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A B S T R A C T 

Reinforcement learning (RL) methods have been developed to deal 
with numerous real world tasks including applications that focus on 
the climate controls for different indoor environment including of-
fce, classroom, house and car cabin. Recent research applying in car 
cabin climate control is based on the State-Action-Reward-State-Action 
(SARSA) algorithms to train an artifcial agent that can automatically 
maintain the thermal conditions that satisfy occupant comfort. How-
ever, the SARSA-based RL approaches usually spend 2.9 to 6.3 years 
of simulated learning experience on training a near-optimal control 
policy. This cost is not negligible in comparison with the lifetime of 
vehicles. Alternatively, the family of policy gradient reinforcement 
learning (PGRL) algorithms has potential to accelerate the training 
process and acquire less learning experience. 

Hence, the main aim of this thesis is to apply PGRL approaches in 
learning vehicle climate control and assess if the resulting controller 
can maximally achieve occupant comfort with reasonable energy con-
sumed by the thermal conditioning system. In order to achieve this 
main goal, a multilayer perceptron (MLP) based neural network with 
softmax output layer is used as thermal control policy, the PGRL 
schemes basically maximize received rewards to compute the gradi-
ents to update the weights of this control policy. Two primitive PGRLs 
are applied and compared: the Monte-carlo policy gradient (MCPG) 
and mean actor critic (MAC). However, the main diffculty of using 
primitive PGRL methods is that the learning step size computed by 
direct gradient-descent rules does not always improve the policy. This 
issue can be solved by employing two typical PGRL approaches: trust 
region policy optimization (TRPO) and proximal policy optimization 
(PPO). 

The experiment shows that TRPO and PPO approaches can im-
prove the sample effciency and with a reduced simulated learning 
time of 0.63 years. The PPO based training scheme statistically yields 
higher episodic reward per learning trial than the alternative PGRLs. 
Additionally, the PPO-based controller achieves occupant comfort 
averagely in 3.8 minutes, and maintains 77.94% time spent on the 
comfort. Compared to the SARSA-based controls with pre-selected 
testing scenarios, the PPO-based one achieves 92.3% occupant comfort 
which is higher than the 67% achieved by the SARSA-based controller. 
Moreover, the state representation is non-Markovian due to its depen-
dence on the time steps. As the validation shows that increasing the 
episode duration from 1000 to 5000 s can signifcantly improve the 
comfort maintaining performance and averaged episodic rewards. A 
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Markovian state representation is then introduced to mitigate state 
dependence on time-step, the case with 4 × 103 s duration shows 
that using Markovian state representation can improve comfort per-
centage from 53.58% to 64.32%. But this improvement is lower than 
77.94% by the non-Markovian training case with 5 × 103 s episode 
time. The trade-off is that the non-Markovian learning case consumes 
20% more simulated time in estimating comfort-oriented controller 
that maintains 13% more time spent on comfort. 

Therefore, the PPO-based PGRL climate controller can signifcantly 
improve the occupant comfort percentage to above 77%, while using 
less simulated learning time (0.63 years) with the non-Markovian 
state representation. The simulated time is much less compared to 
the vehicle’s lifetime. Furthermore, other innovative policy gradient 
techniques, such as, Actor Critic with experience replay and Trust 
Region-Guided PPO have potentials to further reduce the 0.63 years of 
learning sample by PPO method, and a more realistic human thermal 
comfort model is needed. 
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1 
I N T R O D U C T I O N 

1.1 research aim 

The primary aim of a vehicle climate control system is to keep occu-
pants comfortable while minimising the use of energy. A secondary 
aim is to ensure that windshield glass is free from condensation 
that might obscure the view. To do this, the system blows hot or 
cold air that is either recirculated or refreshed from the external 
area. This is ducted to vents positioned at the feet section, in the 
dashboard at middle height, and to defrost vents near the wind-
shield. Other advanced functions may include controlling indoor air 
quality and humidity. This integrated system, comprising such air-
thermal conditioning functions, is known as the Heating, Ventila-
tion and Air-Conditioning (HVAC) system. The main objective of the 
HVAC system is to create a safe and comfortable indoor environ-
ment for humans [McD06], [Ene17]. Safety refers to controlling air 
quality, including airborne particles, oxygen and noxious gas levels, 
to guarantee the health of occupants within strict air conditioning 
standards [JAW07], [BAAB10]. Thermal comfort is a term specifc to 
individual sensation of indoor space climate since different people 
tend to have different comfort perception in the same indoor envi-
ronment for physical and psychological reasons [Tal+13]. Thermal 
comfort mainly concerns the exchange of heat between the human 
body and its environment. The individual’s thermal comfort expe-
rience is related to body conditions, including gender, age, weight, 
indoor activity, clothing resistance and heat convection of skin, body 
mass, thermoregulation, psychological adaptation [RVL15]. Other dy-
namic environmental factors include air temperature, humidity, ve-
locity, pressure and circulation [MR13], [DTN10]. These factors make 
it diffcult to provide universal rules to defne conditions of indoor 
thermal comfort [Cro+15]. 

Currently, most vehicle cabin thermostats are manually operated 
by the occupants when they are not satisfed with the air quality and 
thermal conditions of the cabin. For example, occupants need to ad-
just the settings of cabin temperature, blower speed and ventilation. 
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2 introduction 

These manual operations might be distracting for the drivers when 
focusing on traffc or road conditions. It is essential that drivers not be 
distracted by trivial actions to ensure traffc safety. Despite the man-
ual adjustments, the HVAC system may not provide the occupant’s 
desired comfort under various circumstances. For example, the cur-
rent commercial HVAC system merely inputs warm or cold air when 
the cabin air temperature is below the set-point, but cannot assess 
whether the user’s preferred thermal condition is satisfed. Other envi-
ronmental factors such as solar load, environment temperature, cabin 
humidity rate, air recirculation velocity also affect occupant’s percep-
tions of thermal comfort. Therefore, it is important to identify the 
circumstances in which the occupant’s comfort is or is not maintained. 
Some recent experiments regarding vehicle cabins have shown that it 
is realistic to formulate rational human-vehicle cabin heat exchange 
models [SSU16], [Lee+15], [MWL18] to model the relations between 
HVAC settings to occupant’s thermal preferences. 

Relevant researches by Hintea [Hin+13], [Hin14] and Fo-
jitlin [Foj+17] have proposed using equivalent temperature [Nil04] 
to estimate occupant’s thermal comfort regions based on cabin air 
and interior mass temperatures, blower speed, recirculation. This 
comfort model makes it possible to design an artifcial agent that can 
identify and maintain thermal comfort for cabin occupants using the 
HVAC system. The intelligent vehicle HVAC control technique, for 
example, a fuzzy logic-based controller [Ibr+12] can automatically 
maintain a comfortable electric vehicle (EV) cabin temperature and 
relative humidity level, regardless of the time-varying surrounding 
climate. The challenge for EV climate control is that the use of air 
conditioning system can signifcantly reduce the driving range in 
winter climate [Zha+17]. Because the EV’s HVAC system consumes 
large amount of electricity to pump the heated air into the cabin, 
and a positive temperature coeffcient (PTC) resistance heater device 
is normally used to generate the heat for car cabin. Therefore, 
it is important to manage the energy effciency of the EVs’ air 
conditioning system [Qi14]. An energy management solution for 
sophisticated EV HVAC systems is based on a model predictive 
control (MPC) strategy to estimate power demands during normal 
driving in real-time [Eck+16]. Other practical approaches to HVAC 
control include machine learning methods of Predictive Mean Vote 
(PMV) [Fer+12], evolutionary, artifcial neural networks [LD05] and 
reinforcement learning approaches [VCN19]. Therefore, the balance 



3 1.1 research aim 

between energy usage and cabin climate conditioning tends to be an 
essential issue for EV HVAC system control applications. 

Among the climate control systems using machine learning, the 
reinforcement learning (RL)-based HVAC controllers have been ap-
plied in various indoor situations including car cabins [Bru+18], of-
fces [Zha+18], classrooms [Val+19] and buildings [Yan+15]. These 
control tasks aim to create a comfortable environment by controlling 
for air temperature, carbon dioxide level, humidity and ventilation. 
Existing RL-based HVAC applications commonly employ traditional 
value-based approaches (such as the tabular action values, function 
approximation) to estimate HVAC control policies. However, the value-
based approaches usually converge slowly to the optimal control pol-
icy [Dua+16]. Instead, recent RL approaches focus on using policy 
gradient-based reinforcement learning to accelerate the learning pro-
cess to solve various real-world control tasks (primarily for model-free 
control ) [Sch+17]. These include complex robotics locomotor skills, 
playing Atari video games, balancing pendulums, training a bipedal 
robot to walk [Tas+18], [Bro+16], [PS06]. Such cases indicate that policy 
gradient methods have potentials of dealing with real-world industrial 
problems, including the indoor thermal control tasks. Based on the 
car cabin RL HVAC system developed by Brusey [Bru+18], this work 
proposes to use policy gradient reinforcement learning (PGRL) as the 
primary approach to improving the performance of resulting HVAC 
controllers. 

The main aim of this thesis is to develop a machine learning system with 
PGRL methods to train HVAC controllers that can maximally offer thermal 
comfort to passengers while maintaining the energy cost of the vehicle HVAC 
system. Meanwhile, the learning system can signifcantly reduce the number 
of simulation samples consumed in the training process. 

The reinforcement learning (RL) process indicates the interactions 
between an agent and environment through trial and error steps: ob-
serving states from the environment, taking actions by consulting the 
policy, receiving rewards. The architecture of PGRL is to learn a control 
policy that decides actions the agent takes to achieve or maintain spe-
cifc target states corresponding to maximum received rewards. Hence 
the policy updating rule is to adjust policy’s behaviour in choosing the 
future actions that can maximize the rewards. However, the primitive 
PGRL approaches to update policy follows a gradient-descent rule 
which does not always improve the policy. A state-of-the-art approach, 
namely the trust region policy optimization (TRPO) [Sch16] introduces 
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a constrained learning step to ensure positive update for policy. There-
fore, it is useful to employ primitive and TRPO-based PGRLs to train 
HVAC control policies, and compare their performance in satisfying 
the set point of thermal comfort and energy consumption. 

In reinforcement learning, the way that an agent observes states 
and selects actions, namely the Markov decision process (MDP). In 
this process, the effects of actions depend only upon the current state; 
this also means that the knowledge of the current state is suffcient 
for optimal control [SB18]. Based on the vehicle thermal model by 
Brusey [Bru+18], this work has defned information of cabin state and 
agent actions, but the state is represented in a non-Markov decision 
process (NMDP). Therefore, this vehicle thermal control model has 
potentials to investigate what improvements the MDP-based state 
representation can bring to the PGRL HVAC learning system, and 
how it impacts the comfort maintaining and energy consumption 
performance of the learnt HVAC control policies. 

The frst challenge is choosing effective policy gradient reinforce-
ment learning (PGRL) algorithms to consume less simulated samples 
on training vehicle HVAC controller that can effectively maintain com-
fort, cool down and warm up the cabin. The second challenge is to 
consider the Markov property in a PGRL framework and examine 
whether it improves the comfort maintaining and energy consumption 
performance of the resulting HVAC controller with the same amount 
of training samples. 

1.2 research questions 

This thesis focuses on subsequent sets of research questions as re-
sponses to the aims mentioned above: 

RQ 1.1 Can the vehicle HVAC agent, trained by PGRL schemes, 
reduce the time taken to achieve occupant thermal comfort and 
keep reasonable energy consumed by the HVAC system com-
pared to the SARSA based learning scheme? 

RQ 1.2 Can the PGRL HVAC training scheme learn an optimal 
control policy within a reasonable number of training samples? 

The HVAC system is vital in creating a safe and comfortable 
cabin environment for the occupants. An intelligent HVAC con-
troller is able to sense the cabin state, including cabin tempera-
tures, vent airfow and decide which set of control actions to take. 
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This intelligent control agent can also effectively offer desired 
thermal comfort to occupants while keeping energy-effciency 
of the HVAC system. This work proposes using policy gradient 
reinforcement learning (PGRL) to fnd an optimal control pol-
icy that can maximally achieve occupant thermal comfort while 
keeping energy effciency compared with earlier work done by 
SARSA-based RL [Bru+18] (for RQ 1.1). Since some state-of-the-
art RL-based HVAC control tasks [Pet18], [Bru+18], [Val+19] 
spend 2.9 to 10 years of simulated time on training the con-
trollers, hence less number of the learning experience is expected 
in this PGRL HVAC system compared to these works (for RQ 
1.2). This term “simulated time” denotes the duration from the 
point of view of the simulated environment. This term’s value 
corresponds to the number of state-action sequences observed 
multiplied by the size of the simulation time step. For example, 
training an intelligent agent for the cart-pole balancing task in 
Figure 2.2 need to sample sequences of time-enumerated states. 
So, the simulator needs to imitate the physical dynamics of the 
cart-pole model per time step, namely the changes of cart ve-
locity, pole angular velocity over a timescale. The cumulated 
timescales of these generated samples refer to the simulated 
time, usually not equal to real-world time spent on the simula-
tion. Another example shows the terminology of real-world time 
scenario in training Go game agent [Sil+17], which takes 40 days 
of real-world time rather than simulated time. In this thesis, the 
PGRL case takes approximately 40 to 60 minutes of real-world 
time for the HVAC agent training processes equivalent to two 
years of simulated time. 

Chapter 3 presents the learning results of applied PGRL so-
lutions, and energy, comfort performance by resulting control 
policies. Section 3.3 answers RQ 1.1 by comparing the perfor-
mance of resulting HVAC controllers estimated by PGRL meth-
ods in terms of 1) averaged percentage of time spent on occupant 
comfort 2) the time taken to respectively achieve and maintain 
occupant thermal comfort in cool-down and warm-up processes 
3) energy consumption of HVAC system. The answer for RQ 2.2 

focuses on using less simulated time of training samples to learn 
the resulting controllers because the simulated time need to be 
kept within the vehicle’s lifetime. 
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The following sets of research questions focus on investigating what 
impacts the Markov property can have on the learning capability of 
the proposed PGRL HVAC system. 

RQ 2.1 Is the learning performance of PGRL HVAC negatively 
impacted by a non-Markovian cabin state representation? 

RQ 2.2 Can the Markovian-represented cabin state improve 
the energy effciency by using the same number of training 
experience in a non-Markovian state representation? 

The Markov decision process (MDP) suggests a typical agent-
environment interaction model in reinforcement learning (RL) 
framework. Still, some real-world problems do not always obey 
the MDP rules (Markov property) due to a lack of state infor-
mation [WL95]. In traditional RL approaches (for example Q-
learning), the Markov property is essential in determining what 
state information the agent can use to decide control actions. 
Section 4.1 of Chapter 4 answers RQ 2.1 by showing the pres-
ence of non-Markov property in state representation and how 
it impacts the learning capability of PGRL HVAC system. Sec-
tion 4.2 answers RQ 2.2 by comparing the comfort and energy 
consumptions performed by non-Markov and Markov based 
policies. This section shows that the fxed ending time results 
in non-Markov represented cabin states and proposes an MDP-
represented states collection process for PGRL HVAC system 

Then the last research question focus on the PGRL application in an 
occupant-oriented car cabin thermal simulation model approximated 
by the climatic wind tunnel dataset. This question can better investi-
gate the PGRL performance in realistic thermal comfort conditioning. 

RQ 3 Can the PGRL-based HVAC controller reduce the time 
taken and power consumption to achieve occupant thermal com-
fort in a climatic wind tunnel simulation model compared to a 
bang-bang method? 

1.3 contribution to knowledge 

There are two main contributions 

1. This thesis presents a policy gradient reinforcement learning 
(PGRL)-based comfort-oriented, energy effcient, heating and 
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cooling HVAC controller that outperforms existing RL-based 
vehicle HVAC controllers. The performance is measured here 
in terms of maximizing the proportion of time spent in comfort 
for the occupant while minimizing the energy consumed by 
the HVAC system. The training samples spent on learning this 
controller are signifcantly reduced by 70 − 90% compared to 
earlier work based on SARSA RL scheme. This controller is 
a multilayer perceptron (MLP)-based neural network that can 
decide control actions according to the cabin thermal state it 
observes. 

2. A method to represent cabin environment state in a way that 
fulfls Markov decision process, so that it helps to improve the 
learning performance of PGRL HVAC system. The resulting 
policies yield competitive performance in achieving occupant 
comfort and energy effciency compared with non-Markovian 
state representation cases. 

1.4 thesis structure 

Rest part of this thesis is listed as follows: 

Chapter 2 reviews classic reinforcement learning approaches, 
the background of policy gradient methods with corresponded 
applications, and existing reinforcement learning solutions for 
thermal conditioning. Also, four typical policy gradient methods 
being applied to the vehicle HVAC control problem: Monte-Carlo 
policy gradient (MCPG), Mean actor critic (MAC), Trust region 
policy optimization (TRPO) and Proximal policy optimization 
(PPO). 

Chapter 3 describes the vehicle HVAC control model, combined 
with proposed PGRL methods. This chapter presents the learn-
ing capabilities of applied PGRL methods in achieving optimal 
control policies, results of testing cases by the estimated con-
trollers, and evaluations of control performance in extreme cold 
and hot weather conditions. (contribution 1) 

Chapter 4 discusses the Non-Markovian state representation 
in the PGRL HVAC learning system through analysis and ex-
periments. Compares the capabilities of Non-Markovian and 
Markovian modelled PGRL HVAC systems in learning optimal 
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policies and rewards maximizations. Testing results by Marko-
vian and Non-Markovian PGRL HVAC agents are compared. 
(contribution 2) 

Chapter 5 discusses the PGRL application in an HVAC system 
for a car cabin thermal model based on climatic wind tunnel 
dataset. This chapter also presents comparison results between 
RL-based and bang-bang HVAC controllers. And the model fo-
cus on simulations of occupant’s thermal status. (supplementary 
to contribution 1) 

Chapter 6 presents answers to the research questions, conclu-
sions from presented researches and experiments, suggests po-
tential research directions for future works 



2 
B A C K G R O U N D O F R E I N F O R C E M E N T L E A R N I N G 
M E T H O D S A N D A P P L I C AT I O N S TO I N D O O R 
E N V I R O N M E N T T H E R M A L C O N D I T I O N I N G 

This chapter mainly reviews the research materials related to reinforce-
ment learning (RL) fundamentals and state-of-the-art RL algorithms 
and their applications on indoor environment thermal conditioning 
controls. The frst three sections start with introducing the Markov De-
cision Process (MDP) as the basic model for RL framework. Specifcally, 
reviewing the fundamental value-based and policy gradient-based RL 
methods regarding to solving problems in continuous domains, then 
specifying the state-of-the-art policy gradient-based RL approaches 
and their advantages in solving realistic control problems (such as loco-
motion). The last section of this chapter mainly covers state-of-the-art 
RL applications in relevant heating, ventilation and air conditioning 
(HVAC) control tasks for various indoor environments. By the end of 
this chapter, the potential benefts of choosing the policy-based RL 
as the solutions for vehicle HVAC control are identifed as the basic 
aspects of research questions. 

2.1 markov decision process 

Markov Decision Process (MDP) [SB18] is a mathematical framework 
used for modelling decision making under certain environmental 
rules. An MDP can be represented by a tuple consisting of states S, 
actions A, transition probabilities P, rewards R and discount factor γ, 
and the defnition of an MDP is given by 

• S : set of observable environment states 

• A : set of possible actions from which the agent choose an action 
for each time step 

• P : state transition distribution p(st+1 | st,at) determines next 
state st+1 resulted from current state st and action at 

• R : immediate reward R(st,at) received from current state and 
action st,at 

9 
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• γ ∈ [0, 1] : the discount factor which represents the weight 
between current reward and future reward 

The MDP events start from an initial state s0 ∈ S drawn from a 
specifc environment; the agent observes a state st ∈ S after time 
t. Then the agent selects an action at ∈ A and executes it. This 
process results in a state transition over a unit time step, resulting in 
observation st+1, receiving an immediate real-valued reward R(st,at). 
State transition probability p(st+1 | st,at) governs the likelihood of 
receiving st+1 as a result of executing action at on st. By repeatedly 
observing state, selecting and executing actions, the agent receives a 
sequence of states, actions and rewards s0,a0, r0, s1,a1, r1, · · · . The 
sum of received discounted rewards are 

R(s0,a0) + γ · R(s1,a1) + γ2 · R(s2,a2) + · · · (2.1) 

where discount factor γ (γ 6 1) acts as a weight balancing the im-
portance of current and future rewards. Given an MDP environment, 
the goal of reinforcement learning is to fnd a function that selects 
actions a0,a1,a2, · · · over time steps, thus maximizing the expected 
discounted sum of rewards in equation 2.1. The Markov property 
indicates the fact that the future observations of the MDP depend only 
on current observation, this means that the conditional probability of a 
future state p(st+1 | st, st−1, · · · , s0) conditioned on both the current 
state st and history {st−1, · · · , s0 | t > 2} equals to p(st+1 | st) which 
is only conditioned on current observation. 

Where the set of actions A and state observations S can be either 
fnite or infnite for different cases. An example of fnite discrete MDP 
is the cliff walk game [SB18] shown in Figure 2.1, a robot is assigned 
to fnd the path from initial cell S to the target G without falling off 
the cliff. This robot can move in four directions (up/right/down/left) 
in each cell while either receiving reward −1 for each step or −100 

for falling off the cliff. The maximized reward refects two possible 
paths in the fgure: a safe path and an optimal route. It is not diffcult 
to fgure out that each future state s 0 on the cliff walk grid depends 
on current observation s. Figure 2.2 shows a classical cart-pole balanc-
ing benchmark that can be used as a continuous observation MDP 
model [Dua+16]. A pole is attached to a cart by an unactuated joint 
which allows it to swing freely. The cart can move along a horizontal 
frictionless track by applying a force with left/right directions and 
certain magnitude. The state of this system comprises four values: the 
position of the cart relative to the centre of the track x, the velocity of 
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Figure 2.1: A cliff walk game 
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Figure 2.2: A cart-pole balancing task 

cart ẋ, the angle of the pole θ and angular velocity θ̇. Given an initial 
state s0 = {x0, ẋ0, θ0, θ̇0} when the pole is upright, the subsequent 
controlling goal is to prevent it from falling over. The physical model 

¨ of deducing acceleration ẍ, θ with respect to horizontal force and 
other parameters in Figure 2.2 can be specifed in simple polynomi-
als [LYB07]. Also, the update of the observed state depends on the 
instant velocity ẋ, acceleration of velocity ẍ, angular velocity θ̇ and 

¨acceleration of angular velocity θ over the unit time-step Δt. Based on 
a state transition process [LYB07], the next-step state {x̂, ẋ̂, θ̂, θ̇̂} is only 
conditioned on current state {x, ẋ, θ, θ̇} and force F. But in real cases, 
the pole joint and the cart wheels can slip, thus not always resulting 
in the exact future state ŝ as the update equation does. Hence the 
stochastic behaviour of this system can be modelled as state transition 
probability p(ŝ0,a0, s0) where a0 =left/right F. Consider the effect 
of executing certain action in each transition step, the conditional 
probability of observing the future state st+1 only depends on current 
state st and action at. The distribution of observing the future state 
for current observation and action: 

p(st+1,at, st) = p(st+1 | at, st) · p(at | st) · p(st) (2.2) 
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where the conditional probability p(at | st) can be referred to as a 
mapping from state to action S → A. This mapping is also known 
as a policy function π : S → A, which is considered to be the fnal 
learning target. There are two common policy models. One is named as 
stochastic policy which samples action according to a distribution over 
a given state: a ∼ π(a | s). Another is deterministic policy in which 
action a equals to policy π(s). The following sections will mostly 
discuss the role of a policy inside the value-based and policy-based 
reinforcement learning. 

2.2 reinforcement learning with value-based ap-
proaches 

Markov Decision Process (MDP) is introduced as a framework of 
achieving a goal by interaction with the environment. The decision-
maker is called the agent that interacts with the environment, and 
these interactions comprise processes of selecting actions, observ-
ing environment’s responding to these actions and presenting new 
situations to the agent. By doing such interactions with the environ-
ment, the agent is seeking opportunities to maximize received rewards 
through its choice of action over time. 

The previous section has indicated that these interactions 
can be sampled into a sequence or trajectory over time steps: 
s0,a0, r0, s1,a1, r1, · · · , st,at, rt, · · · . The simplest form of agent-
environment interaction is the fnite MDP, in which the sets of states S, 
actions A and rewards R have fnite elements. The last section has also 
indicated the distribution of receiving next state as p(st+1 | st,at). 
Consider the reward rt+1 received after executing action at on state 
st, the probability of receiving consecutive state and reward refers 
to p(st+1, rt+1 | st,at). A general form of defning such transition 
probability is 

�0 0 p(s , r | s,a) = Pr st+1 = s , rt+1 = r | st = s,at = a (2.3) 

0where s, s ∈ S, r ∈ R and a ∈ A. As the choice of action a and 
state s is in a fnite space, the summation of all possible transition 
probabilities must follow the rule X X 

0 p(s , r | s,a) = 1 (2.4) 
s 0∈S r∈R 
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which indicates the dynamics of fnite MDP environment. With these 
four arguments, it is easy to characterize the state-action (Q(s,a)) or 
state value (V(s)) functions with respect to the received rewards. These 
two functions are useful in evaluating how good current policy is, and 
assist the RL scheme in improving the policy further. 

2.2.1 Value functions and policies 

Most reinforcement learning algorithms estimate a value func-
tion [SB18], a value function is a value of states or state-action pair 
that can estimate how much beneft the agent can have when reaching 
a certain state or execute a specifc action inside a given state. This 
beneft is relevant to the rewards that the agent can expect to receive 
in the future when taking specifc actions in a given state. More 
precisely, the value function is related to the policy which decides the 
actions. As mentioned above, a policy maps state to the probability of 
selecting possible action from a given action space A according to the 
distribution of actions a ∼ π(a | s) where a ∈ A for each s ∈ S. The 
value vπ(s) of a given state s under a policy π is the expected rewards 
following policy π from state s, " # ∞X 

v π(s) = Es,a,r∼π γkRt+k+1 | St = s for all s ∈ S (2.5) 
k=0 

where the agent samples the expected return of rewards with a specifc 
policy π at any time step t, and vπ denotes state-value function for 
policy π. Consider the value of executing action a in state s under 
the policy π, we can derive a similar equation of expected rewards 
starting from given state s, taking action a with respect to policy π: " # ∞X 

q π(s,a) = Ea,s,r∼π γkRt+k+1 | St = s,At = a (2.6) 
k=0 

where qπ is called action-value function for policy π. Both vπ(s) 
and qπ(s) can be estimated from the agent’s experience of observing 
states, performing actions and receiving rewards. In order to get 
the highest rewards for state, action values, the scenario of optimal 
policy is introduced. For example, if a policy π can lead to expected 
returns greater than or equal to the rest ones, then policy π is the 
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optimal policy marked as π ∗. Therefore the optimal state, action-value 
functions are induced as follows 

v ∗ (s) = max [v π(s)] q ∗ (s) = max [q π(s,a)] (2.7)
π π 

The bellman equation [Bel66] shows the recursive optimality equation 
for state action values with respect to transition probability p(s , r | 
s,a) X � �0 v ∗ (s) = max p(s , r | s,a) r + γv ∗ (s 0) (2.8) 

a 
0s ,r 

� �X 
0 0 q ∗ (s,a) = p(s , r | s,a) r + γ max q ∗ (s ,a 0) (2.9)

0a0s ,r 

As most RL cases account for the impact of executing action as part of 
the reward function, estimating the action-value function q ∗(s,a) is 
an essential procedure for both value-based and policy gradient-based 
RLs. The subsequent section mainly covers traditional value-based RL 
approaches. 

2.2.2 Classical learning algorithms 

There exist two main categories of learning action value functions: 
on-policy and off-policy. A typical on-policy example is named “State 
Action Reward State Action” (SARSA), which is essentially estimating 
qπ(s,a) for current policy π, with respect to the state-action pairs {s,a}. 
This algorithm uses policy π, state-action value Q(S,A) to derive action 
a for current state s and execute it, then receiving reward r and next 
state S 0, next updating current state-action value Q(s,a) by 

� �0Q(s,a) ← Q(s,a) + α r + γQ(s ,a 0) − Q(s,a) (2.10) 

where α is a learning rate. Algorithm 3 includes detail of SARSA 
where �-greedy method allows randomly selected actions to keep 
minimal explorations. 

A typical off-policy RL algorithm is named as Q-learning [WD92] 
which uses current policy π and state-value Q(s,a) to derive action a 

for current state s, then executing it to receive next state s 0, fnding the 
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0maximum next state-action value Q(s ,a 0) and updating Q function 
as follows: � � 

0Q(s,a) ← Q(s,a) + α r + γ max Q(s ,a 0) − Q(s,a) (2.11)
0a

An alternative method Expected SARSA [VS+09] calculates the ex-
pected action value of the next state rather than simply fnding the 

0maximum next state-action pairs maxa 0 Q(s ,a 0). Hence the formula 
is slightly changed into such form " # X 

0Q(s,a) ← Q(s,a) + α r + γ π(a 0 | s 0)Q(s ,a 0) − Q(s,a) 
a 0∈A 

(2.12) 

where this algorithm takes into account the likelihood of choosing 
each action is under current policy, thus eliminating the variance due 
to random selection of action a 0. In the appendix, Algorithm 4 lists 
details of Expected SARSA where the �-greedy method allows the 
probability � to randomly select actions from the given action space to 
enable exploration in fnding potential optimal policies. For example, 
probability 1 − � for choosing greedy action a = arg max Q(s,a)a∈A 

and probability � for choosing random action a. However, these algo-
rithms are limited to MDP cases with fnite states and actions space. 
For this reason, state-action values Q(s,a) essentially consists a ta-
ble of Q-function values. Given current state s and action a, both 
on-policy and off-policy learning approaches require the action-value 
function of next state s 0 to update current state-action value Q(s,a). 
Figure 2.3 illustrates the process of updating the state-action value 
in terms of discrete action and state spaces. It is understood that this 
fnite state-action strategy can not be used to solve continuous obser-
vation problems directly. As for this issue, an empirical solution is to 
approximate state value functions (V(s) or Q(s,a)) from experience 
generated by a known policy π. 

s 

a 

Q(s, a) 

s’ 

a’ 

Q(s’, a’) 

Figure 2.3: Tabular Q-function upgrade 
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2.2.3 Value function approximation methods 

The signifcant advantage of using approximation methods is that 
the approximate state action value is not represented by a table but 
as a parameterized function with specifc weight vector from real 
value domain. This application helps to improve the classic SARSA or 
Q-learning algorithms to deal with continuous state problems in real-
world applications [BD95], [Doy00], [GWZ99], [MPD02]. In this case, 
we can write v̂w(s) as the approximate value of state s with weight 
vector w, hence letting v̂w(s) ≈ vπ(s). Where v̂w can be linear function 
in features of state s weighted by vector w, or computed by a multi-
layered neural network with connection weight w of all the layers. 
Sutton’s chapter describes the approximation models regarding to 
linear and non-linear categories [SB18]. A general way is to minimize 
the value error between v̂w(s) and vπ(s) below X 

2VE(w) = [v π(s) − v̂w(s)] (2.13) 
s∈S 

An ideal goal of minimizing VE(w) is fnding a global optimum 
∗weight vector w yielding the smallest error VE(w ∗) against all pos-

sible weight w. This process, known as value prediction, is gener-
ally implemented by stochastic gradient descent (SGD) methods. 
Given weight vector with a fxed number of real-valued elements 
w = [w1,w2, · · · ,wd]T , and a differentiable approximate function 
v̂w(s) with weight w and states s ∈ S, we can iteratively compute the 
gradient update along with discrete time steps t = 0, 1, 2, 3, · · · so that 
the simple SGD based case is derived as follows 

1 
wt+1 =wt − αrw [v π(s) − v̂w(s)]2 

2 

=wt + α [v π(s) − v̂w(s)] rwv̂w(s) (2.14) 

where α (α ∈ [0, 1]) is a positive step size. Similarly, the approximation 
of state-action value Q̂ω(s,a) weighted by vector ω, implicates an 
update of ω 

� � 
ωt+1 = ωt + α q π(s,a) − Q̂ω(s,a) rωQ̂ω(s,a) (2.15) 

where the approximation of state-action value q̂w(s,a) or state value 
v̂w(s) can either be modelled by a linear equation or non-linear artif-

http:v�w(s)](2.13
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cial neural networks (ANNs) [SB18]. The linear model approximates 
value function by inner product between weight and feature vector: 

d dX X 
v̂w(s) = wixi(s) or Q̂ω(s,a) = ωixi(s,a) (2.16) 

i=1 i=1 

where x(s) and x(s,a) are d−dimensional feature values represented 
by certain basis functions. There exists several representative ap-
proaches to represent the feature functions, for example, the tile coding 
method [Sut96] and radial basis function [SSR97]. 

The ANNs with fully-connected deeply-layered architectures act as 
universal approximators [HSW89] that are useful in approximating 
non-linear multi-dimensional objectives. A practical deep Q-learning 
proposed by Mnih [Mni+13] has been used to learn the Atari video 
game strategies, a convolutional neural network [LBH15] has been 
applied to extract state information from each frame of the video, and 
a multilayer perceptron (MLP) feed-forward neural network Q̂θ(s,a) 
with weights θ is introduced to approximate state-action values. The 
process of updating weights θ is done by minimizing the difference 
between current state-action value Q̂θ(s,a) and target YQ. According 
to the Temporal difference (TD) learning [SB18], the next time-step 
reward rt+1 and optimal action-value maxa Q̂θt (st+1,a) forms the 
target . h i 

Qθt+1 = θt + α Yt − Q̂θt (st,at) rθt Q̂θt (st,at) 

where Yt
Q = rt+1 + γ max Q̂θt (st+1,a) (2.17) 

a 

The state-value function v̂w(s) can be represented by a value network 
with weights w, thus using TD-learning to minimize error between 
current state value v̂w and target Yv 

wt+1 = wt + α [Yt
v − v̂wt (st)] rwt v̂wt (st) 

where Yv = rt+1 + γˆ (st+1) (2.18)t vwt 

where the approximation can use dataset batches for each update of 
w and θ. The following section discusses a method that can directly 
learn and optimize the policy π instead of consulting value functions. 
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2.3 reinforcement learning with policy gradient ap-
proaches 

As mentioned above, the traditional reinforcement learning ap-
proaches are based on estimating state-action value Q(s,a) (utility 
function) either in tabular or approximator form. An optimal policy 
is achieved by comparing action values π ∗ : a ← arg max (s,a). a∈A

A representative application such as Deep Q Network [Mni+13] 
has been successfully used in managing HVAC system inside 
buildings [WWZ17], [Val+19]. However, such value-based RLs fail 
in training robotics locomotion tasks [Sch+17] and has limitations in 
dealing with continuous action space, because the utility function 
usually deal with discrete action space. So this section mainly 
discusses a novel category of RL approaches named as policy gradient, 
this method directly learns the policy πθ(· | s) by maximizing received 
rewards. The following sections start by introducing the simple 
Monte-Carlo policy gradient (MCPG) as the prototype version, next 
the application of advantage function to reduce variance, then trust 
region policy optimization and proximal policy optimization as 
state-of-the-art policy gradient methods. 

2.3.1 The policy and trajectory 

Reinforcement learning can be generalized as an interaction between 
an intelligent agent and environment. And the history of such inter-
actions can be modelled as sequences of states, actions and rewards. 
Figure 2.4 illustrates a fully-observable RL sequence, which includes 
state transitions, actions selected by policy, and relations with stochas-
tic process. The sequence begins by observing an initial state s0 from 
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Figure 2.4: Policy inside the Reinforcement Learning 

certain distribution µ(s0) of the environment, the agent chooses an 
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action a0 based on policy π(a0 | s0). The policy π is a distribution 
used by the agent to sample actions. After executing the action a0, 
the environment transits to the next state s1 and receiving reward r1. 
This process is subject to transition distribution P(s1, r1 | s0,a0) due 
to potential interference from the environment. After that the agent 
observes s1, samples a1 from policy π, executes a1 and receives s2 

this process can be generalized by equations 

s0 ∼ µ(s0) a0 ∼ π(a0 | s0) s1, r1 ∼ P(s1, r1 | s0,a0) 

a1 ∼ π(a1 | s1) s2, r2 ∼ P(s2, r2 | s1,a1) · · · · · · 

aT −1 ∼ π(aT −1 | sT −1) sT , rT ∼ P(sT , rT | sT −1,aT −1) (2.19) 

Where sT denotes the terminal state that ends receiving next state, 
action, reward in certain RL cases, for example, the cart-pole balancing 
task is ended if the pole falls down, thus generating a trajectory 
(episode) of fnite actions, states, rewards. Each trajectory begins 
with an initial state s0 sampled from the distribution µ(s0) of the 
environment. For each time step t = 0, 1, 2, 3, · · · , the agent selects 
action at sampled from distribution given by stochastic policy π(at | 

st). Then executing the action, the environment generates next state 
st+1 and reward rt+1 (or R(st+1,at+1)) according to state transition 
P(st+1, rt+1 | st,at). The episode ends when reaching a terminal 
state sT . Therefore, the agent receives a trajectory of states, rewards 
and actions (τ = s0,a0, r0, s1,a1, r1, · · · , sT ) which corresponds to 
subsequent distribution 

T −1Y 
τ ∼ Pπ(τ) = µ(s0) · π(at | st)P(st+1, rt+1 | st,at) (2.20) 

t=0 

The expected summation of rewards " # 
T −1X 

Eπ [R(τ)] = Eπ γt · R(st,at) (2.21) 
t=0 

where γ ∈ [0, 1] is a discount factor, T is the length of a specifc episode, 
and the learning problem is to estimate a policy π ∗ which satisfes the 
condition of maximizing episodic rewards 

π ∗ ← arg max E [R(τ)] (2.22) 
π 

where the expectation is taken over such trajectories and with nota-
tions of rewards summation. The stochastic policy model π : S → A 
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is to produce a reliable policy π denoting a mapping from state to 
distributions of actions (a ∼ π(a | s)). In this case, we use the pa-
rameterized stochastic policy πθ specifed by parameter θ ∈ Rd. For 
example, a neural network can represent the parameterized policy, θ 

corresponds to the weights and biases of the network. However, this 
policy network’s parameterization depends on the type of action space 
in the MDP, such as continuous or discrete action space. In the discrete 
action space, we use a neural network that outputs action probabilities 
through a softmax output layer [ST09], and the continuous actions 
are sampled from a Gaussian distribution [SB18]. The following sec-
tion mainly discusses how the policy parameter θ is updated for the 
maximization of rewards. 

2.3.2 A Monte Carlo-based formulation of policy gradient 

As mentioned above, the policy estimator from equation 2.22 and 
parameterized policy hypothesis, the episodic reinforcement learning 
problem becomes an optimization of policy parameter θ ∈ Rd 

θ ← arg max Eτ∼πθ(τ) [R(τ) | πθ] (2.23) 
θ 

A general way to implement this estimator is to repeatedly calculate 
the gradients of the policy’s performance (resulting rewards) with 
respect to policy parameter θ. The goal of this optimization is to maxi-
mize the expected rewards Eπ [R(τ)]. A practical approach [BB+00] is 
to calculate the gradient of the expected rewards " # 

T −1 T −1X X 
γt−k rθE [R(τ)] = E (rθ log πθ (ak | sk)) · · R(st,at) 

k=0 t=k 

(2.24) 

Which is equivalent to the maximization of state-action value Q(s,a) 
termed as " # 

T −1X 
rθE [R(τ)] = E (rθ log πθ (ak | sk)) · Qπ(st,at) (2.25) 

k=0 

This function indicates the policy gradient approach with likelihood 
term, which optimizes the policy through maximizing value func-
tions [Sut+00]. This form is also named as Monte-Carlo policy gradient 
(MCPG) since it uses full trajectory of state, action and reward samples. 
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However, the MCPG causes high variance in gradient estimation, this 
is likely to degrade the optimization of policy parameters. A primitive 
approach to mitigate the variance is to subtract a baseline function 
b(st) [BB01] from the sampled cumulative rewards 

� � 
· + γT −1−tb(st) = E rt + γ · rt+1 + · · · rT −1 

where rt equals to r(st,at), hence the policy gradient with baseline 
function follows subsequent form 

rθEτ∼πθ [R(τ)] " !# 
T −1 T −1X X 

γt−k≈ Eτ∼πθ (rθ log πθ (ak | sk)) · · R(st,at) − b(st) 
k=0 t=k 

(2.26) 

Also, Peters et al [PS06] and Riedmiller et al [RPS07] proposed another 
form of baseline function which computes b(st) according to the 
expected cumulative gradients of policies over multiple episodes. The 
core of the learning process is to implement the following gradient 
descent iteration to update the policy 

θn+1 = θn + αn · rθE [R(τ)] |θ=θn (2.27) 

where αn ∈ R+ denotes learning rate and n ∈ N denotes the iteration. 
To formulate such gradients over cost function E [R(τ)], we need to 
collect system’s experience of states, actions and rewards. With a 
stochastic policy, we can generate probability distribution (written as 
π(a | s)) over actions. Since the policy contains parameter θ, we can 
specify this policy as πθ(a | s). As cost function E [R(τ)] comprises 
system’s experience shortly named as trajectory τ = [s0:T −1,a0:T −1], 
this is generated with respect to policy ak ∼ πθ(ak | sk) and state 
transition p(sk+1 | sk,ak). 

The Algorithm 5 in appendix details process of optimizing pol-
icy parameter θ through maximization of cumulative rewards. This 
MCPG approach has been widely applied in robotics motor primitive 
controls such as motor task planning and learning to hit a baseball 
for robotic arm [PS06], [PS08b]. Although MCPG is practical in such 
application cases, the drawback is that the cumulative rewards do 
not necessarily measure the positive policy update. For example, the 
maximization of state-action value Qπ(s,a) does not always mean that 
the corresponded state value Vπ(s) is therefore improved by action a. 
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Therefore, the policy gradient method is increasing the probability 
of better-than-average actions (meaning these actions lead to higher 
rewards and state values) and decreasing the chance of getting wore-
than-average actions. The next section focuses on using an advantage 
function A(s,a) instead of solely using action-value function Q(s,a) 
or state-value function V(s). 

2.3.3 Application of advantage function 

By defnition, the advantage function A(s,a) is the difference of state-
action value Qπ(s,a) and state value Vπ(s) 

Aπ(s,a) = Qπ(s,a) − Vπ(s) (2.28) 

which indicates whether executing action a on state s is better than the 

average. Therefore, the policy gradient estimator with the application 
of advantage function has the following form " # ∞X 

rθJ = E rθ log πθ(at | st)A
π(st,at) (2.29) 

t=0 

where the value of Aπ(st,at) is estimated via the TD-residual of the 
state-value function, let Ât be the estimate of Aπ(st,at), the sum of k 

of residual δV = r(st,at) + γV(st+1) − V(st) indicates the advantage t 
(k)estimator Â according to Mnih et al. [Mni+16]t 

k−1 k−1X X 
ˆ (k) 

γlδV γlA = t+l = −V(st) + γkV(st+k) + r(st+l,at+l)t 
l=0 l=0 

(2.30) 

as k → ∞, the above term Â(∞) ≈ −V(st) + Q(st,at). Furthermore, t 

the general advantage estimator [Sch+15b], is defned as exponentially-
weighted average of k-step advantage estimator with λ ∈ [0, 1] � � 

GAE(γ,λ) (1) (2) (k)
Â = (1 − λ) Â + λÂ + · · · + λk−1Â (2.31)t t t t 

where the application of λ makes good balance between variance 
and bias, so as to accurately estimate the value function V(st). As 
mentioned in section 2.2.3, the value function approximation can be 
either minimizing difference between cumulative rewards and value 
estimator with N samples per learning batch or minimizing TD error 
with a batch of N samples [Sch16]. This policy gradient with advantage 
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function is named as advantage actor critic (A2C) [Mni+16], and the 
learning process is listed in Algorithm 6 at the appendix part. 

2.3.4 Mean Actor Critic method 

The section above estimates advantage function A(s,a) = Qπ(s,a) − 

V(s) by approximating the state value V̂π(s), this learning form fol-
lows an Actor-Critic architecture which has two separate parts: learn-
ing the policy πθ() and approximating state-action values Q(s,a). 
However the empirical way of estimating the advantage function is to 
use a TD-error (r + γ · V(s 0)− V(s)) and this method has relatively high 
variance due to the dynamics of the environment. This section focuses 
on using state-action value estimate Q̂θ(s,a) to approximate advan-
tage function instead of sampling from TD-error of value functions. 
The Mean Actor Critic (MAC) [Asa+17] method provides an advan-
tage estimation solution, which only needs the state-value function 
Qπ(s,a) " # X 

rθJ(θ) = Es∼π rθ πθ(a | s)Qπ(s,a) (2.32) 
a∈A 

In which, this method computes the policy-weighted average over all 
Q-values rather than only using the sampled states and actions, thus 
signifcantly reducing the variance caused by the stochastic policy. The 
explicit estimation of state-action value Qπ(s,a) is based on the Ex-
pected SARSA [VS+09] to iteratively calculate the TD-error of Qπ(s,a). 
Hence, the detail of MAC is listed in Algorithm 7 in appendix section. 

2.3.5 Trust region policy optimization and Proximal policy optimization 
approaches 

The empirical policy gradient approaches (MCPG, A2C, MAC) es-
timate policy parameters by maximizing the sample of rewards or 
state-action values episodically. The stochastic gradient descent (SGD) 
is a fundamental learning framework utilized to compute the policy 
gradient. This upgrade is usually scaled by a fxed learning-step times 
the frst-order gradients of policy parameters. However, the expected 
rewards of a trajectory Eτ∼π [R(τ | πθ)] usually present a non-convex 
property such as multiple stationary points [She+19]. In such circum-
stances, the empirical frst-order gradient method does not guarantee 
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convergence to the globally optimal policy [BR19]. Specifcally, if the 
learning step size is too large, the overestimated policy is likely to 
result in negative rewards update and cause degradations within 
the learning trials; otherwise, a tiny step size usually slows down 
the learning speed. Therefore, it is essential to “properly adjust” the 
learning step size to keep a non-negative policy update along the 
non-convex curvature of expected return Eτ∼π [R(τ | πθ)]. 

Therefore, two state-of-the-art optimization approaches, namely 
the trust region policy optimization (TRPO) [Sch+15a], [Sch16] and 
the proximal policy optimization (PPO) [Sch+17] are introduced as 
the main PGRL approaches. The TRPO method frstly uses Kullback-
Leibler (KL) divergence [Joy11] to approximate the lower boundary of 
policy update, secondly derives the constrained optimization process 
in terms of natural gradient framework [Ama98]. Alternatively, the 
PPO method performs multiple epochs of policy gradient update per 
data sample (batches of states, actions and rewards being used to 
estimate policy πθ and advantage function A(s,a)) and uses clipped 
ratio probability to adjust the learning step size. Moreover, PPO is 
compatible with the frst-order optimization such as the Adam op-
timizer [KB14], hence being more straightforward than the TRPO 
method. 

The calculation details for TRPO are listed in Algorithm 8 to Al-
gorithm 9 in the appendix section. Also, the PPO method with its 
hyperparameter settings are listed in Algorithm 10 in the appendix 
section. 

2.3.6 The representative policy gradient reinforcement learning applications 

In terms of reinforcement learning application tasks, the robotic lo-
comotions [KBP13] are the most challenging categories due to com-
plicated movement dynamics, high-dimensionality of action and ob-
servation space. For example, the bipedal walking and robotic loco-
motion control tasks, including training a humanoid to stand up and 
walk [Tas+18], which are simulations close to real-world problems. 
Also, the policy gradient approaches have been proved to solve locomo-
tion control tasks, such as the half-cheetah problem [Waw09] employs 
the natural actor-critic method [PVS03], [PS08a] as the learning scheme. 
The frst three locomotion control modules in Figure 2.5 are among 
the typical RL benchmark models by OpenAI [Bro+16]. For example, 
the humanoid task is to have optimal control of the torques, velocity 
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and actuator forces of 21 joints of this humanoid robot. Usually, the 
value-based RL method, such as the Deep Q Network (DQN) [Mni+13] 
is incapable of learning optimal locomotor skills according to Duan’s 
locomotion control simulation tasks [Dua+16]. However, the recently 

Figure 2.5: Simulations of robotics locomotion control: "Humanoid", "Ant 
walk", "Half-cheetah running", "Lion running", "Atlas robot walk-
ing upstairs" and "Ball-throw task" (clockwise-listed) via Policy 
gradient reinforcement learning, 

developed TRPO and PPO methods perform very well in doing such 
locomotion control tasks; additionally, Kurutach et al [Kur+18] has 
proposed a model-ensemble TRPO method to reduce the sample com-
plexity. Peng’s work [Pen+18] includes PPO application in training 
an intelligent multi-task agent that can deal with various robotics 
dynamics skills, such as a human character throwing a ball to the 
random targets, Atlas robot walking upstairs, and lion running in 
Figure 2.5. additionally, this work presented a multi-skill policy that 
can perform corresponded skills for different robotic tasks. 

Another concurrent PPO application is for a wheel-legged robot 
control task by Chen et al. [Che+18]. This task aims to train an agent to 
control a wheel-legged robot to target position without colliding with 
obstacles. The agent is equipped with convolutional networks to ex-
tract height information of barriers and decides corresponded actions, 
such as stretching legs to drive over a short but wide obstacle, lifting 
the body to drive over a high but narrow obstacle, moving around 
to avoid a big obstacle. The reward defnition shows that the robot 
is trained to reach the target by using less time and reducing invalid 
actions. Also, environment randomization is applied to improve the 
agent’s ability to observe task-relevant components under different 
environments. The result has shown that the PPO method improves 
the success rate by using the same batch of samples, hence improving 
the data effciency. 
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The RL methods have been used in controlling aircraft, for example, 
an autonomous helicopter control by Abbeel et al. [Abb+07] uses 
differential dynamic programming to perform an aerobatic manoeuvre, 
and Ng [Ng03] has implemented a policy search combined with 
reward shaping to learn the control strategies of a helicopter. The 
following works of literature concern the policy gradient applications 
in aircraft control. 

Koch et al. [Koc+19] uses DDPG [Lil+15], TRPO, and PPO ap-
proaches to train a quadcopter attitude controller. A Proportional, 
Integral Derivative (PID) controller is used as a comparison. This 
quadcopter can fy and move through all three dimensions by ad-
justing the four motors’ rotation speed. This task aims to control the 
quadcopter to accurately reach a setpoint as soon as possible and keep 
a small and stable acceleration of angular velocity. The result shows 
that PPO based learning outperforms TRPO, DDPG and PID in terms 
of success rate, rising time and stability. Another attitude control of 
fxed-wing Unmanned aerial vehicle (UAV) by Bohn et al. [Bøh+19] 
also proposed using PPO as the representing learning method. This 
task aims to train a PPO-based agent to control this aircraft’s aileron 
and elevator defection angles, throttle force to maintain desired air-
speed, pitch and roll angles. The controller’s performance is examined 
by comparing the success rate of reaching a set-point (bounds of de-
sired airspeed, pitch and roll angles), time spent on reaching and 
staying in the set-point bounds, and control variations. The results 
show that the PPO-based controller achieves a higher success rate 
than PID control and performs competitively in the speed of reaching 
set-point. Still, the PID controller has lower control variation below 
severe turbulence. 

Lopes et al. [Lop+18] has employed the PPO approach to training a 
quadcopter controller based on a robot virtual simulation environment. 
This task includes training an intelligent agent that can control the 
signal to adjust the propeller thrust force to fy the drone to the 
target position. The quadcopter equipped with the resulting policy 
has shown its capability to reach a fxed target position, recovering 
from a harsh initial position (when the propeller is vertical to the 
ground) and tracking a moving target. 
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2.4 reinforcement learning applications for indoor 

thermal conditioning 

As reinforcement learning (RL) methods serve as popular solutions 
for indoor Heating, Ventilation and Air Conditioning (HVAC) control, 
most of the existing application cases mainly focus on using value-
based approaches (such as Q-learning, SARSA-λ) to estimate building 
climate controllers, while several state-of-the-art studies have proposed 
using PGRLs. 

Li et al. [LX15] proposed a multi-grid method that combined both 
coarse and fne discretizations to accelerate Q-learning convergence 
in an HVAC control policy optimization problem. The result shows 
a faster learning speed of multi-grid Q-learning, and the resulting 
HVAC controller can reduce the energy cost and improve comfort 
satisfaction in the frst 12 weeks of learning time. 

Wei et al. [WWZ17] employed a deep neural network-based Q-
learning [Mni+13] approach to training the agent for controlling the 
air velocity of a building HVAC system. The goal of using this RL-
based control is to keep air temperature within the desired range and 
reduce electricity cost. This experiment is conducted on three simu-
lated multi-zone building environments (on the EnergyPlus software 
platform), and the agent is trained with 100 months (8.3 years) of 
simulated data. According to the evaluation of trained agent, this deep 
reinforcement learning application can maintain the percentages of 
desired temperatures above 98% for the tested multi-zone building 
environments and signifcantly reduce electricity cost from 19% to 
52% of the corresponded baseline cases. Based on the same simulation 
platform, Valladares et al. [Val+19] improved the learning architecture 
by using double Q-learning [VHGS16] approaches to training an in-
telligent agent for controlling air-conditioning units and ventilation 
fans. Also with the aims of maintaining thermal comfort and air qual-
ity for indoor environment and reducing the energy cost by the air 
conditioning and ventilation system. The agent is frstly trained with 
10 years past experience of climate data on simulated environments 
of laboratory room and classroom. The testing result shows that this 
agent can give satisfactory thermal control and balance performance 
by achieving good Predictive Mean Vote (PMV) [Fan+70] indexes rep-
resenting occupant’s thermal comfort, reduce the carbon-dioxide level 
by 10% and energy consumption by 4 − 5%. 
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In terms of energy consumption management, Yang et al. [Yan+15] 
developed an RL-based photovoltaic-thermal (PV/T) array and 
geothermal heat pump control to satisfy the heating demand 
while reducing fossil fuel consumption. This work basically uses 
a Q-learning scheme combined with experience replay to train 
controllers for different control loops, such as the PV/T energy output, 
compensating ground heat through the borehole and maintaining an 
optimal operation temperature difference between the source and 
load side. This RL-based control can increase the net power output 
by 11.4% and satisfy the heating demand in the third year compared 
with the standard rule-based controller. Another kind of building 
thermal system is based on controlling a mixing loop of heat supply. 
Overgaard et al. [Ove+19] have used Q-learning with eligibility traces 
to learn a mixed loop controller with data collected from a real offce 
building. The state-action value function is approximated by the 
radial basis function. The resulting controller outperforms standard 
industrial controller by saving 20.5%. 

Barrett et al. [BL15] has also developed an RL-based HVAC con-
troller to autonomously keep the room temperature close to the oc-
cupant’s set point. And this work has estimated an occupancy pre-
diction model by real-world data. With the information provided by 
an occupancy prediction model, this agent is trained by a Q-learning 
framework to minimize energy cost and improve occupant comfort. 
The resulting HVAC controller demonstrates a 10% energy reduction 
compared to the programmable controller in the heating task. Another 
specifc occupant behaviour based building climate control by Fazenda 
et al. [Faz+14] applied an RL-based HVAC controller to automatically 
adjust thermostat settings to keep thermal comfort of the human body. 
The simulated human is modelled by an α−fuzzy logic model, and 
the simulated behaviour indicates the occupant’s interactions with the 
thermostat, such as working or going out of the building, adjusting 
thermostats when the occupant is uncomfortable. The training os sim-
ulated behaviour is based on prior devised schedules of occupant’s 
interactions with thermostats. The fuzzy-logic element was used for 
modelling set-point temperature selections. The controller represented 
by a neural network was trained with a Q-learning framework to 
examine Bang-bang control and set-point adjustment control, respec-
tively. The resulting HVAC controller can offer the pre-heat for the 
room in accordance with the occupant’s behaviours. 
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The application of simple Monte-Carlo policy gradient 
(MCPG) [Sut+00], [PS06] for a building HVAC system control 
was implemented in Jia’s work [Jia+19]. An HVAC control policy 
is trained on a building simulation model (EnergyPlus software 
platform) to control the supply air temperature and airfow rate. 
The result showed that policy gradient-based control outperforms 
the baseline controller in achieving and keeping room temperature 
in the comfort zone. Also, Wang et al. [WVH17] has employed 
the MCPG RL method as the learning framework for optimizing a 
building HVAC controller. The control policy is designed using the 
Long-Short-Term Memory (LSTM) network, and the HVAC control 
simulation is conducted via the communication between Building 
Controls Virtual Test Bed (BCVTB) tool to a simulated offce building 
on the EnergyPlus platform. The LSTM HVAC control policy is trained 
using two days of simulation data sampled by 5 minutes, two other 
practical methods: ideal PMV baseline and variable controls, are 
implemented as comparisons with the trained LSTM HVAC control 
policy. The validation results indicate the MCPG-based controller 
averagely improves comfort (quantized by PMV) by 15% and energy 
effciency by 2.5% compared to the rest two control methods. 

To improve the learning effcacy of primitive policy gradient RLs 
such as MCPG, advantage actor critic (A2C). Based on Schulman’s 
Trust region policy optimization (TRPO) [Sch+15a], Wang’s next 
work [WVH18] proposed a proximal actor critic method, which uses 
Kullback-Leibler (KL) constraint as a loss function to constrain pol-
icy learning objective in addition to the Monte-carlo policy gradient 
method. A recurrent neural network (RNN) controller is designed for 
an HVAC heating coil system. The control action is to adjust the hot 
water fow rate valve so as to keep the air temperature at a certain 
set point. This RL-based HVAC controller can achieve the desired 
air temperature faster than two baseline controllers: the proportional-
integral (PI) and linear quadratic regulator (LQR) ones. Meanwhile, 
the RL-based controller can achieve the lowest integral square and 
absolute errors compared with PI and LQR controllers. 

Zhang et al. [Zha+18] employed a policy gradient-based RL named 
as asynchronous advantage actor critic (A3C) [Mni+16] to integrate the 
building energy model into a model-based optimal control module. 
The agent is doing online control to real HVAC system, receiving 
data feedback from the real system to calibrate the building energy 
model. The agent is being trained off-line with feedback from cal-
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ibrated model. This framework has been implemented in an offce 
building; the resulting agent controls the radiator’s supply water tem-
perature to achieve indoor thermal comfort and save 15% heating 
energy. And Zhang’s following study [ZL18] used the A3C learning 
scheme combined with calibrated building model to trained a radiant 
heating system controller inside an offce building. The evaluation 
showed that this RL-based controller saved 16% to 19% energy than 
rule-based control. 

Apart from the RL applications in thermal control for buildings, a 
recent work by Brusey and Diana [Bru+18] has used RL for vehicle 
HVAC system control. The cabin’s thermodynamics is described for 
the vector of cabin state and HVAC actions. In this case, the reward 
function is related to two factors: the equivalent temperature [Nil04] 
for indicating comfort and energy consumption. This system outper-
forms the fuzzy-logic and standard bang-bang controller in terms of 
comfort percentage. However, this RL learning system uses 6.8 years of 
simulated time to train a working control policy, such a long simulated 
time cost is not feasible in real-world applications. 

2.5 summary 

This chapter mainly includes reinforcement learnings from traditional 
approaches to state-of-the-art policy gradient reinforcement learnings 
(PGRLs), introduce some novel PGRL applications in robotics control 
tasks, and state-of-the-art RL-based thermal control tasks. The issue 
is that most of these thermal control tasks are using Q-learning or 
SARSA-based RLs. Some cases cost 6.8 to 10 years of past experience 
to learn the optimal control policy, and this means that the time of 
learning experience is not feasible. Correspondingly, the PGRLs have 
subsequent advantages 

• Policy gradient is compatible with a wider range of problems, 
especially for the RL tasks ( continuous action space, high di-
mensionality) with diffculties of learning Q-function 

• Policy gradient is more effcient in using training dataset com-
pared to Q-learning and SARSA 

• The policy directly gives action outputs without consulting the 
state-action values 

However, the simple policy gradient method yields several issues 
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• High variance: bad actions cause a positive update of policy 
parameter 

• Unconstrained learning step size: frst-order gradient step size 
may violate the good policy parameter 

As for the variance reduction, a practical method is to use the value 
function V(s) as the baseline, and cumulative rewards R(τ) subtract 
value function R(τ) − V(s) indicates how good or bad the action is 
as compared to average. This form of subtracting value function is 
known as the advantage function. As for the learning step-size, this 
chapter includes TRPO and PPO approaches to ensure monotonic 
policy improvement. 

The following chapter details the applications of PGRL methods in 
a vehicle cabin control problem, shows the resulting HVAC policy’s 
capability of achieving comfort and energy consumption. 
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P O L I C Y G R A D I E N T R E I N F O R C E M E N T L E A R N I N G 
B A S E D V E H I C L E C L I M AT E C O N T R O L 

Autonomous car cabin climate controller is designed to recognize the 
pattern of thermal conditions and make correct climate conditioning 
strategies to satisfy occupant thermal comfort settings. Existing re-
inforcement learning (RL) based HVAC control approaches utilize 
the Q-learning or SARSA-based methods to estimate action-value 
functions, then consulting control strategies from the estimated state-
action values. A recent work [Bru+18] has developed a tile-coding 
based SARSA learning scheme to train a thermal conditioning agent 
being able to select control actions, such as heating/chilling the cabin 
air, fan speed for airfow and circulation rate according to the observed 
temperatures of the environment, cabin air and interior mass. These 
control actions are designated to adjust the cabin air and mass tem-
peratures to achieve a preset thermal comfort condition for occupants. 
Based on real car cabin thermal data measurements, Hintea [Hin+14] 
has developed a human body’s thermal model for vehicle Heating, 
Ventilation and Air Conditioning (HVAC) control. The resulting agent 
from previous work [Bru+18] has averagely achieved a 67% duration 
of thermal comfort and 0.77 kW power consumption over 200 different 
testing cases (1 × 103 s simulated time for each case). However, this 
approach cannot satisfy the occupant’s thermal comfort under cold 
or hot surrounding temperatures outside the car cabin. As policy gra-
dient reinforcement learnings (PGRL) are widely developed to solve 
numerous robotics control tasks that cannot be solved using value-
based approaches, including the deep q networks (DQN) category. It is 
believed that PGRL families can estimate a promising agent being able 
to maintain the cabin thermal comfort under extreme cold and hot 
surroundings, while consuming reasonable amount of energy. These 
requirements account for subsequent research questions: 

RQ1.1 Can the vehicle HVAC agent, trained by PGRL schemes, reduce the 
time taken to achieve occupant thermal comfort and keep reasonable energy 
consumed by the HVAC system compared to the SARSA based learning 
scheme? 

RQ1.2 Can the PGRL HVAC training scheme learn an optimal control 
policy within a reasonable number of training samples? 

33 
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These questions aim to investigate the impact of using PGRL meth-
ods in training HVAC controller, which learns from the cabin environ-
ment and thermal condition rewards. This chapter’s main contribution 
is evaluating the benefts of proposed policy gradient based reinforce-
ment learnings, and examining corresponded performance in satisfy-
ing thermal control and energy cost. The proposed PGRL methods 
include primitive Monte-Carlo policy gradient (MCPG), Mean Actor 
Critic (MAC), Trust region policy optimization(TRPO) and Proximal 
policy optimization (PPO), with details in chapter 2. This chapter also 
examines how long does it take for the agent to learn an optimal 
policy when being trained by corresponded PGRL algorithm. 

3.1 problem statement 

The overall system consists of two parts: the cabin environment and 
RL agent. The reinforcement learning framework allows the agent 
(policy) to explore the cabin environment by visiting its state. The 
state is commonly known as sensation, which serves as input to the RL 
agent. After observing a state, the agent chooses an action to activate 
HVAC control options for heating, chilling or preserving current 
thermal conditions. Meanwhile, the RL framework yields a reward 

Chiller

Heater

Recirc

Fan

Environment Temp

Block Temp

Cabin Air Temp

Fan speed

Control signal

RL agent

Figure 3.1: A fully connected feed-forward policy network based HVAC 
control 

R(s,a) used to evaluate how good the current state-action pair is. For 
example, the occupant comfort level and energy consumption can be 
used as reward information. The objective of RL framework is to learn 
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a decision process to produce behaviour that maximizes predefned 
reward function. Figure 3.1 presents a simple thermal control process 
by feeding the information of car cabin air fow and temperatures to 
the RL agent, which activates HVAC signals of internal conditioning 
temperatures, fan airfow and recirculation. 

3.1.1 Policy network and control variables 

The policy (agent) πθ(a | s) is a fully-connected multilayer perceptron 
(MLP) neural network with a softmax output layer. As the control 
actions are sorted from combinations of vent air temperature Ti, venti-
lation speed vi and recirculation ratio Ar in a fnite space A (where 
[Ti, vi,Ar] ∈ A), and the input states are continuous by linear ap-
proximation equation 3.9. It is practical to choose a softmax output 
layer [Mur00] [ST09] for this MLP policy-based agent to yield distinct 
distributions of all possible actions when dealing with continuous 
thermal states. For example, the policy yields probability of choosing 
a specifc HVAC control action aj (aj ∼ πθ(· | s)) from fnite space A 

when giving an input state s observed by the agent: � � 
jexp φ (s)θ

πθ(aj | s) = � � (3.1)PNa exp φk(s)k=1 θ

Where φθ(s) is an MLP neural network with full-layer weights θ and 
Na output units, the input and output layers respectively consist of 4 

and 60 neurons. The number of output layer nodes correspond to the 
scale of state vector [Tc, Tm, Tenv, v̇i]T and the total number of actions. 
The deep layers neurons of φθ(s) network use hyperbolic tangent 
activation function tanh(x). The upgrade of policy network parameter 
θ follows the gradient descent approach assisted by the gradient 
optimizer [KB14] to overcome possible saddle points in stochastic 
objective functions. The optimization process is to update weight θ by 
maximizing expected rewards or advantage value functions resulted 
from actions which as selected by policy πθ. So the policy gradient 
process essentially estimates gradient of policy parameter Δθ over the 
loss function J(θ) as follow " # ∞X 

Δθ ← E rθ log(πθ(a | s)) · Aπ(a, s) (3.2) 
a∼π 
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and according to chapter 2, the optimization approaches for target 
J(θ) above are different. The MCPG and MAC are using Adam opti-
mizer [KB14] to directly compute the gradient rθJ(θ). However, the 
TRPO approach applies a natural gradient method to adjust its policy 
network parameter s � � 

2δ πθ(at | st)
F−1 ˆθ = θold + 

T F−1
g where g = rθEt Rt |θ=θold g g πθold(at | st) 

(3.3) 

where the Fisher information matrix F is approximated by a conjugate 
gradient process. A KL-divergence boundary and a positive reward up-
date are used to examine whether this estimated θ leads to positive up-
date over the old one θold. The details of this TRPO [Sch+15a], [Sch16] 
process can be found in Algorithm 9 in the appendix section. The 
PPO [Sch+17] algorithm applies a clip objective function to compare 

πθ(at|st)the probability ratio wt(θ) = with the clip ratio bound-πθold(at|st) 

ary 1 − � and 1 + � to directly constrain the updated policy network 
parameter. The clip objective function is shown below 

� � �� 
LCLIP(θ) = Êt min wt(θ)Ât, clip (wt(θ), 1 − �, 1 + �) Ât 

(3.4) 

and the details are included in Algorithm 10 in the appendix section. 
The control actions include three control variables: vent air tempera-
ture Ti, vent airfow vi and recirculation fap position Ar. Where these 
actions are selected from subsequent sets: Ti (ranging from 7 ◦C to 60 
◦C), vi (airfow speed from 1 l s−1 to 100 l s−1) and Ar (zero to full 
recirculation). 

• Action vector: a = [Ti, vi,Ar]T 

• Finite action space A: Ti ∈ [7, 20.25, 33.5, 46.75, 60] ◦C, 
vi ∈ [1, 34, 67, 100] l s−1 , Ar ∈ [0, 0.5, 1], The combination 
of these sets forms a fnite space including sixty (5 × 4 × 3) 
specifc actions 

• Cabin state (in continuous space): s = [Tc, Tm, Tenv, v̇i]T 

3.1.2 Car cabin thermal environment 

The physical environment is modelled on thermodynamic processes 
inside a car cabin when it transits. This model accounts for simple heat 
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conduction, convection and radiation process based on Lee’s lumped 
capacity model [Lee+15]. Applying this scenario into a simple mathe-
matical model [Bru+18] that extensively formulates how thermal and 
air exchanges impact car cabin temperatures, thus further infuencing 
occupant thermal comfort. This developed car cabin model mainly 
relies on following equations to keep heat balance: 

Q̇h + Iin(Tenv − Tc) = Ifan(Tx − Tc) (3.5) 

dTc Tm − Tc Tenv − Tc
Cc = Ifan(Tx − Tc) + Q̇sol + Q̇occ + + (3.6)

dt Rm Rc 

dTm Tc − Tm
Cm = (3.7)

dt Rm 

Where the temperatures are: cabin air Tc, cabin block Tm, or named as 
interior mass temperature, environment air Tenv, mixed air Tx, which 
depends on the recirculation rate. The recirculation rate is a ratio of 
environment input air Iin and cabin-recirculated hot or cool air Ifan. 
Moreover equation 3.6 indicates step update for cabin air temperature 
and equation 3.7 indicates step update for cabin block temperature. 
The solar load Qsol and occupant load Qocc are maintained at 150 W 
and 120 W. The change of heat pump energy per unit time is denoted 
as Q̇h, where a positive Q̇h means heating power and a negative value 
means cooling power. The absolute value of Q̇h is considered as the 
unit energy Wh consumed by the HVAC system, while the blower 
energy cost is negligible. The interior mass thermal resistance Rm 

and capacitance Rc, cabin thermal resistance Rc are constants listed 
in Table 3.1, the cabin capacitance Cc is calculated by using cabin air 
volume Vc, air density ρc, capacitance factor k and specifc heat cp 

with the equation below: 

Cc = Cc × ρc × k × cp (3.8) 

These constants are validated by testing cool-down and warm-up 
processes inside a Jaguar model XJ sedan car [Hin+14]. The cabin 
environment state, alternatively known as observation, comprises 
temperatures for cabin air Tc, interior mass Tm, external environment 
Tenv, and airfow v̇i (which determines the volume of air Ifan being 
heated or chilled per unit time). Hence forming a state vector s = 

[Tc, Tm, Tenv, v̇i]T , which the RL agent observes. While thermodynamic 
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Table 3.1: Model constants 

Cabin volume Vc 2.5m3 

Cabin capacitance factor k 8 

Solar load Q̇sol 150 W 

Occupant load Q̇occ 120 W 

Cabin resistivity Rc 1/5.741626794 × 4 KW−1 

Interior mass resistivity Rm 1/(75 × 1.08) W−1 

Interior mass capacitance Cm 450 × 0.02 × 7850 J K−1 

process over a unit time Δt for the state being observed at time t 
st = [Tc(t), Tm(t), Tenv(t), v̇i(t)]T , yields subsequent update equation 

dTc(t) dTm(t)
Tc(t + Δt) = Tc(t) + Δt · Tm(t + Δt) = Tc(t) + Δt · 

dt dt 
Tenv(t + Δt) = Tenv v̇i(t + Δt) = vi(t) 

(3.9) 

where environment temperature Tenv is regarded as a fxed value, and 
vi refers to the airfow control signal received from t to t + Δt . 

3.1.3 Reward function defnition 

The measures of occupant comfort used in this thesis are named equiv-
alent temperature Te. The validations [Hin+14] based on data collected 
from real car shows that an equivalent temperature model [Nil04] is 
the most accurate one in representing cabin thermodynamics. Follow-
ing equations indicate the derivation of equivalent temperature 

Te = 

⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ 

0.5(Tc + Tm); v̇c 6 0.1ms−1 

√ 
0.24−0.75 v̇c0.55Tc + 0.45Tm + (36.5 − Tc); v̇c > 0.1ms−1 

1+Icl 

(3.10) 

Where mean radiant temperature Tr equals interior mass temperature 
Tm and clothing insulation Icl is set as a constant value of 0.7. The 
airfow v̇c is calculated by using the cross-sectional area (Acs) of the 
vents, and the number of fans Nfan on the dashboard 

v̇c = 
vi (3.11)

Nfan × Acs 

http:0.24�0.75
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where there are two fans and the cross-sectional area is 5.04 × 10−3m2 

according to data provided by a car HVAC device [Foj+16]. 
The learning goal is to maximize the time duration in thermal 

comfort zone (when Teq within Ttarget ± 1◦C) while reducing energy 
consumption and noise caused by a blower. This trade-off between 
thermal comfort and energy, airfow cost use can be expressed as the 
following reward function 

Rc(s) = 

⎧ ⎪⎨ ⎪⎩ 

0; If Te ∈ Ttarget ± 1◦C 
(3.12) 

−1; otherwise 

E(s,a)
R(s,a) = Rc(s) − Rd(s) − ; (3.13) 

wd 

Rd(s) =| Te − Ttarget |; E(s,a) =| Q̇E | +2vi (3.14) 

Rc and E denote thermal comfort reward and energy, airfow cost, 
respectively, wd denotes energy divisor used as the weight for the 
energy consumption part in the reward function. If choosing a small 
value for energy divisor, for example wd equals 100, the resulting RL 
HVAC controller tends to sacrifce the thermal comfort to save the 
energy. If choosing a large number, for example wd equals 4000, the 
resulting RL HVAC controller tends to ensure the comfort prior to 
saving the energy. Hence, wd acts as a trade-off between comfort and 
energy. In this experiment, the energy divisor wd is chosen between 
3 × 103 to 3 × 104 according to the reward function setting in Brusey’s 
research [Bru+18]. The term Rd(s) acts as the penalty for getting far 
from the target equivalent temperature. And Rd(s) is inspired by the 
reward shaping technique in locomotion task, representing a reward 
function by calculating the difference between observed joint angles 
and the desired angle values [Raj+17]. This RL-based task employs a 
similar approach to calculate difference of equivalent temperatures 
between the observed one Te and target Ttarget. 

3.2 experimental settings and evaluation methods 

At the beginning of each agent training episode, the initial state is ran-
domly selected from uniform distributions over the range for each fea-
ture: temperatures of cabin Tc ∈ [0, 50] ◦C, Interior mass Tm ∈ [0, 50] ◦C, 
environment Tenv ∈ [0, 40] ◦C and vent airfow vi ∈ [1, 100] l s−1. This 
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information of cabin state is suffcient for the defnition of reward 
function and RL framework. Another important setting is the episode 
length, limiting the number of rewards and observations received 
by the agent. In this case, the episode length is uniformly set to 500, 
where the period for each step Δt (by equation 3.9) equals 10s. Given 
such fundamental defnitions of state and episode information, we 
further implement proposed policy gradient methods (MCPG, MAC, 
TRPO and PPO) to train the policy. Meanwhile, meta parameters are 
essential in controlling the learning processes. For example, reward 
discount factor γ constrains future received rewards, learning step 
size, and MLP neural network determines how quickly the training 
proceeds. The GAE discount factor λ helps reduce the variance of ad-
vantage functions [Sch16]. The entropy coeffcient CH allows certain 
explorations over the training. Table 3.2 indicates meta parameters for 
each policy gradient algorithm: The performance of PGRL controllers 

Table 3.2: Meta parameters 
Algorithm name MCPG MAC TRPO PPO 
Discount factor γ 0.95 0.98 0.98 0.98 

Policy learning step size α 3.0 × 10−3 2.0 × 10−3 Adaptive 2.0 × 10−4 

Value function learning step size None 5.0 × 10−3 1.0 × 10−4 2.0 × 10−4 

No. of the hidden layer (policy) 1 1 2 2 

No. of neurons per hidden layer (policy) 100 100 96 96 

No. of the hidden layer (critic) None 2 2 2 

No. of neurons per hidden layer (critic) None 64 96 96 

GAE discount factor λ None None 0.98 0.98 

Entropy coeffcient CH None None 0.01 0.01 

trained with proposed algorithms is evaluated in terms of trials (pro-
portional to episode numbers) taken to optimize the working agent, 
cumulative rewards per episode, the time steps of thermal comfort 
state sequence and averaged power. 

It is understood that the higher reward values usually indicate lower 
fan speed, energy cost and longer duration of comfort according to 
its defnition. To compare the training performance of all proposed 
PGRLs, the averaged episodic rewards and thermal comfort period 
ratio against training iterations are respectively illustrated. The result-
ing PGRL controllers are tested with start states randomly selected 
for all training episodes and 200 pre-selected randomised ones from 
the SARSA-based car cabin climate control simulation [Bru+18]. The 
testing procedures are listed as follows 

i• Randomly select ith start state s beginning from time step t0t0 

as the initial state for ith episode 

http:definition.To
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Algorithm 1 Training thermal control policy with PGRLs 

1: Initialize Policy πθ(· | s) where θ ← θ0 

2: Initialize Value or State-action function: Vω(s) or Qω(s,a) where 
ω ← ω0 

3: for i=0,1,2,... until the end of the training process do 
i

4: Initialize cabin state s , i.e.randomly select temperatures of 0

cabin Tc, interior mass Tm, environment Tenv and airfow vi from 
idefned space, thus s = [Tc, Tm, Tenv, vi]0 

5: Present initial state to policy πθ(· | s), obtain HVAC control 
i iaction a and execute it, then observing updated cabin state s1,0 � 

i i i irecurrently receiving full episode of states s0, s1, s2, · · · , s and� T 
i i i iactions a0,a1,a2, · · · ,aT� until the ending time step T 

i i i i
6: Calculating rewards r0, r1, r2, · · · , r according to equa-T 

tion 3.14 
7: Present sequence of states, actions, rewards to MCPG 5, MAC 7, 

TRPO 9 and PPO 10 learning algorithms to respectively obtain an 
update of policy π̂θ and critic network Q̂ω or V̂ω (where MAC 
uses state-action function Qω(s,a), while TRPO, PPO use value 
function Vω(s) to estimate advantage A(s,a)) 

8: Update πθ(· | s) ← π̂θ, Qω ← Q̂ω or Vω ← V̂ω 

9: end for 
10: Return: optimal policy π ∗ 

θ 

• Resulting policy π̂θ(· | s) observes state, select and execute 
control actions for time period Δt, then observing the updated 
state after Δt and recurrently select, execute actions for next 
period of Δt · · · · · · hence yielding sequence of states, actions 
and rewards until the ending time t0 + T h i 

i i i• As the sequence (episode) of cabin state s , s · · · , st0 t0+Δt
, Th i 

i i iand corresponded control actions a ,a · · · ,a can re-t0 t0+Δt
, T 

spectively indicate equivalent temperatures Te (by equation 3.10) 
and energy consumption Q̇h (by equation 3.5), then calculating 
the comfort period percentage and mean power consumption 
over the whole episode time t0 to t0 + T 

• Recurrently test policy πθ(· | s) on the following i + 1th , i + 

2th i+1 i+2 ,· · · start state s , s , · · · and calculate comfort period t0 t0 

, i + 2thpercentage, mean power consumption for i + 1th · · · 
episodes. In the end, this test scenario yields a statistical dataset 
of comfort period percentage and power consumption corre-
sponded to randomised initial cabin states. 

Moreover, this testing procedure examines explicitly whether the 
PGRL HVAC controllers can keep the occupant thermal comfort (de-
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fned as equivalent temperature Te) under extreme hot or cold en-
vironmental temperatures. These two circumstances are known as 
cool-down and warm-up control processes. The PGRL agent activates 
the HVAC system to cool cabin air in hot weather for the cool-down 
case. Conversely, a warm-up case means that the PGRL agent activates 
HVAC system to warm cabin air in cold weather. For the cool-down 
testing case, the cabin air and interior mass temperatures are initial-
ized to 45◦C, the environment (ambient) temperature is set to 40◦C. 
However, the warm-up case sets the cabin, interior mass and environ-
ment temperatures to 1◦C. The warm-up testing case also evaluates 
whether the PGRL based HVAC controller can introduce warm air into 
the cabin. All initial vent airfow rate is set to 1 l s−1 (litre/ second) in 
default. 

3.3 results and discussions 

According to Hintea’s work [Hin+14] of defning human’s thermal 
comfort inside cabin environment, the setting of target equivalent 
temperature equals to 24◦C ensures the occupant’s thermal comfort 
feelings in both summertime and wintertime climate. Although an-
other earlier work [Bru+18] shows that a SARSA-based RL HVAC 
agent can effectively achieve and maintain the occupant’s equiva-
lent temperature within 24 ± 1◦C when the cabin needs to be cooled 
from hot weather. While in the warm-up case, even though increasing 
the duration of each training episode by 20%, this RL HVAC con-
troller achieves a fnal equivalent temperature around 13◦C (lower 
than the target 24◦C) in a cold environment. Another problem with 
the SARSA based RL HVAC controller is that it takes 2 × 108 seconds 
(approximately 6.3 years) of learning time in the simulation. While 
this duration is almost equivalent to the estimated lifetime of a real 
car, hence it is not effcient to learn an optimal control policy with the 
cost of a car’s lifetime. Therefore the proposed policy gradient RLs 
aim to solve subsequent problems 

• Thermal conditioning objectives: the optimized policy (agent) 
can identify both cold and hot thermal conditions, respectively 
executing warm-up and cool-down control tasks, maintain equiv-
alent temperature (ET) within the comfort zone 24 ± 1◦C (where 
24◦C is the target) 
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• Learning effciency: to examine whether the proposed PGRL 
scheme estimates optimal control policy while consuming less 
learning time (equivalent to less number of learning episodes) 

• A wider application range: resulting agent satisfes the thermal 
setting of 24◦C target equivalent temperature when being given 
arbitrary initial cabin thermal states sampled from space of 
cabin air Tc (Tc ∈ [0, 50] ◦C), interior mass Tm (Tm ∈ [0, 50] ◦C), 
environment Tenv (Tenv ∈ [0, 40] ◦C) temperatures 

This chapter mainly presents the processes of optimizing HVAC con-
trol policies by corresponded PGRL algorithms in terms of episodic 
rewards, comfort rate against learning trials, and testing cases covering 
the above requirements. 

3.3.1 Description for resulting data illustration 

As mentioned above, the PGRL-based task is to learn an intelligent 
thermal controller which can activate the cabin HVAC system to 
achieve target thermal comfort within a reasonable time. More im-
portantly, the PGRL algorithm applications need to account for the 
number of iterations (learning trials) to upgrade policy parameter: 
θi+1 = θi + Δθi. This section briefy introduces several comparison 
metrics for learning outcomes of different RL-based approaches and 
their testing performances. 

• Episodic rewards: the summation of rewards (r0, · · · , rT ) re-
ceived in an episode of thermal states {s0,a0, r0, · · · , st,at, rt, · · · , sT } 

with time limit T 

• Episodic comfort rate: inside an episode time, the proportion of 
time that the cabin ET is maintained within the comfort zone 
(24 ± 1◦C). 

• Power consumption: the power that the HVAC control actions 
inside each episode (with a certain length of time limit) averagely 
consume to adjust cabin thermal conditions 

In the following comparison section, the averaged episodic rewards 

in Figure 3.2 indicates how the episodic rewards vary as the policy 
parameter being upgraded throughout 4 × 103 learning iterations. 
Similarly, the averaged episodic comfort rate in Figure 3.3 indicates 
the proportion of thermal comfort time that the PGRL HVAC control 
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policy can achieve over the policy learning iterations. Both graphs use 
points (scatter dots) to represent the episodic rewards and comfort rate 
against the iterations due to the oscillations. For example, the episodic 
reward steadily increase from -1500 to -1000 during 500th to 600th 

iterations but decrease to -1200 at 650th iteration then increasing to 
-998 at 680th (caused by policy exploration or degraded policy update). 
If using solid or dashed curves to represent the learning trials, such 
oscillations can blur the observation of the results. The following 
scatter graphs use green, red, purple and blue points to respectively 
denote the Monte-Carlo policy gradient(MCPG), Mean actor critic 
(MAC), Trust region policy optimization (TRPO) and Proximal policy 
optimization (PPO). These approaches maximise expected rewards 
or advantage values to update the parameterized policy πθ. Either 
by primitive stochastic gradient descent (SGD) or monotonic non-
decreasing rewards methods, such as natural gradient by the TRPO or 
clip ratio method by the PPO. 

3.3.2 Policy gradient methods comparison 

Figure 3.2 shows the episodic rewards against learning trials per-
formed by MCPG, MAC, TRPO and PPO method. Each method’s 
trial is averaged over results of using ten different energy divisor wd 

values, which are uniformly chosen from 3 × 103 to 3 × 104. Because 
the energy divisor acts as a weight balance between comfort and 
energy-effciency reward in equation 3.14. The result shows that both 
MCPG and MAC indicate episodic rewards ranging from -5000 to 
-3000; the mean reward of MCPG and MAC respectively equals to 
-4244.1 and -4461.7. Conversely, TRPO and PPO learning processes in-
dicate episodic rewards, most of which are above -1000 and constantly 
converge to the value around -500. The averaged episodic reward 
values of TRPO and PPO respectively correspond to -1085.6 and -
978.68 (lower than -500 due to explorations) for the entire learning 
trials. Compared to the MCPG and MAC methods, the learning trials 
of TRPO and PPO show increasing rewards from -5000 to -500, this 
means that the control policies are being improved to comply with the 
objectives of maintaining equivalent temperature in the comfort zone 
(24 ± 1◦C). Moreover, Figure 3.3 presents the thermal comfort con-
ditioning performance of the applied methods. The TRPO and PPO 
trials of thermal comfort rate mostly converge to 0.9, meaning that the 
control policies can maintain target thermal comfort around 90% of 
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Figure 3.2: Averaged episodic rewards against learning trials by MCPG, 
MAC, TRPO and PPO methods 
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Figure 3.3: Averaged episodic comfort rate against learning trials by MCPG, 
MAC, TRPO and PPO methods 

the full episode duration (5 × 103 s). The mean thermal comfort rate of 
TRPO and PPO respectively equals 0.8890 and 0.9002, which approxi-
mately outperform MCPG and MAC approaches by 70%. However, 
the MCPG and MAC trials indicate convergence to 0.0884 and 0.0864. 

The policies πθ(· | s) are being optimized until the end of learning 
trials. So the next procedure is to examine how these policies han-
dle different initial temperature cases. A practical testing case is to 
randomly select temperatures of cabin Tc, interior mass Tm from 0 

to 50 ◦C, environment Tenv from 0 to 40 ◦C, and airfow vi from 1 to 
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Figure 3.4: Thermal comfort testing results of the MCPG, MAC, TRPO and 
PPO control policies acting on 4 × 103 randomly selected initial 
states and 200 pre-selected ones from earlier work 
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Figure 3.5: Power consumption testing results of the MCPG, MAC, TRPO 
and PPO control policies acting on 4 × 103 randomly selected 
initial states and 200 pre-selected ones from earlier work 

100 l s−1. Given this information as an initial state of cabin environ-
ment, the controllers (policies) are being tested throughout episode 
time steps of 1 × 103 s, then respectively assessing comfort rate and 
averaged power performance of this duration. The following box plot 
by Figure 3.4, Figure 3.5 demonstrate the performance of comfort 
and HVAC energy consumption with respect to the applied RLs. As 
the policies of MCPG, MAC, TRPO and PPO are being optimized 
throughout 4 × 103 learning episodes, the corresponding testing sce-
nario includes the same amount of randomly selected initial states 
while using the same random seeds. Box plot in Figure 3.4 respectively 
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illustrates the comfort rate concentrations of testing MCPG, MAC, 
TRPO, PPO controllers on 4 × 103 randomly initialized episodes and 
200 pre-selected ones. The MCPG based HVAC controller maintains 
less than 30% comfort duration for most cases, while the red cross 
marks denote outliers, indicating 5% test cases with a comfort percent-
age higher than 30%. Although the MAC controller improves the rate 
of comfort to 30%, most cases are centred around the value domain 
between 10% to 40% and averagely yield 28.18% comfort duration. 
Moreover, the 200 pre-selected testing cases of MCPG and MAC con-
trollers separately yield 4.54% and 26.89% comfort. However, TRPO 
cases indicate that more than half of the comfort percentage results 
range from 60% to 87%, hence averagely indicating 71.53% duration in 
the thermal comfort zone. The corresponded pre-selected cases result 
in 94.76% comfort duration. Among the applied methods, PPO cases 
show that most of the comfort percentage values range from 75% to 
90%, of which the mean value is 78.95%. Meanwhile, Figure 3.5 sta-
tistically compare power consumptions corresponded to the thermal 
comfort testing cases in Figure 3.4. Accordingly, both MCPG and MAC-
based policies consume a small amount of energy in conditioning the 
cabin thermal status. While over the 4 × 103 randomly initialized cases, 
TRPO and PPO-based policies respectively consume averaged power 
of 1.30 kW and 1.05 kW, which are higher but more reasonable than 
the MCPG and MAC cases. Furthermore, Table 3.3 details the power 
consumption and the thermal comfort rate information for the applied 
RL algorithms, where the testing results of the SARSA-based HVAC 
controller are sorted from earlier work [Bru+18]. Therefore, it is clear 
that TRPO and PPO methods signifcantly outperform the SARSA, 
MCPG and MAC reinforcement learning approaches regarding to the 
endurance of achieving target thermal comfort. 

Consider the extreme summer or winter weather of the environ-
ment, subsequent testing procedures directly present cool-down and 
warm-up tests in addition to the statistical results of comfort and 
power consumption. Figure 3.6 and Figure 3.7 show the processes of 
maintaining target thermal comfort (equivalent temperature (ET)) in 
extreme cold and hot environment (surrounding) temperatures while 
using policies estimated by MCPG, MAC, TRPO and PPO framework. 
In the warm-up test case, the temperatures of cabin Tc, interior mass 
Tm, environment Tenv are initialized to 1◦C, and airfow rate starts 
with 1l s−1, then employing estimated policies to achieve target com-
fort zone (equivalent temperature 24 ± 1◦C). Figure 3.6 indicates that 
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Figure 3.6: Occupant’s equivalent temperature warm-up processes by MCPG, 
MAC, TRPO and PPO control policies under the environment, 
cabin air and mass temperature in 1◦C 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (Secs)

20

25

30

35

40

45

50

55

60

O
cc

up
an

t E
qu

iv
al

en
t T

em
pe

ra
tu

re
 (
°C

)

MCPG
MAC
TRPO
PPO
24°C

Figure 3.7: Occupant’s equivalent temperature cool-down processes by 
MCPG, MAC, TRPO and PPO control policies under the en-
vironment temperature in 40◦C and cabin air, mass temperature 
in 45◦C respectively 

the PPO method can increase the equivalent temperature to the target 
in around 15 minutes, and this is faster than TRPO’s 22.6 minutes and 
MAC’s 31 minutes. However, MCPG fails to reach the target due to 
choosing the lowest airfow rate (1l s−1) and heating power. Also, the 
airfow rate determines ETs according to equation 3.6, a higher airfow 
rate can pump more warm air into the cabin to increase the cabin 
temperature. However, the ET defnition in equation 3.10 indicates 
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that a higher airfow rate can lower the ET when having low cabin 
air and interior mass temperatures. In the early stages of warm-up 
process, the MAC, TRPO and PPO choose airfow values 34 l s−1 , 67 

l s−1 , 67 l s−1, which lower the ETs below zero. 
In the cool-down test case, the temperatures of cabin Tc, interior 

mass Tm are initialized to 45◦C, environment Tenv is set to 40◦C, and 
airfow rate vi starts from 1 l s−1. Figure 3.7 shows that the PPO-
based control can cool down the cabin, decrease ET from 55◦C to the 
target in around 5 minutes, faster than TRPO controller. Over the 
2 × 103 s, neither MAC nor MCPG succeeds in conditioning ET to the 
target comfort zone (24 ± 1◦C). Like the warm-up cases, the MCPG 
controller selects the lowest airfow rate 1l s−1 and cooling power, 
resulting in the slowest rate of decreasing ET. Similarly, during the 
cool-down process, the MAC controller selects lowest power to cool 
down the cabin, although it chooses a higher airfow rate of 34 l s−1 . 
It can be fgured out from Figure 3.5 and Figure 3.3 that the MCPG 
and MAC-based RLs are monotonically reducing the energy cost but 
sacrifcing the occupant’s thermal comfort to improve the rewards. 
While TRPO and PPO maximally exploit the chances of improving 
policies, which can equally satisfy comfort and reduce energy cost. 
In conclusion, the trust region policy optimization (TRPO) and prox-

Table 3.3: Comparison between applied RLs 
Algorithm name SARSA MCPG MAC TRPO PPO 
Averaged rewards R(τ) −− -4244.1 -4461.7 -1085.6 -978.68¯ 

% Time spent in comfort (full) −− 8.87% 28.18% 71.53% 78.95% 
Average HVAC power (kW) (full) −− 0.0129 0.1192 1.3012 1.0484 

% Time spent in comfort (200) 67% 4.54% 26.89% 94.76% 93.42% 
Average HVAC power (kW) (200) 0.77 0.0069 0.0888 0.7582 0.6578 

imal policy optimization (PPO) methods yield control policies that 
can widely maintain occupant’s thermal status within the comfort 
zone. By contrast, primitive learning methods such as Monte-Carlo 
policy gradient (MCPG) and mean actor critic (MAC) are simply re-
ducing energy cost rather than exploring the chances of conditioning 
thermal comfort. However, this experiment has yet to investigate the 
performance of TRPO, PPO-based HVAC control policies. It is under-
stood that the learning trials denote the episodes used to estimate 
HVAC control policies, and a promising RL framework is designated 
to acquire benefcial HVAC control policies while consuming as fewer 
data samples as possible. The following section details comparisons 
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between TRPO and PPO based HVAC controllers with respect to the 
number of training episodes. 

3.3.3 Comparison between TRPO and PPO 

To investigate whether increasing the number of learning episodes 
(trials) can also improve the resulting policies’ performance. This 
section shows the testing cases of control policies estimated by the 
learning trials with 4 × 103 , 1 × 104 and 2 × 104 iterations. In the 
following graphs, for example, the term "4e3 full" means that the 
policy estimated after 4 × 103 trials is fully tested by 4 × 103 random 
start states used in the learning processes, and "4e3 (200)" means 
the control policy is tested by the 200 pre-selected start states from 
previous work [Bru+18]. 

Figure 3.8 and Figure 3.9 present the comfort percentage and power 
consumption testing results by policies estimated by 4 × 103 , 1 × 104 

and 2 × 104 training episodes. The box plot results show that most 
of the comfort percentage range from 70% to 90%. The averaged 
testing results are 76.66%, 76.43%, 76.53% for the full test, and 93.17% 
93.23% 93.23% for the pre-selected test; these groups of testing results 
indicate that increasing number of learning trials to 2 × 104 do not 
signifcantly improve the thermal conditioning performance of TRPO 
HVAC control policy. Accordingly, the power consumption testing 
results in Figure 3.9 averagely yield 1.3316 kW, 1.2654 kW, 1.2697 

kW for the full range tests, and 0.7235 kW 0.6539 kW, 0.6594 kW for 
the pre-selected tests. Also, the change of power consumption from 
1.3316 kW to 1.2697 kW demands an extra 1.6 × 104 episodes from 
4 × 103 to 2 × 104 . Meanwhile, the TRPO control policies are tested 
under the circumstances of extreme cold and warm environment 
weather. Graphs of Figure 3.10 and Figure 3.12 indicate warm-up 
and cool-down processes done by TRPO policies trained with 4 × 103 , 
1 × 104 and 2 × 104 trials. The warm-up process starts with 1◦C of 
cabin temperature Tc, interior mass temperature Tm and environment 
temperature Tenv, while cool-down starts with 45◦C temperatures 
of cabin Tc, interior mass Tm and 40◦C of environment Tenv. The 
equivalent temperature (ET) starts from −33.1◦C in the warm-up case, 
and the ET starts from 55◦C in the cool-down case are caused by the 
high airfow rate vi according to equation 3.10. In other words, the very 
negative ET (−33.1◦C) and high ET values (55◦C) respectively denote 
extreme cold and hot thermal feelings of the occupant, rather than 

http:and93.17
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Figure 3.8: Comfort rate results by TRPO policies respectively trained by 
4 × 103 , 1 × 104 and 2 × 104 episodes, with energy divisor wd = 
3 × 104 
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Figure 3.9: Power consumption testing results by TRPO policies respectively 
trained by 4 × 103 , 1 × 104 and 2 × 104 episodes, with energy 
divisor wd = 3 × 104 

indicating actual physical temperatures. Figure 3.10 shows that the 
TRPO-based controller warms up the ET to the target zone (24 ± 1◦C), 
and achieves the target thermal comfort in about 22.6 minutes for 
all the resulting TRPO control policies. The cool-down process in 
Figure 3.12 shows that the ET decreases to the target in around 9.5 

minutes for all resulting policies. Further information of temperatures 
of cabin Tc and interior mass Tm in the warm-up and cool-down tests 
are given in Figure 3.11 and Figure 3.13; these two indicate that the 
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Figure 3.10: Warm-up process of occupant equivalent temperature by TRPO 
control policies (estimated after 4 × 103 , 1 × 104 and 2 × 104 

trials) under 1◦C environment, cabin air and interior mass tem-
perature 
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Figure 3.11: Physical temperatures of cabin Tc and interior mass Tm in the 
warm-up process, trained with 1 × 104 learning episodes 

cabin environment is respectively being heated from 1◦C to physical 
temperatures above 25◦C, and being cooled down from 45◦C to the 
temperature around 30◦C. The fact that both Tc and Tm are above 24◦C 

is reasonable because the airfow rate vi also decides the equivalent 
temperature (ET) according to equation 3.10. 

As mentioned above, the TRPO learning scheme makes it trivial 
to increase the number of trials over 4 × 103 for training a working 
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Figure 3.12: Cool-down process of occupant equivalent temperature by TRPO 
control policies (estimated after 4 × 103 , 1 × 104 and 2 × 104 

trials) under 40◦C environment temperature and 45◦C cabin air, 
interior mass temperature 
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Figure 3.13: Physical temperatures of cabin Tc and interior mass Tm in the 
cool-down process, trained with 1 × 104 learning episodes 

RL HVAC control policy. The following part mainly examines the 
impact of increasing learning trials for PPO based HVAC controllers. 
Accordingly, Figure 3.14 and Figure 3.15 demonstrate testing results of 
comfort rate and power consumption by policies respectively resulted 
from trials of 4 × 103 , 1 × 104 and 2 × 104 in the PPO learning scheme. 
Conversely, the comfort percentage results are mainly distributed be-
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tween 70% to 90%, individually yield 77.94%, 75.67%, 80.58% mean 
comfort for the full cases, and 92.30%, 90.69%, 92.73% for pre-selected 
cases. While the power consumptions in Figure 3.15 respectively in-
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Figure 3.14: Comfort rate results by PPO policies respectively trained by 
4 × 103 , 1 × 104 and 2 × 104 episodes, with energy divisor wd = 
3 × 104 
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Figure 3.15: Power consumption testing results by PPO policies respectively 
trained by 4 × 103 , 1 × 104 and 2 × 104 episodes, with energy 
divisor wd = 3 × 104 

dicate 1.2871 kW, 1.1236 kW, 1.2049 kW mean powers for the fully 
tested cases with 4 × 103 , 1 × 104 , 2 × 104 random start states, and 
yield mean power values of 0.8713 kW, 0.6686 kW, 0.6866 kW for 
pre-selected tests. Similar to the TRPO testing results, increasing the 



55 3.3 results and discussions 

learning trials from 4 × 103 to 1 × 104 or 2 × 104 does not signifcant 
improve comfort duration and power effciency. The PPO control poli-
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Figure 3.16: Warm-up process of occupant equivalent temperature by PPO 
control policies (estimated after 4 × 103 , 1 × 104 and 2 × 104 

trials) under 1◦C environment, cabin air and interior mass tem-
perature 
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Figure 3.17: Physical temperatures of cabin Tc and interior mass Tm in the 
warm-up process, trained with 1 × 104 learning episodes 

cies are also tested under the circumstances of extreme cold and warm 
surroundings. Figure 3.16 and Figure 3.18 indicate warm-up and cool-
down processes done by PPO policies estimated by 4 × 103 , 1 × 104 

and 2 × 104 trials. The warm-up process starts with 1◦C temperatures 
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of cabin Tc, interior mass and environment Tenv. The cool-down case 
starts with 45◦C temperatures of cabin Tc, interior mass Tm and 40◦C 

of environment Tenv. The equivalent temperature (ET) starts from 
−33.1◦C in the warm-up case, and the ET starts from 55◦C in the 
cool-down case caused by the high airfow rate vi according to equa-
tion 3.10. Figure 3.16 shows the process of warming car cabin to the 
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Figure 3.18: Cool-down process of occupant equivalent temperature by PPO 
control policies (estimated after 4 × 103 , 1 × 104 and 2 × 104 

trials) under 40◦C environment temperature and 45◦C cabin air, 
interior mass temperature 
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Figure 3.19: Physical temperatures of cabin Tc and interior mass Tm in the 
cool-down process, trained with 1 × 104 learning episodes 
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comfort region (ET equals to 24 ± 1◦C) of occupants, where the warm-
up is done by policy estimated from 1 × 104 trial reaches the target 
in 12.5 minutes, earlier than the cases by 4 × 103 and 2 × 104 trials. 
Meanwhile, the cool-down in Figure 3.18 shows that ET decreases to 
the target in around 5 minutes for all resulting policies. Further cabin 
air and interior mass temperature information are provided in Fig-
ure 3.17 and Figure 3.19; these two indicate that the cabin environment 
is respectively being heat from 1◦C to the temperature above 25◦C, 
and being cooled down from 45◦C to the temperature around 30◦C. 
It is reasonable for both Tc and Tm above 24◦C, because the airfow 
rate vi also decides the equivalent temperature (ET) according to equa-
tion 3.10. It is clear that increasing trials from 4 × 103 to 2 × 104 only 
improves the average comfort percentage by 2.64% and reduces power 
consumption by 0.0822 kW. The extra 1.6 × 104 episodes (each dura-
tion is 5 × 103 s) correspond to 8 × 107 s of simulated time, increasing 
the number of data samples used in the learning process. 

Table 3.4 details the averaged episodic comfort percentage and 
power consumption results in terms of TRPO and PPO-based HVAC 
policies estimated by learning trials with number 4 × 103 , 1 × 104 

and 2 × 104. By comparing the results of fully-tested cases, the PPO-
based agents generally consume less energy than TRPO ones and 
averagely maintain longer comfort duration. And the pre-selected 
cases show that the TRPO agent averagely outperforms PPO with 
negligible increase of comfort rate. 

In the previous section, Figure 3.6 and Figure 3.7 have shown that 
the PPO-based controller spends 15 minutes on the warm-up task and 
6 minutes on the cooling-down task; conversely, the TRPO agent takes 
22.5 minutes to warm the cabin and 9 minutes to cool down. This 
section also compares the best TRPO and PPO policies individually 
estimated by 4 × 103 , 1 × 104 , 2 × 104 trials; among these estimates, 
PPO based controller by 1 × 104 trials have the best performance. 
The following Figure 3.20 and Figure 3.21 specifcally compare the 
warm-up and cool-down processes done by TRPO and PPO agents 
(estimated by 1 × 104 trials). These cases have shown that the PPO-
based HVAC controller saves 10 and 4.3 minutes in the warm-up 
and cool-down tests compared to the TRPO one, therefore being more 
competitive than TRPO based control. Combine this aspect with power 
consumption and comfort conditioning performance from Table 3.4, 
PPO-based HVAC controller generally outperforms the TRPO one due 
to faster control performance in cool-down and warm-up tests and 
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Figure 3.20: TRPO and PPO HVAC policy warm-up performance 
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Figure 3.21: TRPO and PPO HVAC policy cool-down performance 

almost equally competitive performance in dealing with numerous 
start states to maintain cabin climate comfort and energy effciency. 
More importantly, this section has justifed that increasing the number 
of learning trials over 4 × 103 does not signifcantly improve the PPO 
and TRPO based HVAC agents; therefore, using only 4 × 103 episodes 
can practically estimate optimal HVAC control policies. As mentioned 
above, each episode time duration is 5 × 103 s, hence 4 × 103 episodes 
corresponds to simulated times of 2 × 107 s (around 0.63 years), which 
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is much lower than the times of 2 × 108 s (6.3 years) used to simulate 
a SARSA based HVAC agent in earlier work [Bru+18]. 

Table 3.4: Average percentage of time spent in comfort and HVAC power 
consumption (with time duration of 1 × 103 s) of TRPO & PPO 
based HVAC control policies by different learning trials 

No. of trials 4 × 103 1 × 104 2 × 104 

testing scenario full pre-select full pre-select full pre-select 
TRPO comfort(% time) 76.66 93.17 76.43 93.23 76.53 93.23 

TRPO power(kW) 1.3316 0.7235 1.2654 0.6539 1.2697 0.6594 

PPO comfort(% time) 77.94 92.30 75.67 90.69 80.58 92.73 

PPO power(kW) 1.2871 0.8713 1.1236 0.6866 1.2049 0.6866 

3.4 chapter summary 

This chapter has presented a set of experiments that extensively in-
vestigate the impact of applying the policy gradient reinforcement 
learning (PGRL) methods to estimate control policies for car cabin 
heating, ventilation, air conditioning (HVAC). The control policy is 
required to achieve and maintain occupant thermal comfort while 
reducing energy cost. The experiments mainly introduce four PGRL 
methods, which are Monte-Carlo policy gradient (MCPG), mean actor 
critic (MAC), trust region policy optimization (TRPO) and proximal 
policy optimization (PPO) to deal with this control. 

The results show that the HVAC policies trained by TRPO and PPO 
generally outperform the MCPG and MAC in terms of maintaining 
occupant comfort. There are two categories of testing cases: “full” 
means the initial cabin states are fully selected from its own learning 
trial, "pre-select" corresponds to 200 pre-selected initial cabin states 
generated from SARSA based RL for HVAC controller [Bru+18]. For 
each initial cabin state, the policies are tested through a time step 
of 103 s in order to calculate the percentage of duration that offers 
comfort to the occupant and the average power consumption. 

The results show that policies trained by TRPO and PPO can re-
spectively achieve average percentages of 71% and 78.95% duration 
spent on occupant comfort. These two are around 40% to 60% higher 
than the cases achieved by MCPG and MAC methods, and 24% to 
26% higher than the SARSA-based approach in pre-selected testing 
cases. The energy consumptions of PPO and TRPO agent respectively 
corresponds to 1.30 kW and 1.05 kW under the full testing cases. Still, 
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MCPG and MAC reduce energy cost to an extremely low level (below 
0.15 kW) rather than exploring the chances to achieve comfort. 

In the cool-down and warm-up processes, the PPO-based HVAC 
agents are generally faster in achieving occupant comfort than TRPO. 
However, both MCPG and MAC-based HVAC controllers fail to 
achieve occupant thermal comfort (equivalent temperature 24 ± 1◦C) 
under cold and warm climate. Furthermore, the number of learn-
ing trials for both TRPO and PPO methods are reduced to 4 × 103 

(2 × 107 s simulated time), which is equivalent to 10% simulated time 
of the SARSA-based learning system [Bru+18], and therefore main-
tains better sample effciency. The reason primitive PGRL methods 
(MCPG, MAC) fail to achieve good HVAC control policies is basically 
due to the fxed learning step size. Because the policy gradient is a 
non-convex optimization with multiple local optima, having a fxed 
learning step size can easily get trapped in bad local optima. 

This chapter aims to answer both RQ 1.1 and RQ 1.2. For RQ 1.1, the 
answer is Yes; among all the applied PGRLs, the TRPO and PPO based 
methods signifcantly outperform MCPG and MAC in the tests of 
maintaining comfort, cooling and warming the cabin from extreme hot 
and cold weather conditions. The TRPO and PPO signifcantly improve 
comfort percentage to 77.94% (in Table 3.4) compared with MCPG 
and MAC-based cases’ performance. This means that the occupant’s 
comfort (equivalent temperature equals to 24 ± 1 ◦C) can be achieved 
in 3.7 minutes on average (the duration for each testing case is 1 × 103 

s). Moreover, the PPO agent is slightly faster than TRPO in both 
warm-up and cool-down tests by saving 6 and 10 minutes to reach the 
thermal comfort region while consuming almost the same amount of 
energy. 

The answer for RQ1.2 is Yes because all these optimal policies can be 
estimated with 4 × 103 episodes (2 × 107 s simulated time, only 10% of 
the SARSA-based RL), less than earlier work done by the SARSA-based 
RL. It is also clear that increasing the number of trials over 4 × 103 

does not signifcantly improve PGRL HVAC agents’ performance in 
comfort and energy effciency. 

The next chapter describes how the cabin state is represented in a 
Non-Markov decision process when using a time-dependent model 
to sample episodes and introduces a method to mitigate the time-
dependence to represent the states to satisfy the Markov decision 
process. 



4 
A M A R K O V I A N S TAT E R E P R E S E N TAT I O N F O R 
L E A R N I N G H VA C C O N T R O L 

The decision tasks solved by reinforcement learning (RL) based tech-
niques are usually described as Markov decision processes (MDPs), 
which indicate the agent’s observing state and receiving reward as the 
output of an environment, taking action then observing the next state 
and reward. Alternatively, such agent-environment interactions are de-
fned to satisfy the Markov property; namely, future observations are 
only conditioned on the current state. The MDPs are useful for mod-
elling a wide range of control tasks, such as the traditional pendulum-
balancing [LYB07] and multi-robot patrolling management [PR13]. 
However, the agents in some tasks observe inadequate information 
from the state, thus unable to identify the state. These are known as 
non-Markov decision processes (NMDP) [WL95], which also widely 
exist in real-world applications. A typical example is the helicopter 
control with inaccurate position data provided by the sensors [Ng03]. 

Usually, the control of the MDP-based task can be effectively trained, 
as the agent decides action by only observing the current state. As 
for the vehicle HVAC control task in this thesis, the state information 
includes temperatures of cabin, block (interior mass), ambient (envi-
ronment), and airfow rate. The action comprises vent air temperature 
(heating or cooling), fan speed and recirculation fap position. Accord-
ing to prior simulation results with different episode termination time, 
we can observe variations of estimated state-action values, which is the 
probability distribution over possible next states seems to depend on 
the information of the entire history of states. Therefore, the cabin state 
can be represented in a Non-Markov decision process as the amount 
of time passed does matter. To present the impacts of non-Markovian 
state representation in training PGRL HVAC controller, this chapter 
focus on subsequent research questions: 

RQ2.1 Is the learning performance of PGRL HVAC negatively impacted 
by a non-Markovian cabin state representation? 

RQ2.2 Can the Markovian state representation improve the energy eff-
ciency by using the same number of training experience in a non-Markovian 
state representation? 
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These questions aim to investigate how the cabin state is repre-
sented in a non-Markov decision process (NMDP) and what negative 
impacts the NMDP can have on the PGRL HVAC learning system. 
Then introducing a Markov state representation for training PGRL 
HVAC controller, comparing the comfort and energy performance 
with non-Markov represented cases. 

4.1 non-markov decision process of pgrl hvac system 

4.1.1 Problem statement 

As mentioned above, the MDP intuitively represents a control task. 
At each time point, the agent directly observes the state of the envi-
ronment and the effects of actions depend only upon the action and 
current state. For instance, having a sequence of observations received 
from time point 0 to t − 1: {s0, s1, · · · , st−1} where t > 2. The Markov 
property allows distribution of Xt given the entire history s0, · · · , st−1 

of the past only depends on the immediate past state st−1: 

P(Xt = st | Xt−1 = st−1, · · · ,X0 = s0) = P(Xt = st | Xt−1 = st−1) 

When executing actions, the state and reward received at point t only 
depend on observation and action at t − 1, thus the distribution of 
state st and reward rt given the whole history of states and actions 
s0,a0, s1,a1, · · · ,at−1, st−1 only depends on immediate state st−1 

and action at−1 

P(st, rt | st−1,at−1, · · · , s1,a1, s0,a0) = P(st, rt | st−1,at−1) 

This property also indicates that events beyond st are independent 
of past states and actions {st−1,at−1, · · · , s0,a0} and how much time 
has passed does not infuence the probability distribution of possible 
next states. 

Conversely, some real-world control tasks are non-Markov due to 
insuffcient information in identifying the states. This issue is caused 
by the fact that the agent’s sensor cannot fully observe the whole 
information from the current state of the environment [WL95]. As a 
typical class of non-Markov decision processes (NMDP), the partially 
observable MDP (POMDP) is widely applied in modelling hidden state 
problems, including machine maintenance, elevator control, space 
navigation [Cas98]. These are typical cases in which the agent can 
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only observe and collect part information of the actual state from the 
environment. The ways of validating whether specifc problem models 
hold the Markov property are either based on statistical analysis or 
prior knowledge of the model because Markov property usually comes 
into a model as an assumption [Ros14]. 

4.1.2 The NMDP and the termination time 

When using a fxed termination time for the cabin simulation, the 
problem is non-Markovian. To explain this, consider that the Markov 
property says that the state and action (combined) contain enough 
information to determine the probability distribution over possible 
next states. In other words, no other information, such as the entire 
history of states, would provide a better (or even different) estimate of 
the next state probability distribution. This can be stated as 

P(st+1 | st,at) = P(st+1 | st,at, · · · , s0,a0) (4.1) 

The Markov property also means that how much time has passed does 
not matter. For two arbitrary trajectories that pass through the same 
state su = st and action au = at, the resulting distribution over next 
states is the same, 

P(su+1 | su,au) = P(st+1 | st,at) (4.2) 

To see that this is true, consider a process that enters state st but 
then stays there for several time steps. Logically, the history makes no 
difference to the next state distribution regardless of how many time 
steps pass, if the Markov property holds. 

On the other hand, for the cabin model with a fxed termination 
time, the next state distribution changes for the last time step to be 1 

for the absorbing or terminal state and zero elsewhere. Clearly, the 
amount of time passed does matter and thus this is a non-Markov 
decision process. When applying a reinforcement learning algorithm 
to such a non-Markov problem, a correct estimate of the utility of a 
state action combination will tend to vary depending on the episode 
time, even for deterministic chains. To see this, consider a discrete 
time chain with state space {0, · · · , 10}, a reward function R(10) = 1 

and zero elsewhere, and actions −1, 0,+1. Assuming an optimal policy 
and with a time limit of 9, the utility Q(0,+1) might be estimated 
as 1 at time zero but 0 at any time after this. Thus it can be seen 

http:chains.To
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that a time limit can affect the utility function. The variation will not 
necessarily change which policy is considered optimal but it may 
cause the algorithm to converge to that policy more slowly. 

4.1.3 Experiment setting 

To validate the assumption of non-Markovian cabin thermal model, 
the following experiment examines the learning outcomes by using 
different durations to generate corresponded sequences (episodes) 
of states, actions and rewards for the PPO learning scheme (an ef-
fcient and effective PGRL method). The episode duration is set to� 
1 × 103 , 2.5 × 103 , 4 × 103 , 5 × 103 s. The learning outcome is eval-

uated by the cumulative sum of rewards received in each learning 
episode, and rate of cabin states that satisfy occupant comfort. 

4.1.4 Results and analysis 

The following graphs illustrate the learning outcomes of respectively 
using 1 × 103 s, 2.5 × 103 s, 4 × 103 s and 5 × 103 s as the episode 
durations. Figure 4.1 and Figure 4.2 demonstrate the episodic reward 
against the learning trials with corresponded episode duration. As 
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Figure 4.1: Averaged episodic rewards with episode duration T = 5 × 103 s 
and T = 4 × 103 s against learning trials 

mentioned in section 3.3.1 from Chapter.3, the “episodic reward” de-
fnes the sum of rewards received in a single episode. The proximal 
policy optimization (PPO) is employed as the training method, the 
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Figure 4.2: Averaged episodic rewards with episode duration T = 2.5 × 103 s 
and T = 1 × 103 s against learning trials 

learning trial for each case is averaged over the results of using ten 
different random seeds. Both Figure 4.1 and Figure 4.2 show that 
increasing the episode duration from 1 × 103 s to 5 × 103 s can sig-
nifcantly improve the episodic rewards in the learning processes. 
For example, the learning case with episode duration 2.5 × 103 s 

achieves averaged episodic reward −2007.1, which is higher than the 
one by 1 × 103 s duration with averaged reward −2914.6. The averaged 
episodic reward achieved by 5 × 103 s and 4 × 103 s approximately 
correspond to −1059.5 and −1297.6. It is clear that the longer episode 
duration case is likely to achieve higher episodic rewards. 

The comfort rate denotes the proportion of time spent on main-
taining occupant thermal comfort. The Figure 4.3 illustrates comfort 
rate against learning trials with corresponded episode durations. Like 
the episodic reward cases, the increasing episode duration T leads to 
improvement in maintaining the occupant comfort. The training case 
with 5 × 103 s episode duration indicates the capability of learning 
HVAC control policies that can steadily achieve around 90% time 
spent on occupant comfort. As the duration T decreases, the learnt 
HVAC control policies tend to achieve a lower occupant comfort rate. 
The details of averaged comfort percentage achieved by 5 × 103 s and 
4 × 103 s approximately correspond to 89.15%, 82.62%, 67.25% and 
48.66%. The randomly selected initial cabin states cause the variations 
of episodic rewards and comfort rate in the learning processes. 

According to the comparisons of episodic rewards and comfort 
maintaining capability, the episode duration determines how good 
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Figure 4.3: Episodic comfort rate against learning trials with episode duration � 
T = 1 × 103 , 2.5 × 103 , 4 × 103 , 5 × 103 s 

the control policy is learnt after a certain number of learning trials. 
Subsequent testing cases examine the comfort keeping and energy 
consumption performance of control policies trained by 4000 episodes 
with durations ranging from 1 × 103 to 5 × 103 s. Figure 4.4 and Fig-
ure 4.5 present the comfort rate and power consumption testing results 
for the TRPO and PPO policies trained with the corresponded episode 
duration (time limit). In terms of comfort keeping performance, the 
box plot by Figure 4.4 shows an ascending comfort percentage as the 
training episodes’ duration increases from 1 × 103 to 5 × 103 s. The 
averaged comfort percentages by PPO-based controller generally ex-
ceed the corresponded performance by TRPO-based one. According 

Table 4.1: Averaged comfort percentage and power consumption of TRPO & 
PPO based HVAC control policies trained under different learning 
episode durations (1 × 103s to 5 × 103s) 

Episode duration (Secs) 1 × 103s 2.5 × 103s 4 × 103s 5 × 103s 

TRPO % Time in comfort 11.71 16.16 23.36 71.53 

PPO % Time in comfort 27.44 49.39 55.61 78.95 

TRPO average HVAC power (kW) 0.333 0.651 0.634 1.3012 

PPO average HVAC power (kW) 0.613 0.636 0.901 1.0484 

to the comfort percentage details in Table 4.1, the ascending episode 
duration improves the comfort maintaining performance. Meanwhile, 
the energy consumption increases as the episode duration increases 
from 1 × 103 to 5 × 103 s. Because more energy is needed to maintain 
thermal comfort in the extra time. Therefore, the episode duration 
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Figure 4.4: Comfort testing performance by TRPO & PPO policies trained by 
4 × 103 episodes with durations ranging from 1 × 103 s to 5 × 103 

s; each case includes 4 × 103 random initial states 
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Figure 4.5: Power consumption testing performance by TRPO & PPO policies 
trained by 4 × 103 episodes with durations ranging from 1 × 103 

to 5 × 103 s; each case includes 4 × 103 random initial states 

can determine the PGRL-based HVAC control policy’s performance; 
namely, an episode’s fxed time limit needs to be long enough to better 
estimate the control policy. 

4.2 mdp-based model for pgrl hvac system 

How do we change problem so that it has the Markov Property? The 
answer is that we remove the time-limit and instead add to every 
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non-terminal state a constant probability ν of jumping to the terminal 
state, such that, 

ν = P(terminal | s) (4.3) 

for all s ∈ S. It is easy to see that this resolves the problem introduced 
by the time-limit since no additional history is needed to determine 
whether this jump to the terminal state should take place. Another 
way to see this is that the probability of jumping to the terminal state 
is the same regardless of the time. 

The expected length (duration) of an episode will correspond to 
the mean of an exponential distribution with parameter ν. Thus the 
expected episode length is simply 1/ν. [Wik21] 

4.2.1 Results of MDP-based training and testing 

The following two graphs Figure 4.6, Figure 4.7 respectively demon-
strate the averaged episodic reward and comfort rate against learning 
trials. And each case is averaged over multiple trails of using ten dif-
ferent random seeds. Over the 4000 trials, MDP training case achieves 
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Figure 4.6: Averaged episodic rewards against learning trials by MDP and 
NMDP state representation, with an averaged episode duration 
4 × 103 s 

averaged episodic reward -796.04, which is higher than the NMDP 
one’s averaged episodic reward -1263.7. In terms of the comfort rate 
performance, due to application of ending probability P(terminal | s), 
the MDP case shows higher variance than NMDP’s case. But the com-
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Figure 4.7: Averaged episodic comfort rate against learning trials by MDP 
and NMDP state representation, with an averaged episode dura-
tion 4 × 103 s 

fort percentages that the MDP and NMDP training cases averagely 
achieve are corresponded to 81.67% and 82.62%. Also, the testing 
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Figure 4.8: Comfort testing performance by PPO policies trained by Markov 
and non-Markov represented state with total simulated training � 
time 1.6 × 107 , 4 × 107 , 2 × 107 , 5 × 107 , secs 

scenarios focus on comparing the performance of resulting HVAC 
control policies respectively trained with Markov and Non-Markov 
representations. Moreover, the number of learning trials (episodes) is � 
selected from 4 × 103 , 1 × 104 and averaged episode duration from 
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Figure 4.9: Power consumption testing performance by PPO policies trained 
by Markov and non-Markov represented state with total simu-� 
lated training time 1.6 × 107 , 4 × 107 , 2 × 107 , 5 × 107 , secs 

� 
4 × 103 , 5 × 105 secs, hence yielding the total simulated training 

time ranges from 1.6 × 107 to 5 × 107 secs. Based on the training set-
tings above, Figure 4.8 and Figure 4.9 respectively show the comfort 
maintaining and energy consumption testing performance of the re-
sulting HVAC control policies. The defnition of labels, for example, 
“1.6e7 00 and “MDP-1.6e7” correspond to the HVAC control policies 
trained with Non-Markovian and Markovian state representation us-
ing 1.6 × 107 s of training samples. 

The results of comfort test have shown that the Markov representa-
tion signifcantly improve the comfort rate of control policies trained 
with Non-Markov representation of 1.6 × 107 and 4 × 107 simulated 
time. The comfort rate is improved by 10.72% and 31.39% respectively. 
However, the Markov representation slightly drives down the comfort 
rate of the control policies trained with 2 × 107 and 5 × 107 simulated 
time. In terms of power consumptions, the application of Markov 
representation can generally reduce HVAC system’s energy cost while 
achieving high comfort percentage. According to the results detailed 
in Table 4.2, the average power consumptions are reduced below 1.0 

kW for the MDP-based training cases, although the comfort main-
taining performance of HVAC control policies trained with 4 × 103 s 

average episode duration is lower than the case with 5 × 103 s. 
To examine the resulting HVAC control policies in terms of dealing 

with cold and hot cabin climate conditions, the warming-up and 
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Table 4.2: Averaged comfort percentage and power consumption of PPO 
based HVAC control policies respectively trained under Non-
Markovian and Markovian representations with total simulated 
training time of 1.6 × 107s, 4 × 107s, 2 × 107s, 5 × 107s 

Average episode durations (Secs) 4 × 103 s 5 × 103 s 

No. of learning episodes (trials) 4 × 103 1 × 104 4 × 103 1 × 104 

NMDP-PPO average % time in comfort 53.58 40.69 77.94 75.67 

MDP-PPO average % time in comfort 64.32 72.08 75.88 73.34 

NMDP-PPO average HVAC power (kW) 0.8919 0.8470 1.2871 1.1236 

MDP-PPO average HVAC power (kW) 0.8200 0.8437 0.9901 0.9300 

cooling-down processes are made to show the time taken to achieve 
the target equivalent temperature (24 ± 1◦C). Four control policies are 
respectively trained with MDP and NMDP state representations by 
using 1.6 × 107 and 2 × 107 s of simulated time. Figure 4.10 illustrates 
the warm-up cases done by these four policies, the MDP-based ones 
achieve target equivalent temperature (ET) faster than the NMDP ones, 
individually saves 5.7 and 6.9 minutes. For the NMDP case trained 
with 1.6 × 107 s of simulated samples, ET variations observed at early 
stages are resulted from the alternating control actions of low and 
high vent airfow rate (vi is selected from 1 and 67 l s−1 alternatively). 
Accordingly, Figure 4.11 indicates the cool-down processes where the 
policy trained with MDP representation and 2 × 107 s of simulated 
time can maximally drive down the time spent on achieving the target 
ET. Combined with the testing cases using 2 × 107s of simulated 
time in the box plot of Figure 4.8, these cool-down and warm-up 
results indicate that the application of MDP-based simulation does 
not signifcantly improve the comfort maintaining performance in the 
NMDP case. Therefore, the Markov represented PGRL HVAC system 
can generally reduce power consumption, achieve high comfort rate 
and satisfy cool-down, warm-up requirements. 

4.3 chapter summary 

This chapter has presented a set of experiments focusing on investi-
gating how the Markovian state representation impacts the process 
of using policy gradient reinforcement learning (PGRL) to estimate 
of a vehicle cabin’s heating, ventilation, air conditioning (HVAC) sys-
tem. These experiments frstly validate the presence of Non-Markov 
property due to a time-dependent cabin state representation of the 
HVAC system, secondly introduce a random ending-time event to 



72 a markovian state representation for learning hvac control 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (Secs)

-50

-40

-30

-20

-10

0

10

20

30

O
cc

up
an

t e
qu

iv
al

en
t t

em
pe

ra
tu

re
 (
°C

)

NMDP-1.6e7
MDP-1.6e7
NMDP-2e7
MDP-2e7
24°C

Figure 4.10: Warm-up process of occupant equivalent temperature by using 
PPO policies respectively trained by Markov and non-Markov 
state representation with 1.6 × 107s, 2 × 107s of simulated train-
ing time, starting from the environment, cabin air and mass 
temperature in 1◦C 
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Figure 4.11: Cool-down process of occupant equivalent temperature by using 
PPO policies respectively trained by Markov and non-Markov 
state representation with 1.6 × 107s, 2 × 107s of simulated train-
ing time, starting from the environment temperature 40◦C, cabin 
air and mass temperature 45◦C 

mitigate the time-dependence of episode states so as to represent the 
states in a way that satisfes Markov property. The learning and testing 
performance of the PGRL HVAC system are compared with respect to 
Non-Markovian and Markovian representation of states. 
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The validation results show that increasing episode durations (time 
steps) can improve the rewards and comfort percentages, namely the 
longer duration of each learning episode can improve the control 
performance in achieving higher percentage of occupant comfort, 
hence the control task is dependent on episode time steps. To mitigate 
this impact, the random ending-time event enables episode states to 
terminate at arbitrary time steps rather than using fxed ending-time. 
This change also helps to represent the states to fulfl the Markov 
decision process (MDP). The comparison results indicate that this 
MDP representation helps to individually reduce the average power 
consumptions from 0.8919 kW to 0.8200 kW and 1.2871 kW to 0.9901 

kW for the training cases with 1.6 × 107 and 2 × 107 secs of total 
simulated time. Correspondingly, the comfort percentages are 64.32% 

This chapter aims to answer research questions 2.1 and 2.2. The 
answer for RQ 2.1 is Yes, because the episode duration can impact 
comfort control performance of the resulting policy, for example, 
longer episode duration helps to improve the comfort percentage. 
And by relevant defnition of non-Markov decision process, the fxed 
episode duration is the extra information or knowledge that can 
be used to improve this HVAC control task, hence this case is non-
Markovian. 

The answer for RQ 2.2 is Yes, because the application of MDP 
represented states can generally reduce the average power consump-
tion over the training cases with 1.6 × 107 and 2 × 107 secs of total 
simulated time. 

http:steps.To




5 
P O L I C Y G R A D I E N T R E I N F O R C E M E N T L E A R N I N G 
F O R A S I M U L AT I O N B A S E D O N C L I M AT I C W I N D 
T U N N E L E X P E R I E N C E 

The previous chapters focus on the policy gradient reinforcement 
learning (PGRL) applications in a transient thermal model based on 
the linear approximation technique. This thermal model imitates a 
simple car cabin thermodynamic, which approximates the cabin air 
temperature (AT) and interior mass temperature over time. However, 
inside a car cabin environment, the cabin relative humidity, radiant 
heat exchange, cabin air temperature, airfow and clothing type also 
impact occupants’ thermal comfort experience. As the occupants’ body 
constantly exchanges thermal radiation with the cabin environment, 
the occupants’ body surface temperature will be non-uniform and 
vary depending on factors such as clothing area, airfow, surround-
ing climate, relative humidity and metabolic heat. A mean radiant 
temperature (MRT) measurement is then introduced to denote the 
average surface temperature of the occupants’ body sections, such as 
head, torso and feet. In a real car cabin environment, the MRT can 
accurately indicate occupants’ body surface temperature rather than 
using an interior mass temperature in chapter 3. Based on the data col-
lected in a climatic wind tunnel experiment [BR20], a linear regression 
model is then used to approximate the occupant-oriented car cabin 
thermodynamics. This chapter focuses on the PGRL HVAC comfort 
control application in this climatic wind tunnel simulation model, and 
compares its comfort conditioning performance with the bang-bang 
control technique. The challenge for the RL HVAC system is to identify 
the MRT, AT and airfow of occupants’ body sections to achieve and 
maintain comfort. This chapter investigates the subsequent research 
question: 

RQ 3: Can the PGRL-based HVAC controller reduce the time taken and 
power consumption to achieve occupant thermal comfort in a climatic wind 
tunnel simulation model compared to a bang-bang method? 

Section 5.1 details the state and control information used in PGRL 
framework, then lists the linear regression model as cabin thermal sim-
ulator. Section 5.2 presents the control policy network and bang-bang 
HVAC control algorithm. Section 5.3 details initial state settings, equiv-
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alent temperature and related reward function. Finally, section 5.4 

shows the testing cases, including warm-up, cool-down, and examines 
the comfort maintaining and power consumption results. 

5.1 the information of state , control action and ther-
mal model 

The subsequent list indicates the variables that can be observed by 
the reinforcement learning (RL) agent in a single state. The observ-
able information includes measurements from both the cabin and 
environment. 

• Air temperatures of front driver and passenger’s head, torso and 
foot locations (noted as Tdh, Tdt, Tdf , Tph, Tpt, Tpf in ◦C) 

• Mean radiant temperatures measured at driver and passenger’s 
head, torso and foot locations (noted as Mdh, Mdt, Mdf , Mph, Mpt, 
Mpf in ◦C) 

• Temperature of the windshield at driver’s side (Twd in ◦C) 

• The relative humidity inside the car cabin (φc) 

• Air velocities (ms−1) measured at driver and passenger’s head, 
torso and foot locations (noted as vdh, vdt, vdf , vph, vpt, vpf ) 

• The external cabin roof temperature Tr 

• The level of ambient relative humidity φenv (environment outside 
the car) 

• Ambient air temperature Tenv 

• The temperatures of the dashboard surface at the driver, passen-
ger, and the central locations (noted as Tdd, Tdp and Tcd ) 

• Car velocity Vcar (km h−1) 

In total, a state comprises 27 observable variables ranging from air 
and mean radiant temperatures to car velocities, these consist a vector 
known as the state or observation 

� � 
s = Tdh, · · · , Tdt,Mdh, · · · ,Mpf , · · · ,Vcar (5.1) 

The RL agent observes the state information above, then chooses 
control actions to condition the cabin climate. These control strategies 
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include adjusting the vent air temperatures, blower rotation speed, 
recirculation rate and defrost option. Other factors, such as car velocity 
and cabin roof temperature, also infuence the thermal status inside 
the cabin. The experiment control options which can be decided by 
the HVAC system are as follows 

• The electric current fow in the blower Ib 

• The fresh / recirculation option Afr [0, 1](where “0” is for fresh 
air, “1” is for recirculation) 

• Distribution setting (defrost or neutral option) Adist [0, 1] ("0" for 
neutral and “1” for defrost) 

• The vent air temperatures for the driver and passenger: located 
at driver’s central and left side, passenger’s central and right 
side (noted as Tvdc, Tvdl, Tvpc, Tvpr) 

• The air temperatures at driver and passenger’s foor (noted as 
Tadf Tapf ) 

• The air temperature near the HVAC recirculation inside the cabin 
Trc 

• The air temperatures of the HVAC vent ducts for both driver 
and passenger sides (noted as Tvd and Tvp) 

where the electric current of the blower Ib determines the blower’s 
fan rotating speed to control the rate of vent air fow for the occupants. 
Other control options, such as vent air, recirculation, and HVAC duct 
temperatures indirectly affect the air and mean radiant temperatures 
in the occupants’ space. An HVAC control vector comprises twelve 
variables ranging from electric current Ib to vent duct temperature Tvp 

mentioned above 

� � 
z = Ib,Afr,Adist, Tvdc, · · · , Tvpr, · · · , Tvd, Tvp (5.2) 

As for the car cabin thermal model, prior research [BR20] uses a 
linear function to imitate the thermodynamics model of the car cabin. 
Several sets of real time data (the state, control measurements indicated 
above) are used in the training and validations for the resulting cabin 
thermal simulator, and the mean square error is limited below 3%. This 
function estimates cabin thermal state in terms of prior observations 
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and control inputs, the subsequent equation indicates the recurrent 
state approximation process 

Xt+1 ≈ f(Xt−1,Xt,Ut,w) (5.3) 

where the vector X comprises 23 variables of the state s (equation 5.1 

above), excluding these four variables: car velocity Vcar, cabin roof 
temperature Tr, ambient air temperature Tenv and ambient relative 
humidity φenv . These four measurements are beyond the control range 
of the HVAC system, however, the ambient air temperature and solar 
radiation still affect the temperature distribution inside the top section 
of the car cabin. For example, intense solar radiation can signifcantly 
drive up the cabin roof temperature and the surface temperature of 
the front dashboard. So, the control input vector U includes these 
four environmental factors (Vcar, Tr, Tenv, φenv) and the HVAC control 
options listed above (ranging from Ib to Tvd). And w represents the 
weight parameter of this linear function. The previous cabin thermal 
state Xt−1 preserves certain inertia strength to affect the current cabin 
thermal state Xt. For instance, an increasing airfow in the previous 
observation tend to increase for the next short period, although current 
control input Ut is changed. This model is then named as “CWT-cabin-
env” simulator for the following experiment results sections. 

5.2 rl control policy and baseline control implemen-
tation 

As the control actions are selected from multiple discrete spaces in-
dicated in Table 5.1, the multilayer perceptron (MLP)-based policy 
network πθ(a | s) is then fully connected with multiple output lay-
ers. Still, the input states are estimated by the thermal model above. 
Compared to the setting in chapter 3, the only difference is that the 
output layers need to be compatible with the scales of different dis-
crete control spaces. For example, the policy respectively estimates 
action distributions for blower amperage Ib and vent air temperature 
Tvdc, and according to Table 5.1 below, the number of units for output 
layer is 7 and 26. Hence, a 1 × 7 and a 1 × 26 scaled output layers are 
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needed. This MLP neural network φ(s) (parameterized by θ) applies 
a softmax equation to calculate all possible action distributions � � 

exp φij(s)iπθ(aj | s) = � � (5.4)PNj exp φk(s)k=1 j 

iwhere aj refers to the ith action at the jth discrete space, and the 
value for j can be chosen from 1 to 12. The optimization process is to 
update weight θ by maximizing expected rewards or advantage value 
functions resulted from actions selected by policy πθ. So the policy 
gradient process essentially estimates the gradient of policy parameter 
Δθ " # ∞X 

Δθ ← E rθ log(πθ(a | s)) · Aπ(a, s) (5.5) 
a∼π 

and according to previous chapters, the proximal policy optimiza-
tion (PPO) is chosen as the main reinforcement learning approach. 
Apart from the scale of input/output layers, other hyperparameters 
of the PPO are kept with the same values in chapter 3 (Table 3.2). 
Subsequent Table 5.1 lists discrete spaces for all control variables, the 
number of discrete values indicates the number of elements in this 
discrete space. For example, the space for blower amperage Ib has 
seven values uniformly sampled in space [0, 12], hence obtaining a 
fnite space {0, 2, 4, 6, 8, 10, 12} with seven values. So, the outputs of 

icontrol policy πθ(aj | s) |j=1,i={1,2,··· ,7} correspondingly denote distri-
butions of selecting Ib from this discrete space {0, 2, 4, 6, 8, 10, 12}. The 
advantage of using multiple discrete space here is that this can reduce 
the number of output layer nodes to 295. If using the combination of 
multiple discrete spaces, the number of output layer nodes will exceed 
a million. 

As a common technique applied in commercial thermostats, the 
bang-bang method is a simple but effective control solution to achieve 
and maintain a desired air temperature. A simple bang-bang thermal 
controller is based on temperature feedback to switch control signal 
between two control actions. For example, switching between electric 
heating power on and off states when the temperature is lower or 
higher than a certain setpoint. To avoid too rapid value changes in the 
control outputs, double set-points are introduced in a bang-bang con-
trol. For example, if the desired temperature is 20 ◦C, the thermostat 
can turn the heater on when temperature drops below 18 ◦C, but not 
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Table 5.1: The HVAC control variables and corresponded discrete spaces 
(V.A.T refers to vent air temperature) 

Control variable Min Max No. of discrete values 
Ib blower amperage 0 A 12 A 7 

Afr fresh/recirculation 0 1 2 

Adist neutral/defrost 0 1 2 

Tvdc V.A.T at driver’s central side 0 ◦C 50 ◦C 26 

Tvdl V.A.T at driver’s left side 0 ◦C 50 ◦C 26 

Tvpc V.A.T at passenger’s central side 0 ◦C 50 ◦C 26 

Tvpr V.A.T at passenger’s right side 0 ◦C 50 ◦C 26 

Tadf A.T of driver’s foor 0 ◦C 45 ◦C 36 

Trc A.T of recirculation -10 ◦C 45 ◦C 26 

Tapf A.T of passenger’s foor 0 ◦C 45 ◦C 36 

Tvd A.T of duct at driver’s side 0 ◦C 60 ◦C 41 

Tvp A.T of duct at passenger’s side 0 ◦C 60 ◦C 41 

switch it off until the temperature rises above 22 ◦C. Therefore, in this 
cabin thermal model, a double bang-bang controller [RWP15], [Hua94] 
is developed to maximally maintain the comfortable air temperatures 
for both occupants. The subsequent thermal control Algorithm 2 indi-
cates a double bang-bang thermostat which decides specifc cooling or 
heating control actions based on the feedback of mean air temperature. 
The feedback mean air temperature thresholds for heating/cooling 
mode are 19 ◦C and 23 ◦C (below 19 ◦C switch on heating, over 23 
◦C switch to cooling mode). There are four HVAC control options 
ranging from maximal cooling to the maximal heating power options 
listed in Table 5.2. 

Algorithm 2 Double bang-bang HVAC control process 

1: Receive last HVAC control �Zpre as the input � 
2: Observe air temperatures Tdh, Tdt, Tdf , Tph, Tpt, Tpf

¯
3: Calculate mean air temperature Tair over driver and passenger 
4: if T̄ air < 10◦C then 
5: output strong heating option Zsh 
6: else if 10◦C 6 T̄air < 19◦C then 
7: output medium heating option Zmh 
8: else if 23◦C 6 T̄air < 32◦C then 
9: output medium cooling option Zmc 

10: else if T̄air > 32◦C then 
11: output strong cooling option Zsc 
12: else 
13: output last control option Zpre 
14: end if 
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Table 5.2: The control variable settings for the double bang-bang controller 
(unit for Ib is Ampere A, Tvdc to Tvp is Celsius ◦C) 

Control variables Ib Afr Adist Tvdc Tvdl Tvpc Tvpr Tadf Trc Tapf Tvd Tvp 

Zsc: Strong cooling 10 0 0 12 12 15 12 15 35 12 20 38 

Zmc: Medium cooling 8 0 0 16 16 18 15 20 30 20 25 32 

Zmh: Medium heating 8 1 0 22 22 30 20 25 15 27 26 31 

Zsh: Strong heating 10 1 1 28 28 32 25 30 12 30 28 28 

5.3 experiment setting 

As mentioned in chapters 2 and 3, the policy gradient reinforcement 
learning (PGRL) framework updates policy based on the states, ac-
tions and rewards information received from each episode (trial). The 
number of learning trials is set as 5 × 103 and the time steps for each 
episode is 5 × 103s (approximately 83.4 minutes). At the beginning of 
each episode, the state variables are randomly selected from different 
intervals. 

• initial air, mean radiant temperatures are randomly selected 
from [-8, 40] ◦C, and the difference between each is constrained 
within ±4◦C 

• relative humidities of cabin and environment are randomly se-
lected from [12, 70]% 

• vent air velocities of passenger and driver are randomly selected 
−1from [0, 1] ms

• car velocity starts from 0 km h−1 but variates between 50 to 
100 km h−1 in this episode later on. (section 5.4.1 below) 

where the differences between initial air and mean radiant tempera-
tures of occupants are constrained within a range. The initial cabin 
thermal status is closed to the ambient environment as the car is 
parked for a long enough time. 

5.3.1 Equivalent temperature and reward function 

As mentioned in chapter 3, the equivalent temperature (ET) is applied 
to decide whether the cabin provides a comfortable thermal status. The 
equation below estimates ET for occupants’ different body sections. 
Ta represents air temperature in occupants’ body section, for example, 
driver’s head temperature Tdh. M can represent driver’s head mean 
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radiant temperature Mdh and va equals air velocity at driver’s head 
section vdh. The clothing insulation coeffcient Icl keeps the same value 
in chapter 3. Therefore, driver’s head equivalent temperature Tedh is 
calculated as follow 

Te = 

⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ 

0.5(Ta + M); va 6 0.1ms−1 

√ 
0.24−0.75 va0.55Ta + 0.45M + (36.5 − Ta); va > 0.1ms−1 

1+Icl 

(5.6) 

This equation also calculates driver’s torso to passenger’s feet ETs 
(Tedt to Tepf ). The reward function defnes the penalty for driving the 
ET out of the corresponded comfort zones. According to Table 5.3, 
when the head ET is above the “hot but comfortable” boundary (22.4 
◦C in winter) and below the ”too hot" boundary (27.9 ◦C in winter), 
the reward function presents a -1 for head ET. However, if torso ET is 
above the “cold but comfortable” temperature and below the “hot but 
comfortable” temperature (known as neutral comfort), the occupant 
does not feel cold or hot in the comfort zone. 

• Tth: when ET is above this value, the occupant feels too hot 
(uncomfortable) 

• Thc: when ET is above this but below Tth, the occupant feels hot 
but comfortable 

• Neutral comfort zone: when ET is below Thc and above Tcc, the 
occupant feels not too hot or too cold in the thermal comfort 
zone 

• Tcc: when ET is below this but higher than Ttc, the occupant feels 
cold but comfortable 

• Ttc: when ET is below this value, the occupant feels too cold 
(uncomfortable) 

The Ttc to Tth values also depend on different climate according to 
Table 5.3 below. Based on the defnition of comfort boundaries, the 
reward function presents 0 for “neutral comfort condition” and -1 

http:0.24�0.75
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for “cold but comfortable” or “hot but comfortable” conditions. The 
reward detail is listed 

r(Te) = 

⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ 

0 if Tcc 6 Te 6 Thc 

−1 if Ttc 6 Te < Tcc or Thc < Te 6 Tth 

−2 else 

(5.7) 

So the total reward value equals the sum of occupants’ body comfort 
rewards and the energy consumed by cool/warm control actions of 
the HVAC system. 

R(s,a) = r(Tedh) + r(Tedt) + r(Tedf ) + r(Teph) + r(Tept) + r(Tepf ) − ωe [Qd + Qp] 

(5.8) 

where ωe is the energy weight factor selected from the domain 
[0, 1/3000, 1/1000, 1/300]. The air heating/cooling power for driver 
Qd and passenger Qp is calculated with respect to the airfow velocity 
and heat transfer of hot or cold air [Lee+15], [TJ+15]. In the following 
testing simulations, the ωe value equals 1/1000. 

Table 5.3: Human body’s thermal comfort zone constrained by Nilsson’s 
equivalent temperatures (Summer and Winter season) [Nil04] 
too cold (< ◦C) cold but comfortable(< ◦C) hot but comfortable (> ◦C) too hot (> ◦C) 

Climate summer winter summer winter summer winter summer winter 
Face 10.9 11.5 18.7 17.0 26.6 22.4 34.4 27.9 

Thigh 17.0 17.9 21.2 22.3 25.5 26.8 29.8 31.2 

Feet 17.0 17.9 21.2 22.3 25.5 26.8 29.8 31.2 

Torso 13.7 14.7 21.6 22.0 25.2 26.2 32.0 30.0 

full-body 20.5 18.6 23.6 21.4 26.7 24.3 29.9 27.1 

5.4 results and discussion 

5.4.1 The settings for environmental factors 

As mentioned above, the external factors, such as car velocity Vcar, 
roof temperature Tr, ambient temperature Tenv and ambient relative 
humidity φenv, also impact cabin thermal status when executing the 
HVAC control actions (Table 5.1). This section presents the external 
information based on the data samples collected in the climatic wind 
tunnel experiment [BR20]. 
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• Tenv: Winter ambient temperature values are randomly selected 
between -13 to -10 ◦C, summer ambient temperature values are 
between 34 to 36.5 ◦C. 

• φenv: Winter ambient relative humidity values are randomly se-
lected from 60% to 70%, the summer cases are randomly selected 
between 5% to 20%. 

• Tr: Winter roof temperature values are selected between -9 to -4 
◦C, summer cloudy values are from 33 to 36.5 ◦C, the summer 
sunny values increase from 40 to 80 ◦C after 60 min 

• Vcar: Car velocity is randomly selected between 50 km to 100 km 

over the simulation time 

Table 5.4: The range of ambient temperature Tenv, roof temperature Tr, ambi-
ent humidity φenv and car velocity Vcar values for warm-up/cool-
down testing cases 

Winter Summer(cloudy) Summer (Sunny) 

Tenv [−13,−10] ◦C [34, 36.5] ◦C [34, 36.5] ◦C 

Tr [−9,−4] ◦C [33, 36.5] ◦C 40 increases to 80 ◦C 

φenv [60, 70] % [5, 20] % [5, 20] % 
Vcar [50, 100] km [50, 100] km [50, 100] km 

As the cabin roof can absorb solar radiation to increase its surface 
temperature far above the ambient air temperature. Based on the data 
measurements, the above Tr setting shows an example case that the 
roof temperature signifcantly increases to eighty degrees after one 
hour. The main challenge is that the intense solar radiation warms 
up the top section of car cabin, and consequently raises the air tem-
peratures of occupants’ torso to head sections. Therefore, these cold 
and warm environment conditions examine whether a thermal con-
troller can offer desired thermal comfort for occupants. The data of 
car velocity is also randomly selected between 50 to 100 km for all 
climate cases. In terms of the over-heat cabin roof condition, the cabin 
roof receives intense solar radiation to drastically warm up the surface 
material temperature. Therefore, the cabin environment can be heated 
to an extreme hot condition. This setting aims to test whether the 
resulting RL HVAC controller can cool down occupants and maintain 
a cooler thermal comfort condition. 
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5.4.2 The episodic rewards throughout the learning trials 

As mentioned in chapter 3, the episodic reward value indicates the 
summation of state-action rewards that the agent can receive in an 
episode with a limited time-step. In the PGRL framework, the way 
to update control policy is based on the maximization of received 
episodic rewards. As for the initial state value of each episode, sec-
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Figure 5.1: The averaged episodic rewards against 5 × 103 learning trials 

tion 5.3 above has mentioned random initialization intervals. Figure 5.1 

indicates a steady convergence to episodic reward value −258.89, also 
these increasing episodic rewards are averaged over the learning 
trial results by using ten different random seeds and fxed energy 
weight ωe equals 1/1000. An increasing episodic reward means that 
the RL-controller tends to maintain a longer proportion of comfort 
for occupants and consume less energy. The total simulation time is 
2.5 × 107s. 

5.4.3 Warm-up test in cold climate 

Based on the data of ambient winter climate indicated above, this 
part demonstrates relevant graphs of testing results. The following 
graphs present how the HVAC controllers achieve and maintain the 
desired comfort represented by the equivalent temperatures (ETs). 
The comfort zone is constrained by ETs mentioned in Table 5.3. For 
example, if occupant’s head ET is between 11.5 to 27.9◦C at winter 
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time, the occupant then feels comfortable. Therefore, the following 
graphs use black solid and dashed lines as the ET boundaries, and 
use a green line to indicate the comfort zone’s baseline (mean value 
of the upper and lower ET boundary). The purple solid and dashed 
lines respectively represent the “hot but comfort” and the “cold but 
comfortable” ET boundaries. The area constrained by the purple solid 
and dashed lines are named as the neutral comfort zone. According 
to Table 5.3 and Nilsson’s work [Nil04], the neutral comfort zone does 
not make the occupants feel too cold or hot in the thermal comfort 
zone. 

The following graphs illustrate the occupants’ head, torso and feet 
ET, the mean body ET is then calculated as the mean value of head 
to feet ETs. The abbreviation “eqt” in the graphs refers to equivalent 
temperature, “AT” refers to air temperature, “MRT” is mean radiant 
temperature. The mean body ETs of both occupants in Figure 5.2 

indicates that the PPO-based HVAC controller can warm up both 
occupants’ body sections to the neutral comfort zone. The RL controller 
can consistently maintain this comfortable thermal status for a long 
enough time. As a comparison, the bang-bang controller takes longer 
(more than 28 min) to achieve the target comfort and does not fully 
maintain the ETs in the neutral comfort zone. Table 5.5 details the 
time spent on achieving the target comfort zone, the PPO-RL method 
signifcantly reduces the time to achieve the neutral comfort zone. In 
Table 5.6, compared with the bang-bang method, RL-based controller 
improves the percentage of neutral comfort above 90%. 

Figure 5.3 indicates that the resulting PPO-RL controller can drive up 
the equivalent temperature of both occupants’ head from temperature 
below zero to the neutral comfort zone in around three minutes, this 
is faster than the bang-bang. As a comparison, the red-dashed curve 
indicates that the bang-bang HVAC controller drives up the driver’s 
head ET in a short time, but its fuctuation exceeds the upper comfort 
boundary. After ffty minutes, the bang-bang controller maintains the 
driver’s head ETs in stable fuctuation. However, driver’s head ETs 
are in the “cold but comfortable” region (ETs below 17

◦C according to 
Table 5.3 ). The blue-dashed curve represents the passenger’s head ET 
achieved by the bang-bang control, the result shows that the bang-bang 
also raises passenger’s head ET to the comfort region and maintains 
it with a reduced fuctuation amplitude. However, the bang-bang 
controller drives up the ETs above the upper boundary of comfort, 
thus making the occupants feel too hot for several minutes, then 
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Figure 5.2: Driver and passenger’s mean body equivalent temperatures in 
the warm-up process 

cooling down the cabin and keeping ETs within the comfort region. 
However, the PPO-RL controller precisely achieves the target ET which 
does not make occupants feel too hot or too cold in the comfort zone. 
Also the airfow rate determines ETs according to the defnition, hence 
higher airfow can pump more warm air into the cabin so as to increase 
the cabin temperature, but the defnition of ET indicates that higher 
airfow rate can lower the ET when having low air and mean radiant 
temperatures. 

Similar to the head warming-up case above, Figure 5.4 indicates 
that the resulting PPO-RL controller can drive up the ETs of both 
occupants’ torso from a temperature below zero to the neutral comfort 
zone in around four minutes, this is also faster than the bang-bang 
method. Meanwhile, the bang-bang control method also succeed in the 
warming up process and maintains both occupants’ torso ETs within 
the neutral comfort region. The red and blue-dashed curves show that 
the RL-based HVAC controller can raise both occupants’ torso ET to 
the baseline ET within eight to ten minutes. However, the bang-bang 
HVAC controller raises the driver’s torso ET over the baseline, thus 
providing too hot thermal sensation for occupants. When torso ET is 
over 27 ◦C (shown in Table 5.3 above), the occupant is likely to feel 
too hot. Therefore, in Figure 5.4, the bang-bang controller offers stable 
neutral comfort for driver’s torso after 40 minutes. The driver’s torso 
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Figure 5.3: The 0 to 25 min of occupants’ head ET in the warm-up process 

AT and MRT fuctuations by bang-bang control are corresponded to 
the ETs curve above. 
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Figure 5.4: The 0 to 25 min of occupants’ torso equivalent temperatures in 
the warm-up process 

The occupants’ feet ET curves in Figure 5.5 indicate the time lag 
between PPO-RL and bang-bang HVAC controllers. Red and blue solid 
curves indicate that the PPO-RL HVAC controller drastically raises the 
feet ET to the baseline comfort equivalent temperature in less than fve 
minutes according to Figure 5.6. But the passenger’s feet ET exceeds 
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the upper comfort boundary for a short duration, this is caused by a 
drastically increasing AT of the passenger. As a comparison, the red 
and blue-dashed curves indicate that the bang-bang HVAC controller 
takes more than ffty minutes to achieve comfort ET zone. Such a big 
time lag can also be observed in AT and MRT curves in subsequent 
graphs. Therefore, the PPO-based HVAC controller can consistently 
provide warm thermal comfort to the occupants. However, the bang-
bang control takes a longer time to achieve the target comfort. 
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Figure 5.5: Driver and passenger’s feet equivalent temperatures in the warm-
up process. This shows that the bang-bang method achieves the 
comfort very slow 

Table 5.5: Time (min) taken to achieve neutral comfort zone and the percent-
age of time reduced due to PPO-RL compared with bang-bang 
controller in the warm-up process. These results are based on 
5 × 103 simulated trials (episodes) using “CWT-cabin-env” simula-
tor. 

Driver Passenger 

Method Bang-bang PPO-RL % increase Bang-bang PPO-RL % increase 
Head 7.70 2.70 -64.9% 11.0 2.50 -77.3% 
Torso 11.5 3.83 -66.7% 16.5 5.70 -65.5% 
Feet 54.0 2.83 -94.8% 43.6 1.83 -95.7% 
Mean body 32.3 3.50 -89.2% 32.0 3.67 -88.5% 
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Figure 5.6: The 0 to 25 min of the occupants’ feet ET warm-up process in 
Figure 5.5 above 

Table 5.6: Percentage of time in neutral comfort zone (during 0 to 160 min) 
and comfort improvement due to PPO-RL compared with bang-
bang controller in the warm-up process. These results are based 
on 5 × 103 simulated trials (episodes) using “CWT-cabin-env” sim-
ulator. 

Driver Passenger 

Method Bang-bang PPO-RL % increase Bang-bang PPO-RL % increase 
Head 6.20% 98.4% 1490% 34.8% 98.5% 183.05% 
Torso 14.3% 97.7% 583% 19.0% 96.6% 408% 
Feet 60.3% 98.0% 62.5% 46.3% 97.0% 110% 
Mean body 13.5% 96.5% 614.8% 23.5% 97.8% 316% 

5.4.4 Cool-down test without solar radiation on cabin roof 

Subsequent graphs indicate cool-down testing cases without solar 
radiation in Table 5.4. The curves in this section indicate the cool-
down cases without solar radiation. The subsequent Figure 5.7 shows 
both occupants’ mean body ETs in the cool-down testing case. The 
PPO-RL controller cools down driver and passenger’s body sections 
to the neutral comfort zone in less than two minutes, this process 
reduces more than 80% of time spent by the bang-bang controller. 
However, the passenger’s mean body ET is cooled around 1 to 2 ◦C 

below the “cold but comfortable” boundary. So the percentage of 
time in neutral comfort zone is lower than the bang-bang application 
according to Table 5.8. Still, the results in Table 5.7 indicate that the 
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PPO-RL reduces 40% to 90% of time taken to achieve neutral thermal 
comfort. The proportion of time spent on neutral thermal comfort in 
Table 5.8 indicates obvious cool-down task improvements by the PPO-
RL controller. For example, compared with bang-bang results, about 
80% to 275% relative more time is spent in neutral comfort. Figure 5.8 
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Figure 5.7: The 0 to 25 min of the occupants’ mean body ET in the cool-down 
process (no solar radiation) 

indicates that the resulting PPO-RL controller can cool down both 
occupants’ head ET to the baseline ET in around eight minutes, this 
cool-down process also achieves stable neutral thermal comfort. As a 
comparison, the red and blue-dashed curves indicates that the bang-
bang HVAC controller can cool down both occupants’ head ET below 
the comfort baseline. And according to Table 5.3, when the head ET 
is below 18.7 ◦C the occupant is likely to feel cold in the summer 
season. So, the double-bang-bang method can not consistently offer 
the neutral thermal comfort in this cool-down task. 

The occupants’ torso cool-down results in Figure 5.9 show corre-
sponding fuctuations in the bang-bang control part. Still, the RL 
HVAC controller can drastically cool down both occupants’ torso ET 
from 34 ◦C to the neutral comfort baseline ET in around fve minutes. 
However the bang-bang controller achieves colder ET in the comfort 
zone and obvious temperature fuctuations. Similar to the cool-down 
results above, the bang-bang method can not preserve stable cool AT 
and MRT of occupants’ torso. Because the bang-bang controller might 
drive up obvious fuctuations when its heating mode is turned on. 

http:season.So
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Figure 5.8: The 0 to 25 min of the occupants’ head ET in the cool-down 
process (no solar radiation) 
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Figure 5.9: The 0 to 25 min of the occupants’ torso ET in the cool-down 
process (no solar radiation) 

The following graphs present occupants’ feet cool-down results. In 
Figure 5.10, the red and blue solid curves indicate that the RL HVAC 
controller can cool down both occupants’ feet to the neutral comfort 
in around two minutes. And both occupants’ feet ETs are maintained 
in the neutral comfort region. As a comparison, the red and blue-
dashed curves indicate that the bang-bang HVAC controller takes 
more than forty minutes to achieve the comfort zone. Such a big time 
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lag can also be clearly observed in Figure 5.11 for the beginning one 
hour time. Therefore, in the hot climate, the PPO-RL HVAC controller 
can offer stable cooling comfort to the cabin occupants. Bang-bang 
HVAC controller fails to achieve stable cooler temperatures, because 
the heating mode causes high fuctuations for temperature variations. 
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Figure 5.10: Driver and passenger’s feet ET in the cool-down process 
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Figure 5.11: The 0 to 25 min of the occupants’ feet ET cool-down process in 
Figure 5.10 above 
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Table 5.7: Time (min) taken to achieve neutral comfort zone and the percent-
age of time reduced due to PPO-RL compared with bang-bang 
controller in the cool-down (no solar radiation) process. These re-
sults are based on 5 × 103 simulated trials (episodes) using “CWT-
cabin-env” simulator. 

Driver Passenger 

Bang-bang PPO-RL % increase Bang-bang PPO-RL % increase 
Head 3.67 2.00 -45.5% 5.33 1.83 -65.7% 
Torso 5.67 1.83 -67.7% 7.50 2.83 -62.3% 
Feet 54.7 1.33 -97.6% 48.2 1.17 -97.6% 
Mean body 10.2 1.67 -83.6% 13.5 1.50 -88.9% 

Table 5.8: Percentage of time in neutral comfort zone (during 0 to 160 min) 
and comfort improvement due to PPO-RL compared with bang-
bang controller in the cool-down (no solar radiation) process. These 
results are based on 5 × 103 simulated trials (episodes) using “CWT-
cabin-env” simulator. 

Driver Passenger 

Method Bang-bang PPO-RL % increase Bang-bang PPO-RL % increase 
Head 37.0% 98.8% 167% 48.0% 98.9% 106% 
Torso 55.0% 98.9% 79.8% 53.7% 98.3% 83.1% 
Feet 29.1% 61.2% 110% 26.3% 98.6% 275% 
Mean body 13.3% 26.6% 100% 21.1% 1.50% -92.9% 

5.4.5 Cool-down test with solar radiation on cabin roof 

As mentioned above, the solar radiation can warm up the cabin roof to 
increase the air temperature of the top section of the cabin. Therefore, 
based on real-time data samples, Table 5.4 introduces a testing case 
with roof temperatures increasing above 80

◦C after one hour. By intro-
ducing an intense solar radiation, this experiment aims to examine the 
RL HVAC controller’s cooling down capability. One challenge is that 
the occupants’ head and torso section can be warmed up by the over 
heated cabin roof material. Figure 5.12 shows the occupants’ mean 
body ETs by RL and bang-bang methods. The PPO-RL HVAC con-
troller cools down driver and passenger’s body sections to the neutral 
comfort zone in less than one minute according to Figure 5.13, this 
process reduces around 80% of time spent by the bang-bang controller. 
The passenger’s mean body ET (blue solid curve) is cooled below the 
“cold but comfortable” boundary before 75 min. However, the blue 
and red-dashed curves present frequent ET fuctuations between 21 

to 27 ◦C, hence the bang-bang controller cools down mean body ET 
below the comfort lower boundary. The results in Table 5.10 indicate 
that the PPO-RL reduces 20% to 90% of time taken to achieve neutral 
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thermal comfort, and Table 5.9 presents RL improvements in main-
taining neutral thermal comfort. The following Figure 5.14 shows 
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Figure 5.12: Driver and passenger’s mean body ET in the cool-down process 
(solar radiation heat cabin roof from 40 ◦C to 80 ◦C after 60 min) 
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Figure 5.13: The 0 to 25 min of driver and passenger’s mean body ET cool-
down process (solar radiation) in Figure 5.12 above 

occupants’ head equivalent temperatures (ETs) in the solar radiation 
cool-down process. The red and blue solid curves indicate that the 
RL HVAC controller cools down head ET to the neutral baseline ET 
during the initial one hour. When the cabin roof receives signifcant 
solar radiation after one hour, the head ET is still maintained in the 
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comfort zone, although it slightly raises above the “hot but comfort-
able” ET boundary. As a comparison, the bang-bang controller can 
not preserve cooler comfort, and the over-heated roof increases both 
occupants’ head ETs according to the red and blue-dashed curves in 
Figure 5.14. The following Figure 5.15 shows occupants’ torso equiva-
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Figure 5.14: Driver and passenger’s head equivalent temperatures in the 
cool-down process (solar radiation heat cabin roof from 40 ◦C to 
80 ◦C after 60 min) 

lent temperatures (ETs) in the solar radiation cool-down process. The 
red and blue solid curves indicate that the RL HVAC controller also 
cools down torso ET to the neutral baseline ET during the initial one 
hour. When the cabin roof receives signifcant solar radiation after one 
hour, the torso ET is still maintained in the comfort zone, although the 
driver’s torso ET slightly raises above the baseline. As a comparison, 
the bang-bang controller can not preserve cooler comfort, and the 
over-heated roof increases both occupants’ torso ETs, according to 
the red and blue-dashed curves in Figure 5.15. Still, the RL HVAC 
controller achieves the occupant’s neutral thermal comfort faster than 
the bang-bang according to Figure 5.16. 

The following Figure 5.17 shows occupants’ feet equivalent tempera-
tures (ETs) in the solar radiation cool-down process. The red and blue 
solid curves indicate that the RL HVAC controller also cools down 
feet ET to the neutral baseline ET before solar radiation starts heat-
ing the roof. When the cabin roof receives signifcant solar radiation 
after one hour, the feet ET is still maintained in the comfort zone, 
although passenger’s feet ET slightly drops below the baseline. As 
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Figure 5.15: Driver and passenger’s torso equivalent temperatures in the 
cool-down process (solar radiation heat cabin roof from 40 ◦C to 
80 ◦C after 60 min) 
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Figure 5.16: The 0 to 25 min of driver and passenger’s torso ET cool-down 
process (solar radiation heat cabin roof from 40 ◦C to 80 ◦C after 
60 min) in Figure 5.15 above 

a comparison, the bang-bang controller over cools down occupants’ 
feet, and the feet ET decreases below the lower comfort boundary 
according to the red and blue-dashed curves in Figure 5.17. Also, the 
RL-based controller achieves the neutral thermal comfort according 
to Figure 5.18. These three sections (5.4.3, 5.4.4, 5.4.5) present the 



ind tunnel experience98 policy gradient reinforcement learning for a simulation based on climatic w 

0 25 50 75 100 125 150 175
Time (min)

0

5

10

15

20

25

30

35

Eq
ui

va
le

nt
 T

em
pe

ra
tu

re
s (

de
g.

 C
)

RL driver feet eqt
RL passenger feet eqt
bangbang driver feet eqt
bangbang passenger feet eqt
feet eqt baseline
comfort upper bound
comfort lower bound
hot comfort bound
cold comfort bound

Figure 5.17: Driver and passenger’s feet equivalent temperatures in the cool-
down process (solar radiation heat cabin roof from 40 ◦C to 80 
◦C after 60 min) 
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Figure 5.18: The 0 to 25 min of driver and passenger’s feet ET cool-down 
process (solar radiation heat cabin roof from 40 ◦C to 80 ◦C after 
60 min) in Figure 5.17 above 

results of using PPO-RL and bang-bang methods to warm up and 
cool down the cabin occupants to the comfort zone in the winter and 
summer climate. Section 5.4.3 results show that the RL-based HVAC 
averagely warms up the occupants’ body to the neutral comfort zone 
in around 3.3 min. This value is 89% less than the time by the bang-
bang HVAC. And RL-based HVAC controller averagely maintains 97% 
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Table 5.9: Time (min) taken to achieve neutral comfort zone and the percent-
age of time reduced due to PPO-RL compared with bang-bang 
controller in the cool-down (with solar radiation) process. These 
results are based on 5 × 103 simulated trials (episodes) using “CWT-
cabin-env” simulator. 

Driver Passenger 

Method Bang-bang PPO-RL % increase Bang-bang PPO-RL % increase 
Head 0.5 0.5 0% 0.83 0.67 -19.3% 
Torso 1.67 1.0 -40.1% 1.50 0.83 -44.7% 
Feet 27.7 1.17 -95.8% 22.2 1.0 -95.5% 
Mean body 4.0 0.83 -79.3% 13.8 0.83 -94.0% 

Table 5.10: Percentage of time in neutral comfort zone (during 0 to 160 min) 
and comfort improvement due to PPO-RL compared with bang-
bang controller in the cool-down (with solar radiation) process. 
These results are based on 5 × 103 simulated trials (episodes) 
using “CWT-cabin-env” simulator. 

Driver Passenger 

Method Bang-bang PPO-RL % increase Bang-bang PPO-RL % increase 
head 34.6% 45.1% 30.3% 41.6% 43.6% 4.80% 
Torso 34.4% 99.4% 189% 39.4% 99.5% 153% 
Feet 17.1% 89.3% 422% 16.1% 66.0% 310% 
Mean body 25.8% 81.6% 216% 35.4% 53.3% 50.6% 

time of neutral thermal comfort compared to the 27% by bang-bang 
controller. Sections 5.4.4 and 5.4.5 indicate cool-down tasks including 
and excluding solar radiation on cabin roof. The results in section 5.4.4 

indicates that the RL HVAC controller averagely takes 1.8 min to cool 
down the occupants to the neutral comfort zone. Section 5.4.5 shows 
that RL HVAC controller can averagely maintain a cooler thermal 
comfort when solar radiation starts to heat the cabin roof after one 
hour. The RL-based HVAC controller averagely achieves 72% neutral 
comfort compared to the 30% by bang-bang controller. Therefore, the 
PPO-RL method outperforms the bang-bang approach in the warm-up 
and cool-down tasks. 

5.4.6 Comfort percentage and power consumption 

This section includes the resulting HVAC controllers’ performance 
in maintaining occupants’ full body sections’ comfort under various 
ambient climate conditions. The PGRL HVAC control policy πθ(· | 
s) is being optimized throughout the 5 × 103 learning trials (each 
trial or episode starts with random state information). Therefore, the 
testing case includes the same amount of randomly selected initial 
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states while using the same random seeds. Similar to the experiment 
setting in section 5.3, this section generates a testing case by randomly 
selecting the initial air, mean radiant temperatures of driver and 
passenger sections from -8 to 40 ◦C, environment and cabin roof 

−1from -8 to 40 ◦C, and all body sections’ airfow vi from 0 to 1 ms . 
The difference between each is constrained within ±4◦C. Given this 
information as initial car cabin state for each episode, the controllers 
(policies) are being simulated throughout a fxed time-step of 5 × 103s 

(approximately equals 83.4 minutes). Based on the proportion of time 
that the RL-based or bang-bang controller can maintain occupants’ 
comfort and neutral thermal comfort, subsequent graphs indicate the 
thermal comfort rate distributions for occupants. 

• Comfort rate: the proportion (or percentage) of time that the 
HVAC controller can maintain occupants’ body equivalent tem-
peratures (ET) in the thermal comfort zone, but the occupant 
might feels cold or hot when ET is below Tcc or above Thc (sec-
tion 5.3.1) 

• Neutral comfort rate: the proportion (or percentage) of time that 
the HVAC controller can maintain occupants’ body equivalent 
temperatures (ET) in the neutral thermal comfort zone. Therefore, 
the occupant won’t feel too cold or hot when ET is maintained 
between Tcc to Thc. 

The box plot in Figure 5.19 shows the comfort rate concentrations of 
using RL-based and bang-bang HVAC controllers to maintain driver’s 
head, torso and feet body sections on 5 × 103 randomly initialized 
episodes. The PPO-RL HVAC controller maintains more than 90% 
comfort duration for driver’s body sections. However, for more than 
75% of full-body cases, bang-bang controller can only keep the comfort 
rate above 60%. The feet section comfort results are centred around 
value domain between 50% to 90% and averagely yield 71.53% comfort. 
As for the torso section, the black cross marks outliers, indicating 5% 
test cases with comfort percentage higher ranging from 30% to 80%. 
Therefore, the PPO-RL method generally achieves higher comfort 
proportion compared to the bang-bang method. Table 5.11 below 
denotes the mean comfort percentage values of driver’s body sections. 

Similar to the driver’s body sections, Figure 5.20 presents the com-
fort rate concentrations of using RL-based and bang-bang HVAC con-
trollers to maintain passenger’s head, torso and feet body sections on 
5 × 103 randomly initialized episodes. The PPO-RL HVAC controller 
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Figure 5.19: Comfort rate of driver’s body positions 

still maintains more than 90% comfort duration for passenger’s body 
sections. As for the full-body testing case, the bang-bang controller 
can only keep the comfort rate above 40%. The bang-bang controller’s 
feet section comfort results are centred around value domain between 
60% to 90% and averagely yield 76.67% comfort duration. As for torso 
and head sections, the black cross marks denote outliers, indicating 5% 
test cases with comfort percentage higher ranging from 40% to 80%. 
Therefore, the PPO-RL method generally achieves higher comfort pro-
portion compared to the bang-bang method. Also, Table 5.11 details 
the mean comfort percentage values of passenger’s body sections. 

Table 5.11: Percentage of time that the PPO-RL and bang-bang controller can 
maintain occupants in the thermal comfort zone during 0 to 83.4 
min. These results are averaged over 5 × 103 random initial states 
used in the learning trials. 

Section Head Torso Feet Mean body 

Method bang-bang PPO-RL bang-bang PPO-RL bang-bang PPO-RL bang-bang PPO-RL 
Driver 93.32% 99.13% 91.32% 98.89% 71.53% 98.62% 79.57% 98.31% 
Passenger 96.76% 99.13% 95.25% 98.63% 76.67% 98.63% 90.92% 98.35% 

Figure 5.21 shows the box plot of neutral comfort rate by using 
RL-based and bang-bang HVAC controllers to maintain driver’s head, 
torso and feet body parts on 5 × 103 randomly initialized episodes. The 
PPO-RL HVAC controller maintains more than 80% neutral comfort 
duration for driver’s head to feet sections. The black cross marks 
denote outliers which means 5% cases ranging from 10% to 80% 

http:Table5.11
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Figure 5.20: Comfort rate of passenger’s body positions 

neutral comfort. However, the bang-bang controller maintains the 
neutral comfort rate below 80% for most cases of driver’s body sections. 
As mentioned in Table 5.12, the driver’s head, torso and feet neutral 
comfort rate results are approximately 60% less than the PPO-RL 
results. And the bang-bang averagely achieve 28.87% neutral comfort 
for driver’s full-body section. 
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Figure 5.21: Neutral comfort rate of driver’s body positions 

Figure 5.22 shows the box plot of neutral comfort rate by using RL-
based and bang-bang HVAC controllers to maintain passenger’s head, 
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torso and feet body parts on 5 × 103 randomly initialized episodes. The 
PPO-RL HVAC controller can also maintain more than 70% neutral 
comfort duration for passenger’s head to feet sections. The black cross 
marks denote outliers which means 5% cases ranging from 22% to 70% 
neutral comfort. However, the bang-bang controller still maintains the 
neutral comfort rate below 80% for most cases of passenger’s body 
sections. Table 5.12 also indicates that the driver’s head, torso and feet 
neutral comfort rate results are approximately 50% less than the PPO-
RL results. The bang-bang averagely achieve 30.62% neutral comfort 
for driver’s full-body section. This is less than the 53.62% by the RL 
method. Therefore, the PPO-RL method generally achieves higher 
neutral comfort proportion compared to the bang-bang method. 
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Figure 5.22: Neutral comfort rate of passenger’s body positions 

Table 5.12: Percentage of time that the PPO-RL and bang-bang controller can 
maintain occupants in the neutral thermal comfort zone during 
0 to 83.4 min. These results are averaged over 5 × 103 random 
initial states used in the learning trials. 

Section Head Torso Feet Mean body 

Method bang-bang PPO-RL bang-bang PPO-RL bang-bang PPO-RL bang-bang PPO-RL 
Driver 32.67% 94.68% 40.83% 97.11% 32.76% 90.76% 28.87% 62.78% 
Passenger 51.44% 92.73% 38.86% 90.25% 35.71% 96.81% 30.62% 53.62% 

As mentioned in section 5.3.1 above, in the comfort conditioning 
processes, the HVAC system consumes energy to either cool down 
or warm up the occupants air temperatures and mean radiant tem-
peratures to achieve thermal comfort. The energy Q is estimated 
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with respect to the mass of hot or cold airfow and the amount of 
energy spent on heating or cooling the circulated air [Lee+15]. The 
box plot in Figure 5.23 indicates the energy consumption results by 
using RL-based and bang-bang HVAC controllers to maintain the 
comfort of occupants’ body sections on 5 × 103 randomly initialized 
episodes. The PPO-RL controller consumes less energy than the bang-
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Figure 5.23: The HVAC power consumption for maintaining occupants’ body 
thermal comfort, the mean power by PPO-RL and bang-bang 
approximately equal 269.3 W and 554.7 W 

bang method, as the PPO-RL control averagely consumes 269.3 W 

less than bang-bang’s 554.7 W for the 5 × 103 randomly initialized 
episodes. Compared with the power consumption values shown in 
chapter 3, the PPO-RL controller for this “CWT-cabin-env” simulator 
generally consumes much less power. The reason of this difference is 
that the airfow amount in “CWT-cabin-env” simulator is less than 
the cabin model in chapter 3. Because the HVAC system for this CWT 
cabin model only needs to control the air temperatures and mean 
radiant temperatures for occupants’ body sections rather than the 
entire cabin’s air and interior mass (block) temperatures. Therefore, 
the PGRL HVAC controller’s mean power consumption for cooling or 
warming the occupants in this “CWT-cabin-env” simulator is fewer 
than the PGRL HVAC’s power consumption in chapter 3. 
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5.5 chapter summary 

This chapter has presented a set of experiments that extensively inves-
tigate the impact of applying the proximal policy optimization (PPO) 
method as the policy gradient reinforcement learning (PGRL) frame-
work to estimate control policies for a climatic wind tunnel simulation-
based car cabin heating, ventilation, air conditioning (HVAC) system. 
The control policy is also required to achieve and maintain occupants’ 
thermal comfort while reducing energy cost. The experiments mainly 
compare the PPO-RL approach with the bang-bang control. 

The results show that the PPO-RL method generally outperforms the 
bang-bang controller. More specifcally, RL-based controller achieves 
the target neutral comfort faster than the bang-bang, and RL method 
can signifcantly improve the comfort rate for occupants. Therefore, 
the answer to RQ 3 is listed as follows 

• Cool-down and warm-up tests for occupants’ body sections: 
section 5.4.3 indicates that RL-based controller averagely takes 
3.32 minutes to achieve neutral comfort reducing the time by 
87.27% compared to the bang-bang, RL maintains 97% neutral 
comfort and improves 258.2% compared to the bang-bang. In 
section 5.4.4, RL-based controller averagely takes 1.8 minutes 
to achieve neutral comfort reducing the time by 89% compared 
to the bang-bang, RL maintains 14.1% neutral comfort and im-
proves 3.5% compared to the bang-bang. In section 5.4.5, RL-
based controller averagely takes 0.83 minutes to achieve neutral 
comfort reducing the time by 87% compared to the bang-bang, 
RL maintains 67.5% neutral comfort and improve 133.3% com-
pared to the bang-bang. 

• Testing cases for random initial cabin thermal state: RL-based 
method averagely achieves 58.2% neutral thermal comfort for 
occupants’ mean body, while bang-bang only maintains 29.75%. 
RL-based method averagely consumes 269.3 W compared to 
bang-bang’s 554.7 W. 

Therefore, the PPO-RL method signifcantly improves the comfort 
maintaining performance and reduces power consumption when com-
pared with traditional bang-bang control technique. 





6 
C O N C L U S I O N S 

This thesis has investigated policy gradient reinforcement learning 
(PGRL) approaches to a vehicle Heating, Ventilation and Air Condition-
ing (HVAC) control task that aims to maximally offer thermal comfort 
to occupants. In order to employ PGRL as the learning schemes, the 
corresponded HVAC control policy is designed as a multilayer percep-
tron (MLP) fully-connected neural network with softmax output layer 
that can select actions with respect to action distributions. And the 
learning process is basically maximizing the received rewards so as to 
update the weights of control policy throughout all the learning trials. 

This research examines the implementations of employed PGRL 
methods with corresponded policy optimization techniques. Among 
the applied PGRL algorithms, the most suitable learning technique is 
the proximal policy optimization (PPO) that can ensure non-decreasing 
rewards in order to maintain policy improvements. The resulting 
HVAC controller trained by PPO-based PGRL scheme outperforms 
the State-Action-Reward-State-Action (SARSA)-based controllers by 
achieving occupant comfort faster and maintaining the higher comfort 
rate. Based on the PPO-based PGRL HVAC system, the state represen-
tation is validated non-Markovian due to the fxed time limit for each 
episode. The application of an ending state probability then represents 
the model into an MDP, thus slightly reducing the power consumption 
and still maintaining high comfort rate. A further experiment focuses 
on the PGRL application in a car cabin climate control simulation 
based on climatic wind tunnel experience. In terms of the occupants, 
the PGRL HVAC controller achieves the neutral comfort faster than 
the bang-bang method. 

This thesis aimed to answer subsequent research questions: 

6.1 answers for research questions 

RQ1.1 Can the vehicle HVAC agent, trained by PGRL schemes, reduce the 
time taken to achieve occupant thermal comfort and keep reasonable energy 
consumed by HVAC system compared to the SARSA-based learning scheme? 
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Ans: Yes. The vehicle HVAC controller trained by PPO-based PGRL 
algorithm can signifcantly improve the comfort percentage to 77.49% 
in the corresponded full range testing case. This outperforms the con-
troller trained by trust region policy optimization (TRPO), Mean actor 
critic (MAC) and Monte-carlo policy gradient (MCPG). Compared 
with the SARSA-based HVAC controller with corresponded testing 
cases, the PPO-based one achieves 92.3% of comfort which is higher 
than 67% by the SARSA-based one, the averaged time taken by the 
PPO-based control to achieve the occupant comfort is 3.8 minutes, 
faster than 5.5 minutes done by SARSA-based controller. The energy 
consumed by PPO-based HVAC system is 0.8713 kW higher than 0.77 

kW by the SARSA-based system. This consumption is reasonable, 
because PPO-based HVAC controller achieves far more comfort rate 
than SARSA does. 

RQ1.2 Can the PGRL HVAC training scheme learn an optimal con-
trol policy within a reasonable number of training samples? 

Ans: Yes. The number of training episodes is 4000 and each episode 
comprises 5 × 103 s of past states experience information. Hence, 
the overall simulated time is 2 × 107 s equivalent to 0.63 years. This 
result is lower than the 6.3 years of simulated time consumed by the 
SARSA-based one. 

RQ2.1 Is the learning performance of PGRL HVAC negatively impacted by a 
non-Markovian cabin state representation? 

Ans: Yes. The cabin state representation is non-Markovian, because 
the state observed in the future does not only depend on current 
state, action but also depends on the episode time-steps. This 
non-Markovian state representation is validated by comparing the 
cases that increasing the episode duration from 1 × 103 s to 5 × 103 

s can improve the averaged episodic rewards and performance 
of comfort control. Therefore, the impact of non-Markovian state 
representation results in longer episode duration (over 4 × 103 s) for 
training comfort-oriented control policies. 

RQ2.2 Can the Markovian-represented cabin state improve the en-
ergy effciency by using the same number of training experience in a 
non-Markovian state representation? 

Ans: Yes. The Markovian state representation introduces an event 
which has a stationary probability to end the episode when observing 
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a new state, hence the state is no longer represented to depend 
on the fxed time limit. The Markovian state representation in the 
training case with episode duration of 4 × 103 s improves the comfort 
percentage from 53.58% to 64.32%, and mitigates power consumption 
from 0.8919 kW to 0.8200 kW. The Markovian representation in 
the training case with episode duration of 5 × 103 s reduces power 
consumption from 1.2871 kW to 0.9901 kW, although slightly drives 
down comfort percentage from 77.94% to 75.88%. 

RQ 3: Can the PGRL-based HVAC controller reduce the time taken 
and power consumption to achieve occupant thermal comfort in a climatic 
wind tunnel simulation model compared to a bang-bang method? 

Ans: Yes. In the cool-down and warm-up testing cases, the PPO-RL 
HVAC averagely takes 1.98 min to achieve neutral thermal comfort, 
faster than bang-bang’s 17.9min. In the randomly initialized cases, 
during 0 to 83.3 min, the PPO-RL HVAC controller can averagely 
maintain 58.2% neutral comfort for occupants’ mean body sections, 
while the bang-bang only maintains 29.75%. But PPO-RL method 
averagely consumes 269.3 W less than bang-bang’s 554.7 W. 

6.2 future work 

There are several aspects that can be improved for this PGRL HVAC 
system. As for the reinforcement learning applications, the trust region 
policy optimization (TRPO) method has a step of using conjugate gra-
dient to estimate Fisher matrix vector product. However a Kronecker-
factored approximate curvature (K-FAC) method [MG15] basically 
uses Kronecker-factored approximation to Fisher information matrix 
to perform an effcient natural gradient update. The combination of K-
FAC and TRPO is named Actor Critic using kronecker-Factored Trust 
Region (ACKTR) [Wu+17] which has potential to improve TRPO’s per-
formance in learning vehicle HVAC control policy. Another possible 
direction is combining experience replay function with TRPO, namely 
Actor Critic with Experience Replay (ACER) [Wan+16] that can signif-
cantly reduces number of training experience compared with TRPO. 
In this thesis the proximal policy optimization (PPO) outperforms 
the rest three applications, but under some poor initializations the 
PPO is possible to yield convergence to bad local optima. The Trust 
Region-Guided PPO (TRGPPO) [Wan+19] is newly proposed to adap-
tively adjust the surrogate clip range and enables better explorations, 

http:system.As
http:77.94%to75.88
http:53.58%to64.32
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sample effciency than PPO. These learning algorithms have potential 
to improve the learning effciency, hence driving down total simulated 
time below 0.63 years. 

Another aspect is about the thermodynamics of cabin environment, 
because current model is using simple lumped capacitance model, 
and Torregrosa ’s dual zone model [TJ+15] can be more accurate in 
describing the thermodynamics. Lastly, the thermal comfort model 
used in this thesis is severely affected by the vent airfow rate, for 
example, when cabin temperature is close to zero, the high airfow 
rate drives down occupant’s equivalent temperature 10◦C to 20◦C 

below zero, but this is unlikely to happen in real-world situations. 
It is therefore important to build up accurate human comfort model 
like the Gaussian classifcation model [Pet18] that can be calibrated to 
indicate human thermal comfort in real car cabin environment. 
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A 
A P P E N D I X 

a.1 algorithms 

a.1.1 Traditional value-based RLs and simple policy gradient method 

Algorithm 3 Simple SARSA [SB18] algorithm for a fnite state ∈ S, 
action ∈ A space 

1: Initialize: Q(s,a) for s ∈ S, a∈ A arbitrarily, and Q(terminal-
state,)=0 

2: Repeat: for each episode 
3: Initialize starting state s0 for s 
4: choose a from s using policy derived from Q(s,a) by 

�-greedy 
5: Repeat:(for each step of the episode): 

0
6: Take action a, observe R, s
7: choose a 0 from s 0 using policy derived from Q(s,a) by 

�-greedy 
0

8: Q(s,a) ← Q(s,a) + α [R + γQ(s ,a 0) − Q(s,a)] 
0

9: s ← s 0;a ← a
10: Until s is terminal 
11: Until the end of training 

Algorithm 4 Simple Q-learning, expected SARSA [SB18] algorithms 
for fnite state ∈ S, action ∈ A space 

1: Initialize: Q(s,a) for s ∈ S, a∈ A arbitrarily, and Q(terminal-
state,)=0 

2: Repeat: for each episode 
3: Initialize starting state s0 for s 
4: Repeat:(for each step of the episode): 
5: choose a from s using policy derived from Q by �-greedy 

0
6: Take action a, observe R, s
7: If: Q-learning 

0
8: Q(s,a) ← Q(s,a) + α [R + γ maxa 0 Q(s ,a 0) − Q(s,a)] 
9: If: Expected SARSA � P � 0

10: Q(s,a) ← Q(s,a) + α R + γ 0∈A π(a
0 | s 0)Q(s ,a 0) − Q(s,a)a

0
11: s ← s
12: Until s is terminal 
13: Until the end of training 
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Algorithm 5 Simple Monte-Carlo policy gradient [Sut+00], [SB18] 

1: Initialize policy parameter θ0, learning rate α 
2: for k=0,1,2,... until convergence do 
3: generate trajectory on policy πθk with start state s0 

4: for step: t= 0,...,T-1 do 
5: start state s0 

6: get action at ∼ πθk (· | st) 
7: execute action at on current state st receive reward rt and 

next state st+1 (t < T − 1) 
8: end for 
9: receive trajectory τ = {s0,a0, r0, s1, · · · , st, · · · , sT }PT −1 γn−t 1

10: compute the returns Rt(τ) = · · r(sn,an)n=t T 
11: calculate baseline b(st) 
12: update policy parameter: PT −1
13: θk+1 ← θk + α · t=0 rθ log πθ (at | st) · (Rt(τ) − b(st)) 
14: end for 
15: Return: optimal policy parameter θ∗ 

a.1.2 Advantage actor critic and Mean actor critic 

The Expected SARSA [VS+09] is a practical way to estimate TD-error 
of Qπ(s,a) 

E [δ] = r(st,at) + γ · E [Q(st+1,at+1)] − Q(st,at) " # X 
= r(st,at) + γ · πθ(a 0 | st+1)Q(st+1,a 0) − Q(st,at) 

a 0∈A 

(A.1) 

where let Q̂ω(s,a) be the accurate estimate of Q(s,a), the learning of 
Q̂ω(s,a) is to minimize E [δ]. 

a.1.3 Trust region policy optimization 

The trust region optimization (TRPO) [Sch+15a], [Sch16] incorpo-
rates the ideas of natural policy gradient [Kak02], importance sam-
pling [SB18] and KL divergence constraint approximation into a conju-
gate gradient optimization problem. Specifcally, this method follows 
subsequent procedures: 

• Estimating the local approximation Lπ(π 0) of policy improve-
ment η(π 0) − η(π) which refers to the difference of expected 
rewards resulted from policy π to the newly updated one π 0 
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Algorithm 6 Advantage Actor Critic [Mni+16] 

1: Initialize policy parameter θ0, learning rate α, value function V̂w 

with weight w 
2: for k=0,1,2,... until convergence do 
3: generate trajectory on policy πθk with start state s0 for T steps 
4: for step: t= 0,...,T-1 do 
5: start state s0 

6: get action at ∼ πθk (· | st) 
7: execute action at on current state st receive reward rt 

and next state st+1 (t < T − 1)PT −t
8: Compute Rt = γir(st,at) + γT −t−1V̂w(sT −1) ati=0 

time step t 
9: Advantage Â(st,at) = Rt − V̂w(st) 

10: end for PT −1  2 
11: update w ← arg min Rt − V̂w(st)w t=0 
12: update policy parameter: PT −1
13: θk+1 ← θk + α · t=0 rθ log πθ (at | st) · Â(st,at) 
14: end for 
15: Return: optimal policy parameter θ∗ 

Algorithm 7 Mean Actor Critic with experience replay [Asa+17] 

1: Initialization: Policy πθ(a | s) weight θ, critic network Q̂ω(s,a) 
weight ω 

2: Hyperparameter: learning rate αA, αC for policy and critic respec-
tively, discount factor γ, episode length T , size of experience replay 
buffer D and batch size N, epoch number M for updating critic 
Q̂ω(s,a) (where D > T ) 

3: repeat 
4: Inputs: sampling observations, actions and rewards 
s1,a1, r1, s2,a2, r2, · · · , sT , rT from the system by policy 
πθ(at | st) 

0
5: Store: replay buffer stores the episode samples {s,a, r, s ,a 0} 
6: for each updating epoch do 
7: Fix parameter: ω− 

8: Random batch: {st,at, rt, st+1,at+1}N×1� � � �2 
9: Update: ω ← arg min rt + γ · E Q̂ω− (st+1,at+1) − Q̂ω(st,at)ω 

10: end for 
11: Update: ω− ← ω �P � 
12: Update: policy θ←arg max a∈A rθπ(a | s; θ)Q̂ω(s,a)θ 
13: until The policy converge or exceeding the maximum episodes 
14: Return: optimal policy parameter θ ∗ = θ 
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• Using KL divergence as the constraint of local approximation 
Lπ(π

0), then plugging this constraint optimization into a natural 
policy gradient (NPG) algorithm process 

• Practical TRPO algorithm is combining NPG with conjugate 
gradient and line search to approximate the Fisher information 
matrix to estimate the learning step of policy gradient 

Given a stochastic policy π(a | s) ∈ [0, 1] which maps state to action 
distributions, the objective function η(π) is denoted by the expected 
discounted reward: " # ∞X 

η(π) = Es0,a0,··· γt · r(st) = Eτ∼π [R(τ)] (A.2) 
t=0 

where the initial state s0 ∼ ρ0, action at time step t at ∼ π(at | st) 

and st+1 ∼ P(st+1 | st,at). Recall the defnitions of state-action func-
tion Qπ(s,a), the state value function Vπ(s) and advantage function 
Aπ(s,a) are given " # ∞X 

Qπ(s,a) = Est+n,at+n,··· γn · r(st+n) 
n=0" # ∞X 
γnVπ(st) = Eat,st+1,··· · r(st+n) 

n=0 

Aπ(s,a) = Qπ(s,a) − Vπ(s) 

where at ∼ π(at | st), st+1 ∼ P(st+1 | st,at), t > 1 

The expected reward of another different policy π̃ subtract expected 
return of current policy π yields following equation: " # ∞X 

η(π̃) = η(π) + Eτ∼π̃ γt · Aπ(st,at) (A.3) 
t=0 

where the notation Eτ∼π̃ [· · · ] indicates actions being sampled by 
policy π(· | st). This formula can be written into a sum over states 
instead of time steps 

XX∞X 
η(π̃) = η(π) + P(st = s | π̃) π̃(a | s)γtAπ(s,a) 

t=0 s a X ∞X X 
= η(π) + γtP(st = s | π̃) π̃(a | s)Aπ(s,a) 

s t=0 a X X 
= η(π) + ρπ̃(s) π̃(a | s)Aπ(s,a) (A.4) 

s a 
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where ρπ̃ = P(s0 = s) + γP(s1 = s) + γ2P(s2 = s) + · · · is notifed 
as discounted visitation frequency. For every state s, a non-negative P 
expected advantage function π̃(a | s)Aπ(s,a) > 0 is guaranteed a 

to increase current policy performance η(π) or keep it constant when 
the expected advantage is zero. However, the inaccurate advantage 
function approximation unavoidably yields the negative expected P 
advantage π̃(a | s)Aπ(s,a) < 0 due to the variance of the SGD. a 

In addition, the visitation frequency ρπ̃(s) on π̃ makes equation A.4 

more complicated to optimize directly. If ignoring the change of state 
visitation density due to policy changes from π → π̃, thus replacing 
ρπ̃ by ρπ, a local approximation to η(π̃) is written as X X 

Lπ(π̃) = η(π) + ρπ(s) π̃(a | s)Aπ(s,a) (A.5) 
s a 

where the local approximation uses the current state visitation fre-
quency ρπ, but still satisfes the condition of Lπ0 (π̃ = π0) = η(π̃ = π0), 
and if given a parameterized policy πθ with differentiable parameter 
θ, we can derive the subsequent differential equation 

� = rθη(πθ) |θ=θ0 

πθ(τ) 
= rθEτ∼πθ0 

R(τ) |θ=θ0 (A.6)
πθ0 (τ) 

which indicates that an update of policy πθ0 → π̃ that improves Lπθ0 

also improves η. Based on this issue, Kakade [KL02] has developed a 
boundary theorem regarding to a conservative policy iteration prob-
lem. In this case, πold π

0 = arg max (π 0) denotes current policy π 0 Lπold 

and deterministic mixture policy. The upgraded new policy πnew is 
denoted by 

πnew(a | s) = (1 − α)πold(a | s) + απ 0(a | s) (A.7) 

and the boundary is found below: 

2�γ 
η(πnew) > Lπold (πnew) − α2 , 

rθLπθ0 
(πθ) |θ=θ0 � 

(1 − γ)2 �� ��where � = max Ea∼π 0(a|s) [Aπ(s,a)] (A.8) 
s 

In Schulman’s TRPO research [Sch+15a], this boundary can be ex-
tended to general stochastic policy upgrade cases with the defnition 
of expected advantage Ā (s) and the probability of taking different ac-
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tions P(a 6 ˜= a | s) at state s. Firstly the scenario of expected advantage 
of a new policy π̃ over the old one π at state s is given by X 

Ā(s) = π̃(a | s)Aπ(s,a) = Ea∼π̃(·|s) [Aπ(s,a)] (A.9) 
a 

which can be plugged into the terms defned in equation A.4 and 
equation A.5, hence obtaining the theoretical and local advantage 
update: X X X 

η(π̃) = η(π) + ρπ̃(s) π̃(a | s)Aπ(s,a) = η(π) + ρπ̃(s)Ā(s) 
s a sX X X 

Lπ(π̃) = η(π) + ρπ(s) π̃(a | s)Aπ(s,a) = η(π) + ρπ(s)Ā(s) 
s a s 

where the theoretical update η(π̃) is sampling states using policy π̃
and local approximation Lπ(π̃) using π, these twos terms can also be 
written with respect to π̃ and π: " # ∞X 

η(π̃) = η(π) + Eτ∼π̃ γtĀ(st) 
t=0" # ∞X 

Lπ(π̃) = η(π) + Eτ∼π γtĀ(st) (A.10) 
t=0 

While the difference between Lπ(π̃) and η(π̃) satisfes following sce-
nario: 

X � ��∞ � � � 4α2γ�¯|η(π̃) − Lπ(π̃)| = γt�Eτ∼π̃ A(st) − Eτ∼π Ā(st) � 6 
2(1 − γ)

t=0 

(A.11) 

where α represents the total variation divergence of policy pair 
DTV (π(· | s) k π̃(· | s)), � denotes maximal advantage maxa,s |Aπ(s,a)| 
and γ is the discounted factor. As the total variation divergence of 
two distributions p and q satisfes is less than their KL divergence 
DTV (p k q)2 6 DKL(p k q). If accounting for the maximal total 
variation divergence Dmax(π k π̃) , the constraint defned inTV 

equation A.11 can be rewritten as 

η(π̃) > Lπ(π̃) − C · Dmax(π k π̃)2 > Lπ(π̃) − C · Dmax(π k π̃)TV KL 

4�γ
where C = (A.12)

(1 − γ)2 
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According to the defnition of local approximation in equa-
tion A.6, it is understood that a policy update improves local 
approximation Lπ(π̃) also improves actual expected rewards η(π). 
Combined with terms of equation A.12, performing a maximization 
of Lπ(π̃) − C · Dmax(π k π̃) also guarantees maximization of η(π̃).KL 

Algorithm 8 details a strait forward solution of optimizing the 
policy iteratively while ensuring a non-decreasing expected return 
η(π̃). Where the core objective is to estimate a policy π satisfying 

Algorithm 8 Policy update that ensures non-negative improvement of 
expected return η [Sch+15a] 

1: Initialize Policy π0 

2: for i=0,1,2,... until convergence do 
3: Compute advantage values Aπi (s,a) 
4: Plug Aπi (s,a) intoP P 
5: Lπi (π) = η(πi) + ρπi (s) π(a | s)Aπi (s,a)s a 

4γ
6: With the defnition C = maxa,s |Aπ(s,a)|(1−γ)2 � � 
7: Update policy πi+1 = arg max Lπi (π) − C · Dmax(πi,π)π KL 
8: end for 
9: Return: optimal policy parameter π∗ 

� � 
maxπ (π) − C · Dmax(πold k π) . While directly using penalty Lπold KL � � 
coeffcient C in the term πi+1 = arg max (π) − C · Dmax(πi,π)π Lπi KL 

can result in tiny learning step as discount factor γ is close to zero 
[Ach+17]. In order to avoid small step size while using penalty 
coeffcient C,the problem is derived into a KL divergence constrained 
optimization between the new policy and old policy 

max (π)] subject to Dmax(πold k π) 6 δ (A.13)[Lπold KLπ 

where δ is the upper boundary of KL constraint. Using the policy 
parameterization πθ(· | s) instead of π(· | s), therefore the following 
terms with policy parameterization are simplifed as follows 

(πθ), η(θ) = η(πθ)Lθold (θ) = Lπθold 

DKL(θold, θ) = DKL(πθold k πθ) 

Aπθ (s,a) = Aθ(s,a), ρπθ (s) = ρθ(s) 

Therefore the problem becomes an optimization with respect to policy 
parameter θ and Dmax can be practically replaced by an averaged KL 

¯term DKL and according to the background of natural policy gradi-
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ent [Kak02], [Raj+17]. The simplifed objective functions are presented 
below 

¯max (θ)] subject to DKL(θold, θ) 6 δ (A.14)[Lθold 
θ 

this constraint optimization problem can be solved by natural gradient 
approach. The frst step is to compute linear approximation to Lθold (θ) 

¯and quadratic approximation to DKL(θold, θ) respectively, therefore 
the terms of (A.14) are approximated as follows 

max [rθLθold ·(θ − θold)](θ) |θ=θold
θ 

1
subject to (θ − θold)

T F (θ − θold) 6 δ 
2 h i 

where F = Es,a∼πθold 
rθ log πθ(a | s) (rθ log πθ(a | s))T 

|θ=θold 

(A.15) 

the term F represents a fsher information matrix which is positive 
defnite and symmetric. According to the defnition of natural gradi-
ent [Ama98], the complete update for policy parameter θ is given s 

2δ 
θ = θold + 

T F−1
F−1 g where g = rθLθold (θ) |θ=θold g g 

(A.16) 

According to defnition in equation A.6, the objective of maximizing 
term Lθold (θ) can be denoted in terms of an importance sampling 
form: � � 

πθ(at | st)max [Lθold (θ)] ← max Êt Rt (A.17) 
θ θ πθold(at | st) 

where Rt can be replaced by the advantage function estimator Ât 
GAE(γ,λ)or generalized one Â according to section.2.3.3. In order to t 

maintain policy exploration, an entropy term H can be added to 
the objective function Lθold (θ). According to the defnition of policy 
entropy in Ahmed et al [Ahm+19], the term is indicated as follow 

Hθ(st) = Ea∼πθ(·|st) [− log πθ(a | st)] (A.18) 

and this term is usually weighted with a coeffcient CH. 
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Algorithm 9 TRPO algorithm [Sch16], [Sch+15a] 

1: Initialize Policy parameter θ0, value function weight ω0, entropy 
coeffcient CH, KL upper bound δ (0.01 in default), GAE discount 
λ 

2: for k=0,1,2,... until convergence do 
3: Collect trajectory τk on policy πθk 

GAE(γ,λ)
4: Compute advantage values Aθk (s,a) or Aθk 

(s,a) 
5: Estimating policy gradient 
6: gk ← rθ [Lθold (θ) + CH · Hθ(s)] |θ=θold 

7: Fisher information matrix F−1 gk by conjugate gradient k q 
2δ F−18: Natural gradient update step Δθk ≈ TF−1 k gk g gkk k 

9: Perform Line search with exponential decay to estimate 
fnal update 

10: for j=0,1,2,...,L do do 
11: Compute update θ = θk + αjΔθk 

¯
12: if Lθk (θ) > 0 and DKL(θ k θk) 6 δ then 
13: accept the update Δk = αjΔθk 

14: break 
15: end if 
16: end for 
17: Update policy parameter θk+1 = θk + Δk 

18: end for 
19: Return: optimal policy parameter θ∗ 

a.1.4 Proximal policy optimization 

As mentioned in last chapter, the policy optimization objective is 
constrained by the KL-divergence of old and updated policies. � � 

πθ(at | st)ˆ ˆmaxEt At 
θ πθold(at | st) 

subject to Êt [KL [πθold (· | st),πθ(· | st)]] 6 δ (A.19) 

where the TRPO approach uses linear approximation to the objective 
function and quadratic approximation to the constraint, then using 
conjugate gradient to approximate fsher information matrix for the 
natural gradient update of policy parameter θ. Conversely, this con-
strained problem can be represented in an unconstrained optimization 
objective � � 

πθ(at | st)max Êt Ât − βKL [πθold (· | st),πθ(· | st)] (A.20) 
θ πθold(at | st) 

However, the choice of penalty coeffcient β impacts the performance 
and it is diffcult to use a fxed β that can generally ensure improved 
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policy over the whole learning trials. To deal with this constrained 
policy optimization problem by simply using frst-order gradient, 
Schulman et al. [Sch+17] proposed a simple clip surrogate objective 
in order to constrain the change that moves probability ratio wt(θ) = 
πθ(at|st) far from 1. The clip objective function is shown below πθold(at|st) � � �� 

LCLIP(θ) = Êt min wt(θ)Ât, clip (wt(θ), 1 − �, 1 + �) Ât 

(A.21) 

where the term clip (wt(θ), 1 − �, 1 + �) Ât can avoid excessive policy 
update by clipping the probability ratio and always keep the policy 
update within the interval [1 − �, 1 + �]. Practical choices for � be-
tween 0.1 and 0.2 according to studies by Schulman et al [Sch+17]. 
The algorithm 10 shows valid optimization process. The Adam opti-
mizer [KB14] can effciently calculate the gradient of objective function 
LCLIP(θ). 

http:trials.To
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Algorithm 10 The proximal policy optimization (PPO) algo-
rithm [Sch+17] 

1: Initialize Policy parameter θ0, value function weight ω0, clip ratio 
�, entropy coeffcient CH, GAE discount λ 

2: for k=0,1,2,... until convergence do 
3: generate trajectory τk on policy πθk with start state s0 

4: for step: t= 0,...,m do 
5: start state s0 

6: get action at ∼ πθk (· | st) 
7: execute action at on current state st receive reward rt and 

next state st+1 (t 6 m − 1) 
8: record trajectory τk = {s0,a0, r0, s1, · · · , sm} into memory 

set D 
9: end for 

10: θold ← θk 

11: for each update step do 
12: Sampling mini-batch with N samples of {(si,ai, ri, si+1)} 

from D 
13: Computing value approximator by using TD(λ) 
14: Target value function yi+1 = r(ai, si) + γ · Vω(si+1) 
15: ω ← arg min kyi+1 − Vω(si)k2 

ω 
GAE(γ,λ)

16: Compute advantage function Âi or Â w.r.t Vω(si)i 
and R(τ) 

πθk 
(ai|si)

17: wi(θk) ← (ai|si)πθold � � 
LCLIP(θk) = ˆ

18: Et[min wi(θk)Âi, clip(wi(θk), 1 − �, 1 + �)Âi 
+ CH · Hθ(si))] 

19: Estimating policy gradient update 
LCLIP(θk)θk+1 ← arg maxθ 

20: end for 
21: end for 
22: Return: optimal policy parameter θ∗ 
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