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Systemic Financial Risk Indicators and Securitised Assets: an Agent-Based
Framework

Abstract

The paper presents a version of the Eurace macro-agent-based model which reproduces a credit economy
in which the securitisation process and a bailout mechanism for banks bankruptcies are implemented. Within
this model framework, we study five systemic risk indicators which have the aim to assess financial imbal-
ances within the financial system. Two of them are the well-known mortgage-to-GDP ratio and the Capital
Adequacy Ratio which are constructed to detect only the in-balance sheet changes in credit exposure. We
consider two additional indicators, similar to the previous ones with the only difference is that they are able
to account also for the off-balance sheet items. Moreover, we introduce a novel indicator, so-called VUC
indicator, which also targets the off-balance assets. Results confirm that higher securitisation propensities
weaken the financial stability of banks with relevant effects on different sectors of the economy. Most impor-
tant, the analysis of the systemic financial indicator reveals the important issue of designing suitable systemic
risk indicators for predicting incoming financial crises, finding that an essential feature of these indicators
should be to integrate off-balance banks assets.

Keywords: systemic financial risk indicators, securitisation, housing market, agent-based models
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Introduction

The paper contributes to the literature of macro-financial agent-based models, financial innovation and
systemic risk. The study aims to answer the question of why financial risk indicators, with a particular focus
on those detecting financial instabilities, remain only partially able to identify in time and quantify the actual
financial system risk exposure. The models applied so far for detecting financial imbalances (e.g. see Borio
and Lowe (2002); Misina and Tkacz (2009); Barrell et al. (2010) among others) still present large errors in
their predicting power (ECB (2011) and Deghi et al. (2018)).

We analyse five systemic risk indicators which have the aim to assess financial imbalances within the
financial system. Two of them are the well-known mortgage-to-GDP ratio and the Capital Adequacy Ra-
tiol(e.g. see Borio and Lowe (2002) and Barrell et al. (2010)), which are constructed to detect only the
in-balance sheet (in-BS) changes in credit exposure of the single bank (CAR) and the financial system as
a whole (credit-to-GDP). We consider two additional indicators, similar to the previous ones with the only
difference that they are able to account also for the off-BS items. We call them adjusted CAR and adjusted
mortgages-to-GDP . Moreover, we introduce a last indicator, so-called VUC indicator (see Lauretta et al.
(2016)), which also targets the off-balance sheet (off-BS) assets.

Usually, banks decide to forward the off-BS items to the securitisation process to reduce the level of risk
exposure of their credit portfolio. We analyse these indicators and compare the in-BS and off-BS dimensions
in the context of the agent-based macroeconomic simulator Eurace (Cincotti et al. (2010), Cincotti et al.
(2012a), Raberto et al. (2012) and Teglio et al. (2017)). To the best of our knowledge, this is the first
time that in-BS and off-BS measures to detect financial imbalances are analysed and implemented in an
agent-based economy.

Eurace reproduces an artificial macroeconomy integrating different sectors and markets characterised by
heterogeneous and bounded rational agents. Fach agent is characterised by a double-entry balance sheet(i.e.
the “balance sheet approach” described in Teglio et al. (2010)) which enables us to observe the debts-credits
dynamics in- and off-balance sheet and, thus to take account of those dynamics in the assessment of the
systemic financial risk. We use this model for its peculiarity to reproduce real-world economic dynamics in a
simplified but still rich way. In fact, it presents the ideal environment for the study of the out-of-equilibrium
and non-linear dynamics of the economy.

The version of Eurace presented here includes a housing market in the style of Ozel et al. (2016), and
implements a securitisation mechanism on the footprints of Mazzocchetti et al. (2018) and Lauretta (2018)
that allows banks to free up their balance sheets from risk-weighted assets and circumvent the prudential
capital requirements. A behavioural rule governs the model: the securitisation propensity. It is introduced as

an exogenous parameter and determines the level of banks resort on the securitisation. To higher values of the

L Actually we use the leverage of the bank as risk indicator, defined as 1/CAR. In this way, the indicator should increase
with systemic risk, coherently with the other indicators.



securitisation propensity corresponds a higher resort to securitisation. Moreover, the model shows a bailout
resolution mechanism for banks’ bankruptcies, which foresees the banks’ rescue by means of government
spending if banks’ equity becomes negative (see Section 3.2 for more details).

In the aftermath of the crisis, the management of banks breakdowns has been a major concern for the
public institutions of most developed countries around the globe. In the last decade, sovereign States and
international organisations coped with the burden of the threat of banks’ failures and employed several policy
tools to bring back the economic system to a certain level of stability. Moreover, some financial institutions
turned out to be “too big to fail”, therefore government interventions became vital. To give an example, the
US government intervened in 2008 with the TARP? (Troubled Asset Relief Program) allowing the Treasury to
purchase illiquid, difficult-to-value assets from banks, up to 475 billion dollars, de facto introducing the first
financial system bailout. Accordingly, the Federal Reserve responded to the financial crisis by implementing
unconventional monetary policies (e.g. quantitative easing among others), that involved the purchase of
mortgage-backed securities, bank debt and Treasury notes, reaching 2.1 trillion dollars in June 20103. During
the banking crises, also several European governments organised rescue packages to support banks, which

involved 114 financial institutions during the period 2007-2013 (Gerhardt and Vennet (2017)).

We run simulations for a time span of 35 years. The results show that increasing the value of securitisation
propensity enhances the amount of off-BS mortgages transferred to the securitisation process, while reducing
the amount hold in-BS and, thus increasing, once the boom and bust occurs, the intensity of a recession,
given a higher credit exposure of the whole financial system. The securitisation mechanism allows banks to
exploit regulatory capital arbitrage and impact dramatically on their CAR. Consequentially, they can avoid
issuing new equity and remain able to continue to meet the capital requirements while their overall systemic
risk grows.

The bailout mechanism introduced in the model reproduces well what we witnessed in the last decade
after the Global Financial Crisis (GFC). It shows the effect of the securitisations process on government
accounting and how the costs of a bailout fall on the taxpayers. Also, we can observe the negative effects
of the increased risk exposure of the credit market on the housing market and business cycle dynamics (see
Section 5 for more details on this particular point).

Moreover, we compute the systemic risk indicators mentioned at the beginning of this introduction, and
the outcomes show that banks can satisfy the capital requirement while they keep building-up gradually a
higher risk exposure. The mortgages-to-GPD and capital adequacy ratios in their original version do not
detect the development of the increasing exposure because they monitor only the in-BS dynamic and they do
not consider the off-BS items. Therefore, this two indicators can become misleading. However, the adjusted

version of mortgages-to-GDP and CAR together with the VUC indicator seem more adequate to monitor

?see https://www.treasury.gov/initiatives/financial-stability/TARP-Programs/Pages/default.aspx
3see https://www.federalreserve.gov/monetarypolicy/bst_recenttrends.htm



and anticipate this risk exposure (see Section 5).

The discussion on the effectiveness and reliability of the systemic risk indicators has been particularly
lively so far, both for what concerns timing and impact on the real economy (see Section 1). Certainly, the
costs of banks’ bailout have been high for the entire economy and mostly burdened on taxpayers. Therefore,
it is of the utmost importance to develop and study better indicators which could time and prevent the
increase of the systemic risk in the economy.

The remainder of the paper is organised as follows. Section 1 presents a brief review of the systemic risk
indicators and explains how they are used in this study. Section 2 and 3 review the main elements of the
EURACE model and describe in details the novel modelling features. Sections 4 and 5 shows the results of

computational experiments and discuss them. Section 6 concludes the paper with final remarks.



1. Literature review

It is extremely important to have timely and effective measures of systemic financial risk assessment
because they are central to macro-prudential supervisory and regulatory policies. This means that there
is the need for tools and models able to monitor, capture and evaluate potential risks that can build up
financial instabilities within the financial system. Usually, the notion of systemic financial risk is associated
with assessing the total size of the risk present at a certain point in time within the financial system (Schwaab
et al. (2011)), namely the time-varying probability of a systemic event. It is characterised by both cross-
sectional (how risks are correlated across financial institutions) and time-related dimensions (how systemic
risk evolves over time given a change in certain business and market conditions) (Hartmann et al. (2009);
Adrian and Brunnermeier (2016a)).

In the past, the Value at Risk (VaR) was the most common measure of risk used by financial institutions
and authorities, and it was able to analyse the single institution’s level of risk. However, this measure was
unable to capture the single institution’s contribution to the overall systemic risk and the ensuing cross-
sectional dimension of the systemic risk (Adrian and Brunnermeier (2016b)). In the aftermath of the global
financial crisis (GFC) the Governments, Central Banks, and other Financial Authorities have been dealing
with the cumbersome process to bring back the financial system to certain degrees of stability and recover
the damaged economies of the countries involved. The debate, in both academic and non-academic level,
started questioning systemic risk methodologies (e.g. see Acharya et al. (2017); Adrian and Brunnermeier
(2016b); Banulescu and Dumitrescu (2015); Diebold and Yilmaz (2014); Billio et al. (2012); Goodhart and
Segoviano (2009); Huang et al. (2009)). For example, the European Central Bank (ECB (2011)) in its
Financial Stability Review of June 2011 contributed to this open discussion and introduced three models,
each focusing on different aspects of systemic risk. The first aimed to apply a multivariate regression quantiles
to assess the contribution of each financial institution to systemic risk. The second used macro and credit risk
data in order to detect financial institutions shared exposure to common observed and unobserved drivers
of financial distress. Finally, the third one provided a coincident indicator of systemic risk by aggregating
information from different segments of the overall financial system. More recently, in the Financial Stability
Review of the ECB 2018, Deghi et al. (2018) propose a financial stability risk index (FSRI) for the Euro
area, which forecasts the near-term risk for the economy to fall into a deep recessions. The index power is
derived from the extraction of the co-movement information of a combination of a large set of macro-financial

indicators and taking into account also the role of spillovers and contagion risk.

A relevant section of the literature in systemic risk focuses on identifying those systemically important
institutions that can trigger systemic instability in the financial system. A branch of the literature has
used contingent claims analysis in order to assess systemic risk (e.g. Lehar (2005); Gray et al. (2008)).
However, this approach presents a downside given the strong assumptions imposed concerning the banks’

liability structure. Other scholars have relied instead on market data (Huang et al. (2012); Adrian and



Brunnermeier (2016b) and Billio et al. (2012) among others). An important contribution to mention is that
of Acharya et al. (2017) who assume that undercapitalization of the financial sector as a whole produces
negative externalities which can impact on the real economy. They measure the single bank’s contribution
to systemic risk as its propensity to be undercapitalised when the system is undercapitalised, i.e. systemic
expected shortfall (SES). SES increases in the institution’s leverage and its marginal expected shortfall
(MES). Adrian and Brunnermeier (2016b) introduced CoVar, which they define as “the difference between
the Conditional Value at Risk (CoVaR) of the financial system conditional on an institution being in distress
and the CoVAR conditional on the median state of the institution.” Huang et al. (2009, 2012) developed a
systemic risk indicator measured by the price of insurance against systemic financial distress. It assesses the
single bank’s (or group of banks) marginal contribution and identifies the systemic importance of each bank
to the systemic risk. The authors refer to this indicator as distress insurance premium or DIP. Moreover,
the post-crisis literature on systemic financial risk (e.g. Trichet (2009); ECB (2009, 2011) and Bandt et al.
(2012)) distinguished three main (but linked to each other) sources of financial instability: contagion, shared
exposure to financial markets or macroeconomic risks, and financial imbalances. Contagion risk is defined as
an initially idiosyncratic market disturbance which become widespread in the cross-section over time and is
led by price co-movement on the downside. Shared exposure to financial market or macroeconomic risks is
the situation where adverse conditions of the financial markets or the macroeconomy may impact on financial
intermediaries and markets and cause simultaneous negative effects. Finally, financial imbalances occur in
presence of boom and bust of credit or other asset prices. For the purpose of this study, we will focus our
attention on the financial imbalances in particular. They are not easy to detect and quantify, given that they
can arise and develop gradually over time without producing any relevant change in inflation.

Among the most common measures, the literature often refers to the Credit-to-GDP ratio and the Capital
Adequacy (e.g. see Borio and Lowe (2002), Barrell et al. (2010)) to assess systemic risk. The first measure
detects the credit exposure of the entire financial system with respect to GDP, while the second, also known
as the capital to risk-weighted assets (RWA) ratio, measures the single bank’s credit exposure with respect
to its available capital. However, all the systemic measures discussed above rely mostly on in-BS data and
asset prices and do not take into account the role played by other variables, such as the off-BS assets. The
latter permits banks to hedge their idiosyncratic risk and presents the peculiarity, through the securitization
process, of amplifying financial imbalances within the financial system while keeping volatility low (i.e. what
Brunnermeier and Sannikov (2014) define the “volatility paradox”) by impacting on the Capital Adequacy
Ratio and favouring the creation of endogenous multi-leverages (Lauretta (2018)). As a consequence, the
financial system, as a whole, results in a higher risk exposure which is only partially detected by the available

systemic risk measures.



2. Model

The model presented used in this paper to conduct our investigation is the agent-based macroeconomic
model Eurace (see Cincotti et al. (2012a); Raberto et al. (2012) and Teglio et al. (2017)).

In general, agent-based models (ABM) have been widely used in the last decade in many economic fields,
including macroeconomics (see e.g. Caiani et al. (2016) and Fagiolo and Roventini (2017) for a survey and
a comparison with DSGE models). The main advantage of the ABM approach relies on the opportunity to
study the emergent aggregate statistical regularities in the economy, which are not originated by the behavior
of an average and rational individual, but are the result of agents behavior and interactions.*

Eurace model represents a fully integrated macroeconomy composed by several agents that act following
behavioral rules and interact through various markets. Each agent is characterised by a double-entry balance
sheet that includes the details of all assets and liabilities (Table 8). The dynamical change of agents’ balance
sheet entries depends on agents plans and on the result of agents interaction within the different market
settings. Figure 1 provide an overview of the model, showing the main agents and their interactions through

markets. Arrows directions indicate the role that agents take in the markets, i.e. demand or supply.

. Government
bonds

. Consumption i

| Consumption | ! 1 Goods Firms
goods y

PR———

Figure 1: Eurace model overview. Round box include agents, while rectangular boxes include markets. The outgoing arrows
represent the supply and incoming arrows represents the demand

In the model agents’ decision processes are characterized by bounded rationality and limited capabilities
of computation and information gathering; thus, agents’ behavior follows adaptive rules derived from the
management literature about firms and banks, and from experimental economics literature about the behavior

of consumers and financial investors (Teglio et al. (2010); Raberto et al. (2012); Cincotti et al. (2012b); Teglio

4For instance, in Eurace small idiosyncratic shocks at the firm level may generate single firm bankruptcies, which cause credit
rationing by banks and so waves of bankruptcies among firms, and then entailing large aggregate fluctuations in the economy.
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et al. (2017)). In general, agents interact in different types of markets, i.e. market for consumption goods and
capital good, housing market, labor market, credit market, securitization market and financial market for
stocks and government bonds (figure 1). Most markets are based on a decentralized exchange with pairwise
trading, thus allowing us to capture some realistic features of goods, labour and credit markets, like price

dispersion, exchange out of equilibrium and rationing.

Furthermore, the balance sheet approach (Teglio et al. (2010)) allows us to ensure the consistency at any
time step between stocks and flows in the model, both at the level of the single agent and at the aggregate
one, in line with the post-Keynesian stock-flow-consistent modeling approach (Godley and Lavoie (2012)).
Macroeconomic agent-based stock-flow constistent models have been developed up to date only in few works
(Kinsella et al. (2011), Riccetti et al. (2015), Caiani et al. (2016)). In particular, Caiani et al. (2016) build
a general and flexible benchmark macroeconomic AB-SFC model, where the economy is fully decentralized
and all transactions between private agents occur through local interactions based on matching protocols.
The stock-flow consistency of a model allows to check that all monetary and real flows are accounted for,

and that all changes to stock variables are consistent with these flows®.

3. Novel modelling features

In this study, we aim to assess the systemic risk arising from the securitisation practise. For this purpose,
we enriched Eurace model with an improved securitisation process and a bank resolution mechanism, which
allows us to evaluate the risks for the whole economy entailed by banks’ bankruptcies. In the following, we

provide a description of the core modelling features related to this work, highlighting the new developments.

3.1. Securitisation process

The securitisation mechanism used in this paper is an enhancement of the one proposed in Mazzocchetti
et al. (2018). In particular, we have introduced an engogenous demand for mutual fund (MF) equity shares,
enabling the MF to finance its activity by issuing new shares, that can be purchased by households using part
of their monthly disposable income. This demand side specification plays a crucial role in the securitisation
functioning, since a restraint in MF liquidity hampers its capacity to purchase MBSs, thus forcing the banks
to retain unwanted credit in its balance sheet.

We recall here the main characteristics of the securitisation process, focusing on the mortgage case, and
then introduce the new features. The choice to securitise only mortgages relies on the opportunity to take
into account the prepayment risk, i.e. the risk that households pay off their mortgages through housing
units’ fire sales when financially distressed (a description of the housing market is recalled in the appendix,
for further details and related computational experiments with the housing market, see Ozel et al. (2016)).

The prepayment of mortgages plays a crucial role in the securitisation market, mainly for two reasons:

5A detailed description of Eurace balance sheet matrices is provided in the appendix



e Prepayments reduce the amount of mortgages in banks’ balance sheet; thus, a wave of mortgage prepay-
ments triggered by housing units’ fire sales may hamper banks’ possibilities to sell the desired amount

of mortgages to the FVC.

e Prepayments reduce the profits of banks and, if securitisation is active, also of the mutual fund. In

fact, whenever a mortgage is payed off the payments of its interest stops.

Securitisation mechanism allows banks to free up their balance sheet from mortgages and their related risk
by selling them to a Financial Vehicle Corporation (FVC), which finances its activity by creating mortgage-
backed securities (MBs) and selling them to a MF. Since Eurace includes a capital requirement provision that
mimics Basel II regulations, banks can exploit the securitisation process to reduce the risk weighted assets

in their balance sheet, thus complying with capital requirements without increasing their equity.

In the following, we describe the mortgage lending process and the securitisation framework. Let us
consider a bank b with equity £} and risk-weighted portfolio W}, consisting of risk weighted loans W} » and
mortgages W iy, such that:

Wy =Wy +Wyu. (1)

A household h can send a credit requests to banks. Whenever it enters in the housing market, it can buy
house units and, in case its liquidity is lower than the offered price, it asks for a mortgage. Let us assume
that Uy, is the mortgage asked by the potential borrower (household k) to the bank b. Bank b can grant the
mortgage amount ﬁbh to household h only if is endowed with an amount of equity which is higher than a

fraction of the risk-weighted assets in its balance sheet, i.e. it satisfies the capital requirement:

By > k(Wy +wg, Usn) (2)

where £ is fixed and equal to 0.16. Moreover, risk weight of household mortgages wg, s assumed constant
and equal to 70%7.

As stated in equation 2, bank’s lending activity is limited by the ratio of its risk-weighted assets and
equity. The ceiling of risk-weighted assets for the bank is given by « times its equity capital, i.e. aFE}, where
a = % Thus, from a regulatory perspective, bank is constrained by the following rule: W, < aF,. With
the introduction of the securitisation mechanism, the bank can put off its balance sheet the amount of risk-
weighted assets that exceed the ceiling; thus it could keep lending whenever W;, exceeds aFy. However, we
want to consider a behavioral specification that allows the bank to sell credit when it approaches the ceiling,

thus considering different thresholds, computed quarterly as a fraction of the ceiling. For this purpose, we

introduce an exogenous securitisation propensity parameter p < 1. According to pu, the bank’s threshold is

SFor a study of the effects of different capital requirements in Eurace see Raberto et al. (2012)
"We refer to the standardised approach to credit risk outlined in Basell III reform, where residential real estate exposures
only adjust on Loan to Value ratio(LTV), which we assume constant and equal to 100% (see BIS (2017)).



given by (1 — u)aEy. The higher the value of p, the lower will be the threshold of the bank, resulting in
more securitisation. In fact, whenever bank’s risk-weighted assets exceed the threshold, the bank computes

the amount 5, of risk weighted assets that it want to sell to the FVC as:

Sy =Wy — (1 - p)aky (3)

Conversely, Sy is set to zero (no securitisation), if bank’s risk-weighted assets do not exceed the threshold.

We define U, as the amount mortgages in bank b balance sheet. It is worth remarking that W is the
sum of risk weighted loans (W} ) and risk weighted mortgages (W}, r); thus Sp is computed including also
the risk-weighted loans. However, we securitise only mortgages, which in extreme cases may be not enough
to fully satisfy the bank’s planned sales.

The amount of mortgages (Ug,) that the bank sell to the FVC is computed as the ratio between S;, and

the bank’s risk-weighted mortgages and is uniformly distributed among bank’s mortgages. In particular:

Wy.u

US;, = ( Sb ) U, if Wb,U > Sy
{ (4)

Us, = U, if Wiy < S

FVC funds the purchase of loans and mortgages by issuing mortgage-backed securities (MBSs), that are
sold to the MF'. In the same fashion of Mazzocchetti et al. (2018), the MF is endowed with an initial provision
of liquidity that allows it to purchase an amount of securitised products for two quarters, given a u equal
to 100%. Furthermore, the fund aims at maintaining its liquidity at the target level (M}), which represents
the amount of “operating liquidity” that is needed to carry out the securisation process for a quarter with p
equal to 100%.

Each quarter, mutual fund computes its liquidity needs Lp as:

{LD:MB_MD if ME>MD ()
5

Lp=0 if  Mp < Mp

where Mp is the current liquidity of the fund. Therefore, L represents the amount of liquidity that the
fund should rise. To do so the mututal fund can issue new equity shares, that generally are purchased by
households.

The rationale behind the use of a liquidity target relies on the choice to avoid a direct relation between
quarterly securitisation and the issuing of new shares, which would give rise to frequent shocks on households
disposable income. On the contrary, a liquidity target let the fund to periodically adjust the liquidity level in
order to have always enough resources to purchase ABSs and MBSs. Therefore, the fund uses the liquidity

simply as a buffer for its securitisation activity, but relies on share issuing for financing new purchases.

The mutual fund computes quarterly the liquidity needed to reach its target, and, accordingly, issues new

10



8. Moreover, the mutual fund remunerates the

shares that are bought by the households at the face value
owners of the issued shares paying a monthly interest, given by the central bank policy rate plus a spread
sp,t. To some extent the mutual fund may be considered as a fund whose benchmark is the policy rate,
which is outperformed by the spread sp:. A minimum spread value w is fixed, so that the mutual fund
always pays an interest that is higher than the policy rate. However, when new shares are to be issued, the
spread is increased by the mutual fund until it fulfills its liquidity needs. Accordingly, the spread is reduced
when the fund has enough liquid resources.

In order to link the spread to the fraction of disposable income that households are willing to invest

in equity shares, we enriched the behavioral specification of the demand side of mutual fund’s shares by

including the following relation:

by = min(n SD,t5 Q) (6)

9 o is the

where b; is the fraction of disposable income that households use to purchase new shares,
maximum income percentage that households can invest and 7 is a parameter which represent the marginal
propensity of households’ investments in new shares with respect to the spread. In this setting, 7 is equal
to 15; thus for each yearly percentage point offered by the mutual fund as a spread on the policy rate,
households spend the 15% percent of their monthly disposable income to purchase the shares. Although the
securitisation is active on a quarterly base and the liquidity needs Lp are updated accordingly with the same
timing, the issues of new shares occur monthly, in order to smooth the purchases across the quarters. The
shares bought by households give them the right to receive the earnings of the mutual fund, which are given
by the interest payments on the mortgages associated with securitised products.

It is worth remarking that the purchase of ABSs and MBSs by the mutual fund in the model is not
100% guaranteed. In particular, households are available to buy mutual fund’s shares only within a certain
proportion of their disposable income (p); otherwise, mutual fund may not be able to finance the purchase

of ABSs and MBSs and securitisation stops until new funds are raised by the mutual fund.

3.2. Bailout

In order to tackle banks’ bankruptcies, we introduce a bailout mechanism which is activated whenever
the banks’ equity becomes negative.

It is worth remarking that, whenever credit rationing occur, banks increase their equity by retaining
their earnings, with the aim to comply with the capital requirement (W, < «FE,) and grant more credit.
However, bank’s equity may be reduced by loans and/or mortgages write-offs, which can occur in case of

GCPs bankruptcies or severe financial distress of households. If write-offs are high enough to make banks’

8The face value is computed as the ratio between the nominal value of the mutual fund assets divided by the number of
outstanding shares.
9Thus the shares are distributed among households proportionally to their disposable income.

11



equity fall down below zero, the government intervenes by recapitalising the banks for an amount that allows
the credit institutions to re-comply with capital requirements.

Therefore, in this setting the cost of banks’ bankruptcies is supported by government and finally burden
the tax payers. In fact, the fiscal policy pursued by government is the stability and growth pact (SGP),
which targets a deficit to GDP of 3%. The bailout costs increase government spending and most likely its

deficit to GDP ratio, bringing it to override the target compelling the government to increase tax rates.

12



4. Computational experiments

Results are obtained by performing Monte Carlo computational experiments, i.e., simulations are run
using different seeds of the pseudorandom number generator for each scenario. Following Lauretta (2018)
and Mazzocchetti et al. (2018), we set five values of the securitization propensity p (0%, 5%, 10%, 20%, 30%).
Simulations have a duration of 35 years and are replicated using 50 different seeds per scenario, for a total
of 200 simulation runs. The computational experiments have been performed with the following settings:
3000 households, 50 Consumption Goods Producers, 3 Banks, 1 Capital Good Producer, 1 Financial Vehicle
Corporation, 1 Mutual Fund, 1 Government and 1 Central Bank.

Even though simulations run for a time span of 35 years, for the first five years banks are not allowed to
sell credit to the Financial Vehicle Corporation, thus there are five common years of transition phase, which
we do not consider in the analysis. Trajectories can diverge at the beginning of year 6, when banks can sell
mortgages to the FVC and the distinction among securitisation scenarios is enabled.

We present results using the median of yearly averages (computed across different time windows) over
the seeds for each one of the considered scenarios. In particular we show, for each of the five values of u
(0%, 5%, 10%, 20%, 30%), the median of economic and financial variables over the 50 seeds, along with the
first and the third quartile. In the description of results, in-BS mortgages represent the mortgages accounted
in banks’ balance sheet, while off-BS mortgages are the mortgages securitised and put off banks’ balance
sheet. Total mortgages represent the sum of in-BS mortgages and off-BS mortgages. Furthermore, in order
to better distinguish between monetary and non-monetary variables, in the figures we use the symbol “E€”
(Eurace Euro) to refer to the currency unit in the model (see Ponta et al. (2018)).

Moreover, to the aim of our investigation, we analyse a set of five indicators: banks’ leverage, i.e the ratio
between banks’ weighted assets and equity, computed using only in-BS weighted assets and total weighted
assets; mortgage to GDP ratio, computed using only in-BS mortgages and total mortgages; a fifth indicator,

the so-called VUC indicator (see Lauretta et al. (2016) and Eq. 7):

N
b—1 TCT

VUC = GETEI”P (7)

This indicator can be seen as a transformation of the credit-to-GDP indicator in which the numerator
expresses the ratio between the sum of the portion of banks credits T'Cr forwarded to the securitisation
process (off-BS assets) and the total banks equity Eq®. Following the common practice in the literature (e.g.
see Borio and Lowe (2002); Borio and Lowe (2004); Drehmann and Juselius (2014)), the GDP is used to scale
the indicator. The credit-to-GDP takes into account the leverage applied at the commercial bank level, but
ignores the role played by other leverages operating within the financial system at different levels. The VUC
indicator symply detects a second order of leverage, representative of the multi-leveraging effect Lauretta
(2018) operating within the financial sector, which can trigger systemic financial risk. This indicator has

a relevant obsevartory power and improves recognition of systemic-risk-building-up dynamics in particular
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for what concernes the off-BS flows. For policy purposes, the VUC indicator used together with the most
common credit-to-GDP ratio can improve the early-warning detection of financial imbalancies in the financial
system. It is worth remarking that the indicators, differently from the other variables, are presented using
the median, the first and the third quartile of yearly values (computed only in certain years, i.e. year 1,
5, 10, 15, 20, 25, 30 after securitisation starts) over the seeds for each one of the five values of u (0%, 5%,
10%, 20%, 30%). The reason is given by the need to consider the yearly values of the indicators in order to
compute the cross-correlations. In fact, we present a cross-correlation analysis between the indicators and the
yearly number of bankruptcies. Moreover, we add a cross-correlation measure between mortgages-to-GDP
indicators and the yearly number of firesales. Therefore, in order to correctly perform the cross-correlations

analysis, we consider the yearly time series of the indicators.

5. Results

Results of the computational experiments show the economic impact of the securitisation process across
time, focusing on the effect on the housing market and, more in general, on a selection of relevant economic
variables. In the specific context of securitization, we also introduce and test a set of systemic risk indicators,
that should be used as early warning for incoming financial crises.

In the next sections, we describe first the main economic implications of the securitisation process, ana-
lyzing the specific effect of different securitisation propensity (1), and finally we examine the effectiveness of

the proposed risk indicators.

5.1. The securitisation mechanism

As outlined in section 3.1, the securitisation process involves banks, a financial vehicle corporation (FVC)
and a mututal fund (MF). The latter is provided with an intial amount of liquidity which covers two quarters
of securitisation with p equal to 100%. Moreover, the MF targets a liquidity threshold, under which new
equity shares are issued and sold to households.

Figures 2 and 3 show the effects of the different scenarios on the MF. Scenarios with a higher value of
show higher purchases of mortgage-backed securities (panel (b)) which are financed by means of both internal
resources and by issuing of new equity shares (panels (a) and (c)). However, households’ monthly income
percentage that can be invested in shares’ purchase is limited, thus an excess supply of MBSs may not be
sustained by the fund, and banks could be rationed, i.e. not able to fulfill their planned credit sales (panel
(@)).

Some details of the mutual fund equity shares are shown in figure 3. In particular, the mutual fund
pays an interest rate to reward shareholders (panel (a) shows the yearly interest rate paid by the fund), and
increases the spread whenever it needs to collect more liquidity, in order to attract more investors. This
happens more frequently in the case of high securitization scenarios, as the liquidity needed by the fund to

buy new MBS is higher. The higher MF spread induce households to invest a more substantial fraction of
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their income in fund shares (panel (b)). It is worth remarking the interest rate of the MF shares is composed
by the CB policy rate (panel (¢)) and a spread. According to the MF interest rate, the mutual fund pays
monthly dividends to the shareholders.

Figure 4 reports the main effects of the securitisation propensity on bank’s balance sheet. For higher
propensity u, banks sell more mortgages, thus reducing the amount of mortgages accounted in banks’ balance
sheet (panel (b)) and enlarging the off-balance sheet volume (panel (a)). Consequently, the proportion of
off-BS mortgages over the total amount of credit enhances.

Securitisation allows banks to free up their balance sheet from risky assets, thus in the short run their
capital adequacy ratio increases and more credit can be granted by the bank. Therefore, the growth rate!® of
mortgages (which are securitized) is higher than the growth rate of firm’s loans (which are not securitized),
as shown in figure 6.

Those findings are in line with the securitisation mechanism explained in section 3.1. In particular,
according to equation 3, when securitisation is active banks de facto refer to their internal capital adeguacy
ratio (CAR), avoiding the regulatory constraints'!. In particular, the securitision instrument allows banks
to escape the capital requirement obligation, by selling risk-weighted mortgages to the FVC in exchange of
liquidity. This aspect is highlighted in figure 10b, showing that bank leverage '? is much higher in the case

of securitisation.

5.2. Securitisation effects on credit and housing market

In order to assess the impact of securitisation on lending activity and on the housing market, we analyse
the total credit growth rate considering two different time horizons after the activation of the securitization
mechanism: a short one presenting the first five years and a long one, where we report all the 30 years.

Panels (a), (b) and (c) of figure 5 show an increase in the volume of total credit in the first five years. In
fact, at the beginning of year 6 banks start to free up their balance sheets by selling risky assets, enabling
the issuing of additional credit. After one year, mortgages growth rates are higher in the scenarios with
positive p, showing that securitisation accelerates credit growth. As the paper focuses on the securitisation
of mortgage loans, which means being able to expand the supply of mortgages, we set up a parametrization
of the housing market where the demand by households is also sustained'. This is the main reason why
the mortgage loans growth rate is more affected by securitisation propensity with respect to the firms loans
growth rate.

The effect of securitisation in the medium and long run is shown in figure 6, and strictly depends on

securitisation propensity (u). In fact, the higher the value of p, the lower are credit growth rates in the long

10Growth rates are computed as the percentage increase of the selected indicator I with respect to its value in year 5, when
securitization is enabled, i.e., g(t) = (I(t) — I1(5))/1(5)

in the current setting the capital requirement is fixed at 10%;

12Bank leverage is the inverse of CAR, i.e., assets over equity. Here we refer to both in-BS and off-BS assets

13In particular, the value of the stock Tpra and flow Tpgr; constraints is equal to 0.5, while probability to enter in the
housing market (®g) is 50%. For details on the effects of different parameterizations in the housing market see Ozel et al.
(2016)
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Mututal Fund data
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Figure 2: Yearly mean’s median, first quartile and third quartile over 50 seeds of a set of mutual fund’s data. Yearly means

are computed across different time windows, each of them reported in the x-axis. Five securitisation propensity values (u) are
considered (0%,5%,10%,20%,30%)
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Figure 3: Yearly mean’s median, first quartile and third quartile over 50 seeds of a set of mutual fund’s shares issuing data.
Yearly means are computed across different time windows, each of them reported in the x-axis. Five securitisation propensity
values (p) are considered (0%,5%,10%,20%,30%)

17



Banks’ balance sheet data
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run. This is mainly due to the higher instability triggered by the short-term boost of lending activity, not
supported by an adeguate equity base increase, but built only on mortgages sales. In fact, securitisation may
be impaired because the mutual fund does not have enough funds (panel (d) of figure 2) and when p is high
banks may find it difficult to increase their equity base by retaining earnings, since most of them flow out to
off-BS mortgages. The results can be an increase in credit rationing (panel (a) of figure 7) and a decrease
of loans and mortgages growth rate. Moreover, in the long run a low equity level increases the risk of banks
bankruptcies due to credit write-offs.

The dynamics of the housing market is strictly linked with the mortgage volumes. In fact, the easier access
to mortgage loans enhances the demand for housing units by households, triggering a boost in the housing
price (panel (b) of figures 5 and 6). Following the dynamics of the mortgages, the housing unit price growth
rate is larger in the short run (after securitisation has been enabled) and for higher values of securitisation
propensity. However, in the medium and long run results may be reversed, with scenarios characterized by
greater u showing a slow down of the housing market activity, culminating in higher fire-sales volumes (figure
Ge).

It is worth noting that both in the credit and housing markets a low value of securitisation propensity
(u= 5%) achieves the best results, boosting credit activity in the short run without suffering growth rate

decreases in the long run with respect to the baseline scenario (u= 0%).

5.8. Securitisation impact on firms

The effects of securitisation process affect also the financing activity of firms. In particular, following the
pecking order theory, Consumption Goods Producers (CGPs) first finance their production plan by means
of internal resources, then they resort to bank credit, and finally, if rationed in the credit market, they issue
new shares and sell them to households.

Thus, a boost or a restraint in banks’ lending activity changes the financial structure of GCPs. In fact,
as the securitisation process starts and banks are able to free up their balance sheet from risky assets, thus
improving their capability to grant new loans to firms, CGPs face lower rationing in the credit market. Panel
(a) of figure 7 illustrated this aspect, showing a reduction of credit rationing in the very first year after
securitisation starts. However, in scenarios where the propensity p is high, the lower bank equity level and
the increase of fire-sales (figure 6e) that reduces the amount of mortgages in banks’ balance sheet, may impair
the securitisation process (see section 3.1) and increase the number of credit rationing in the medium and
long run.

The higher frequency of firms rationed in the credit market leads to a higher number of illiquidity

bankruptcies, where firms are no more able to roll over debt and finance their production plan (figure 7b).

5.4. Securitisation effects on government accounting

Figure 8 shows the impact that banks’ defaults have on the government accounting. As stated in section

2, a resolution mechanism for banks bankruptcies has been introduced in Eurace: if banks’ equity becomes
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Figure 5: Growth rate’s median, first quartile and third quartile over 50 seeds of credit and housing price. Growth rates are
computed as the percentage increase of the selected variable in certain years (each of them reported in the x-axis) with respect
to its value in year 5. Five securitisation propensity values (u) are considered (0%,5%,10%,20%,30%)
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Figure 7: Yearly mean’s median, first quartile and third quartile over 50 seeds of a set of firms’ data. Yearly means are
computed across different time windows, each of them reported in the x-axis. Five securitisation propensity values (u) are
considered (0%,5%,10%,20%,30%)

negative, the government provides the banks with the liquidity necessary to exceed the regulatory capital
requirement and carry on lending activity. However, bailout costs are paid by the government (panel (¢) in
figure 8), increasing its expenses (panel (a) in figure 8) and deficit to GDP ratio (panel (b) in figure 8). In a
Stability and growth pact scenario'?, this leads to an increase of taxes, de facto offloading the costs of bailout

on taxpayers (panel (d) in figure 8).

5.5. Securitisation and macroeconomic variables

By affecting the credit and the housing market, securitisation also impacts the main macroeconomic
indicators. Figure 9 shows real consumption (panel (a)) and unemployment rate (panel (b)). In the short
and medium run the securitisation process allows banks to grant more credit (figures 5), triggering also an
expansionary effect on consumption (in relative terms, comparing the different values of 1) and a consequent
reduction of the unemployment rate. However, in the longer run, expecially for scenarios with u = 20%
and 30%, the higher instability of the banking system, subsidized by taxpayers by means of recessive fiscal

policies, leads to higher levels of unemployment.

5.6. Systemic risks indicators

Figure 10 presents the time evolution of five systemic risk indicators, which are potential candidates to
be used as early warnings for incoming financial crises. As the focus of the paper is on the banking system
and credit market, we examined indicators that mainly target banks’ assets. In particular, we distinguish
two types of indicators, a first one, reported in figures 10a and 10c, which considers only assets in the balance
sheet of the bank, and a second one, reported in figures 10b, 10d and 10e, which includes also off-balance

sheet assets.

MTn the current framework, the fiscal policy is ruled by a Stability and Growth Pact scenario (SGP), where government target
a deficit to GDP ratio of 3 %, by adjusting the tax rates (see Teglio et al. (2017) for details)
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Figure 8: Yearly mean’s median, first quartile and third quartile over 50 seeds of a set of government data. Yearly means

are computed across different time windows, each of them reported in the x-axis. Five securitisation propensity values (u) are
considered (0%,5%,10%,20%,30%)
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The indicators in the upper row (figures 10a and 10b) represent bank leverage, computed as the ratio
between bank’s weighted assets and equity. The indicators in the middle row (figures 10c¢ and 10d) focus
on the ratio between mortgages and GDP, while the last indicator (figure 10e) focuses specifically on the
off-balance sheet assets, as explained in section 4.

We remind here that the capital requirements for banks are set to 10%, therefore allowing for a maximum
leverage of 10. Indeed, banks are able to comply with a leverage value under 10 until year 15, as figure 10a
shows, while afterwards the leverage tends to increase in the case of higher securitization propensity, as banks
are not stockpiling enough capital buffer. The leverage measure increases when also off-balance assets are
considered, as in figure 10b, supposedly revealing a higher systemic risk in the economy.

In a similar way, figure 10d shows the mortages to GDP ratio when also off-balance mortgages are
considered. However, in this case, differently from the previous one, the risk indicator in the high securitisation
scenarios are lower. Therefore this indicator does not warn about a higher risk when securitisation is active.

The last indicator, in figure 10e, which targets directly the off-balance sheets assets, weighted by the
economic activity (GDP), reveals, on the other hand, a strong risk in the case of high securitization scenarios.

We assess the effectiveness of the different risk indicators in predicting economic and financial crises by
examining the cross-correlation of the indicators with the number of total bankruptcies, used as a proxy for
the crisis. Tables from 1 to 5 report these cross-correlations, considered with negative lags up to four years,
even if we are mainly interested to examine the minus one lag, i.e., the correlation of total bankruptcies with
the risk indicator one year before.

In principle, a good indicator should have a high correlation value for all the different scenarios, as the
securisation propensity is not directly observable in the real world. In general, indicators including off-BS
assets have a better performance, while the ones excluding them could be completely misleading as in the
case of table 3, where the cross-correlation at ¢ — 1 is even negative. In particular, the total mortgage to
GDP indicator and the VUC indicator show both a positive and consistent correlation between the number
of bankruptcies and the value of the indicators in the previous years. However, the values of the correlation
coefficients are not extremely high and it is not easy to identify a clear “alarm” threshold, beyond which the
economy should be considered at danger.

In tables 6 and 7 we use fire-sales in the housing market as an alternative indicator for measuring the
magnitude of the crisis. Results show again that it is essential to consider indicators with off-BS assets
in the high securitization scenarios. Moreover the correlation between the mortgage to GDP indicator with
successive crises (measured as fire-sales amount) is stronger. This can be explained by the fact that borrowers
of mortgage loans are the first “victims” of an extra leveraged credit market, and therefore the effect on fire-
sales is stronger. The effect on firms’ bankruptcies is still there, but it is attenuated by a longer economic

transmission chain of the credit shock.

Crosscorrelations
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Figure 10: Yearly value’s median, first quartile and third quartile over 50 seeds of systemic risk indicators. Yearly values are
computed by considering each indicator in certain years (each of them reported in the x-axis). Five securitisation propensity
values (p) are considered (0%,5%,10%,20%,30%)

M t-4 -3 -2 -1 t

0% -0.07(0.01) -0.20(0.02) -0.31(0.02) -0.06(0.02)  0.28(0.01)
10%  -0.04(0.01) -0.08(0.01) -0.10(0.01)  0.01(0.01)  0.26(0.01)
20%  0.13(0.03)  0.14(0.04)  0.12(0.04)  0.19(0.03)  0.28(0.03)
30%  0.23(0.04)  0.25(0.04)  0.22(0.04)  0.22(0.04)  0.19(0.03)

Table 1: Cross-correlation of regulatory leverage (banks’ equity to in-BS weighted assets ratio) and total bankruptcies. Standard
errors in parentheses
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m t-4 t-3 -2 t-1 t
0% -0.07(0.01) -0.20(0.02) -0.31(0.02) -0.06(0.02)  0.28(0.01)
10%  -0.05(0.01)  -0.08(0.01) -0.05(0.01)  0.21(0.01)  0.40(0.02)
20%  0.23(0.03)  0.26(0.03)  0.27(0.04)  0.34(0.03)  0.35(0.03)
30%  0.33(0.03)  0.36(0.04)  0.31(0.03)  0.29(0.03)  0.18(0.03)

Table 2: Cross-correlation of total leverage (banks’ equity to total weighted assets ratio) and total bankruptcies. Standard errors

in parentheses

m t-4 -3 -2 t-1 t
0%  0.19(0.02)  0.18(0.02)  0.21(0.02)  0.23(0.02)  0.28(0.02)
10%  0.19(0.02)  0.21(0.02)  0.18(0.02)  0.05(0.02)  0.04(0.02)
20%  0.01(0.03)  0.02(0.03) -0.02(0.03) -0.20(0.03)  -0.27(0.02)
30%  -0.09(0.02) -0.11(0.03)  -0.14(0.02)  -0.24(0.02)  -0.26(0.02)

Table 3: Cross-correlation of in-BS mortgages to GDP ratio and total bankruptcies. Standard errors in parentheses

I t-4 -3 -2 t-1 t
0%  0.19(0.02) 0.18(0.02)  0.21(0.02) 0.23(0.02)  0.28(0.02)
10%  0.14(0.01)  0.17(0.02)  0.17(0.02)  0.19(0.02)  0.24(0.02)
20%  0.15(0.02)  0.18(0.02)  0.19(0.02)  0.23(0.02)  0.25(0.02)
30%  0.16(0.01)  0.18(0.01)  0.18(0.02)  0.24(0.02)  0.27(0.02)

Table 4: Cross-correlation of total mortgages to GDP ratio and total bankruptcies. Standard errors in parentheses

m t-4 -3 -2 t-1 t
0%
10%  -0.08(0.02) -0.07(0.02) 0.03(0.02) 0.43(0.02)  0.48(0.02)
20%  0.24(0.03)  0.26(0.03) 0.26(0.03)  0.35(0.03)  0.30(0.03)
30%  0.27(0.03)  0.28(0.03) 0.22(0.03)  0.22(0.03)  0.12(0.03)

Table 5: Cross-correlation of VUC indicator and total bankruptcies. Standard errors in parentheses

I t-4 -3 -2 t-1 t
0%  0.23(0.02)  0.27(0.01)  0.41(0.01)  0.47(0.01)  0.60(0.01)
10%  0.23(0.02)  0.25(0.02)  0.34(0.02)  0.36(0.01)  0.51(0.01)
20%  0.07(0.03)  0.07(0.03)  0.13(0.03)  0.05(0.03)  0.09(0.03)
30% -0.06(0.02) -0.07(0.02) -0.03(0.02) -0.08(0.02)  0.01(0.03)

Table 6: Cross-correlation of in-BS mortgages to GDP and firesales. Standard errors in parentheses

" t-4 t-3 t-2 t-1 t
0%  0.23(0.01) 0.27(0.01) 0.41(0.01) 0.47(0.01)  0.60(0.01)
10%  0.26(0.01)  0.30(0.01)  0.42(0.01)  0.43(0.01)  0.59(0.01)
20%  0.24(0.01)  0.24(0.01)  0.38(0.01)  0.27(0.01)  0.51(0.01)
30%  0.24(0.01)  0.23(0.01) 0.37(0.01)  0.26(0.01)  0.47(0.01)

Table 7: Cross-correlation of total mortgages to GDP and firesales. Standard errors in parentheses
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6. Conclusions

The paper studies the effects of the securitisation process in the assessment of the systemic financial
risk indicators, using the agent-based model Eurace, which includes a housing market in the style of Ozel
et al. (2016), and implements a securitisation mechanism on the footprints of Mazzocchetti et al. (2018) and
Lauretta (2018) that allows banks to free up their balance sheets from risk-weighted assets and circumvent
the prudential capital requirements. The model has been enriched with an endogenous demand specification
of mutual fund equity shares and with a bailout resolution mechanism, which foresees the banks’ rescue by
means of government spending if banks’ equity becomes negative.

We analyse the impact of securitisation on credit market and on real economy, finding that scenarions
with higher securitisation propensities weaken the financial stability of banks with relevant effects on different
sectors of the economy. Moreover, a set of five systemic financial risk indicators is considered: banks’ leverage,
i.e the ratio between banks’ weighted assets and equity, computed using only in-BS weighted assets and total
weighted assets; mortgage to GDP ratio, computed using only in-BS mortgages and total mortgages; a fifth
indicator, the so-called VUC indicator, which is given by the ratio between off-balance sheet credit and banks’
equity, normalized with the GDP.

The results presented in the paper brings clear evidence of the role played by the securitisation process,
above certain levels of securitisation propensity, in paving the way toward booms and busts and ensuing
economic recessions. Furthermore, the analysis shows how banks can satisfy their capital requirements while
contributing to gradually building up higher risk exposure of the whole financial system.

The outcome of the computational experiments show that while the mortgage-to-GDP and banks’ leverage
can be misleading when considering only in-BS assets, thus not detecting correctly the financial imbalances,
the adjusted version of those indicators together with the VUC indicator instead seem more adequate to
monitor and anticipate this risk exposure.

Therefore, the paper highlights the importance of considering off-BS items when assessing for systemic
risk. However, we remain of the opinion that this does not mean to downgrade the systemic risk indicators
based on in-BS items, but their analysis and interpretation for regulatory reasons should be integrated
the off-BS items, which play a relevant role in detecting systemic risk, as our results shows. The ABM
framework allows to analyse, through numerical simulations, the relevance of off-balance assets in assessing
systemic financial risk. Otherwise, this would be more complicated to verify empirically, given the lack of
data availability on banks’ off-BS assets. Only recently, the European Central Bank has started to gather
from the Special Purpose Vehicle/Entity (SPV/SPE) these kind of data for the Euro area.

The data are available from 2012 annually and only from 2014 are they provided quarterly. Future work
needs to be done in this direction, and our analysis contributes to highlight as a priority for regulation the
access to the off-BS assets data. Of course, other variables can play an important role in developing systemic
risk, such as, among others, the size of financial institutions and the exposure in interbank lending. Future

research may consider the extension of the present work by developing indicators which compute not only the
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in-BS and off-BS dimensions, but incorporate also other possible relevant variables for monitoirng systemic

financial risk.
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7. Appendix

7.1. Balance sheet matrices

In order to provide an exhaustive description of agents’ balance sheets and the stock-flow relations among
sectors in Furace, we present a set of four tables. Table 8 shows the asset and liability entries of each
particular agent type. Table 9 represents the balance sheet matrix, describing all assets and liabilities for
each sector (here a sector has to be seen as a class of agents). In this matrix a plus (minus) sign corresponds
to agents assets (liabilities), and each column can be read as the aggregated balance sheet of a specific sector.
Rows show assets and claims of assets among sectors, thus generally adding up to 0. Exceptions are capital
and inventories, which are accumulated by CGPs, and households equity shares of CGPs and banks that do
not add up to 0 because market price and book value can be different. However, being the equity shares of
capital good producer (KGP), financial vehicle corporation (FVC), and mutual fund (MF) not traded in the
financial market, their market price and book value coincide. Table 10, called transaction flow matrix, shows
all the stock and monetary flows among agent classes. The top part, i.e. cash receipts/outlays, describes the
flows of revenues (plus sign) and payments (minus sign) that agents get and make. Agents are reported in
the columns, and monetary flows are reported in the rows. The result of agents sector transactions is the net
cash flow (NCF). The bottom part of Table 10 describes the changes in financial/monetary assets/liabilities
among periods. Finally, table 11, called equity capital change matrix, reports the variation of agents’ equity
capital between two periods, due to net cash flows, price changes in assets and liabilities, stock changes in

real assets, and issues of equity shares.
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Table 8: Agent class balance sheets

’ Agent class \ Assets Liabilities
Household Liquidity: Mj, Mortgages: Uy,
abbrev.: HH Stock portfolio: Equity: Ej

idex: h=1,..., Ngous

Yone, ,PE,
Eanhmprf'f'

nE, xPEx +

NE, pPEp

Gov Bonds: ny.¢ pa
Housing units: X,

abbrev.: KGP

Consumption Goods Pro- Liquidity: M, Debt: Dy = 3, (1.5
ducer ’
abbrev.: CGP Capital goods: Ky Equity: Ey

idex: f=1,..., Npjrm Inventories: If

Capital Goods Producer Liquidity: Mg Equity: Ex

E;r;anmal Vehicle Corpora Liquidity: My ﬁsggcv backed securities (ABSs):
abbrev.: 'V Loans: Ly ?ﬁ]ﬁ}tg;%eM ngcked securitics
Mortgages: Uy Equity: Ey
Mutual Fund Liquidity: Mp Equity: Ep
) Asset backed securities (ABSs):
abbrev.: D ABSp
Mortgage backed securities
(MBSs): MBSp
Bank Liquidity: M, Deposits :
abbrev.: B Dy=>, Mb,h+zf My ¢ + My i
mdex: b=1,..., NBank Loans: £, = Zf by s CB standing facility: Dy = {,.cB
Mortgages: Uy = >, Upn Equity: Ey
Stock portfolio:
NE, vPEy
Government Liquidity: Mg Outstanding government bonds
value: DG =Nng PG
abbrev.: G Equity: Eq

Central Bank
abbrev.: CB

Liquidity: Mecp
Loans to banks: Lop =), Loy
Gov Bonds: nep.a pa

Outstanding fiat money: Fiatcp
Deposits: Dep =Y, My + Mg
Equity: Ecop

Balance sheets of any agent class characterizing the Eurace economy. Balance sheet entries in the table have a subscript char-
acter, that is the index of an agent in the class to which the variable refers. In some cases, we can find two subscript charac-
ters, where the second one refers to the index of an agent in another class where there is the balance-sheet counterpart. For
instance, Dy refers to the total debt of firm f, i.e. a liability, and L£; refers to the aggregate loans of bank b, i.e. an asset.
Ly (or Ly ¢) refer to the loans granted by banks b to firms f. Of course, 7, Ly = Zf Ly, represents an aggregate balance
sheet identity, that is verified along the entire simulation. n By, , Tepresent the number of outstanding equity shares of agents
x held by households h. The market price of the equity shares is given by pg,. The stock portfolio’s value of household
h is then computed as: 3 ng, ,PE,. Government bonds’ number and market price are given by ng and p¢, respectively.
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7.2. Stylized facts and validation

Since in the explanations of computational experiments’ results we often refer to the synchronization
among different variables during the business cycle, we have performed a cross-correlation analysis, in order
to objectively assess the correlation of those variables for different time lags. Figure 11 shows some cross-
correlation figures. We condider monthly HP detrended time series’ averages of 50 simultation runs, one for
each seed used for the pseudo-random number generator. In figure 11, we show the cross-correlations for 20
positive and negative lags, as well as the upper and lower confidence bounds. We observe that real GDP
is positively correlated with consumption and investments, and it is anti-correlated with the unemployment
rate. GDP also shows a positive correlation with loans to firms, which are leading the business cycle ex-
pansion, while stock and bond prices are anti-correlated. This results are in line with main stylized facts
on credit and business cycle (see for instance Watson and Stock (1999), Napoletano et al. (2006), Cappiello
et al. (2010) and Uribe and Schmitt-Grohé (2017)).

xcf of real GDP xcf of consumption and real GDP xcf of investment and real GDP

1 . . . . . . . 04 .
20 15 -10 -5 0 5 10 15 20 -20 15 10 5 0 5 10 15 20
lag (months) lag (months) lag (months)

; xcf of loans and real GDP xcf of unemployment and real GDP 04 xcf of stock price and bond price
0.2

- 0.6
20 15 10 -5 0 5 10 15 20 20 15 10 50 5 10 15 20 20 15 10 -5 0 5 10 15 20

lag (months) lag (months) lag (months)

Figure 11: Cross-correlations. Time series considered are monthly and hp filtered.

Concerning the validation of the model, it is worth remarking that Eurace initialization complies with
two main requirements: stock-flow consistency and input validation. In particular, we use a specific model’s
software that is able to initialize the model in an automatic way. We define in this software all the cross-
relations between the balance sheet items of the economic agents and we control for the consistency of the
process. The initialization starts by setting at 1 the initial value of the nominal monthly wage, and from this
reference variable we keep on computing all the others.

In this way we are able to provide an “input validation”, where models fitness is ensured by setting
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parameter values and variables ratios according to empirical analysis of actual data'S.

7.3. Housing market

We use the housing market setting described in Ozel et al. (2016). In this framework, the access to the
housing market by the households is driven by an exogenous probability ®; once in the housing market,
households may randomly take the role of buyer or seller, except in the case of fire sale, where households
enter in the housing market because are forced to sale their housing units due to financial distress, which is

defined as:

L7 " ¥

where Ry, is the quarterly payments (principal and interests) related to mortgages Up, of household

h, Z; + Z. is the sum of quarterly labor and capital income after taxes, and Ug is a given threshold. If

the financial distress is critically high and steps over a threshold tg, the household undergoes a mortgage
restructuring with a consequent loss on the equity of the credit bank.

It is worth noting that in the eventuality of fire sales, the selling price set by the household is lower than

the last average market price (px,), in order to increase the probability to sell the housing unit and obtain

liquidity. In particular, we distinguish between sell orders and fire sell orders. In the first case, the price set

by the household is:

px, = px(1+&pn) 9)

where £ is a random component draw from uniform distribution between 0 and 1 and ¢y is the maximum
percentage price increase of monthly housing price!”.

In the second case, fire seller households post one of their housing unit for sale at price px,, given by:

px, = px(1—E&ps) (10)

where ¢g is the maximum fire sale price reduction.

Households with the buyer role are randomly queued and each buyer in the queue in turn select the
cheapest available housing unit to buy and a transaction takes place at the posted sale price. When all
buyers had their turn in the housing market or there are no more housing units for sale, the housing market
closes and a new housing price py is computed as the average of the realized transaction prices. This process
takes place each month.

Households may buy a housing unit by means of their liquidity resources or, if they are not sufficient,

L6For a detailed decription of model validation see Teglio et al. (2017)
171t is straightforward that households try to sell their housing unit at a price that is higher than market price when they are
not facing financial distress
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throught a mortgage from a bank. All mortgages last 20 years, and each month the borrowers repay mortgages
installments, which are made up of a constant principal component and an variable interest component on
remaining installments, computed as central bank interest plus a fixed spread of 1%. The rationale behind this
choice is to mimic variable rate mortgages, whose interests are mostly tied to reference rates or indices that
are linked with the central bank policy rate (e.g., EURIBOR in Europe). The spread represents the bank’s
margin. Although we consider a fixed bank’s margin that is not linked with households’ creditworthiness, it
is important to remark that banks check upstream that the applicant borrowers comply with two constrains.
In particular, a stock and flow thresholds are included, namely equity to assets ratio (ETA) and debt-service-

to-income ratio (DSTI). Therefore, bank checks that:

e household’s net wealth (Equity Ej) to her total wealth (Assets Aj) ratio is higher than a threshold

TeraA:

£y,
— T 11
A, ETA (11)

e household’s debt payments for the upcoming quarter to income is lower than a threshold Tps7;:

RU,L + RU;L

U< 12
(Zi+ 20 P (12)
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