E% University of
OPEN (2" ACCESS BRISTOL

Foyer, C. M., Conejero, J., Ejarque, J., Badia, R. M., Tate, A., &
Mcintosh-Smith, S. N. (2020). Enabling System Wide Shared Memory
for Performance Improvement in PyCOMPSs Applications. In 2020
IEEE/ACM 9th Workshop on Python for High-Performance and
Scientific Computing (PyHPC) (pp. 22-31). Institute of Electrical and
Electronics Engineers (IEEE).
https://doi.org/10.1109/PyHPC51966.2020.00008

Peer reviewed version

Link to published version (if available):
10.1109/PyHPC51966.2020.00008

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/9307935 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the

published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1109/PyHPC51966.2020.00008
https://doi.org/10.1109/PyHPC51966.2020.00008
https://research-information.bris.ac.uk/en/publications/1ce9df8a-095a-4db7-80b5-b6b25c0e90ed
https://research-information.bris.ac.uk/en/publications/1ce9df8a-095a-4db7-80b5-b6b25c0e90ed

Enabling System Wide Shared Memory for
Performance Improvement in PyCOMPSs
Applications

Clément Foyer*$
*HPE HPC/AI EMEA Research Lab
Bristol, United Kingdom
clement.foyer @hpe.com

Adrian Tate*
tNumerical Algorithms Group Ltd. (NAG)
Oxford, United Kingdom
adrian.tate @nag.co.uk

Javier Conejerof, Jorge Ejarque, Rosa M. Badia®
tBarcelona Supercomputing Center
Barcelona, Spain
{francisco.conejero,jorge.ejarque,rosa.m.badia} @bsc.es

Simon McIntosh-Smith?

§High Performance Computing Research Group
Department of Computer Science, University of Bristol

Bristol, United Kingdom

{clement.foyer,s.mcintosh-smith } @bristol.ac.uk

Abstract—Python has been gaining some traction for years
in the world of scientific applications. However, the high-level
abstraction it provides may not allow the developer to use the
machines to their peak performance. To address this, multiple
strategies, sometimes complementary, have been developed to
enrich the software ecosystem either by relying on additional
libraries dedicated to efficient computation (e.g., NumPy) or by
providing a framework to better use HPC scale infrastructures
(e.g., PyCOMPSs).

In this paper, we present a Python extension based on
SharedArray that enables the support of system-provided shared
memory and its integration into the PyCOMPSs programming
model as an example of integration to a complex Python
environment. We also evaluate the impact such a tool may have on
performance in two types of distributed execution-flows, one for
linear algebra with a blocked matrix multiplication application
and the other in the context of data-clustering with a k-means
application. We show that with very little modification of the
original decorator (3 lines of code to be modified) of the task-
based application the gain in performance can rise above 40 % for
tasks relying heavily on data reuse on a distributed environment,
especially when loading the data is prominent in the execution
time.

Index Terms—Memory, Shared Memory, Task, Python, Paral-
lel Programming, Distributed Memory, NumPy, Data Manage-
ment

I. INTRODUCTION

Through the convergence between High Performance Com-
puting (HPC), Artificial Intelligence (AI) and Big Data, one
area of focus is the availability of common tools that can bring
the performance of the former to the techniques and algorithms
used by the latter two. One big actor of this evolution is
the development of the Python ecosystem, which provides
a large set of tools and libraries while being designed for
code readability, maintainability and enhancement over time.
However, the ease of use comes at the cost of a complex
memory management behind the scene, and complex data
structures that get abstracted for the user. The computation

intensity required by scientific applications cannot suffer such
an overhead to be able to provide performance. Hence, we
mitigate it by using dedicated data structures that provide
contiguous buffers to make the best of modern processors and
architectures.

In addition, frameworks like COMPSs [1] provide a seam-
less way to parallelize workloads across large scale infras-
tructures, notably for Python with the binding provided by Py-
COMPSs [2]. However, because of the complexity of Python’s
internal structures, the communication between nodes and
between processes is more complicated compared to using
languages such as C or Fortran. Python class internal structure
rely heavily on pointers to numerous structures, which could
not be easily shared between processes. In order to benefit
from Python memory allocation mitigation strategies, the fine
grain management of memory can depend only on the Python
interpreter, but care has to be shown when dealing with internal
reference counters due to the risk of early deallocation done
by the garbage collector.

In this paper, we present a Python extension based on
SharedArray [3] that enables the support of system-provided
shared memory for Python arrays, and its integration into the
PyCOMPSs programming model. This demonstrates how the
CPython interface in conjunction with the NumPy library can
provide tools for memory management outside of the Python
interpreter, and how to integrate it in a complex framework.
We will also show how these capabilities can optionally be
manually tuned by the user with Python metaprogramming
features. Related work is presented in Section II, while the
design and implementation details will be explained in Sec-
tion III. Section IV will present the performance evaluation of
our solution over the original PyCOMPSs version and we will
conclude and present further work in Section V.

II. RELATED WORK

Multiple approaches for shared memory have been proposed
in the literature. OpenMP [4], [5] supports multi-platform
shared-memory parallel programming in C/C++ and Fortran.
The OpenMP API defines a portable, scalable model with a
simple and flexible interface for developing parallel applica-
tions on platforms from the desktop to the supercomputer.
Since OpenMP is a shared memory programming model,
most variables in OpenMP code are visible to all threads by
default. OpenMP was extended to support tasks and its data
dependencies. The tasks, as other OpenMP constructs, can
operate in private arguments, but has also access to the shared
variables.

OpenSHMEM [6] is an effort to create a specification for
a standardized API aiming at unifying the different SHMEM
libraries available. SHMEM is a communications library that
adopts the Partitioned Global Address Space (PGAS) program-
ming models. The key features of SHMEM include one-sided,
point-to-point and collective communication, a shared memory
view, and atomic operations that operate on globally visible,
or “symmetric” variables in the program.

However, previous approaches do not support the Python
programming language. In Python there are two main issues to
overcome when accessing data from parallel tasks: one is the
Global Interpreter Lock (GIL), a mutex that protects accesses
to Python objects, preventing multiple threads from executing
Python bytecodes at once [7]. The second issue is related to
the impossibility of accessing Python objects with a reference
address. This is only possible with NumPy objects, which can
be accessed through a link in a C memory space.

The Python 3.8 multiprocessing module provides the
SharedMemory class for the allocation and management of
shared memory to be accessed by one or more processes on a
multicore or symmetric multiprocessor (SMP) machine'. The
class permits distinct processes to potentially read and write to
a common (or shared) region of volatile memory. The design is
similar to the solution we used, both for the shared memory
and the integration with NumPy. However, we wanted fine
control over the memory management (authorizing read-on-
write with no synchronization) and the sharing mechanism
(System-V or file backed-up with a customizable path). We
also wanted portability with Python 2, hence our custom
approach with a python extension.

Python 3.8 also provides other means of data sharing
between processes and their children. Although all workers
are spawned from a common parent process, using it to check
the type of variables in order to add them in shared memory
would have been a breach of abstraction. It also would have
been needlessly complex and inefficient as it would have added
an extra access to the serialized version on file to check on
the types.

The Plasma In-Memory Object Store? is another approach
that supports holding immutable objects in shared memory so

Uhttps://docs.python.org/3/library/multiprocessing.shared_memory.html
2https://arrow.apache.org/docs/python/plasma.html

that they can be accessed efficiently by many clients across
process boundaries. Plasma supports two APIs for creating
and accessing objects: a high level API that allows storing
and retrieving Python objects and a low level API that allows
creating, writing and sealing buffers and operating on the
binary data directly. A drawback of Plasma is that it does not
support user defined objects, and our tests with PyCOMPSs
did not succeed.

III. DESIGN AND IMPLEMENTATION

This section will present the design that drove the imple-
mentation decisions and the preexisting framework on top of
which the solution was developed.

A. PyCOMPSs

PyCOMPSs is the Python binding for COMPSs, a task-
based parallel programming model for distributed computing
platforms. In such paradigm, the unit for parallelism is the
task. Tasks are identified by the application programmer, who
also indicates the directionality of the task parameters and, if
required, other metadata such as the type or collection size
when applicable. The parameters directions can be IN, OUT
or INOUT. Some of the metadata can be inferred by the static
analysis of the code, but sometimes it is mandatory for the
user to make it explicit. With this information, the COMPSs
runtime builds at execution time a task graph, where nodes
denote task instances and edges data dependencies between
tasks. From this task graph, the COMPSs runtime is able to
decide which tasks can be executed in parallel and which
ones sequentially. It then performs all the actions required to
execute the application tasks in the computing platform. The
COMPSs runtime is deployed as a master-worker application,
by instantiating a master process in one node and multiple
worker processes in different nodes. The master orchestrates
the application execution and makes decisions while the ap-
plication tasks are executed by the worker processes.

COMPSs runtime is written in Java, but expose layers
of binding for C and Python. The Python specific binding
is called PyCOMPSs. As previously stated for COMPSs,
PyCOMPSs applications can be executed in distributed com-
puting platforms (i.e., clusters or clouds). Yet, the COMPSs
runtime gives the programmer a virtual single memory space.
To this end, the COMPSs runtime transfers the data from one
node to another when needed. In order to reduce the number
of transfers, the locality is exploited as much as possible.
However, when the application is being run across multiple
nodes, they do not share a common shared memory space.

While in Java we deploy a single process per node with
multiple threads, in the case of Python applications the process
of transferring data between tasks is especially delicate. Due
to the Global Interpreter Lock (GIL), which prevents good
parallelization schemes when using threads as the access to
the critical resource serializes the executions, we opted to start
multiple Python processes in each of the worker nodes. Hence,
the different Python processes do not share the same memory
space. As a result, in order to be able to transfer data between

two processes, the object to be sent from one task to another is
serialized and written into a file. The task that needs the object,
will read the file and deserialize the object. Additionally, if
the processes are in different nodes, the file containing the
serialized object needs to be transferred from one node to the
other.

Thus, any optimization to sharing data within one node is
critical to the PyCOMPSs worker performance, and providing
node-local, system-wide shared memory support could be
greatly beneficial for the application’s performances.

The task themselves are distributed to the different workers
by the Java master. The tasks details, such as function name,
parameters’ value or filename, are sent to one specific python
instance on each nodes that is responsible for distributing the
tasks to the members of the Python multi-process environment.
This process is also responsible for the synchronization and
the termination of the task executing processes. The scheduling
decisions depend on availability of workers and on the data
already held by them from previous tasks. However, currently
there is no weighting of the cached data depending on their
size. Hence, a single-entry array weight the same as a 1 GB
array in the decision making process.

1) Objects as files: As the COMPSs model requires com-
munication channels across nodes and across languages and
software stacks, it needs a portable way to exchange data. In
addition, the synchronization between tasks is done based on
data, which may need to be buffered after being generated
and before getting used. To solve this issue, the framework
serialize the data into files, and name them following a naming
scheme which reflects both the unique data identifier and
its version. The unique data identifier is unique across the
whole application. The version of data is a counter that get
incremented every time the data is modified. That way, tasks
depending on the new state of the data can still be spawned
while not all tasks depending on previous data version have
started yet.

Although providing a lot of flexibility, this management
also limits the possibility to use shared memory based on
the data identifier and version unique key. In order not to
overwrite data, any memory sharing capabilities would be have
to maintain this versioning capability, or would need to limit
it to read-only variables.

One other constraint to the shared memory extension is
the capacity to release the memory when it is not needed
anymore. As scratch space is limited, so is system-provided
shared memories. If the data is mapped by the system and
backed by the file, it may need some costly input-output (I/O)
operation from memory to disk when physical memory is
necessary. If the data is mapped using the SHM POSIX API,
the data is pinned and cannot be swapped. In addition, in
the latter case, because of the impossibility to apply swap
operations, the total amount of shared memory available is
limited (although configurable by the system administrator).
Whether for costly operation avoidance or for resource freeing,
the need to release memory on demand or when the data
is not to be used anymore is essential. COMPSs uses the

@task (c=INOUT)
multiply(a,b,c):
import numpy
c += ax*b

@task (a={Type:IN,RRO:True},
b={Type:IN,RRO:True},
c=INOUT)

multiply(a,b,c):
import numpy
c += ax*b

(b) Task decorator with recurrent
read-only ~ flag enabled. @ RRO
can be replaced with the string
“recurrent_read_only”.

(a) Task decorator before.
The type and directionality
for a and b are automati-
cally inferred.

Fig. 1: Example of usage of the new decorator.

versioning of data and the task scheduler information to release
unnecessary memory and space scratch-memory. PyCOMPSs
also expose an API to explicitly request the deleting of a file
or an object, effectively releasing the resources held.

2) Python Decorator: As part of its model, PyCOMPSs is
using Python decorators in order to annotate functions and
describe some characteristics that cannot be inferred. The
task decorator selects the methods that will become tasks at
execution time and gives hints about the parameters, leading to
a better management of these. Describing the directionality of
data, the availability or the type of data, or the data structures
are examples of metadata to be added using the decorator. This
metadata collection has been extended to request the data to
be marked as recurrent read-only (see Fig. 1). The annotated
Python code is said taskified, as the selected method will be
distributed to the different workers at run-time.

This flag is only applied to objects which are instances of
NumPy class ndarray or whose class inherits from NumPy
class ndarray. Task arguments marked as such will be loaded
into the system shared memory or retrieved from it if pre-
viously added. This provides much better performance to the
whole system compared to adding every array-based object, as
the loading to the shared memory adds an overhead to the in-
evitable deserialization. Details are provided in Section III-B1.

This extra cost, however, can be mitigated by a high reuse
of the data. From the original PyCOMPSs interface, each task
parameter has to be deserialized when starting a new task,
potentially read from file. Applications that rely on multiple
reads of the same data through successive iterations (e.g., for
data mining applications) can gain in performance when run
as tasks using PyCOMPSs as shown in Section IV. Moreover,
the addition of a simple decorator keeps the high productivity
provided by the programming-model [8].

3) Internal Dictionary: In order to keep track of each
shared memory segments, each worker has its own lookup-
table to keep track of what data are already mapped in
memory. Each worker being its own Python process, there
is no need for synchronization as the memory address space
is not shared. Following the Pythonic way, the testing for an
existing reference is done by first looking in the dictionary if
the entry exists. If not, we try to load from shared memory
the requested entry. The shared memory allows us to access
data that would have been deserialized and shared by an other
process. If the target entry does not exist, an exception is raised

by the runtime. This exception triggers the deserialization of
the requested array and the creation of the proper shared mem-
ory segment. There is no synchronization across the different
workers on one node. However, as the data deserialized is
necessarily the same because of the naming scheme, a read-
on-write operation would not risk creating incoherent state. If
the array had to be either loaded from memory or deserialized
from file, then the corresponding entry is added to the lookup-
table. Each entry is indexed by its runtime-defined file name,
based on its identifier and its version. This name is ensured to
be unique by the runtime, and kept across tasks if the variable
is only read during concurrent or previous tasks. If the variable
is modified, the name of the variable is ensured to be different
as explained in Section III-A1. This dictionary is also used in
order to deregister all memory segments on request or once
the application terminates.

B. SharedArray, a Python extension

In order to provide the persistence on the working nodes
and the sharing capabilities between processes, an external
library was required to interface with the operating system.
The library SharedArray provided most of the characteristics
we could hope for. This Python’s module provides the interface
to create arrays shared either via the POSIX SHM API, or with
the memory mapping of a file. The library uses the NumPy [9]
library with a CPython interface. However, some limitations
made it unsuitable in its current state.

NumPy is a library widely used in order to improve the
performance of Python applications. It provides an interface
to interact with the data without requiring any copy to memory
in addition of using a contiguous buffer. This buffer can
be externally provided using the C API of the library. The
CPython part gives a native interface between C and Python,
and is the entry point to any C-based extension library for
Python.

1) Module API extension: In order to give access to sys-
tem’s shared memory to Python applications, an extension
to the base language was necessary. While [3] was quite
thorough, it only allows the creation of zero-initialized arrays.
A decision was made to extend this library in order to provide
an enriched API that adds a copy constructor to NumPy based
arrays.> The CPython library provides access to the internal
state of the variables, objects and arrays inside the Python
interpreter, and allow the library to tempered with them. This
allowed us to create a new object of class ndarray with
its contiguous buffer pointer referencing our newly allocated
shared memory region instead of the original buffer. The
shared buffer is initialized with a copy of the values contained
in the original array whose internal reference counter is
decremented. However, this implies that the original array used
for the deserialization from file still requires to be freed with
its corresponding internal data structures.

In addition to the copy constructor modification, the be-
haviour for preexisting names had to be changed as well.

3The extended version of the SharedArray is publicly available at https:
/lgitlab.com/cerl/third- party-contributions/shared-array.

Previously, an exception was being raised when a name was al-
ready taken while registering an array. Avoiding this exception
to be raised would have required an external synchronization
on the Python side and the addition of a global lock at the node
level to ensure mutual exclusion when accessing and loading
objects to memory. Moreover, as the shared memory can be
based on the mapping of a file, which could belong to a parallel
file system, the synchronization would have required to be
done across all Python workers, potentially across multiple
nodes. This would have added unnecessary complexity to the
framework which would have suffer a decrease in parallelism.
As presented in Section III-A3, and because the read-on-write
risk being limited, we decided to keep the race condition
on deserialization. The same file being deserialized, data
coherency is ensured although the location is shared, so we
did not enforce unnecessary synchronization.

2) Shared Memory Model: There are many standard ways
of using system’s shared memory. We focused our choice
between two. The first method is using mmap (2) to create a
file-backed up shared segment. The processes are mirroring
the file, mapping it into their virtual memory space. Any
modification to the memory is eventually propagated to the
file to keep coherency between processes. The second method
is using shm_open (2) to create a memory segment held by
the system that is persistent after program ending if not freed.
The newly memory page created by the system can then be
mapped into multiple processes’ memory space.

Although the shm_open (2) shared memory implemen-
tation exposes limitations unlike with mmap (2), the higher
performance allowed by the absence of disk operations in-
clined us to choose the former. It also has the advantage of
resolving issues due to potential parallel file system name
conflicts across cooperating nodes and high latency induced by
the environment. Moreover, using the shm_open (2) shared
memory API imposes restrictions on the maximum number
of segments that can be kept at one time, and the maximum
size of one segment. The values can be usually found in the
/etc/sysctl.conf system file, and default to 2097 152
pages of 4096 bytes which limits it to 8 gigabytes (GB),
across 4096 segments of shared memory. But these limitations,
either imposed by the operating system configuration or by the
environment, can be overcome by having the settings changed
by the system administrators.

IV. RESULTS

The tests were executed in the MareNostrum III cluster [10],
hosted at the Barcelona Supercomputing Center. The codes
ran on two nodes. One is the master node, run in exclusive
mode in order to avoid sharing resources with any worker,
while the second node executes the tasks with 16 processes
(workers), one process per core. Each node features two Intel
SandyBridge-EP 20M E5-2670/1600 8-cores at 2.6 GHz. As
the design relies on the system shared memory, the decision
was made to restrict the execution to one worker with 16
processes on a single node as all cores would be used without
over-subscription and it would show best the limitation of

the system if attainable. The objective of the experiments is
to show an improvement in execution time by reducing the
overall time required for deserialization. In order to limit the
influence of external parameters that would add noise to the
time measured, all data are stored locally on the nodes disks,
without using the parallel file system.

The first application to be tested was k-means, as the
memory access is simple and quickly shows the improvement
that can be achieved with careful selection of data for reuse.
The second test-case is a task-based blocked 2D matrix
multiplication, as it presents some advantages to reuse data
but with a more complicated data access pattern.

A. K-means clustering application

K-means is a widely used clustering algorithm often used by
machine learning applications. This algorithm is a numerical,
unsupervised, non-deterministic, iterative method that parti-
tions a set of points into k clusters, centered on one point.
Each point belongs to exactly one cluster and contributes to
the center’s position.

K-means applications have many parameters that influence
the behavior of the application. For the purpose of testing, we
have limited to four variables. These variables were chosen
as the were expected to present the most significance in
showing the effect of our contribution. We decided to run the
application with a fixed number of fragments, corresponding
to the number of processes acting as workers. Each fragment
represents a subset of the full set of input points. It is an arbi-
trary selection of #‘m points to distribute evenly the
work-load between tasks. Further work could involve testing
the influence of increasing the number of fragments without
modifying the number of workers and the effect of loading
from the system shared-memory compared to loading from the
file-system. However, this test requires proper management of
the task scheduling as it would require the task to be loaded
to a new worker in order to expose the need for deserializing
the corresponding subset of points before its addition to the
internal dictionary.

The details of the different test-cases and their timings, both
with and without our extension, are gathered in Table I. We
tested separately the variation of the number of points, of the
maximum number of iterations, of the number of dimensions
and of the number of centers. We present in the table the
average timings, but also the 95 % confidence interval of the
difference in mean, along with the p-value, calculated with the
Welch’s t-test.

The default number of centers is set to 4. This parameter
influences the amount of computations and the time spent in
each task, as each point has to be compared to each center
in order to define its cluster. Increasing the number of centers
increases the time required per iteration but has very little
influence on the time required for serializing and deserializing
the data. Although, the centers also need serialization and
deserialization; their number is usually negligible compared
to the number of points per fragment. In addition, the centers
being modified between two iterations, the framework would

not allow any gain from reuse of memory and the array
would always need to be deserialized every time. However,
diminishing the number of centers increases too much the risk
of early termination because of the convergence criterion. The
dummy test-case 1 from Table I that only requests one center
shows this effect, as the convergence happens in two iterations,
as shown in the traces gathered (Fig. 2a). Our study does not
show much influence of the number of centers in percentage of
improvement (cases 1 to 5) as the number of centers is orders
of magnitude lower than the number of points. We expect
the performance improvement to be degraded for a smaller
% ratio as the fraction part of total time dedicated
to I/O will decrease as well.

The maximum number of iterations influences the overall
time of the application. For a data-loading/unloading dom-
inated application such as k-means with PyCOMPSs, this
parameter would artificially increase the performance gain. In
our case, the increase of the maximum number of iterations
(case 14) only increases the application running time, with
little difference in performance compared to the reference
(case 4). The difference in means changed from 9-10% for
case 4 to 10-11% for case 14.

Finally, the last two parameters are the number of points
and the number of dimensions. These parameters have a
direct influence on the performance gain as they both define
the amount of data to be loaded, and thus, the potential
improvement by keeping this data in memory instead of
loading and unloading it at each iteration. point and center
are vectors of doubles. Each vectors’ length equals the number
of dimensions. The number of dimensions usually represents
different variables influencing the points being clustered. The
number of dimension only influences the amount of data in
the fragment and centers. However, the amount of points also
influences the amount of data to be loaded when returning the
labels array which contains the affiliation of each point to one
of the centers.

The points used for the tests were generated randomly, with
a constant seed shared across cases. The points were gener-
ated using uniform random number generator. The affiliation
criterion was computed by finding the minimum Frobenius
norm between a point and each of the centers. All the points
were generated with the same seed across cases and runs. The
epsilon distance used to evaluate the convergence criterion of
the centers was set to 1 x 1077,

The algorithm used to taskify and parallelize the k-mean
application is the same as the one used in [8] and shortly
presented in a simplified version in Algorithm 1 for the
record. The distributed part of the algorithm is the call to
the cluster_partial_sum function. The reduction of the
array of centers into the accumulation variable centersge.
is serialized on the master side, as well as the concatenation
of the label lists. The function returns the computed centers
along with the association between points and centers, data
carried by labels.

The algorithm execute three main steps. First, gene—
rate_fragments randomly generates the points of all

TABLE I: Raw results for K-Means clustering application

number max. . time with time without 95 % confidence interval inferior and superior
ID X . dims centers . L . . p-value
of points iter. (in seconds) (in seconds) in seconds in percentages (%)
1 4194304 20 64 1 79.420 86.542 —8.228 —6.017 —951% —6.95% 1.167 x 10~2°
2 4194 304 20 64 2 627.472 733.311 —112.697 —98.981 —15.37% —13.50% 1.700 x 10~23
3 4194 304 20 64 3 760.308 870.277 —114.208 —105.730 —13.12% —12.15% 2.596 x 10~ 70
>4 4194 304 20 64 4 890.667 987.643 —102.498 —91.455 —10.38% —9.26% 1.233 x 10~59
5 4194 304 20 64 5 1027.569 1138.324 —117.625 —103.885 —10.33% —9.13% 1.612 x 10—53

7 4194 304 20 16 4 859.134 871.523 —18.621 —6.156 —2.14% —0.71% 1.891 x 10_!

>4 4194304 20 64 4 890.667 987.643 —102.498 —91.455 —10.38% —9.26% 1.233 x 10—

9 4194304 20 96 4 904.989 1331.601 —434.343 —418.880 —32.62% —31.46% 1.950 x 1089
10 4194304 20 128 4 941.375 1585.822 —651.557 —637.337 —41.09% —40.19% 2.134 x 10786
11 4194 304 10 64 4 456.969 513.037 —59.443 —52.693 —11.59% —10.27% 3.769 x 1052
>4 4194304 20 64 4 890.667 987.643 —102.498 —91.455 —10.38% —9.26% 1.233 x 100
12 4194 304 30 64 4 1332.570 1489.920 —180.864 —133.836 —12.14% —8.98% 2.337 x 1019
13 4194 304 40 64 4 1733.928 1955.808 —233.903 —209.855 —11.96% —10.73% 5.183 x 106
14 4194304 50 64 4 2181.225 2443.273 —276.564 —247.531 —11.32% —10.13% 8.564 x 107°°

19 1048576 20 64 4 229.888

>4 4194304 20 64 4 890.667 987.643
21 8388608 20 64 4 1800.803 2408.625
22 16777216 20 64 4 3491.839 4835.420
23 33554432 20 64 4 7076.171 9737.459

225.582

2.992 5.619 1.33% 2.49 % 3.280 x 10~

—102.498 —91.455 —10.38% —9.26% 1.233 x 10~
—619.544 —596.100 —25.72% —24.75% 4.740 x 10~%4
—1367.719 —1319.443 —28.29% —27.29% 7.419 x 10~121
—2710.143 —2612.435 —27.90% —26.76% 8.803 x 10~64

The maximum number of iterations is the number of iterations of the algorithm if no convergence between the centers happens
first. The confidence interval correspond to the 95 % confidence interval of the difference in mean of each subgroup (time with
or time without). The difference in percentage is relative to the base time, i.e., time without the usage of shared memory.

fragments which will be distributed to the different tasks. The
centers are initially common for all fragments, although each
application of cluster_partial_sum will modify them.
cluster_partial_sum is used in order to compute the
labels for each point and the center’s position based on the
clustered points. The position of one cluster center is the
barycenter of the fragment’s points belonging to this cluster.
Finally, the centers positions are reduced by calculating the
means of the centers coordinates, for each center. Hence,
centersg,.. contains the mean of the means of each fragment
clusters. If between two iterations, the difference between
the previous and the new position of all centers is below
the threshold e, the function returns without executing the
remaining iterations.

The function cluster_partial_sum takes as parame-
ters one fragment, the corresponding /abels and the redefined
centers. Only the fragment is defined as recurrent read-only
and hence is loaded into shared memory. Contrary to the algo-
rithm presented, the labels are modified by side effect while
the updated centers are returned by the function. However,
because the execution of the function is realized by a worker,
and as labels and centers are collections, their input and output
are handled with the data being serialized to disk, waiting
for the master to deserialize them, due to COMPSs behavior.

The timer starts just after the generation of the fragments and
finishes when the main loop finishes (either by running out of
iteration or by meeting the criterion of convergence), after all
the labels have been gathered.

Table I presents the raw results from the application. Each
cases were run at least 50 times both with and without the
use of shared memory. Grey lines (cases 6, 8, 15 to 18
and 20) present test-cases where the difference in mean of
the timing in the method that uses the shared memory is
not significantly different from 0, meaning that there are no
statistically significant difference between the timings due
to standard variability (p-value <0.05). Red lines (case 19)
are for cases where the difference in means is significantly
greater than 0, meaning that there is a negative effect in
performance when using the shared memory that is likely not
due to standard variability. Green lines show cases where the
performance improvement is statistically significant.

Cases 11 to 14 show that changing the number of iteration
does not affect the gain in performance in proportion. The
benchmark execution time is already dominated by the exe-
cution time of the iteration, which performance is improved
proportionally to the improvement of the data deserialization
part. Even the dummy-case 1 which finishes early after only 2
iterations shows a difference in mean close to 10 %. The 2-5 %

Algorithm 1 Main loop for distributed k-means application

Input
N Total number of points to cluster
k Number of clusters
f Number of fragments

max_iterations
Maximum number of iteration
€ Convergence criterion

Output
centersg.. Vector of centers
labels Association between points and centers

1: (ctrs,1lbls) < generate_centers(k)

2: fragments « generate_fragments(N, f)

3: for iter < 1 to max_iterations do

4 centersge «— 0

5: labels < empty list()

6 centersyyq < ctrs

7 for all frg € fragments do

8 cluster_partial sum(frg,ctrs,lbls)
9 list_append(labels, lbls)

10: centersge. ¢ centersgee + 1/f -Cctrs
11: ctrs < centersyyg

12: end for

13: if ||centersgy.. — centersgyy| > ¢ then
14: ‘ ctrs < centersgece

15: else

> Early exit when convergence criterion is met.
16: break

17: end if

18: end for

19: return (centersge, 1bls)

difference can be explained by the original sending of data to
the workers which cost is no longer negligible compared to
the time to run the iterations.

The cases 6 to 10 and 15 to 23 show the impact of the
amount of data to be loaded (by increasing either the number
of points or the number of dimensions). In most of cases past
some threshold, the more data, the more improvement can be
achieved. Also, the performance improvement seems to have
a stronger scale with the number of dimension than with the
number of points. As a matter of fact, doubling the amount
of data by doubling the number of points boosted the gain
in performance from 9-10% to 24-25% while doubling the
number of dimensions increased the gain up to 40-41%. One
reason is that increasing the number of points also increases
the number of labels to serialize and deserialize for each
iteration, which impact negatively the performance. It also
seems to appear that the gain in performance can be bounded
as cases 22 and 23 both expose a gain around 25-28 %.
However, we could not verify this as it would require further
testing.

For cases 6, 8 and 15 to 20 the method to be used
to load data does not seems to be very influential as the

amount of data (below 64 MB per task) is too small to see
any impactful improvement by reuse of memory. Hence the
difference in mean would only increase the variance of the
timing distribution, participating in the noise of the measures.
However, the test case 19 shows that it can be disadvantageous
to use the shared memory. The shared memory execution path
efficiency relies on the condition that the look-up through one
table or the access to the system shared memory is more
efficient than accessing data on disk through standard NumPy
deserialization. Although it may be an artifact in the execution
of the benches, this test case shows that this condition is not
necessarily always met, but we have not manage to determine
the reason for this behavior for this set of parameters. In this
underperforming case, the overhead still stays very low, below
2.5%. The comparison between cases 6 to 10 and cases 15
to 20 are showing that the amount of data, especially the ratio
of read-only memory over total memory to load is critical to
finding cases where improvement can be reach using shared
memory. This ratio limits the grows in performance to be
expected, hence, multiplying by a factor 4 the threshold before
seeing substantial gain in performance.

Fig. 2 presents screenshots of postmortem visualization of
k-means application traces using the software PARAVER [11].
Fig. 2a shows that although the first iteration deserialization
gets slightly longer because of the loading of data to the shared
memory (light green at the origin of each segment), from the
second iteration onward the deserialization is greatly reduced.
The darker shade of green on the lower part of Fig. 2a at the
beginning of each segment of the first column corresponds to
the time spent charging the data into shared memory.

As shown in Fig. 2b, the overhead that was required on the
first iteration gets evened out by quick data recovery in shared
memory, and by even quicker data load from the internal
dictionary.

B. Blocked Matrix Multiplication

The second case considered is a task-based version of the
blocked 2D-matrix multiplication. The main algorithm is de-
picted in Algorithm 2. The data dependency expressed on the
resulting matrix C' is detected automatically by PyCOMPSs
and managed with the COMPSs scheduler. Each matrix is
composed by sub matrices indexed by their row and column
numbers, starting at 0. All blocks are square and share the
same dimensions, expressed in amount of double precision
floating point numerical values. During the experiments, the
timer was started after the initialization of the matrices, before
the main multiplication loop. The call to the matmul_block
function triggers a task creation that is executed by some
worker process on the second node. We stopped the timer
once all tasks were finished, after a synchronization barrier.
As expressed in the input parameters of Algorithm 2, only the
two read-only input matrices A and B are using the shared
memory capabilities.

For these experiments, we had two parameters to vary. The
number of blocks per matrix dimension and the number of
elements per dimension of each block (reported as block size).

Events inside Tasks @ kmeans.py_compss_irace_1579665805.prv

3L0L6 f

Events inside Tasks @ kmeans.py_compss_trace_1579865662.prv

(a) Parameters similar to test-case 1, convergence in 2 iterations.

(b) Over the time of the application, reuse of data makes the cost of data serialization insignificant. Parameters are similar to test-case 10.

Trace shown are from worker cores only. The colors are given chronologically, from left to right. Green segments represent
the deserialization of objects, darker green being the creation and population of the shared memory segments. The large white
segments in the middle represent the user code execution. Yellow segments represent the serialization of objects. As shown,
not all objects are added to shared memory, hence the deserializations timing hardly appear on the second traces shown in
Figure 2b.

Fig. 2: Traces of k-means PyCOMPSs application.

Algorithm 2 Main algorithm for blocked matrix multiplication
Input
dim Matrices dimension
A, B Square 2D matrices, shared
C Square 2D matrix, not shared, zero initialized
Output
C Result matrix
1: for r + 0 to dim — 1 do
2 for c < 0to dim—1 do
3: for 1 + 0 to dim — 1 do
4: Cre < matmul_block(2,;, Bic, Cre)
5
6
7

end for
end for
: end for

The former influences the number of tasks generated in the
application, while the latter modifies the amount of data to
be loaded when deserializing a block. It also have a direct
impact on the ratio J_usercode em";cl‘;‘g‘;‘;e‘;?flme, which limits the
proportion of code that can be improved with our addition
to PyCOMPSs. As we are trying to show an improvement in
the overhead induced by the programming model, increasing
the number of elements too much can make the improvement
disappear in comparison to the overall application time.

The preliminary parameter exploration showed us that the
most interesting performance test-cases included 8, 12, 16,
20 and 24 blocks in each dimension, with 128, 512, 1024,
2048 and 4096 doubles per dimension for each block. Each
case was ran 50 times with and 50 times without the usage
of shared memory. The different parameters tested and their
results are reported in Table II. The results exposed are similar
as in Table I, namely average timings with and without the
extension, 95% confidence interval of difference in mean
and p-value. For the sake of brevity and clarity, only the
statistically significant results are shown (p-value <0.05). For
a block size of 4096 elements, only the 8 blocks case gave
results, as memory exhaustion lead Python to rise exceptions
when trying to execute larger cases. Thus, we were unable to
run comparative tests, but we believe finer control over the
memory allocation would make it possible to run larger cases.

From the 21 test-cases, 9 do not show any statistical
difference in means when compared with a Welsh’s t-test. 58 %
of the remaining cases show an improvement in performance,
ranging from <1 % to 16.65 % for improved cases. The worst
penalty measured is an overhead of 14.07% in case 5. For
cases 1 to 5, the differences in mean are showing respectively
3.64 %, 5.4 %, 5.3 %, 7.9% and 10 % of timing increase when
the application is being run with the shared memory.

The variability in the results is to be explained from a lack
of fine grain control over the tasks attribution. This reduce
the direct reuse of previously deserialized matrices that are
stored in the internal dictionary. The creation of a shared-
memory array requires to execute the memory allocation twice,
once from file to memory, and once from memory to shared
memory, and needs the data to be written both times. We

analyse that this overhead can only overcome its cost with
sufficient reuse of memory pages. It appears that bigger sizes
lead to better results, as the loading from the disk can throttle
the performance compared to memory mapping.

We are planning on future work to include testing with
regard to fine grain task scheduling in order to both reduce
the variability of measurements and to try to define an optimal
scheduling. As a matter of fact, a fine grain management
of task scheduling that would prioritize tasks with disjoints
data sets would improve performance as fewer shared memory
blocks would be rewritten in case of data names conflict. In
the case of matrix multiplication, all blocks have to be used
multiple times. On a single node, one optimized algorithm
could be to first compute the blocks along the diagonal to
maximize the number of array ready to be reused, and to
minimize the number of array loaded twice to shared memory.
The workers could be execute computing operations following
either the row in order to reuse the blocks deserialized from
matrix A and then compute blocks from the column in order
to reuse the blocks deserialized from matrix B.

Although two thirds of the cases are showing an im-
provement when using shared memory, the selection of good
candidates is a difficult issue for applications with a complex
pattern of memory accesses. As an example, increasing the
number of blocks increases the parallelism of the application
and the number of times the data have to be used. But it
also increases the number of times the output matrices have
to be serialized and deserialized. As shown in cases 6 to 8
and cases 9 to 11, for one given block size, the increase of
number of blocks decreases the gain of performance, from a
maximum of 11.45 % (case 6) to a minimum of 2.15 % (case 8)
on average for a block size of 1024 and from a maximum of
15.20 % (case 9) to a minimum of 8.81 % (case 10) on average
for a block size of 2048, respectively.

V. CONCLUSION

This work presented the integration of an extension to the
Python language features into the PyCOMPSs framework.
Analogously to the original work, the code modification re-
quired to use this new trait is kept to a minimum in order
to make code adaptation as easy as possible and provide a
seamless integration into the parallel framework. For algo-
rithms based on a high number of reuse of data, such as k-
means, performance have been shown to be improved by at
least ~10 % or unaffected by using shared-memory, in our
condition of experiment. For improved cases, the effect is
amplified as the amount of data increased, proportionally to
the total amount of I/O, with an improvement of ~40 % when
increasing the number of point dimensions in the case of a k-
means application. However, for a too small task granularity
there can be an antagonistic, yet relatively limited, effect.
Nonetheless, the promising results based on read-only memory
may lead to a possible evolution of the framework allowing
a better usage of shared-memory when distributing tasks to
different workers sharing one same node, to reduce even more
the number of serializations required, for application behaving

TABLE II: Raw results for blocked matrix multiplication.

D number of block time with time without 95 % confidence interval inferior & superior i
blocks size shared mem. shared mem. in seconds in percentage p-value
P! g

1 16 128 43.624 42.093 0.034 3.027 0.08 % 7.19% 0.0451017
2 8 512 18.287 17.343 0.088 1.800 0.51% 10.38 % 0.031097 6
3 12 512 51.527 48.920 0.717 4.496 1.46 % 9.19% 7.366 x 103
4 16 512 121.165 112.291 3.964 13.784 3.53% 12.28 % 6.928 x 10—*
5 20 512 233.181 211.867 12.811 29.818 6.05 % 14.07 % 2.969 x 10~
6 8 1024 46.353 52.348 —8.472 —-3.519 —16.18% —6.72% 8.376 x 106
7 12 1024 151.787 160.587 —16.390 —-1.210 -10.21% —0.75% 0.023 5403
8 20 1024 741.622 757.913 —25.440 —7.143 —-3.36 % —0.94% 5.524 x 10~4
9 8 2048 180.111 204.291 —31.049 —17.311 —15.20% —8.47% 3.446 x 1010
10 12 2048 581.257 637.424 —76.866 —35.468 —12.06% —5.56 % 5.083 x 107
11 16 2048 1404.155 1551.578 —203.842 —91.0056 —13.14% —5.87% 2.381 x 106
12 8 4096 786.623 925.552 —154.124 —123.735 —16.65% —13.37% 8.347 x 10—33

The number of blocks and the block sizes are the same in each dimension as the matrices are square. Times are given in
seconds. The boundaries of the 95 % confidence interval are for the difference in mean of each subgroup (time with or without
shared memory). The difference in percentage is relative to the base time, i.e., time without the usage of shared memory.

like the blocked matrix multiplication benchmark. Larger scale
testing of the k-means application could be done for a very
large dataset of points to see the integration with storage
solutions such as Redis (as presented in [12]) to evaluate the
behaviour in case of unsupervized distributed applications and
verify whether the solution still provides an improvement of
the general performance.

An additional outcome of this work is to display the eligibil-
ity of Python based applications and workflows to be executed
with memory placement tools and for their performance to be
improved with standard memory-oriented optimizations. This
second noteworthy result will lead to further research on in-
tegration with low level memory management on the strength
of the assumptions provided by a higher-level language.

ACKNOWLEDGEMENT

This work was partly funded by the EXPERTISE project
(http://www.msca-expertise.eu/), which has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sktodowska-Curie grant
agreement No 721865.

BSC authors have also been supported by the Spanish
Government through contracts SEV2015-0493 and TIN2015-
65316-P, and by Generalitat de Catalunya through contract
2014-SGR-1051.

REFERENCES

F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Alvarez, F. Marozzo,
D. Lezzi, R. Sirvent, D. Talia, and R. M. Badia, “Servicess: An
interoperable programming framework for the cloud,” Journal of grid
computing, vol. 12, no. 1, pp. 67-91, 2014.

E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres,
T. Cortes, and J. Labarta, “Pycompss: Parallel computational workflows
in python,” The International Journal of High Performance Computing
Applications, vol. 31, no. 1, pp. 66-82, 2017.

M. Mirmont, “Python extension: Sharedarray,” https://pypi.org/project/
SharedArray/, 2019.

OpenMP Architecture Review Board, “OpenMP Application Program-
ming Interface Specification,” Web page at http://www.openmp.org/
specifications/, (Date of last access: 3rd May, 2017).

L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” Computational Science & Engineering, IEEE,
vol. 5, no. 1, pp. 46-55, 1998.

B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and
L. Smith, “Introducing openshmem: Shmem for the pgas community,”
in Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model, 2010, pp. 1-3.

M. Driscoll, A. Kamil, S. Kamil, Y. Zheng, and K. Yelick, “PyGAS: A
partitioned global address space extension for python,” Poster abstract,
2012. [Online]. Available: http://web.eecs.umich.edu/~akamil/papers/
pgas12.pdf

J. Alvarez Cid-Fuentes, P. Alvarez, R. Amela, K. Ishii, R. K. Morizawa,
and R. M. Badia, “Efficient development of high performance
data analytics in python,” Future Generation Computer Systems,
2019. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X18321393

S. J. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:
A structure for efficient numerical computation,” Computing in Science
Engineering, vol. 13, no. 2, pp. 22-30, March 2011.

BSC - CNS. (2012) MareNostrum 3. [Online]. Available: https:
/lwww.bsc.es/marenostrum/marenostrum/mn3

D. Computadors, V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver:
A tool to visualize and analyze parallel code,” WoTUG-18, vol. 44, 03
1995.

BSC - Workflows and Distributed Computing, “K-means with Redis,”
https://github.com/bsc-wdc/apps/tree/stable/python/examples/kmeans_
redis, 2019.

