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The use of data mining and modeling methods in service industry is a promising avenue for optimizing current
processes in a targeted manner, ultimately reducing costs and improving customer experience. However, the
introduction of such tools in already established pipelines often must adapt to the way data is sampled and
to its content. In this study, we tackle the challenge of characterizing and predicting customer experience
having available only process log data with time-stamp information, without any ground truth feedback
from the customers. As a case study, we consider the context of a contact center managed by TeleWare and
analyze phone call logs relative to a two months span. We develop an approach to interpret the phone call
process events registered in the logs and infer concrete points of improvement in the service management.
Our approach is based on latent tree modeling and multi-class Naïve Bayes classification, which jointly allow
us to infer a spectrum of customer experiences and test their predictability based on the current data sampling
strategy. Moreover, such approach can overcome limitations in customer feedback collection and sharing
across organizations, thus having wide applicability and being complementary to tools relying on more
heavily-constrained data.
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1 INTRODUCTION
The high competition in present business systems requires efficient and adaptive customer rela-
tionship management (CRM) strategies that are able to cope with the challenges of the current
information era. Customer experience is today recognized as a dynamic and complex phenomenon,
also thanks to the hugely increased rate of information exchange worldwide [24]. Customers'
perceptions and evaluations indeed change over time and are influenced by a variety of factors,
including the experience of other customers. Organizations are therefore increasingly interested
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in the implementation of analytical tools that can routinely monitor their interactions with the
customers and predict their future trends.

Technological development made possible the collection of large amounts of information, opening
the door to quantitative CRM data science [14, 21]. In this context, contact centers are one of the
main modality for customer-to-organization interactions and thus hold a key importance for CRM.
At the same time, customer experience is becoming a core reference for companies and service
providers, yet its prediction and interpretation is still a complex problem [35]. Such complexity
arises from the multiple factors that jointly impact the customer experience, such as the dialog
with the agent or the communication capacity of the contact center, and to the varying importance
of such factors from organization to organization. For this reason, artificial intelligence is regarded
as an essential component for process maintenance and optimization in contact centers, with great
emphasis on natural language modeling [18]. As a result, recent research has widely focused on
oral and written conversations between customers and agents [4, 7, 23, 28, 37, 38].

However, although spoken and written language analysis is highly attractive for organizations
at large, in practice they often have to face many challenges before considering this tool, including
resource, legislative and organizational barriers. For instance, growing concerns over privacy
protection may represent a serious obstacle to data collection and management even for single
organizations. Even when direct customer data (i.e. voice recording or feedback) can be collected
and analyzed by an organization, middleware service providers can only access this information
at discretion of the client organization. Moreover, from an individual caller’s point of view, the
feedback he/she provides mostly reflects the service enjoyed with the call center of the service
provider (i.e. how professional the call center agent handles his/her problem), not the service
quality from the infrastructure service provider. On the other hand, while direct customer feedback
is increasingly being used as an indicator of experience quality, there exist also indirect forms
of feedback that can be gained from data. Thus, in principle it is possible to infer the degree of
satisfaction even if this is not directly provided by the customer. For instance, log-based process
performance analysis has recently received impulse through various studies that characterized
different aspects of process performance, also in relation to external factors and collaborative
processes [27].

In this context, process logs represent an attractive resource, as they are an ubiquitous output of
any communication channel and may often be the only data available for systematic investigations.
Even if this type of data provides an indirect measurement of customer experience, its large-scale
availability could allow infrastructure service providers to deploy informative systems which could
better support the analytics strategy of client organizations. By offering domain knowledge injected
and explainable data-driven models, end service providers could utilize those models as a supporting
component of their own data analytics system, thus maximizing the value of contact center data.
However, log-based modeling of customer experience remains largely unexplored.
The central objective of this study was to develop a methodology for interpreting log data of

contact centers and for predicting associated customer experience. The principal challenge was the
lack of knowledge on the true satisfaction related to available process realizations, which hinders
direct supervised analysis. The final goal was to understand how customer experience information
can be collected and managed across touch points and over time. In particular, we focused on log
data of telephone calls, which remain the primary form of communication in contact centers [35].
Together, these elements constitute an unexplored setting where traditional approaches are not
directly applicable. To tackle the problem, we thus combined unsupervised and supervised data
mining and modeling techniques, seeking complementary indicators to formulate a consistent
final interpretation. Our approach is based on a middleware service provider standpoint, which
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enabled us to collect a large number of customer interactions from clients. Such scores have the
potential to give an overall picture of the customer experience being delivered, both in real-time
and historically. Also, from an application point of view, such analysis can allow service providers
to perform inference on the underlying layers of the data, to suggest where customer experience
can be improved, either for middleware service providers or individual organizations.
Our work reveals that popular data mining methods such as k-means clustering and elastic

net fail to provide meaningful interpretations of log-based customer experience. On the other
hand, application of latent tree modeling allowed us to characterize the log process in terms of
different aspects of customer experience, here termed facets [31]. Such a modeling framework was
indeed chosen due to its interpretative advantages and its elevated flexibility compared to ordinary
Bayesian networks. By reconstructing and linking together latent facets in the log data, we could
identify concrete points of intervention for improving customer experience. Moreover, we verified
the predictability of the different aspects of customer experience via a multi-class supervised
approach, exploiting extracted facet qualities as target labels. In summary, our contributions are
the following:

• We built and validated a methodology for log-based modeling of customer experience that
can cope with the absence of ground truth feedback from the customers.

• We demonstrate the utility of log data analysis and modeling in supporting contact center
management, suggesting that practical advantages could be obtained through the deployment
of online prediction tools as a component of existing call management systems.

• From an application point of view, we introduce an approach that can be implemented from
middleware service providers, is widely applicable to a variety of contact center settings and
can integrate client service providers’ tools.

The article is organized as follows. In Section 2 we outline previous studies that investigate
customer experience by means of data mining and modeling approaches. In Section 3 we outline
the approach proposed in this work and describe the computational techniques used, while experi-
mental outcomes are presented and discussed in Section 4. Lastly, in Section 5 we recapitulate the
achievements and the significance of our work for CRM research.

2 RELATEDWORK
A vast literature exists focusing on data mining strategies for CRM, dedicated to identify, attract,
maintain and develop customers, with the largest fraction targeted on customer retention [19,
21, 29]. In contact centers, communication can take place through a range of channels such as
telephone, e-mail, forums or online live chats. Phone call conversations constitute the main source
of information, and approaches for customer experience prediction based on those have been
recently investigated.Most studies concentrate on automatic customer satisfaction analysis, emotion
detection, problematic call detection, and call segmentation [35]. Unstructured text or conversation
data present the additional challenge of being converted to processable information. To that end,
embedding semantic knowledge in sequential word data based on information gain has been shown
to provide competitive and interpretable models while alleviating the burden of data preparation [7].
On the other hand, raw conversation data were successfully used to predict customer satisfaction
by means of artificial neural networks [37]. More recently, the same task was investigated by
combining entire phone call conversations and turn-level features [4, 23]. The ideal end stage for
all these methods is to find application in end-to-end systems [33]. In parallel, phone call data was
used to automate and optimize other tasks including customer recognition [34], customer routing
[17], adequately pairing customer and agent based on historical data [26] and evaluating the work
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carried out by agents [15]. In other types of channels data mining has been studied for instance in
the context of chat routing modeling [20], emotion prediction from chats [28] and video chats [38].

However, conversation data may not be available depending on the organization. In some cases,
only call logs may be provided - in the form of time-stamp entries - as contact centers are always
supported by IT systems that log their execution. In these cases, contact center tasks and goals
cross with process mining techniques. These have been used to evaluate time consumption of the
process stages like specific activities or waits, to gain insights in resource allocation and workload
management or to assess the service quality [27].
A further possibility is to combine heterogeneous data deriving from different communication

channels, when available. As an example, Bockhorst et al have recently developed a comprehensive
system that aggregates heterogeneous data sources such as dialog transcriptions, call logs, client
and policy data in order to predict customer satisfaction [6]. The study could also benefit from
self-reported satisfaction scores obtained from a third-party company.
In general, all of the previous approaches for predicting customer experience require ground

truth feedback to be evaluated and implemented. In the frequent scenario where this is not available,
a principled approach could be adopted. For instance, Fiedler et al proposed a general relationship
linking quality of experience and quality of service in communication services [11]. However, this
method overlooks all the specific aspects of the communication process, which are often critical
for its optimization. To the best of our knowledge, no study has addressed data-driven modeling
of customer experience starting uniquely from log data, which is the challenge targeted here.
The settings of our case study are thus distinct from previous works and as such required the
development of novel solutions, which are described in the following.

3 METHODS
In this section, we describe the ideas underlying our work and the computational techniques
composing our customer experience modeling approach, which include a specific type of latent tree
modeling and Naïve Bayes classification. Next, in Section 3.5 and 3.6 we briefly describe k-means
clustering and elastic net regression, used as benchmark methods.

3.1 Proposed approach
The central goal of this work is to develop an approach to predict the quality of customer experience
in a contact center starting uniquely from phone call logs. In ideal settings, organizations can
directly or indirectly sample satisfaction rates to improve their services, possibly through proposed
data mining techniques (see Section 2). We instead concentrated on the situation where no customer
feedback is obtainable and investigated how to infer customer experience from available log-based
data. This task can potentially be applied to a number of scenarios, yet it is generally overlooked in
the literature. Here, we concentrated on the case of log data generated in a contact center during
phone call processes.

We elaborated a strategy that could recognize and describe the various sub-processes underlying
phone calls, in order to extract hidden quality levels of customer experience from the data itself.
The central step here concerns the construction of a pouch latent tree model (PLTM) [31] of phone
calls in terms of their temporal properties. Rather than identifying a global clustering across all
input (manifest) variables, a PLTM embeds alternative data clustering solutions associated to some
disjoint subsets. As explained in detail in Section 3.2, each of these clustering variants is represented
by a discrete latent variable and defines a Gaussian mixture model (GMM) over its subset of manifest
variables. Within a PLTM, manifest and latent variables are in conditional relationship based on a
Bayesian tree among internal and terminal nodes. A PLTM thus provides alternative data groupings
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and their probabilistic relationship, reflecting multiple data partitions examined at the same time.
In other words, this model identifies different facets that jointly characterize a dataset, allowing the
domain expert to evaluate all solutions provided. By considering complementary data facets, PLTMs
therefore provide significant margin for expert interpretation and evaluation. In the case of process
logs, some facets may indeed expose issues or critical points hidden across multiple sub-processes.
Additionally, PLTMs have enhanced flexibility compared to ordinary Bayesian networks, as they
can support real-valued input features such as event durations.

Upon reconstructing the classes defining the spectrum of all the likely customer experience quality
levels, it is possible to build classification models that predict such classes within a supervised
framework. The PLTM - combined with expert knowledge about the business domain - thus
constitutes a tool to inform classification models and overcome the lack of feedback from the
customer. In this second step, we considered the Naïve Bayes classifier, which is suited to a
multiclass classification task with multiple customer quality levels, is computationally efficient and
provides probabilistic confidence. Given these properties, this kind of model could be reasonably
suited for implementation in a real-time call management system and was hence implemented in
our approach.

3.2 Pouch latent tree modeling
A PLTM is a rooted tree model where leaf nodes represent input (or manifest) variables and internal
nodes symbolize latent variables underlying the observable data distribution [31]. Manifest variables
X can either have discrete or continuous values x, while all latent variables Y are assumed to be
discrete and represent data cluster labels y. Links in the tree represent conditional dependencies of
each variable on its parent. Additionally, leaf nodes can contain more than one input variable and
are therefore referred to as pouch nodes. The latent variable connected to each pouch thus identifies
a data partition based on the associated manifest variables.
PLTMs are strictly related to both GMMs and Gaussian Bayesian networks. On the one hand,

graphical relationships in a PLTM are almost identical to those of a Gaussian network, with the only
difference being that multiple manifest variables are allowed in a single node. On the other hand,
PLTMs generalize GMMs in that they incorporate multiple latent variables and their probabilistic
relationships. In a GMM, the input variables x have the following distribution conditioned to cluster
values y:

P(x) =
∑

y
P(y)P(x|y) (1)

In a PLTM every pouch node is mapped to a disjoint subset of input features. Let us denote with
Π(Y ) and π (Y ) the parent of a variableV and its value, respectively, and with W and w the variables
inside a pouch and their values, respectively. The dependency of any discrete latent variable Y
on its parent Π(Y ) is described by a conditional discrete distribution P(y |π (Y )), whereas manifest
variables W follow a conditional Gaussian distribution P(w|y) = N(w|µy,Σy) with mean µy and
covariance matrix Σy. The probability distribution over manifest variables defined by a PLTM is
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therefore the following:

P(x) =
∑

y
P(x, y)

=
∑

y

l∏
j=1

P(yj |π (Yi ))
b∏
i=1

N(wi |µπ (Wi ),Σπ (Wi ))

=
∑

y
P(y)N(x|µy,Σy) . (2)

We can thus see that a PLTM is a GMM, but it also provides richer information. First, it embeds
alternative data clusterings based on different subsets of the input variables and identifies facets of
the dataset. Second, it describes conditional dependencies among these facets.
Data clustering based on PLTM entails two main steps: estimating a set of parameters θ and

learning a tree structurem. The former task can be performed by computing themaximum likelihood
estimate θ ∗ through the expectation maximization algorithm [9], assuming a model structurem.
The optimal PLTM structurem∗ is learned by maximizing the Bayesian information criterion (BIC),
which is defined as follows [36]:

BIC(m |X) = ln P(X|m,θ ∗) −
d(m)

2
lnn , (3)

whered(m) is the number of independent parameters inm. In this equation, the first term encourages
good data fitting, whereas the second term is a regularization term penalizing complex models.
Model parameters and structure are determined via a hill-climbing algorithm that iteratively
generates new candidate models until the BIC is no longer improved [31].
As introduced in Section 3.1, in order to maximize the value of a dataset lacking ground truth

customer feedback, a model with high explanatory power is an ideal choice for our research
purposes. Therefore, although other models such as artificial neural networks have recently gained
popularity in the field, they were not considered in this work due to the difficulties associated
with their interpretation. Graphical models such as Bayesian networks, which capture probabilistic
relationships among variables, thus became the main focus of this study. Given the multi-faceted
nature of customer experience, we prioritized methods based on their flexibility and suitability to
multiple variable types, hence converging on PLTMs.

3.3 Sensitivity analysis
We evaluated the strength of the relationships inside the PLTM by means of a sensitivity analysis
in its probabilistic tree. We used an approach designed for discrete Bayesian networks to determine
how the probability of a variable of interest (the hypothesis variable) is affected by a variation
in the value of a single parameter in the network [8]. The sensitivity is computed by taking the
parameters of a second node as evidence based on the data. Given an hypothesis node h, an evidence
node e and a node parameter θ , we assumed a linear sensitivity function as follows:

f (θ ) = P(h |e)(θ ) =
P(h ∧ e)(θ )

P(e)(θ )
=

a · θ + b

c · θ + d
. (4)

The sensitivity thus describes linear changes in the output probability P(h |e) for infinitesimal
variations in the parameters θ . It is calculated as the derivative of the sensitivity function at the
original parameter value, as follows:

f ′(θ ) =
a · d − b · c

(c · θ + d)2
. (5)
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We performed this analysis with and without assuming evidence based on PLTM parameters [2].

3.4 Naïve Bayes classification
The Naïve Bayes classifier (NBC) is a popular multi-class classification method that exploits a
probabilistic framework and is based on Bayes’ theorem [12]. Under the assumption that every pair
of features in the training dataset are independent, it aims to maximize the conditional probability
of any observed data sample x based on its label assignment y. Formally, the goal is to solve the
following problem:

max
y

P(y)
d∏
i=1

P(xi |y) , (6)

where d is the number of features and the conditional probabilities P(xi |y) are assumed to be
Gaussian with mean µy and standard deviation σy , as follows:

P(xi |y) =
1√
2πσ 2

y

exp
(
−
(xi − µy )

2

2σ 2
y

)
. (7)

Parameters µy and σy are computed via maximum likelihood estimation.
The main advantages for choosing this method over other models are its probabilistic output and

the computational efficiency. Differently from linear modeling, the probabilistic framework utilized
by NBC in learning predictive patterns might confer advantages in terms of implementation into
a usable classification system. Secondly, NBC only requires a small amount of training data for
necessary parameter estimation, which makes it faster compared to more sophisticated methods.
Decoupling the class conditional feature dependencies in fact allows independently estimating them
as one-dimensional distributions. For these reasons, we employed NBC for facet-based classification.

3.5 k-means clustering
Along with the methods presented above, which are part of the approach introduced in this work,
we applied other machine learning methods in the attempt to extract useful insights from log data.
The k-means approach is one of the most widespread in clustering analysis, thus we chose it as a
baseline in the task of identifying customer experience classes.

Assuming to have a set of n observations {x1, x2, . . . , xn}, the k-means clustering method aims
to partition these observations into k (≤ n) disjoint sets S = {S1, S2, . . . , Sk } by minimizing the
intra-cluster variance in the feature space [22]. The task is mathematically formulated as follows:

min
S

k∑
i=1

∑
x∈Si

∥x − µi ∥
2 . (8)

Here, µi represents the mean coordinates of the observations in the set Si . The problem is solved
by means of the Elkan’s algorithm [10] using the k-means++ initialization method [5].

3.6 Elastic net regression
Elastic net is a least squares method for feature selection defined on n observations {x1, x2, . . . , xn}
stored in the matrix X and on a vector of associated targets y = {y1,y2, . . . ,yn} that uses a
combination of L1 and L2 regularization [40]. The problem solved is the following:

min
β

(
1
2n

∥y − βX∥22 + αl ∥β ∥1 +
α

2
(1 − l) ∥β ∥22

)
, (9)
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where α and l are hyper-parameters controlling joint and relative contributions of the L1 and L2
penalties, while β is a vector of linear regression coefficients.

This technique generalizes the least absolute shrinkage and selection operator method and ridge
regression. With respect to these methods, it allows more effective feature selection and takes
into account the correlation among independent variables. This offers elastic net higher flexibility
and stability compared to other linear models. For such reasons, it was selected in this work as a
baseline model for predicting and characterizing early call termination.

4 RESULTS
In this section, we firstly describe the data used in our work, which are entirely sampled from a
real contact center. Next, we report the results of our initial efforts to model and interpret customer
experience by using popular data mining methods. In the following of Section 4, we present the
experimental work supporting our proposed approach.

4.1 Data
In this work, we focused on data provided by TeleWare, a middleware service provider involved in
telecommunication development that operates with organizations from various sectors [3]. Here,
we considered a dataset relative to a single organization and to the period between October and
November 2016. The original dataset comprises time-stamp log recordings for 8,353 phone calls
relatively to: call start, queue start, customer dialing, occurred or missed agent answer and call
termination. The full set of data entries included in the log are visible in Table 1.
The structure of phone calls here considered is displayed in Figure 1. As soon as a call reaches

the internal system, it is processed and assigned to a queue. This step typically occurs within
the order of seconds, but occasionally it requires a longer time. Once the call is queued by the
system, the customer has to select the desired service by dialing its corresponding code. Next, the
system proceeds with the connection to an agent, depending on the selected service. However, the
connection may fail as a result of a missed answer by the agent. This can happen when the agent is
already occupied in another call or does not answer. At this point, the system tries to connect the
customer to another agent, and if necessary to a third one and so forth, until a connection gets
successfully established. The actual conversation can then take place, until either the customer or
the agent terminates the call. However, it may also happen that the customer ends the call before
being able to initiate any conversation.

Table 1. Example extract of a call log provided by the system. At the occurrence of any event relating to a
given call, the log is updated with the time point corresponding to that event.

Call ID Call start Queue start Customer Agent answer Agent busy Agent missed Agent Call Call QBlock exit Call end
Dialing answer unobtained abandonment connection

114275506 04:50.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
114275506 04:50.0 05:02.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN
114275506 04:50.0 05:02.0 09:38.0 NaN NaN NaN NaN NaN NaN NaN NaN
114275506 04:50.0 05:02.0 09:38.0 09:43.0 NaN NaN NaN NaN NaN NaN NaN
114275506 04:50.0 05:02.0 09:38.0 09:43.0 NaN NaN NaN NaN 09:44.0 NaN NaN
114275506 04:50.0 05:02.0 09:38.0 09:43.0 NaN NaN NaN NaN 09:44.0 09:44.0 NaN
114275506 04:50.0 05:02.0 09:38.0 09:43.0 NaN NaN NaN NaN 09:44.0 09:44.0 11:05.0

Throughout the whole process, the occurring of these events and the occurrence time are recorded
and stored in a database. It is therefore possible to completely characterize each call in terms of
time-stamp information. Importantly, no information about actual customer satisfaction or feedback
is available, as it was not sampled by the client company. This represents the main challenge in our
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(b)

(d)

(f)

(h)

(c)

(e)

(g)

(i)

Call start

System processing

Pre-dial queue

Customer dialing

Post-dial queue
Attempt of 
connection 
to an agent

Successful 
connection 
to an agent

Conversation between 
customer and agent

Call end

Queue

(a)

Fig. 1. Panel (a) illustrates the phone call schema for the considered contact center. Time points for each
event in the boxes are automatically registered by the system as shown in Table 1 and comprise our initial
dataset. Panels (b) to (i) show distributions for variables in Table 2 relative to the engineered dataset.

study, as it prevents the use of supervised data analysis techniques for directly predicting customer
experience.

Table 2. Description of the features associated to phone calls used throughout the study, obtained upon
transforming the original dataset. All variables are real except NumberOfDials and CallClass, which are
integer.

Feature Interpretation

CallStartTime Instant of phone call connection to the system and start of its processing
ProcessingDuration Time needed to the system to assign the incoming call to a queue
QueueDuration Overall queue time
PreDialDuration Queue time before the customer specifies the desired service
PostDialDuration Queue time after the customer has specified the desired service
TalkDuration Duration of the conversation between customer and agent
NumberOfDials Number of times the system tries to connect the customer to an agent
CallClass Categorical variable indicating whether the connection between customer

and agent occurs before the end of the call (1 = yes, 2 = no)

In order to obtain a constant number of meaningful features for each sample, we engineered
the original data, thereby obtaining the set of features displayed in Table 2 along with their
explanation. A single variable - CallStartTime - remains in the form of time-stamp, which was
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appropriately converted into a single numerical value expressed in seconds. Five other variables
represent event durations within the call, corresponding to rectangular boxes in Figure 1. These
are ProcessingDuration, QueueDuration, PreDialDuration, PostDialDuration and TalkDuration.
Lastly, two further variables were introduced to characterize the events that may differ from call to
call: the number of dials to an agent and whether or not the call terminates before an agent can
respond. As a result, for instance, a log sequence like that displayed in Table 1 is converted into the
process data sample shown in Table 3.
These features were used in all the subsequent analyses, described in the following sections.

Unless differently stated, these were carried out in Python using the following packages: Pandas
[25], Scikit-Learn [30], Matplotlib [16] and Seaborn [39].

Table 3. Example of data sample obtained upon feature transformation, corresponding to the log extract in
Table 1.

CallID CallStartTime ProcessingDuration QueueDuration PreDialDuration PostDialDuration TalkDuration NumberOfDials CallClass

116539218 47091 12 282 276 6 81 1 1

4.2 Preliminary data exploration
Telecommunication, as a middleware service, is part of a network infrastructure, which means
that the concepts and assumptions in network measurement can be usually applied to telecom-
munication. In a previous study, the authors proposed an intuitive hypothesis to map the general
relationship between the quality of experience (QoE) and the quality of service (QoS) into a loga-
rithmic relationship [11]. Adopted in a call center scenario, customer experience can be represented
by the QoE while some features such as QueueDuration could represent the QoS. Embracing this
idea, we initially formulated the following hypothesis: CX = −afk log(QD) + b, where CX and QD
symbolize customer experience and QueueDuration, respectively. By applying such a hypothesis to
our dataset, we obtain a curve with parameters a = 0.11 and b = 0.95, which reflects the intuitive
assumption that the longer a customer waits in the queue system and the worse his/her experience
is. The obtained relation indicates this tendency in a reasonable way, but in practice, this hypothesis
has the important drawback that it only focuses the global duration of the process, overlooking the
relationships between multiple features within the dataset (i.e. QueueDuration and TalkDuration).
For example, consider the case of a customer calling the credit card company for a card theft issue.
The customer may wait in queue for a relatively longer time, but if the agent reacts quickly and
professionally, the customer could also be satisfied. However, this scenario cannot be captured by
the logarithmic model.

Next, we thus tried to identify phone call groups in our dataset that may be associated to different
quality levels of customer experience through data mining algorithms that could leverage the de-
tailed log-based information. The idea is that properties of the clusters may suggest novel indicators
by association with factors known to positively or negatively influence customer satisfaction.

To this end, our dataset was partitioned by k-means clustering, one of the most popular cluster
analysis methods [22]. We assessed the goodness of the partition for a range of possible number of
clusters k , in terms of the silhouette coefficient, which expresses the degree of similarity among
observations in a same cluster compared to observations in other clusters [32]. Let us indicate with
a(x) the average Euclidean distance between observation x and all other samples in the same cluster
and with b(x) the smallest average distance to the samples in any other cluster. The silhouette
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coefficient s(x) is defined as:

s(x) =
b(x) − a(x)

max{a(x),b(x)}
, (10)

and ranges in the interval [−1, 1], with 1 being the maximal consistency with the clustering.
As it is possible to see in Figure 2, the average silhouette across all samples is considerably low

for every value of k up to 20, with only k = 2 lying above 0.30. Visual inspection of silhouette
profiles and data separation confirmed that the global quality of the clustering remains modest
across all values of k . For instance, Figure 2 shows that for k = 2 a large cluster dominates over a
smaller and less defined one, while Figure 3 displays the poor separation obtained.
Moreover, binary separation is not ideal for practical interpretation as customer experience

hardly reduces to a sharp positive/negative response. The case with the second highest average
silhouette, k = 8, would appear more meaningful, if the associated clustering quality did not remain
so poor. Additionally, the obtained models do not incorporate any domain knowledge, producing
difficulties in terms of interpretation. Overall, this analysis did not provide useful insights in the
various forms of customer experience delivered.

As a second task, we sought to build a predictive model for early call termination to characterize
the relationships with all previous process events. We employed elastic net, a regularized regression
method that allows to estimate the correlation among variables [40]. In elastic net, the weight of
each variable is controlled by both L1 and L2 penalties, whose relative contribution is balanced
through two hyper-parameters α and l as shown in Equation 9. We thus built a series of elastic net
models using CallClass as a target variable and studying the influence of different L1 and L2 ratios
over an interval [0.1, 1]. We optimized the models by tuning the hyper-parameter α based on a
20-fold cross-validation and the mean squared error (MSE), defined as follows:

MSE =
1

ntest

ntest∑
i=1

(yi − ŷi )
2 , (11)

where yi and ŷi are the predicted and true CallClass values for any observation i , respectively,
while ntest is the number of test observations in each test data split. Figure 4 shows results for the
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Fig. 2. Results of the k-means clustering analysis: (a) average silhouette index as a function of the number of
clusters k ; (b) silhouette distribution corresponding to k = 2. The dashed red line here indicates the average
silhouette index across all samples.

, Vol. 1, No. 1, Article 1. Publication date: July 2021.



1:12 T. Fu et al.

best-performing model, with a MSE of roughly 0.11. In panel (b) it is possible to view the associated
model parameters, from which we can infer the variables most associated to early call termination.
As it could be expected, QueueingDuration is one the most correlated variables with CallClass.

Moreover, QBeforeDialingDuration appears much more relevant than QAfterDialingDuration. This
suggests that the early stage of the call is highly determinant on customer’s willingness to continue
the wait. Conversely, CallStartTime very weakly affects CallClass and NumberofDials does not
influence it at all. The moment of the day therefore does not emerge as a factor for premature call
termination. Altogether, these results indicate that the service provider needs to improve the initial
handling of the calls inside the system.

This analysis could thus reveal expected and unexpected patterns in the data, but is nevertheless
limited in scope to the occurring of a conversation between customer and agent. Particularly, it
missed the overall quality of service experienced and degree of satisfaction. We therefore moved
on to a different approach, presented in the following section.

Fig. 3. Feature distributions and correlations in terms of distinct clusters identified by the k-means analysis
with k = 2. Best viewed in color.
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Fig. 4. Optimization of the elastic net model with CallClass as target variable, based on regression MSE.
Panel (a) shows the MSE trend across varying values of the hyper-parameter α when l = 1. Panel (b) displays
the trend of related model coefficients for all explanatory variables. The black vertical line indicates the final
selected model. Best viewed in color.

4.3 Pouch latent tree modeling of log-based processes
To achieve a more meaningful process characterization, we next applied our proposed approach
described in 3.1. We thus built a PLTM of our phone call log dataset in term of the variables
described in Table 2, except CallClass that was dropped. In this process, we utilized the PLTM Java
implementation made available by Poon et al [31] through the JPype interface [1]. The resulting
structure is illustrated in Figure 5. As it is visible, four latent variables represent alternative clustering
solutions, each one corresponding to a complementary data facet. Variable Y3 is linked only to
CallStartTime, so it represents a grouping of the data based on this feature alone. Its inner states
are five, meaning that there are main intervals wherein the incoming calls are allocated. Variables
Y1, Y2 and Y4 are assigned pouches with two manifest features and nine data clusters each.

Table 4 displays the mean of each input feature conditional on the assigned clustering variable.
Inside Y1, state 0 emerges as the most numerous cluster and corresponds to very short global and
pre-dial queue time spans. Along with it, five states of decreasing probability (in the order: 8, 1,
7, 5 and 6) describe increasingly long queue durations. Other three states identify waiting times
under average (state 2) or long queue durations with very quick pre-dial times (states 3 and 4). The
hidden variable Y1 thus appear associated to the overall system efficiency in quickly providing
information to the customer and handle his/her request.

Inside Y2, there is instead more robust consensus between high and low manifest variables values.
Clusters are divided between states with post-dial queue time and number of dials above (states 0, 2,
3 and 7) and below (states 1, 4, 5 and 8) average. Only state 6 is characterized by a PostDialDuration
slightly above than average and a NumberOfDials just below, which may highlight an anomalous
duration for each connection attempt. Variable Y2 is arguably related to customer patience or queue
behavior, as its pouch contains features belonging to the end-stage queue.
Next, Y3 is evidently related to the initiation time of the call, which dos not result directly

associable to any other feature. It is banally divided into clusters where the average CallStartTime
is low - such as for states 0, 3 and 4 - or high like for states 1 and 2.

Lastly, Y4 is more evenly distributed across clusters with different combinations of high and low
feature values, as expected from their heterogeneous semantics. Two of the most likely states are
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PreDialDuration
QueueDuration
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9 data clusters 9 data clusters 5 data clusters 9 data clusters

PLTM identifying:

9 discrete states 9 discrete states 5 discrete states 9 discrete states

associated to:

Fig. 5. Structure of the obtained phone call PLTM. Each non-terminal node corresponds to a discrete latent
variable, representing a data clustering solution based on the manifest variables associated to its child pouch
node. Relations among latent variables constitute a linear Bayesian tree broadly reflecting the temporal
evolution of a phone call.

associated to low ProcessingDuration and TalkDuration (states 2 and 4), but clusters 3, 5, 6 and 8
present mixed tendencies. Such a data partition suggests that Y4 may represent specific services
provided by the company. For example, state 4 might be related to appointment scheduling while
state 5 might concern information requests, as the latter has higher TalkDuration.

Overall the identified process facets appear reasonable, as queue-related attributes are grouped
together. It is however interesting to notice that CallStartTime is alone in the pouch and that
ProcessingDuration and TalkDuration are grouped together. The initiation time has therefore
no evident correlation with queue behavior or dialog duration. Moreover, as clearly visible from
Figure 5, the obtained PLTMhas a flat structurewhere the latent component of the tree is represented
by a chain. This indicates that simple relationships exist among the different components of any
phone call. Reasonably, the sequence of latent variables largely reflects the temporal events during
a call, with Y1 being the first node followed by Y2 and Y4 as the last node. The PLTM structure
thus supports its general soundness.
To evaluate the PLTM robustness and gain further insights from it, we applied a sensitivity

estimation method for Bayesian networks [8] described in Section 3.3 and available on Bayes Server
[2]. To this end, we transformed the PLTM in a purely discrete tree by pruning pouch nodes and
leaving each latent node as a discrete variable whose states are associated to previously identified
clusters. As a result, the new tree is a chain composed only of discrete latent variables, each one
with a number of states equal to the number of clusters in the corresponding facet. Nodes Y1, Y2
and Y4 thus have nine states while Y3 has five. Assuming linear sensitivity relationships as in
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Table 4. Overview of the latent variables identified and their internal states. Columns relative to manifest
attributes show the average within each cluster corresponding to a given internal state. The last row represents
the average over the complete data distribution.

Y1 Y2

State P (state) QueueDuration PreDialDuration P (state) PostDialDuration NumberOfDials

0 0.54 33.1 7.8 0.02 84.0 21.8
1 0.06 377.3 283.7 0.11 19.7 2.2
2 0.07 113.8 23.4 0.16 229.1 18.9
3 0.04 237.3 8.5 0.07 94.5 8.1
4 0.01 500.1 2.4 0.20 0.1 2.0·10−2
5 0.05 734.4 708.1 0.18 8.1 1.0
6 0.01 1,317.6 954.6 0.08 36.3 3.6
7 0.02 544.9 306.7 0.06 331.4 55.5
8 0.20 247.3 231.6 0.13 6.4 1.0

Overall 1.00 173.5 120.0 1.00 35.3 4.3

Y3 Y4

State P (state) CallStartTime P (state) ProcessingDuration TalkDuration

0 0.15 2.7·104 0.04 58.1 467.0
1 0.09 4.6·104 0.11 35.5 142.9
2 0.32 5.0·104 0.03 10.6 4.0·10−2
3 0.14 2.8·104 0.10 11.9 237.3
4 0.31 3.4·104 0.22 12.2 61.3
5 0.24 12.3 114.3
6 0.15 38.0 4.6·10−2
7 0.02 55.1 235.2
8 0.10 33.0 65.3

Overall 1.00 3.9·104 1.00 22.4 94.3

Equation 4, we estimated the impact of each latent variable on the others as by Equation 5. In this
stage we concentrated on a one-way sensitivity analysis in which a single parameter is separately
varied, and we considered two different types of perturbation: with and without evidence. Results
are summarized in Table 5 and 6 respectively.
In the scenario where evidence is ignored, low average sensitivity values can be observed over

all node combinations, maintaining at or below 0.14 among non-trivial pairs. These results thus
indicate that the three main call components - call start time, queue phase and conversation/service
characteristics - do not have strong influence on each other. The highest sensitivity was registered
for Y2 with respect to Y1, consistently with the contribution for the total queue duration on
PostDialDuration. Furthermore, despite its position in the tree TalkDuration is the most insensitive
variable on average. This seems to be conflict with the result of elastic net feature selection in
Section 4.2, but the PLTM interpretation makes sense in practical situations. In the real world,
the conversation duration depends on the requested service, thus it would not be suitable to
simply assign a sample with longer conversation time to a low customer satisfaction. Conversely,
CallStartTime has relatively stronger sensitivity in terms of global and early queuing features,
denoting a non-negligible - even if weak - relationships between them.
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Table 5. Summary of node-to-node sensitivity analysis without evidence. Values indicate average, maximum
and minimum sensitivity for the manifest variables associated to each latent variable.

Hypothesis node Parameter Node Avg Max Min

Y1 Y1 0.30 1 -0.67
Y2 0 0 0
Y3 0 0 0
Y4 0 0 0

Y2 Y1 0.14 0.79 -0.27
Y2 0.02 0.54 -0.28
Y3 0 0 0
Y4 0 0 0

Y3 Y1 0.11 0.41 -0.28
Y2 0.01 0.33 -0.25
Y3 0.05 0.24 -0.22
Y4 0 0 0

Y4 Y1 0.05 0.46 -0.19
Y2 3.78 ·10−3 0.36 -0.19
Y3 4.94 ·10−3 0.18 -0.05
Y4 0.04 0.32 -0.14

Furthermore, the obtained sensitivities display symmetry between positive and negative values
among long and short duration states. This symmetry indicates that call stages have a tendency to
distribute either around short durations (abandoned calls or quickly deliverable services) or long
durations due to both complicated customer requests and system or agent inefficiency. In fact, long
conversations are more associated to long queuing times as can be seen by the higher sensitivity
value between Y1 and Y4 compared to the other variables (although the value is still low: 0.05).

In the case where evidence nodes are taken into account, global sensitivity increases although
it remains moderately low. In particular, average sensitivity values are considerably higher for a
few specific combinations of hypothesis, evidence and parameter shown in Table 6. For instance,
variable Y3 becomes more sensitive to Y1 and Y4 only when evidence is in Y4. This suggests that
specific services required by the customer may influence when he/she is going to make the call
and how long he/she is willing to wait for the connection to an agent and for the fulfillment of
his/her requests. Y1 instead shows strong influence to other variables, regardless of which variable
is set to be evidence node. This is probably due to Y1 being considered as the root node of the
structure. Finally, Y4 only affects itself, independently of the evidence node. This suggests that the
conversation span depends more consistently on external variables not considered here (booking,
technical problems, etc.).

According to the results presented above, the main factors that affect customer experience include
the following:
(1) Call incoming time: related to latent variable Y3.
(2) Customers’ patience and willingness while queuing: related to Y1 and Y2.
(3) Services that are provided by the company: related to Y4. Specific services may indeed

intrinsically require more time.
(4) Call center and system handling capacity: related to all latent variables.
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Table 6. Summary of node-to-node sensitivity analysis with evidence, for a subset of hypothesis-parameter-
evidence triplets with higher sensitivity. Values indicate average, maximum and minimum sensitivity for the
manifest variables associated to each latent variable.

Hypothesis node Parameter node Evidence node Avg Min Max

Y1 Y1 Y2 0.31 -11.88 25.62
Y3 0.20 -3.39 3.83
Y4 0.22 -3.15 3.68

Y2 Y1 Y3 0.10 -1.09 1.65
Y4 0.14 -0.65 1.19

Y3 Y1 Y4 0.06 -0.34 0.42

Y3 Y1 0.04 -0.88 0.88
Y2 0.04 -1 1

Y4 Y4 0.17 -10.27 11.78

Y4 Y4 Y1 0.05 -0.54 0.66
Y2 0.06 -0.62 0.69
Y3 0.04 -1 1

Clearly, factors on the customer side (1 and 2) are subject to intrinsic uncertainty and randomness,
while factors from the company side (3 and 4) can be controlled and improved.

4.4 Facet-based classification of customer experience
In the perspective of having a predictive system used by the company, not only the customer
experience has to be estimated correctly, but the estimate has to be provided quickly. For instance,
the system could provide a response to contact center agents immediately after a call ends as
a feedback on the delivered service. In such a case, predictive algorithms need to be efficient
enough not delay the start of following tasks. However, computation of a PLTM is too expensive
in these situations, since both parameters and structure have to be re-calculated at every change
in the training set. Here we considered a simple process, but time can swiftly increase with the
ramification of sub-processes. Firstly, the PLTM is determined using a greedy search strategy
which computes every possible tree based on the seed structure that is generated in the previous
iteration. The search algorithm performs operations like adding, removing and relocating states
and nodes, thus recomputing all the associated parameters through a computationally-expensive
expectation maximization procedure. Secondly, PLTM inference is based on the junction tree
algorithm for Bayesian networks, which considers every possible clique in the tree structure, thus
further increasing the algorithmic complexity. When the number of variables is large, the cost in
terms of computation resources (CPU) and time can therefore be very high.
For these reasons, we tested the transformation of the PLTM clustering into a classification

task with a more efficient algorithm. Building on results in the previous sections, we translated
each of the clustering solutions given by the PLTM into labels for separate classification tasks.
Every latent state for any given facet was thereby taken as a target class for the task relative to
that facet. We then simulated customer satisfaction predictions within the existing queue and
data collection system in a scenario where true labels are available. In this phase, we employed
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Table 7. Summary of multi-class classification performance in the four scenarios defined by the PLTM facets.
For each scenario, average accuracy and Matthews correlation coefficient RK in 3-fold cross validation, as
defined in Equation 12 and 13.

Facet Accuracy RK

Y1 0.91 ± 2.3·10−3 0.87 ± 3.6·10−3
Y2 0.90 ± 1.2·10−3 0.88 ± 1.4·10−3
Y3 0.92 ± 6.0·10−3 0.89 ± 7.9·10−3
Y4 0.92 ± 6.9·10−3 0.90 ± 8.0·10−3

Naïve Bayes classifier (NBC) models under the assumption of independent features as explained in
Section 3.4.

To evaluate the efficacy of each NBC, we employed a 3-fold cross-validation as follows. The entire
dataset was split in three folds of equal size and with approximately the same ratios of class labels.
In turn, two data folds (∼67% of the overall dataset), were used for training while the remaining
fold (∼33% of the overall dataset) for testing and validation. We repeated this procedure three times,
swapping the test fold at each iteration. In this way, we evaluated NBC models in the scenario
relative to any clustering facet based on three test sets of roughly 2,800 samples each. Prediction
performance was assessed based on popular measures for multi-class classification: accuracy and
Matthews correlation coefficient. Assuming that ntest observations are classified into K classes, we
indicate with C the confusion matrix where any entry Ckl represents the number of observations
belonging to class k and assigned to class l by the model. In a multi-class scenario, the accuracy is
defined as the global ratio of correctly assigned observations to the true classes, as follows:

Accuracy =
1

ntest

K∑
k=1

Ckk . (12)

The accuracy thus reflects the ratio of correct predictions disregarding the number and ratios of
considered classes.
The Matthews correlation coefficient is instead a measurement of agreement between real and

predicted values that takes into account the proportion of class cardinalities. Generalizing the
binary label case, the multi-class Matthews coefficient RK is defined as follows [13]:

RK =

∑
klm CkkClm −CklCmk√∑

k (
∑
l Ckl )(

∑
l ′, k ′,k Ck ′l ′)

√∑
k (
∑
l Clk )(

∑
l ′, k ′,k Cl ′k ′)

. (13)

Based on this equation, RK ∈ [−1, 1] and values close to 1 are obtained only if elements from all
classes are recognized correctly. It is therefore a precise indicator of good prediction balancing the
contribution of every misclassification possibility. Together, accuracy and RK provide a complete
overview of classification performance.

Overall, classification performances maintain high across all scenarios, as summarized in Table 7.
Both accuracy and Matthews coefficient result steadily close to 0.90 across test sets with deviations
within 1%. Figure 6 illustrates the global counts of correctly and incorrectly classified observations
across all classes. Manual inspection of misclassified samples allowed us to verify that they belong
to statistically similar clusters. These results therefore support the use of automatic prediction
methods within the call management system, possibly as online classification tools.
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5 CONCLUSIONS
In this study, we investigated how to leverage process log data to characterize and achieve insights
into customer experience within a contact center. To develop and validate our methodology, we
focused on the application of data mining and modeling techniques on real-world call center data
obtained from the TeleWare database, consisting of log timing information for thousands of calls
and lacking customer feedback on the service received. Since traditional clustering algorithms
such as k-means clustering could not provide reasonable and meaningful interpretations, we used
a PLTM to determine alternative data partitions reflecting complementary aspects. The obtained
PLTM combined with domain knowledge allowed us to characterize the variation in log-based
processes and hypothesize different degrees of customer experience. Subsequent classification
experiments verified the efficient predictability of customer experience facets based on log data,
potentially implementable as a support system.
Customer experience is a complex and multifaceted phenomenon which requires non-obvious

strategies to be understood and managed. Our findings suggest that taking into account the different
aspects in a certain process can provide more meaningful insights compared to mining process
data as a whole. Moreover, given the wide and diversified range of business processes, it is essential
to develop and validate computational techniques that can leverage the available data. Our results
demonstrate that application of PLTM can be useful in contexts where customer self-reported
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Fig. 6. Confusion matrices for NBC multi-class classification in 3-fold cross-validation, for each of the PLTM
clustering scenarios: (a) Y1; (b) Y2; (c) Y3 and (d) Y4.
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feedback is not available to identify concrete points of improvement in CRM. We therefore envisage
that our approach can be extended to other log-based processes.
Although the obtained results demonstrate the value of a PLTM in the considered industrial

environment, there are issues yet to solve before considering it usable in a realistic setting. The
main obstacle is the computational cost of the algorithms for PLTM construction. For this reason,
we studied the possibility of performing customer experience prediction through a more efficient
supervised method. Our results support the development of a two-stage strategy with a preliminary
phase of facet labels identification and a real-time phase of multi-label classification. In future
researchwewill concentrate on a redevelopment of PLTM to achieve a higher computation efficiency
and to reduce the time cost in model training. To address this issue, we see artificial neural networks
as a promising option.
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