
                          Kazakos, E., Nagrani, A., Zisserman, A., & Damen, D. (2021). SLOW-
FAST AUDITORY STREAMS FOR AUDIO RECOGNITION. In
ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) Institute of Electrical and
Electronics Engineers (IEEE).
https://ieeexplore.ieee.org/document/9413376

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/9413376 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/459190265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ieeexplore.ieee.org/document/9413376
https://research-information.bris.ac.uk/en/publications/62912bc6-bdd9-4d51-9524-5082c6d87556
https://research-information.bris.ac.uk/en/publications/62912bc6-bdd9-4d51-9524-5082c6d87556


SLOW-FAST AUDITORY STREAMS FOR AUDIO RECOGNITION

Evangelos Kazakos? Arsha Nagrani†‡ Andrew Zisserman† Dima Damen?

? Department of Computer Science, University of Bristol
†Visual Geometry Group, University of Oxford

ABSTRACT
We propose a two-stream convolutional network for audio
recognition, that operates on time-frequency spectrogram
inputs. Following similar success in visual recognition, we
learn Slow-Fast auditory streams with separable convolutions
and multi-level lateral connections. The Slow pathway has
high channel capacity while the Fast pathway operates at a
fine-grained temporal resolution. We showcase the impor-
tance of our two-stream proposal on two diverse datasets:
VGG-Sound and EPIC-KITCHENS-100, and achieve state-
of-the-art results on both.

Index Terms— audio recognition, action recognition, fu-
sion, multi-stream networks

1. INTRODUCTION

Recognising objects, interactions and activities from audio is
distinct from prior efforts for scene audio recognition, due to
the need for recognising sound-emitting objects (e.g. alarm
clock, coffee-machine), sounds generated from interactions
with objects (e.g. put down a glass, close drawer), and activ-
ities (e.g. wash, fry). This introduces challenges related to
variable-length audio associated with these activities. Some
can be momentary (e.g. close) while others are repetitive
over a longer period (e.g. fry), and many exhibit intra-class
variations (e.g. cut onion vs cut cheese). Background or ir-
relevant sounds are often captured with these activities. We
focus on two activity-based datasets, VGG-Sound [1] and
EPIC-KITCHENS [2], captured from YouTube and egocen-
tric videos respectively, and target activity recognition solely
from the audio signal associated with these videos.

There is strong evidence in neuroscience for the existence
of two streams in the human auditory system, the ventral
stream for identifying sound-emitting objects and the dorsal
streams for locating these objects. Studies [3, 4] suggest the
ventral stream accordingly exhibits high spectral resolution
for object identification, while the dorsal stream has a high
temporal resolution and operates at a higher sampling rate.

Using this evidence as the driving force for designing our
architecture, and inspired by a similar vision-based architec-
ture [5], we propose two streams for auditory recognition: a
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Slow and a Fast stream, that realise some of the properties
of the ventral and dorsal auditory pathways respectively. Our
streams are variants of residual networks and use 2D separa-
ble convolutions that operate on frequency and time indepen-
dently. The streams are fused in multiple representation lev-
els with lateral connections from the Fast to the Slow stream,
and the final representation is obtained by concatenating the
global average pooled representations for action recognition.

The contributions of this paper are the following: i) we
propose a novel two-stream architecture for auditory recog-
nition that respects evidence in neuroscience; ii) we achieve
state-of-the-art results on both EPIC-KITCHENS and VGG-
Sound; and finally iii) we showcase the importance of fusing
our specialised streams through an ablation analysis. Our pre-
trained models and code is available at https://github.
com/ekazakos/auditory-slow-fast.

2. RELATED WORK

Single-stream architectures. A common approach in audio
recognition for both scene and activity recognition, is to use
a single-stream convolutional architecture [6, 7, 8]. Sound-
Net [8] uses 1D ConvNet trained in a teacher-student manner,
and fine-tuned for acoustic scene classification. Single-stream
2D ConvNets have been extensively used by high-ranked en-
tries of DCASE challenges [9, 10, 11, 12, 13, 14], for acous-
tic scene classification. These consider spectograms as input
and utilise 2D convolutions with square k×k filters, process-
ing frequency and time together [6, 7, 9, 10, 11, 12, 13, 14],
similarly to image ConvNets. However, symmetric filtering
in frequency and time might not be optimal as the statistics
of spectrograms are not homogeneous. One alternative is to
utilise rectangular k×m filters as in [15, 16]. Another is sep-
arable convolutions with 1 × k and k × 1 filters, which have
recently been used in audio [17, 18].
Multi-stream architectures. Late fusion of multiple streams
for audio recognition was used in [19, 20, 21, 22, 23, 24, 25].
Most approaches utilise modality-specific streams [19, 20, 21,
22]. In addition to late fusion, [20, 21] integrate multi-level
fusion in their architecture in the form of attention.

In [23, 24, 25], all streams digest the same input. In [23],
one stream takes as input low frequencies and the second in-
puts high frequencies. [24] applies median filtering with dif-
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Fig. 1. Proposed Slow-Fast architecture. Strided input (by α) to the Slow pathway, along with increased channels. The Fast
pathway has less channels (by β). Right: two types of residual blocks with separable convolutions (brown vs green).

ferent kernels at the input of each stream to model long dura-
tion sound events, medium, and short duration impulses sep-
arately. In [25] , 1D convolutions are used with different dila-
tion rates at each stream to model convolutional streams that
operate on different temporal resolutions. The architectures
of these multiple streams remain identical.

Similar to these works, we propose to utilise two-streams
that consider the same input. Different from these, we design
each stream with varying number of channels and temporal
resolution, in addition to convolutional separation. Further-
more, we integrate the streams through multi-level fusion.

3. NETWORK ARCHITECTURE

Next, we describe in detail the design principles of our ar-
chitecture, depicted in Figure 1. The Slow stream operates
on a low sampling rate with high channel capacity to cap-
ture frequency semantics, while the Fast stream operates on a
high sampling rate with more temporal convolutions and less
channels to capture temporal patterns.
Input. Both streams operate on the same audio length, from
which a log-mel-spectrogram is extracted. The Fast stream
takes as input the whole log-mel-spectrogram without any
striding, while the Slow stream uses a temporal stride of α
on the input log-mel-spectrogram, where a ≥ 1.
Slow and Fast streams. The two streams are variants of
ResNet50 [26]. Each stream is comprised of an initial con-
volutional block with a pooling layer followed by 4 residual
stages, where each stage contains multiple residual blocks.
The two streams differ in their ability to capture frequency se-
mantics and temporal patterns. The details of each stream in-
cluding the number of blocks per stage and numbers of chan-
nels can be seen in Table 1.

The Slow stream has a high channel capacity, with β times
more channels than the Fast stream, while operating on a low
sampling rate. As the input spectrogram is strided temporally
by α, the intermediate feature maps have a lower temporal
resolution. Moreover, the Slow stream has temporal convo-
lutions only in res4 and res5 (see the brown and green blocks

stage Slow pathway Fast pathway output sizes T×F

spectrogram - - 400×128

data layer stride 4, 1 stride 1, 1 Slow : 100×128
Fast : 400×128

conv1
1×7, 64 5×7, 8 Slow : 50×64

Fast : 200×64stride 2, 2 stride 2, 2

pool1
3×3 max 3×3 max Slow : 25×32

Fast : 100×32stride 2, 2 stride 2, 2

res2

[
1×1, 64
1×3, 64

1×1, 256

]
×3

[
3×1, 8
1×3, 8
1×1, 32

]
×3 Slow : 25×32

Fast : 100×32

res3

[
1×1, 128
1×3, 128
1×1, 512

]
×4

[
3×1, 16
1×3, 16
1×1, 64

]
×4 Slow : 25×16

Fast : 100×16

res4

[
3×1, 256
1×3, 256
1×1, 1024

]
×6

[
3×1, 32
1×3, 32

1×1, 128

]
×6 Slow : 25×8

Fast : 100×8

res5

[
3×1, 512
1×3, 512
1×1, 2048

]
×3

[
3×1, 64
1×3, 64

1×1, 256

]
×3 Slow : 25×4

Fast : 100×4

global average pool, concatenate, fc # classes

Table 1. Architecture details for Fig. 1

in Fig. 1 right). By restricting the temporal resolution and
the temporal kernels of the Slow stream while keeping a high
channel capacity, this stream can focus on learning frequency
semantics.

The Fast stream on the other hand uses no temporal strid-
ing in the input. Therefore, the intermediate feature maps
have a higher temporal resolution, with temporal convolutions
throughout the stream. With a high temporal resolution and
more temporal kernels while having less channels, it is easier
for the Fast stream to focus on learning temporal patterns.
Separable convolutions. We use separable convolutions in
frequency and time as can be seen in the green block in Fig. 1
right. We break a 3× 3 kernel in two kernels, 3× 1 followed
by 1×3. Separable convolutions have proven useful for video
recognition [27]. We utilise them with the motivation to sep-
arately attend to time and frequency of the input signal. We
contrast separable convolutions to two-dimensional filters that
convolve across both frequency and time.
Multi-level fusion. Following the approach in [5], we fuse
the information from the Fast to the Slow stream with lateral
connections, at multiple levels. We first apply a 2D temporal
convolution with a kernel 7× 1 and a stride of α to the output
of the Fast stream to match the Slow stream sampling rate,



and then we concatenate the downsampled feature map with
the Slow stream feature map. Fusion is applied after pool1
and each residual stage.

The final representation fed to the classifier is obtained
by applying time-frequency global average pooling after the
last convolutional layer of both Slow and Fast streams and
concantenating the pooled representations. We set α = 4 and
β = 8 in all our experiments.
Differences compared to visual Slow-Fast [5]. Our two-
stream architecture is inspired by its visual counterpart [5]
which produces state of the art results for visual action recog-
nition. However, key differences are introduced: Our input
is 2D rather than 3D, as we operate on time-frequency while
the visual Slow-Fast operates on time-space. Hence, we use
2D separable convolutions decomposed as 3 × 1 and 1 × 3
filters, whereas [5] uses 3D separable convolutions decom-
posed as 3 × 1 × 1 and 1 × 3 × 3 filters. Additionally, the
sampling rate for audio is naturally significantly higher than
that of video, e.g. 24kHz vs 50fps in EPIC-KITCHENS-100,
and the dimensionality in video is significantly higher. Ac-
cordingly, the approach in [5] only considers a few temporal
samples (8 and 32 frames in the Slow and Fast streams respec-
tively). In contrast, our audio spectogram (see Sec 4.2) con-
tains 100 and 400 temporal dimensions in the Slow and Fast
streams respectively. To compensate for the high sampling
rate of audio, we temporally downsample the representations
of both streams by a factor of 4, using a temporal stride=2 in
conv1 and pool1 of both streams. The remaining stages do not
perform any temporal downsampling1.

4. EXPERIMENTS

4.1. Datasets

VGG-Sound. VGG-Sound [1] is a large-scale audio dataset
obtained from YouTube. It contains over 200k clips of 10s
for 309 classes capturing human actions, sound-emitting ob-
jects as well as interactions. These are visually-grounded
where sound emitting objects are visible in the corresponding
video clip, utilising image classifiers to find correspondence
between sound and image labels. Audio is sampled at 16kHz.
EPIC-KITCHENS-100. EPIC-KITCHENS-100 [2] is the
largest egocentric audio-visual dataset, containing unscripted
daily activities in kitchen environments. The data are recorded
in 45 different kitchens. It contains 100 hours of data, split
across 700 untrimmed videos, and 90K trimmed action clips.
These capture hand-object interactions as well as activities,
formed as the combination of a verb and a noun (e.g. “cut
onion” and “wash plate”), where there are 97 verb classes,
300 noun classes, and 4025 action classes (many verbs and
nouns do not co-occur). The classes are highly unbalanced.

1In preliminary experiments, we tried different downsampling schemes,
such as strided convolutions throughout the whole network but they resulted
in inferior performance.

Actions are mainly short-term (average action length is 2.6s
with minimum length 0.25s). Audio is sampled at 24kHz.

4.2. Experimental protocol

Feature extraction. We extract log-mel-spectrograms with
128 Mel bands using the Librosa library. For VGG-Sound,
we use 5.12s of audio with a window of 20ms and a hop of
10ms, resulting in spectrograms of size 512×128. For EPIC-
KITCHENS-100, we use 2s of audio with a 10ms window
and a 5ms hop, resulting in spectrograms of size 400 × 128.
For clips< 2s in EPIC-KITCHENS-100, we duplicate the last
time-frame of the log-mel-spectrogram.
Train / Val details. All models are trained using SGD with
momentum set to 0.9 and cross-entropy loss. We train on
EPIC-KITCHENS-100 as a multitask learning problem, as
in [2], using two prediction heads, one for verbs and one for
nouns. We train on VGG-Sound from random initialisation
for 50 epochs and fine-tune on EPIC-KITCHENS-100 using
the VGG-Sound pretrained models for 30 epochs. We drop
the learning rate by 0.1 at epochs 30 and 40 for VGG-Sound,
and at epochs 20 and 25 for EPIC-KITCHENS-100. For fine-
tuning, we freeze Batch-Normalisation layers except the first
one, as done in [28]. For regularisation, we use dropout on
the concatenation of Slow and Fast streams with probability
0.5, plus weight decay in all trainable layers using the value
of 10−4. For data augmentation during training, we use the
implementation of SpecAugment [29] from [30] and set its
parameters as follows: 2 frequency masks with F=27, 2 time
masks with T=25, and time warp with W=5. During training
we randomly extract one audio segment from each clip. Dur-
ing testing we average the predictions of 2 equally distanced
segments for VGG-Sound, and 10 for EPIC-KITCHENS-100.
Evaluation metrics. For VGG-Sound, we follow the evalu-
ation protocol of [1, 7] and report mAP, AUC, and d-prime,
as defined in [7]. Additionally we report top-1/5% accuracy.
For EPIC-KITCHENS-100, we follow the evaluation proto-
col of [2] and report top-1 and top-5 % accuracy for the val-
idation and test sets separately, as well as for the subset of
unseen participants within val/test.
Baselines and ablation study. We compare to published
state-of-the-art results in each dataset. For VGG-Sound, we
also compare against [23] using their publicly available code,
which is the closest work to ours in motivation, as it uses two
audio streams separating input into low/high frequencies.

We also perform an ablation study investigating the im-
portance of the two streams as follows:

• Slow, Fast: We compare to each single stream individually.
• Enriched Slow stream: We combine two Slow streams with

late fusion of predictions, as well as a deeper Slow stream
(ResNet101 instead of ResNet50).

• Slow-Fast without multi-level fusion: Streams are fused by
averaging their predictions, without lateral connections.



Overall Unseen Participants

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%)

Split Model Verb Noun Action Verb Noun Action Verb Noun Action # Param.

Va
l

Damen et al. [2] 42.63 22.35 14.48 75.84 44.60 28.23 35.40 16.34 9.20 10.67M
Slow 41.17 18.64 11.37 77.52 42.34 24.20 34.93 14.65 7.79 24.89M
Fast 39.84 17.07 8.76 76.94 41.31 22.01 33.33 15.21 6.57 00.49M

Two Slow Streams 41.41 19.06 11.41 77.87 43.05 24.73 34.37 14.27 6.85 49.78M
Slow ResNet101 42.24 19.35 12.12 78.14 42.83 25.30 37.37 13.90 7.61 46.11M

Slow-Fast (late fusion) 42.28 19.23 11.27 78.40 44.17 25.36 34.65 15.68 7.70 25.38M
Slow-Fast (Proposed) 46.05 22.95 15.22 80.01 47.98 30.24 37.56 16.34 8.83 26.88M

Te
st Damen et al. [2] 42.12 21.51 14.76 75.06 41.12 25.86 37.45 17.74 11.63 10.67M

Slow-Fast (Proposed) 46.47 22.77 15.44 78.30 44.91 28.56 42.48 20.12 12.92 26.88M

Table 2. Results on EPIC-KITCHENS-100. We provide an ablation study over the Val set, as well as report results on the Test
set showing improvement over the published state-of-the-art in audio recognition. # Parameters per model is also shown.

Model Top-1 Top-5 mAP AUC d-prime

Chen et al. [1] 51.00 76.40 0.532 0.973 2.735
McDonnell & Gao [23] 39.74 71.65 0.403 0.963 2.532
Slow 45.20 72.53 0.472 0.967 2.607
Fast 41.44 70.68 0.442 0.966 2.576
Two Slow Streams 45.80 72.78 0.482 0.969 2.633
Slow ResNet101 45.60 72.27 0.476 0.968 2.615
Slow-Fast (late fusion) 46.75 73.90 0.498 0.971 2.671
Slow-Fast (Proposed) 52.46 78.12 0.544 0.974 2.761

Table 3. Results on VGG-Sound. We compare to published
results and show ablations.

4.3. Results

EPIC-KITCHENS-100 Our proposed network achieves
state-of-the-art results as can be seen in Table 2 for both
Val and Test. Our previous results [2] use a TSN with BN-
Inception architecture [28], initialised from ImageNet, while
here we utilise pre-training from VGG-Sound. Our proposed
architecture outperforms [2] by a good margin. We report
the ablation comparison using the published Val split. The
significant improvement in our proposed Slow-Fast architec-
ture when compared to Slow and Fast streams independently
shows that there is complementary information in the two
streams that benefit audio recognition. The Slow stream per-
forms better than Fast, due to the increased number of chan-
nels. When comparing to the enriched Slow architectures
(see the last column of Table 2 for number of parameters),
our proposed model still significantly outperforms these base-
lines, showcasing the need for the two different pathways. We
conclude that the synergy of Slow and Fast streams is more
important than simply increasing the number of parameters
of the stronger Slow stream. Finally, our proposed archi-
tecture consistently outperforms late fusion, indicating the
importance of multi-level fusion with lateral connections.

VGG-Sound. We report results in Table 3 comparing to state-
of-the-art from [12], which uses a single-stream ResNet50 ar-
chitecture, [23] which uses a ResNet variant with 19 layers as
backbone for their two-stream architecture with significantly
less parameters than our model at 3.2M parameters, as well
as ablations of our model. We report the best performing
model on the test set in each case. Our proposed Slow-Fast
architecture outperforms [1] and [23]. The rest of our ob-
servations on the ablations from EPIC-KITCHENS-100 hold
for VGG-Sound as well, with a key difference: the gap in
performance between single streams and our proposed two-
stream architecture is even bigger for VGG-Sound, indicating
more complementary information in the two streams. The fact
that Slow-Fast outperforms Slow by such a large accuracy gap
with an insignificant increase in parameters indicates the effi-
cient interaction between Slow and Fast streams.

5. CONCLUSION

We propose a two-stream architecture for audio recognition,
inspired by the two pathways in the human auditory system,
fusing Slow and Fast streams with multi-level lateral connec-
tions. We showcase the importance of our fusion architec-
ture through ablations on two activity-based datasets, EPIC-
KITCHENS-100 and VGG-Sound, achieving state-of-the-art
performance. For future work, we will explore learning the
stride parameter and assessing the impact of the number of
channels. We hope that this work will pave the path for effi-
cient multi-stream training in audio.
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