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Abstract 

This thesis has applied the theory from behavioural fnance theory 

and by merging with the concept of chaos theory from natural science, 

this thesis focuses on the impact of positive feedback trading on the 

price formation process. By using the Hurst exponent estimation and 

calculating the correlation dimension value, the market index and in­

dividual frms from China have presented the nonlinearity and chaotic 

characteristics, thus demonstrating the source of complexity. 

This thesis proposes a new model that uses the Hurst exponent 

as the signal for thresholds to indicate changes in market conditions. 

The result suggested, by combining the threshold and assumptions 

from the positive feedback model, that the new model ofers a better 

explanation for the complexity of the stock market which presents 

chaos. The model is found to be statistically signifcant and superior 

in all comparative testing. 

Keywords and Phrases: Positive Feedback Trading, Hurst ex­

ponent, Nonlinearity, Complexity, Chaos 
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1 

Part I 

Introduction 

The Research Motivation and Its Signifcance 

Inspiration for this research comes from the observation that academic studies 

and industry are often disconnected. Those masters of traditional fnance 

theories still sufer fatal loss, for example, the failure of Long Term Capital 

Management. 

The most dominant theory is the Efcient Market Hypothesis (EMH) raised 

by Fama (1970). The EMH suggests that the market is efcient and obeys 

random walk, which means no one should make abnormal profts. In the real 

world, however, a lot of participants, institutions and individuals continue to 

make abnormal profts from the market. This raises the questions: 

•	 "How could this happen?" 

•	 "Is the market trend obeys random walk, so no one could trading based 

on past information?" 

•	 "If it's not random, what is a better explanation to this phenomenon?" 
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Previous studies and the real market observation by the author led to the 

conclusion that behavioural fnance ofers a better explanation than EMH. 

Therefore, this thesis follows this interest to further explore the behavioural 

feld. It has two main research streams. One involves doing qualitative re­

search focused on the individual decision making process, the motivation, 

expectation and bias, mostly using the techniques from the psychology and 

experimental economics. The other stream uses quantitative research focused 

on the market anomalies, groups of trader behaviours, and market price form­

ation etc., mostly using the mathematics tool to build a better explanation 

model. 

This thesis followed the later stream, doing quantitative research. The liter­

ature review goes back to noise trading, and a specifc type of noise trader, the 

positive feedback trader which becomes the vital component of later research. 

It described a group of traders just trading on the past price movement but 

not on the deviation from stock fundamental value. This ofers a very good 

explanation of the market presenting positive feedback feature, but the previ­

ous work, the static models assumed the price back to its fundamental value. 

It is a snapshot but cannot explain why the trend could suddenly change. 

The thesis brought the concept from natural science, and believed the Chaos 

Theory, a branch of mathematics focusing on the behaviour of dynamical 

systems that are highly sensitive to initial conditions, could ofers a better 

answer for the question above. Chaos theory is an interdisciplinary the­
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ory stating that within the apparent randomness of chaotic complex sys­

tems, there are underlying patterns, constant feedback loops, repetitions, 

self­similarities, fractals, as well as self­organization. Complexity is relative 

to simplicity. It indicates a status between complete disorder and complete 

order. A complete disordered system on thermal equilibrium state which 

presents Brownian motion is a simple system. A complete disordered price 

system which presents random walk is a simple system as well. The com­

plexity of stock price means the change of stock price is neither completely 

ordered nor completely disordered, but in between of those. It is not per­

fectly predictive nor is it totally random. It is similar to random motion but 

it is not random motion. This will be tested in the Chinese market and its 

individual frms by using the tools introduced in the methodology Chapter. 

The main contribution is proposed as a new model based on the work by 

De Long et al. (1990b) that uses the Hurst exponent as the signal for thresholds 

to indicate the changes of market condition. This is the extension of applied 

research in behavioural fnance on fnancial markets, and it is also the main 

novel part of our research. After the evaluation, comparative testing is con­

ducted to demonstrate the improvement that this model gives. Last but not 

least, the thesis has conducted the empirical test in the Chinese market, for 

both the index and sample stocks. It opens a new path for further research 

possibility. Therefore, the work both contributed to current methodology 

and empirical result up to date. 
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2 

To sum up, this thesis focuses on the impact of positive feedback trading to 

the price formation process. There are behavioural fnance stream and Chaos 

theory stream of literature out there, but lacking of model development in 

between, or fully applied the concept from each other. This thesis stands 

in the middle and merges the two together to fll the gap in between. Also, 

this thesis focues more on the emerging market China as the primary target, 

since it is still insufcient of empirical test due to its short fnance market 

history, this thesis also contributes to the empirical evidence. 

Thesis Structure 

This thesis is organised mainly in three parts. The frst part is the literature 

review. This chapter begins with the concept of "noise" which is the starting 

point of the following discussion. The pioneer work i.e. the "DSS\ noise 

trading model" (De Long et al., 1990a) has been reviewed. Following the path 

of this research, positive feedback trading has been found a major source 

of speculation. This type of noise trader is not assumed to trading in a 

random direction but mostly centralized at one direction. De Long et al. 

(1990b) proposed a new model to describe it and some other theoretical 

model has emerged. The "DSS\ positive feedback trading model" is a static 

model which assumes the asset prices go back to their fundamental value 

but cannot explain the reason causing the bubble crashes. The next section 
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brought the concept of natural science revealed in a chaotic system, a tiny 

disturbance could cause a collapse. Since chaos is a type of nonlinear system, 

its application in the economics and fnance feld has been discussed. 

The second part is the methodology. This Chapter includes three sections. 

The Hurst exponent estimation process has been examined closely by compre­

hensively explaining the technical details and comparing diferent estimation 

methods. Also the empirical result of previous works has been reviewed in 

order to give a comparison for our own estimation in a later Chapter. The 

correlation dimension calculation has been explained and linked with BDS 

statistic, also the previous empirical results will be presented. The last part 

of this Chapter is to introduce two methods that have been used in time 

series forecasting. The ARIMA model and the exponential smoothing are 

the two most widely used approaches to time series forecasting, and provide 

complementary approaches to the problem. In that later Chapter, these two 

methods will be used to compare with our own models. 

The third part of this work is the main contribution. This Chapter is divided 

into three parts. The frst part is introducing the way of data collection, and 

more importantly, the rationale of the choice. The background information 

for the research target, the Shanghai Stock Exchange will be introduced 

as well. The second part to analysing the characteristics of the market as 

a whole through the SSEC index and individual frms listed by using the 

Hurst exponent estimation and calculating the correlation dimension value. 

2.
 



It should be noted that the frms have been further sampled into smaller 

portion in order to conduct more concise and comparable research. The 

third part raised a new model which is adapted from previous work done 

of DSS\ model. The new model uses the Hurst exponent as the signal for 

thresholds that indicates the changes of market condition. Then a further 

test will be conducted to test its statistical signifcance and there are also 

comparisons to select the better model. 
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Part II 

Literature Review 

In this section, a framework of the literature review chapter will be intro­

duced, illustrating the path of the review to help readers has better under­

standing of the work. 

\e begin our literature review from the section of Efcient Market Hypo­

thesis and Behavioural Finance. EMH is the core of the mainstream fnance 

theory, in this section we will introduce the historical background of the EMH 

and how it has been challenged by the emerging of behavioural fnance such 

as Prospect Theory and BAPM. 

The section is noise trading, which is the original point of the topic discussed. 

The concept of "noise" has been brought to economics and fnance and been 

widely used, although the defnition was not exactly the same. \e will 

introduce the main confict people argued about and explain one of the most 

important noise trading models, "DSS\ noise trading model" (De Long et al., 

1990a). 

In the following section, we look further at the irrational side of the trading 

process, especially concentrated on the positive feedback traders. By fully ex­

plaining Shiller's "Feedback Model" (Shiller, 1990) and "DSS\ noise trading 
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model" De Long et al. (1990b), we will also give some theoretical comparison 

like the contagion model raised by Lux (1995). \e also give some evidence 

for the presence of positive feedback trading in the empirical part. Finally 

we will discuss the formation mechanism of the positive feedback trading. 

In the next Section, the direction of the literatures are getting closer of re­

search done by thesis. \e will start to look at the nonlinear part of the 

trading process and the complexity of the stock price. By introducing the 

term "chaos" at economics and fnance, we illustrated diferent phenomenon 

and detective method around it which helps to understand its characteristic 

and application we used in this thesis. For example, the Hurst exponent es­

timation, the method we actually using for my work will be further discussed 

at methodology chapter. 

The fnal Section include some additional literature refereed for our ethology 

and analysis as well, models we will used later and some further behaviour 

evidence. 
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3 Efcient Market Hypothesis and Behavioural 

Finance 

3.1 The Formation of EMH 

The fundamental function of the capital market is to reasonably allocate 

capital, the most valuable resource in the modern economy. The efectiveness 

of the market determines the efciency of resource allocation in the capital 

market. Therefore, the efciency of the capital market has always been the 

focus point of the economist. 

The early research for the stock market efciency could be traced back to 

random walk theory raised by Bachelier (1900). He used the the methodology 

from gambling analysis into market price, and argued that the random walk 

process is a Brownian motion. 

Cowles 3rd (1933); Cowles 3rd and Jones (1937) discovered that the time 

series correlation coefcient of stock price changes is zero by studying the 

trend of US stock prices over the past decades, which makes no investment 

strategy able to keep making proft in the market for the long run. Therefore, 

he pointed out that there is no certain pattern of price changes in the US 

stock market to follow the random walk hypothesis. \orking (193.), based 

on the study of various price time series, proposed that the time series of 

stock prices can be characterized by random walk model. 
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Kendall (1953) found that changes in the price of fnancial assets could not 

predict future trends by studying their past price and volume data. The 

diference between the spot price and the price of the next period (previous 

period) is a set of random numbers, and the change in the price of fnancial 

assets follows the pattern of random walk. 

Roberts (1959) and Osborne (1959) used stochastic processes to analyze stock 

market price volatility. They came to a similar conclusion, that is, the process 

of stock price movement is in line with the "Brown movement", showing the 

law of random walk. There is no defnite rule for price changes for people 

to explore, and the way in which securities analysts use past stock trading 

records to predict future stock price movements is a practice that ignores 

random factors that afect price fuctuations. 

Samuelson (1965) believes that the phenomenon of price fuctuations in fn­

ancial markets is irregular, which does not indicate that fnancial markets 

do not run market irrational evidence in accordance with economic laws. 

Instead, it proves that rational investors continue to use new information ar­

bitrage in fnancial markets. He believes that if the stock market is efective, 

all information that can afect the price of the asset will be immediately re­

fected in the asset price, and the occurrence of various information is random 

and unpredictable, so the fuctuation of the stock price is also unpredictable. 

Fama (1965) studied the stock price volatility from the perspective of in­

formation, and on the basis of the previous literature on the analysis of stock 

29
 



market price characteristics. Fama pointed out that changes in information 

and changes in the price of securities are a serial correlation, and the impact 

of diferent types of information on the price of securities is not the same. 

Information cannot be used to earn excess profts in the market, which makes 

the stock price consistent with the random walk model. The academic com­

munity has gradually begun to use whether the stock market price is in line 

with the random motion model as a sign of the efciency of the stock market. 

For the defnition of an efcient market, Fama et al. (1969) frst proposed the 

concept of "efcient market" and regarded information as the core of market 

efciency research. In the article, the efcient market is defned as a market 

that adjusts rapidly to new information. Fama's research on efcient market 

concepts not only provides a concept of efciency in the securities market, 

but also provides a research method to test market efciency. He also believes 

that if there is friction in a stock market, that is, when a trader needs to pay a 

commission to a broker, the market may still become an efcient market. At 

the same time, he also pointed out that if there is a monopoly in the product 

market, the profts earned by the manufacturers in the product market will 

also be efectively refected in the stock price, that is, the allocation efciency 

in the product market will not afect the efciency of the stock market. 

At the same time, based on the summary of Roberts' efcient market form, 

Fama (1970) believes that the price of securities can refect the information 

that afects its fuctuation to varying degrees, and the wider the information 
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that price can refect, the faster the response, the price will be the closer 

to the real asset price it represents. Thus, the smaller the chances of a 

trader gaining risk­free returns, the more stable the price will be, allowing 

the funds in the securities market to be more efciently allocated to the 

production sector. Therefore, Fama proposes three forms of capital market in 

diferent information environments: weak form efcient market, semi­strong 

form efcient market and strong form efcient market. 

In weak form efciency, future prices cannot be predicted by analyzing prices 

from the past. Excess returns cannot be earned in the long run by using 

investment strategies based on historical share prices or other historical data. 

Technical analysis techniques will not be able to consistently produce excess 

returns, though some forms of fundamental analysis may still provide excess 

returns. 

In semi­strong form efciency, it is implied that share prices adjust to pub­

licly available new information very rapidly and in an unbiased fashion, such 

that no excess returns can be earned by trading on that information. Semi­

strong­form efciency implies that neither fundamental analysis nor technical 

analysis techniques will be able to reliably produce excess returns. 

In strong­form efciency, share prices refect all information, public and 

private, and no one can earn excess returns. If there are legal barriers to 

private information becoming public, as with insider trading laws, strong­

form efciency is impossible, except in the case where the laws are universally 
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ignored. 

At the same time as the emergence and development of EMH, Markowitz 

combines Osborne's expected rate of return distribution, measured by its 

variance, to measure the portfolio of assets and derive the risk and standard 

deviation of the investor's choice of efective boundaries. A desirable con­

clusion of a portfolio of assets with the highest expected rate of return at a 

given level. 

Therefore, the rationality of investors in Markowitz's defnition means that 

they are risk­avoiding; on this basis, Sharpe (196.), Lintner (1965) and 

Mossin (1966) put EMH and Markowitz's portfolio of assets, named after the 

capital asset model, establishes an investor behaviour model CAPM based on 

rational expectations in a general equilibrium framework. Investors in CAPM 

have homogeneous yield expectations and interpret information in the same 

way. Under this assumption, CAPM concludes that high­risk assets should 

be compensated for high yields, and that investors' optimal investment de­

cisions should be made along the capital market line. 

If EMH answers the conclusion that the known information has no value for 

proft, then CAPM indicates that the excess return rate in the market is due 

to the risk of taking greater risks, so to a certain extent CAPM supplements 

the theory of EMH's vulnerabilities. 

Following the birth of CAPM, research in the 1970s and 1980s was gener­

ally focused on applying this model for empirical research and verifying the 
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efectiveness of EMH. However, with the deepening of later research, it is 

gradually found that the modern fnancial theory model is inconsistent with 

the actual investment decision­making behaviour of investors in the securities 

market. 

3.2 The Challenge from Behavioural Finance 

Momentum efect refers to stocks that have performed well in the past, and 

will perform well in the future. Stocks that have not performed well in the 

past will not perform too much in the future. However, after a long period 

of time, the stocks that performed well in the past have become poor. The 

stocks that have not performed well in the past have performed very well. 

This is called reversal efect. 

Jegadeesh and Titman (1993) frst discovered that stock prices have mo­

mentum efect. They used stock data from 1965 to 1989 in the CRSP data­

base as samples to sell stocks with the lowest yields in 3, 6, 9, and 12 months, 

buy stocks with high yields in 3, 6, 9, and 12 months and holding these stocks 

for 3, 6, 9, and 12 months, and found that they could earn excess returns 

if they sold stocks that had not performed well and bought the stocks have 

recently performed well. 

This shows that in the short term, the trend of stock prices has a great 

correlation with its previous trend, and the trend of stock price changes in 
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the past can predict the trend of the stock in the future. Chan, Jegadeesh 

and Lakonishok (1996) explain the excess returns that can be obtained by 

relying on momentum investment strategies, which they believe are caused 

by insufcient response to information. 

The calendar efect means that stock returns will change regularly as the 

date changes, for example "January efect" and "weekend efect". 

Rozef and Kinney Jr (1976) found that the NYSE stock price index in Janu­

ary 190.­197. was signifcantly higher than the other 11­month yield. Gul­

tekin and Gultekin (1983) studied stock returns in 17 countries from 1959 to 

1979 and found that 13 of them had higher stock returns in January than in 

other months. Chan, Karceski and Lakonishok (1998) found that between 

1926 and 1989, in January, the smallest 10% of stock returns outweighed 

other stock returns. 

Cross (1973) and French (1980) studied the S&P 500 index gains and found 

higher average returns on Friday and lower on Monday. Gibbons and Hess 

(1981) and Keim and Stambaugh (198.) found that the Dow Jones index 

had negative returns on Monday. Rogalski (198.) found that the average 

negative return between all Fridays and Mondays' closings occurred during 

non­trading hours, and average trading day earnings from opening to closing 

were consistent across the day. Jafe and \esterfeld (1985) studied the res­

ults of four developed markets in Australia, Canada, Japan, and the United 

Kingdom, indicating a weekend efect in the countries studied. 
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For the calendar efect that appears in the stock market, behavioural fnance 

believes that the calendar efect that appears in the stock market is caused 

by people's emotions. \hen investors are at the beginning of the year, they 

tend to invest in the new year, causing a January efect in the stock market. 

At the weekend, people may feel excitement due to income of wages and right 

before the holiday, the choice of investment strategy may be more radical, 

the weekend efect in the stock market. 

Modern fnancial theory holds that people's decision­making is based on as­

sumptions such as rational expectations, risk avoidance, and utility function 

maximization, where behavioural fnance challenges on. 

Kahneman and Tversky (1973), when investigating investment behaviours, 

found that investors tend to believe in the future predictions of short­term 

data when they make future predictions about investment returns, and tend 

to exaggerate the probability of events and over­confdent. The ability of 

the event to characterize the future rate of return, the result is the short­

sightedness of investment behaviour, that is, for some stocks with good per­

formance, it is believed that the yield of these stocks can continue to grow, 

and ultimately the investor behaviour violates Bayes' law. 

Kahneman and Tversky (1979) proposed the Prospect Theory and argued 

that individuals' attitudes toward risk are diferent and do not follow the as­

sumptions of the VonNeumann­Morgenstem rational concept. The investor's 

investment utility function is asymmetric, that is, investors are often accus­
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tomed to using the proft and loss level of their past investment as the frame 

of reference, subjectively judging the income level of the investment strategy, 

and always over­estimating the loss. Moreover, when investors have losses, 

they are more willing to hold the stocks that caused their losses, instead of 

adjusting the investment portfolio in time, and are more willing to hold the 

losing stocks to avoid losses, therefore the investment is very conservative. 

In the Efcient Market Hypothesis, the trading behaviour of irrational in­

vestors is random, so the efects can be ofset by each other, so that the ir­

rational trading behaviour of investors has no infuence on the market price. 

But according to Kahneman and Riepe (1998), investors' trading behaviour 

is not random but systematic, and the impact of trading behaviour on market 

prices cannot be eliminated by statistical average. 

Moreover, infuenced by various psychological and emotional factors, many 

investors have a certain sociality when they invest in each other, which causes 

investors to deviate from rational decision­making in the same way. This 

situation does not only exist in the middle of personal investment. According 

to the research of Falkenstein (1996), professional investors such as fund 

managers are afected by the comparison with other fund managers, and 

often make decisions that deviate from the maximization of asset value. It 

can be seen that investor trading behaviour is systematic and group­oriented 

for deviating from rational decision­making. 

The birth and development of behavioural fnance is inextricably linked to 
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the constant challenge of the Capital Asset Pricing Model(CAPM), one of 

the cornerstones of standard fnance. Shefrin and Statman (199.) challenged 

the CAPM and proposed a Behavioural Asset Pricing Model(BAPM). They 

also challenged the Modern Portfolio Theory(MPT) and proposed the Beha­

vioural Portfolio Theory(BPT). 

MPT believes that investors should focus on the entire portfolio, and the 

optimal combination confguration is on the efective front of the mean vari­

ance. BPT believes that real investors can't do this. The asset portfolio they 

actually build is based on the understanding of the risk level of diferent as­

sets and the pyramidal behavioural asset portfolio formed by the investment 

purpose. Assets are located at each level of the pyramid. Both are associated 

with specifc goals and risk attitudes, and the correlation between the layers 

is ignored. 

BAPM is an extension of the Capital Asset Pricing Model (CAPM). Unlike 

CAPM, investors in BAPM are divided into two categories: information 

traders and noise traders. The information trader is a rational trader who 

strictly follows the CAPM, and there is no systematic deviation. The noise 

trader does not act according to the CAPM, and will make various cognitive 

deviation errors. The two types of traders infuence each other to jointly 

determine the asset price. In fact, the problem of capital market portfolio 

still exists in BAPM, because the efective combination of mean variances 

changes over time. 
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4 

In the next section, we will look more closely at noise trading. 

Noise Trading 

Kyle (198.) coined the term of "noise trading", but rather than the noise 

trading as commonly used to represent the liquidity trading that trading at 

stable price, his paper ofered a new method to analyse market information 

fows (Kyle, 1985). He assumed that there are three types of trader in the 

fnancial market: the noise trader, the insider and the market maker. The 

noise trader he mentioned is essentially from the usage of our discussion 

later because this term he used to describe the trading is based on liquidity 

needs. Their demand of trading is based on risk hedge or liquidity, and it is 

exogenous from his model. The following literature often refers to this type 

of trader as the liquidity trader. 

Black (1986) systematically described noise trading in the fnancial markets, 

and pointed out that noise trading is not only the foundation of the exist­

ence of fnancial markets but also brings problems to the fnancial markets. 

Black's article focused more on the trading environment including the noise 

since it is an inaugural speech for president of American Finance Association 

(AFA), subsequent papers that were inspired by his work have developed the 

technique details, describing the interaction between noise traders. 

According to Black's defnition, which he brought from natural science, "noise" 
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is the concept contrasted with "information". Information is a sequence of 

symbols that can be interpreted as a message and be conveyed. It can be re­

corded as signs, or transmitted as signals. It is any kind of event that afects 

the state of a dynamic system that can interpret the information. Noise is a 

signal that people use to make investment decisions as if it were information. 

The noise trading is that people are trading based on noise as opposed to 

information. Black also expands the concept of noise to Econometrics and 

Macroeconomics, and believes that the common element is the emphasis on 

a diversifed array of unrelated causal elements to explain what happens in 

the world. 

In Black's opinion, most of the time, the noise traders as a group will lose 

money by trading, while the information traders as a group will make money. 

The reason is trader who trading maybe due to they assume what they had 

is information rather than noise, or perhaps they just like to trade. So 

from an objective point of view they are actually better of not to trade 

at all, and also their loss on trade goes to the information traders. As the 

amount of noise trading increases, it will become more proftable for people 

to trade on information. This idea seems to coincide with Friedman (1953), 

but Friedman used this point to demonstrate that the fnancial market is in 

rational equilibrium. This means that the rational arbitrage behaviour in 

the market will drive the irrational traders out of the market since they do 

not have sufcient ability to make a proft. Therefore, later research on noise 

trading models is not consistent with Black. For example, De Long, Shleifer, 
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Summers and \aldmann (henceforth, DSS\) developed the DSS\ noise 

trading model and it proves that the noise trader creates their own space 

in the fnancial market (De Long et al., 1990a). Their work provided the 

direction for following work, and is also vital for my thesis. 

The original DSS\ model is an overlapping generation model with two 

period lived agents which is based on Samuelson (1958). It has two peri­

ods only, the frst period for work and the second for consumption. 

The model has two diferent assets. One is a safe or risk free asset which is 

in perfectly elastic supply and pays fxed dividend r per period. It can be 

created at one unit, and it can be turned backed at one unit. The price is 

fxed at one unit forever as well, generally it can be treated as short term 

government bills. The risky asset u pays fxed dividend r the same as the 

risk free asset. But it is not in elastic supply and generally it can be treated 

as the equity asset. It is in a fxed and unchangeable quantity, normalized 

at one unit. 

The model contains noise traders (denoted by n) and arbitrageurs (denoted 

by i). Noise traders have erroneous beliefs, however they believe that they 

have correct information about future distribution of returns on a risky as­

set and set their investment portfolio based on it. The arbitrageurs are 

sophisticated investors and their trading strategies push prices towards its 

fundamentals. 

The total demand of risky asset equals the demand λ came from noise traders 
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and arbitrageurs. The proportion of noise trader is µ, so the proportion of 

arbitrageurs is (1 − µ). Therefore: 

(1 − µ)λit + λnt µ = 1 

A representative sophisticated investor young in period (t) accurately per­

ceives the distribution of returns from holding the risky asset, and so max­

imizes expected utility given that distribution. 

A representative noise trader young in period (t) misperceives the expected 

price of the risky asset by an independent and identically distributed (IID) 

normal random variable ρt: 

ρt ∼ N(ρ ∗ , σρ
2) 

The ρ∗ is a measure of the average "bullishness" of the noise trader, that is 

the mean of the deviation of pricing risky asset from its true value. σ2 
ρ is the 

variance of noise traders' misconception of the expected return per unit of 

the risky asset. 

Both types of agents choose their portfolios when young (t) to maximize 

perceived expected utility given their own beliefs about ex ante mean of the 

distribution of price of risky asset (u) at old (t + 1). \hen they sell the 

risky asset they holding at old, and so the demand of the young must sum to 

one in equilibrium. By further assuming the distribution of Pt same as Pt+1, 
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De Long et al. (1990a) solved the price function for risky asset recursively: 

µ(ρt − ρ∗) µρ∗ (2γµ2σρ
2) 

pt = 1 + + − 
1 + r r r(1 + r)2 

\here ρt denotes the current optimism, ρ∗ denotes the average optimism, γ 

denotes the coefcient of absolute risk aversion. 

The later three terms show the impact of noise traders to the equilibrium 

price of the risky asset. The equilibrium will converge to its fundamental 

value "one" when the erroneous beliefs of noise traders converge to zero. 

The second term is the discounted value of deviation of the next period's noise 

traders' misevaluation from their average misconception of value (ρt − ρ∗). 

Even though the risky asset u is not subject to any fundamental uncertainty 

(all the fundamental uncertainty is in the dividend and cannot be forecast) 

and so is known by a large class of investors, its price varies substantially 

as noise traders' opinions shift. So at the time period t prices rise and 

fall according to whether noise traders are optimistic, when (ρt − ρ∗) > 0, or 

pessimistic, i.e. (ρt −ρ∗) < 0. Also we could observe that the more numerous 

noise traders are relative to sophisticated investors, the more volatile asset 

prices are. 

The third term captures the deviations of pt from the fundamental value due 

to the fact that the noise traders are on average bullish. This will generate 

pressure to push the price up. Optimistic noise traders bear a greater than 
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average share of price risk. Since arbitrageurs bear a smaller share of price 

risk when ρ∗ is higher, they require a lower expected excess return and so 

are willing to pay a higher price for asset u. 

The fourth term is at the heart of the model. The sophisticated investors 

must be compensated for bearing the risk that the noise traders will become 

bearish and the price of the risky asset will fall. Both types of trader at 

period t believed the price of asset u is mispriced but they do not want 

to bet too much since the future price Pt+1 is uncertain. The return from 

enlarging one's position in an asset that all have agreed is mispriced, though 

in diferent direction, is ofset by the additional price risk that must be run. 

The noise traders thus "create their own space": the uncertainty over what the 

next period's noise traders will believe is a factor that makes the otherwise 

riskless asset u risky and drives its price down and its return up. 

This two­staged overlapping generation model is a simplifed model. It could 

simulate the real world if the period between choices becomes smaller. This 

actually transfers the investment term of each generation from years to a very 

short interval, and lots of investors assess their result and continue trading. 
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5 Positive Feedback Trading 

In this section, we will frst further explain the DSS\ positive feedback 

model in detail. Those the theoretical papers in the next chapter were other 

behavioural model inspired by DSS\ but focus on diferent aspect. For 

example, the HS model focuses more on the interaction between diferent 

participants rather than cognitive bias. The empirical research part will 

give some examples across diferent markets at diferent times. They witness 

positive feedback trading at both developed and developing markets and 

have also shown slightly diferent characteristics. Last but not least, the 

fnal section gives both economical and noneconomical explanations of the 

positive feedback trading forms. 

In the noise trading model of DSS\, the rational trader will not hold a 

large enough arbitrage position. This is due to the risk aversion feature of 

arbitrageurs as we explained at the fourth term of the model before. Taking 

a larger position also means taking more risk, so there is a limit to how large 

the position the arbitrageurs will take. Therefore the noise trader will be able 

to essentially infuence the price and push it away from its fundamental value. 

The rational trader is trading in the opposite direction of noise trader, and 

they push the price back toward its fundamental value in the model. A noise 

trading model generally assumes the erroneous beliefs of the noise traders are 

in a random direction. Actually there is a special type of irrational trader that 

conducts a positive feedback trading strategy, the positive feedback trader. 
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Their behaviour makes them essentially a form of the noise trader because 

they are not trading based on the information related to fundamental value, 

but will buy when price goes up and sell when price goes down. The positive 

feedback traders magnify the change in price because they are always chasing 

the trend. The price will deviate from its fundamental value and will show 

highly speculative if the positive feedback traders dominate the fnancial 

market. 

The results of natural science research have shown that positive feedback is 

the original driving force for self­enhancement, self­organization and autocata­

lysis in various systems such as physics, biology, and chemistry. This force 

is of great signifcance to the evolution of the system. Therefore, positive 

feedback trading in the security market has a special efect on the evolution 

of securities prices. Since positive feedback trading has a unique efect on 

the evolution of security price, Shiller (2002) pointed out that feedback mod­

els, in the form of diference equations, can produce complicated dynamics. 

This positive feedback may be an essential source of much of the apparently 

inexplicable "randomness" that we see in fnancial market prices. 

Note that the "Logistic Model", also known as "Logistic Map", not the "Lo­

gistic Choice model", is also represented in the form of a diference equation 

that generate chaotic process, we will not develop the idea here but instead 

set a later section on this chaos stream of the literature review. 

Shiller (1990) frst described his "Feedback Model" in 1990. In this model, 
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the feedback coefcient could be either positive or negative, and he assumed 

the feedback coefcient must be less than 1, therefore the model has a sta­

tionary solution. Shiller defned the feedback model for the fnancial market 

as follows: 
t �

Pt = πt + c e −γ(t−τ )dpτ 

−∞ 

Pt is the asset price at time t, parameter c > 0, γ > 0, πt is the valuation 

people would place on a stock if there were no feedback through price. Gen­

erally, c < 1 means the stock price is in stationary status, c ≥ 1 means the 

stock price will be explosive expanding status. Shiller assumes c < 1 implies 

the evolution system of stock price is a stable system. He did not research 

the formation process of price but just gave the pricing model empirically. 

De Long et al. (1990a) developed the noise trading model, where De Long 

et al. (1990b) clarifed the concept of positive feedback and explicitly de­

scribed the behaviour of the positive feedback trader, a specifc type of noise 

trader. This paper researched the impact of rational speculative investors on 

prices under the condition where there are positive feedback traders existing 

in the market. This paper demonstrated that some rational traders might 

join the feedback group which will further destabilize the price while there 

is positive feedback strategy existing in the market. This makes short term 

prices become more unstable. This approach extends the traditional under­

standing to rational speculative investor and shows that the rational trader 

enhance the power of positive feedback trading at a certain level. This paper 
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set a model which investigates the game mode between the passive investor, 

the rational speculative investor and the positive feedback trader. It ofers 

clues to explain a lot of empirical observations and becomes an important 

theory on micro trading mechanism research. 

De Long et al. (1990a) assumed a model which has . periods: 0, 1, 2 and 3. 

Stock and cash the only two assets involved. Cash pays no net return and in 

perfectly elastic supply. 

Stock is in zero net supply: it should be thought of as side bets that investors 

make against one another. Stock is liquidated and pays a risky dividend equal 

to Φ + θ in period 3, that is when investors consume all their wealth. θ is 

distributed normally with a mean of zero and variance σθ 
2. At any time before 

period 3, there is no meaningful information about θ released. Φ has a mean 

zero and can take on three possible values: ϕ, 0, and −ϕ. In period 2, the 

value of Φ becomes public. In period 1, a signal about Φ is released. 

There are three kinds of investors in the model: positive feedback traders 

T ", present in a measure of one; informed rational speculators (arbitrageurs) 

Ta", who maximize utility as a function of period 3 consumption, present in a 

measure of µ; and passive investors "i" whose demand in all periods depends 

only on the price relative to its fundamental value, who are present in a 

measure of 1 − µ. The reason to keep the total of the passive investors and 

arbitrageurs in constant is that it enables us to derive comparative statics 

results on the efect of changes in the number of rational speculators holding 
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constant the risk bearing capacity of the market. A pure addition of rational 

speculators to the market would have the extra efect of raising the market's 

risk bearing capacity and so dampening price volatility. The amount of 

positive feedback traders is equal to the rational investors (arbitrageurs plus 

passive investors) and they both equal 1. 

There are no signals received in Period 0 since it is a reference period only. 

The price kept at zero which its initial fundamental value. Trading is not 

exist. This period provides a benchmark against which the positive feedback 

traders can measure the depreciation or appreciation of stock from period 0 

to periods 1 and 2. 

In period 1, a signal ε {ϕ, 0, −ϕ} is received by arbitrageurs about funda­

mental news Φ in period 2. The signal can either be noiseless: ε = Φ or it 

could be a noisy signal that satisfes: 

P rob (ε = ϕ, Φ = 0) = 25% 

P rob (ε = ϕ, Φ = ϕ) = 25% 

P rob (ε = −ϕ, Φ = 0) = 25% 

P rob (ε = −ϕ, Φ = −ϕ) = 25% 

If the signal is noisy, when the signal of arbitrageurs ε is ϕ, the expectation of 

the subsequent value of Φ is ϕ/2; when the signal of arbitrageurs ε is −ϕ, the 

expectation of the subsequent value of Φ is −ϕ/2. The arbitrageurs choose 
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their demand Da 
1 in period 1 to maximize the same mean variance utility 

function as in period 2 over the distribution they face as of period 1 of their 

certain equivalent wealth in period 2. The passive investors sell high and buy 

low. Their demand is: 

D
i 1 = −αp1 

The demand of the positive feedback traders is equal to zero in period 1: 

D
f 
1 = 0
 

The reason positive feedback traders do not trade in period 1 is that the form 

of positive feedback behaviour reacts to past price movements only but not 

to current price changes. 

The value of Φ is revealed to both passive investors and arbitrageurs by 

period 2. The realized value of Φ is required to be sufciently small so as not 

to upset the mean variance approximation used in deriving the demands of 

arbitrageurs. 

In period 1, the demand of the positive feedback traders is: 

D
f 
2 = β (p1 − p0) = β (p1) 

The price in period 1 is p1, and p0 which equals to zero is the price in period 

0, and β is the positive feedback coefcient. In period 2, the demands of 
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positive feedback traders respond to the price movement from period 0 to 

period 1. They buy when the price goes up and vice versa. Note that positive 

feedback traders place a market order today in response to price movements 

in the past. This formulation disallows investors to respond immediately to 

price changes, i.e. they do not react to price movements from period 1 to 

period 2. An explanation to describe this assumption is that investors react 

to a past history of capital gains by raising their estimate of the mean rate 

of return and thus increasing their demand. 

The reason arbitrageurs will not follow the positive feedback trading strategy 

is that the expected period 3 value of the stock is known for them. They 

will not hold a positive quantity of stocks in period 2 if p2 > Φ since such a 

portfolio is exposed to risk and has a negative expected return. Actually, the 

purchases of positive feedback traders are not related to the price in period 

2 . 

In period 2, arbitrageurs choose their demand D2 
a to maximize a mean vari­

ance utility function with risk aversion coefcient γ. The aggressiveness of 

arbitrageurs in betting on reversion to fundamentals in period 2 is limited 

only by period 3 dividend risk. The demand of arbitrageurs is: 

(Φ − p2)
D2 

a = = α (Φ − p2)
(2γσθ 

2) 

For notational convenience, we set α = 1 . In period 2, the demand of 
(2γσ2)θ 
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the passive investor is negatively related to price as well: 

D2 
i = α (Φ − p2) 

\e assume the slope of passive investors' demands is equal to the arbit­

rageurs' in period 2. \e also set the number of passive investors and arbit­

rageurs equal to 1 − µ and µ , respectively. \hen introducing arbitrageurs, 

this assumption allows us to examine the consequences of it without chan­

ging the market risk bearing capacity due to the changes in µ keeping the 

risk bearing capacity of the economy in constant. 

A rise in the number of arbitrageurs has two opposite efects without passive 

investors. First, prices become destabilized due to it enhances the stimulus 

of arbitrageurs' purchases to positive feedback trading. Secondly, prices be­

come stabilized due to it increases the market risk bearing capacity. The 

second role of arbitrageurs has been emphasized by Friedman (1953) and 

Stein (1987). However, we abstract from this efect and to this end include 

passive investors in the model. If we perform the experiment of simply adding 

arbitrageurs, there are cases in which the risk sharing stabilizing efect is less 

important than the destabilizing efect of anticipatory purchases. 

\e set α > β in order to obtain the stable solutions, since rational speculation 

makes prices in period 1 increase one for one with expected period 2 prices. 

The model will not have a stable equilibrium unless α > β : the demand will 

exceed supply for high correctly anticipated values of p2 . 
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There is no trading in period 3. Investors pay each other according to the 

positions they hold in the stock and the publicly known dividend Φ + θ. In 

period 3, the arbitrageurs pin the stock price down to its fundamental value 

of Φ + θ, because the dividend is known for certain. 

There is no trading in periods 0 and 3 so the market clearing conditions 

are automatically satisfed in those periods. Since there are 1 − µ passive 

investors and µ arbitrageurs, the market clearing conditions for periods 1 

and period 2 are, respectively: 

f 
1

i 
1 

a 
10 = D
 + µD
 + (1 − µ) D


f 
2

i 
2 

a 
20 = D
 + µD
 + (1 − µ) D


To sum up, we are introducing the DSS\ positive feedback model explicitly 

for three reasons. First, it ofers a novel insight to analyse the price movement 

mechanism, i.e. the positive feedback trading. Secondly, in contrast to intu­

ition, arbitrageurs make prices become destabilized where positive feedback 

trading exists. Thirdly, the interaction between positive feedback trading and 

rational traders could help us better understand the mechanism of bubble 

and crashes. As our core literature, De Long et al. (1990b), the later the­

oretical papers including our main and empirical papers were inspired and 

cited by them, such as tools to detect the nonlinearity and empirical result 

across diferent regions. 
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5.1 Theoretical papers 

Lux (1995) raised a contagion model that attempts to formalise herd beha­

viour or mutual mimetic contagion in speculative markets. His work was to 

construct an elementary model of stock dynamics which explicitly included 

contagion of opinion and behaviour and to ofer a behavioural explanation for 

the bubble formation and crash in the stock market. Early literature on the 

noise trading model often assumes that noise traders misperceive expected 

returns (De Long et al., 1990a, 1991) or describe their behaviour as follow­

ing a simple feedback rule and study the resulting dynamics of the market 

(Day and Huang, 1990; Gennotte and Leland, 1990; Chiarella, 1992), where 

the psychological factors which infuence the behaviour of non­sophisticated 

traders explicitly were modelled. Speculators are not simply blind followers 

of the crowd but react in readiness simply to avoid missing the opportunity 

to make a proft. 

According to this model, it will be postulated that a fxed number 2N of 

speculative traders exists. These may either be optimistic or pessimistic 

about the future development of the market, and also assuming there is 

no neutral subjects. There is an index describing the average opinion of 

speculative investors x ∈ [−1, 1]. It follows that x = 0 corresponds to 

a situation of balanced dispositions, i.e. there exists an equal number of 

optimistic or pessimistic individuals. Hence, situations with x > 0 exhibit 

predominant optimism, and x < 0 exhibit predominant pessimism. 
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Infection of attitudes means with a big portion of optimistic traders, it would 

be very probable that the few remaining pessimistic ones would also change 

their attitude and buy stocks, and vice versa for a big portion of pessimistic 

traders. According to the contagion mechanism: 

dx 
= (1 − x) ve ax − (1 + x) ve −ax 

dt 

= 2v [sinh (ax) − x cosh (ax)] 

= 2v [tanh (ax) − x] cosh (ax) 

\here a gives a measure for the strength of infection or herd behaviour, and 

v is a variable for the speed of change. For a ≤ 1, it possesses a unique stable 

equilibrium at x = 0. For a > 1, the equilibrium x = 0 is unstable and two 

additional, stable equilibrium, i.e. x > 0, and x < 0 exist. Therefore, if the 

herd efect is relatively weak, then all defections into one direction will die 

out in the course of events and the system will return to a state of balanced 

dispositions after some disturbance for a ≤ 1. For a > 1, on the other hand, 

small deviations from the balanced state are sufcient to make a majority 

of traders bullish or bearish through mutual infection. The model including 

contagion and price dynamics is as follows: 

� � � � � � 
a1ṗ a1ṗ

ẋ = 2v tanh + a2x − x cosh + a2x 
v v 

ṗ = β [xTN + TF (pf − p)] 

5.
 



The dependence of investment behaviour on price dynamics (which is at the 

heart of most of the contributions in the noise trader literature like DSS\) 

enforces the contagion efect. The a2 is a weight factor describing how much 

information investors try to draw from the behaviour of others, for a2 ≤ 1, 

there exists a unique equilibrium E0 = (0, Pf ). \hen a2 > 1, two additional 

equilibrium, optimistic market E+ and pessimistic market E− emerge, and 

E0 is always unstable. If E0 is a unique equilibrium, i.e. a2 < 1, it may 

either be stable or unstable. The condition for stability is given by: 

2 [a1βTN + v (a2 − 1)] − βTF < 0 

\here TN denotes the trading volume of speculative investors, and TF is a 

measure for the trading volume of fundamentalists as opposed to TN . If we 

consider the variable a0 captures a general prevailing mood of the market, 

we have: 

ẋ = 2v [tanh (a0 + a2x) − x] cosh (a0 + a2x)⎧⎡   ⎤ ⎫ ⎨ r + τ−1 TN ẋ ⎬ 
ȧ0 = τ ⎣  TF ⎦ − R ⎩ TN ⎭ pf + x

TF

The dynamics always possesses the unique equilibrium E = (0, 0). The equi­  
librium is stable (unstable) if a2 − 1+

TN /pf < (>) 0. \hen prices rise due TF

to some random event, a0 also goes up for an extended period. Once infection 

has reached the overwhelming majority of speculative traders, a change in 
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basic sentiment occurs because the exhaustion of the pool of potential buyers 

causes price increases to diminish. There the number of additionally infected 

speculators still rises for a short time, while there is already some scepticism 

spreading out (declining a0) because of the deceleration of the price trend. 

However, the realisation of declining proft opportunities leads very soon to 

increasing sales, and prices go down as well reinforcing contagion of fear 

among traders. This continues until the majority is infected with pessimism. 

Following this the price decrease weakens and a recovery of returns leads to 

a similar reversion of the "basic disposition" as described above. 

Daniel, Hirshleifer and Subrahmanyam (1998) point out the model of De Long 

et al. (1990b) is delivered with mechanistic positive feedback traders. Their 

approach difers in explicitly modelling the decisions of quasi­rational indi­

viduals. Their research shows "Biased Self­attribution" is one possible psy­

chological foundation for a stochastic tendency for trades to be correlated 

with past price movements, which can create an appearance of positive feed­

back trading. This literature provides support to positive feedback trading 

based on a psychological foundation by applying the DHS model that dis­

cussed two situations, the constant confdence and the confdence with vari­

ation. Bem (1965, 1967) discovered a cognitive dissonance that individuals 

too strongly attribute events that confrm the validity of their actions to high 

ability, and events that disconfrm the action to external noise or sabotage. 

"Biased Self­attribution" could lead to overconfdence, where individuals ob­

serve the outcomes of their actions, and they update their confdence in their 
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own ability in a biased manner. 

Hong and Stein (1999) built a unifed behavioural model called unifed theory 

model or the HS model. This model shared the same goal as the DHS 

model but adopted a fundamentally diferent approach. They emphasized 

the interaction between heterogeneous agents rather than trying to say a 

lot about the psychology of the representative agent. That means more of 

the action in their model comes from the way these traders interact with 

one another, and less of it comes from particular cognitive biases that they 

ascribe to individual traders. 

They featured two types of agents in the fnancial market, "news watchers" 

and "momentum traders". Both types are limited rational, with the bounded 

rationality being of a simple form: each type of agent is only able to "process" 

some subset of the available public information. The news watchers make 

forecasts based on signals that they privately observe about future funda­

mentals. The limitation of the news watchers is that they do not condition 

on the past or current prices, but the momentum traders do condition on 

past price changes. However, the limitation of the momentum traders is that 

their forecasts must be "simple" functions of the price history. That assump­

tion is diferent from De Long et al. (1990b), where positive feedback traders 

are extremely irrational and arbitrageurs are fully rational. 

Hong and Stein (1999) also assumed that private information difuses gradu­

ally across the news watcher population. Therefore the news watchers are 
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reacting slowly to information, and the momentum traders are trying to ar­

bitrage on this underreaction based on a change of past prices. However, 

if momentum traders are limited to simple strategies, it turns out that this 

intuition is incomplete. The momentum traders' attempts to proft from the 

underreaction caused by news watchers lead to a perverse outcome: the ini­

tial reaction of prices in the direction of fundamentals is indeed accelerated, 

but this comes at the expense of creating an eventual overreaction to any 

news. The trend­chasing strategy makes money even it is so simple. But it 

would become apparent that the strategy does better in some circumstances 

than in others if one could condition on more information. The strategy 

earns the bulk of its profts early in the "momentum cycle" particularly, by 

which we mean shortly after substantial news has arrived to the news watch­

ers and loses money late in the cycle, by which time prices have already 

overshot long run equilibrium values. Thus a crucial insight is that "early" 

momentum buyers impose a negative externality on "late" momentum buy­

ers. To sum up, the HS model unifed the short term underreaction and 

long term overreaction together into the process when information difuses 

gradually. 
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5.2	 The formation mechanism of positive feedback trad­

ing 

In this section, by reviewing the empirical studies, we will illustrate difer­

ent possible causes for positive feedback trading, such as herd behaviour, 

extrapolative expectations and so on. 

5.2.1	 Herd behaviour 

In the formation mechanism of positive feedback trading, the gossip around 

the general public contributes a lot. \hether it comes from the newspaper, 

television or an upper class gala, the information circulated has eliminated 

the rational doubt, push more and more people into the market, i.e. the 

public demonstrate "Herd Behaviour". Herding refers to the type of conduct 

involving similarity in behavior following interactive observation of beliefs, 

actions or action­payofs (Hirshleifer and Hong Teoh, 2003). This kind of 

behaviour that concerns following other's actions will cause positive feedback 

trading at the market. 

The frst person who raised the concept of herd behaviour was Keynes (1936). 

He also justifed the rationale of the existence of herd behaviour by using the 

beauty contest as a example. 

"It is not a case of choosing those faces that, to the best of one's judgment, are 

really the prettiest, nor even those that average opinion genuinely thinks the 
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prettiest. \e have reached the third degree where we devote our intelligences 

to anticipating what average opinion expects the average opinion to be. And 

there are some, I believe, who practice the fourth, ffth and higher degrees. 

" (Keynes, 1936). 

He believed that similar behaviour was at work within the stock market. 

This would have people pricing shares not based on what they think their 

fundamental value is, but rather on what they think everyone else thinks 

their value is, or what everybody else would predict the average assessment 

of value to be. 

Festinger (1957) also pointed out that, when facing confict, our mind will 

subconsciously eliminate the view which has the least connection with others 

and will seek the balance. This phenomenon is called cognitive dissonance 

reduction. In the stock market, herd behaviour has more than one defnition. 

Lakonishok, Shleifer and Vishny (1992) believed that herd behaviour meant 

to buy or sell the same stock with other investors at the same time. This 

concept is much narrower than others, since a group of investors conducting 

the same trading decision based on the same information they have received 

is diferent from a group of investors trying to replicate other's actions. In 

our research model, the positive feedback trader and the smart arbitrageur 

could represent both groups. 

There is a lot of theoretical analysis on the rationale of herd behaviour. The 

pay­of externalities herding model is the earliest example. The main concept 
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is that when the market condition is getting worse and the people who take 

earlier action will damage the beneft of acting later, i.e. the externality 

exists, the most rational choice for all participants is to act as soon as possible. 

Bank runs are a good example, and we could also see this when the asset 

bubble crushes. 

Devenow and \elch (1996) and Bikhchandani and Sharma (2000) proposed 

the information cascade herding model. They analysed market participants 

who lacked the ability to gather information, therefore they try to mimic 

other investor that has superior ability to gathering information, such as top 

ranked fund managers or institutional investors. Trueman (199.) demon­

strated that the herding efect is exists between fnancial analysts. His model 

shows that analysts with low abilities issue earnings forecasts that are close 

to those announced by other analysts in order to mimic high ability analysts 

and get a bigger compensation. 

The principal agent herding model has explained another herding behaviour 

under a specifc assessment method. Scharfstein and Stein (1990) demon­

strated herd behaviour between fund managers and argued that it could be 

the consequence of rational attempts by managers to enhance their repu­

tation as decision makers, or it correlated to prediction errors that lead to 

the "sharing the blame" efect that drives managers to herd. Grinblatt, Tit­

man and \ermers (1995) also proved the herd behaviour between mutual 

funds investment. This reputation based herding takes place because under 
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a specifc assessment method, the fund manager does not need to be the best 

performer but will try to be the worst among their peers. 

The empirical studies about herd behaviour approach the subject from two 

angles. One is the stock price, Christie and Huang (1995) did some very 

impactful research by testing the dispersion for the individual return and 

the market return. Their results for both daily and monthly returns did not 

support the presence of herding. Their method received criticism due to its 

lack of sensitivity, that is their method is able to detect sharp herding efects 

but lacks ability to detect the less dramatic ones. Chang, Cheng and Khorana 

(2000) proposed a modifed method, instead of using cross­sectional standard 

deviation of returns (CSSD), they proposed using cross­sectional absolute 

deviation of returns (CSAD) to measure the dispersion, and that allows them 

to catch the minor herd behaviour. Their result supports Christie and Huang 

(1995) for developed countries or regions (US, Japan etc.), but found that 

in the emerging markets like Taiwan or Korea, the dispersion will decline, it 

means the herding behaviour also takes place in the emerging markets. Our 

research is targeting mainland China, and we are expecting this stock market 

behaviour to be like other emerging markets. 

Another angle for empirical studies on herding behaviour is looking at the 

trading subject itself. Graham (1999) divided the analysts into smart and 

dumb types in order to modelize their reputation. The result implies if 

an analyst has a high reputation or low ability, or if there is strong public 
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information that is inconsistent with the analyst's private information, he or 

she is likely to herd. 

Jegadeesh and Kim (2010) developed a model that allows them to specifcally 

test for non­information driven herding of sell­side analysts when they make 

stock recommendations. They found robust results to a variety of controls. 

Their paper was also the frst to directly investigate whether the market 

recognizes herding behaviour. Their results indicate that the market anti­

cipates analysts' tendencies to herd, and the market price reaction on the 

revision date accounts for such herding tendencies. 

Andrikopoulos, Albin Hoefer and Kallinterakis (201.) studied the impact of 

exchange mergers over herding in the context of the EURONEXT group. 

The merger had a mixed impact on diferent countries, although for all coun­

tries except Portugal, their herding structure grew less persitent and noisier 

post­merger, which could be seen as the result achieved by EURONEXT's 

improved informational environment. Andrikopoulos et al. (2017) further re­

vealed that intraday herding is signifcant in the EURONEXT by using the 

tick data. They also found that the herding efect became less strong after 

the 2007­2009 fnancial crisis period. 

5.2.2 Extrapolative expectations 

Beside herd behaviour, there are other possibilities to explain why the pos­

itive feedback efect takes places in trading. For example, the extrapolative 
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expectations applied to making decisions within an uncertain environment 

is a common form of positive feedback. Extrapolative expectations is a pre­

diction method using past change trends of indicator to estimate the future 

situation of indicator. It is frequently applied in economic analysis and pre­

diction, especially in macroeconomics. 

Since extrapolative expectations occurs in decision making, it could often be 

biased. In behavioural fnance, there are several terms to describe the cause 

of this. Representativeness Heuristic is one, predicting the future by search­

ing for the closest scenario in past experience, without carefully considering 

the possibility of matching this scenario. \hen people predict future stock 

prices, they tend to choose obvious stock price patterns, such as unusual and 

persistent price trends, which form a positive feedback dynamic. 

Andreassen and Kraus (1990) had shown that the investor has a tendency 

to follow the trend by conducting an experiment. They illustrated some real 

stock price patterns to experimental subjects and told them they were real. 

They let them trade on a certain price level by giving them initial capital 

and some background information on the stock's current price. Then, for 

every new stock price illustrated, let them change the position they were 

holding and assume their trading had no impact on the market price. Their 

experiment result is as expected. After a short period of observation, the 

experiment subjects started to chase the average price level when the price 

does not have an obvious trend. They did buy when the price was falling 
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and sell when the price was rising. \hen the price forms a trend, people 

will start to chase that trend. That is, buying more when price is rising, and 

selling when price is falling. At this moment, the experiment subjects are 

not extrapolated by the price level, but extrapolated by the change of price 

level. The experiment also found that the changing of trend chasing only 

take place after a series observation and react on the distinct changing on 

price level. 

In addition to the experimental studies, Case and Shiller (1988) also surveyed 

house buyers. They found that house buyers anticipate the value of houses 

continuing to rise when the value of houses are already rising sharply in 

the city. In contrast, if past house prices do not have a rising trend, the 

house buyer will not have that anticipation. Shiller (1988) also performed 

another survey of the investors that sold their stocks after the 1987 stock 

market crash. He found that almost every investor that sold their own stock 

put the falling price as the reason for selling . That clearly shows, they 

are anticipating the price falling even further. Frankel and Froot (1987) 

analysed the change of exchange rate during the 1980s, showing that even 

when investors were aware the trend could reverse in the long term, they 

could still take a trend chasing strategy for the short term. 

Gennaioli and Shleifer (2018) argued that business cycles are both predict­

able and driven by irrationality. They take their cue from a number of recent 

papers hinting that recessions are actually possible to predict years in ad­
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vance, if one simply pays attention to the right variables. One of these is 

by Greenwood and Hanson (2013), showing that when junk bond issuance 

increases and credit spreads narrow, a credit bust often tends to follow two 

or three years later. Another one is by Baron and Xiong (2017), showing a 

similar result for bank lending instead of corporate bonds. 

All of these papers have one thing in common, that is they use debt to predict 

recessions years in advance. Gennaioli and Shleifer explain these patterns by 

turning to their own preferred theory of human irrationality, the theory of 

extrapolative expectations (Barberis et al., 2018). Basically, this theory holds 

that when asset prices rise, home values, stocks and so on, without a break, 

investors start to believe that this trend represents a new normal.They pile 

into the asset, pumping up the price even more, and seem to confrm the idea 

that the trend will never end. But when the extrapolators' money runs out, 

reality sets in and a crash ensues. 

5.2.3 Other behavioural factors indirectly afect the stock price 

The research in this section is a bit diferent, because it focuses on factors 

which do not directly link to the fundamental value but still cause the price 

of stock to change. This is important because these factors change trigger the 

price change, and due to the condition changes in a scale, such as weather, the 

power of positive feedback trading begins. It gives a idea when the market 

has no economical related news, but could still form a trend. 
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Goetzmann et al. (2015) was the frst to examine the impact of weather on 

institutional investor trading decisions and individual stock returns. Recent 

research found that the weather patterns of major fnancial centres has a re­

lationship to the return of stock indices, therefore it provided evidence that 

investor mood has an impact on asset price. For example, Hirshleifer and 

Shumway (2003) used data from the international stock exchange demon­

strate that the return was higher on sunny days due to investors having a 

good mood. The founding in fnance has approved the theories from psy­

chology, that is the investors falsely take into account the mood induced by 

the weather into an information source of decision making, and the weather 

should not have a relationship to the object of decision making, such as stock 

return. 

Their study focused on the economical mechanism of how the weather­

induced mood afected the asset price. More specifcally, they investigated 

how mood afected the institutional investor which is the main part of the 

price decision. Since there is already research which shows that experienced 

investors will also afect by cognitive bias, they assume the weather will afect 

their mood and further afect on price. 

To test the hypothesis, they used cloud cover as the agent indicator for 

investor mood, and also data of position hold of institutional investors. They 

found that relatively cloudier days increase perceived overpricing in both 

individual stocks and the Dow Jones Industrial Index, and increases selling 
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propensities of institutions. They also used their new indicator show that 

investor pessimism negatively impacts daily stock returns, most on high cost 

to arbitrage stocks. Since the existing studies on the weather efect on stock 

index returns are for individual investors, their founding complementing by 

showing the weather could also afect the institution as well, which ofered 

an additional channel through which can manifest stock price. 

Gao and Lin (2015) demonstrated that there is a substitution efect between 

stock trading and gambling, at least for individual investors. They found 

that the trading volume by individual investors decreases between 5.2% and 

9.1% among stocks preferred by individual investors and between 6.8% and 

8.6% among lottery­like stocks when the jackpot exceeds 500 million Taiwan 

dollars (about 150 million US dollars). 

There are two possible explanations for the decline of trading volume along 

with the big jackpot appears. One hypothesis is that investors might just be 

having fun and feeling excited, if there is a substitution efect between stock 

trading and gambling, the jackpot will make the trading volume of individual 

investors (both at long and short positions) decline. Another hypothesis is 

that the individual investor might treat stock trading as having a similar 

risk exposure as the lottery, so when the jackpot went big, the individual 

investors would use the lottery to substitute the stocks. So their net position 

will decrease, that is, they reduce their buy volume more than their sell 

volume in stocks. The evidence that buying stock is as gratifying as selling 
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stock is consistent with our hypothesis that individual investors trade stocks 

for fun and excitement. 

Guo and Zhang (2016) show that the air quality could afect the stock market 

participant by diferent channel thus afect the stock market. Similar to the 

research done by Hirshleifer and Shumway (2003), air pollution could trigger 

mood change (Lepori, 2009). Their research used the classical method to 

demonstrate that the air quality has an impact on the stock market and 

there is a channel between mood and air quality. Air pollution will raise 

the volatility of stock mainly due to the mood change stated above, and 

they used the Copula method to capture the other channel efect besides the 

mood, such as policy and expectation. 

5.3 Empirical Research 

Sentana and \adhwani (1992) present evidence on the links between volatil­

ity and returns autocorrelations by using both hourly data around the period 

of the October 1987 crash and daily data for 1885­1988. They use alternative 

measures of volatility based on an exponential GARGH model (EGARGH), 

and on non­parametric methods as well. Their result reported suggests that 

stock returns at short horizons exhibit positive serial correlation when volat­

ility is low, but returns exhibit negative autocorrelation when volatility is 

rather high. This time the varying nature of the serial correlation pattern 
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appears to be robust across diferent periods and diferent measures of volatil­

ity. They also found some evidence which suggests that the extent of positive 

feedback trading is greater following price declines than it is after price rises. 

This asymmetry is consistent with both the possibility that the existence of 

signifcant distress selling after price declines and with risk aversion declines 

rapidly with wealth. 

Koutmos (1997) has examined the autocorrelation pattern of the returns of 

the stock market in six major industrialized countries, assuming that some 

traders follow positive feedback trading strategies. In all six markets, he 

found that feedback trading is an important factor of short term movements 

in stock returns. The impact of feedback trading is to produce negative frst 

order autocorrelation in stock returns, which becomes more negative as the 

level of volatility rises. He also found that the results support Sentana and 

\adhwani (1992) that in four out of the six markets, the feedback trading 

is a little more intense during the market declines. 

Koutmos and Saidi (2001) tested for the presence of positive feedback trading 

in the stock index returns of six emerging stock markets. They also found that 

feedback trading is an important factor in determining short term movements 

in stock returns and it produces negative frst order autocorrelation stock 

returns, which become more negative as the level of volatility rises. One 

contrast from Sentana and \adhwani (1992) and Koutmos (1997), papers 

which focus more on the developed market, this time for the majority of the 
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emerging markets that Koutmos and Saidi (2001) examined suggested the 

positive feedback trading is asymmetric in up and down markets. Unlike the 

feedback traders from developed markets who are active in up and down, 

this study suggests that feedback traders at emerging stock market are just 

intense during market decline but absent on the up side. Such behaviour is 

also consistent with the notion that the so­called 'leverage efect' may actually 

be due to intense feedback trading during market declines. Jiang, Shen and 

Zhao (2008) have the same fndings in market characteristics with Koutmos 

and Saidi (2001), in the Shanghai Stock Exchange Composite (SSEC) Index 

and ShenZhen Stock Exchange Component (SZEC) Index in the Chinese 

Stock market from 1996 to 2005. 

\atanabe (2002) examined the autocorrelation pattern of the returns in the 

Tokyo Stock Exchange (TSE) assuming that some traders follow a positive 

feedback trading strategy. The relation between autocorrelation and volat­

ility is specifed in two diferent ways. One is the linear AR (LAR) model 

that specifes as a linear function and the other is the exponential AR (EAR) 

model that specifes as an exponential function. 

Rt = a + (b0 + b1σ2)Rt−1 + b2|Rt−1| + cσ2 + εtt t 

and 

εt = σtzt, zt ∼ i.i.d., E [zt] = 0, E [zt 
2] = 1 
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This specifcation is henceforth called the Linear AR (LAR) model, which is 

used by Sentana and \adhwani (1992) and Koutmos (1997). If b1 is negative, 

autocorrelation is decreasing in volatility. Because of the presence of the term 

b2|Rt−1| in the equation, the autocorrelation coefcient varies depending on 

the sign of Rt−1, i.e. 

b0 + b1σt 
2 + b2 if Rt−1 ≥ 0 

b0 + b1σt 
2 − b2 if Rt−1 < 0 

If b2 is positive, the autocorrelation coefcient is larger during market ad­

vances, indicating that positive feedback trading is more intense during mar­

ket declines. Using daily data on the US stock returns, Sentana and \adh­

wani (1992) document that the estimates of b1 and b2 are respectively negative 

and positive and that both are statistically signifcant. A similar result is 

obtained by Koutmos (1997) for other stock markets. To check the robust­

ness of results, the exponential AR (EAR) model is also considered in which 

the equation is replaced by: 

= a + [b0 + b1 exp(−σ2/σ2)]Rt−1 + b2|Rt−1| + cσ2 + εtRt t t 

This specifcation is the same as the one employed by LeBaron (1992) and 

Bollerslev, Engle and Nelson (199.) except that they omit the term b2|Rt−1|. 

σ2 is an additional parameter whose value is set equal to the unconditional 
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sample variance of Rt following LeBaron (1992) and Bollerslev, Engle and 

Nelson (199.). In this model, the autocorrelation coefcient is: 

b0 + b1 exp(−σt 2/σ2) + b2 if Rt−1 ≥ 0 

b0 + b1 exp(−σt 2/σ2) − b2 if Rt−1 < 0 

Thus, autocorrelation is decreasing in volatility if b1 is positive. LeBaron 

(1992) and Bollerslev, Engle and Nelson (199.) obtain positive and statist­

ically signifcant estimates of b1 for the US stocks. 

It is shown that the EAR model is favoured over the LAR model. However, 

no matter which model is used, the recent fndings of the inverse relation 

between volatility and autocorrelation, the sign reversal of autocorrelation, 

and the asymmetry in autocorrelation are confrmed. Evidence is also found 

that an increase in margin requirements in the TSE makes stock returns more 

positively autocorrelated, which is consistent with the view that a substantial 

amount of positive feedback trading is due to margin trading. 
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6 Nonlinear Positive Feedback Trading and the 

Complexity of Stock Price 

6.1 Introduction 

For the word "chaos", the defnitions given by most dictionaries are "turmoil", 

"turbulence", "primordial abyss" or "undesired randomness". But in the feld 

of natural science, chaos is a concept was frst discussed in the 1960s. It in­

dicates the internally irregular, non­repetitive and non­periodical movement 

in a deterministic system. There is an internal nonlinear positive feedback 

dynamic existing in the system. Its steady state is a complex, disorderly but 

fnite state of motion. Chaos looks like random motion, but it is not, it is 

driven by its internal deterministic rules. 

Chaos Theory is very attractive for economic analysis, for example, it could 

well explain the endogenous volatility of the economic system, especially for 

some abnormal fuctuation events, e.g., the stock market crashes in 1929 and 

1987. On the one hand, chaos process illustrates the motion of the economic 

system has internal deterministic rules, and it is good for making short term 

predictions. On the other hand, a tiny diference at the initial condition 

can yield widely diverging outcomes, showing that happenstance is vital for 

the evolution of the economic system and explaining the impossibility of 

long term forecast for economics. Indeed, Marshall (1890) noticed that, a 
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positive feedback mechanism is very possible in goods market. It generates 

instability but not equilibrium. Positive feedback could come from large 

scale fxed start­up costs, learning efect and adaptive expectations. He also 

noticed that, when investors make investment decisions based on prediction, 

the instability of goods market might transfer to stock prices. 

Complexity is relative to simplicity. It indicates a state between complete 

disorder and complete order. A complete disordered system on thermal equi­

librium state which presents Brownian motion is a simple system. A complete 

disordered price system which presents random walk is a simple system as 

well. A complete ordered system, for example, a diamond, is a simple sys­

tem. Generally, fewer variables are required to describe a simple system, 

which means more variables are needed to describe a complex system. The 

complexity of stock price means the change of stock price is neither complete 

ordered nor complete disordered, but in between the two. It is defnitely 

not perfectly predictive and also not totally random. It is similar to ran­

dom motion but it is not random motion. For example, it could maintain 

steady fuctuation and suddenly come up with a drastic fuctuation. As we 

know, the distribution of return of stock price presenting the characteristic 

of leptokurtosis and fat tail, that could not describe by normal distribution. 

This section will continue to analyse the complexity of stock price in the 

fnancial market caused by nonlinear positive feedback. The complexity of 

stock price comes from the complexity of the stock market itself. The Stock 
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market is a complex and open system. Political, economic and social factors 

all afect the system at the same time. There are rational investors and 

irrational investors in the market. The formation and evolution of stock 

price is the combined action between those factors. 

6.2 Complexity 

The term "complexity" comes from natural science. The world we live in is an 

evolutionary system, which is extremely complex. The major reason for the 

complexity of the real world comes from "nonlinearity". Sadly almost every 

theory tends to linearisation, in part to deal with the nonlinear problem. To 

really explorer the complexity, we need to research the nonlinear system as 

a whole. 

The rise of Chaos Theory has really pushed up the research on nonlinear 

systems. Chaos Theory focuses more on the evolution process. The stock 

market is a huge open and complex system which contains all kinds of inform­

ation from economics, culture and politics. Diferent forces are enhancing or 

fghting each other, and generate the price continuously through the trad­

ing behaviour. So there are diferent types of investors, such as rational 

traders trading based on rational strategy, irrational traders trading based 

on speculative strategy, and positive feedback traders trading according to 

price movement only. Our following section will demonstrate that the pos­

itive feedback trading strategy is a special and vital force in the stock price 
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evolution system. It could lead the stock price to expand explosively in one 

direction by the way of self enhancing . At the same time, the evolution of 

stock price has also been limited by other factors, such as investor wealth, 

government policy, and so on. The evolution of stock market price could 

appear as a chaotic process under those kinds of conditions, the path of price 

movement has a fractal structure which means complexity is presented. 

6.3 nonlinear Positive Feedback and Chaos 

6.3.1 Characteristics of nonlinear systems 

A nonlinear system is a relative of a linear system. Generally, a linear system 

has the following characteristics. First, for every cause, there is an efect. 

Secondly, the system is looking for the equilibrium position. Thirdly, the 

system is ordered. 

The linear system is simple and perfect which means it has certain and defn­

ite solutions, but it has its limitations. The world in which we live is actually 

a nonlinear system. A linear system is an analytical framework that humans 

established to simplify the analysis to object only, and it becomes less use­

ful in the analysis of complex systems such as the atmosphere, the fnancial 

markets, and social system. For example, in the natural sciences, Newtonian 

physics, which is based on linear relationships, can explain the interaction 
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between two objects, and can accurately predict their trajectory, but it can­

not predict three objects' interacting trajectory. \e can say that in the 19th 

century, most of the time, the three­body problem plagued physicists. Until 

the 19th century, Henri Poincare demonstrated: the three object interaction 

involves an inherent nonlinear nature of the system, and therefore cannot 

provide a single solution, so that confused the three­body problem really be 

solved. 

In general, the nonlinear dynamical system has the following characterist­

ics: frst, it is a feedback system, secondly, there is multiple solutions exist, 

thirdly, the system is away from equilibrium. Due to the presence of nonlinear 

dynamical system of internal feedback mechanisms may produce chaos and 

other complex motion, its trajectory has a fractal structure. Therefore, the 

analysis of nonlinear dynamical systems theory is also called chaos analysis 

theory. 

6.3.2 The Concepts of Chaos 

The concept of chaos was frst introduced by the American meteorologist 

Lorenz (1963). The atmosphere is a large area of complex dynamic systems, 

after the invention of the computer, meteorologists have tried to use math­

ematical models and numerical calculations to do the weather forecasting, 

but made little progress. 
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In the study of weather forecasting model analysis, Lorenz found that the 

following behaviours can occur in a deterministic system: system oscillating 

nearby a stable state and is gradually enlarged, when this oscillation expand 

to a certain extent, it also turned to another unstable state oscillation. Its 

trajectory is limited to a bounded by area. Small insignifcant diferences 

in the initial conditions can produce very diferent results with the previous 

results, i.e. the system is sensitive to the initial conditions. 

The atmosphere is a large area of complex dynamic systems, after the inven­

tion of the computer, meteorologists have tried to use mathematical models 

and numerical weather forecasting, but little progress. 

In the study of weather forecasting model analysis, Lorenz found that in a 

deterministic system can occur following behaviour: system oscillations near 

the a stable state and is gradually enlarged, when this oscillation expand 

to a certain extent, it also turned to another unstable state oscillation. Its 

trajectory confned in a bounded region. Eventually be attracted irregular 

oscillation in the size of the surface is zero. Small insignifcant diferences 

in the initial conditions can produce very diferent results with the previous 

results, the system sensitive to initial conditions. 

Since Lorenz published his work, scientists have discovered aperiodic irregular 

movement in diferent areas. Li and Yorke (1975) mathematically defned the 

chaotic process. After the 1980s, Chaos Theory has been used in the research 

of various felds, such as biology, physics, chemistry, economics and fnance. 
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Although academia, lacks a unifed chaotic process defnition, the author is 

generally regarded as identifying some of the inherent characteristics of the 

chaotic process, summarized below: 

•	 The orbit at an exponential rate of divergence; 

•	 Its trajectory presents a fractal structure; 

•	 The system is sensitive to the initial conditions, i.e. minor diferences 

in initial conditions will be quickly and dramatically enlarged, and lead 

to diferent results; 

•	 There is a threshold value and the bifurcation; 

•	 There is internal feedback motivation; 

•	 It moves away from a static or simple cyclical equilibrium. 

Chaos is not random, but seemingly randomness. Randomness is a random 

process caused by noise disturbance. The chaos is due to the internal de­

terministic nonlinear positive feedback, so it is also known as deterministic 

chaos. This will be explained in the following well­known examples. 

Logistic Map Logistic mapping function is a one­dimensional nonlinear 

feedback system and it is one of the most intuitive chaotic processes. Early 

logistic mapping was developed to give the group dynamics model for natural 
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ecosystems. This system has birth and death rates. On the one hand, the 

group growth in a non­controlled manner is in accordance with the rate of 

Ax. On the other hand, the faster the population grew, the less ecosystem 

resources are available for support. Thus, the system has a mortality rate 

associated with Ax2and resulting in the equation of system growth : 

xt = Axt−1 (1 − xt−1) 

\here A is in the range between 0 and ., and the range of the initial value 

x0 is between 0 and 1. 

\hen the value A is small, the iterative system described is a stable system 

with good characteristics. For example, when A = 0.50, the system reaches 

a stable value after a few iterations. If we increase the value of A, when A 

= 0. 75, the system is no longer stable at a value, but is oscillating back 

and forth between two values. Such a split phenomenon from a solution to 

the two solutions, one called bifurcation. If we continue increasing the value 

of A, when A = 0 87, the system has four solutions. \hen A = 0 8911, 16 

solutions emerge and the threshold value ofA may appear more and more 

intensive. Until A is approximately equal to 0.90 (actually 0.892.86.18), the 

system loses all stability, and the number of solutions is infnite. \hen A 

is close to ., the system becomes a chaotic system. The sequence appears 

to be random at this time. If we do a statistical analysis of the system, it 

is also consistent with the randomness of the standard. \e can distinguish 
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the diference between this and a stochastic system only in more than two­

dimensional systems. 

This system has the following features: 

•	 \hen t → ∞, {xt}will flled with interval [0, 1]. 

•	 Subtle diference of initial value x0 will cause the deviation for the 

forecast of xt amplifcation exponentially. 

•	 \here it looks to be random, but it is generated by a deterministic 

process. 

•	 xtcan have a series of small changes in value, and then suddenly produce 

dramatic changes in scale. 
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Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.

source: Tozzi, Peters and James Iii (2017) 

Figure 1: Bifurcation diagram of a simulated logistic map's nonlinear dy­
namical equation 

Logistic mapping function is not a purely hypothetical equation which has 

nothing connecting to our real life. If we put a microphone connected to a 

speaker in front of that speaker, and then gradually turn up the microphone 

volume, it forms a sound amplifying system with positive feedback, since the 

sound from the speaker has to re­enter the system through the microphone. 

\hen the volume is relatively low, we can hear the low hum. \hen the 

speaker volume is turned up to a certain extent, the system will suddenly 
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alternate back and forth between the two tones. Continuing to increase the 

volume will lead to more bifurcation, until at a threshold level, we will fnd 

that the system enters a chaotic state, the speaker will make a very shrill 

scream. 

For the Logistic process above, we can also assume that there is a game 

process in price: the positive feedback traders will pull the securities price 

away from its fundamental values at a rate of Ax, while the rational traders 

will push the securities price back to its fundamental value at a rate of Ax2 . 

The Logistic process shows that the evolution of prices is likely to be unstable 

in the game between the positive feedback traders and the rational traders. 

Lorenz map Lorenz mapping is a three­variable chaotic system, and un­

like Logistic mapping, that the system is not represented by a diference 

equation, but in diferential equations: 

⎧ 
dx 
dt = a (y − x) a = 10 

⎪⎪⎪⎪⎪⎪⎨ 
dy (1)xt 
dt = −y + x (b − z) b = 28 

⎩dz 

⎪⎪⎪⎪⎪⎪
dt = xy − cz c = 8/3 

The above diferential equation is the Lorenz (1963) built in the study of 

weather forecast. The system has two nonlinear part, a change­over switch 

is controlled by (b − z), the other is the xy to control the z . \hen b > z, is 
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a positive feedback system, and when b < z is the negative feedback system. 

By solving equations mathematically, we know that the system has three 

fxed points, and is unstable. The Trajectory of the system movement will 

be a spiral that moves around two fxed divergence points, and is limited in a 

bounded surface with zero volume for continuous irregular oscillations. This 

irregular oscillating is like a moth seeing two light sources. It few to a light, 

felt hot when approached and then few to another source, so it irregularly 

fy back and forth, never to repeat its fight trajectory. 

The Lorenz process is non­periodic oscillations and seems to never end, it 

is neither disappearing nor diverging but keeping irregular oscillations.This 

trajectory of oscillation is a spiral on the three­dimensional phase space, 

which is very dense and presenting fractal structure. It is infnitely long and 

sensitive to initial conditions. Insignifcant errors in initial conditions can be 

rapidly amplifed by the system, resulting in a very diferent system evolution 

path, the so­called "butterfy efect". 

6.4 Applications of Chaos Theory on economics 

6.4.1 Introduction 

In the last thirty years, the research about deterministic chaos has advanced 

rapidly. This progress comes from both theoretical simulation and empir­

ical tests. Also, Chaos Theory aroused great interest of economics theory 
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researchers. Chaos is attractive to economic analysis. Firstly, in its endogen­

ous fuctuations. In the literature on the economic cycle, in general, there are 

two ways you can cause fuctuations in output, either an external shock or an 

internal factor. In the Box­Jenkins time series model, the economic system 

is in the presence of a stable equilibrium, but constantly getting external 

shocks such as war, climate change etc. The dynamic behaviour of economic 

systems is caused by those external shocks. But in the chaos model, the 

economy follow nonlinear dynamics, which can fuctuate spontaneously and 

never disappear. Therefore, if the chaos model can explain the economic fuc­

tuations, these could spontaneously generated, this is undoubtedly thinking 

of ingenious and novel. Furthermore, chaos must be a nonlinear system, 

which is one of the reasons that causes chaos analysis to attract the interest 

of economists. It is known that the linear model can only generate limited 

kinds of behaviour patterns. However, a nonlinear system could generate 

broader behaviours, for example, the system may produce sudden fuctu­

ation, occasional sharp movement. Those features coincided in line with the 

price volatility characteristics of securities. 

Chaos is a bridge connecting the deterministic process and the stochastic 

process. Deterministic process is completely predictable, and the stochastic 

processes is completely unpredictable. Chaos is on the boundary between 

the deterministic process and stochastic process. Since the chaotic process is 

sensitive to initial conditions, the initial minor diferences can be amplifed 

exponentially, so in the long term evolution of the system is unpredictable. 
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However, if the initial conditions remain stable, applying the chaotic process 

to predict the short­term evolution of the state of the system means the 

results we obtained can be much more accurate than using the predicted 

results by the linear stochastic process. Therefore the chaotic process is vital 

in the signifcance of economic analysis and forecasting. 

The butterfy efect which the chaotic process has could also explain the 

global fnancial market volatility anomalies triggered by accidental events, for 

example, the Mexican fnancial crisis in the early 1990s, the South­east Asian 

fnancial crisis in the late 1990s, and the subprime mortgage crisis in the 

late 2000s. On the stock market, due to the irrational behaviour generated 

by the presence of noise traders and herding, a positive feedback formed 

and it could cause securities prices to rise, and may even produce an asset 

price bubble. Subject to various constraints by external factors, when after 

the asset price bubble reaches a certain level, i.e. more than the nonlinear 

switching threshold, the securities prices may evolve endogenously feedback 

efect, resulting in securities prices to continue to drop. It could also produce 

chaotic and strange attractors, the expression of the price movement of the 

securities oscillating back and forth nearby strange attractors is oscillating 

back and forth nearby in some prices level. 

Thus, the internal positive feedback mechanism and nonlinear switching 

threshold could generate very complex movements. It could be the cyclical 

fuctuations, or the aperiodic and never duplicated complex motion. It results 
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in the price of securities return distribution presenting a complex structure 

e.g. fractal structure, showing a high degree of complexity. For example, 

the sudden price fuctuations have resulted in the distribution of produce fat 

tail phenomenon. The emergence of chaos and of strange attractors leading 

to securities prices irregularly oscillating back and forth nearby some prices 

levels repeatedly, makes the price of securities leptokurtic distribution occurs. 

6.4.2 Chaos Theory and Chaos Control in Economics 

As mentioned in the introduction, since the late 70s to 80s, economists began 

to do analysis on the global dynamics by applying Chaos Theory (Medio, 

1979; Stutzer, 1980; Grandmont, 1985). Benhabib and Nishimura (1979) 

fnd out the way of the discount rate afect properties of an optimal growth 

model by apply the Hopf bifurcation in their study. Benhabib and Day (1981) 

and Day (1982) 's work on economic growth attracted a lot of attention 

and ofered a challenge to the macroeconomic theorist. Also, Benhabib and 

Day (1981), Grandmont (1985) and Boldrin and Montrucchio (1986) derived 

chaotic business cycle models from utility and proft maximization principles 

within the general equilibrium paradigm of perfectly competitive markets 

and rational expectations. Dana and Malgrange (198.) analysed chaos in a 

multiplier accelerator type model beside a classical growth model and a Solow 

growth model analysed by Day (1982) . The necessary conditions for chaos 

has been discussed by Deneckere and Pelikan (1986). \ith lags in investment 
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and consumption in Hicksian type models, Hommes (1991) showed it is very 

easy to produce chaos. Bala, Majumdar and Mitra (1998) located sufcient 

conditions for robust ergodic chaos to appear in growth models. Mitra (2001) 

shows the existence of chaotic equilibrium growth paths within a model of 

endogenous growth with externalities. 

Grandmont (1986) investigated diferent government policies' efect, while 

Grandmont and Laroque (1986) show the signifcance of the expectations 

of formation mechanism for the stability of the economy. Farmer (1986) 

considers production economies and application of Hopf bifurcation that is 

usually meant to be more robust than the fip bifurcation. His result shows 

the chaos depends upon the debt policy of the government. Reichlin (1990) 

replicated the methodology of Farmer (1986) and found an interesting result 

that if government use fscal policy to suppress or eliminate chaos, the action 

could also cure or produce chaos. 

Under adaptive expectations, Chiarella (1988) introduced a general nonlinear 

supply function into the traditional cobweb model. He showed that in its loc­

ally unstable region it contains a chaotic regime follows to a period­doubling 

regime . 

By assuming isoelastic demand and constant unit production costs, Puu 

(1991) studied the nonlinear dynamics of two competing frms in a market in 

terms of Cournot's duopoly theory. This model shows persistent periodic and 

chaotic motions. A common feature of the models described above is that 
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nonlinear dynamics tend to arise as the result of relaxing the assumptions 

underlying the competitive market general equilibrium approach. 

Chaos control is another area that attracted interest since it ofers a new 

perspective in system control strategies which attracted the researcher on 

economic policies. \e already know the characteristic of chaos that is able 

to make a big infuence just by a very tiny change in the initial value. Ott, 

Grebogi and Yorke (1990) demonstrate that a very tiny correction could be 

made in a parameter in order to adjust the system. It is so useful because it 

could be applied into government policy decisions. Faggini (2008a,b) shows 

that a small control could improve the system a lot since the output and the 

input are made exponential by the sensitivity to initial conditions. Holyst 

et al. (1996), Holyst and Urbanowicz (2000), and Kaas (1998) applied meth­

ods of controlling chaos in economic models. Kaas (1998) stabilizing Chaos 

in a Dynamic Macroeconomic Model 

6.4.3 Chaos Theory and Economic Time Series Analysis 

The relevance of addressing chaos in economic models and the potentiality 

ofered by its control techniques is associated to detecting the presence of 

chaotic motion in economic data. From an empirical point of view, it is hard 

to distinguish between fuctuations stimulated by endogenous fuctuations 

determined by the nonlinear nature and random shocks. This would be vi­

tal from a policy point of view that if it were possible to clearly separate 
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stochastic and deterministic components of time series. Because the purely 

stochastic trajectories do not allow forecasting future outcomes, chaotic series 

are deterministic which do allow. For example, if people are aware of the 

initial state, the outcome i.e. the impact by policy could be predicted accur­

ately. 

Trends, noise, and time evolution caused by structural changes are the main 

difculties in economic time series analysis (Barnett and Chen, 1988a,b). 

There are tests to investigate the assumption of random walk and charac­

teristics of chaotic time series.The most used tests for these, applied both in 

macroeconomic and fnancial time series, are: the Hurst exponent estimation 

(with R/S, modifed R/S, V/S analysis); the Lyapunov exponent; Correla­

tion Dimension and the BDS test. \e will briefy introduce them here and 

will do an in­depth discussion on technical detail in a later chapter of the 

methodology. 

As we know the stochastic time series could not be afected by historical 

events, the Hurst exponent raised by Hurst (1951) could be used to identify 

the non­randomness and non­periodic recycling of series. Therefore it could 

be used to identify the characteristics of nonlinearity for a time series. It 

has been widely used outside of the economics feld, and has been especially 

used in fnancial time series, mostly the results are against the fundamental 

assumption of EMH, therefore people critique the methodology of estimation 

and some variant methods created to gives more solid estimation on the Hurst 
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exponent. There is a more detailed explanation in the methodology chapter. 

Grassberger and Procaccia (1983a,b) proposed the concept of Correlation 

Dimension(CD) originally in physics. This method is based on measuring the 

dimension of a strange attractor. It is applied to identifng the time series 

has a lower dimensional deterministic process or not. Its major advantage 

is the simplicity of calculating. However this analysis provides necessary 

but not sufcient conditions for testing the existence of chaos and requires a 

rather large and clean data set, also it is a graphical procedure rather than 

a statistical test. Therefore one usually applied an BDS test proposed by 

Brock et al. (1996) to supplementing their research. It is not a direct test 

for chaos but tests the much more restrictive null hypothesis that the series 

is independent and identically distributed (IID). Then with an additional 

technique by Hsieh (1991), we could rule out the possibility of the tested 

time series been other than chaotic one. The BDS test is wildly used in 

economic and fnancial time series since it is powerful and simple to apply to 

any kind of structure in a series. 

The Lyapunov exponent is another necessary but not sufcient condition for 

chaos. As chaotic motion is very sensitive to the initial state of the system, 

the level of sensitivity could be measured by the Lyapunov exponent. The 

estimate of the Lyapunov exponent has similar requirements to the correl­

ation dimension since they are both brought from natural science, that is 

it requires a large number of observations. It is not easy to get that many 
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samples in economics therefore the result might not be so reliable, but since 

few economic series of such a large size are available, at a certain point it 

still gives a clue of the existence of chaos (Nicolis and Nicolis, 198.). 

There are a lot of papers on tests for chaos in economic time series, and the 

results are controversial. The application of these tests to such data presents 

problems. Besides the difculty we stated above, i.e. need a rather large 

data set to test the time series, another problem is that noise of economic 

time series may render any dimension calculation useless (Brock and Sayers, 

1988). The quality and quantity of the samples and data are crucial and vital 

in applying the test. The noisy and short data sets in empirical economic 

analysis are where the main obstacles are. 

Especially, there are suspicions around the testing on macroeconomic time 

series since the majority macroeconomic of data sets cannot be shorter than 

monthly, which indicate this is not sufcient to perform the tests. Another 

reason is the macroeconomic time series involve mixed efects i.e. it is not 

just the distinction between nonlinearities and noise that is in order, but also 

the eventual source of nonlinearity. 

Although tests in macroeconomic time series are controversial, since relatively 

weak evidence for chaos has been found, people did fnd substantial evidence 

for nonlinearity because most macroeconomic time series have high noise 

levels and a small set of samples. In contrast to the laboratory experiments 

where a large amount of data points can easily be obtained, most economic 
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time series consist of monthly, quarterly, or annual data, with the exception 

of some fnancial data with daily or weekly time series. 

In fact the analysis of the fnancial time series has much better results that are 

more reliable than macroeconomic time series in total. Financial time series 

are a good candidate for analysing chaotic behaviour due to being available 

in larger quantities and for much more disaggregated time intervals. However 

the samples might still fall short when applied to the test in the emerging 

market. 
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Part III 

Methodology 

In this section, a framework of the methodology chapter will be introduced, 

by illustrating the selection of methods commonly used around the research 

feld and applied in the later empirical chapter to help the reader have a 

better understanding of the work. 

The frst section will introduce two main methodologies to detect the monlin­

ear characteristics and chaotic characteristics, these are the Hurst exponent 

and the correlation dimension, including both their estimation processes and 

previous empirical test results. 

The second section will introduce the nonlinear dynamic positive feedback 

model that we derived on the foundation of De Long et al. (1990b), providing 

further description and explanation. Since we added the threshold factor to 

presenting the nonlinear and chaotic characteristics, this section will start 

with the introduction of the simple threshold. The threshold we will be 

using in the empirical chapter is the value of the Hurst exponent. 

The third section will introduce the ARIMA model and the Holt­\inters 

seasonal method. These will be used for comparative tests in the empirical 

chapter later on. 
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7 Nonlinear Characteristics and Chaotic Char­

acteristics 

In the frst section of this chapter, we will bring in our major tools to detect 

the nonlinear characteristics and the chaotic characteristics in the market 

structure. \e will introduce their background knowledge frst, followed by 

their theoretical research stream, and report the related empirical results for 

later comparison. 

7.1 The Hurst Exponent 

7.1.1 Introduction of the Hurst Exponent 

A time series is random only when it has been afected by a lot of probability 

events. A non­random time series may be fractal. This does not obey a ran­

dom walk but is a biased random motion. Internal autocorrelation could last 

in the long run. That means the non­random motion is fractal and shown 

self­similarity at the time. The "Efcient Market Hypothesis" (EMH) impli­

citly assumes all investors will react instantly to new information therefore 

the past, the future and the present have no relationship. Barberis, Shleifer 

and Vishny (1998) argued that the individuals might display a degree of 

conservatism, defned as the slow updating of models in the face of new evid­

ence (Edwards, 1968). The underreaction evidence in particular is consistent 
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with conservatism. They will wait until the trend reaches a threshold then 

react. The unequal reaction to information could lead to a biased random 

motion. Therefore the rate of return in security price has the fractal struc­

ture in time. Hurst comprehensively researched biased random motions in 

19.0s but it became well­known since Mandelbrot's work called this type of 

motion as fractional Brownian motion (FBM) (Mandelbrot and \allis 1969; 

Mandelbrot 1977, 1983). 

Hurst (1951) measured the fuctuation of the reservoirs changes in relation to 

the time in average. Obviously, the range of the fuctuation is not a constant, 

and it depends on the length of time used for measurement. To standardize 

the measurement in time, Hurst used rescaled range analysis (also called 

rescaled standard deviation analysis, R/S analysis). He built a proportion, 

without dimension, by using the standard deviation of the observed value 

divided by the range (Δ) and defned the Hurst exponent. 

Δ2 ∝ (Δt)2H 

\here "H " is the Hurst exponent or the Hurst index. 

Hurst found that most natural phenomena such as rivers, temperature, rain 

and so on do not obey random motion, but follow a biased random movement, 

that is a trend plus a noise, which Mandelbrot called fractional Brownian 

motion. The relative strength between trend and noise could be measured 

by rescaled range along with change in time. That means looking at the 
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diference of H value from random motion that H = 0.5. 

It can be demonstrated that the value of H for Brownian motion equals 0.5. 

\here the value of H for biased random motion is larger than 0.5, it has 

been called fractional Brownian motion" since 2H is not an integer. The 

fractional dimension of fractional Brownian motion D = 2­H. D = 1.5 if 

H = 0.5, this is the H value and dimension for Brownian motion. 

The Hurst exponent could be used to identify the non­randomness and non­

periodic recycling of series. Therefore it could be used to identify the char­

acteristics of nonlinearity for a time series. 

An observation is not independent if the H value does not equal 0.5. Every 

observation contains memory of all past events. The memory lasts forever 

in theory. Although the impact of past events is less than recent events, 

residual efects still exist. In a wider scale, a system shown Hurst statistical 

characteristics is the consequence of a series of correlated events. 

The efect of current to future could be presented as a relationship CN that 

is equal to the correlation over period N, we have: 

CN = 2(2H−1) − 1 

If H < 0.5, the system is an anti­persistent time series, also known as a mean­

reverting series. This type of system has dramatic volatility and has negative 

relationships between increments. That means a downward movement in the 
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next term if there was a rise in the previous term and vice versa. This efect 

is called the anti­persistence efect. The efect becomes stronger if the H 

value closer to zero. 

If H > 0.5, the system has positive relationships between increments. The 

current will afect the future, or we could say that memory exists. This 

efect is called persistence efect. That means an upward movement in the 

next term if there is a rise in the previous term and vice versa. The efect 

becomes stronger if the H value is closer to one. 

7.1.2 Theoretical Research Estimating the Hurst exponent 

Hurst (1951) proposed the frst rescaled range analysis (R/S analysis) for 

estimating the Hurst exponent when he studied the properties of Nile River. 

Mandelbrot (1963, 1972) refned this method and brought it to fnancial 

economics, since then R/S analysis has become the most canonical way and 

the most popular way to analyse market efciency and long term memory 

properties across diferent fnancial markets. The rescaled range statistic is 

the range of the partial sum of deviations of a time series from its mean, 

rescaled by its standard deviation. In detail, consider the sub­series from a 

given time series X(t) = {x1, x2, . . . , xn} with n length, calculate the mean 

1  τ x̄τ = 
τ i=1 xi and τ (1 ≤ τ ≤ n) is the time horizon considered. The R/S 
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statistics of the series is shown below: 

R 1
 
t t

= max (xi − x̄τ ) − min (xi − x̄τ ) 
1≤t≤τ 1≤t≤τS τ Sτ i=1 i=1 

where its standard deviation: 

Sτ =

1
 

τ

τ 
i=1 

(xi − x̄τ )
2 

Hurst (1951) found that many real world phenomena obey the power­law 

relationship given by the equation above: 

R ∝ τH 

S τ 

Therefore the Hurst exponent could be estimated by the linear regression: 

R 
ln = c + H ln (τ)

S τ 

Lo (1991) stated that the classical R/S analysis is sensitive to short range 

dependence, i.e. the predicted behaviour does perhaps not arise from long 

term memory, but may merely be a symptom of short term memory. There­

fore he raised a modifed version of the R/S analysis in order to correct this 

short term memory. This involved replacing the standard deviation Sτ by 
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σ̂n (q), so: 

Qn = 
1 

max 
t 

(xi − x̄τ ) − min 
t 

(xi − x̄τ ) ∝ τH 

1≤t≤τ 1≤t≤τσ̂n (q) i=1 i=1 

where 

τ q τ
1 2 

σ̂n (q) = (xi − x̄τ )
2 + ωi (q) (xj − x̄τ ) (xj−i − x̄τ )

τ τ 
i=1 i=1 j=i+1 

q 
i 

= σ̂x 
2 + 2 ωi (q) γ̂i , ωi (q) = 1 − q < n 

q + 1 
i=1 

where σ̂x 
2 is the usual sample variance estimator and γ̂i is the autocovariance 

estimator. Also, the parameter q is chosen according to Andrews (1991) and 

Andrews and Monahan (1992). 

21 

3τ
 3 2p̂
 3 

q = [kτ ] , kτ = · 
2 1 − p̂2 

where [kτ ] means the greatest integer is less than or equal to k, and p̂ is the 

estimated frst order autocorrelation coefcient. 

Following this Kwiatkowski et al. (1992) introduced the KPSS statistic for 

trend stationariness against a unit root test. Lee and Schmidt (1996) ex­

panded the KPSS statistic on testing of the long term memory efect for a 

stationary time series. Lee and Amsler (1997) further expanded the KPSS 
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statistic to testing the long term memory efect for a unstationary time series. 

The KPSS statistic is: 

� �2τ k
1 

T = (xi − x̄τ )
(q) S2σ̂n τ k=1 i=1 

Cajueiro and Tabak (2005) proposed a new method called rescaled variance 

(V/S) analysis for the evaluation of the Hurst exponent. Their work is based 

on Giraitis et al. (2003) which centralized the KPSS statistic and raised the 

V statistic. They claim the V/S method does not have the shortcomings of 

the R/S method, so more recent empirical work applied the method. The 

V/S replaced the standard deviation given in the R/S analysis by the sample 

variance of k
i=1 (xi − x̄τ ). That is: 

⎡ ⎤� �2 � �2τ k τ k
V 1 1 

= ⎣ (xi − x̄τ ) − (xi − x̄τ ) ⎦ 
S τ τSτ 

2 τ 
k=1 i=1 k=1 i=1 

Correspondingly, the estimation of the Hurst exponent is diferent from the 

previous case since the relationship is diferent: 

V ∝ τ 2H 

S τ 

Therefore: 
V 

ln = c + 2H ln (τ)
S τ 

The classical R/S analysis, the modifed R/S analysis and the V/S analysis 
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are the three most widely used tools to estimate the Hurst exponent. He 

and Qian (2012) compared the approaches by using Monte Carlo simulation. 

They had generated a FBM time series whose theoretical the Hurst exponent 

was already known. They compared the Hurst exponent generated with 

theoretical value to investigate which method is better to use to estimate the 

Hurst exponent. 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.

source: He and Qian (2012) 

Figure 2: Comparison of Measurement of R/S, modifed R/S and V/S stat­
istics from a fractional Brownian motion 

Figure 2 shows the bias which is the mean of the estimated the Hurst expo­

nent by R/S, modifed R/S and V/S minus the theoretical value in FBM for 

the length L = 10, 000. 
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It is clear that the R/S and the modifed R/S overestimate the Hurst ex­

ponent when the theoretical value is smaller than 0.5, but they still give a 

qualitatively correct conclusion, i.e. the theoretical value is 0.., the R/S is 

estimated as 0..5, we still know the time series is anti­persistent. There­

fore, although the V/S gives the most accurate result in the mean­reverting 

market, the R/S and the modifed R/S is still a reliable tool. 

All three methods tend to underestimate the Hurst exponent when the the­

oretical value is above 0.5. To be more specifc, the modifed R/S method is 

slightly more accurate compared with the classical R/S method only when 

the Hurst exponent is signifcantly larger than 0.5, around 0.77. Also, both 

the classical R/S method and the modifed R/S method outperformed the 

V/S method under the persistent time series. 

The V/S method is still a better tool to use in the mean­reverting markets 

i.e. when the H < 0.5. Many real world fnancial markets are not mean­

reverting but persistent with the long memory. These will be discussed in 

the next section. Therefore it is better to apply the classical R/S method or 

the modifed R/S method to estimating the Hurst exponent in a persistent 

time series. 

7.1.3 Empirical Research Estimating the Hurst exponent 

In this section we will frst review some empirical literature on the developed 

fnancial markets to get a sense of the development of empirical research on 
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estimating the Hurst exponent. \e will review some local empirical literature 

research related to our research target markets, the Shanghai stock exchange 

market and the ShenZhen stock exchange market. Finally we will state our 

method choice and explain why it is worth using and why we chose this 

method. 

After Mandelbrot (1971) emphasized the importance of long term depend­

ence in asset markets and encouraged using the R/S analysis in economics 

(Mandelbrot, 1972), Greene and Fielitz (1977) applied the R/S analysis to 

the common stock returns. Some early research including Booth and Kaen 

(1979) looked at gold price, Booth, Kaen and Koveos (1982) investigated the 

foreign exchange rates and Helms, Kaen and Rosenman (198.) tested the 

future contract markets. 

This early empirical research has been criticised by Davies and Harte (1987). 

They said the research did not focus on the R/S statistic itself, but rather on 

the logarithm on subsample sizes. Also, the proof of statistical signifcance 

of their empirical results and the short range dependence are problems as 

well. 

Lo (1991) proposed the modifed R/S analysis (for technical details see Sec­

tion 7.1.2). He also implemented his new method in the empirical test by 

using the annual Cowles (1938) U.S. stock index extending back to 1872, 

and he has found little evidence of long term memory in historical U.S. stock 

exchange market returns. His empirical result has been cited a lot due to 
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its rare and notable outcomes which support EMH from traditional fnance, 

and his new method is believed to be a more correct way for estimating the 

Hurst exponent. 

However, Goetzmann (1993) used Lo's methodology to test the very long 

stock market series. He found evidence to suggest that long term memory 

may exist in the London Stock Exchange (LSE) over the period of 1700-

1989. 

Peters (1989, 1991, 1996) used the R/S analysis in the 1990s, and we summar­

ise the series empirical research and then extract the Hurst exponent results 

reported into a Table 1. His research reach across diferent kinds of fnancial 

market including the stock index, the individual stocks, the exchange rates 

market, the treasury bond market and economical indices. He found almost 

every target series he researched is possessed by long term memory, except 

he found that Singapore dollars against U.S. dollars had the perfect random 

walk. \e could also see the Hurst exponent value of S&P 500 is higher than 

any of those individual stocks. This higher Hurst exponent value shows, by 

eliminating the noise factors and raising the Hurst exponent value, diversi­

fying the asset portfolio could efectively lower the total risk. 
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Sample Name Time Span Hurst exponent 

S&P 500 Index 01/1950 - 07/1988 0.78 

S&P 500 Index* 02/01/1928 - 31/12/1989 0.60 

IBM 01/1963 - 12/1989 0.72 

MOBIL 01/1963 - 12/1989 0.72 

Coca ­ Cola 01/1963 - 12/1989 0.70 

McDonald's 01/1963 - 12/1989 0.65 

Niagara Mohawk 01/1963 - 12/1989 0.69 

MSCI U.K. 01/1959 - 02/1990 0.69 

MSCI Germany 01/1959 - 02/1990 0.72 

MSCI France 01/1959 - 02/1990 0.68 

Treasury Bond (30 years) 01/1950 - 02/1989 0.68 

Treasury Bill (3,6,12 months) 01/1950 - 02/1989 0.65 

USDJPY Exchange rate* 01/1973 - 12/1989 0.6. 

USDSGD Exchange rate* 01/1981 - 10/1990 0.50 

Index of Industrial Production 01/1950 - 01/1990 0.91 

Index of New Business Formation 01/1950 - 01/1990 0.81 

Index of Housing Starts 01/1950 - 01/1990 0.73 

Leading Economic Index 01/1955 - 01/1990 0.83 

Source: Peters (1989, 1991, 1996) 

Table 1: Comprehensive Empirical research 
Note that * means the Hurst exponent calculated on daily basis data, others 
used monthly data 

For the Chinese market research side, Xu and Lu (1999) frst applied R/S 

analysis to empirical research in the Shanghai Stock Exchange Composite 

Index (SSEC) and the ShenZhen Stock Exchange Composite Index (SZEC), 

the Hurst exponents they obtained are 0.661 and 0.6.3. These two research 
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are both based on the daily logarithmic rate of return. Shi (2000) used the 

weekly logarithmic rate of return to do the R/S analysis result and shows the 

Hurst exponent for SSEC is 0.687 and for SZEC is 0.667. Further research 

done by Shi and Zhao (2006) reports the Hurst exponent for SSEC (arith­

metic weighted) is 0.5828, and for SSEC (market cap weighted) is 0.5831. 

The result goes higher in the SZEC market, the Hurst exponent for the SZEC 

(arithmetic weighted) is 0.6913, and for the SZEC (market cap weighted) is 

0.6632. 

Cao and Li (2003) are focused on the ShenZhen stock market, and they 

used the daily, weekly, fortnightly, and monthly logarithmic rate of return 

to calculate the Hurst exponent for SZEC by the R/S analysis. The results 

they obtained are 0.6507, 0.7000, 0.6906 and 0.7576. Zhu (200.) did R/S 

analysis on SZEC while using the daily logarithmic rate of return AR (1), 

and reports that the Hurst exponent is 0.71. 

Du (2008) calculated the Hurst exponent by using the daily logarithmic rate 

of return and he reported the that Hurst exponent for SSEC is 0.6509 and for 

SZEC is 0.6.86. The shortcoming for his R/S analysis is that the time span 

is only three years(2002 to 2005). Zheng (2013) used longer time span data, 

nearly ten years of the daily logarithmic rate of return, for both SSEC and 

SZEC to do R/S analysis. He reported that the Hurst exponent calculated 

is 0.6367 for SSEC and 0.6728 for SZEC. 

The empirical research above shows the Shanghai and ShenZhen stock mar­
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kets do not present random walk characteristics but present trend persistence 

efect. Note that the empirical research is not strong enough to assert that 

the Shanghai stock market and the ShenZhen stock market have long term 

memory efect due to their data are over dated. The time span of their data 

samples are not sufcient to justify the result since the time span is vital 

on investigating the nonlinear characteristics of the sample series. There­

fore, in our empirical test, we will double check this long term memory efect 

by applying a longer time span, from the beginning of the market settle to 

nowadays. 

Also, we will be using the classical R/S analysis to do the estimation for 

the Hurst exponent rather than using the modifed R/S analysis and V/S 

analysis. One reason is the classical R/S analysis is slightly better than the 

modifed R/S analysis within the range 0.6 to 0.77 for FBM (see Fig.1). 

That is, all results reported by the empirical research above lies on, so we 

expect our result will lie on that range as well and the classical R/S analysis 

will give a better estimation. Another reason is the majority of empirical 

research done was using the classical R/S analysis, the same methodology is 

more convenient in the result comparison. 

7.2 Correlation Dimension 

In this section we will introduce the correlation dimension, another tool com­

monly used in the detection of nonlinear and chaotic characteristics other 
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than the Hurst exponent mentioned above. Unlike the estimation of the 

Hurst exponent, the correlation dimension method ofers a graphical pro­

cedure. The Hurst exponent estimation is more focused on the long­term 

memory part of the time series, where the correlation dimension is trying to 

describe the degree of complexity of the internal structure for a time series. 

The higher the degree of flling, the more complex the internal structure of 

the time series, i.e. the more similar it is to the random process time series. 

7.2.1 Introduction of Correlation Dimension 

Following Lorenz (1963) introducing chaos theory, Grassberger and Procac­

cia (1983a,b) proposed the notion of the correlation dimension (CD). The 

correlation dimension method is applied to identify if the time series has a 

lower dimensional deterministic process or not. \e will illustrate the tech­

nical details of the correlation dimension method in 7.2.2. 

The basic idea is that if a chaotic process is a n−dimensional process, then 

this process will fll up the n−dimensional space. But if we put this n−dimensional 

process into a higher dimensional space, e.g. (n + 1) dimension, it could only 

fll up the frst n−dimensional space, and leaves large "holes" in the (n + 1) 

dimension. This is not the case if the time series is random rather than 

chaotic. \e could make a thought experiment. Thus, imagining a type of 

gas, its gas molecules doing random motion, if we put the gas into a larger 

container which has a larger volume, the gas molecules will simply spread to 
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every corner of this new larger space. Solid matter, e.g. a rock will keep its 

original state if we put the rock into a larger container, because its molecules 

are already bounded together. This is similar for a fractal time series, the 

correlation brings points together since it has a deterministic process. 

For a time series, it is random only when it is afected by a number of 

diferent events with equal possibility. In statistical terms, it has a large 

degree of freedom. A non­random time series refects the internal correlation 

of its impact,i.e. the time series is fractal. A random time series has no 

relationships with its original status, there is nothing to attract the points 

within a closer area to maintain its dimension. But for a fractal dimension 

or a fractal time series, they depend on how the substance or the time series 

flls its space. A fractal object flls up its space non­uniformly, because its 

diferent parts have correlation or relationships. 

Also, we need to emphasize that we only focused on the "lower" dimensional 

chaotic behaviour when we tried to test the appearance of the chaos. The 

reason is we might never detect the diference between a higher dimensional 

chaotic behaviour (e.g. a very good pseudo random number generator) from a 

randomness process using a fnite amount of data. This is especially practical 

since we are focusing on the fnancial markets which do not have that much 

data compared to similar research in physics. Given that our research is 

governed by a not too complex chaotic process, i.e. in a lower dimension, it 

should leave us a window, therefore we could predict its pattern, or at least 
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prove we are able to predict its pattern, in a short period of time. 

7.2.2 Theoretical Research Estimating Correlation Dimension 

The correlation dimension method proposed by Grassberger and Procaccia 

(1983a,b) could be performed by four steps. 

The frst step is to eliminate autocorrelation if it is present. \e have to 

remove it from the data because it could potentially afect some test for 

chaos. This usually could be done by fltering the raw data by applying an 

autoregressive model. The lag length is selected based on either the Akaike 

(197.) or Schwarz et al. (1978) information criterion (Hsieh, 1991). 

The second step is to construct phase space dimensional vectors. Assum­

ing the data, a time series {xt, t = 1, 2, · · · , n; xt ∈ R} which is gener­

ated by a nonlinear dynamic system could be embedded in n−space by 

construct n−futures. As an n−history is a point in n−dimensional space, 

therefore n is called the embedding dimension. \e could constructing the 

n−histories of the fltered data in order to obtain the embedding dimension. 
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The n−histories are denoted as follows: 

1­history : xt 
1 = xt 

2­history : x2 
t = (xt−1, xt) 

. . . 

n­history : xt
n = (xt−n+1, · · · , xt) 

The trajectory of a time series process in the phase space is constructed by 

n−dimensional vectors. Note that an attractor is a subset of n−dimensional 

phase space towards which almost all sufciently close trajectories get "at­

tracted" asymptotically. They tend towards strange attractors on which the 

motion is chaotic, i.e. not (multiply) periodic and unpredictable over long 

times, being extremely sensitive on the initial conditions (Grassberger and 

Procaccia, 1983a). 

The third step is to calculat the correlation integral Cn (γ). It measures the 

fraction of the total number of pairs (xxi, xxj) such that the distance between 

xxi and xxj is no more than γ, i.e. it is a measure of spatial correlation. It is 

defned according to: 

T 
1 

Cn (γ) = lim Θ(γ − |xxi − xxj |)
T →∞ T 2 

i, j #=1 

where Θ is the Heaviside function i.e. an indicator like dummy variable J in 
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our previous model, assumed x = γ − |xxi − xxj |, therefore: 

Θ(x) =
 

⎧ ⎪⎪⎨ ⎪⎪⎩
 

0 if x ≤ 0
 

1 if x > 0
 

Grassberger and Procaccia (1983a,b) established that for small distance γ , 

the correlation integral Cn (γ) grows to obey the power law: 

Cn (γ) ∝ γv 

Therefore the correlation exponent vn could be obtained by calculating the 

slope of the graph of ln C (γ) versus ln γ for small values of γ . More spe­

cifcally, we want to calculate the following quantity: 

ln C (γ) 
vn = lim 

γ→∞ ln γ 

\e want to do this step by increasingly larger values of the embedding di­

mension and observing the value of the correlation exponent. It will stabilize 

at the saturation value of the correlation exponent. This value is the value 

of correlation dimension v (correlation dimension value). 

v = lim vn 
n→∞ 

Note that the phenomenon of stabilization will take place only when the sys­
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tem analysed has lower dimensional chaotic process. In a stochastic system, 

the correlation exponent will keep raising with increasingly larger embedding 

dimension, therefore the correlation dimension v will be ∞ . It is also the 

case for a higher chaotic process since we could not fnd a stabilized value 

for the correlation exponent as well. 

Early researchers could not fully convince themselves that a time series had 

lower dimensional chaotic process when they found a stable correlation di­

mension value. There is a shortcoming in the correlation dimension method, 

i.e. the correlation dimension method is a graphical procedure rather than a 

statistical test. Therefore a diferent but related test the "BDS" test (Brock 

et al., 1996) was introduced by Brock, Dechert, and Scheinkman originally 

in 1987. It was motivated by the special problems raised by designing a test 

on time series data to detect whether such data came from a (possibly noisy) 

chaotic data generation process. 

The null hypothesis that is tested for is that a time series sample comes from 

a data generating process that is "Independent and Identically Distributed" 

(IID). A time series has nonlinearity if the null of IID has been rejected. The 

BDS tests are often conducted simultaneously when calculating the correla­

tion dimension value, since BDS statistics are very sensitive to any deviation 

from IID for diferent sorts of models. If {xt : t = 1, · · · , T } is a random 
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sample of IID observations, then: 

Cn (γ) = C1 (γ)
n 

One can estimate Cn (γ) and C1 (γ) by the usual sample versions Cn,T (γ) 

and C1,T (γ). The BDS statistic Wn,T (γ) has a standard normal limiting 

distribution and is calculated by: 

√ 
T [Cn,T (γ) − C1,T (γ)

n]
Wn,T (γ) = , as T → ∞ 

σn,T (γ) 

Here σn,T (γ) is an estimate of the asymptotic standard error of [Cn,T (γ) − C1,T (γ)
n]. 

The BDS statistic shows that it should be asymptotically N (0, 1) as T → ∞ 

if the residuals from the estimated model are actually IID whether it is a 

linear or nonlinear model. The larger the value of the BDS statistic, the 

stronger the evidence of nonlinearity in the data. Note that Dechert (1988) 

has given several counter examples for the statement that Cn (γ) = C1 (γ)
n 

does imply IID. 

Both Scheinkman and Lebaron (1989) and Brock and Baek (1991) (their 

empirical result to be discussed in Section 7.2.3) reported the null of IID was 

rejected for returns (including dividends) on the value weighted portfolio of 

the US stock market. However, rejection of the null of IID by the BDS 

statistic is not direct evidence that the time series exhibits a low complexity 

chaotic behaviour. Hsieh (1991) concluded the rejection of IID could be 
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consistent with any of the following four types of non­IID behaviour: linear 

dependence, nonstationarity, nonlinear stochastic processes and chaos (i.e. 

nonlinear deterministic processes). The BDS has good power to detect those 

four types of behaviour. Therefore to safely draw the conclusion that the 

data is chaotic, we need to eliminate the other three possibilities. 

The linear dependence could be easily ruled out due to the fact there is little 

of it in the raw data. Also we could remove whatever correlation there is by 

fltering the data. 

The nonstationarity could also be ruled out because it can be eliminated by 

diferencing the data. Hsieh (1991) also reported it is unlikely that infrequent 

structural changes are causing the rejection of IID. 

To rule out the nonlinear stochastic process is a much more complicated task. 

Scheinkman and Lebaron (1989) pointed out that some nonlinear stochastic 

models, such as autoregressive conditional heteroskedasticity (ARCH) model 

(Engle, 1982), exhibit dependence similar to that of chaotic maps. Urrutia 

et al. (2002) and Urrutia and Vu (2006) did a further investigation by fol­

lowing the technique from Hsieh (1991). \e proceed to consider whether 

stock returns are nonlinear in variance: xt = g (xt−1 , ...) ft. The ARCH type 

models as the special cases included from this general model of conditional 

heteroskedasticity. The object is to fnd the evidence of the conditional het­
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eroskedasticity. \e could observe that if we take the absolute value: 

|xt| = |g (xt−1 , ...)| |ft| 

If g () is diferentiable, a Taylor series expansion would yield the result that 

|xt| depends on |xt−i|. Thus, if we compute the autocorrelation of the absolute 

valued data, the fnding of the correlation of |xt| with |xt−i| is the evidence 

of the conditional heteroskedasticity. 

The second objective is to determine whether the conditional heteroskedasti­

city captured by ARCH type models account for all the nonlinearity in the 

stock return. To achieve that objective we need to ft an EGARCH model 

to the data: 

xt ∼ N 0 , σt 
2 , 

log σt 
2 = φ0 + φ

    
xt−1 

σt−1

    
+ ψ log σt
2 
−1 + 

γxt−1 

σt−1 

One reason to choose the EGARCH model is that the simple ARCH or 

the GARCH models impose restrictions on the signs of the parameters to 

guarantee that estimated variances are positive. Since EGARCH does not, 

numerical problems associated with constrained optimization are therefore 

avoided.. Another reason is that the EGARCH model could accommod­

ate conditional skewness. If the EGARCH model is correctly specifed, the 

standardized residuals: 
xt 

zt = ,
σ̂t 
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should be IID in large samples. Note that σ̂t is the ftted value of the stand­

ard deviation from the variance equation. The correlation dimension method 

and the BDS statistic could be applied to the standardized residuals to test 

if the EGARCH captures all nonlinearity present in stock returns. If the 

correlation dimension value does not explode with increments in the embed­

ding dimension, and the BDS statistic rejects the null of IID. That is, the 

correlation dimension and the BDS detect the presence of nonlinearity in the 

data, even after controlling for heteroskedasticity. Then we could conclud 

that the conditional heteroskedasticity could not account for the presence of 

nonlinear structures in the stock returns (Urrutia et al., 2002; Urrutia and 

Vu, 2006). 

7.2.3 Empirical Research for Estimating Correlation Dimension 

Scheinkman and Lebaron (1989) constructed a weekly returns series by using 

the data set consisting of more than 5200 daily returns (including dividends) 

on the value weighted portfolio of the Centre for Research in Security Prices 

at the University of Chicago (CRSP). The correlation dimension value they 

obtained is approximately around 6, therefore they argued the weekly returns 

series of US stock presents nonlinear dependence. This nonlinear dependence 

could be used to explain phenomena such as the leptokurtic, the fat tails and 

so on. 

Brock and Baek (1991) expanded the work from Scheinkman and Lebaron 
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(1989). The results of the correlation dimension value they obtained are 

between 7 and 9. The null hypothesis of IID is rejected as well, and more in 

favour of a lower dimensional alternative hypothesis. Hsieh (1991) pointed 

out the reason of rejection in the null of IID might not be chaotic process 

but another nonlinear stochastic process such as ARCH proposed by Engle 

(1982). 

Urrutia et al. (2002) used insurance stocks trade on the New York Stock Ex­

change, American Stock Exchange and NASDAQ to investigate this. They 

constructed the weighted portfolios for both Life ­ Health insurance and 

Property ­ Casualty insurance. The correlation dimension value they repor­

ted is around 6.3 for both types of insurance portfolio. Urrutia and Vu (2006) 

conducted similar research by using the returns of American Depository Re­

ceipts (ADRs) traded on the NYSE, AMEX, and NASDAQ. The correlation 

dimension value they reported is approximately 5.5. Most importantly, Urru­

tia et al. (2002) and Urrutia and Vu (2006) did the further investigation and 

proved that the lower dimensional chaotic process is account for the rejection 

in the null of IID, but not conditional heteroskedasticity. 

For the Chinese market research side, Gao, Pan and Chen (2000a) frst ob­

tained the correlation dimension value by using the daily logarithmic rate of 

return and he reported the correlation dimension value for SSEC is 2.65, for 

SEEC is 3.8(Gao, Pan and Chen, 2000b). Sun and Zhang (2001) reported 

the correlation dimension value for SSEC is 1.58 by using the daily logar­
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ithmic rate of return. The empirical results from China's stock market are 

much smaller than the results reported from developed countries which have 

a mature market, so we expect our empirical results will give a relatively 

smaller correlation dimension value. 

Nonlinear Dynamic Positive Feedback Model 

After detecting the nonlinear characteristics and the chaotic characteristics 

in the market structure, the next step is to build a model in order to make 

a better in description and explanation. The model here is required to have 

nonlinear characteristics and the chaotic characteristics, which we believe our 

proposed model satisfes. The model we derived here is a nonlinear dynamic 

positive feedback model, the work is based on the foundation of the DSS\ 

positive feedback trading model (De Long et al., 1990b), which ofers solid 

fnancial economical sense. 

8.1 Threshold 

The threshold autoregressive (TAR) family proposed by Tong (1978) and 

further explained by Tong (1983) are contained within the state­dependent 

(regime­switching) model family, along with the bilinear and exponential 

autoregressive (EAR) models. 
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The simplest class of TAR models is the self exciting threshold autoregressive 

(SETAR) models of order p introduced by Tong (1983) and specifed by the 

following equation: 

⎧ 
p⎪⎪⎪⎨a0+ aj Yt−j + εt−d if Yt−d ≤ r 

Yt = i=1 
p⎪⎪⎪⎩(a0 + b0)+ (aj + bj )Yt−j + εt−d if Yt−d > r 

i=1 

TAR models are piecewise linear. The threshold process divides one dimen­

sional Euclidean space into k regimes, with a linear autoregressive model in 

each regime. Such a process makes the model nonlinear for at least two re­

gimes, but remains locally linear (Tsay, 1989). One of the simplest of TAR 

models equates the state determining variable with the lagged response, pro­

ducing what is known as a self­exciting threshold autoregressive (SETAR) 

model. 

A comparatively recent development is the smooth transition autoregressive 

(STAR) model, developed by (Terasvirta and Anderson, 1992). The STAR 

model of order p model is defned by: 

Yt−d − r 
Yt = a0 + a1Yt−1 + . . . + apYt−p + (b0 + b1Yt−1 + . . . + bpYt−p)G( ) + εt 

z 

where d; p; r; {εt} are as defned above, z is a smoothing parameter z ∈ R+ 

122
 



and G is a known distribution function which is assumed to be continuous. 

Transitions are now possible along a continuous scale, making the regime­

switching process 'smooth'. This helps overcome the abrupt switch in para­

meter values characteristic of simpler TAR models. 

8.2 Nonlinear Dynamic Positive Feedback Model 

The reason we begin this section by introducing the threshold is because our 

model will use two thresholds as the regime switcher. From the previous 

section on chaos, we already knew this could generate a chaos process. This 

part is the theoretical work of the empirical estimation in a later chapter. 

\e will use the Hurst exponent as the indicator of the threshold (so called 

H TAR), when the Hurst exponent changes reached a threshold and entering 

a new regime, that indicating the market condition changes. Therefore trader 

behaviour changes accordingly, which will make the market present nonlinear 

and chaotic characteristics. 

8.2.1 Model Assumptions 

There are three types of investors: rational informed speculators (arbit­

rageurs), positive feedback traders and passive investors. There is a security 

asset pays no dividend, net supply equals zero and fxed fundamental value 

for a certain period. 
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8.2.2 Type I: Arbitrageurs 

The frst type of market participant is arbitrageurs, present in a measure of 

u. Their demand for an asset is based on deviation of the asset price from 

its fundamental value. If the logarithmic asset price is pt and logarithmic 

fundamental value is ft, the changing in demand for arbitrageurs is: 

S1,t = 

⎧ ⎪⎪⎨ ⎪⎪⎩
 

u · (−β1) · (pt − ft) if (pt − ft) < k 

u · (−β2) · (pt − ft) if (pt − ft) ≥ k 

β1 < β2 

\here β represents the coefcient of sensitivity for arbitrageurs, and k is 

the threshold value of price deviation from its fundamental value that ar­

bitrageurs settle on. If the price deviates far enough from its fundamental 

value, the arbitrageurs will become more aggressive (β1 → β2). More of them 

will enter the market, and they will take larger positions. They may even 

initiate merges, leveraged buyouts, and other forms of restructuring. Thus 

the dummy variable Ik indicates if the threshold k has been reached or not. 

It will switch to 1 if (pt − ft) ≥ k, otherwise Ik = 0. Thus: 
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S1,t	 = u (−β1) (pt − ft) + Ik [u (−β2) (pt − ft) − u (−β1) (pt − ft)] (2) 

= −uβ1 (pt − ft) + Ik [−u (pt − ft) (β2 − β1)] 

= −uβ1 (pt − ft) − [Iku (pt − ft) (β2 − β1)] 

= −uβ1 (pt − ft) − [Ikuβ2 (pt − ft) − Ikuβ1 (pt − ft)] 

= −uβ1 (pt − ft) − Ikuβ2 (pt − ft) + Ikuβ1 (pt − ft) 

∴ S1,t = uβ1 (pt − ft) (Ik − 1) − Ikuβ2 (pt − ft)	 (3) 

The logarithmic fundamental value ft is afected by all kinds of factors and 

is present in random walk. That is: 

ft = f0 + ft ft ∼ N(0, σ2) 

8.2.3 Type II: Positive Feedback Traders 

The second type of the market participant is positive feedback traders, present 

in a measure of v. They are defned as same the in DSS\ (De Long et al., 

1990b), chasing the trend. Thus the changing in demand for positive feed­

back traders is: 

v · θ1 · (pt − pt−1) if (pt − pt−1) < q 
S2,t = ⎪⎪⎩v · θ2 · (pt − pt−1) if (pt − pt−1) ≥ q 

⎧ ⎪⎪⎨ 
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θ1 < θ2 

\here θ represents the coefcient of sensitivity for positive feedback traders, 

and q is the threshold value for the amount of the past price change that 

positive feedback traders settle on. For example, if the price has increased 

so much that it breaks the threshold, the demand from the positive feedback 

traders will change. There is increased uncertainty as to whether the current 

trend will continue or not. The larger the increase in price, the more passive 

the positive feedback traders will become (θ1 → θ2). Thus: 

S2,t = vθ1 (pt − pt−1) + Iq [vθ2 (pt − pt−1) − vθ1 (pt − pt−1)] (.) 

= vθ1 (pt − pt−1) + Iq [v (pt − pt−1) (θ2 − θ1)] 

= vθ1 (pt − pt−1) + Iqv (pt − pt−1) (θ2 − θ1) 

= vθ1 (pt − pt−1) + Iqvθ2 (pt − pt−1) − Iqvθ1 (pt − pt−1) 

∴ S2,t = vθ1 (pt − pt−1) (1 − Iq) + Iqvθ2 (pt − pt−1) (5) 

The dummy variable Iq indicates if the threshold q has been reached or not. 

It will switch to 1 if(pt − pt−1) ≥ q, otherwise Iq = 0. 

8.2.4 Type III: Passive Investors 

The third type of market participant is passive investors that just take a 

long hold position, present in a measure of (1 − u − v). Their changing in 

demand of the asset is based on the changing of the asset's fundamental value 
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but not price. So as long as the fundamental value remains unchanged, their 

changing in demand will be zero: 

S3,t = 0 (6) 

8.3 Model Equilibrium 

8.3.1 Solution 

Under market clearing condition, the market has equilibrium below: 

S1,t + S2,t + S3,t = 0 (7) 

Thus: 

uβ1 (pt − ft) (Ik − 1)−Ikuβ2 (pt − ft)+vθ1 (pt − pt−1) (1 − Iq)+Iqvθ2 (pt − pt−1) = 0 

(8) 

ptuβ1 (Ik − 1) − ftuβ1 (Ik − 1) − ptIkuβ2 − ftIkuβ2 

+ptvθ1 (1 − Iq) − pt−1vθ1 (1 − Iq) + ptIqvθ2 − pt−1Iqvθ2 = 0 

ptuβ1 (Ik − 1) − ptIkuβ2 + ptvθ1 (1 − Iq) + ptIqvθ2 

= ftuβ1 (Ik − 1) + ftIkuβ2 + pt−1vθ1 (1 − Iq) + pt−1Iqvθ2 
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pt [uβ1 (Ik − 1) − Ikuβ2 + vθ1 (1 − Iq) + Iqvθ2] 

= ft [uβ1 (Ik − 1) + Ikuβ2] + pt−1 [vθ1 (1 − Iq) + Iqvθ2] 

Finally: 

uβ1 (Ik − 1) + Ikuβ2 
pt = ft

uβ1 (Ik − 1) − Ikuβ2 + vθ1 (1 − Iq) + Iqvθ2 

vθ1 (1 − Iq) + Iqvθ2 
+ pt−1 (9)

uβ1 (Ik − 1) − Ikuβ2 + vθ1 (1 − Iq) + Iqvθ2 

Let: 
vθ1 (1 − Iq) + Iqvθ2

ϕ = (10)
uβ1 (Ik − 1) − Ikuβ2 + vθ1 (1 − Iq) + Iqvθ2 

Therefore: 

pt = (1 − ϕ) ft + ϕpt−1 (11) 

8.3.2 Analysis 

So from the result above we could see that the condition for pt is close to 

stable is|ϕ| < 1, that is: 

Case J: 

vθ1 (1 − Iq) + Iqvθ2|ϕ| = < 1 
uβ1 (Ik − 1) − Ikuβ2 + vθ1 (1 − Iq) + Iqvθ2 

The asset price is stable. \hen the asset price gets any shock, the arbit­
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rageurs will take the up­wind. That means the price will converge back to 

its fundamental value. 

Case JJ: 

vθ1 (1 − Iq) + Iqvθ2|ϕ| = = 1 
uβ1 (Ik − 1) − Ikuβ2 + vθ1 (1 − Iq) + Iqvθ2 

In this case, the price will neither back to the equilibrium position nor towards 

infnity after been shocked, the asset price might be a constant or swing at 

equal amplitude. 

Case JJJ: 

vθ1 (1 − Iq) + Iqvθ2|ϕ| = > 1 
uβ1 (Ik − 1) − Ikuβ2 + vθ1 (1 − Iq) + Iqvθ2 

The asset price is unstable, any shock to the asset price will leads it to infnity. 

Stage 0 At this time, the price trend is fattened, we can say the price equal 

to its fundamental values. This is similar to Case II above where |ϕ| = 1: 

pt = (1 − ϕ) ft + ϕpt−1 

pt = pt−1 

At this stage, neither the positive feedback trader nor the rational trader 
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take part. Then, there is a trigger, for example the type III investors could 

be treated as institutional investors with a passive index following strategy. 

They are buying (and have to do this) stocks when that company has been 

added to the market index, therefore their return is a replicated return of 

the market index. But actually adding a company into the index did not 

change its fundamental value, but it results in its price going up, and others 

will follow to buy. Or maybe the price fuctuates simply by luck. Either way, 

the price goes up and we move on to the next Stage. 

Stage 1 At this time, the price trend is upward, so we can say the that 

price is higher than its fundamental values. This is similar to Case III above, 

where |ϕ| > 1. 

At this stage, the buy power is larger than the sell power so the price goes up, 

the reason is the positive feedback trader is buying, and some arbitrageurs 

might also join to buy. The threshold q (for the positive feedback trader) and 

k (for arbitrageurs) has not been reached yet. (see Section 8.2.2 and 8.2.3 

for details). 

Stage 2 At this stage, the price is fattened or swings at equal amplitude 

like Case II. Because the force of buying and selling are equal now due to 

the threshold having been reached. the demand from the positive feedback 

traders decreases since they fear it's too high, and also due to the trend not 
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going up as rapidly as before because more and more arbitrageurs are start­

ing to sell. That is due to the price deviating too far from its fundamental 

value, and they may even initiate merges, leveraged buyouts, and other re­

structuring in order to sell. At this stage, the positive feedback traders will 

become (θ1 → θ2), and the arbitrageurs will become (β1 → β2). 

Stage 3 At this time, the price trend is upward, so we can say that the 

price is higher than its fundamental value. This is similar to Case I above, 

where |ϕ| < 1. 

At this stage, the sell power is larger than the buy power so the price goes 

down, the reason is the positive feedback trader closing out or even join to 

short. The price will converge back to its fundamental value. 

This is a long­term description of bubbles and crashes. \e could extend 

this to at smaller intervals by setting multiple threshold values. Similar to 

technical analysis reports published daily, diferent institutions give similar 

resistance and support levels, say if the price breaks through level 1, then 

it will aim to level 2 etc. This kind of price generate bubbles and crashes 

is a dynamic process and relies heavily by its initial setting and coefcient, 

therefore a random event could simply afect the path of the price evolution. 

This may therefore potentially lead to a chaos phenomenon in price evolution. 
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9 The ARIMA model and the Holt­Winters sea­

sonal method 

In this Section, \e will introduce two method streams that has been used in 

time series forecasting. The ARIMA model and the exponential smoothing 

are the two most widely used approaches to time series forecasting, and 

provide complementary approaches to the problem. 

\hile exponential smoothing models were based on a description of trend and 

seasonality in the data, ARIMA models aim to describe the autocorrelations 

in the data. 

9.1 ARIMA model 

In statistics and econometrics, and in particular in time series analysis, an 

autoregressive integrated moving average (ARIMA) model is a generalization 

of an autoregressive moving average (ARMA) model. Both of these models 

are ftted to time series data either to better understand the data or to predict 

future points in the series. 

The ARMA model is mixed by two parts, an autoregressive (AR) model 

and a moving average (MA) model. To put it in another way, both the AR 

model and the MA model are the special form of the ARMA model. The 

ARMA(p,q) model contains p autoregressive terms and q moving average 
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terms. So the ARMA(0,q) is MA(q), the ARMA(p,0) is AR(p), and the 

ARMA defning as follows: 

p q 

Xt = c + εt+ ϕiXt−i+ θiεt−i 
i=1 i=1 

The AR part of ARMA indicates the return of the past. More specifcally, 

it shows that the evolving variable of interest is regressed on its own lagged 

values. The MA part indicates the predication error. More specifcally, it 

shows that the regression error is actually a linear combination of error terms 

whose values occurred contemporaneously and at various times in the past. 

The ARMA model is used when the time series is stationary, while the 

autoregressive integrated moving average (ARIMA) models are applied in 

some cases where data shows evidence of nonstationarity, where an initial 

diferencing step can be applied one or multiple times to eliminate the non­

stationarity to make the model ft the data better. This (for "integrated") 

indicates that the data values have been replaced with the diference between 

their values and the previous values. Note that the ARIMA model used deal 

the frst order diference, and the with GARCH model deals the second order 

diference. 

Therefore, in ARIMA(p,d,q), p is the autoregressive terms and q is the mov­

ing average terms, where the d expresses the integer order of diferencing to 

be applied to the series before estimation to render it stationary. If a non­
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stationary time series could transform into a stationary time series by apply 

diferencing d times, then we could have model: 

φ(L)(1 − L)dXt = θ(L)εt 

where φ(L) is the stationary autoregressive lag operator polynomial, θ(L) 

is the inverted autoregressive lag operator polynomial, the integer order of 

diferencing d: 

(1 − L)d = 1 − Cd 
1L + Cd 

2L2 + . . . + (−1)d−1Cd
d−1Ld−1 + (−1)dLd 

where Cd
r is the combination number r picked from d. 

ARIMA(p,d,q) makes the non­stationary time series become stationary by 

diferencing, and is often focused on the non­stationary time series has a 

trend. There is another possibility for a time series which has seasonal 

volatility. For example, monthly or seasonal data usually has this type of 

non­stationary times series. For monthly data, the non­stationary could be 

eliminated by diferencing: 

(1 − L12)xt = yt, [(1 − L12)xt = xt − xt−12 

For seasonal data, the non­stationary from the original time series could be 

eliminated by diferencing: 

(1 − L4)xt = yt, [(1 − L4)xt = xt − xt−4 
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9.1.1 The ARFIMA model 

Traditional time analysis models include the AR model, MA model, ARMA 

model and ARIMA models, but those models are more focused on the short­

term memory. Since the importance of long­term memory gets the spotlight 

due to its characteristics of nonlinearity, the ARFIMA model proposed by 

Granger and Joyeux (1980) and Hosking (1981) is getting popular in diferent 

areas, especially fnancial economics. Liu, Liu and Zhang (2002) did use 

the ARFIMA model in the Chinese stock market and found the prediction 

failed, they argued that the reason is that the long­term memory efect on 

the Chinese stock market is not strong enough. 

The ARFIMA model defnition and estimation process is shown below: 

If {xt}is a stationary process and satisfes the diference equation: 

φ (L) (1 − L)d xt = θ (L) αt 

Then the {xt} is ARFIMA(p,d,q) process, and: 

φ (L) = 1 − φ1L − φ2L − . . . φpL
p 

θ (L) = 1 − θ1L − θ2L − . . . θqL
q 

1. Analyse the long­term memory efect, that is get the value of d. 
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2. Determining the order, that is get the value of p and q. 

3. To make a prediction, we need to get the value of φ1, . . . φpand θ1, . . . θp. 

Since the diference order d has a relationship with the Hurst exponent, 

H = 0.5 + d 

Therefore we are usually using the R/S method to calculate the value of the 

Hurst exponent to then get the value of d. 

9.2 Introduction of the Holt­Winters seasonal method 

The simple exponential smoothing method is suitable for forecasting data 

with no trend or seasonal pattern, such as our stock market data which does 

not display any seasonality or obviously trending behaviour. Around the 

late 1950s, Holt (1957) and \inters (1960) developed an advance method to 

capture the seasonality, the Holt­\inters method. 

The Holt­\inters method was originally developed as a better prediction 

tool, so it has been applied to diferent research domains, and fnance is one 

of them. Valakevicius and Brazenas (2015) used the seasonal Holt­\inters 

model to study the hourly exchange rate of the Euro (EUR) and US dollar 

(USD). They used two Holt­\inters methods, the addictive one and the 
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multiplicative one, which we are going to cover in the next section; to analyse 

and predict on hourly EUR/USD exchange rate volatility. They found that 

the volatility is best predicted by a simplifed version of the multiplicative 

Holt­\inters model. 

The predictive efectiveness of the Holt­\inters model, no matter which vari­

ation type (addictive or multiplicative), could be compared with the method 

we raised before or a similar model. Omane­Adjepong, Oduro and Oduro 

(2013) applied both the ARIMA model and the Holt­\inters model to fore­

cast Ghana's short­term infation. They used monthly infation data and 

four selected seasonal ARIMA models and made comparison with two Holt­

\inters variation models, they found that the seasonal ARIMA models are 

the most appropriate method for obtaining result at short­term. 

9.2.1 Theoretical Research 

The Holt­\inters seasonal method contains the forecast equation and three 

smoothing ones. This is the core part of the Holt­\inters seasonal method, 

and there are two variations of equations, the additive method and the mul­

tiplicative method. For the additive method, the forecast equation is: 

ŷt+h|t = ft + hbt + st−m+h+ 
m 

The three smoothing equations are the three components in the forecast 

equation. ft is the level equation is: 
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ft = α(yt − st−m) + (1 − α)(ft−1 + bt−1) 

The ft itself means an estimate of the level of the series at time t. More 

specifcally, it is the weighted average between the seasonal index of the past 

and the current seasonal index (ft−1 + bt−1). \here α is the smoothing 

parameter of the level equation. The trend equation is: 

bt = β∗(ft − ft−1) + (1 − β∗)bt−1 

The bt itself means an estimate of the trend for the timer series t. \here β∗ 

is the smoothing parameter of the trend equation. The third equation is the 

seasonal equation. 

st = γ(yt − ft−1 − bt−1) + (1 − γ)st−m 

The seasonal equation is usually expressed as: 

st = γ ∗ (yt − ft) + (1 − γ ∗ )st−m 

Then we are able to substitute the level equation into the seasonal equation: 

st = γ ∗ (1 − α)(yt − ft−1 − bt−1) + [1 − γ ∗ (1 − α)]st−m 
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which is identical to the smoothing equation for the seasonal component 

we specify here with γ = γ∗(1 − α). The usual parameter restriction is 

0 ≤ γ∗ ≤ 1, which translates to 0 ≤ γ∗ ≤ 1 − α.The error correction form of 

the smoothing equations is: 

ft = ft−1 + bt−1 + αet 

bt = bt−1 + αβ∗ et 

st = st−m + γet 

where et = yt − (ft−1 + bt−1 + st−m = yt − ŷt|t−1are the one step training 

forecast errors. 

Holt-Winters multiplicative method The component form for the mul­

tiplicative method is: 

ŷt+h|t = (ft + hbt)st−m+h+ 
m 

ft = α yt + (1 − α)(ft−1 + bt−1)st−m 

bt = β∗(ft − ft−1) + (1 − β∗)bt−1 
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yt 
st = γ + (1 − γ)st−m

ft−1 + bt−1 

and the error correction representation is: 

ft = ft−1 + bt−1 + α 
st
e
−
t

m 

etbt = bt−1 + αβ∗ 
st−m 

et 
st = st + γ 

ft−1 + bt−1 

where et = yt − (ft−1 + bt−1)st−m 

9.2.2 Applicability to the Financial Time Series 

As the previous section illustrated, there are two variations of the Holt­

\inters method, the additive method and the multiplicative method. The 

analysis conducted in the next chapter will be using the additive method. 

The reason is that, frst, the multiplicative Holt­\inters requires strictly 

positive data points, i.e. > 0. Because in the multiplicative model for the 

Holt \inter trend is calculated as division of two data points rather than 

subtraction (in case of additive model). 
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Due to our data contains some negative values, which should be expected in 

terms of returns. The Holt­\inters method we run in the next chapter will 

be the additive method and that method only. 

Another reason for our analysis using the additive method is that, the value 

of return that was used in our data has been already logged. Therefore the 

additive method would be equivalent to the multiplicative method for logged 

return anyway, so we apply only one method to avoid the redundancy. 
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Part IV 

Data Collection, Analysis and 

Evaluation 

In this section, the framework of the data chapter will be introduced. This 

chapter is divided into three parts. The frst part will introduce the method 

of data collection, and more importantly, the rationale of the choice. The 

background information for the research target, the Shanghai Stock Exchange 

will be introduced as well. 

The second part will analyse the characteristics of the market as a whole 

through the SSEC index and individual frms listed by using the Hurst ex­

ponent estimation and calculating the correlation dimension value. It should 

be noted that the frms has been further sampled into smaller portions in 

order to conduct more concise and comparable research. 

The third part raises a new model which is adapted from previous work done 

of DSS\ model. The new model uses the Hurst exponent as the signal for 

thresholds that indicates the changes of market condition. The further test 

has approved its statistical signifcance and comparison shows the new model 

is superior among them. 
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10 Data Collection 

The data that we will be evaluating in the next section is the Shanghai Stock 

Exchange Composite Index (SSEC), from when the stock market started 

trading in December 1990 to January 2015 (5897 trading days as variables). 

Also the data of daily logarithm returns will be used for all frms listed in 

the Shanghai Stock Exchange which is over 1000 companies. The time span 

for those companies varies since they listed at diferent times, but this thesis 

traces back the data to its Initial Public Oferings (IPO) to the year 2015 in 

best eforts. 

China is a very interesting research target to choose, not just due to the fact 

it repsents an emering market that the author is most familiar with, but it 

has unique charateristics that other emerging market lack. Besides the well­

known growth rate and the trading business over the world, China's stock 

market is not as open as other areas. It is relatively young, born after the 

1990s, and forigner could not access it until the 21st century, which means the 

market is dominated by local investment. In the view of behavioural research, 

the tradition of Chinese culture tends to ignore the individual personality and 

encourage people to follow the mass. \e would like to know if this could have 

an impact on the trader's behaviour, thus increasing the degree of positive 

feedback efect in the market. Also, the emipirical test on the Shanghai stock 

market, nonliearity­wise, is not sufcient. Therefore this thesis chosen China 

as the research target. 
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The data source is downloaded from the Thomson Reuters Datastream data­

base for the stock market, and has been compared with the CSMAR Chinese 

fnancial database, \hist very tiny diferences exist for a few frms, these are 

trivial diferences that have no impact on the results i.e. the research con­

clusion remains the same. Note that in a later chapter the data for all frms 

has been narrowed down to samples in order to conduct a better estimation, 

details of the sampling procedure will be explained at section 12.2. 

11 Background of the Exchange 

Shanghai was the frst city in China where stocks including stock exchanges 

and stock trading appeared. Stock trading started in Shanghai as early as 

the 1860s. In the primitive form of stock bourses, the Shanghai Sharebrokers 

Association was established in 1891. Later in 1920 and 1921, the Shanghai 

Security Goods Exchange and the Shanghai Chinese Security Exchange star­

ted operations. By the 1930s, Shanghai had emerged as the fnancial centre 

of the Far East, where both Chinese and foreign investors could trade stocks, 

debentures, government bonds and futures. In 19.6, Shanghai Securities Ex­

change Co., Ltd. was created on the basis of the Chinese Security Exchange, 

but ceased operations three years later in 19.9. 

After Chinese economic reform and a series of policies that intended to open 

up the domestic market were introduced from 1978, the securities market 

started to resume. The frst indication is the treasury bonds started trading 
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again in 1981. Then in 198., stocks and corporate bonds emerged in Shanghai 

and a few other cities. On 26th November 1990, the Shanghai Stock Exchange 

(SSE) came into existence, and it started formal operations on 19th December 

of the same year. There are three types of securities listed at the exchange, 

bond, fund and the one we mainly focus on, stock. 

Table 2: SSE Market Overview 

2014 2013 2012 

No.of Trading Days 2.5 238 2.3 

No.of Listed Companies 995 953 95. 

No.of New Listed Companies .3 1 26 

No.of Listed Securities 3758 2786 2098 

Shares 1039 997 998 

A Shares 986 9.. 9.. 

B Shares 53 53 5. 

Bond 26.6 1731 1059 

Government Bond 267 218 191 

Corporate Bond 2336 1.68 830 

Repo .3 .5 38 

Fund 68 58 .1 

Close end 3 9 12 

ETF 61 .7 29 

Transaction currency fund . 2 ­

Preferred Share 5 ­ ­

Issued Vol (100 M) 

Share 27085.17 25751.69 2.617.62 

Preferred Share 10.3 ­ ­

Capital Raised (100 M) 

Share 3962.59 2515.72 2890.31 
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Table 2: SSE Market Overview 

2014 2013 2012 

Preferred Share 1030 ­ ­

Negotiable Share(100 M) 2.91..59 23731.13 19521.33 

Market Capitalization (100 M) 2.397..02 151165.27 158698... 

Negotiable Capitalization (100 M) 220.95.87 136526.38 13.29...5 

\FE Rank of Market Cap . 6 7 

\FE Rank of Total Capital Raised . 5 3 

\FE Rank of Total Trading Value 3 5 6 

Trading Value(100 M) 1281.97.98 865098.3. 5.7535.22 

Share 377162.12 230266.03 16.5.5.01 

A­Share 3751.9.95 228918.82 16.0.7.38 

B­Share .8...5 689.9. .13..8 

Stock Repurchase 1527.72 657.27 8..1. 

Bond 8668.8.59 625839..1 379818.85 

Goverment Bond 12.7..7 771.6 905.56 

Corporate Bond 2.198.95 1.5.0.88 7537..3 

Repo 8.1.02.16 610526.93 371375.86 

Fund 37.79.25 8989..8 3171.36 

Close end 193 231.86 1...53 

ETF 101.2.68 6706.52 3026.59 

Transaction currency fund 271.1.81 2050..1 ­

Preferred Share ..27 ­ ­

P/E Ratio 15.99 10.99 12.3 

A Shares 15.99 10.99 12.29 

B Shares 15.77 11.62 13.18 

SSE Composite Index 323..68 2115.98 2269.13 

SSE 50 Index 2581.57 157..78 1857.68 
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Table 2: SSE Market Overview 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.

Source: Exchange (2016) 

Table 2 gives some general information on the Shanghai Stock Exchange, 

dated to 2015. China, as one of the key markets, shown rapid growth on 

diferent sorts of indicators, such as the number of seats and newly listed 

companies. The growth is also clearly refected in the \orld Federation of 

Exchanges(\FE) ranking on market capital. 

1.7
 



Some materials have been removed due to 3rd 
party copyright. The unabridged version can be 
viewed in Lancester Library - Coventry 
University.

Source: Exchange {2015) 

Table 3: Historical Number of Accounts Opened 

Table 3 shows the participants of the market increase over time. Note that 

there is a leap in the number of accounts opened in 2007, that is due to the 

global fnancial boom at that time. 

The Shanghai Stock Exchange Composite index (SSEC index) is the main 

index describing the stock market since it contains every listed frm at the 
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exchange. Table . and Table 5 illustrate some factors about The SSEC 

index in the frst quarter of 2015. Notice the high turnover rate, actually the 

highest in the world, refecting that trading in the Chinese stock market is 

very active. 

Total Market Capitalization (100 M Yuan) 29.22 

Index total market capitalization coverage 100% 

Negotiable Capitalization (100 M Yuan) 26.16 

Index market capitalization coverage 100% 

Sample stocks average daily turnover (100 M Yuan) 3.81 

Turnover Rate 79.71% 

Correlation coefcient of daily Index returns 98.16% 

Table .: SSEC Index Basic Market Indicator (at 2015 Q1) 

Proft after Tax (100 M Yuan) 15673.23 

Shareholders' equity (100 M Yuan) 121081.7 

Earnings Per Share (1 Yuan) 0.56 

Per Share Net Asset (1 Yuan) ..36 

Rate of Return 12.9.% 

Equity Ratio 12.66 % 

Asset liability ratio 87.3.% 

Return on Total Assets Ratio 1.6.% 

Table 5: SSEC Index Basic Financial Indicator (at 2015 Q1) 

The SSEC index was frst published on 15th July 1991 and calculated on the 

basis of 100 of the day on 19th December 1990. Figure 3 demonstrates the 

historical trend of this index. 
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Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.

Source: Exchange (2015) 

Figure 3: Historical Trends of SSEC Index 

To sum up, the trend remains approximately fat with little upward move­

ment before 2007. There are a few noticeable peaks worth mentioning. The 

frst peak around mid­1992 is due to the fact that SSE removed the daily 

fuctuation limit, it was very strictly at 0.5%. There are numbers of passive 

index funds begins to trading as well. There is also a little boom and crush 

around 2001. That is due to the high­tech boom around the world, where 

frms with web features get speculated. The later huge up and down since 

2007 is due to the fnancial crisis. 

The downward around 199. and fat trend for quite long time is due to the 

exchange has implemented the board limitation on trading stocks and funds. 

Since then, trading in A­shares, B­shares and securities investment funds is 
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subject to a maximum daily price fuctuation limit of plus or minus 10%, 

except for the frst trading day of its IPO(Initial Public Ofering). Stocks 

subject to a risk warning are subject to a maximum daily price fuctuation 

limit of plus or minus 5%. 

Moreover, all the frms have been characterised by an industrial category. 

Note that the total number added (995) is little below the observation we 

fnd in the next section (1028), that is due to the small amount of frms listed 

both in A shares and B shares. A shares are priced in the local renminbi 

yuan currency, while B shares are quoted in U.S. dollars. Initially, trading in 

A shares are restricted to domestic investors only while B shares are available 

to both domestic (since 2001) and foreign investors. 

More than half of the listed frms are in the manufacturing industry from 

table 6, and the frms in the service sector are few. The majority of listed 

frms in the table are related to infrastructure. "Infrastructure" refers to 

long lived and costly capital assets often with complex design architectures 

that are required for economic growth and development in the public and 

private sectors. In the stock market, it also means their fundamental value 

should change in a rather slow pace, compared to those frms in the retail 

or high technology industry. This also implied a characteristic the Chinese 

stock market should have, but it turns other way round. 
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Industry Number of frms 

Agriculture, forestry, animal husbandry and fshery 15 

Mining industry .7 

Manufacturing 552 

Electricity, heat, gas and water production and supply 52 

Building industry 31 

\holesale and retail trade 89 

Transportation, storage and postal services 57 

Accommodation and catering industry 2 

Transmission of information, software and IT services industry 26 

Financial sector 32 

Real estate 71 

Leasing and Business Services 9 

Scientifc research and technical services 5 

\ater conservancy, environment and public facilities management industry 8 

Education 1 

Health and social work 1 

Culture, Sports and Entertainment 12 

Other 18 

Total 1028 

Table 6: Sector Distribution and Number of Companies 
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12	 Nonlinear Characteristics and Chaotic Char­

acteristics Detection and Estimation 

In this section, we are going to test and estimate the nonlinear characteristics 

and chaotic characteristics by useing the Hurst exponent and correlation 

dimensions. Then we will analyse our result. In addition, we will make 

comparisons to other literature. 

In the methodology chapter, we have already illustrated the development 

history of the Hurst exponent estimation, and we have compared the three 

methods of estimating the Hurst exponent including the rescaled range ana­

lysis (Classical R/S analysis) refned by Mandelbrot (1963, 1972), the mod­

ifed rescaled range analysis (modifed R/S analysis) proposed by Lo (1991) 

and the rescaled bariance analysis (V/S analysis) introduced by Cajueiro and 

Tabak (2005). The comparison at the end of the section shows that we are 

better using the classical R/S analysis or modifed R/S analysis to get the 

most accurate result. \e will apply the classical R/S analysis to the data, 

both the Shanghai Stock Exchange Composite Index (SSEC) and all listed 

frms individually. 

The rescaled range statistic is the range of the partial sum of deviations of 

a time series from its mean, rescaled by its standard deviation. In detail, 

consider the sub­series from a given time series such as the SSEC index or 

each individual frm X(t) = {x1, x2, . . . , xn} with n length, calculate the 
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mean x̄τ	 = 1 τ xi and τ (1 ≤ τ ≤ n) is the time horizon considered. 
τ i=1 

The R/S statistic of the series is shown below: 

R =	 1 max t (xi − x̄τ ) − min t (xi − x̄τ )S τ Sτ i=1	 i=1 
1≤t≤τ	 1≤t≤τ 

where its standard deviation: 

= 1 τ (xi − ¯ 2Sτ τ i=1 xτ )

Hurst (1951) found that many real world phenomena obey the power law 

relationship given by the equation above: 

R ∝ τH 
S τ 

Therefore the Hurst exponent could be estimated by linear regression: 

ln R = c + H ln (τ )
S τ 

12.1	 The Hurst exponent for the SSEC Index and All 

listed frms 

So the value of the Hurst exponent is the slope of the linear regression. \e 

choose the SSEC index from 20th December 1990 to 23rd January 2015 to 
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calculate its Hurst exponent and found an estimate that ftted the data well 

(see Figure .). 

Figure .: Hurst exponent estimated by R/S analysis for SSEC Daily Logar­
ithm Return 

Note that the τ(levels) is artifcial, so we tried to apply diferent values of τ 

and found the value of the Hurst exponent converges around 0.82 since the 

value of standard error narrows after we increase the number of τ . The result 

is very stable after τ larger than 50. In Table 7 we present the result of the 

Hurst exponent estimation along with the t value for H > 0.5 to show its 

signifcance for diferent levels. The critical value is 1.96 at 5% level, and the 

results are statistically signifcant across all levels except at the lowest level 
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which is still on the margin of signifcance. 

n(levels) Hurst exponent estimate Std. error t value for H > 0.5 Pr(>ltl) 

20 0.827753 0.193.831 1.693962 0.0.518816 
.0 0.8181216 0.1360529 2.33822 0.009720608 
60 0.8166608 0.1126635 2.810678 0.002.87901 
80 0.823601. 0.09505867 3..0.228 0.000336112 
100 0.820.199 0.086.3336 3.707132 0.000106705 
120 0.8163717 0.0761169 ..156392 1.66178E­05 
1.0 0.81575.7 0.07111182 ....0256 ..65.8E­06 
160 0.8227396 0.066195.9 ..875553 5.70751E­07 
180 0.8218027 0.06291657 5.11.753 1.66953E­07 
200 0.81927.7 0.0595812 5.3586.8 ..50972E­08 

Table 7: Hurst exponent value for diferent levels 

The H value being larger than 0.5 means the events of today indeed afect the 

events tomorrow. That is saying the information received today is still taking 

account by the market after its been received. This also refect the price of 

SSEC is not obey random walk. There is a correlation between return series, 

and it is not a simple series correlation. Because the impact of information 

will decay quickly in a series correlation, and here is a long­term memory. 

If we compare the value of the Hurst exponent of the SSEC index with other 

market indices from the developed countries, the Chinese one is higher than 

those developed markets (Table 1) such as S&P 500. This is reasonable and 

coherent with our expectation, since as an emerging market, the Chinese 

stock market shows more chaotic characteristics therefore the persistence 

efect is expected to last longer. 
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\e also proposed a new way to see the whole pattern of the development of 

the Hurst exponent.The Hurst exponent could be estimating in a rolling way 

rather than processing the time series as a whole. The way to rolling it is to 

cut the original time series into diferent segments, and only move one step 

for each rolling. 

Figure 5: Hurst exponent Estimation by Starting Rolling Methods 
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Figure 6: Hurst exponent Estimation by Simple Rolling Methods 

Figure 5 and Figure 6 are Hurst exponent estimations presented using two 

diferent methods. If we use a sub­sample of the data from the SSEC Index 

(Figure .), we see a similar estimate to the whole series, the value of the 

Hurst exponent is approximately 0.82 again. However, if we do the rolling 

method by a small step each time, taking account of the previous information, 

we will obtain a smaller value of the Hurst exponent. \e believe this new 

method which takes into account the previous information could refect the 

development of the market. The recent market is becoming more mature 

since the value of the Hurst exponent is slowly going down. 

There is a large decrease in the frst 1500 days of the sample, which lessened 

after this point. This is believed to be at least in part due to the introduction 
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of the trading board limitation system on the SSEC in December 1996. Before 

that time, there was no limit to the rise or fall for an individual frm stock. 

Therefore the positive feedback efect is very powerful, and it creates a much 

bigger impact on the future. The scale of the changing in price was limited 

by 10% in whatever direction after that time. Then the market became less 

one­sided before. 

Qin and Ying (2011) used the moving blocks bootstrap method which is 

similar to our rolling window approach to calculate the development of the 

Hurst exponent from the SSEC. The data they used is from 1990 to 2010, 

and their fndings is very similar to ours. The Hurst exponent was large than 

0.8 at the beginning, then it started to drop to a lower but more stationary 

value for recent years. Though the stationary value which they get is slightly 

higher, about 0.65 to 0.7. 

The research in the next section will be changed from market index to in­

dividual frms. The R/S method will be applied in order to estimate the 

Hurst exponent for all listed frms in the SSEC. Figure 7 is the Hurst expo­

nent estimation for all listed frms stock return in SSEC, and Figure 8 is the 

distribution of it. 

12.2 The Hurst exponent for the Individual Firms 

12.2.1 The Hurst exponent for All Listed Firms 
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Figure 7: Hurst exponent Estimation for All Listed Firms Stock Return in 
SSEC 
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Figure 8: Hurst exponent Estimation Distribution for All Listed Firms Stock 
Return in SSEC 
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Each dot in Figure 7 represents a frm. \e can see the line that indicates the 

median lays about 0.59. In Figure 8 it is represents from another angle, the 

peak of the distribution is signifcantly deviated from 0.5 which is the point 

the traditional fnance would expect. The importance can be illustrated by 

an example. 

For example, suppose a group of people picked a group of dots, i.e. a group 

of frms, by careful research. In traditional fnance, they cannot get the 

abnormal return since the efciency market hypothesis (EMH) says that past 

information cannot afect the future, i.e. the historical stock price cannot be 

used to predicted the future price, so the stock price is independent. That is 

saying that the market obeys random walk. Selecting those frms carefully 

should be no diferent to picking them randomly, in this case, all dots should 

be at the 0.5 line. 

However, as our result suggested, now those group of people are highly likely 

to fnd that for some of the frms they picked the value of the Hurst exponent 

signifcantly difers from 0.5, which indicates random. For those frms that 

the Hurst exponent difers from 0.5, their time series is not independent i.e. 

random but biased. That is saying that the past information could indeed 

afect the future, as from the diagram, the majority of the frms for which 

the value of the Hurst exponent is diferent from 0.5 is larger than 0.5. For 

example, those frms that raised in the past are more likely to go up in the 

future. 
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That leaves an opportunity for those investors using historical stock prices to 

forecast the future trend. There is a diference that exist between randomly 

picked and careful selection. Once they are able to earn the abnormal re­

turn from that, the efciency market hypothesis does not hold anymore. To 

conclude, this is vital evidence to chanllenge the EMH and stock price obey 

random walk status. 

12.2.2 The Hurst exponent for the Sample Firms 

\e have picked a number of frms for our sample, and using the closing 

prices as the basis for logging frst diferences, we generated a series for 

estimation. From this, we estimated the Hurst exponent(Taqqu et al., 2013). 

The selection method is as follows: the frm is required to have at least 15 

years trading history (.27 frms available); the frm also needs to be currently 

alive so the price is able to be traced (for example, frms that only traded 

during 1993 to 2008 and delisted are not suitable); then we want our samples 

to have almost a full record of trading, that means their trading continuously 

without too much gap. This narrowed the sample down to 50 frms to fulfl 

our flter requirements. The name and code of our sample frms will appear 

in the Appendix A at the end. Note that these 50 sample frms are coming 

from diferent industries, and should be distinguish from the 50 frms of the 

SSE 50 index. Those 50 frms from SSE 50 index are representing the top 

50 listed companies by "foat adjusted" capitalization, which means they are 
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all blue chip stocks. 

The prices were transformed into returns using the logarithm of frst difer­

ences and the Hurst exponent was estimated using a rolling window. Note 

that Chinese stocks could only fuctuate 10% maximum per day except on 

the day of a special event, such as IPO or restructuring. The BDS test was 

also used to test the statistical signifcance. The tests were found to show a 

rejection of the null hypothesis of Independent Identity Distribution (I.I.D.) 

in all cases. 

Figure 9: Return plot of sh600692 

The return against time plot is drawn before the Hurst exponent discussion, 

an interesting fnd being that, most frms have spikes. \ith the trading 
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board fuctuation limitation, that is equivalent to the price hitting the limit 

in one direction for consequent days, which immediately refects the concept 

of positive feedback trading. Figure 9 gives one example, and the full plots 

can be found in Appendix C. It can be seen from those fgures that the daily 

returns have obvious characteristics of volatility clustering, indicating that 

investors' response to information is not linear, but cumulative and lagging. 

The value of the Hurst exponent being larger than 0.5 means the events of 

today indeed afect the future. That means the information received today 

is still taking account of the market after it has been received. \e found 

that the mean of the Hurst exponent from all sample frms is larger than 

0.5, which indicates the historical price has some impact on the consequence. 

Table 8 gives the Hurst exponent range of sh6006.5 (Zhongyuan Union Cell 

& Gene Engineering). The frm which has the highest mean Hurst exponent 

is sh6006.5 as well. Note that the larger the window, the bigger the range 

of Hurst exponent. This pattern is the same for all sample frms. 

Range HS 100 HS 250 HS 500 

Min. 0.3787 0..335 0..751 
1st. 0..969 0.5159 0.5320 

Median 0.5363 0.5523 0.559. 
Mean 0.5375 0.5509 0.555. 
3rd. 0.576 0.5830 0.5759 
Max. 0.6911 0.6559 0.6381 

Table 8: Hurst exponent Rang of sh6006.5 

Compared with the Hurst exponent result for \estern frms, such as 0.7 
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for Coca Cola and 0.72 for IBM found by Peters, our sample frms seem to 

have a lower value and closer to 0.5 which indicates randomness. It could 

be speculated that the sample frms have been invested in an untransparent 

way and did not really shown a trend of growth in the long term. 

Next we will looking further at some individual cases, since we used a rolling 

method to estimate the individual frms across the 15 years, we could see 

the density of its Hurst exponent. The distribution of our sample frms 

could be seen in Figure 10. Results of every individual frm has the mean 

of Hurst exponent larger than 0.5, and the majority of samples presented as 

bi­modal. The full plots can be found in Appendix D. It is informative to 

consider a number of individual frms. \e are able to show the density of 

the Hurst exponents from the estimates series. Qualitatively the results are 

very similar, i.e. above 0.5 for every part of the data. The main diference 

between histograms is the spread of the data. 
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Figure 10: Hurst exponent Distribution of sh6006.5 

12.3	 The Correlation Dimension Value for both the SSEC 

Index and the Sample Firms 

The correlation dimension value could be estimated through a graphic pro­

cedure illustrated in the Methodology chapter, and the core ideas follow here, 

(full technical details can be found at section 7.2.2). 

It is assumed that the data, in this case, is the time series we used in the last 
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section. The time series {xt, t = 1, 2, · · · , n; xt ∈ R} which is generated by 

a nonlinear dynamic system could be embedded in n−space by constructing 

n−futures. As an n−history is a point in n−dimensional space, therefore n is 

called the embedding dimension. \e could construct the n−histories of the 

fltered data in order to obtain the embedding dimension. The n−histories 

are denoted as follows: 

1­history : x1 
t = xt 

2­history : x2 
t = (xt−1, xt) 

. . . 

n­history : xnt = (xt−n+1, · · · , xt) 

The trajectory of a time series process in the phase space is constructed by 

n−dimensional vectors. Note that an attractor is a subset of n−dimensional 

phase space towards which almost all sufciently close trajectories get "at­

tracted" asymptotically. They tend towards strange attractors on which the 

motion is chaotic, i.e. not (multiply) periodic and unpredictable over long 

times, being extremely sensitive on the initial conditions (Grassberger and 

Procaccia, 1983a). 

The next step is to calculate the correlation integral Cn (γ). It measures the 

fraction of the total number of pairs (xxi, xxj) such that the distance between 

xxi and xxj is no more than γ, i.e. it is a measure of spatial correlation. It is 
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�
defned according to: 

T
1 

Cn (γ) = lim Θ(γ − |xxi − xxj |)
T →∞ T 2 

i, j #=1 

where Θ is the Heaviside function i.e. an indicator like dummy variable J in 

our previous model, assumed x = γ − |xxi − xxj |, therefore: 

Θ(x) =
 

⎧ ⎪⎪⎨ ⎪⎪⎩
 

0 if x ≤ 0
 

1 if x > 0
 

Grassberger and Procaccia (1983a,b) established that for small distance γ , 

the correlation integral Cn (γ) grows to obey the power law: 

Cn (γ) ∝ γv 

Therefore the correlation exponent vn could be obtained by calculating the 

slope of the graph of ln C (γ) versus ln γ for small values of γ . More spe­

cifcally, we want to calculate the following quantity: 

ln C (γ) 
vn = lim 

γ→∞ ln γ 

\e want to do this step by increasingly larger values of the embedding di­

mension and observing the value of the correlation exponent. It will stabilize 

at the saturation value of the correlation exponent. This value is the value 
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of correlation dimension v (correlation dimension value): 

v = lim vn 
n→∞ 

\e applied this estimation process by using the SSEC index data frst, and 

generated Figure 11. This graphic procedure illustrates the correlation of 

integral changes with the distance (radius). \hen the radius is between 

0.0001 and 0.0005, the correlation integral grows to obey the power law. After 

increasing the embedding dimension, the correlation exponent stabilized at 

approximately ...3. 
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Figure 11: Correlation Dimension Graphic Procedure for SSEC index 

Compared with the empirical research reviewed in section 7.2.3, such as Ur­

rutia and Vu (2006), Scheinkman and Lebaron (1989), and other calculated 

correlations of the mature capital market, the correlation dimension of the 

Chinese stock market we estimated is signifcantly lower. This result is what 

we expected. Also, comparing with previous empirical estimations on correl­

ation dimension for SSEC, Gao, Pan and Chen (2000a) reported 2.65, Sun 

and Zhang (2001) reported 1.58, Li et al. (2003) reported 1.32, while the 

result we obtained is slightly higher. It can still be treated as a lower dimen­

171
 



sional deterministic chaotic series, but it seems improved from the previous 

result. 

In general, the correlation dimension measures the degree of the phase space, 

which is flled by a set of time series. The larger the correlation dimension, 

i.e. the higher the degree of flling, indicates the more complex the internal 

structure of the time series, i.e. the more similar it is to the random pro­

cess time series. \hen the correlation dimension is high, it is difcult for us 

to identify its complex structure with limited sample data. At this point it 

looks similar to a good pseudo­random generator, therefore the higher dimen­

sional deterministic processes and random processes will have no practical 

signifcance. 

However, if the time series is a lower dimensional deterministic process, it 

means that the time series is predictable in the short term. In this sense, 

according to our result, we believe that the Chinese stock market is less 

random and relatively predictable in the short term compared to \estern 

mature capital markets. Note that even our result is lower than the mature 

capital market in the \est, the correlation dimension value estimated is still 

larger than the previous empirical research for the Chinese stock market at 

early 21st century. Those empirical results are around 2 which is extremely 

low, and about 10 to 15 years later, the correlation dimension value has 

increased to ..., which implied the similarity to randomness of Chinese stock 

market has raised and its structure becoming more complex. 
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Table 9 summarized the result of the correlation dimension value when we 

repeated the graphic procedure into sample frms. 

Correlation Dimension 
SSEC Index ...3 
sh600000 ...0 sh6006.0 5.89 
sh600009 ..02 sh6006.2 ...9 
sh60005. 5.19 sh6006.3 5.10 
sh60006. 5.37 sh6006.. ..20 
sh600067 ..81 sh6006.5 ...2 
sh600082 5.10 sh600650 5.01 
sh600097 5.26 sh600651 ..57 
sh600159 5... sh600658 6.13 
sh600162 5.26 sh600663 5.26 
sh600256 ..65 sh600668 5.61 
sh600601 ..72 sh60067. 5..1 
sh600609 5.87 sh600683 5.11 
sh600611 5... sh60068. 5.19 
sh600612 5..3 sh600692 ..73 
sh600618 ..83 sh600802 5.59 
sh600620 5.30 sh600812 ..72 
sh600621 5..9 sh600821 5.09 
sh600622 5.33 sh60082. 5.01 
sh60062. 5..6 sh600826 5.7. 
sh600626 ..89 sh600830 5.18 
sh600628 ..60 sh600831 5.50 
sh600630 5.68 sh60083. ..98 
sh600636 ..90 sh600835 ..76 
sh600638 5.06 sh6008.6 5..2 
sh600639 ..75 sh600859 ..91 

Table 9: Correlation Dimension for SSE Composite Index and Sampled Firms 
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Figure 12: Histogram of Correlation Dimension for SSE Composite Index 
and Sampled Firms 

Figure 12 illustrates the histogram of correlation dimension for SSEC index 

and sampled frms. It can be seen the correlation dimension for most sampled 

frms is higher than the SSEC index (red line at ...). This result of correlation 

dimension is coherent with the Hurst exponent estimation previously. This 

means most frms have higher correlation dimension with a more complex 

internal structure of the time series, and are more similar to the random 

process time series than SSEC index which represent the market. In the 
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previous Hurst exponent estimation, most of the frms have a lower Hurst 

exponents value that is closer to 0.5 compared to the SSEC index, indicating 

the frms are closer to random walk than the market. 

These two results are coherent with each other, and implies that the market 

tends to be more predictable than a individual stocks, which meets with the 

general observation. It is easier to forecast the general market trend in a 

month than to pick a few individual stocks and predict their price. In the 

real world, the example is earning stable at a 15% with a passive index fund, 

or either earning or losing 85% with active stock selection strategy. It sounds 

very reasonable but if thinking deeply, the market is the one that has more 

variables afected than a single frm. Investors should know a single frm 

much more easily than they know the market, information­wise. Therefore 

the market should be more random than a frm in theory, but both real world 

experience and our estimation denied this hypothesis. The reason we ofered 

is that the market is afected by more variables and has more participants 

itself is exactly why they are less random. Because the market has a large 

amount of participants, a positive feedback efect is much easier to create 

and harder to turn around than a single stock. Then the market has more a 

clearer trend than an individual stock, i.e. less randomness. 
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13 Nonlinear Dynamic Positive Feedback Model 

This section will be divided into four parts. The frst part is the model 

raised from the methodology chapter, where the empirical research will be 

conducted for sample frms. Then the model selection will be performed to 

be compared with the ARIMA, efectively the AR(1) by using AIC. Then 

further tests including the LR test and the BDS test will be used to test the 

statistical signifcance. Later the model will be compared with the sub­period 

and the Holt­\inters additive technique. 

13.1 Model Evaluation 

Our main contribution is a new model that brought concepts from natural 

science to interpret fnancial markets. The theoretical work has been de­

veloped from section 8.2. \e will use the Hurst exponent as the indicator 

of the threshold, when the Hurst exponent changes reached a threshold and 

entered a new regime, this indicated the market condition changes. 

Therefore the traders' behaviour changes accordingly, which makes the mar­

ket present nonlinear and chaotic characteristics. By combining the threshold 

model and assumptions from DSS\ which ofers economic intuition, we be­

lieve the new model could ofers a better explanation on the complexity of 

the stock market which present in chaos. The model is as follows: 
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Rt = α+ δ1I + δ2J + βRt−1 + γ1Rt−1I + γ2Rt−1J + εt (12) 

⎧ ⎪⎪⎨
1 if H < TA 

⎧ ⎪⎪⎨
1 if H < TB 
I = ; J = TA < TB⎪⎪⎩
0
 if H ≥ TA 

⎪⎪⎩
0
 if H ≥ TB 

\here the value of the Hurst exponent is the signal, in this model, there are 

three possibilities. 

1. H < TA which means H < TB as well, since TA < TB . 

2. TA ≤ H < TB. 

3. TB ≤ H. 

Then: 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩
 

Rt = α + δ1I + δ2J + βRt−1 + γ1Rt−1I + εt if I = J = 1 

(13)Rt = α + δ2J + βRt−1 + γ2Rt−1J + εt if J = 1 and I = 0 

Rt = α + βRt−1 + εt if I = J = 0 

Rt = α + δ1TARt−1 + δ2TBRt−1 + βRt−1 + γ1TA + γ2TB + εt 
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sh600000 Estimate 

sh600000 t value 

sh600009 Estimate 

sh600009 t value 

sh60005. Estimate 

sh60005. t value 

sh60006. Estimate 

sh60006. t value 

sh600067 Estimate 

sh600067 t value 
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Table 10 is an example of the result. The test statistic for each sample frm, 

with window 100, 250, and 500 respectively can be found in Appendix E. \e 

have found that the majority of sample frms are statistically signifcant(| 

t |> 1.96) for the threshold coefcient estimation. Also, the standard error 

of our results is very small across the board, so we could safely say that the 

coefcient estimated are quite stable. 

(Intercept) 
Estimate 
0.0002 

Std. Error 
0.000. 

t value 
0.60 

Pr(>|t|) 
0.5.81 

lag(x, 1) ­0.1066 0.0.26 ­2.50 0.012. 
T A ­0.0002 0.0007 ­0.22 0.8256 
T B ­0.0001 0.000. ­0.2. 0.808. 

lag(x, 1):T A 0.2980 0.0866 3... 0.0006 
lag(x, 1):T B 0.1.01 0.0.67 3.00 0.0027 

F Stat 3.16908 
R Sq 0.00.51 

R Sq Adj 0.00309 

Table 11: At window 100, H TAR result for frm sh600009 

This is the detail coefcient for one estimation if our scope continues been 

narrow down. In Table 11, the diference between two thresholds is quite 

big: lag T A = (0.30) and lag T B = (0.1.). The diference between 

the thresholds is quite large while in some cases the diference between two 

threshold is very small. 

The result shows our proposed model gives a better explanation to the mar­

ket. At the beginning, the magnitude of the stock price fuctuation from the 

underlying value of the securities is still within a certain small range. Then 
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assuming that the stock price is subject to a positive disturbance, at this 

time, it reaches a threshold where the demand from the positive feedback 

trader exceeds the arbitrageurs, and if so, the positive feedback trader's pur­

chase will push the stock price to rise rapidly in a self­reinforcing manner, 

thus causing a certain degree of bubble in prices. 

However, after the stock price deviates from the underlying value far enough 

to reach another threshold, at this point, the selling by arbitrageurs will take 

the upper hand. In this situation, the stock may fall in a self­reinforcing 

manner since those positive feedback trader will join this process and speed 

it up, prompting the price to return to the underlying value of stocks. This 

can be seen as the asset price bubble burst. 

Notice the above process could take place on a rather small scale like day 

or even hour, and it will continue to recycle and make the stock price form 

a dynamic equilibrium. In this dynamic equilibrium, the price of securities 

may be driven by the internal positive feedback mechanism, and the asset 

price bubble will continue to be generated. The development of the bubble 

may be shattered to a certain extent and return to its underlying value in 

a rapid collapse. It does not need to be a huge bubble, this could be the 

process of a trend development in a smaller scale. 

In general, the above dynamic process is greatly infuenced by the initial 

values and the equation parameters. For example, when the price deviates 

from the base value of the asset to a certain extent, the system may become 
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unstable. At this point, the occurrence of accidental events is likely to change 

the path of the evolution of the price, such as the exposure of a political 

scandal, the stock being selected into the composition of an index, or even 

baseless rumours, could drive to the evolution of stock prices to diferent 

paths. Moreover, this evolution of the stock price is a chaos process, which 

means the distribution of stock price changes and presents complex structures 

such as fractals, showing a high degree of complexity. 

Our model integrated the nonlinear and chaotic factors and empirically found 

success in China's stock. Next we want to explore the possible reasons causing 

China's stock market to present this way, in simple words, not mature. Apart 

from the reason for the positive feedback trading formation, which has been 

discussed in previous chapters already, there are some unique reasons that 

might explain why China's stock market is presenting less maturely compared 

to other developed countries. 

The frst possible reason is that China has a large portion of non­circulated 

shares. The circulated shares can be freely traded on the stock exchange, 

whereas non­circulated shares cannot. Non­circulated shares come from three 

sources: the state­owned shares converted from state­owned companies, the 

shares of company founders and the shares obtained by other organizations 

through private placements. As non­circulated shares constitute as much 

as two­thirds of the total shares in the market, every time converting non­

circulated into circulated ones will lead to an over­supply of shares, thus 
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forming a clear trend. 

Beginning mid­2005, the administrator started the circulation reform, mostly 

by starting to allow non­circulating shareholders to compensate circulating 

shareholders with shares or other types of distributions. Also, before this 

reform, venture capitalists could not sell their shares even when the frm they 

fnanced went public, because their stocks are categorized as non­circulated 

shares. The reform essentially removed important roadblock in the venture 

capitalists' exit mechanism and will gradually make the stock market become 

more mature. 

The second possible reason is that China limited access to the stock market 

from foreign investors for a long time. Basically, there are two ways to invest 

in China's stock market from overseas, starting from 200.. The frst option 

is becoming a Qualifed Foreign Institutional Investors (QFII), and there is 

a quota of how much you could invest. The administrator kept the approval 

limit in a very low level before 2011, therefore China's stock market has been 

dominated by local investors. 
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Figure 13: QFII Approval Limit(200.­2015) 

The second way is becoming a RenMinBi Qualifed Foreign Institutional 

Investors (RQFII), this is very similar to QFII, the diference is the funds 

raised for investment are of­shore RMB instead of American dollars. But 

this option was started after 2011, the same as QFII dramatically increased 

the approval limit to invest in China's stock market. 

China now is starting the third way, called the connect program, to let the 

foreigner investor invest the China's stock market directly. The connect pro­

gram links two exchange markets and allows investors of the two sides to trade 

eligible shares listed on the other's market, for example, the Shanghai­Hong 
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Kong Stock Connect program or Shanghai­London Stock Connect program. 

This is mainly aimed at attracting individual investors in the hope that the 

mature investor could bring some changes to the stock market. Since these 

connect program have only just started, we expect to see the stock market 

becoming more mature in the future. 

The third possible reason is from investor education. Chinese traditional 

culture ignores individual personality and encourages people to follow the 

masses. But education, especially higher education, encourages students to 

think independently. 

Figure 1.: College Graduates (1990­2017) 

From the fgure of annual college graduates, we can see the number of gradu­

ates start to increase rapidly from 2003. This is due to the policy of expanding 

18.
 



admission in 1999. More people receiving higher education means there are 

more people thinking independently instead of following others. Receiving 

higher education usually leads to a higher income, and higher income could 

create more eligible investors and who are more capable of doing sophistic­

ated activities like arbitrage. All these things could make the stock market 

more mature. 

13.2 Comparative Testing 

This section frst compare the ARIMA model, efectively AR(1) model with 

our models by using AIC. Also the justifcation of using AIC rather than 

other criteria will be discussed. Then we will conduct two common tests to 

test the signifcance of our model. Both the LR test and BDS test reported 

a very positive result. 

13.2.1 Model Selection by Using AIC 

The AIC is a tool that quantifed the goodness of ft for the statistical model. 

Akaike (197.) raised the concept of the Akaike information criterion (AIC), 

which is an estimator of the relative quality of statistical models for a given 

set of data. Given a collection of models for the data, AIC estimates the 

quality of each model, relative to each of the other models. Thus, the AIC 

provides a means for model selection. 
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In this section the AIC will be used to make a comparison between our model 

and the ARIMA model. The technical details of the autoregressive integrated 

moving average model (ARIMA model) were previously shown at section 9.1. 

In short, an ARIMA(1,0,0) model with zero degree of diferencing and zero 

order of the moving­average is essentially a AR(1) model. 

For a statistical model, let k be the number of estimated parameters in the 

model, and letL̂ be the maximum value of the likelihood function for the 

model. Note that there is further testing in the next section using an LR 

test with the null hypothesis that the thresholds and threshold AR interaction 

coefcients were all jointly equal to zero. The results are presented in Table 

1., and that test is distributed as χ2
4. 

The AIC value of the model is the following: 

ˆAIC = 2k − 2 ln L 

Table 12 used Shanghai International Airport (sh600009) as an example here 

in order to show the comparison. 

Firms ARIMA Res100 Res250 Res500 
sh600009 ­22688.07 -32116.74 ­30637.6. ­28211.50 

Table 12: AIC for frm sh600009 

This table has shown the AIC result for the ARIMA and our model with 

diferent window sized variation, 100, 250, and 500 respectively. The criteria 
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for comparison is that the one with the minimum AIC is better when com­

paring with the other model. \e have highlighted the minimum AIC result 

and it indicate our model gives the better ft since our result has a lower AIC 

result. This table is just for one frm only, the full list will be available in 

Table 13. 

Table 13: AIC for All Firms in Samples for AR­

IMA(1,0,0) and H TAR Models 

Firms ARIMA(1,0,0) Res100 Res250 Res500 

sh600000 ­21366.88 ­31095.91 ­29628.15 ­27335.0. 

sh600009 ­22688.07 ­32116.7. ­30637.6. ­28211.50 

sh60005. ­2265...5 ­31327.9. ­29902.67 ­27617.51 

sh60006. ­21012.16 ­30268.1. ­28850.72 ­26625.19 

sh600067 ­20525.81 ­29536.7. ­28155.31 ­25902.38 

sh600082 ­2053..21 ­2933..81 ­27970.79 ­25797.16 

sh600097 ­222.5.01 ­30672.98 ­29338.83 ­27055.95 

sh600159 ­20573.22 ­29.39.53 ­28152.83 ­25983.20 

sh600162 ­19735..3 ­29132.01 ­27772..0 ­25628.97 

sh600256 ­1935..22 ­29396.59 ­28027.50 ­2605...0 

sh600601 ­202.5.65 ­29.83.72 ­28605..8 ­26372.32 

sh600609 ­21373.7. ­30773.71 ­29387.09 ­27081.50 

sh600611 ­20999.87 ­302.0.90 ­28819.55 ­26583.57 
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Table 13: AIC for All Firms in Samples for AR­

IMA(1,0,0) and H TAR Models 

Firms ARIMA(1,0,0) Res100 Res250 Res500 

sh600612 ­21057.02 ­30269.63 ­28911.36 ­26727.78 

sh600618 ­20998.12 ­297.7.13 ­28.50.58 ­26229.33 

sh600620 ­2012..21 ­29797.03 ­28.18.3. ­26165.20 

sh600621 ­20022..3 ­30199.7. ­28905..6 ­2666..89 

sh600622 ­20918.53 ­30116.96 ­28721.38 ­2659..2. 

sh60062. ­21050.11 ­29810.15 ­28.38.98 ­26220.31 

sh600626 ­20520.83 ­29959.1. ­28596.82 ­263.5.18 

sh600628 ­21875.6. ­30975.8. ­29566.32 ­27387.32 

sh600630 ­235.3.33 ­29636.71 ­2829..38 ­26061.53 

sh600636 ­20953.99 ­29778.18 ­28.33.37 ­26182.18 

sh600638 ­21967.13 ­30.15.9. ­29025.91 ­26785.9. 

sh600639 ­21053.6. ­30077.72 ­28712.33 ­26529.6. 

sh6006.0 ­19783..1 ­29017.58 ­27683.66 ­25512.7. 

sh6006.2 ­21029.27 ­3132..27 ­2987..80 ­27553.87 

sh6006.3 ­20005..6 ­29863.89 ­28.87.73 ­26232.92 

sh6006.. ­21788.67 ­30537.35 ­29117.26 ­26800.61 

sh6006.5 ­21737.63 ­30602.98 ­292.2.15 ­27193.66 

sh600650 ­21078.99 ­30.32.82 ­29081.39 ­26897.39 
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Table 13: AIC for All Firms in Samples for AR­

IMA(1,0,0) and H TAR Models 

Firms ARIMA(1,0,0) Res100 Res250 Res500 

sh600651 ­21002.67 ­29628.28 ­28351.9. ­26355.00 

sh600658 ­20.96.13 ­29705.73 ­283.2..2 ­26122.23 

sh600663 ­21073.83 ­30.78.52 ­29105.61 ­268.0.56 

sh600668 ­210.5.65 ­30193.19 ­28799.01 ­26588.32 

sh60067. ­2012..37 ­2926...6 ­28055.06 ­25918.55 

sh600683 ­21057.87 ­29610.61 ­28260.22 ­26027..8 

sh60068. ­20072.38 ­2960..50 ­282.2.61 ­26011.31 

sh600692 ­21001.38 ­297...08 ­28393.52 ­26185.83 

sh600802 ­20387.35 ­29730.87 ­28356.33 ­26159.80 

sh600812 ­21015.3. ­30.13.31 ­2899...2 ­26722.60 

sh600821 ­20035.65 ­29639.7. ­28306.6. ­26117.21 

sh60082. ­19998.12 ­30301.2. ­28931.55 ­26678.13 

sh600826 ­20053.37 ­29758.21 ­28371.80 ­26158.06 

sh600830 ­20357..2 ­29666.22 ­28282.65 ­26017.11 

sh600831 ­20237.38 ­29618.01 ­28297.65 ­2602..58 

sh60083. ­21237.53 ­30831.87 ­29.69.17 ­27235.3. 

sh600835 ­20067.10 ­30.09.61 ­29070..9 ­26778.99 

sh6008.6 ­20758.30 ­29668.39 ­28281.85 ­26072.65 

189
 



Table 13: AIC for All Firms in Samples for AR­

IMA(1,0,0) and H TAR Models 

Firms ARIMA(1,0,0) Res100 Res250 Res500 

sh600859 ­21983.35 ­31.73.31 ­30037.86 ­27715.93 

To sum up, all our model variants were compared directly to an ARIMA(1,0,0) 

by using the AIC metric for all sample frms, and our model variants were 

found to be superior for all cases. Note that the smaller window sized models 

are better quality than than bigger window sized. 

There are some solid reasons for AIC being used for our model selection 

criteria but not others. The corrected version of the AIC (AICc) raised by 

Burnham and Anderson (200.) is used to deal with the over­drifting problem 

when the sample size is small. Assuming that the model is univariate, is linear 

in its parameters, and has normally­distributed residuals (conditional upon 

regressors), then the formula for AICc is as follows: 

2k2 + 2k 
AICc = AIC + 

n − k − 1 

\here n denotes the sample size and k denotes the number of parameters. 

Thus, AICc is essentially AIC with an extra penalty term for the number of 
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parameters. Note that as n → ∞, the extra penalty term converges to 0, and 

thus AICc converges to AIC. However, using the AICc is unnecessary in our 

case, because frst, if n is many times larger than k2, then the extra penalty 

term will be negligible i.e. the disadvantage in using AIC, instead of AICc, 

will be negligible. Secondly, if the candidate models have the same k and 

the same formula for AICc such as our models just diferent in window size, 

then AICc and AIC will give identical (relative) valuations i.e. there will be 

no disadvantage in using AIC, instead of AICc. Further asymptotically this 

is equivalent to cross validation. 

The Bayesian information criterion (BIC) raised by Schwarz et al. (1978) is 

similar to AIC but with stronger penalty: 

ˆBIC = ln (n) k − 2 ln L 

The BIC tended to select the "true model" from the set of candidate models 

where the AIC is not suitable, as n → ∞, although the "true model" is 

unlikely there. Vrieze (2012) ran a simulation and found that, even though 

the "true model" is allowed to be in the candidate set, the AIC occasionally 

selects a much better model than BIC due to the fact that BIC can have a 

substantial risk of selecting a very bad model from the candidate set when 

n is fnite.This reason can arise even when n is much larger than k2 . \ith 

AIC, the risk of selecting a very bad model is minimized. If the "true model" 

is not in the candidate set, then the most that we can hope to do is select 
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the model that best approximates the "true model". AIC is appropriate for 

fnding the best approximating model. 

Yang (2005) made a comparison between AIC and BIC in the context of 

regression. In regression, AIC is asymptotically optimal for selecting the 

model with the least Mean Squared Error (MSE), under the assumption 

that the "true model" is not in the candidate set. BIC is not asymptotically 

optimal under the assumption. Yang (2005) additionally shows that the rate 

at which AIC converges to the optimum is the best possible in a certain 

sense. 

To sum up, the AIC is useful in fnding the best approximate model with the 

least MSE. Using OLS with Gaussian errors (as assumed in most cases), this 

is also equivalent to the Colin Lingwood Mallows (Mallow's Cp) in the case 

of Gaussian linear regression. 

13.2.2 LR test 

A likelihood ratio test (LR test) is a statistical test used for comparing the 

goodness of ft of two statistical models, one of which (the null model) is 

a special case of another more complex model (the alternative model, i.e. 

"nested"). The test is based on the likelihood ratio, which expresses how 

many times more likely the data are under one model than the other. The 

LR test can be presented as a diference in the log likelihoods, and this can 

be expressed in terms of deviance. Then: 
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� �

L0
LRT = −2 ln (1.)

La 

La
LRT = 2 ln (15)

L0 

LRT = 2 (ln La − ln L0) ∼ χ2 (16)dfa−df0 

Thus, the LRT can be computed as a diference in the deviance for the two 

models. This is convenient as the deviance is a value of interest in other 

respects. 

LRT = deviance0 − deviancea (17) 

The model with more parameters (the alternative) should ft as good as, i.e. 

have the same or greater log­likelihood, than the model with fewer parameters 

(the null). \hether the ft is signifcantly better and should thus be preferred 

is determined by deriving the probability or p value of the diference LRT . 
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H0 : δ1 = δ2 ≡ δ 

Ha : δ1 =� δ2 

\here the null hypothesis represents a special case of the alternative hy­

pothesis, the probability distribution of the test statistic is approximately a 

χ2 distribution with degrees of freedom equal to dfa − df0 respectively the 

number of free parameters of models alternative and null, in our case the 

calculated degrees of freedom is . due to the number of restrictions. 

Firm χ2 
4 Firm χ2 

4 Firm χ2 
4 

sh600000 8.864361 sh600601 7.231459 sh600628 1..3297.8 
sh600009 9.441634 sh600609 29.7.8056 sh600630 10.5.023 
sh60005. 17.90.507 sh600611 19.373857 sh600636 13.76.872 
sh60006. 10.175221 sh600612 12.18.229 sh600638 19.192787 
sh600067 16.991199 sh600618 19.702961 sh600639 12.690.6. 
sh600082 12.002.81 sh600620 17.30661. sh6006.0 20..7153. 
sh600097 .5.667326 sh600621 15.08517 sh6006.2 21.627012 
sh600159 27.393757 sh600622 26.390293 sh6006.3 29.567801 
sh600162 16.289212 sh60062. 11..70028 sh6006.. 7...8897 
sh600256 117.07765 sh600626 16.138162 sh6006.5 22.1262.9 
sh600650 32.027213 sh60067. 3..290767 sh600812 19.98903. 
sh600651 15.3176.7 sh600683 17.05813 sh600821 13.9.5831 
sh600658 25.508.61 sh60068. 18..22093 sh60082. 22..32162 
sh600663 15.8980.8 sh600692 18.087239 sh600826 2..339815 
sh600668 18.036898 sh600802 18.16007 sh600830 22.293522 
sh600831 16..29318 sh60083. 3..010263 sh600835 23.623658 
sh6008.6 12.20.339 sh600859 16.579.69 df = 4 

Table 1.: The LR test statistic for all samples in LR test 

At 5% (0.95) level with calculated degrees of freedom of ., the critical value 
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of χ2
4 is 9..88. In our result, .7 out of 50 reported χ2

4 larger than the critical 

value, therefore reject the null, which means our model has better ft for 9.% 

of samples. 

If we loosen the probability from 0.95 to 0.9, at 10% level, the critical value 

of χ2
4 is 7.779. In our result, .9 out of 50 reported χ2

4 value larger than the 

critical value therefore reject the null, which means our model has better ft 

for 98% of samples. 

13.2.3 BDS test 

Chaos theory is based on the assumption that the underlying system is a 

nonlinear process, and the underlying system is a deterministic system. The 

BDS test is a powerful tool for detecting serial dependence in time series and 

it was frst developed by Brock et al. (1996).The technical details have been 

shown in section 7.2.2. 

The BDS tests are often conducted simultaneously when calculating the cor­

relation dimension value like we did in section 12.3. Since BDS statistics are 

very sensitive to any deviation from independent and identically distributed 

(I.I.D) for diferent sorts of models. If {xt : t = 1, · · · , T } is a random sample 

of I.I.D observations, then: 

Cn (γ) = C1 (γ)
n 
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One can estimate Cn (γ) and C1 (γ) by the usual sample versions Cn,T (γ) 

and C1,T (γ). The BDS statistic Wn,T (γ) has a standard normal limiting 

distribution and is calculated by: 

√ 
T [Cn,T (γ) − C1,T (γ)

n]
Wn,T (γ) = , as T → ∞ 

σn,T (γ) 

Here σn,T (γ) is an estimate of the asymptotic standard error of [Cn,T (γ) − C1,T (γ)
n]. 

The BDS statistic shows that it should be asymptotically N (0, 1) as T → ∞, 

if the residuals from the estimated model are actually IID whether it is a lin­

ear or nonlinear model. The larger the value of the BDS statistic, the stronger 

the evidence of nonlinearity in the data. 

To sum up, BDS tests the null hypothesis of independent and identically 

distributed (IID) against an unspecifed alternative. 

H0 : {xt : t = 1, · · · , T } ∈ i.i.d 

Ha : {xt : t = 1, · · · , T } ∈/ i.i.d 

The null hypothesis that is tested for is that a time series sample comes from 

a data generating process that is IID. A time series has nonlinearity if the 

null of IID has been rejected, i.e. implies that the time series is nonlinearly 

dependent if frst diferences of the natural logarithm have been taken. 
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Radius 0.00503. 0.010068 0.015102 0.0201361 
Dim=2 11.91 12.59 11.92 11..3 

3 17.80 17.99 16.57 15.06 
. 22.02 21.66 19.6. 17..7 
5 27.22 25..8 22.21 19.22 

Table 15: BDS Test Result for sh600009 

Table 15 gives the BDS test statistics from one of our samples, sh600009. 

The full BDS results for all sample frms are available in Appendix D. 

Levels of signifcance (α) of 10%, 5% and 1% are taken in this hypothesis 

testing. The critical values are 1.6.5, 1.96 and 2.575 for each level of signi­

fcance respectively. \e can see the BDS test result for sh600009 is larger 

than the most strict level of signifcance (1%). 

To sum up, the BDS test for all sample frms has shown the results are greater 

than the critical value by a large margin. Therefore the results strongly sug­

gest that the time series in Chinese stock markets are nonlinearly dependent, 

which is one of the strong indicators of chaotic behaviour. 

13.3 Comparison with Sub­period 

In this section we will conduct an empirical test to make a comparison 

between the key sub­period to double check the performance of our model in 

diferent market conditions. 
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Figure 15: SSEC(1990­2015) 

The selection criteria for sub­period is based on the historical trend of the 

SSEC index. The tranquil period we picked is 1997 to 1999, and the volatile 

period picked is 2007 to 2009. The result of the comparison is as follows: 

(Intercept) 
Estimate 
0.000. 

Std. Error 
0.0005 

t value 
0.51 

Pr(>|t|) 
0.6102 

lag(x, 1) ­0.0980 0.0.05 ­2.70 0.0071 
T A ­0.0003 0.0006 ­0.23 0.8181 
T B ­0.0001 0.0003 ­0.25 0.8026 

lag(x, 1):T A 0.3002 0.0851 3..9 0.0005 
lag(x, 1):T B 0.1.12 0.0.68 2.98 0.0030 

F Stat 3.29002 
R Sq 0.0035. 

R Sq Adj 0.00377 

Table 16: 1997­1999 Results 
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(Intercept) 
Estimate 
0.0003 

Std. Error 
0.0005 

t value 
0.63 

Pr(>|t|) 
0.5288 

lag(x, 1) ­0.102. 0.0397 ­2.65 0.0081 
T A ­0.0002 0.0006 ­0.23 0.8181 
T B ­0.0001 0.000. ­0.26 0.79.9 

lag(x, 1):T A 0.2996 0.0798 3..6 0.0006 
lag(x, 1):T B 0.1.08 0.0.55 3.0. 0.002. 

F Stat 3.73106 
R Sq 0.00.75 

R Sq Adj 0.003.1 

Table 17: 2007­2009 Results 

From the two tables for the tranquil and volatile periods, the result obtained 

is very similar. The value of estimates has a slight diference, but these 

similar ones are still statistically signifcant. 

The result obtained here suggests that diferent market conditions will not 

afect the robustness of our model, which is expected due to the fact that our 

model integrated the Hurst exponent as thresholds that specialize in dealing 

with market condition changes. 

13.4 Comparison with Holt­Winters 

The Holt­\inters model uses a modifed form of exponential smoothing. 

It applies three exponential smoothing formulae to the series. The Holt­

\inters seasonal method has two diferent approaches, the multiplicative 
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technique and the additive technique. The core idea presented follows, with 

full technical details are available in section 9.2.1. 

The exponential smoothing formulae applied to a series with a trend and 

constant seasonal component using the Holt­\inters additive technique are: 

ft = α(yt − st−m) + (1 − α)(ft−1 + bt−1) (18) 

bt = β ∗ (ft − ft−1) + (1 − β ∗ )bt−1 (19) 

st = γ ∗ (yt − ft) + (1 − γ ∗ )st−m (20) 

ŷt+h|t = ft + hbt + st−m+h+ (21)
m 

where:
 

The ft itself means an estimate of the level of the series at time t.
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The bt itself means an estimate of the trend for the time series t. 

The st is the smoothed estimate of the appropriate seasonal component at t. 

Table 18 presented the comparison result between H TAR and Holt­\inters 

for the sample of frms. In this comparison, the additive approach is the only 

approach we ran, because the multiplicative technique cannot be used due to 

the data containing some negative values, which should be expected in terms 

of returns. 
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Firms RSS(H\) RSS(H TAR) Firms RSS(H\) RSS(H TAR) 
sh600000 0.5170263 0..83137053 sh600620 0.75113.6 0.700229731 
sh600009 0.386.761 0.360911955 sh600621 0.673.282 0.62.122525 
sh60005. 0..917362 0..521.58 sh600622 0.6989071 0.63906066. 
sh60006. 0.6.89051 0.6120...25 sh60062. 0.752925. 0.69760987. 
sh600067 0.798.525 0.75.290063 sh600626 0.703...6 0.6685371.. 
sh600082 0.8591887 0.799087897 sh600650 0.6.0152 0.58391.369 
sh600097 0.601773. 0.5.519039. sh600651 0.77.3..2 0.73.816513 
sh600159 0.82.398. 0.7755333.9 sh600658 0.775.309 0.71873602 
sh600162 0.9091785 0.8.675586. sh600663 0.62.1.08 0.57633851 
sh600256 0.9333768 0.785106088 sh600668 0.675.053 0.62529189. 
sh600628 0.53672.. 0..99998.29 sh60067. 0.8939..6 0.815311072 
sh600630 0.78706.6 0.7330.97.1 sh600683 0.7963787 0.73853736. 
sh600636 0.7.86895 0.70.010106 sh60068. 0.7921019 0.739827.19 
sh600638 0.6267133 0.586736802 sh600692 0.7568699 0.7109038.3 
sh600639 0.6991002 0.6.6265.03 sh600802 0.7692829 0.713591165 
sh6006.0 0.9..9527 0.87.89966 sh600812 0.61.193 0.587178701 
sh6006.2 0..855508 0..52620177 sh600821 0.78.9319 0.732.15689 
sh6006.3 0.7537666 0.686980303 sh60082. 0.65.9.66 0.606283882 
sh6006.. 0.6505.1. 0.566732777 sh600826 0.7622252 0.70803998 
sh6006.5 0.5991913 0.556205153 sh600830 0.7801519 0.72692.306 
sh600601 0.817638 0.76580310. sh600831 0.79265.3 0.736976.61 
sh600609 0.581951. 0.52972.3.1 sh60083. 0.5725191 0.52099.223 
sh600611 0.6688973 0.616826218 sh600835 0.63675.6 0.587798512 
sh600612 0.655088. 0.61178.023 sh6008.6 0.78.3323 0.726..519. 
sh600618 0.7677631 0.710283.99 sh600859 0..691576 0..33751286 

Table 18: Holt­\inters Comparison for Sample Firms 

Residual sum of squares (RSS) is a measure of the discrepancy between 

the data and an estimation model. It is used as an optimality criterion in 

parameter selection and model selection. A small RSS indicates a tight ft 

of the model to the data. \e can see the result of the Holt­\inters additive 

method has a bigger RSS for all sample frm, which means the our model 
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produces a better prediction for all sample frms. Note that there are a few of 

them getting very close such as for sh600009, the diference in RSS between 

two models is as small as 0.02. In total, the Holt­\inters method still cannot 

produce a better result for the samples frms than our model. 

The comparison result is not surprising to us because the Holt­\inters model 

assumes that the seasonal pattern is relatively constant over the time period. 

Therefore changes in the seasonal pattern, sometimes dramatic changes, will 

causing a potential problem with the model, particularly if long­term pre­

dictions are made. \here our model has better strength to deal with the 

changes when the series break a threshold to a new regime. Note that the 

Holt­\inters multiplicative model is considered to deal the with inconsistent 

seasonal patterns better than the additive model, but we cannot apply it in 

our estimation due to the returns containing some negative values. 
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Part V 

Conclusion 

14 Research Summary 

Traditional fnance theory is based on the assumption of the "rational eco­

nomic man". It is believed that the economic man's decision making is ra­

tional choice according to the expected utility theory, and the pursuit of the 

expected utility maximization, thus proposing the efcient market hypothesis 

(EMH) that the price has already refected all current information. Beha­

vioural fnance theory denies the assumption of rational economic man, and 

believes that investors have limited rationale. The prospect theory is pro­

posed based on the research results of psychology on human decision­making 

behaviour in the risk environment. It is believed that investors have cognit­

ive biases such as representativeness heuristic, anchoring, mental accounts, 

and loss aversion in the process of making decisions in an uncertain environ­

ment. Therefore, it does not follow the expected utility theory, but follows 

the prospect theory. 

The volatility of stock price is far more random than that predicted by tradi­

tional fnancial theory. It exhibits some random characteristics, but it cannot 

withstand strict random fuctuation tests. The distribution of price return 
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rate is not normally distributed as predicted by the random walk model. It 

has the characteristics of leptokurtic and fat tails. Large and sudden fuc­

tuations often occur, and fnancial asset price bubbles often appear and are 

eventually crushed. The stock price series shows a certain sequence correl­

ation, but it does not seem to be persistent. The part of a series is highly 

like with the whole series. In short, the stock price shows a high degree of 

complexity, which cannot be fully explained by traditional fnance theory. 

Behavioural fnance theory believes that due to the cognitive bias of some 

investors, there are irrational noise traders in the fnancial market. Their 

understanding of the market is wrong, and it is in a random status which is 

unpredictable, thus creating risks for asset pricing. Due to the existence of 

noise trading, stock prices will also generate irrational fuctuations without 

information. At the same time, market arbitrage mechanisms have its limit­

ations. Therefore, in the process of rational traders playing with irrational 

traders, the irrational traders may survive for a long time. 

The author believes that the behaviour of positive feedback trading in the 

fnancial market is signifcant to the evolution of securities prices. Due to 

irrational factors such as cognitive bias, extrapolation expectations and herd­

ing efects, there is a special irrational trading behaviour in fnancial markets, 

the positive feedback trading. This kind of trading behaviour leads to the 

existence of an internal positive feedback dynamic mechanism for the evol­

ution of stock prices, which may lead to overreaction in the stock market 
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and the emergence and destruction of asset price bubbles. In the process of 

mutual games between rational traders and positive feedback traders, risk 

preference and decision mode all determine that this feedback is a kind of 

nonlinear feedback. This kind of nonlinear positive feedback system may 

cause the chaotic process of the evolution of the stock price, resulting in a 

complex structure like fractals in the distribution of returns, showing a high 

degree of complexity. Therefore, this thesis aimed to fnd a model to better 

represent this system, and used data from China's stock market to conduct 

empirical research. 

15 Main Contribution and Findings 

Based on the basic assumptions of investor's limited rationality, this thesis 

studied the noise trading behaviour in fnancial markets, focusing on a special 

type of noise trading, positive feedback trading. Based on this, a dynamic 

positive feedback trading model is established to analyse the evolution pro­

cess of securities prices and further analyse the nonlinear characteristics of 

the model. 

This is the key contribution of this thesis, that proposed the nonlinear dy­

namic positive feedback model using the Hurst exponent as the signal for 

thresholds to indicate the changes of market condition. It is a extension 

of applied research about behavioural fnance on the fnancial market. Ex­
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ploring the chaotic process in the evolution of stock prices and analysing 

the complexity of stock price is the novel part of our research. This thesis 

has also conducted an empirical test that estimated the Hurst exponent and 

correlation dimension values on China's stock market. 

The author's empirical research shows that the time series of index returns 

of the Shanghai market shows nonlinear characteristics, and there are lower 

dimensional deterministic chaotic processes, and the degree of randomness 

is signifcantly lower than that of mature capital markets. It has stronger 

short­term predictability and also shows a lower degree of market efciency. 

The empirical research results are consistent with behavioural fnance theory, 

thus providing empirical evidence for behavioural fnance theory. 

The result of the Hurst exponent estimation to the SSEC index is 0.82, 

which not only shows the non­randomness and persistence efect, but is also 

relatively stronger than the mature market reviewed. The Hurst exponent 

estimation to all individual frms is conducted to see their distribution. It 

shows that their mean is around 0.59, which means the individual stock looks 

closer to random than the market as a whole. 

Then the individual frms were sampled into a smaller portion to meet a 

criteria of feasible comparison in order to do further empirical tests. \ith 

a rather longer term and stable trading history and no gaps, the Hurst ex­

ponent of all sample frms was found to be greater than 0.5. Also the result 

suggests that the window size will afect the range of the estimation result; 
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the smaller the window size, the smaller the estimation range i.e. higher 

degree of precision. 

The calculation of the correlation dimension value for the SSEC Index found 

that the result is approximately ..., which is lower than the mature market, 

indicating the market index is to farther away to randomness than the ma­

ture market. But the result is relatively larger than studies 10 to 15 years 

ago, which shows that the Chinese market has better efciency now. The 

calculation of correlation dimension value for the sample frms shows that the 

majority are above the result of the index. This result is coherent with the 

Hurst exponent estimation before, and it implies that the market tends to 

be more predictable than a individual stocks, which meets with the general 

observation. It is easier to forecast the general market trend in a month than 

to pick a few individual stocks and predict their price. 

The result of the model evaluation suggests the new model ofers a better 

explanation for the complexity of the stock market which presenting chaos. 

By using the AIC as the model selection criteria and comparing with AR­

IMA, the new model is found to be superior, and the small window size 

variant is the best. The LR test shows that 9.% of the sample frms' results 

are statistically signifcant at 5% level. The BDS test for all sample frms 

has shown the results are greater than the critical value by a large margin. 

Therefore the results strongly suggest that the time series in Chinese stock 

markets are nonlinearly dependent, which is one of the strong indications of 
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the chaotic behaviour. Finally, the result shows our model has a small RSS 

for all sample frms which means it produces a better prediction than the 

Holt­\inters additive method. 

16 Policy and Investment Implications 

According to traditional fnancial economics, the market is efcient, and the 

stock price refects its intrinsic value. Therefore, the capital market can 

achieve the rational allocation of resources. However, the author believes that 

due to various cognitive factors of investors, the capital market cannot reach 

an efcient state. The following aspects can be instructive for investment 

practice and fnancial supervision policies. 

Stock prices are not always based on their underlying value, but may be the 

result of a combination of investor perceptions, feelings, and social factors. 

Therefore, these factors should be considered when analysing changes in se­

curities prices. 

There a lot of noise trading in the fnancial market, which leads to limitations 

in the market arbitrage mechanism. In investment practice, the risks caused 

by noise trading should be considered when conducting arbitrages. 

The positive feedback mechanism caused by the irrational factors of the fn­

ancial market may form an asset price bubble, and the bubble will eventu­
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ally collapse. From the perspective of investment practice, investors should 

be aware of the existence of irrational market factors, maintain rationality 

when the market generates a high level of bubbles, and overcome irrational 

overreaction behaviour when investing in specifc asset classes. From the per­

spective of fnancial supervision, because the irrational market factors may 

lead to asset price bubbles, the irrational prosperity of the capital market 

may eventually have a serious impact on the real economy. 

Therefore, fnancial market regulators should make efective fnancial regu­

latory policies, vigorously develop institutional investors, and improve the 

structure of capital market investors. If necessary, they should adopt macro­

control measures to curb excessive speculation in the market, improve the 

efciency of the capital market, maintain the stable development of the cap­

ital market, and prevent irrational prosperity. This is crucial to the function 

of the capital market to allocate resources. 

nonlinear positive feedback in fnancial markets may lead to complex motion 

processes like chaos in stock prices. Changes in initial conditions caused by 

external accidental factors may lead to very diferent paths for the evolution 

of securities prices. Therefore, in theory, it has certain predictability for 

the short­term evolution of securities prices, but long­term prediction of the 

evolution of securities prices is extremely difcult, if not impossible. 

The implications to investment practice are, frst, the predictability of short­

term behaviour of stock prices provides a proftable space for short­term 
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transactions, but it is necessary to prevent the risk of signifcant reverse 

changes in the price. 

Secondly, investors should strengthen risk management and diversify their 

investments to avoid huge losses due to large fuctuations in individual se­

curities. 

Finally, long­term predictions of the evolution of market prices are difcult. 

Therefore, from the perspective of long­term investment, the efect of market 

timing strategy is limited. A reasonable investor strategy is to focus on 

strategic asset allocation, while focusing on selection based on the underlying 

value of stocks. 

17 Further Questions 

Based on the limitations of the thesis, this section will point out a possible 

expansion plan that could be used for further research. 

The frst expansion would be extending the model to a number of diferent 

Hurst exponents for the thresholds. Second, the research target could be 

another emerging market, or even another type of asset to make the compar­

ison. Third, the Chinese market has a relatively short history, so our model 

might perform diferently with a longer data history. 
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Fourth, the time span is another important parameter, this work has used 

the daily one which is easy to make comparisons with, but as the "high 

frequency trading" is trending, shorterening the time span to seconds might 

reveal a diferent structure. Fifth, Auto Regressive Fractionally Integrated 

Moving Average (ARFIMA) model could be used in future research. Sixth, 

conducting the work in a in­sample estimation and evaluating in an out­of­

sample estimation is a possible expansion. 

Last but not least, a Locally \eighted Regression (L\R) could be conduc­

ted after the BDS test, to further rule out the nonlinear stochastic process 

which could also cause the rejection of IID as well. There are lots of test op­

tions and its further extension could be implemented to justify the statistical 

signifcance of the estimation. 
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Appendices 

• A Company code reference 

• B Histograms of Hurst exponent estimation 

• C The Chart of return for each sample frms. 

• D BDS Test 

• E Main Result of H Tar model estimation 
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A Appendix A 

There are 50 sample frms data has been proceed in the model, those 50 

frms represent diferent industry, the table below gives the name of the frm 

related to the their stock code. 
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Table 19: Company Code Reference 

No. Code Name 

1 sh600000 Shanghai Pudong Development Bank 

2 sh600009 Shanghai International Airport 

3 sh60005. Huangshan Tourism Development 

. sh60006. Nanjing Gaoke 

5 sh600067 Citychamp Dartong 

6 sh600082 Tianjin Hi­Tech Development 

7 sh600097 Shanghai Kaichuang Marine 

8 sh600159 Beijing Dalong \eiye Real Estate 

9 sh600162 Shenzhen Heungkong Holding 

10 sh600256 Guanghui Energy 

11 sh600601 Founder Technology 

12 sh600609 Shenyang Jinbei Automotive 

13 sh600611 Dazhong Transportation (Group) 

1. sh600612 Lao Feng Xiang 

15 sh600618 Shanghai Chlor­Alkali Chemical 

16 sh600620 Shanghai Tianchen 

17 sh600621 Shanghai Chinafortune 

18 sh600622 Shanghai Jiabao Industry & Commerce 

19 sh60062. Shanghai Fudan Forward S&T 
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Table 19: Company Code Reference 

No. Code Name 

20 sh600626 Shanghai Shenda 

21 sh600628 Shanghai New \orld 

22 sh600630 Shanghai Dragon 

23 sh600636 Shanghai 3F New Materials 

2. sh600638 Shanghai New Huang Pu Real Estate 

25 sh600639 Shanghai Jinqiao Export Processing Zone 

26 sh6006.0 Besttone Holding 

27 sh6006.2 Shenergy 

28 sh6006.3 Shanghai AJ 

29 sh6006.. Leshan Electric Power 

30 sh6006.5 Zhongyuan Union Cell & Gene Engineering 

31 sh600650 Shanghai Jin Jiang International Industrial Investment 

32 sh600651 Shanghai Feilo Acoustics 

33 sh600658 Beijing Electronic Zone Investment and Development 

3. sh600663 Shanghai Lujiazui Finance & Trade Zone 

35 sh600668 Zhejiang Jianfeng Group 

36 sh60067. Sichuan Chuantou Energy Stock 

37 sh600683 Metro Land 

38 sh60068. Guangzhou Pearl River Industrial Development 
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Table 19: Company Code Reference 

No. Code Name 

39 sh600692 Shanghai Ya Tong 

.0 sh600802 Fujian Cement 

.1 sh600812 North China Pharmaceutical 

.2 sh600821 Tianjin Quanyechang (Group) 

.3 sh60082. Shanghai Yimin Commercial Group 

.. sh600826 Shanghai Lansheng 

.5 sh600830 Sunny Loan Top 

.6 sh600831 Shaanxi Broadcast & TV network intermediary (Group) 

.7 sh60083. Shanghai Shentong Metro 

.8 sh600835 Shanghai Mechanical & Electrical Industry 

.9 sh6008.6 Shanghai Tongji Science & Technology 

50 sh600859 Beijing \angfujing Department Store 
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B Appendix B 

The Histograms of hurst estimation for each sample frms. 
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C Appendix C 

The Chart of return for each sample frms. 
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D Appendix D 

The BDS test result for each sample frms. 

Radius 0.005826.5601..7355 0.0116529120289.71 0.017.793680.3.206 0.02330582.05789.2 
Dim=2 10.7. 10..2 9.29 7.20 

3 15.19 1..60 12.99 10.2. 
. 18.37 17.21 15.36 12.2. 
5 22.50 19.90 17.37 13.89 

Table 20: BDS test result for frm sh600000 

Radius 0.00503.01393770168 0.010068027875.03. 0.0151020.18131051 0.0201360557508067 
Dim=2 11.91 12.59 11.92 11..3 

3 17.80 17.99 16.57 15.06 
. 22.02 21.66 19.6. 17..7 
5 27.22 25..8 22.21 19.22 

Table 21: BDS test result for frm sh600009 

Radius 0.00566151920759271 0.011323038.15185. 0.01698.5576227781 0.0226.60768303708 
Dim=2 9.26 11.95 13.76 13.95 

3 12.10 1...6 15.82 15.61 
. 1..66 16.6. 17.35 16.8. 
5 16.92 18.61 18.70 17.73 

Table 22: BDS test result for frm sh60005. 

Radius 0.0065667519.93..3 0.0131335038986886 0.0197002558.80329 0.0262670077973772 
Dim=2 9.59 11.35 12.6. 13.32 

3 13.53 1..75 15.26 15.36 
. 16.88 17.29 17.18 16.85 
5 20.66 19.89 19.01 18.1. 

Table 23: BDS test result for frm sh60006. 
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Radius 0.007312..388236091 0.01.62.88776.7218 0.0219373316.70827 0.0292.9775529..36 
Dim=2 1..78 1...1 1..61 15.16 

3 20.70 19..5 18.39 18.15 
. 27.28 23.32 20.76 19.71 
5 35.86 26.76 22..6 20.59 

Table 2.: BDS test result for frm sh600067 

Radius 0.0075095601832.116 0.015019120366.823 0.0225286805.97235 0.0300382.073296.7 
Dim=2 12.78 13.93 1...1 1..57 

3 15.99 16.83 17.07 17.20 
. 19.56 19.17 18.8. 18.26 
5 23.87 21..7 20..2 19.25 

Table 25: BDS test result for frm sh600082 

Radius 0.006313580833.1951 0.012627161666839 0.0189.07.25002585 0.02525.323333678 
Dim=2 7.72 9.23 10.57 11.05 

3 9.83 11.26 12.56 13.17 
. 12.19 13.01 13.71 1..13 
5 1..32 1...1 1..52 1..61 

Table 26: BDS test result for frm sh600097 

Radius 0.007.5716053980172 0.01.91.321079603. 0.022371.81619.052 0.0298286.21592069 
Dim=2 13.69 1..20 13.9. 13.50 

3 18.18 18.26 17.66 16.39 
. 23.27 21.52 19.91 18.09 
5 29.37 2..87 21.83 19.3. 

Table 27: BDS test result for frm sh600159 
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Radius 0.0077.653.06033291 0.015.930681206658 0.0232396021809987 0.0309861362.13316 
Dim=2 12..1 13.85 12.97 11.58 

3 16.75 17.96 16.62 1...7 
. 19.71 20.27 18.26 15... 
5 23..6 22.80 19.81 16.36 

Table 28: BDS test result for frm sh600162 

Radius 0.00786777997038638 0.0157355599.07728 0.0236033399111592 0.031.711198815.55 
Dim=2 12.05 11.96 11.23 8.92 

3 16.5. 15.57 1..15 11.37 
. 20.22 17.81 15.91 12.77 
5 25.33 20.18 17.58 1..0. 

Table 29: BDS test result for frm sh600256 

Radius 0.00732..7668665853 0.01.6.89533733171 0.021973.300599756 0.0292979067.663.1 
Dim=2 15.18 16.78 16..0 1..97 

3 18.51 19.91 19.21 17.3. 
. 21.57 22..1 21.38 19.15 
5 2...1 2..66 22.95 20.15 

Table 30: BDS test result for frm sh600601 

Radius 0.006172.1.80080595 0.0123..8296016119 0.0185172...02.179 0.02.6896592032238 
Dim=2 9.93 12.07 12.65 12.72 

3 11.92 1..18 1...3 1..12 
. 13.5. 15.69 15.61 1..85 
5 1..79 16.91 16..8 15.2. 

Table 31: BDS test result for frm sh600609 
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Radius 0.0066279013922828 0.01325580278.5656 0.01988370.1768.8. 0.0265116055691312 
Dim=2 1..88 17.29 18.57 19.02 

3 19.32 21.06 21.50 21.19 
. 22.96 23.78 23.62 22.92 
5 27.32 26.66 25.57 2..15 

Table 32: BDS test result for frm sh600611 

Radius 0.00656.2657.09.101 0.013128531.81882 0.019692797222823 0.02625706296376. 
Dim=2 10.15 11.36 11.99 12.39 

3 13.0. 13.79 13.58 13..1 
. 15.58 16.15 15.59 1..93 
5 18.10 18.18 17.11 16.07 

Table 33: BDS test result for frm sh600612 

Radius 0.00711.8.525360679 0.01.2296905072136 0.0213..535760820. 0.028.5938101..272 
Dim=2 10.61 12.75 1..27 15.27 

3 1..63 16.89 17.96 17.99 
. 18.2. 19.67 20.09 19..2 
5 21.67 22.07 21.63 20..1 

Table 3.: BDS test result for frm sh600618 

Radius 0.0070.73575271712. 0.01.09.71505.3.25 0.0211.20725815137 0.028189.30108685 
Dim=2 11.96 13.51 1..89 15.57 

3 15.23 16.76 17.85 18.05 
. 19.09 19.53 19.95 19.73 
5 23.06 21.93 21.31 20.57 

Table 35: BDS test result for frm sh600620 
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Radius 0.0066.605216026.26 0.01329210.3205285 0.019938156.807928 0.02658.2086.10571 
Dim=2 13.78 15.80 17.12 17... 

3 17... 19.25 20..0 20.59 
. 21.76 22.27 22..8 22.16 
5 27.13 25..1 2...5 23..5 

Table 36: BDS test result for frm sh600621 

Radius 0.00676.3.28781.983 0.0135286857562997 0.02029302863...95 0.0270573715125993 
Dim=2 12.59 1..16 1..93 1..67 

3 16.09 17.65 18.37 18.02 
. 18.77 19.8. 20.13 19.63 
5 21.65 22.00 21.59 20.79 

Table 37: BDS test result for frm sh600622 

Radius 0.0070072030.09.066 0.01.01..060818813 0.021021609122822 0.0280288121637627 
Dim=2 12.3. 1..59 16.05 16.03 

3 15..7 18.16 19.79 19..9 
. 17.25 20.09 21.69 21.23 
5 20.0. 22.37 23.28 22..1 

Table 38: BDS test result for frm sh60062. 

Radius 0.0068789576830.932 0.0137579153660986 0.0206368730.91.8 0.0275158307321973 
Dim=2 11.01 13..3 1..71 15.3. 

3 1..52 17.11 18.21 18.22 
. 16.5. 19.22 19.98 19..2 
5 19..0 21..6 21.71 20.60 

Table 39: BDS test result for frm sh600626 
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Radius 0.0059.28.250689915 0.0118856850137983 0.0178285275206975 0.0237713700275966 
Dim=2 8.38 11.90 1..97 17.75 

3 12.27 15.32 18.06 20.68 
. 15.22 17.77 19.81 21.70 
5 18.20 19.98 21.07 22.23 

Table .0: BDS test result for frm sh600628 

Radius 0.00717878008957325 0.01.3575601791.65 0.0215363.02687198 0.028715120358293 
Dim=2 13.51 15.9. 17.01 16.59 

3 17.13 19.27 19.80 19.1. 
. 20.30 22.01 21.85 20.88 
5 2..00 2..57 23.21 21.71 

Table .1: BDS test result for frm sh600630 

Radius 0.0070.909668627298 0.01.0981933725.6 0.0211.72900588189 0.0281963867.50919 
Dim=2 13.51 15.10 15.91 15.78 

3 19.59 19..9 19.39 18.87 
. 25.75 22.70 21.39 20.17 
5 33..2 25.90 23.18 21.07 

Table .2: BDS test result for frm sh600636 

Radius 0.006.5581828.883.5 0.0129116365697669 0.019367.5.85.6503 0.0258232731395338 
Dim=2 12.51 1.... 15.28 15.27 

3 15.6. 17.90 19.20 19.31 
. 18.97 21.09 21.96 21..5 
5 22.38 2..10 2..1. 22.89 

Table .3: BDS test result for frm sh600638 
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Radius 0.0067523.063871852 0.01350.681277.37 0.0202570219161556 0.02700936255.87.1 
Dim=2 15.8. 16.87 16.60 15.66 

3 20..8 20.97 19.9. 18..8 
. 2..92 2..36 22.39 20.33 
5 30.56 27.82 2...8 21.63 

Table ..: BDS test result for frm sh600639 

Radius 0.0078986251236.55 0.0157972502.7291 0.0236958753709365 0.03159.500.9.582 
Dim=2 10.2. 11.66 13.58 1..56 

3 1..1. 1..63 16.21 17.23 
. 17.00 16.97 18.2. 18.97 
5 20.30 19.23 19.90 20.18 

Table .5: BDS test result for frm sh6006.0 

Radius 0.00568389.97638818 0.011367789952776. 0.01705168.92916.6 0.0227355799055527 
Dim=2 12..3 15.76 17.65 18.00 

3 16.08 18.9. 20.07 19.92 
. 19.23 21..2 21.5. 20.57 
5 22..3 23.72 22.83 20.92 

Table .6: BDS test result for frm sh6006.2 

Radius 0.0070375019831925 0.01.075003966385 0.0211125059.95775 0.02815000793277 
Dim=2 11.06 12.78 13.99 1..29 

3 15.03 16..3 17.10 16.96 
. 17.95 18.90 19.2. 18.88 
5 21.06 21.11 20.76 19.91 

Table .7: BDS test result for frm sh6006.3 

275
 

http:0.01350.681277.37


Radius 0.006538581762.5908 0.01307716352.9182 0.0196157.52873772 0.02615.3270.98363 
Dim=2 17.60 1..93 13.68 13.02 

3 26.58 20.63 17.81 15.93 
. 37..7 25.68 20.71 17.62 
5 52.63 30..5 23.11 18.83 

Table .8: BDS test result for frm sh6006.. 

Radius 0.006321088257.0602 0.0126.217651.812 0.01896326.7722181 0.02528.35302962.1 
Dim=2 1..10 12.70 11.19 10.82 

3 2..37 17.68 1..5. 13.63 
. 36.35 21.90 16.77 15.12 
5 53..5 25.82 18.31 16.12 

Table .9: BDS test result for frm sh6006.5 

Radius 0.006.8621613.866. 0.012972.322697328 0.019.586.8.0.5992 0.0259..86.539.656 
Dim=2 12.56 15.58 17.55 18.61 

3 1..79 17.87 19.61 20.18 
. 16.91 19.71 20.81 20.85 
5 19.17 21..8 21.82 21..2 

Table 50: BDS test result for frm sh600650 

Radius 0.0072086051.967893 0.01..172102993579 0.021625815..90368 0.02883..205987157 
Dim=2 11.86 12.75 1..38 16.01 

3 17.67 15.95 16.67 17.89 
. 2..69 18.6. 18.21 18.56 
5 35.26 21.71 19.7. 19.29 

Table 51: BDS test result for frm sh600651 

276
 



Radius 0.00716903286.700.9 0.01.338065729.01 0.02150709859.1015 0.028676131.58802 
Dim=2 7.21 9.09 11.38 13.05 

3 9.3. 11.05 13.18 1..62 
. 11.39 12.58 1..1. 15.19 
5 13.69 1..17 15.03 15.62 

Table 52: BDS test result for frm sh600658 

Radius 0.006388..029565609 0.0127768805913122 0.0191653208869683 0.02555376118262.. 
Dim=2 13.6. 15.33 15.81 15.56 

3 18.56 19.65 19.28 18.6. 
. 22..3 22.73 21.66 20.55 
5 26.56 25.59 23.52 21.79 

Table 53: BDS test result for frm sh600663 

Radius 0.006662776135..237 0.01332555227088.7 0.019988328.063271 0.02665110.5.17695 
Dim=2 10.32 12.03 13.36 13.96 

3 13.2. 1..85 15.6. 15.73 
. 17.0. 17.57 17.71 17.50 
5 20.5. 19.98 19.32 18.75 

Table 5.: BDS test result for frm sh600668 

Radius 0.00767755876876913 0.0153551175375383 0.023032676306307. 0.0307102350750765 
Dim=2 15.0. 16.17 18.83 20.15 

3 19.3. 19.81 21.62 21.86 
. 22.56 22.26 23.39 22.86 
5 25.93 2..28 2..6. 23..8 

Table 55: BDS test result for frm sh60067. 
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Radius 0.00725.98090398285 0.01.5099618079657 0.02176.9.27119.85 0.029019923615931. 
Dim=2 9.97 12.10 13.52 13.65 

3 12.53 1..16 1..82 1..5. 
. 15.66 16.05 16.03 15.5. 
5 18.21 17.6. 17.12 16..9 

Table 56: BDS test result for frm sh600683 

Radius 0.0072.815102327576 0.01..963020.65515 0.0217...530698273 0.02899260.093103 
Dim=2 11.15 12.52 13.69 1...7 

3 15.39 16.67 17.28 17..1 
. 18..3 19.2. 19.28 18.96 
5 21.69 21.80 21.0. 20.1. 

Table 57: BDS test result for frm sh60068. 

Radius 0.0071126952650000. 0.01.2253905300001 0.0213380857950001 0.028.507810600001 
Dim=2 11..2 12.53 13.2. 13.81 

3 15.89 16.18 16..9 16.7. 
. 20.52 19.28 18.55 18.11 
5 25.98 22.16 19.99 18.91 

Table 58: BDS test result for frm sh600692 

Radius 0.00712322.29750197 0.01.2.6..85950039 0.0213696728925059 0.028.928971900079 
Dim=2 12..2 13.93 1..05 13.69 

3 16.75 17.92 17.35 16... 
. 20.97 21.25 20.0. 18.57 
5 25..2 2..10 21.85 19.85 

Table 59: BDS test result for frm sh600802 
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Radius 0.006.61.3592.7903. 0.0129228718.95807 0.01938.30777.371 0.0258.57.3699161. 
Dim=2 11.29 12.71 13.9. 15.28 

3 15.3. 16... 17.23 18.18 
. 18.36 18.67 18.95 19.29 
5 22.00 20.63 20.10 19.98 

Table 60: BDS test result for frm sh600812 

Radius 0.00719070605516185 0.01.381.121103237 0.021572118165.856 0.02876282.2206.7. 
Dim=2 11.51 13.39 1..89 15.08 

3 15.5. 16.77 17.1. 16.79 
. 19.30 19.67 19.17 18..7 
5 23.10 22.52 21.06 19.78 

Table 61: BDS test result for frm sh600821 

Radius 0.0065727..91803.3. 0.0131.5.898360687 0.01971823.75.103 0.026290979672137. 
Dim=2 12.76 13.16 12.78 11.88 

3 17.22 17.08 16.19 1..80 
. 21.38 20.28 18..3 16.69 
5 26.3. 23..7 20.38 17.9. 

Table 62: BDS test result for frm sh60082. 

Radius 0.00711362333375592 0.01.2272.66675118 0.0213.08700012678 0.028.5..933350237 
Dim=2 10.1. 11.83 12.98 1.... 

3 12.67 1..15 15.1. 16..2 
. 15.01 16.08 16.57 17.37 
5 17.95 17.99 17.91 18.29 

Table 63: BDS test result for frm sh600826 
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Radius 0.00715973905008686 0.01.319.781001737 0.021.792171502606 0.0286389562003.7. 
Dim=2 13.58 15.01 15.83 16..5 

3 19.13 19.51 19.08 18.72 
. 23.58 22.25 20.8. 20.06 
5 29.38 25.29 22.38 20.89 

Table 6.: BDS test result for frm sh600830 

Radius 0.0072223.1.1.12636 0.01....6828282527 0.02166702.2.23791 0.0288893656565055 
Dim=2 9.70 11.17 12.8. 1..59 

3 13.05 13.95 1..91 16.19 
. 16..1 16.53 16.86 17.56 
5 19.97 18.82 18..5 18.79 

Table 65: BDS test result for frm sh600831 

Radius 0.00613382087232855 0.0122676.17..6571 0.018.01.626169857 0.02.535283.8931.2 
Dim=2 10.91 13.22 1..6. 15.27 

3 15.12 16.78 17.71 17.8. 
. 18.7. 19.56 19.80 19.37 
5 22.75 22.05 21.19 20.31 

Table 66: BDS test result for frm sh60083. 

Radius 0.006.7677080.2.589 0.0129535.1608.918 0.019.30312.127377 0.0259070832169836 
Dim=2 9.20 10.3. 11.15 11.03 

3 13.03 13.22 13.32 12.86 
. 16..8 15..2 1..72 13.85 
5 20..3 17.95 16..0 1..93 

Table 67: BDS test result for frm sh600835 
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Radius 0.0071581..93.1135 0.01.316289868227 0.021.7..3.8023.05 0.028632579736.5. 
Dim=2 1..70 16.55 17.71 17..9 

3 18..2 19.83 20..1 19.88 
. 22..5 22.31 21.99 21.21 
5 27.91 25.08 23.28 21.92 

Table 68: BDS test result for frm sh6008.6 

Radius 0.0055.1179260.5896 0.0110823585209179 0.0166235377813769 0.02216.7170.18358 
Dim=2 11.03 12.50 13.68 1..20 

3 1..95 16.08 16.81 16.70 
. 18.23 18.98 19.10 18.35 
5 22.58 21.91 21.16 19.77 

Table 69: BDS test result for frm sh600859 
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E Appendix E 

The test statistic for each sample frms, with window 100, 250, and 500
 

respectively.
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