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The classic Lorenz equations were originally derived from the two-dimensional Rayleigh-11

Bénard convection system considering an idealised case with the lowest order of har-12

monics. Although the low-order Lorenz equations have traditionally served as a minimal13

model for chaotic and intermittent atmospheric motions, even the dynamics of the two-14

dimensional Rayleigh-Bénard convection system is not fully represented by the Lorenz15

equations, and such differences have yet to be clearly identified in a systematic manner.16

In this paper, the convection problem is revisited through an investigation of various dy-17

namical behaviors exhibited by a two-dimensional direct numerical simulation (DNS) and18

the generalized expansion of the Lorenz equations (GELE) derived by considering addi-19

tional higher-order harmonics in the spectral expansions of periodic solutions. Notably, the20

GELE allows us to understand how nonlinear interactions among high-order modes alter21

the dynamical features of the Lorenz equations including fixed points, chaotic attractors,22

and periodic solutions. It is verified that numerical solutions of the DNS can be recovered23

from the solutions of GELE when we consider the system with sufficiently high-order har-24

monics. At the lowest order, the classic Lorenz equations are recovered from GELE. Unlike25

in the Lorenz equations, we observe limit tori, which are the multi-dimensional analogue26

of limit cycles, in the solutions of the DNS and GELE at high orders. Initial condition27

dependency in the DNS and Lorenz equations is also discussed.28
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The Lorenz equations are a simplified nonlinear dynamical system derived from the two-29

dimensional Rayleigh-Bénard convection problem. They have been one of the best-known30

examples in chaos theory due to the peculiar bifurcation and chaos behaviors. And they are31

often regarded as the minimal chaotic model for describing the convection system and, by32

extension, weather. Such an interpretation is sometimes challenged due to the simplifying33

restriction of considering only a few harmonics in the derivation. This study loosens this re-34

striction by considering additional high-order harmonics and derives a system we call the35

generalized expansion of the Lorenz equations (GELE). GELE allows us to study how so-36

lutions transition from the classic Lorenz equations to high-order systems comparable to a37

two-dimensional Direct Numerical Simulation (DNS). This study also proposes mathemat-38

ical formulations for a direct comparison between the Lorenz equations, GELE, and two-39

dimensional DNS as the system’s order increases. This work advances our understanding of40

the convection system by bridging the gap between the classic model of Lorenz and a more41

realistic convection system.42

I. INTRODUCTION43

The Rayleigh-Bénard (RB) system is a canonical example of a flow convection system driven44

by the temperature difference ∆T between two boundaries in a plane horizontal fluid layer. When45

this condition of having higher temperature (i.e. ∆T > 0) and lower density at the bottom is main-46

tained, such an unstable environment created by the thermal stratification can introduce a roll-type47

convection motion for a high enough ∆T . In more precise terms, the onset of convection mo-48

tion happens when the nondimensional Rayleigh number Ra, the ratio between buoyancy force49

and viscous force, is above its critical value Rac. The critical Rayleigh number Rac depends on50

the boundary conditions and other system configurations. As Ra increases further above Rac (i.e.51

r = Ra/Rac � 1), the RB system exhibits very rich dynamical behaviors such as instability, bi-52

furcation, turbulence, chaos, intermittency, etc. Due to its simple configuration despite the flow’s53

complex behavior, the RB system has remained a popular research topic for over a century in54

diverse scientific disciplines including fluid mechanics, applied mathematics, and atmospheric55

science1,2.56

In 1962, Saltzman 3 further simplified the governing equations of the two-dimensional RB sys-57
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tem into a highly truncated system of ordinary differential equations, which was cast as an initial58

value problem by applying the Fourier representations. The spectral analysis allows us to better59

understand the convection roll by considering it as the primary mode together with its nonlinear60

interactions with higher-order Fourier modes. Although Saltzman 3 was first to propose these non-61

linear dynamical equations, its lowest order formulation by Lorenz 4 called the Lorenz equations62

is more widely recognised due to its association with Lorenz’s discovery of deterministic chaos.63

It is said that Lorenz had realized by chance that the finite predictability of weather might lie in64

nonlinearity of the governing systems in some fundamental sense. In order to best illustrate the idea65

that even a simple deterministic system can exhibit sensitive initial-condition dependency and is66

therefore unpredictable, Lorenz settled on a system of three ordinary differential equations derived67

from the two-dimensional RB system, now known as the Lorenz equations. Being simple and68

deterministic, its derivation is still strongly rooted in the physics of thermal convection, following69

the Fourier-Galerkin method of approximating the governing equations for the two-dimensional70

RB system. As such, the Rayleigh number retains its relevance through the normalized Rayleigh71

number r, an important parameter controlling the onset of chaos in the Lorenz equations. The72

butterfly-shaped Lorenz attractor5 is arguably the most prominent image of chaos theory, the field73

which by mid 1980s morphed itself into some kind of a new scientific movement with profound74

and lasting influences across different disciplines6.75

More recently, efforts have been made to understand how nonlinear dynamical systems behave76

when the dimension of nonlinear dynamical systems increases. For instance, Shen 7 extended the77

Lorenz equations by incorporating two additional higher-order Fourier modes and studied their78

influence on the system. The nonlinear dynamical systems can also be extended by considering79

additional physical effects (e.g. rotation, scalar diffusion) in the governing equations8–10. These80

extended systems exhibit somewhat different and sometimes new dynamical behaviors compared81

to the low-order Lorenz equations. For example, Felicio and Rech 11 demonstrated that a six-82

dimensional Lorenz-like system can even exhibit hyperchaos, (i.e. solutions with at least two pos-83

itive Lyapunov exponents, which was not seen in the original Lorenz equations). For a systematic84

comparison between the classic Lorenz equations and the higher-order extensions, Moon et al. 12
85

thoroughly investigated the dynamical behaviors and bifurcation structures of the extended sys-86

tems obtained by considering higher-order harmonics at dimensions 5, 6, 8, 9, and 11 in wide87

ranges of parameters, which was later generalized13 into explicit ODE expressions for (3N)- and88

(3N +2)-dimensional Lorenz systems for any positive integer N.89
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Two issues, however, remain unresolved in such analyses of the extensions at higher dimen-90

sions. First, as with all Lorenz and high-order Lorenz-like systems, it is not well-understood how91

much of the two-dimensional RB convection remains intact under the conversion into the Lorenz92

equations even at very high dimensions. Conversely, it is also important to assess to what extent93

the many interesting nonlinear phenomena observed in the Lorenz equations are also found in the94

two-dimensional RB convection. This study aims to address this issue by directly comparing the95

solutions of the Lorenz equations with results from a Direct Numerical Simulation (DNS) of the96

two-dimensional RB convection using the governing equations. There have been a number of DNS97

studies on the 2D RB convection14,15, but most focus on instabilities and turbulence phenomena;98

explicit investigations about similarities and differences between the Lorenz equations and DNS99

have been rare still. Paul et al. 16 reported some bifurcation characteristics in the r parameter space100

reminiscent of the Lorenz equations using the DNS. Nevertheless, a systematic and comparative101

investigation of the classic Lorenz equations and the DNS is still missing.102

The second issue is pertinent to the way in which the dimension is raised in the previously103

investigated generalizations of the Lorenz equations12,13, wherein the additionally incorporated104

higher-order harmonics are exclusively in the vertical direction of the thermal convection problem.105

These studies have not simultaneously considered horizontal higher-order harmonics and conse-106

quently the convection cells corresponding to very high harmonics in their generalizations may107

appear to have been vertically squeezed, which can lead to certain unnatural behaviors with regard108

to fluid convection. In this study, we newly formulate the generalized expansion of the Lorenz109

equations (GELE) by simultaneously considering higher-order harmonics in both the vertical and110

horizontal directions. GELE will serve as a link between the classic Lorenz equations and the DNS111

and will allow us a more complete investigation of the impact of higher-order harmonics on the112

various dynamical behaviors observed in the Lorenz equations.113

The formulations of the equations for the DNS and GELE necessary for the systematic analysis114

are presented in Section II. Detailed descriptions on the governing equations, the modal ampli-115

tudes, energy relations, etc., are provided for the three different systems: the Lorenz equations, the116

DNS, and GELE. In Section III, we demonstrate various numerical results; for instance, chaotic117

and equilibrium solutions, solution transition from the Lorenz equations to the DNS via variations118

of the order of GELE, periodic nature of the high-order systems, and initial-condition dependency.119

Finally in Section IV, conclusions and discussion are given.120
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II. PROBLEM FORMULATION121

A. Primitive equations122

In the Cartesian coordinate (x,z) where x and z are the streamwise (horizontal) and vertical123

coordinates, respectively, we consider the two-dimensional Navier-Stokes equations under the124

Boussinesq approximation together with the thermal diffusion equation as follows:125

∂u
∂x

+
∂w
∂ z

= 0, (1)126

127

∂u
∂ t

+u
∂u
∂x

+w
∂u
∂ z

=− 1
ρ 0

∂P
∂x

+ν0∇
2u, (2)128

129

∂w
∂ t

+u
∂w
∂x

+w
∂w
∂ z

=− 1
ρ0

∂P
∂ z
− ∆ρ̄

ρ0
g+ν0∇

2w, (3)130

131

∂T
∂ t

+u
∂T
∂x

+w
∂T
∂ z

= κ0∇
2T, (4)132

where u is the streamwise velocity, w is the vertical velocity, P is the pressure, T is the temperature,133

∆ρ̄ = ρ −ρ0 is the deviation of the density ρ from the reference density ρ0, ν0 is the reference134

kinematic viscosity, κ0 is the thermal diffusivity, and ∇2 = ∂ 2/∂x2 + ∂ 2/∂ z2 is the Laplacian135

operator. The reference values are computed from the properties at the bottom boundary z = 0. We136

assume that the density ρ and the temperature T satisfy a linear relation137

ρ−ρ0

ρ0
=−ε0 (T −T0) , (5)138

where ε0 is the thermal expansion coefficient and T0 is the reference temperature. We assume that139

the temperature T is given as140

T = T0−
∆T
H

z+θ , (6)141

where ∆T = T0− T |z=H > 0 is the temperature difference between z = 0 and z = H where H142

is the domain height, and θ is the temperature perturbation. The pressure P is assumed to be143

decomposed into P=P+ p where P is the pressure satisfying the hydrostatic balance: ∂P/∂ z=144

−ρ0ε0g∆T (z/H), and p is the pressure perturbation. Applying the above assumptions, we obtain145

the following set of equations:146

∂u
∂x

+
∂w
∂ z

= 0, (7)147

148

∂u
∂ t

+u
∂u
∂x

+w
∂u
∂ z

=− 1
ρ 0

∂ p
∂x

+ν0∇
2u, (8)149

5



150

∂w
∂ t

+u
∂w
∂x

+w
∂w
∂ z

=− 1
ρ0

∂ p
∂ z

+ ε0gθ +ν0∇
2w, (9)151

152

∂θ

∂ t
+u

∂θ

∂x
+w

∂θ

∂ z
− ∆T

H
w = κ0∇

2
θ . (10)153

To analyze the system in a nondimensional form, we consider the reference time scale as H2/κ0,154

the length scale as H, the velocity scale as κ0/H, the pressure scale as ρ0κ2
0/H2, and the temper-155

ature scale ∆T . Then the nondimensional equations read156

∂u
∂x

+
∂w
∂ z

= 0, (11)157

158

∂u
∂ t

+u
∂u
∂x

+w
∂u
∂ z

=−∂ p
∂x

+σ∇
2u, (12)159

160

∂w
∂ t

+u
∂w
∂x

+w
∂w
∂ z

=−∂ p
∂ z

+σRaθ +σ∇
2w, (13)161

162

∂θ

∂ t
+u

∂θ

∂x
+w

∂θ

∂ z
−w = ∇

2
θ , (14)163

where σ = ν0/κ0 is the Prandtl number and Ra = ε0gH3∆T/κ0ν0 is the Rayleigh number. Note164

that the variables (u,w, p,θ) are now dimensionless. The set of equations (11)–(14) can be further165

simplified if we consider the streamfunction ψ that satisfies166

u =−∂ψ

∂ z
, w =

∂ψ

∂x
. (15)167

The simplified set of equations for ψ and θ becomes168

∂

∂ t
∇

2
ψ =

∂ψ

∂ z
∂∇2ψ

∂x
− ∂ψ

∂x
∂∇2ψ

∂ z
+σ∇

4
ψ +σRa

∂θ

∂x
, (16)169

170

∂θ

∂ t
=

∂ψ

∂ z
∂θ

∂x
− ∂ψ

∂x
∂θ

∂ z
+∇

2
θ +

∂ψ

∂x
, (17)171

(see also, Saltzman 3).172

We solve the equations (16)–(17) by imposing the boundary conditions such that variables ψ173

and θ are periodic in the x-direction:174

ψ(x = 0,z) = ψ(x = lx,z), θ(x = 0,z) = θ(x = lx,z), (18)175

where lx is the streamwise domain length, while we consider in the z-direction the following176

boundary conditions177

ψ = θ =
∂ 2ψ

∂ z2 = 0, (19)178

at z = 0 and z = 1. The equations (16)–(17) in the physical space (x,z) as well as the boundary179

conditions (18)–(19) will be used in the two-dimensional DNS. And we will describe in the last180

subsection the numerical methods for performing the two-dimensional DNS.181
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B. Relation between DNS and Lorenz formulations182

For the derivation of the classic Lorenz equations, we consider the following transformations183

ψ(x,z, t) = X(t)

√
2(α2 +β 2)

αβ
sin(αx)sin(β z),184

θ(x,z, t) = Y (t)

√
2(α2 +β 2)3

α2βRa
cos(αx)sin(β z)185

− Z(t)
(α2 +β 2)3

α2βRa
sin(2β z), (20)186

where (X ,Y,Z) are the time-dependent amplitudes, α = 2π/lx is the streamwise wavenumber,187

and β = π is the vertical wavenumber. Note that the above transformations truncate off other188

high-order harmonics in the x- and z-directions. Using (20) and neglecting high-order nonlinear189

interactions as such, we derive the Lorenz equations:190

dX
dτ

= σ(Y −X),191

dY
dτ

= rX−Y −XZ,192

dZ
dτ

= XY −bZ, (21)193

where τ = (α2 +β 2)t is the rescaled time, r = Ra/Rac is the normalized Rayleigh number (i.e.194

the ratio between the Rayleigh number and the critical Rayleigh number Rac = (α2 +β 2)3/α2),195

and b = 4β 2/(α2 +β 2) is the geometrical parameter.196

Once we solve the Lorenz equations (21), we can recover the Lorenz-based physical solutions197

ψ(Lo)(x,z) and θ (Lo)(x,z) by using the backward transformations (20). Since nonlinear interac-198

tions among high-order harmonics are ignored, ψ(Lo) and θ (Lo) are different from those ψ and θ199

obtained from the DNS. To quantify the differences more systematically, we compute the DNS-200

based amplitudes (X (D),Y (D),Z(D)) as follows:201

X (D) =

√
2α2β

π(α2 +β 2)

∫ lx

0

∫ 1

0
ψ sin(αx)sin(β z)dzdx,202

Y (D) =

√
2α3βRa

π(α2 +β 2)3

∫ lx

0

∫ 1

0
θ cos(αx)sin(β z)dzdx,203

Z(D) =
−α3βRa

π(α2 +β 2)3

∫ lx

0

∫ 1

0
θ sin(2β z)dzdx, (22)204

where ψ(x,z) and θ(x,z) in (22) are the variables computed from the DNS. Note that the DNS-205

based amplitudes (X (D),Y (D),Z(D)) are obtained by integrations over the domain length in the206

vertical direction z and one wavelength in the streamwise direction x.207
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C. Spectral formulation for generalized nonlinear dynamical system208

In this study, we assume that the solution is spatially periodic in the x-direction and bounded209

in the z-direction as a way to allow the Fourier representations3. This consideration allows us to210

express the physical solution ψ and θ in the spectral form. First, we consider the spatial periodicity211

in the x-direction by expressing ψ and θ as212  ψ(x,z, t)

θ(x,z, t)

=
L

∑
l=−L

 ψ̃l(z, t)

θ̃l(z, t)

exp(iαlx), (23)213

where l is the mode number, L is the largest mode number we consider for the streamwise spectral214

modes, ψ̃l(z, t) and θ̃l(z, t) are the mode shapes of ψ and θ , respectively, i =
√
−1, and αl = lα is215

the streamwise wavenumber of the mode l. Since ψ and θ are real, the complex-conjugate modal216

relations ψ̃−l = ψ̃∗l and θ̃−l = θ̃ ∗l (where ∗ denotes the complex conjugate) must be satisfied for217

l ≥ 1, while ψ̃0 and θ̃0 must be real. For each mode l, we express the equations (16) and (17) in218

the modal form as219

∂

∂ t
∇̃

2
l ψ̃l = σ ∇̃

4
l ψ̃l + iαlσRaθ̃l + Ñψ

l , (24)220

221

∂ θ̃l

∂ t
= ∇̃

2
l θ̃l + iαlψ̃l + Ñθ

l , (25)222

where ∇̃2
l =

∂ 2

∂ z2 −α2
l , and Ñψ

l and Ñθ
l are the convolution terms:223

Ñψ

l =
L

∑
j=−L

iα j

[
∇̃

2
jψ̃ j

∂ψ̃l− j

∂ z
− ψ̃ j

∂

∂ z

(
∇̃

2
l− jψ̃l− j

)]
,224

Ñθ
l =

L

∑
j=−L

iα j

(
θ̃ j

∂ψ̃l− j

∂ z
− ψ̃ j

∂ θ̃l− j

∂ z

)
, (26)225

which are related to the nonlinear terms in (16) and (17). Note that, in the spectral transformation226

(23) and the nonlinear convolution (26), high-order harmonics (|l| > L) generated by nonlinear227

interactions of low-order harmonics (|l| ≤ L) are ignored. In principle, the spectral solution in the228

limit L→∞ will recover the DNS solution in the physical space (x,z). On the other hand, if L = 1,229

the spectral solution can match the Lorenz solution when low-order harmonics in the z-direction230

are considered. The mode number limit L is, therefore, an important control parameter that allows231

us to study the transition from the Lorenz equations to the DNS.232

The ansatz (23) is spectral only in the x-direction but we can further expand the mode shapes233
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ψ̃ and θ̃ using the sinuous series in the z-direction as follows:234  ψ̃l(z, t)

θ̃l(z, t)

=
M

∑
m=0

 ψ̂lm(t)

θ̂lm(t)

sin(βmz), (27)235

where ψ̂lm and θ̂lm are the time-dependent mode amplitudes, m is the mode number in the z-236

direction, M is the largest mode number we consider for the vertical spectral modes, and βm = mβ237

is the vertical wavenumber of the mode m. Note that the sinuous series with sin(βmz) satisfies238

the boundary conditions at z = 0 and 1 for any m. Applying the expansion (27) to the equations239

(24)-(25) leads to the following equations of the generalized expansion of the Lorenz equations:240

−
(
α

2
l +β

2
m
) dψ̂lm

dt
= σ

(
α

2
l +β

2
m
)2

ψ̂lm + iαlσRaθ̂lm + N̂ψ

lm, (28)241

242

dθ̂lm

dt
=−

(
α

2
l +β

2
m
)

θ̂lm + iαlψ̂lm + N̂θ
lm, (29)243

where N̂ψ

lm and N̂θ
lm are the convolution terms derived from the nonlinear terms Ñψ

l and Ñθ
l (see244

Appendix A for more details).245

The practicality of the GELE above is in that the equations (28)–(29) can produce either the246

DNS solutions or the Lorenz solutions depending on the choice of L and M. For instance, GELE247

can be simplified into the Lorenz equations when we consider L = 1 and M = 2 and when proper248

initial conditions are imposed such that initial mode amplitudes except ℑ(ψ̂11), ℜ(θ̂11) and θ̂02 are249

zero (i.e. ℜ(ψ̂11) = ℑ(θ̂11) = 0, ψ̂01 = ψ̂02 = ψ̂12 = θ̂01 = θ̂12 = 0 where ℜ and ℑ denote the real250

and imaginary parts, respectively). As similarly derived for the DNS-based amplitudes in (22), the251

GELE-based amplitudes X (G), Y (G) and Z(G) can be computed from the following relations:252

X (G)(t) =−
√

2αβ

(α2 +β 2)
ℑ [ψ̂11(t)] ,253

Y (G)(t) =

√
2α2βRa

(α2 +β 2)
3 ℜ
[
θ̂11(t)

]
,254

Z(G)(t) =− α2βRa

(α2 +β 2)
3 θ̂02(t). (30)255

If we consider M > 2 and L = 1, we recover the high-order Lorenz equations12,13. And we can256

also reproduce the results of the DNS mathematically in the limits L→∞ and M→∞ (in practice,257

when L and M are sufficiently large). Furthermore, the mode amplitudes in GELE can be directly258

compared with those from the DNS if we consider the DNS-based mode amplitudes ψ̂
(D)
lm and θ̂

(D)
lm259
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obtained from the following relations:260

ψ̂
(D)
lm =

α

π

∫ lx

0

∫ 1

0
ψ sin(βmz)exp(−iαlx)dzdx,261

θ̂
(D)
lm =

α

π

∫ lx

0

∫ 1

0
θ sin(βmz)exp(−iαlx)dzdx. (31)262

D. Dissipative system and energy relations263

By taking the divergence, we can check whether GELE is dissipative4. Applying the partial264

derivatives of the equations (28) and (29) with respect to ψ̂lm and θ̂lm, we have265

L

∑
l=−L

M

∑
m=0

[
∂

∂ψ̂lm

(
dψ̂lm

dt

)
+

∂

∂ θ̂lm

(
dθ̂lm

dt

)]
266

=−(σ +1)
L

∑
l=−L

M

∑
m=0

(
α

2
l +β

2
m
)
. (32)267

We clearly see that the right-hand-side term is always negative, which implies that the system is268

dissipative. As similarly pointed out by Moon et al. 12 , the right-hand-side term of (32) becomes269

largely negative and the volume contraction occurs at a faster rate when the limits of the system’s270

order L and M increase.271

It is also important to define the total energy ET which is the sum of the kinetic energy EK272

and potential energy EP (i.e. ET = EK+EP), where these energies can be defined in dimensionless273

forms,274

EK =
∫ 1

0

∫ lx

0

1
2
(
u2 +w2)dxdz, EP =

∫ 1

0

∫ lx

0
(−σRaz)θdxdz. (33)275

We note that the definition of EP above is different from that of Saltzman 3 , which is based on the276

square of the temperature perturbation. After manipulating the equations (11)–(14) and consider-277

ing the boundary conditions, the temporal evolution of the total energy can be written as follows:278

∂ET

∂ t
=
∫ 1

0

∫ lx

0

(
u

∂u
∂ t

+w
∂w
∂ t
−σRaz

∂θ

∂ t

)
dxdz = Q+V , (34)279

where Q is the temporal energy rate due to the thermal conduction occurring at the boundary280

z = 1:281

Q =−σRa
∫ lx

0
z
∂θ

∂ z

∣∣∣∣
z=1

dx, (35)282
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and V is the temporal energy rate due to the viscous dissipation:283

V =−σ

∫ 1

0

∫ lx

0

[(
∂u
∂x

)2

+

(
∂u
∂ z

)2

284

+

(
∂w
∂x

)2

+

(
∂w
∂ z

)2
]

dxdz. (36)285

It is important to note that V is always negative thus the viscous dissipation is responsible for286

the loss of the total energy, while Q can be positive or negative depending on the sign of the287

temperature gradient ∂θ/∂ z at z = 1.288

If we use the spectral formulation (27), we can further simplify the energy expressions without289

integrations; for instance, we have the kinetic and potential energies290

EK =
L

∑
l=−L

M

∑
m=0

π
(
α2

l +β 2
m
)

2α
|ψ̂lm|2,291

EP = σRa
M

∑
m=1

2π cos(βm)

αβm
θ̂0m. (37)292

Note that only the temperature modes θ̂lm with l = 0 contribute to the potential energy since the293

integration in the x-direction in (33) suppresses the contribution from the periodic modes θ̂lm of294

l > 0. The energy rates can be re-expressed as follows:295

V =−σ

L

∑
l=−L

M

∑
m=0

π
(
α2

l +β 2
m
)2

α
|ψ̂lm|2,296

D =−σRa
M

∑
m=1

2πβm cos(βm)

α
θ̂0m. (38)297

E. Numerical methods298

Considering the boundary conditions (18) and (19), we use the Chebyshev spectral method299

in the z-direction and the Fourier spectral method in the x-direction for numerical discretizations300

in the two-dimensional DNS17–19. For the time stepping, we consider the implicit Euler method301

on the linear terms and the Adams-Bashforth scheme for the nonlinear terms20. Direct numerical302

simulations in the physical space (x,z) use an appropriate number of collocation points between303

80 and 200 in both x- and z-directions and the time step ∆t between 10−6 and 10−4 in order to meet304

the Courant-Friedrichs-Lewy (CFL) condition for numerical stability in our parameter ranges of305

interest. When time-stepping GELE and the Lorenz equations, we also consider the implicit Euler306

method on the linear operator while the nonlinear terms are solved explicitly with the forward307
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Euler method. For all results presented in this paper, some parameters such as σ = 10 and b = 8/3308

are fixed (i.e. α = π/
√

2 and β = π , the parameters that give Rac = 27π4/4). We only vary the309

parameters r, L and M as control parameters to elucidate the similarities and differences between310

the DNS, GELE, and the Lorenz equations.311

In principle, a variety of types of initial conditions are available for numerical computation. For312

instance, we can impose Lorenz-like initial conditions where all the variables except (X ,Y,Z) are313

zero. The Lorenz-like initial conditions in modal amplitudes can be converted into the DNS initial314

conditions as ψ(x,z,0) = 2|ψ̂11(0)|sin(αx)sin(β z) and θ(x,z,0) = 2|θ̂11(0)|cos(αx)sin(β z) +315

θ̂02 sin(2β z). Although we can also impose various other kinds of initial conditions (e.g. non-316

zero higher harmonics where ψ̂lm(0) 6= 0 or θ̂lm(0) 6= 0 or random initial conditions with random317

profiles of ψ(x,z,0) and θ(x,z,0)), we will mostly focus on the cases computed using the Lorenz-318

like conditions, and the initial condition sensitivity with random initial conditions will be discussed319

briefly.320

III. NUMERICAL RESULTS321

We consider the regime r > 1 (i.e. Ra > Rac), where the two-dimensional convection system is322

linearly unstable. As r is increased from 1, we will investigate how dynamical behaviors such as323

bifurcation, nonlinear equilibration, chaos, or periodic attractors, all of which are only observable324

in the unstable regime and vary with the system orders L and M. Note that when we say a regime325

is stable, we refer to stability of the convection system not the stability of attractors.326

A. Chaotic and equilibrium states in the unstable regime327

In this subsection, we fix r = 30, a representative value at which we can observe the chaotic328

attractor in the classic Lorenz equations. In Fig. 1(a), we plot the amplitude Z versus time t and329

compare Z(t) of the Lorenz equations with Z(D)(t) obtained from the DNS when the Lorenz-like330

initial condition (X ,Y,Z) = (0.01,0,r− 1) is imposed on both the DNS and Lorenz equations.331

In fact, the temperature perturbation with Y = 0 and Z > 0 yields a stable solution when X = 0,332

since the corresponding temperature solution in the physical space: θ(x,z,0) = θ̂02(0)sin(2β z)333

with θ̂02(0) < 0 implies that the temperature perturbation is stably stratified (i.e. θ is positive334

and the fluid density is lighter in the upper region 0.5 < z < 1 while θ is negative and the fluid335
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FIG. 1. (a) Variable Z versus time t for the Lorenz solution (blue solid line) and the DNS solution (black

solid line) at r = 30. (b) Trajectories on the (X ,Z)-plane of the Lorenz (blue) and DNS (black) solutions.

(c,d) Amplitude distributions of the DNS solution: (c) log10 |ψ̂lm| and (d) log10 |θ̂lm| in the parameter space

of mode numbers (l,m) at t = 5.

density is heavier in the lower region 0 < z < 0.5). However, we impose X = 0.01 at t = 0 to have336

a small-amplitude streamfunction perturbation, which has a roll shape and can cause instability.337

Figure 1(a) shows that there is a short transient period from t = 0 where variable Z decreases when338

X is very small. In this transient period, the DNS amplitude Z(D)(t) matches the Lorenz amplitude339

Z(t), but afterwards Z increases as X is amplified and we see an oscillatory behavior of Z in time340

t. A clear difference between the Lorenz equations and the DNS is now such that the Lorenz341

amplitude Z becomes chaotic after the transient oscillatory period, while the DNS amplitude Z(D)
342

reaches an equilibrium and converges to Z(D) ' 29.75 as t increases. These different dynamical343

behaviors can also be clearly distinguished in Fig. 1(b), where the Lorenz solution exhibits a344

chaotic attractor on the (X ,Z)-plane while the DNS solution moves along a spiral that converges to345
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a fixed solution (X (D),Z(D))' (12.46,29.75). We note that this DNS fixed solution is close to but346

is still different from the fixed point solution of the Lorenz equations: (X ,Z)|fixed =(
√

b(r−1),r−347

1)' (8.79,29). For variable Y , the DNS solution converges to Y (D) ' 12.46, a value still different348

from that of the fixed point solution Yfixed =
√

b(r−1)' 8.79 for the Lorenz equations.349

The difference between the Lorenz and DNS solutions results from the fact that the DNS al-350

lows nonlinear interactions among higher-order modes. To see more clearly how the high-order351

nonlinear interactions occur in the DNS, we plot in Fig. 1(c,d) the log-scale absolute values of352

the amplitudes ψ̂lm and θ̂lm in the mode number space (l,m) at t = 5. Note that we only need to353

display the mode number space for non-negative l ≥ 0 due to the symmetries ψ̂∗(−l)m = ψ̂lm and354

θ̂ ∗(−l)m = θ̂lm. The initial amplitudes we impose at t = 0 are X = 0.01 and Z = r− 1 = 29 (i.e.355

ψ̂11 = −0.015i and θ̂02 = −0.3077), while other variables are zero. On the one hand, the Lorenz356

equations only allow nonlinear interactions between ψ̂11, θ̂02, and θ̂11. If we plot the amplitudes in357

the mode number space (l,m), all the amplitudes except the modes with (l,m) = (1,1) and (0,2)358

will be displayed in white, as only these three modes vary with time t in a chaotic manner. On the359

other hand, as time t progresses in the DNS, the modal nonlinear interactions distribute energies360

to higher-order harmonics and they allow the growth of high-order streamfunction modes such361

as ψ̂31, ψ̂13, ψ̂22, etc., and high-order temperature modes such as θ̂11, θ̂04, θ̂31, etc. As the solu-362

tion reaches the equilibrium, it is found that the largest amplitudes of the DNS solution are still363

achieved for the streamfunction mode ψ̂11 = −18.68i and the temperature mode θ̂02 = −0.3157364

(i.e. X (D)' 12.46 and Z(D)' 29.75); however, other high-order modes also have comparably large365

amplitudes. It is thus expected that the streamfunction ψ and temperature θ in the physical space366

(x,z) are represented not only by the dominant modes with (l,m) = (1,1) and (l,m) = (0,2) but367

also by other high-order modes. In Fig. 1(c,d), we also note that the amplitudes in the mode space368

(l,m) become negligible with amplitudes of order less than O(10−4) for l ≥ 18 and m≥ 18. This369

implies that GELE requires the system dimensions with at least L ' 18 and M ' 18 to reproduce370

the DNS-like results with quantitatively and qualitatively similar nonlinear interactions amongst371

the high-order modes.372

Figure 2 displays the DNS solution at the steady-state equilibrium state at t = 5 in the physi-373

cal space (x,z) over two streamwise wavelengths (i.e., x/lx ∈ [0,2]). The streamfunction ψ at the374

equilibrium represents a pair of vortices (red region: clockwise rotating vortex, blue region: anti-375

clockwise vortex). More interestingly, the temperature perturbation θ exhibits mushroom-shaped376

convection. For both ψ and θ , we see that the dominant spatial periodicity in the x-direction is377
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FIG. 2. DNS solution of ψ(x,z) (top) and θ(x,z) (bottom) at the steady-state equilibrium at t = 5 for

parameters in Fig. 1.

unity. On the other hand, we see that ψ(x,z) features the spatial periodicity of unity in the z-378

direction while θ(x,z) shows the spatial periodicity of unity or two depending on the x coordinate.379

These features are captured in the spectral amplitude distributions in Fig. 1(c,d) as the most dom-380

inant mode in the streamfunction is ψ̂11 while both modes θ̂11 and θ̂02 are the most dominant381

ones for temperature perturbation. Moreover, the high-order modes also have large amplitudes as382

we can see a structure like a pointy stem part of the mushroom in the DNS temperature solution383

θ(x,z).384

In Fig. 3, we plot the perturbation energy and its time derivative versus time for the DNS and385

Lorenz solutions of Fig. 1. For both cases, we impose at t = 0 a small kinetic energy (i.e. EK '386

4.71× 10−3) with X = 0.01. And the initial potential energy is negative (i.e. EP ' −2.73× 104)387

as the temperature perturbation is stably stratified with Z = r−1 at t = 0. The total energy ET is388

also negative (i.e. ET '−2.73×104) due to the largely negative potential energy. Even though the389

initial kinetic energy is very small, the pair of vortices triggers the instability and the total energy390

fluctuates with an oscillatory behavior in a transient period, similar to the behavior of Z(t) in391

Fig. 1(a). The time variation of the energies for the DNS solution in Fig. 3(a) shows the saturation392

process with the kinetic energy at equilibrium increased from the initial kinetic energy (i.e. the393

kinetic energy difference ∆EK =' 0.78×104). On the other hand, the negative potential energy at394

the equilibrium is decreased from the initial potential energy (i.e. the potential energy difference395

∆EP ' −0.76× 104, which implies that the magnitude is increased in the negative direction). As396
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FIG. 3. (a,b) Time variation of the total energy ET (black), kinetic energy EK (red), and potential energy

EP (blue) for the (a) DNS and (b) Lorenz solutions in Fig. 1. (c,d) Time variation of the total energy rate

∂ET/∂ t computed directly from ET (green dashed lines overlapped with black solid lines), Q (red solid

lines), V (blue solid lines), and the sum Q+V (black solid lines) for the (c) DNS and (d) Lorenz solutions.

for the sum, the negative total energy at the equilibrium is slightly increased to ET '−2.71×104
397

compared to the initial negative total energy (i.e. the increase of the total energy ∆ET ' 2× 102,398

which implies a decrease in magnitude). The Lorenz solution, on the other hand, does not reach399

an equilibrium state but it fluctuates in a chaotic manner. Both the kinetic and potential energies400

exhibit chaotic temporal variations as shown in Fig. 3(b). If we average the energies of the Lorenz401

solution from t = 2 to t = 5, we obtain the average total energy ĒT ' −2.10× 104, the average402

kinetic energy ĒK ' 0.32× 104, and the average potential energy ĒP ' −2.42× 104. While the403

average kinetic energy of the Lorenz solution is smaller than that of the DNS solution at the404
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FIG. 4. (a) Trajectories on the (X ,Z)-plane for various solutions of the GELE with different L and M

(colored solid lines), the Lorenz equations (gray solid line), and the DNS solution (black dashed line) at

r = 30. Black circle indicates the initial condition (X ,Z)= (0.01,29). (b) Various fixed points for converging

solutions of the GELE with different (L,M) and DNS solution in (a).

equilibrium, the kinetic energy of the Lorenz solution frequently exceeds the equilibrium DNS405

kinetic energy due to the Lorenz equations’ intermittent nature.406

Figure 3(c) and (d) display the time derivatives of the energies of the DNS and Lorenz solutions.407

For both solutions, we validate the balance equation (34) by comparing the time derivative ∂ET/∂ t408

directly computed from time-differentiation of ET (red dashed line) with the sum Q+V (black409

solid line). For the DNS solution, the total energy time derivative becomes zero as it reaches the410

equilibrium and the balance is maintained between the constant negative viscous dissipation V411

and the constant positive energy flux Q. On the other hand, the Lorenz solution does not reach an412

equilibrium as the viscous dissipation V and the energy flux Q do not balance but they fluctuate413

with time in a chaotic manner; therefore, the time derivative of the total energy ∂ET/∂ t for the414

Lorenz solution never stays at zero.415

B. Connection between Lorenz and DNS solutions416

In this subsection, we now investigate with GELE how solutions transition from the Lorenz417

equations to the DNS as the mode limits L and M are increased. Given the same initial condition418

(X ,Y,Z)= (0.01,0,r−1), Fig. 4(a) shows trajectories on the (X ,Z)-plane of solutions with various419

values of L and M. The trajectories of the DNS and Lorenz solutions are the same as the ones in420
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Fig. 1(b), only displayed with different line styles in Fig. 4. It is remarkable that the high-order421

solutions other than the Lorenz solution do not exhibit chaotic attractors but converge to fixed422

points; for instance, the trajectories converge to (X (G),Z(G))' (−10.55,29.49) for (L,M) = (4,4),423

(X (G),Z(G)) ' (−0.006,29.63) for (L,M) = (6,6), (X (G),Z(G)) ' (0,25.94) for (L,M) = (8,8),424

(X (G),Z(G))' (12.39,29.75) for (L,M) = (10,10), and (X (G),Z(G))' (12.46,29.75) for (L,M) =425

(20,20). Fixed points of the GELE solutions depend on L and M as shown in Fig. 4(b), but it is426

verified that they approach the fixed points of the DNS as L and M increase. The trajectory of427

the system with (L,M) = (10,10) is slightly different from the trajectory of the DNS solution in428

the transient period, but the final fixed point (X (G),Z(G)) ' (12.39,29.75) is very similar to the429

equilibrium (X (D),Z(D)) ' (12.46,29.75) of the DNS solution. For higher orders of L > 10 and430

M > 10, the trajectories of the GELE solution become equivalent to those of the DNS solution.431

As the system order increases, the number of possible fixed points increases and onto which fixed432

point a trajectory settles depends on the initial condition. We have checked that the same initial433

condition for different L and M leads to the same fixed point when L and M are sufficiently large.434

Further discussion on the initial-condition dependency will be provided in another subsection.435

To understand in a more visual way how a solution transitions from the Lorenz equations to the436

DNS, Fig. 5 shows temperature perturbation θ(x,z) over two streamwise wavelengths 2lx for the437

GELE solutions with various sets of (L,M). Only the Lorenz solution with (L,M) = (1,2) at the438

top of Fig. 5 is not at equilibrium at t = 5 as the Lorenz solution lies on a chaotic attractor before439

and after t = 5, while other GELE solutions of higher orders reach their equilibrium states. For all440

solutions in Fig. 5, we recognize that the dominant spatial periodicity in the z-direction is two (i.e.441

the dominant mode number is m = 2). On the other hand, the dominant spatial periodicity in the442

x-direction varies with the system orders L and M. For instance, the temperature perturbations for443

(L,M) = (4,4) and (6,6) show a wiggly pattern around the center line z = 0.5 and it is difficult to444

determine by inspection which mode number l is the dominant one. For the temperature perturba-445

tion of (L,M) = (8,8), it is noticeable that the dominant periodicity in the x-direction is l = 3 (i.e.446

the dominant wavelength is lx/3). A similar structure with the dominant spatial periodicity l = 3 is447

observed for the case (L,M) = (3,6) (not shown) when the same initial condition is imposed. As448

the system limits L and M are further increased, the GELE equilibrium solutions for L ≥ 10 and449

M ≥ 10 become equivalent to the DNS solution in Fig. 2.450
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FIG. 5. Temperature perturbation θ(x,z) at t = 5 obtained from GELE for various sets of (L,M) and param-

eters in Fig. 1.

C. Periodic and chaotic solutions451

We now investigate how the solution behaviors change as r is increased. For each r, we still452

use the Lorenz-like initial condition with (X ,Y,Z) = (0.01,0,r−1) and other variables set to zero.453

In Fig. 6, we plot the bifurcation diagrams of Zmax versus r for the Lorenz and DNS solutions.454

The local maxima of Z, Zmax, are picked up after truncation of the transient period (0 ≤ t ≤ 3)455

from the solution21,22, and we define hereafter the Z-periodicity of the solution as the number456

of Zmax. Integer choices in r with the interval ∆r = 1 is used to plot the bifurcation diagram457

of the DNS solution. Our focus is not on the blue-dotted Lorenz bifurcation, which has already458

been investigated extensively in previous studies (see e.g. Dullin et al. 23), but on the bifurcation459

behavior of the DNS solution in the parameter space r. While the Lorenz equations bifurcate460

beyond r > 24, the trajectories of DNS solutions converge to fixed points in the range 1 < r < 50.461

The DNS bifurcation curve is slightly dropped in the range 30 < r < 50 due to the convergence to462

a fixed solution of the streamwise periodicity of 3 in this particular range of r, while the solutions463

in the range r≤ 30 have the streamwise periodicity of unity as shown in Fig. 2 for r = 30. Beyond464

19



0 20 40 60 80 100

r

0

50

100

150

200

Z
m
a
x

DNS

Lorenz

FIG. 6. Bifurcation diagrams of Zmax versus r for the Lorenz (blue) and DNS (black) solutions. Dots denote

actual Zmax picked up at each local maximum, and gray area denotes the possible range of Zmax due to the

appearance of the limit tori for r ≥ 58. For the DNS solutions, the interval ∆r = 1 is used.

r ≥ 50, it is found that limit cycles with the Z-periodicity of unity appear in the range 50≤ r ≤ 58465

and limit tori appear for r > 58. For a limit torus, it is thought that there are infinitely many distinct466

Zmax, so we have the gray shaded area in Fig. 6 indicating the possible range of Zmax. We see that467

the width of the gray area increases gradually as r increases.468

To see more clearly what types of periodic solutions are observed, we show in Fig. 7 the tra-469

jectories of the DNS solutions on the (X ,Z)-plane. In the range 1 < r < 50, it is verified that the470

DNS solution saturates nonlinearly and its trajectory converges to a fixed solution as reaching the471

equilibrium state. If we plot only the fixed solution on the (X ,Z)-plane, it will appear as a dot. As472

r increases further, in the range 50≤ r ≤ 58, the DNS solution becomes periodic and the solution473

exhibits a limit cycle with the Z-periodicity of unity as shown in Fig. 7(a,b) for r = 50 and 55. As474

r increases beyond r = 58, the solution’s trajectory no longer lies on a limit cycle; for instance, the475

trajectory in Fig. 7(c) at r = 60 does not exhibit a limit cycle of the Z-periodicity of unity on the476

(X ,Z)-plane. The trajectory is, however, somehow regular and bounded. A more regular pattern is477

observed for the trajectory at r = 70 as shown in Fig. 7(d).478

To better understand the bounded trajectories in the range r > 58, we plot in Fig. 8 three-479

dimensional trajectories of the DNS solutions in the (X ,Y,Z)-space for various values of r where480

the solution no longer lies on a limit cycle and does not converge to a fixed point. At r = 80481
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FIG. 7. Trajectories on the (X ,Z)-plane computed from the DNS for (a) r = 50, (b) r = 55, (c) r = 60,

and (d) r = 70. In (c) and (d), the changing colors of the limit tori are based on time t as displayed in the

colorbars.

as shown in Fig. 8(a), the solution lies on a smooth limit torus, which is known to be observed482

in the presence of quasiperiodicity24. It is verified that trajectories of the solutions in the range483

58 < r < 80 (including the ones at r = 60 and r = 70 shown in Fig. 7c and d) also lie on limit tori.484

The solution at r = 100 in Fig. 8(b) exhibits a limit torus attractor as well, but it is now twisted485

along the toroidal direction. The solution’s irregularity becomes more apparent as r increases486

further. At r = 110, the trajectory has an irregular torus shape (Fig. 8(c)), that is, the solution does487

not exhibit any regular-shape attractor (e.g. limit cycles, limit tori). The trajectory continues to488

move irregularly as r≥ 120 (see Fig. 8(d)–(f)). It is noticeable that such irregular chaotic solutions489

cover wider ranges of (X ,Y,Z) in the phase space as r increases.490

To verify if a limit torus is also observable in the GELE, we compute the solutions of the GELE491

of orders (L,M) = (10,10) at r = 80 (Fig. 9). It is found that, if the Lorenz-like initial condition492

(i.e. (X ,Y,Z) = (0.01,0,r− 1) and other variables zero) is imposed, the GELE solution lies on a493
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FIG. 8. Trajectories of the DNS solutions in the (X ,Y,Z)-space for (a) r = 80, (b) r = 100, (c) r = 110, (d)

r = 120, (e) r = 150, and (f) r = 200. Colorbars display the value of time t corresponding to each color of

the trajectories.

limit cycle as shown in Fig. 9(a), which is different from the DNS solution’s limit torus behavior.494

To understand this different outcome, we plot the amplitude ψ̂lm in the parameter space (l,m) in495

Fig. 9(b), and we see that the limit-cycle solution has the distribution of non-zero amplitudes on496

higher-order harmonics of ψ̂11 (e.g. ψ̂13, ψ̂15, · · · , ψ̂31, ψ̂51, · · · ). On the other hand, the DNS497

solution with the limit torus trajectory as shown in Fig. 8(a) does not have a similar distribution of498

ψ̂ as displayed in Fig. 9(c) but the amplitudes of other higher-order harmonics are also amplified499
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FIG. 9. (a,b) Trajectories of the GELE solutions on the (Y,Z)-plane after a transient time period for r = 80,

(L,M) = (10,10) from (a) Lorenz-like and (b) random initial conditions. (c) Distribution of the amplitude

log10(|ψ̂lm|) in the parameter space (l,m) for a GELE solution on the black limit cycle in (a). (d) The

amplitude distribution log10(|ψ̂lm|) for a GELE solution on the blue limit torus in (b).

(not shown in this paper but is qualitatively similar to Fig. 9d). Although the GELE solution con-500

siders perfect nonlinear modal interactions among the harmonics inside the domain with l ≤ 10501

and m ≤ 10, we conjecture that GELE may require higher-order harmonic terms of orders l > 10502

and m > 10 to fully reproduce the DNS solution. We also conjecture that the DNS induces the am-503

plification of other harmonics (e.g. ψ̂21, ψ̂12, · · · ) as the solutions computed in the physical space504

(x,z) can introduce small amplitude in the non-relevant harmonics as a result of the numerical505

discretization. To validate this speculation, we compute the GELE solution with a different initial506

condition where (X ,Y,Z) = (0.01,0,r−1) and other variables are now non-zero and random with507

very small initial amplitudes of order |ψ̂lm| < 10−4. We clearly see in Fig. 9(b) that the GELE508

solution with the random initial condition now exhibits a limit torus behavior after the transient509
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FIG. 10. Trajectories on the (X ,Y,Z)-space for the (a) Lorenz and (b) DNS solutions at r = 30 (color solid

lines). Black dots denote different initial conditions and dashed lines are drawn for the purpose of clear

display of the initial conditions.
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FIG. 11. Trajectories on the (X ,Y,Z)-space for DNS solutions at r = 80 with different initial random per-

turbations |ψ(x,z)|< ε and |θ(x,z)|< ε where ε = 10−6 (black), ε = 10−4 (blue), and ε = 10−2 (red).

period. It is also verified in Fig. 9(d) that every harmonics of the GELE solution on the limit torus510

is now amplified and this amplitude distribution ψ̂lm of the GELE solution resembles qualitatively511

the distribution of the DNS solution.512

D. Initial condition dependency513

It is now clear that the solution behavior strongly depends on the mode limits (L,M) of the514

system, and the Lorenz equations is far different from the DNS in terms of the bifurcation behavior515

in the parameter space along r. Other than the control parameters (L,M), the initial condition also516
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affects the bifurcation behavior since high-order systems possess multiple stable/unstable fixed517

points and the system’s limiting dynamics can depend on the initial condition. As an example, we518

try different Lorenz-like initial conditions for the DNS and Lorenz solutions in Fig. 10. Black dots519

denote 26 different initial conditions generated through combinations of possible initial values520

X ∈ {−20,0,20}, Y ∈ {−20,0,20} and Z ∈ {−20,0,20} excluding the zero initial condition X =521

Y = Z = 0. We see in Fig. 10(a) that the Lorenz solutions at r = 30 are chaotic and they all lie on522

a chaotic attractor after some transient periods. On the other hand, each DNS solution at r = 30523

reaches an equilibrium state and different initial conditions lead to different fixed points.524

At higher r, the initial condition dependency becomes more complex. For instance, in Fig. 11,525

we show the DNS solutions at r = 80 computed from initial random perturbations that satisfy526

|ψ(x,z)|< ε and |θ(x,z)|< ε where ε is the amplitude. It is found that the limit tori have similar527

shapes for all DNS solutions, but their locations in the (X ,Y,Z)-space vary depending on the initial528

amplitude ε . One difference from the Lorenz equations is that, while the Lorenz system has three529

fixed points, (X ,Y,Z) = (0,0,0) and (X ,Y,Z) = (±
√

b(r−1),±
√

b(r−1),r− 1), the higher-530

order dynamical systems or the full 2D Rayleigh-Bénard system can have many more or infinitely531

many fixed points, making them difficult to locate analytically. As a result of having many fixed532

points, limit tori from different DNS solutions are centered at various different locations depending533

on the initial amplitude of perturbation. This is different from the Lorenz attractor, which move534

around the two locally unstable fixed points (X ,Y,Z) = (±
√

b(r−1),±
√

b(r−1),r−1). In this535

paper, we stop short of a full-fledged investigation of the initial condition dependency problem.536

It is possible, however, that the DNS solutions may possess additional fixed points with different537

characteristics leading to interesting conclusions; as such, the problem of multistability in DNS538

solutions deserves further attention in a future study.539

IV. CONCLUSION AND DISCUSSION540

In this paper, we propose the generalized expansion of the Lorenz equations (GELE) for the541

two-dimensional convection system, which is a generalized version of the Lorenz equations by542

considering higher-order harmonics in both the horizontal and vertical directions. GELE allows us543

to study how solutions transition from the Lorenz equations to the two-dimensional Direct Numer-544

ical Simulation (DNS) as the system orders L and M in the horizontal and vertical directions are545

varied. We also derived mathematical formulations for a direct comparison between the Lorenz546
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equations, GELE, and DNS, and we verified in both qualitative and quantitative aspects how the547

Lorenz solutions in the chaotic regime are different from the DNS and high-order GELE solu-548

tions, which reach different equilibrium or chaotic states. More specifically, it is shown how the549

GELE solutions vary with (L,M) and converge to those of the DNS when L and M are sufficiently550

large. In this study, nonlinear interactions among high-order harmonics as well as energy rela-551

tions of the solutions are thoroughly analyzed. Furthermore, the parametric study demonstrates552

how trajectories of the DNS and GELE solutions converge to fixed points, lies on limit cycles or553

limit tori, depart from regular limit solutions and eventually becomes chaotic as r increases. The554

initial-condition dependency is also checked to see how the GELE and DNS solutions behave with555

different initial conditions.556

The classic Lorenz equations have been considered as the minimal model that represents the557

chaotic nature of convection systems or even a bigger and more complex systems such as weather.558

In this study, we loosen an assumption on the minimal model by considering higher-order har-559

monics. We show by simples measures of mode amplitudes that such added complexities can lead560

to very different dynamical behaviors. The current work analyzes differences and similarities be-561

tween the Lorenz equations and high-order GELE in a direct manner. And this kind of analysis562

should be further extended to the three-dimensional convection system to see how the increase563

in the spatial dimension will modify behaviors of bifurcation and chaos as the Rayleigh number564

increases, which will be of great interest in relevant scientific disciplines.565

SUPPLEMENTARY MATERIAL566

In the Supplementary Material, we demonstrate a direct comparison between the DNS and567

Lorenz equations by displaying the time-varying solutions of ψ , ψ(Lo), θ , and θ (Lo) on the plane568

(x,z) over one streamwise wavelength lx for r = 30 and r = 80. In the movie, the variables X and569

Z for the DNS and Lorenz solutions are also compared. For r = 30, it is clearly seen that the DNS570

solution reaches the equilibrium after t > 0.5 while the Lorenz solution demonstrates a chaotic571

behavior. The chaotic variation of X(t) of the Lorenz solution results in alternating appearances of572

positive and negative ψ , while the chaotic variations of Z(t) and Y (t) (not shown) of the Lorenz573

solution lead to a meandering motion in the lateral x-direction of θ . It is also notable that both574

solutions resemble at the early development stage, but then the DNS solution deviates from the575

Lorenz solution as it involves nonlinear interactions among higher-order modes and reaches the576
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steady-state equilibrium as t increases.577

For r = 80, the DNS results of ψ and θ show a more complex time-varying behavior than those578

at r = 30. For instance, at an early stage in the range 0< t < 1.5, we see a swirling motion of ψ and579

time-periodic convective motion of θ . In the range 1.5 < t < 2.3, the periodic convective motion580

of θ changes as the swirling motion of ψ is modified in a way that the peaks of ψ rotate in a wider581

area of the plane (x,z). For t > 2.3, the convective motion of θ involves lateral meandering motion582

and the shapes of positive/negative patches of ψ become irregular. We note that the limit torus in583

Fig. 8(a) appears for t > 2.3 thus we conjecture that the complex irregular motions of ψ and θ584

with multiple time-periodicities appear as the limit torus in the phase space (X ,Y,Z). The Lorenz585

solution at r = 80 demonstrates a chaotic behavior in a similar manner as the Lorenz solution at586

r = 30.587
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Appendix A: Details on convolution terms594

The nonlinear terms in the primitive equations (16) and (17):595

Nψ =
∂ψ

∂ z
∂∇2ψ

∂x
− ∂ψ

∂x
∂∇2ψ

∂ z
=

L

∑
l=−L

Ñψ

l exp(iαlx), (A1)596

597

Nθ =
∂ψ

∂ z
∂θ

∂x
− ∂ψ

∂x
∂θ

∂ z
=

L

∑
l=−L

Ñθ
l exp(iαlx), (A2)598

can be transformed into Ñψ

l and Ñθ
l that satisfy the relation (26). These nonlinear terms can be599

further expanded when we consider600

Ñψ

l =
M

∑
m=0

N̂ψ

lm sin(βmz), Ñθ
l =

M

∑
m=0

N̂θ
lm sin(βmz). (A3)601

27



In the convolution process for the sine function series, we consider the relation602

M

∑
n=0

an sin(βnz)
M

∑
k=0

bk cos(βkz)603

=
M

∑
m=0

M

∑
k=0

(
am−k−ak−m +am+k

2

)
bk sin(βmz), (A4)604

which is satisfied when we consider ai = bi = 0 for indices i < 0 or i > M. Then, we get the605

following relations for N̂ψ

lm and N̂θ
lm:606

N̂ψ

lm =
L

∑
j=−L

M

∑
k=0

iα jβk

2

[(
α

2
l− j−α

2
j +β

2
k −β

2
m−k

)
ψ̂ j(m−k)607

−
(

α
2
l− j−α

2
j +β

2
k −β

2
k−m

)
ψ̂ j(k−m)608

+
(

α
2
l− j−α

2
j +β

2
k −β

2
m+k

)
ψ̂ j(m+k)

]
ψ̂(l− j)k, (A5)609

610

N̂θ
l =

L

∑
j=−L

M

∑
k=0

iα jβk

2
[(

θ̂ j(m−k)− θ̂ j(k−m)+ θ̂ j(m+k)
)

ψ̂(l− j)k611

−
(
ψ̂ j(m−k)− ψ̂ j(k−m)+ ψ̂ j(m+k)

)
θ̂(l− j)k

]
. (A6)612
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