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Abstract

Today’s most troublesome population health challenges are often driven by social
and environmental determinants, which are difficult to model using traditional
epidemiological methods. We agree with those who have argued for the wider
adoption of agent-based modelling (ABM) in taking on these challenges.
However, while ABM has been used occasionally in population health, we argue
that for ABM to be most effective in the field it should be used as a means for
answering questions normally inaccessible to the traditional epidemiological
toolkit. In an effort to clearly illustrate the utility of ABM for population health
research, and to clear up persistent misunderstandings regarding the method’s
conceptual underpinnings, we offer a detailed presentation of the core concepts of
complex systems theory, and summarise why simulations are essential to the
study of complex systems. We then examine the current state of the art in ABM
for population health, and propose they are well-suited for the study of the
‘wicked’ problems in population health, and could make significant contributions
to theory and intervention development in these areas.
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1 Introduction
Health policy-making is, at the root, an attempt to undertake principled decisions

in an environment of high uncertainty and high risk, in which competing pressures

and interests from stakeholders have a significant effect on the actions ultimately

taken [1]. The rise of causal inference methods (CIM), has attempted to address this

by providing a framework under which we may predict the outcomes of proposed

interventions.

However, CIM as applied in epidemiology today, has coalesced around a set of

tools with certain limitations when applied to complex systems. For example, di-

rected acyclic graphs (DAGs) are frequently used in CIM, but DAGs are unsuitable

for modelling systems containing feedback loops (given they are acyclic), a common

feature of complex social systems. Critics of CIM also suggest it takes an overly lin-

ear view of the decision-making process leading from evidence to decision-making,

and have called for alternative concepts of cause that are not solely based on prob-

abilistic statements about population outcomes in alternative worlds [2]. Decisions

over causality can be based on pragmatic pluralism [3], or inference to the best

explanation [4, 2] (often characterised as a form of abductive reasoning). Decision-

makers ultimately must make decisions, even while accepting that their evidence
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is incomplete or flawed or both, and that the exact causal process underlying the

system of interest is still uncertain.

Here we propose that the addition of Agent-Based Modelling (ABM) and re-

lated complex-systems-based approaches to the population health toolkit will en-

able better-informed and more robust decision-making in population health. ABMs

allow for the representation of causal processes in systems that include feedback

loops and multiple layers of complex, interacting components. ABMs can model ex-

plicitly the individual-level decision-making that can lead to unexpected emergent

effects at the population level. The necessity of constructing informed conceptual

models of system processes when building an ABM also opens up new avenues for

co-production of models with decision-makers, while also facilitating the inclusion

of both quantitative and qualitative data. Taken in combination, these properties of

ABMs enable them to serve as a complementary approach to the current population

health toolset, and in turn to enable both scientists and policy makers to better

navigate the non-linear abductive process leading from scientific evidence to policy

action.

2 A new paradigm for complex public health
While ABMs offer great promise for the population health community, we suggest

that their utility is too often evaluated from the viewpoint of mainstream tradi-

tional epidemiological methods [5, 6]. In addition, some population health models

described as ‘agent-based’ would be better categorised as ‘individual-based’, as in-

dividuals are represented but display little or no capacity for agency or interaction

[7, 8]. These issues have resulted in ABM studies being isolated experiments within

the discipline, as their strengths are not being properly utilised, rather than devel-

oping into a mature category of population health research in their own right.

However, ABMs can have important and distinct uses in public health, exploring

research questions that traditional methods cannot usefully address. ABMs allow

us to understand how the combination of agent interactions and non-linear causal

effects give rise to system-level patterns. Such an approach falls outside the tradi-

tional epidemiological toolkit, but developing our understanding of these patterns is

essential for improving the health of the public. With this in mind we would concur

with Auchincloss and Diez-Roux, who outlined how regression approaches can limit

our enquiries:

Too often, the exclusive use of regression approaches constrains not only the

answers we get but also the types of questions we pose and the hypotheses

and even theoretical explanations that we develop. In our search for what is

‘tractable’ in empirical observational research (essentially that which mimics

the perfect experiment), our questions have the tendency to become narrower

and narrower and perhaps less relevant to understanding or intervening in the

real world [9, p. 6].

Long after this paper was first published, the methodological debate in population

health continues to discuss the relative merits of ABMs compared to regression in

the presence of interference or dynamic processes [10]. In our view, the debate should

acknowledge that the primary advantage of a model-centred approach is that it
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allows us to answer fundamentally different types of questions. Consider the ability

of ABMs to integrate variables of disparate nature, including qualitative, narrative,

and anecdotal [11]; to enable the inclusion of geographic and social space at multiple

levels of resolution – embedding feature-rich GIS representations, for instance, or

sophisticated social network structures; and to simulate multiple complex processes

simultaneously, all while remaining tractable (to a certain extent).

These features enable the exploration of processes in a fundamentally different

way, and the examination of fundamentally different questions of wider scope and

breadth. Simply put, adopting ABMs requires not just a change of methods, but a

change of mindset and conceptual framework.

3 The need for a new approach to decision-making
Research in population health has to its credit a number of major successes over

the years, due to concerted action on communicable diseases through improved

sanitation and mass immunisation programmes, prompting major progress on se-

rious health problems such as lung cancer and heart disease and a steady increase

in life expectancy until recently [12]. More recently, significant progress has been

made on noncommunicable diseases through tobacco control and lifestyle education.

However, ‘despite major investment in both research and policy, effective action to

tackle pressing contemporary public health challenges remains elusive’ [13]. The

most intractable health problems are those that spring fundamentally from more

complex causes: behavioural and social influence; and environmental interaction.

Some notable ‘wicked’ problems [14] include obesity, alcohol and drug misuse, and

the persistence of health inequalities, among others.

The ‘wicked’ health problems of the 21st century are driven by numerous in-

fluences where the causal links are not clearly defined, and the mechanisms that

influence them are elusive [15]. Wicked problems in health are serious challenges for

policy makers, given that such problems ‘are continually evolving; have many causal

levels; have no single solution that applies in all circumstances and solutions can

only be classified as better or worse, rather than right or wrong’ [16]. Behavioural

risk factors underpin these wicked health problems, but the evidence is sparse as

to how physical and social environments influence health behaviours, and what can

be done to improve them.

Identifying, implementing and evaluating effective responses to major population

health challenges requires a wider set of approaches beyond the traditional meth-

ods of public health research and should involve a wider set of actors beyond the

health services [17]. Population health is influenced by multiple interacting determi-

nants, including social, political, environmental, biological and behavioural factors.

Current challenges to the health of the public, and the overarching inequalities in

health within and across populations, are resistant to simple, linear, silver-bullet

approaches [13].

Traditional epidemiological methods face the most difficulties in these types of

population health challenges, in which determinants of illness and disease are mul-

tifaceted, inter-related and non-linear [18]. Unravelling the complex interactions of

social and environmental determinants is challenging when using statistical methods
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in which individuals and their actions may not be explicitly represented. Individual-

based modelling practices such as microsimulation can model some of these be-

havioural and spatial effects, but the effects of interactions between individuals and

environmental factors are still hard to capture.

We claim that the study of ‘wicked’ health problems necessitates the investiga-

tion of human society as a complex system, and that public health itself can be

conceptualised as the systemic emergent outcome of a complex system. Complex

systems in this context can be defined as systems composed of interacting adaptive

agents. More precisely, the dynamics of a complex system are driven by the interac-

tion taking place at the level of its components, and the components’ adaptations

to the environmental changes they mutually generate. As such, social systems dis-

play some characteristic properties which do not lend themselves to reductionist

approaches, but instead necessitate the adoption of ‘bottom-up’ models, i.e. mod-

els that generate aggregate patterns starting from an explicit representation of the

behaviour of the components of the system – in this case, individuals; the direct in-

teractions between the components; and interactions between the components and

their environment.

Consequently, we propose that complex systems simulation methods, in particu-

lar various forms of agent-based modelling (ABM), are a critical component in the

fight against the ‘wicked’ health problems facing us in the 21st century and should

become a key part of the toolkit for tackling public health problems. These mod-

elling techniques allow us to represent individual behaviours and their interactions,

study the tangled web of causal relationships among environmental, physical and

social factors affecting health-related behaviours, and simulate the effect of these

relationships on the dynamics of public health problems at the population level.

Ultimately, we take the view that decision-making related to complex, ‘wicked’

health problems must include the use of simulation in order to address these issues

in a coherent way.

4 Challenges from complexity in public health
In line with our claim that public health is an emergent property of a complex

system, in this section we explain the key characteristics of complex systems, the

ways in which human society fulfills these characteristics, and the resultant impact

on research efforts related to human social systems.

4.1 Emergence

A fundamental property of complex systems is emergence, which philosopher Mark

Bedau divided into strong and weak forms in the context of complex systems [19].

Frequently, references to emergence in the natural sciences and philosophy are re-

ferring to strong emergence, which describes properties of systems that are not

deducible from the behaviour of their component parts. To paraphrase Bedau’s

example, the inscrutable phenomenon of consciousness is clearly a consequence of

neural activity, yet our knowledge of the behaviour of neurons does not provide

us with any insight into the function of consciousness [19]. Consciousness is not a

property exhibited by individual neurons, and appears distinct from any particular

neural property or behaviour, and still it arises from neural activity. Consciousness
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(a) 7-cell initial condition (b) After 5,206 steps

Figure 1: An example of the unexpected complexity of simple pat-

terns in the Game of Life. This 7-cell pattern is called an ‘acorn’

and stabilises after 5,206 steps with a population of 633 live cells.

can also change our neural activity, despite being distinct from it; this is down-

ward causation, meaning that an emergent property can alter the behaviour of the

component parts from which it emerges.

Strong emergence, while successfully capturing the idea of a macro-level property

that is distinct from and yet capable of influencing its own components – as op-

posed to a macro-property that is merely an interesting consequence of micro-level

activity – is philosophically problematic. Strongly emergent properties appear to

be essentially autonomous from their components, and yet are able to exert strong

causal influence on those same properties.

Consequently, Bedau’s exploration of weak emergence has become an important

concept for complex systems science:

Macrostate P of S [system composed of micro-level components] with micro-

dynamic [micro-level behaviour] D is weakly emergent iff [if and only if] P can

be derived from D and S’s external conditions, but only by simulation (Bedau

1997 p. 4)

In other words, the behaviour of a system composed of interacting micro-level

components is ultimately derived from its micro-level behaviours and the influence

of its environment. If we can simulate these interactions explicitly, we can simulate

the dynamic that generates the emergent property, and thus we can replicate the

emergent macrostate of that system. Weakly-emergent properties are accordingly

more accessible to scientific study, in that their emergence can be replicated via

step-by-step simulation of the interaction of their constituting components and the

surrounding environment. Conversely, if we do not simulate this dynamic, we cannot

replicate the weakly-emergent behaviour.

This latter point is particularly important, as the macro-level emergent outcomes

of a system’s microdynamic cannot be straightforwardly predicted, even with perfect

knowledge of a system’s initial state and the rules driving its microdynamic. Bedau

illustrates this using the Game of Life, a famous computational system in which

cells on a grid change state according to the states of their neighbours. Cells in
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Life have only two states – alive or dead – and their future states are determined

by very simple rules according to how many of their neighbouring cells are alive

or dead [1]. Despite this simplicity, even very simple starting configurations in Life

can produce remarkably complex behaviour (see e.g. Figure 1), and Life can even

play host to patterns capable of replicating any possible computation (a property

known as computational universality) [20, 21]. As Bedau notes, this has profound

implications:

With few exceptions, it is impossible without simulation to derive the mac-

robehaviour of any state in a Life configuration even given complete knowledge

of that configuration. In fact, since a universal Turing machine can be embed-

ded in Life, the undecidability of the halting problem proves that in principle

there can be no algorithm for determining whether the behaviour exhibited

in an arbitrary Life world will ever stabilize. Yet all Life phenomena can be

derived from the initial conditions and the birth-death rule. (Bedau 1997 p.

14)

Thus, the only way we can replicate the weakly-emergent macrostates of the Game

of Life is to simulate its behaviour step-by-step. By extension, given that most

complex systems will have significantly more complicated microdynamics than the

Game of Life, replicating the macrostates of weakly-emergent systems requires the

use of simulation to replicate their microdynamics.

A well-known example of an agent-based model replicating a weakly-emergent

phenomenon from the interaction of micro-level entities is given by Schelling’s res-

idential segregation model [22, 23]. In this model, very simple agents are living in

a virtual grid-based world, and at each discrete step of the simulation are able to

choose to move their location. Their decision to move is based on a preference for

the group composition of their neighbourhood; if the number of their neighbours

belonging to a different group than themselves is above a certain threshold, the

agent will move to a new random square on the grid. Here the agents’ segregation is

the emergent property of the system, while the preference for in-group neighbours is

the parameter driving the agents’ behaviour. Schelling showed that even a relatively

low threshold generates a high degree of residential segregation, a result that is not

predictable solely by knowing the agents’ behavioural rules (see Figure 2). Thus

we can describe Schelling’s model as weakly emergent, given that its macrostate is

derivable only by simulating the system step-by-step, despite its known and very

simple behavioural rules.

Similarly, the phenomena of interest in public health research – from the devel-

opment of health inequalities to the spread of obesity in certain communities – are

consequences of complex interactions between individuals and their physical and

social environments. Successful interventions may seek to influence the phenomena

by altering individual, low-level behaviours through a number of different routes,

in the hope that the population-level picture which emerges from those actions

changes for the better – much like the simulation scientist tweaking the preferences

[1]Life’s rule is often expressed simply as B3S23: cells are (B)orn when they have

exactly three live neighbours, and (S)urvive if they have two or three live neighbours.

In all other circumstances, cells die or remain dead.



Silverman et al. Page 7 of 22

(a) The start of the simulation (b) After 116 steps

Figure 2: Sample run of the Schelling segregation model

of Schelling’s agents in the hope of reducing segregation. Following Axelrod and

Tesfatsion, we might align ourselves to using ABMs for normative understanding,

or ‘evaluating whether designs proposed for social policies, institutions, or processes

will result in socially desirable system performance over time’ [24].

If we accept that population-level health patterns are weakly-emergent phenom-

ena deriving from the interactions between individual, society and environment,

then it follows that answering some questions about those properties will require

simulating those interactions explicitly via simulation. Agent-based modelling, as

a methodology tailored to the investigation of emergent properties, is well-placed

to provide insight into these phenomena by explicitly modelling both individual

behaviours in response to an intervention and interactions between individuals and

with their environment.

4.2 Non-linearity

In the context of complex systems science, there are two extant definitions of ‘non-

linearity’. The first, which we will refer to as causal non-linearity, encompasses the

manner in which complex systems tend to be characterised by cyclic, relational and

mutual causal relationships between the variables describing the system’s state. This

characteristic of complex systems means that popular causal inference methods like

directed acyclic graphs (DAGs) cannot be used to characterise complex systems, as

DAGs cannot include feedback loops.

The Schelling model again provides a useful example of this concept. Schelling’s

simple agents change the local environment of both their previous and current

neighbours, thereby affecting the probability that those neighbours may move to

another location. In this way, the agents are affecting the actions of other agents

indirectly via their shared environment.

Applying this concept in the context of public health, we might imagine an ABM

that examines how unhealthy behaviours propagate in a social network by explicitly

representing agents with their characteristics, social relations and interactions. For

example, a simulation can explore the spread of unhealthy habits (such as smoking,
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drinking, and drug use) among socially-related individuals, and evaluate the effec-

tiveness of various strategies of network intervention that intend to induce desirable

behavioural change across the social network.

Complex systems are characterised by a tangled web of non-linear causal rela-

tionships, which blurs the distinction between exogenous and endogenous variables.

The non-linear causal relationship among the system’s components and between the

components and their environment is the fundamental reason behind our inability

to forecast the system’s dynamics from the components’ behavioural rules: the web

of causal relationships is simply too tangled for our limited cognitive capabilities to

take all of them into account when trying to run a mental simulation of the system.

The second definition of ‘non-linearity’ refers to the kind of relationship between

one or more exogenous variables and one endogenous variable: in this case, saying

that the relationship is not linear means that variations in the exogenous and the

endogenous variables are not proportional. In the Schelling model, we may change

the agents’ tolerance for different neighbours without noticing any significant change

in residential segregation at the population level, as long as we are below or above

a threshold level. Once we reach this level, however, a slight change in the agents’

tolerance changes the system from a mixed state to a segregated one. Thus, the

relationship between the agents’ tolerance and the system’s level of residential seg-

regation is a non-linear one.

A similar relationship is found in the dynamics of infectious disease. The spread

of an infectious disease is defined by the basic reproduction number, which is the

average number of new cases caused by an infected individual during his infec-

tious period. The basic reproduction number is a threshold that dictates whether

the infection will persist over time. When the reproduction number is lower than

one, the infection can not persist in the population, whereas if it is greater than

one the infection will spread and persist. Non-linearity is significant to both the

Schelling model and in infectious disease modelling, since it demonstrates how past

trends may abruptly change once a certain threshold is crossed, producing a qual-

itative change in the state of the system: from mixed to segregated and from a

non-persistent infection to an epidemic.

Of course, these two kinds of ’non-linearity’ are strictly related. Complex systems

are characterized by non-linear causal relationships between their components, and

thus we often observe a non-linear relationship between exogenous and endogenous

variables at the aggregate level.

4.3 Adaptive behaviour

Adaptive behaviour refers to the capacity or propensity for an agent to change its

state following a change in its environment (including the behaviour of its neigh-

bours)[2]. This fundamental characteristic of complex systems allows for non-linear

causality: an environmental variation prompts the agents’ behavioural responses,

[2]We should note here that adaptive behaviour is an area of study in its own right

within complex systems, with a particular focus on embodiment and embodied cog-

nition – the theory that the cognition and behaviour of living systems are shaped by

the interaction between their physical form and the surrounding environment, not

just the workings of the brain itself. In this framework, a complete description of the
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which then feed back into additional environmental variations, and so on. In other

words, the system’s components may affect each other both directly and indirectly

through changes in their common environment.

For example, consider the development of a new road that passes through a neigh-

bourhood that will increase traffic, noise and air pollution in the area. As a result,

residents who can afford to move may leave, and local housing prices may decline.

The decline in housing prices may attract a less affluent population to the area. In

this situation, individuals are adapting to new conditions in the environment, and

the system – and thus the neighbourhood – self-organises as a result. In the new or-

der that emerges an increasingly deprived population is located in a neighbourhood

with poor environmental conditions and exposed to greater health risks.

Given that the components are the ‘engines’ of the co-evolutionary process driving

the system’s dynamics, the behavioural model of these components is the funda-

mental building block of any complex systems model. As these are weakly-emergent

phenomena, we cannot replicate the dynamics of the system unless we simulate it as

the result of the interaction between the system components and their environment.

Human societies are characterised by adaptive behaviour of the most complex

kind, as human beings are able to recognise that they are in a complex system,

identify the system’s emergent properties and develop models that take them into

account to drive their own actions. This phenomenon of second-order emergence,

or the fact that emergent social institutions become part of the agents’ models

driving their behaviour, create direct causal relationships between the components’

behaviour and the system’s dynamics, which further compounds the complexity of

the system [25].

4.4 The complex systems challenge to traditional epidemiology

Having outlined the defining characteristics of complex systems, we can better un-

derstand why they pose a challenge to the statistical approach typically adopted

by epidemiology and how ABM can help epidemiology to rise to this challenge.

Public health problems can be seen as the emergent outcomes of the complex social

system that is human society. As such, to understand their dynamics we need to

develop models based on the explicit representation of the components of society –

individual human beings.

Individuals’ adaptive behaviour and the resulting web of causal relationships be-

tween agents and their environment mean that non-linear relationships between

system variables are pervasive in human social systems. This means that a very

small variation of system inputs can generate a big variation in system outcomes,

or vice versa. We can visualise a non-linear complex system as one where the space

of possible outputs is very rough along the many input dimensions: because of the

behaviour of an organism requires study not just of the organism itself, but the en-

tire brain-body-environment system. This area of work has a strong computational

tradition and is closely tied to work in complex systems, dynamical systems and

artificial life. Here we use the term adaptive behaviour in a more general sense. For

more on embodiment, the works of Francisco Varela et al. (The Embodied Mind:

Cognitive Science and Human Experience) and Andy Clark (Being There: Putting

Brain, Body and World Together Again) are excellent starting points.



Silverman et al. Page 10 of 22

number of factors affecting the relationship between any two variables, points that

are very near to each other in the space of any input can be far apart in the space

of outcomes. While the traditional statistical approach can be used in principle to

shed light on the causal mechanism through which variable X affects variable Y

(and in fact much epidemiological research consists of the addition of confounders

and mediators to the original theoretical model to enhance our understanding of

how variable X affects variable Y), success relies on the availability of a ‘sufficient’

number of observations for the analysis to have enough statistical power, a threshold

that increases with the number of confounding variables in the causal model. This

represents a limit to the complexity of the theoretical model that can be statistically

analysed.

With respect to complex systems like human society, this creates two major prob-

lems. First, a complex system may contain variables for which it is difficult or

impossible to gather empirical values. Second, even if our theoretical model does

not contain such variables, in complex systems the number of potentially condi-

tioning variables is typically very large, so we may have too few observations to

conduct a meaningful statistical analysis of the relationship between the variables

of interest, or reach the limits of analytic tractability of a mathematical model with

dozens of variables.

Thus, we see the reason why most causal models in traditional epidemiology are

relatively simple compared to ABMs: the number of observations must be large

enough for the analysis to have the desired statistical power, while remaining an-

alytically solvable. In other words, our tools force us to assume that numerous

variables which we may ideally want to include in our models do not affect the rela-

tionship between X and Y. We call this the stability assumption, in that it requires

that the relationship of interest is unaffected by changes in contextual variables.

Statistical approaches suffer further when data is sparse, as is often the case in

human social systems. Properly-specified theoretical models can still be applied in

these cases as means for increasing our understanding of system behaviour; such

models can form the basis for the examination of ‘what if’ scenarios and for probing

system behaviour via sensitivity analysis. We propose that ABM can be very effec-

tive in this regard, as the approach requires us to formally codify our theoretical

knowledge of a system in the form of an explicit computational model of the pro-

cesses underlying it. Through simulations we can produce counterfactuals, allowing

us to evaluate which contextual variables we may exclude as conditioning variables,

and whether the stability assumption is tenable. If the stability assumption does not

hold, we can examine the effects of the conditioning variables on the relationship of

interest. All the while we are able to model system processes explicitly, including

non-linearities and feedback loops.

In this context, ABM can be seen as a complementary tool to assess the limits

of statistical approaches as applied to a complex system, and to investigate sys-

tem behaviour when quantitative data is too scarce to perform robust statistical

analyses. While the traditional modelling of epidemiology is statistical - hypotheses

relating to the causes of a health outcome are tested in a mathematical framework

against observed data - the modelling approach for an ABM involves taking theories

and assumptions underlying population health research and instantiating them in

a computational framework.
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5 Towards Model-Based Science
The change of modelling mindset required by agent-based modelling, and the re-

lated shift in emphasis toward theory and assumptions over quantitative data, may

partially explain why the uptake of ABMs in population health is so minimal (sys-

tematic reviews dig up mere tens of papers, despite ABMs having been used to

study human social systems for nearly 50 years [26]). These factors alone are not

enough to explain the lack of engagement with ABM, however; other systemic and

practical reasons contribute to the current state of affairs.

We suggest there are three main factors driving this lack of enthusiasm for the

approach. Firstly, claims of what ABM can offer above traditional methods are

contested. Newer statistical models may be capable of estimating causal effects in

the presence of dynamic processes, treatment interference or spatial and network

autocorrelation [10], thus removing some justifications for choosing ABMs over an

alternative approach with which the community is already familiar.

Secondly, computer programming[3], simulation modelling and complexity science

are relatively uncommon skills in population health practice and research – un-

like statistical theory, data management, and quantitative analysis. This is due to

the traditional epidemiological focus on Positivist hypothesis-testing approaches to

identify causal processes and intervention effectiveness. Adoption of ABMs, in con-

trast to novel statistical techniques which build on existing conceptual frameworks

and skill sets, may require substantial retraining and changes in the way in which

people think about and characterise population health challenges.

Finally, as mentioned above, there is a third crucial factor: ABMs within popula-

tion health are frequently compared like-for-like with approaches designed to answer

fundamentally different research questions. As a consequence, the methodology is

perceived as imprecise and intractable in comparison to statistical methods, when

in reality ABM is simply better-suited for different types of questions.

For example, a recent study compared ABMs and the parametric G formula in

terms of how well they estimated the effect of a single treatment variable (anti-

retroviral therapy) on a mortality outcome, when the decision to treat is dependent

on two other variables [6]. Using ABMs for narrowly defined questions of causal

inference is not the best use of the ABM method and, as we highlighted in our

introduction, may not be the best sort of question to ask for complex population

health challenges. Rather than identifying the causal effect of the treatment, al-

ternative questions could be explored with ABM: what social factors could explain

inequality in treatment adherence? What promotion strategies could facilitate faster

uptake of treatment within communities?

In order to address these factors, population health researchers will need more

exposure to ABMs applied to relevant problems, more opportunities to develop the

skills needed to build simulations, and will need to apply their models to appropriate

problems that leverage the strengths of ABMs while managing their weaknesses.

We propose that a realignment of the discipline’s approach to data and modelling

[3]We refer to computer programming in the sense of using general-purpose program-

ming languages, like C/C++, Python or Java, to construct self-contained computer

programs. This is a distinct skill set from using domain-specific scripting languages,

like R or Stata, to construct statistical models.
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methodologies more generally will be needed, in order for ABMs to sit comfortably

amongst the other methods in population health’s toolbox.

5.1 The conceptual challenges of model-based science

Similar to other statistically-focused and empirically-inclined disciplines like de-

mography [27], population health has progressed methodologically in a cumulative

fashion. New statistical methodologies have spurred significant changes in research

practices, yet each new methodology is fundamentally related to the previous, and

no new method has completely replaced older ones. Each statistical tool still has

its place in the metaphorical population health toolbox.

Agent-based modelling, however, does not fit this pattern as cleanly. ABMs are not

a statistical methodology, and thus cannot simply be added to the methodological

toolbox and applied to the same problems in the same way. If we take up multi-level

modelling, for example, previous data can still be used and the methods themselves

provide some guidance about what new data may prove useful. ABMs, however,

have a more complex relationship with data, and in general what keeps the modeller

awake at night is not a lack of data but instead the need for sensible parameter values

for specifying agent behaviour.

So the newly-minted ABM researcher in population health must think not only

about data sources, but some new topics as well:

• Social and behavioural theories: what should our agents be doing, and why?

• Uses beyond prediction: what can the ABM add to our knowledge of popula-

tion change?

• Seeking out more diverse forms of data: can we alleviate our parameter prob-

lems using a wider variety of data sources, like qualitative data, GIS informa-

tion, or participatory group model building?

This kind of shift in practice requires not only knowledge of a new approach

and its epistemological and computational limitations, but a new perspective on

how and when the approach should be used, and where it should fit in the overall

scientific spectrum of population health.

Given the significant epistemological and practical implications of adopting agent-

based methods, we propose that the relationship between ABMs and population

health needs to change substantively before their usefulness becomes apparent.

The development of a theory-based, model-centric approach to certain problems

is needed, and in so doing we will uncover areas where ABMs are more suitable.

In our view, ABMs would best serve the interests of population health by being

applied to areas where individual behaviour and interactions between individuals

and their environments are influential in determining the success of interventions.

In the next sections, we will discuss in more detail the potential role ABMs can play

in a model-centric vision of population health, present some methods to mitigate

the weaknesses of the approach, and finally illustrate some key areas of research

where we believe ABMs can make a strong contribution.

6 Roles for Simulation in Population Health
Some of the most challenging ‘wicked’ problems in population health involve com-

plex, interacting processes that are difficult to characterise in a traditional epidemi-

ological framework. These challenges are likely to benefit from ABM research, given



Silverman et al. Page 13 of 22

that they can model the social and environmental aspects of population health ex-

plicitly.

However, this still begs the question: what would these models actually do? How

would our quest to reduce or eliminate a ‘wicked’ problem benefit from an ABM,

and how would it add to our knowledge? Here we illustrate a few ways in which

ABM approaches can enhance our efforts.

6.1 Models as Policy Sandboxes

ABMs enable us to build a policy sandbox; a place to explore what evidence would

be useful for taking certain decisions; to develop collaboratively a theory for why a

certain policy will or will not work; and to test out how interventions could have

an effect, if these theories hold true. Di Paolo, Noble and Bullock propose that

while ABMs are often approached as a method to develop ‘realistic simulacra’ of

the physical world, they may be best placed as platforms for the exploration of

theoretical relationships within a system, their interactions and consequences [28].

Such conceptual exploration can be very useful for building theory. An approach

that facilitates the apprehension of concepts in an abstract, rather than data-driven

sense is useful for the precise reason that it differs from the data-driven approach

of orthodox epidemiology.

In essence, traditional epidemiology focusses on risk factors and outcomes, with

the link between them being an opaque black box [29]. However, in order to develop

interventions to change the relationship between risks and outcomes, what is within

that black box itself needs to be changed. This requires understanding mechanisms

and having a theory of change in order to modify them. Statistical methodology

does not provide the tools to model mechanisms, so researchers tend to focus on

tasks that statistical methods can solve, which is the description of inequalities

identified by the data without necessarily providing solutions. ABMs, in contrast,

require people to model mechanisms explicitly, at least in the abstract, and provide

a set of tools that encourages people to focus on the parts of the system where

change might occur and could have the greatest impact. This leads us more toward

solutions-focused research.

As Marshall notes, ABMs also provide a means to make use of a wider range of

evidence:

Agent-based modeling represents one (but not the only) method to synthe-

size prior knowledge of a population – and the causal structures that act on

this population – to understand how an intervention could affect the public’s

health. In this manner, agent-based modeling is a science of evidence synthe-

sis. Specifically, ABMs (and other simulation approaches) represent a platform

for the integration of diverse evidence sources, including inconsistent or incon-

clusive scientific information, to support decision making for complex public

health problems [30].

Further, the ability of ABMs to serve as theoretical exploration tools and in-

tuition pumps when data is sparse can prove to be a significant advantage [31],

as modellers would be able to investigate theories about population health using

ABMs even in the absence of the expensive, difficult-to-collect data upon which
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statistical approaches depend. Engaging in this kind of ‘model-based science’ can

enable the evaluation of complex policy interventions amongst simulated popula-

tions, with outcomes serving as guides to decision-making under complexity rather

than as point predictions of intervention outcomes.

There are additional pragmatic benefits to data-light, model-based investigations

of interventions. Health data can be expensive to collect, as well as legally chal-

lenging due to strict data protection laws. Being able to circumvent these problems

and use generative approaches to understand complex health problems would allow

for potentially fruitful investigations of potential policy interventions when data is

hard to obtain. Further, the outcomes of our simulations may help us identify where

future data collection is needed.

6.2 Investigating Assumptions

ABMs have provided a method to run in silico interventions to inform policy makers

about options, based on counterfactual model scenarios featuring agent populations

using the same decision rules under varied environmental conditions. This scenario-

based approach could be further augmented by allowing policy-makers direct input

into which elements of proposed interventions are implemented, and the behavioural

mechanisms underlying agent behaviours.

Traditional analysis of data is agnostic to the audience. ABMs in contrast pro-

vide a means to conduct post-normal science, or a scientific enterprise conducted

in a context where ‘the puzzle-solving exercises of normal science (in the Kuhnian

sense) which were so successfully extended from the laboratory to the conquest of

Nature, are no longer appropriate for the resolution of policy issues of risk and

the environment’ [32, p. 750]. Post-normal science acknowledges the pivotal role

of input from the public and policy makers when dealing with environments suf-

fused with unavoidable uncertainty. In this context, generative theories of causation

still privilege scientific knowledge, but also integrate and adapt to the expertise of

knowledge-users. The post-normal paradigm allows evidence to inform policies to

improve health, moving beyond a context-free evidence approach.

Post-normal science does not yield to the opinions, values or politics of knowledge-

users, and still adheres to the principles of calibration, validation and verification.

The post-normal ABM approach provides opportunities for direct comparison of

scenarios that include broader knowledge with those based solely on empirical data

collection. Future research can examine how these approaches to model-building

compare in their ability to inform health policy work and produce effective inter-

ventions.

From the perspective of post-normal science, ABMs function as a mechanism for

reaching a collaborative agreement with knowledge-users about the emergence of

population-level patterns in health from low-level interactions in social and spatial

environments. The model provides feedback on the validity of the shared assump-

tions underpinning our understanding of critical population health issues. Explor-

ing the model’s parameter space or implementing differing behavioural mechanisms

enable us to compare different assumptions. In this paradigm, the process of model-

building itself is an avenue for generating, developing, and comparing knowledge,

and in the process, informing empirical and practical work on the phenomenon

being modelled.
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7 Understanding ABMs
As we have outlined, ABMs have numerous advantages when one wishes to explore

the behaviour of a complex system. However, as with any methodology, ABMs

are not a panacea and have aspects that can present significant challenges for the

modeller.

One area in which ABMs remain opaque in some respects is in the analysis of their

results. ABMs by their nature are suitable for modelling the behaviour and evolution

of systems that defy formal statistical analysis, and that very complexity means

they can appear opaque, where inputs and outputs are present but the influence

of processes within the model are tangled and unclear. As a consequence, finding

suitable parameter values for a simulation can be a lengthy process of trial and

error, leading to significant time investment and frustration for the modellers.

This is an area where cutting-edge advancements in statistical and machine learn-

ing can work in concert with simulation modelling to produce insightful results. The

growth of the field of uncertainty quantification and the current accessibility of ma-

chine learning opens up new possibilities for making ABMs more transparent and

reducing these barriers to wider adoption.

7.1 Uncertainty quantification

The advent of the Bayesian Analysis of Computer Codes (BACCO) methodology

has produced significant advancement in the analysis of model uncertainty and the

impact of parameter values [33]. In particular, Gaussian Process Emulators (GPEs)

have proven to be a promising method for analysing ABMs. In essence, a GPE takes

a training set consisting of simulation outputs resulting from a wide range of input

parameter values taken from across the parameter space, then develops a ‘surrogate

model’ – a statistical model of the original simulation model [34]. The result is a

summary of the fraction of the final output variance accounted for by each input

parameter, as well as their interactions. This gives us a much clearer picture of the

impact of each input parameter.

GPEs have been applied successfully in ABMs of various types, including models

of social care [35], research funding allocation [36], and the effect of landscape

changes on bird populations [37]. These analyses vastly increase the interpretability

of ABM results, and provide much clearer guidance as to the function of each

simulation parameter. Much of this work has been facilitated by the availability

of GEM-SA, a free software package for analysing simulation results using GPEs

[38]. As this technique continues to mature, and additional user-friendly means of

implementation are created, variations of the GPE approach seem likely to become

a common method for better understanding the internals of an ABM.

7.2 Machine-learning surrogate models

Machine learning, similar to GPEs, can also be used to develop ‘surrogate models’

which can allow for a detailed examination of the model’s behaviour and parameter

space without an explosion of computational demands [39, 40]. Machine learning

methods can improve the theoretical understanding of the ABM, help calibrate the

model, and facilitate interpretation of the results relevant to end-users, therefore

achieving an overall model of complex health issues with greater empirical validity.
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Deep neural networks can also be used to create surrogate models, by training a

multi-layered neural network on the output of numerous simulation runs [41]. Neural

networks can approximate the output of any function, meaning that a trained neural

network can approximate an ABM’s output to a high degree of precision with much

lower computational requirements. Neural-network surrogate models thus allow for

much easier probing of an ABM’s behaviour, and enable detailed sensitivity analyses

to be performed. The surrogate model can also point us toward interesting areas of

the parameter space that merit further exploration with the full simulation.

We should note that neural networks notoriously suffer from the issue of low in-

terpretability, due to their numerous parameters, the complex structure of multiple

hidden layers, and inherent non-linearity. However, we argue that interpretability is

not a key requirement when using them as a surrogate of an ABM. If explaining the

simulation result is of importance to the user, interpreting the ABM directly would

be more suitable than explaining the prediction of the surrogate model. The trained

neural network is intended to replicate the behaviour of the ABM to allow us to

generate analyses of the model’s behaviour more quickly. In this pragmatic role,

our primary concern is that the neural network provides significant computational

savings, not the particular way in which the network learns to replicate the ABM.

With the advent of these sophisticated methods for investigating the outputs

of ABMs, we can begin to reduce their opacity and use them more effectively to

understand how complex systems operate. Using surrogate models enables us to

reduce an ABM’s computational demands, while also facilitating deeper analyses of

the model’s underlying mechanisms. These analyses can then help us to understand

how we can most effectively intervene at the micro-level of a population to produce

positive changes at the macro-level.

8 Ways forward

As we have seen, ABMs and concepts drawn from the study of complexity could

have a valuable role to play in future research in population health. The ‘wicked’

problems of the 21st century present a significant challenge to traditional statistical

approaches, so approaching them from a complex systems perspective can enable us

to characterise these problems in terms of the social and environmental interactions

which lie at their core.

As with any field, not every tool is fit for every task, and this remains the case with

ABMs and related methods. In the case of less ‘wicked’ issues in population health

where causal links are more clearly defined, statistical methods already available

and easily implemented can work quite well to generate the kind of effect estimates

health researchers might seek. ABM should be a significant and powerful addition

to the toolbox for population health modellers, used in harmony with the trusted

epidemiological methods already in evidence.

For efforts extending further into explanation and description of more complex

problems, ABMs start to shine. Below we describe three areas of potential inter-

est population health researchers keen to experiment with ABMs, and note the

difficulties facing traditional approaches in these contexts.
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8.1 Health Inequalities

Health inequalities, which are systematic differences in the health status of differ-

ent population groups, remain a difficult problem even in countries with otherwise

high levels of equality [42]. For example, Nordic countries, despite generous wel-

fare states and generally excellent population health statistics, still have persistent

health inequalities [43]. Likewise, health inequalities have persisted in the United

Kingdom even in the presence of free health care and systematic attempts by the

New Labour government to reduce them [44].

A potential reason for this persistence is the sheer level of social reform that would

be required to tackle this problem [44]. Wealth inequalities might need to be cor-

rected, access to healthcare and hospital/clinic locations might need to be changed

and optimised, and significant educational efforts to encourage changed health be-

haviours might need to be undertaken, amongst other changes. In the real world,

policy interventions on this scale are not only cost-prohibitive, but quite discon-

certing to policy makers, who are (perhaps understandably) reticent to restructure

the whole of society on the basis of theories which in effect cannot be implemented

without tremendous risk of unintended consequences [45]. These unintended conse-

quences, or spillover effects, can potentially impact negatively on other key areas of

population health [46].

ABMs, however, provide a testbed of sorts. Generative approaches and virtual

populations can provide a risk-free laboratory for implementing large-scale policy

interventions on simulated populations. While we would not wish to claim these

kinds of models necessarily provide strong predictive power, if given sufficient detail

in relevant social and behavioural mechanisms they could provide important insights

on potential unintended consequences of these large-scale policy interventions.

More broadly, ABMs can shed light on those areas where health effects at the

population level appear to be at odds with our expectations, given our knowledge

of individual-level behaviours and processes. The case of inequality in Scandinavian

welfare states above is a good example: we would expect very equal societies with

universal access to free healthcare to show minimal health inequalities at the popu-

lation level but, in reality, health inequalities are both still present and surprisingly

significant. ABMs and complex systems approaches could help population health

researchers unravel these mysteries by modelling the social and environmental ef-

fects that might lead to differential health outcomes despite society being set up

specifically to avoid those outcomes.

8.2 Alcohol Use and Misuse

In the UK, the harm caused by alcohol both to the individual and to others is

significantly higher than that caused by other drugs [47]. The role of psychological

[48], social [49] and environmental factors [50] in influencing levels of substance

use and dependence are increasingly recognised as key factors beyond biological

addiction processes, both in terms of the risk processes, and for the most appropriate

points of intervention. Scotland has recently implemented a minimum price per unit

of alcohol [51].

Predicting the outcomes of population-level interventions is far from straightfor-

ward. Price-based measures are more likely to be effective amongst drinkers on the
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lower end of the socioeconomic scale, whereas changes in pricing will have a greater

impact on day-to-day spending habits [52], but the availability of alcohol (at any

price) is strongly patterned by geography, with deprived areas of Glasgow having

a greater density of alcohol, tobacco, fast food and gambling outlets, for example

[53]. How alcohol retailers respond to minimum price legislation in areas of high

compared to low supply may influence, and be influenced by changes in purchas-

ing behaviour. Traditional statistical approaches are limited in the extent to which

they can study non-linear interactions such as those between individuals and local

retailers.

ABMs and complexity-inspired approaches can make substantive contributions in

this area. Statistical modelling studies have looked in-depth at minimum unit pricing

policies, but computational models could allow us to investigate how interactions

between individuals, individuals and their neighbourhoods, and related effects such

as socioeconomic differences [52]. Alcohol and drug abuse treatment outcomes are

also affected by social factors [54, 55], and modelling these interactions and networks

via ABMs could help in further fine-tuning interventions in this respect [56].

8.3 Obesity

Obesity is the target of substantial research and investment in population health

worldwide, given that the condition is linked to such a wide range of health problems

– both as an effect and a cause. Obesity stands out amongst the target research areas

listed here, in that a number of simulation studies have already targeted obesity, and

there have been some high-profile calls for systems-based modelling of the problem.

The Institute of Medicine presented a book-length study of obesity prevention efforts

in the United States, concluding that researchers and policy makers must take a

‘systems thinking’ perspective [57]. Chapter 4 provides a useful look at systems

perspectives on the obesity epidemic – useful background for interested modellers

[57]. Similarly, Foresight in the UK was commissioned to develop a strategic 40-year

plan to tackle obesity in the UK, and presented a whole-system approach to the

problem advocating large-scale societal, personal, and governmental changes [58].

Skinner et al. outline nine properties that make obesity well-suited as a target for

systems-science-based modelling efforts, and present a systematic review of systems

science models in obesity research ([59]). While their review finds dozens of studies

using systems science perspectives and techniques, they conclude that the work done

thus far has taken relatively limited views of the topic, investigating manageable

portions of the overall obesity problem rather than tackling the larger, messier

complex of societal and individual factors which drive obesity trends. Levy et al.

take a similar view, noting that obesity modelling efforts are ‘at a nascent stage of

development’ and just focus on ‘one or two links in the process’, leading the authors

to advocate a comparative modelling approach [60, p. 390].

Obesity is thus a highly relevant area for modellers of a complex systems back-

ground, and indeed work of this type is already underway [61]. Much of the con-

ceptual work around the social, behavioural and environmental factors influencing

the obesity epidemic has already been done by respected sources. The widespread

agreement that ambitious societal change at multiple levels will be required clears

the way for similarly ambitious modelling projects to attempt to understand the
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interplay of the multitudinous factors at play in obesity, and to develop productive

collaborations with population health researchers and governmental bodies.

9 Conclusion
While population health research has contributed to numerous high-profile health

successes in modern times, there remain some highly complex, ‘wicked’ problems

which defy traditional methods of epidemiological analyses, and have resisted our

attempts to develop effective interventions at the population level. These wicked

issues in population health fall into the category of post-normal science – ‘These

issues are urgent and of high public and political concern; the people involved hold

strong positions based on their values, and the science is complex, incomplete and

uncertain’ [62, p. 163]. Whereas traditional epidemiological methods are designed

to reduce uncertainty about specific causal relationships, reliance purely on these

methods inhibits the ability of the population health research community to say

anything about complex wicked issues that urgently require solutions and where the

scientific voice is non-existent or overwhelmed by caveats and uncertainty. Methods

designed to illuminate complex interrelationships are unlikely to provide certain

answers, but can provide an important contribution to the debate and may also

provide a mechanism to bring together a range of alternative sources of knowledge.

As outlined above, there are numerous areas in which a complexity-inspired ap-

proach could contribute to efforts to develop more robust population health in-

terventions for these wicked issues. These very brief examples demonstrate that

developing interventions in these areas will require a broader, systems-based per-

spective due to the significant societal and behavioural change required. The com-

plex systems science community is notable for its ability to apply computational

approaches to an enormous range of domains, from artificial chemistry to simu-

lated societies, by modelling the unifying mechanics and principles that describe

the complex behaviour of these seemingly disparate systems. We suggest that this

perspective makes this approach uniquely well-suited to undertake ambitious and

challenging modelling projects aimed squarely at these wicked health problems.

Such efforts would require significant investment, not just in terms of time and

finances, but in the form of interdisciplinary communication, which is no simple un-

dertaking. Developing a common language between population health and complex

systems will take time, but the potential benefit of efforts to enhance the health

and wellbeing of millions of people seem worth the risk of occasional frustration

and misunderstanding.
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