to generate basal forebrain cholinergic neurons via hedgehog signaling. *Stem Cell Research.* 11, 1206–1221 (2013).
- 80930.Stathakos, P. et al. A monolayer hiPSC culture system for autophagy/mitophagy studies810in human dopaminergic neurons. Autophagy. 1–17 (2020).
- Stathakos, P. et al. Imaging autophagy in hiPSC-derived midbrain dopaminergic neuronal
 cultures for Parkinson's disease research. *Methods in Molecular Biology*. 1880, 257–280
 (2019).
- Bilican, B. et al. Mutant induced pluripotent stem cell lines recapitulate aspects of TDPproteinopathies and reveal cell-specific vulnerability. *Proceedings of the National Academy of Sciences of the United States of America*. 109, 5803–5808 (2012).
- 817 33. Cordero-Llana, O. et al. Clusterin secreted by astrocytes enhances neuronal
 818 differentiation from human neural precursor cells. *Cell Death and Differentiation*. 18,
 819 907–913 (2011).
- 82034.Morrow, T., Song, M. R., Ghosh, A. Sequential specification of neurons and glia by821developmentally regulated extracellular factors. *Development*. **128**, 3585–3594 (2001).
- 822 35. Namihira, M. et al. Committed neuronal precursors confer astrocytic potential on residual
 823 neural precursor cells. *Developmental Cell.* 16, 245–255 (2009).
- 36. Ochiai, W., Yanagisawa, M., Takizawa, T., Nakashima, K., Taga, T. Astrocyte differentiation
 of fetal neuroepithelial cells involving cardiotrophin-1-induced activation of STAT3. *Cytokine*. 14, 264–271 (2001).
- 827 37. Nakashima, K., Yanagisawa, M., Arakawa, H. Synergistic signaling in fetal brain by STAT3828 Smad1 complex bridged by p300. *Science*. 284 (5413) 479–482 (1999).
- 829 38. Nakashima, K. et al. Developmental requirement of gp130 signaling in neuronal survival
 830 and astrocyte differentiation. *Journal of Neuroscience*. **19**, 5429–5434 (1999).

- 831 39. Barbar, L. et al. CD49f is a novel marker of functional and reactive human iPSC-derived
 832 astrocytes. *Neuron*. **107**, 436–453 e412 (2020).
- Barbar, L., Rusielewicz, T., Zimmer, M., Kalpana, K., Fossati, V. Isolation of human CD49f(+)
 astrocytes and in vitro iPSC-based neurotoxicity assays. *STAR Protocols.* 1, 100–172
 (2020).
- 41. Gao, H. M. et al. Neuroinflammation and alpha-synuclein dysfunction potentiate each
 other, driving chronic progression of neurodegeneration in a mouse model of Parkinson's
 disease. *Environmental Health Perspectives*. **119**, 807–814 (2011).
- 42. Gao, H. M. et al. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to
 dopaminergic neurodegeneration. *Journal of Neuroscience*. 28, 7687–7698 (2008).
- 43. Horvath, I. et al. Co-aggregation of pro-inflammatory S100A9 with alpha-synuclein in
 Parkinson's disease: ex vivo and in vitro studies. *Journal of Neuroinflammation*. 15, 172
 (2018).
- 844

Reagents	Company	Catalogue Number	Comments	
0.2M Tris-CI (pH 8.5)	n/a	n/a	Made up from Tris base and plus HCI	
0.5M EDTA, PH 8	ThermoFisher	15575-020	1:1000 in D-PBS to 0.5 mM final	
1,4-diazabicylo[2.2.2]octane (DABCO)	Sigma	D27802-	25 mg/ml in Mowiol mounting solution	
13 mm coverslips	VWR	631-0149		
2-Mercaptoethanol (50 mM)	ThermoFisher	31350010		
Accutase	ThermoFisher	13151014		
Advanced DMEM/F12	ThermoFisher	12634010	Has 1x NEAA but we add to final concentration of 2x (0.2 mM)	
Ascorbic acid	Sigma	A5960	200 mM stock, 1:1000 to 200 μM final	
B27 Supplement	ThermoFisher	17504-044	50x stock	
BSA	Sigma	5470		
Cell freezing media	Sigma	C2874	Cryostor CS10	
Cell freezing vessel	Nalgene	5100-0001		
CHIR99021	Axon Medchem	1386	0.8 mM stock, 1:1000 dilution to 0.8 μM final	
Cryovials	Sigma	CLS430487		
DAPI	Sigma	D9542	1 mg/ml, 1:10,000 to 100ng/ml final (in PBS)	
DMEM/F12 + Glutamax	ThermoFisher	10565018		
Dulbeccos-PBS (D-PBS without Mg or Ca)	ThermoFisher	14190144	pH 7.2	
E8 Flex medium kit	ThermoFisher	A2858501		
Formaldehyde (36% solution)	Sigma	47608		
Geltrex	ThermoFisher	A1413302	1:100 or 1:400 in ice-cold DMEM/F12	
Glutamax	ThermoFisher	35050038	2 mM stock (1:200 in N2B27, 1:100 in ASTRO media to 20 µM final)	
Glycerol	Sigma	G5516		
Human BDNF	Peprotech	450-02	20 μg/ml stock, 1:1000 to 20 ng/ml final	
Human BMP4	Peprotech	120-05	20 μg/ml stock, 1:1000 to 20 ng/ml final	
Human EGF	Peprotech	AF-100-15	20 μg/ml stock, 1:1000 to 20 ng/ml final	
Human GDNF	Peprotech	450-10	20 μg/ml stock, 1:1000 to 20 ng/ml final	
Human insulin solution	Sigma	19278	10 mg/ml stock, 1:2000 to 5 μg/ml final	
Human LIF	Peprotech	300-05	20 μg/ml stock, 1:1000 to 20 ng/ml final	
IL-6 ELISA kit	Biotechne	DY206		
Isopropanol	Sigma	I9516-4L	For filling Mr Frosty cryostorage vessel	
LDN193189	Sigma	SML0559	100 μM stock, 1:10,000 dilution to 10 nM final	
Mowiol 40-88	Sigma	324590		
N2 Supplement	ThermoFisher	17502048	100x stock	
NEAA	ThermoFisher	11140035	10 mM stock, 1:100 to 0.1 mM final	
Neurobasal media	ThermoFisher	21103049		
Normal Goat serum	Vector Labs	S-1000-20		
Revitacell	ThermoFisher	A2644501	100x stock, 1:100 to 1x final	
SB431542	Tocris	1614	10 mM stock, 1:1000 dilution to 10 μM final	
SHH-C24ii	Biotechne	1845-SH-025	200 μg/ml stock, 1:1000 to 200 ng/ml final	
Tris-HCI	Sigma	PHG0002		
Triton-X	Sigma	X100		
Tween-20	Sigma	P7949		
Vitronectin	ThermoFisher	A14700	1:50 in D-PBS	

Cell culture media		
N2B27 media		% of final
	Neurobasal media supplemented with 1% glutamax	48.65
	DMEM/F12 + glutamax	48.65
	Non-essential amino acids	1
	β –mercaptoethanol	0.15
	B27	1
	N2	0.5
	Human Insulin solution (10 mg/mL)	0.05
		100
ASTRO media (based on ²²)		
	Advanced DMEM/F12	96.6
	Non-essential amino acids (in addition to those in Advanced DMEM/F12)	1
	Glutamax	1
	N2	1
	B27	0.4

Addtional culture media additives					
Reagent	Supplied as	Stock concentration	Reconstitute in	Details	Storag
Ascorbic acid	powder	200 mM	filter sterilized water	0.0284 mL per 1 mg	Aliquo
BDNF	lyophilized powder	20 μg/mL	filter sterilized D-PBS with 0.1% BSA	10 ml per mg	Aliquo
BMP4	lyophilized powder	20 μg/mL	filter sterilized D-PBS with 0.1% BSA	10 ml per mg	Aliquo
EGF	lyophilized powder	20 μg/mL	filter sterilized D-PBS with 0.1% BSA	10 ml per mg	Aliquo
GDNF	lyophilized powder	20 μg/mL	filter sterilized D-PBS with 0.1% BSA	10 ml per mg	Aliquo
LDN193189	lyophilized powder	1 mM	DMSO	2.085 mL per mg	Aliquo
LIF	lyophilized powder	20 μg/mL	filter sterilized D-PBS with 0.1% BSA	10 ml per mg	Aliquo
SB431542	lyophilized powder	10 mM	DMSO	0.239 mL per mg	Aliquo
SHH-C24ii	lyophilized powder	200 μg/mL	filter sterilized D-PBS with 0.1% BSA	1 ml per mg	Aliquo

ge

ot and store at -20 °C Final concentraion in media 200 μM 20 ng/mL 20 ng/mL 20 ng/mL 20 ng/mL 100 nM 20 ng/mL 10 μM 20 ng/mL

Antibodies for immunocytochemistry	Company	Catalogue Number	Host species	Dilution Factor
Antibody against S100b	Sigma	SAB4200671	Mouse	1:200
Antibody against FOXA2	SCBT	NB600501	Mouse	1:50
Antibody against LMX1A	ProSci	7087	Rabbit	1:300
Antibody against LMX1A	Millipore	AB10533	Rabbit	1:2000
Antibody against LMX1B	Proteintech	18278-1-AP	Rabbit	1:300
Antibody against GLAST	Proteintech	20785-1-AP	Rabbit	1:300
Antibody against GFAP	Dako	Z0334	Rabbit	1:400
Antibody against CD49f	Proteintech	27189-1-AP	Rabbit	1:100
Antibody against MSI1	Abcam	ab52865	Rabbit	1:400
Alexa Fluor 488 Goat Anti-Rabbit	ThermoFisher	A32731	Goat	1:500
Alexa Fluor 488 Goat Anti-Mouse	ThermoFisher	A32723	Goat	1:500
Alexa Fluor 568 Goat Anti-Rabbit	ThermoFisher	A11036	Goat	1:500
Alexa Fluor 488 Goat Anti-Mouse	ThermoFisher	A11031	Goat	1:500