
Received April 16, 2021, accepted June 27, 2021, date of publication July 5, 2021, date of current version July 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3094980

Fault Tolerance Framework for
Composite Web Services
NIMRA MEMON1, MUHAMMAD SALEEM VIGHIO 2,
YAR MUHAMMAD 3, (Senior Member, IEEE), AND ZAHID HUSSAIN ABRO1
1Department of Information Technology, Quaid-e-Awam University of Engineering, Science, and Technology, Nawabshah 67480, Pakistan
2Department of Computer Science, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah 67480, Pakistan
3Department of Computing and Games, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, U.K.

Corresponding author: Muhammad Saleem Vighio (saleem.vighio@quest.edu.pk)

ABSTRACT A composite Web service combines multiple, logically interrelated services for creating more
common services meeting complex requirements from users. The services participating in a composition
coordinate the actions of distributed activity using Web services protocols to reach consistent agreement on
the outcome of joint operation. However, as services run over unreliable protocols, there is a great chance
that services fail due to the failure of protocols. However, current protocol standards provide fault-tolerance
but are limited to backward recovery using expensive compensation and roll-back strategies. This paper
gives an extension of the existing Web services business activity (WS-BA) protocol to deal with failures
using forward recovery approach. A set of common failure types affecting the execution of component
services is identified, and recovery solutions for each identified failure are also presented. The fault-handling
extension of the WS-BA protocol implements recovery solutions for each of the identified failures to handle
failures at runtime. Another important aspect about which the WS-BA protocol specification is unclear
is reaching and notifying consistent outcome on the completion of joint work. This study extends the
WS-BA protocol to notify consistent outcome reached by all participating services. The implementation
and testing of the framework are performed using the model-checking and verification tool UPPAAL.
A well-known application example supports the study. The key properties of the framework, like the
execution of corresponding recovery actions in cases of failures and reaching a consistent agreement on
the outcome of joint operation, are verified.

INDEX TERMS Web services, fault handling, forward recovery, model-checking, transaction protocols.

I. INTRODUCTION
A Web service is a software application that encapsulates
logic and performs a specific task using the Internet [1].
With the growing use of the Internet, Web services have
gained much popularity, and nowadays, most of the ser-
vice demands from users are being answered through the
Web [2]–[3]. In general, one single service has relatively
simple functionality, and in many cases, a single service on
its own is not sufficient to perform a complex task indepen-
dently; for example, a travel reservation task may require
booking of an air-ticket, a hotel room, and a taxi to fulfil
a reservation request. In such a case, multiple services are
combined into a single service to perform that task jointly
and in an agreed-uponmanner [4]. The process of aggregating
multiple services into a single service is called composition

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhangbing Zhou .

and is facilitated using service-oriented architecture (SOA)
standards. Among these standards,Web services coordination
and agreement (WS-C&A) protocols allow multiple services
to coordinate the actions of activities that require to reach
a consistent and agreed-upon outcome [5]–[7]. However,
like other communication protocols, Web services protocols
also suffer from errors and failures during execution [8]–[9].
In addition to that, current protocol standards are limited to
backward recovery and handle failures using strict roll-back
and compensation strategies [10]–[11]. This makes current
protocol standards very expensive and time-consuming pro-
cesses, specifically for applications that run for longer dura-
tions. Due to the extensive use of Web services in IoT
(Internet of Things), AI (Artificial Intelligence), and other
sensitive and mission-critical applications, Web services are
required to be highly reliable even in cases of failures. This
paper provides a fault-tolerant framework for composite Web
services by implementing fault-tolerance in Web services

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 95469

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/459187672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-3621-1697
https://orcid.org/0000-0002-2281-0886
https://orcid.org/0000-0002-3195-2253


N. Memon et al.: Fault Tolerance Framework for Composite Web Services

business activity (WS-BA) protocol based on forward recov-
ery approach. The WS-BA protocol is designed to allow
independent services to join in common activities which
run for a longer duration and require to reach a consis-
tent outcome [7]. However, in its current settings, WS-BA
protocol deals with failures using compensating actions in
backward recovery fashion; that is, in case of a failure of a
participant service, the effects of previously completed tasks
are undone (or reverted). This paper provides an extension
of the WS-BA protocol to deal with failures using forward
recovery approach. In this approach, when a failure occurs
during the execution of a service, its corresponding recovery
action is invoked to recover from that failure rather than
starting the operation all over again or reverting the effects of
previously completed tasks. Compensation or strict roll-back
is a severe issue with services that run for longer dura-
tions, usually lasting for days or weeks [12]. To conduct this
study, we identify common failure types affecting the execu-
tion of composed Web services. Moreover, recovery actions
for each of the identified failures are also identified. The
fault-handling extension of the WS-BA protocol implements
proposed recovery solutions against each of the specified fail-
ures types to diagnose and handle failures at runtime. To sim-
plify the development process and satisfy varying application
requirements, exception handling logic is separately imple-
mented from the actual business logic. Another key issue
tackled in this study is to reach and notify consistent outcome
on the completion of joint work about which the BA protocol
specification is not precise. The implementation and testing
of the framework are performed using the model-checking
and verification tool UPPAAL [13]. A well-known travel
reservation scenario supports the study. The key properties of
the system like execution of corresponding recovery solutions
in cases of failures and reaching a consistent outcome on the
completion of joint operation, are verified.

The remainder of the paper is organized as follows:
Section II gives a brief review of related work. An overview
of the WS-BA protocol is presented in section III. Fol-
lowing that, section IV presents proposed extensions to the
existing WS-BA protocol and gives details of the proposed
fault-tolerant framework. Failures common to Web services
and recovery solutions are provided in Section V. Section VI
presents supporting application example. Implementation
of the framework and verification results are provided in
Section VII. Finally, Section VIII presents the conclusion of
the work and gives directions for future work.

II. RELATED WORK
Web services have gained much popularity in recent years
because of their extensive use in IoT, mobile, AI, and cloud
applications. Gartner, Inc., the world’s leading research and
advisory company, has identified Web services as the most
prominent area in its ‘‘Top 10 Strategic Technology Trends
for 2018’’ when integrated with other technologies like AI,
mobile, and cloud [14]. Forbes, another world-leading com-
pany, predicted that by 2020, 80% of companies would

provide services to their customers enriched with the latest
tools and technologies [15]. On the one hand, the use of Web
services is on the high rise; on the other hand, it is becoming a
challenging task for the researchers to provide and maintain
the reliability of Web applications [16]. The failure of Web
services is a real issue that occurs due to many reasons like
the failure of a resource, error in underlying service logic,
failure of communication protocols, and so on [17]–[18].
The failure of services may result in services downtime or
complete failure leading to a situation ranging from simple
inconvenience to a significant financial or monetary loss,
or even the loss of human lives. Due to the increasing use
of Web services in important, sensitive, and mission-critical
applications, Web services are required to be highly reliable
even in cases of failures [19]–[21]. However, as services
run over unreliable protocols and communicate beyond orga-
nizational boundaries in heterogeneous environments, Web
services are vulnerable to a wide variety of failures than
traditional software. Efforts to provide fault-free services at
the application level have received much attention. However,
due to the complexity of the problem, little emphasis has
been given to providing fault-tolerance at the level of proto-
cols, especially at the level of Web services protocols [22].
Moreover, current protocol standards are limited to back-
ward recovery and deal with failures using compensation and
roll-back strategies, which is a time-consuming and expen-
sive process, especially when services are designed to run
for longer durations [23]–[24]. To provide fault-tolerance
in Web services protocols, Yang and Liu [25] propose an
extension of the existing WS-BA protocol by incorporating
flexible compensation to deal with failures. The flexible
compensation is used to satisfy various requirements from
different applications as the existing standard is too fixed
to deal with varying application requirements. In a similar
approach, Schäfer et al. [26] provide an extension of WS-BA
protocol which allows replacement of failed services with
alternative services using compensation mechanisms. Some
researchers employed exception handling strategies to realize
the backward recovery; for example, Liu et al. [9] present a
framework named FACTS for fault-tolerance of transactional
composite services. The framework incorporates exception
handling and transaction techniques to improve the fault tol-
erance of compositeWeb services. Initially, a set of high-level
exception handling strategies are identified, and after that,
a specification module is designed to help service designers
build the correct logic for fault handling. Finally, a module
is devised to automatically implement fault-handling logic in
WS-BPEL. In another effort, Cardinale et al. [27] propose a
framework for fault-tolerant execution of transactional
composite services. Relying on compensation protocol,
the framework deals with failures using replacement strat-
egy in forward recovery fashion; that is, when a component
service encounters a failure, that service is replaced with
an alternate service having equivalent functionality. How-
ever, the paper lacks information on which failures-types
and which recovery actions can be considered. Furthermore,

95470 VOLUME 9, 2021



N. Memon et al.: Fault Tolerance Framework for Composite Web Services

FIGURE 1. Coordinator and participant roles of WS-BA protocol.

the separation concepts have also been overlooked; for e.g.,
if the same framework is to be usedwith different applications
with varying requirements, then how it would fit in that envi-
ronment is unclear. In our case, we implement fault-handler
as a separate process (from the normal business process)
which can be used with different application examples.
Zeng et al. [28] present a policy-driven approach to excep-
tion handling for composite Web services. In this approach,
exception handling logic is separately implemented than the
normal business logic. The authors argue that the separation
of concerns significantly reduces the process development
time and gives the flexibility to be used with different applica-
tion environments. In all the above works, the main property
of reaching consistent agreement on the outcome of the joint
operation is missed. In this paper, we verify that the failures
of participant services are dealt by executing corresponding
recovery actions automatically and verify the important prop-
erty of reaching and notifying the consistent outcome of the
joint operation.

III. WEB SERVICES BUSINESS ACTIVITY PROTOCOL
Built on the top of WS-Coordination [5], WS-BA pro-
tocol coordinates the actions of long-running distributed
applications, which require reaching consistent outcome [7].
As shown in Fig. 1, the protocol defines two roles for the
exchange of messages between the participating services:
Coordinator and Participant. A composite service registers
with the Coordinator role of the protocol, whereas component
services register with the Participant role of the protocol for
communication. As shown in the abstract diagram of the
protocol in Fig. 2, when a Participant service encounters a
failure or is not able to complete its work, it sends a Fail
message to the Coordinator service and changes its state
from Completing to Failing. The Coordinator service, upon
receipt of the Fail message, sends Compensate message to
all other participant services to undo their completed work.
This is a severe issue with the current settings of WS-BA
protocol that it does not provide any remedy to deal with

FIGURE 2. WS-BA protocol state transition diagram, adapted from [7].

failures rather than to compensate in backward recovery fash-
ion. The compensation action results in the loss of precious
work that has already been completed in the long-running
environment. Moreover, the protocol specification is also not
precise on the overall outcome of the joint operation, whether
it should be committed or aborted. We provide extensions
to the WS-BA protocol by implementing a fault-handler to
deal with failures in forward recovery fashion. Furthermore,
the key property of reaching a consistent decision on the
completion of joint operation has also been considered. The
details of the proposed extensions of WS-BA protocols are
provided in the section to follow.

IV. FAULT-TOLERANCE FRAMEWORK
As discussed previously, in a composite environment, multi-
ple services register for Web services protocols to participate
in activities whose completion requires consistent outcome.
Fig. 3 shows a scenario in whichWS-BA protocol is extended
with a Fault-handler. The Fault-handler implements a pool of
recovery actions to deal with common failure-types occurring
in participant Web services. If a participating service encoun-
ters a failure, the type of the failure is communicated to the
Fault-handler using the protocol instance of the participant
service. The Fault-handler, in turn identifies the type of failure
and invokes corresponding recovery action from the pool to
resolve that failure, see Fig. 4 and 5. The resolution of failure
is communicated to the protocol instance of the participating
service so that the remaining computation can be completed.
The details of each of the components of the Fault-handler
are given below.

A. COMPONENTS OF FAULT-HANDLER
As shown in Fig. 5, the Fault-handler deals with failures in
the following two phases:

1) FAULT DIAGNOSIS
When a participant service encounters a failure, the type
of failure is communicated to the Fault-handler using the
protocol instance of the service with which it registers. In its
first phase, the Fault-handler diagnosis and identifies the type

VOLUME 9, 2021 95471



N. Memon et al.: Fault Tolerance Framework for Composite Web Services

FIGURE 3. Fault-tolerance framework.

FIGURE 4. Fault-handler extension of WS-BA protocol.

FIGURE 5. Fault-handler components.

of failure that has occurred at participant Web service so that
its corresponding recovery action can be executed to recover
from that failure.

2) FAULT RESOLUTION
In the next phase, the corresponding recovery action for the
identified failure is executed. For each of the failure-type,
we implement a corresponding recovery routine. In cases
when a single recovery action is unable to resolve a failure,

a combination of different recovery actions is executed (see,
Sec. V). After the failure has been resolved, the protocol com-
pletes the remaining execution in the usual order as defined
in the protocol specification.

V. WEB SERVICES FAILURES AND RECOVERY
STRATEGIES
A. WEB SERVICES FAILURES
Web services, like other software components, suffer from
errors and failures from development to execution. Addition-
ally, as Web services run over unreliable protocols under
heterogeneous environment they are more susceptible to fail-
ures than their traditional counterparts [29]–[31]. Among all
fault-types Web services suffer from, we consider partici-
pant services failures which occur when services are invoked
through Web services protocols. Participant fault-types are
classified into system (or physical) faults, inconsistent (or
logical) faults, and interaction faults.

• System faults include all fault classes which affect hard-
ware. System faults occur due to the failure of hard-
ware (hosting server crash), software (operating system,
database, error, or malicious attack), or communication
infrastructure (network). In all the above cases, services
become unavailable. For example, flight and hotel ser-
vices may be unavailable due to hardware, software,
or network failures.

• Inconsistent faults occur when the interface or ontology
of the service is changed (or updated), but the users are
unaware of corresponding changes. In some other cases,
the service interface is changed, but the process (logic)
is not updated accordingly. For example, in the case of
flight service, a user tries to book two air tickets, but only
one (or no) ticket is available at that time.

• Interaction faults are all operational or external level
faults that arise when services are actually executed.
These fault types are further classified into QoS (Quality
of Service) and Time-out faults.

– QoS exceptions are raised when a partner service
completes, but execution results do not adhere to
the predefined values. For example, the expected
operation completion time is 12 seconds, but the
actual operation took 20 seconds to complete.

– Time-out faults occur when the service is over-
loaded to process too many requests simultane-
ously. For example, too many requests for grabbing
a cheap ticket may overload the booking service.
This may result in excessive delays (time-outs) at
the requester’s end or even in the unavailability of
the service.

B. RECOVERY STRATEGIES
A recovery solution lets the service operate correctly even
in a case of failure. Specific to our application requirements,
Table 1 gives details of the most common recovery solutions
for Web services [8], [9]. The recovery solutions provided

95472 VOLUME 9, 2021



N. Memon et al.: Fault Tolerance Framework for Composite Web Services

TABLE 1. Recovery strategies.

TABLE 2. Failures and corresponding recovery actions.

in Table 1 can be used individually or in combination with
other recovery solutions to recover from a specific failure.
Table 2 shows which recovery solutions can be used against
which types of failures.

Notably, the order in which recovery actions execute is
essential from the implementation point of view. For our
implementation, the execution order of proposed recovery
actions is given in Fig. 6. This means that, Wait strategy is
followed by the Retry strategy which in turn is followed
by the RetryUnitl and Alternate strategies. Further-
more, we also consider that Skip action cannot be used
in combination with any other strategies; that is, once the
execution of any service is skipped, it cannot be re-invoked
again.

VI. TRAVEL RESERVATION PROCESS
Implementation of the framework is supported by a
well-known travel reservation example [34]. As shown
in Fig. 7, the Travel agent service is implemented as a com-
posite service, and all other services are implemented as
component (or participant) services. All services register with
a separate instance of the WS-BA protocol for communica-
tion and reaching a consistent outcome. Initially, the Client
service sends a reservation request to the Travel agent (TA)

FIGURE 6. Recovery solutions hierarchy.

service. The TA service, in turn, sends the request to the Air-
line, Attraction, and Hotel services. The Compute-Distance
service computes the distance between the Attraction and
Hotel services, and if the distance between the two services
is greater than 5km, the Car service is invoked; else, Bike
service is invoked. The Shop service is implemented as an
optional service to test the QoS aspect of the overall reserva-
tion task. The reservation task is considered a joint task partic-
ipated in by all services to reach a consistent and agreed-upon
outcome.

VII. FRAMEWORK MODELLING AND VERIFICATION
A. UPPAAL MODELLING
The framework is implemented using the model-checking
and verification tool UPPAAL [13]. For the implementation
purpose, the following assumptions are set:

VOLUME 9, 2021 95473



N. Memon et al.: Fault Tolerance Framework for Composite Web Services

FIGURE 7. Travel arrangement process, adapted from [36].

FIGURE 8. Travel agent service.

• All the services shown in Fig. 7, register and communi-
cate using a separate instance of the WS-BA protocol.

• Travel agent service is considered the composite service
and registers using the protocol’s coordinator role for
communication with component services.

• All other services register and communicate with com-
posite service using the Participant role of the protocol.

• Failures are introduced in the Travel agent, Flight, and
Hotel services such that Flight service may encounter
service unavailability, seat unavailability, and time-out
failures. Hotel service may suffer from service unavail-
ability and time-out failures, whereas the Travel agent
service implements QoS requirements.

• Shop service is considered an optional service and is
used to test the QoS requirement of the overall reserva-
tion process.

Furthermore, to recover from failures following assumptions
are made:

• Service unavailability and time-out failures are dealt
using Wait, Retry, RetryUntil, and Alternate
strategies.

• Seats Unavailability is handled using Alternate
strategy and,

• QoS requirement is met using Skip strategy.

Rest of the services Client, Attraction, Compute-Distance,
Car, Bike, and Shop, are considered fault-free services.
Table 3 shows failure-types and corresponding recovery solu-
tions considered for implementation.

1) TRAVEL AGENT SERVICE
The UPPAAL model of the underlying logic of the Travel
agent service is shown in Fig. 8.

• Travel agent service is implemented as a composite
service and is responsible for invoking all participant
services to fulfil the reservation request.

• The service also implements the QoS requirement of the
reservation task, i.e., if the overall task takes longer to
complete, then the execution of optional Shop service is
skipped. QoS is implemented as a global variable of type
integer initialized to 0. With each retry of Flight and
Hotel services, it is incremented by a one time-unit, and
if the QoS value of the overall reservation task is greater
than 5 time units, execution of optional Shop service is
skipped.

• After all the services complete execution, the Travel
agent notifies the decision to the Client service.

2) FLIGHT SERVICE
Given the UPPAAAL model in Fig. 9, Flight service may
encounter service unavailability, seat unavailability, and
time-out failures.

• Service unavailability is dealt with using Retry recov-
ery action.

• Each retry is constrained (time-out period) to take place
after 3 timestamps implemented using the wait vari-
able in the Fault-handler (see, Fig. 11).

• The maximum number of retries is set to 3 tries.

95474 VOLUME 9, 2021



N. Memon et al.: Fault Tolerance Framework for Composite Web Services

TABLE 3. Travel reservation process: Failure and recovery strategies considerations.

FIGURE 9. Flight service.

• If the maximum number of retries fails, the service is
considered to have a dormant fault, and the Fault-handler
calls the alternate service (Train service in our
case).

• In case if retry is successful, one of the following two
conditions happen:
– Either seat may be available and reserved for the

Client (SEATS_AVAILABLE--), or,
– Seat may not be available to represent incon-

sistent failure. The unavailability of a seat is
communicated to the Fault-handler using the
seat_unavailable! action, which in turn exe-
cutes the Alternate strategy.

3) HOTEL SERVICE
The UPPAAL model of the Hotel service is shown in Fig. 10.
The Hotel service encounters either service unavailability or
time-out failures.
• Service unavailability is handled using Retry recovery
solution.

• Each retry is constrained (time-out period) to take place
after 3 timestamps implemented using the wait vari-
able in the Fault-handler (see, Fig. 11)

• The maximum number of retries is set to 3 tries.
• It is assumed that after the maximum number of retries,
service resolves temporary fault andmakes a room reser-
vation (ROOMS_AVAILABLE--).

FIGURE 10. Hotel service.

FIGURE 11. Fault handler service.

4) FAULT-HANDLER SERVICE
Fault-handler is responsible for identifying the type of failure
and invoking a corresponding recovery solution at the failed
service. As shown in the UPPAALmodel of the Fault-handler
in Fig. 11, the identification of a failure is implemented using
the functiondiagnose(fault_type), the code of which
is shown below:

void diagnose(FaultType ftype)
{ int n; int f_type[ALL_FAULTS];

for(n=0; n<ALL_FAULTS; n++)
{if (ftype==f_type[n])

{fault_type=ftype;} }
}

After receiving the failure information, the Fault-handler
identifies the type of failure from the pool of failures

VOLUME 9, 2021 95475



N. Memon et al.: Fault Tolerance Framework for Composite Web Services

FIGURE 12. Extended WS-BA protocol.

implemented as an array(f_type[ALL_FAULTS]). If the
received failure type matches a failure in the pool, the corre-
sponding recovery action is invoked. As shown in Fig. 11,
fault types 0, 1 and 2 represent flight unavailable, seats
unavailable, and hotel unavailable faults, respectively. In case
if Flight and Hotel services are unavailable, Retry recov-
ery action is called at the participant service. Each retry
is constrained to take place after 3 time-units implemented
using the wait variable of type int initialized to 0. The
maximum number of retries (MAX_TRIES) is constrained
to 3 retries. In the case of Flight service, after the max-
imum number of retries expires (tries>MAX_TRIES),
the service is considered to have a dormant fault, and the
Fault-handler calls the alternate service (Train service in our
case). For the Hotel service, after the maximum number of
retries, the service resolves the unavailable service fault, and
the room is reserved for the client. After the failures are
resolved, Fault-handler notifies it to the protocol instance of
the corresponding service so that the remaining execution can
be completed.

5) WS-BA PROTOCOL
As mentioned earlier, all services participating in the reser-
vation process communicate using an instance of the WS-BA
protocol. Composite service (Travel agent in our case) com-
municates using the Coordinator role of the protocol, and
all other services communicate using the Participant role
of the protocol. The UPPAAL model of the Participant
role of the protocol is shown in Fig. 12. When a partic-
ipating service confronts to a fault, corresponding proto-
col instance records that failure-type using the instruction

fpc_fault = fs_fault_type. The protocol instance
then calls the Fault-hander (call_f_handler!) for the
resolution of failure by sending it the fault information
(fault_type = fpc_fault). After the fault has been
resolved, the Fault-handler informs the protocol instance by
sending it f_resolved message to indicate that the fault
has been resolved. Another important aspect implemented in
the protocol is to reach and notify the common agreement on
the outcome of the joint work about which the WS-BA pro-
tocol specification is imprecise. This is implemented using a
structure variable pOutcome as shown below:

typedef int[0,2] OutcomeP;
const OutcomeP P_ABORTED = 1;
const OutcomeP P_COMMITTED = 2;
OutcomeP pOutcome;

We have considered two types of outcomes:
P_COMMITTED referring to the successful completion of the
work and P_ABORTED when the work does not complete
successfully. This is an essential property of the WS-BA pro-
tocol by which the composed services reach a joint decision
after the operation has been completed.

6) ATTRACTION, COMPUTE-DISTANCE, CAR, BIKE, SHOP
AND TRAIN SERVICE
Attraction, Compute-Distance, Car, Bike, Shop, and Train
services are considered non-faulty services and contribute
to completing common reservation tasks. Attraction ser-
vice is a simple service that interacts with the Travel agent
service. This service registers with a separate instance of
WS-BA protocol to participate in the common reservation

95476 VOLUME 9, 2021



N. Memon et al.: Fault Tolerance Framework for Composite Web Services

TABLE 4. Verification results.

VOLUME 9, 2021 95477



N. Memon et al.: Fault Tolerance Framework for Composite Web Services

task. Compute-Distance service computes the distance of
Attraction from the Hotel and communicates it to the Travel
agent service. As per our considerations, the distance of
Attraction from the Hotel is either five or more kilometers.
Car and Bike services are simple services and interact with
the Travel-Agent service to contribute towards the comple-
tion of common reservation task. Optional Shop service
interacts with Travel-Agent service and is used to test the
quality-of-service attribute of the overall reservation task.
The Shop service is skipped from execution if the overall
travel reservation task exceeds 5 time units; in the other
case, the Shop service is executed. Train service works as an
alternate of the Flight service if the Flight service encounters
a dormant fault.

The complete UPPAAL model of the travel reservation
process is provided at [33].

B. SYSTEM VERIFICATION
Verification of the implementation builds trust in the cor-
rectness of concepts developed during the implementation
of the framework. The model is verified to check whether
the qualitative requirements are satisfied or not. The essen-
tial requirements of the system like safety, reachability, and
liveness are verified and formulated using UPPAAL query
language (a subset of Computation Tree Logic [34]–[35]).
The details of each of the identified requirements (properties)
are given below:

1) SAFETY PROPERTIES
A safety property checks if a specific condition holds in all
the states of the execution paths. Its UPPAAL formulation is:
A [] p, i.e., ‘‘Always globally p’’, which means that, for all
executions paths p (property) holds in all the states of those
paths. As our specific example, it is always the case that after
the maximum number of re-tries elapses fault-handler never
calls the retry action for the flight and hotel services.

2) REACHABILITY PROPERTIES
A reachability property amounts to check whether a specific
condition holds in some state of the execution path of the
system behavior. The UPPAAL formulation of this property
is: E <> p, meaning ‘‘Exits eventually p’’, stating that there
is an execution path in the system behavior such that p
(property) holds in some state of that execution path. In our
specific case, the overall reservation process can reach a state
where the QoS value may exceed the constrained time limit.

3) LIVENESS PROPERTIES
A liveness property guarantees that a specific condition
(something good) will eventually hold at some point.
The UPPAAL formulation of this property is: A<> p,
i.e., ‘‘Always eventually p’’, meaning that, for every execu-
tion path p (property) holds at least in one state of each path.
Another form of liveness property is ‘‘leads to’’, which is
formulated using, q -> p, meaning that any execution path
starting with a state in which q holds, later reaches a state in

FIGURE 13. Results.

which p also holds. For our reservation scenario, eventually,
all roles involved in the reservation task reach their end-states,
and the final outcome (committed or aborted) of the overall
process is also decided. Table 4 gives UPPAAL formulation,
status, and description of each of the verified properties.
Moreover, Fig. 13 gives a summary of verification results
for Flight, Hotel, and Travel agent services. The verification
results show that the fault-handler successfully deals with
all considered failure types encountered by the participant
services. Furthermore, verification results given in Table 4
also prove that the property of reaching a consistent outcome
on the completion of joint task also holds.

VIII. CONCLUSION AND FUTURE WORK
Web services business activity (WS-BA) protocol is designed
to coordinate the actions of composite services to reach
a common agreement on the outcome of joint operations.
However, in its current settings, the BA protocol deals with
failures using compensating actions in backward recovery
fashion, which is an expensive and time-consuming process.
This paper extends WS-BA protocol with Fault-handler to
deal with failures using forward recovery approach. The Fault
Fault-handler is implemented as a separate process to be used
with varying requirements of different application examples.
The Fault-handler implements a pool of recovery actions for
each of the considered failure-types affecting the execution of
participant services. The study is supported by the implemen-
tation of a well-known travel reservation example. The key
properties of the system, like safety, reachability, and liveness
have been verified using the model-checking and verification
tool UPPAAL. Verification results prove that when a failure
occurs during the execution of a participant service, its corre-
sponding recovery action is invoked to recover from that fail-
ure to proceed further rather than to compensate or perform
the operation all-over-again. In addition to that, the prop-
erty of reaching a consistent agreement on the outcome of
joint operation has also been verified. It is concluded that
the introduction of a fault-tolerance mechanism in WS-BA
protocol helps to detect and resolve failures at runtime to
provide reliable services. Due to its basis on the forward

95478 VOLUME 9, 2021



N. Memon et al.: Fault Tolerance Framework for Composite Web Services

recovery approach, the proposed approach saves time and
cost and builds trust to be used in sensitive and mission-
critical applications.

A. FUTURE WORK
This study implements fault-handling actions for the par-
ticipant role of the BA protocol with which the participant
services register for communication with the composite ser-
vice. However, there is a possibility that the coordinator
(or composite) service itself fails. Due to the complexity
of the model and the state-space explosion problem of the
model-checker UPPAAL, we could not implement recovery
actions for the composite (or coordinator) service. However,
the model can be simplified to implement recovery solutions
for the coordinator role of the protocol. Moreover, apart from
different recovery actions and their combinations presented
in the paper, few more actions and their combinations can
also be suggested. Furthermore, which of the combinations
are optimal for resolving the same type of failures and how
to obtain them are questions that may be explored in detail.

REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,Web Services: Concepts,

Architectures and Applications, 1st ed. Berlin, Germany: Springer-Verlag,
2010.

[2] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
‘‘Web services composition: A decade’s overview,’’ Inf. Sci., vol. 280,
pp. 218–238, Oct. 2014.

[3] Gartner. (2017). Gartner Identifies the Top 10 Strategic Technology
Trends for 2018. [Online]. Available: https://www.gartner.com/en/
newsroom/press-releases/2017-10-04-gartner-identi_es-the-top-10-
strategic-technology-trends-for-2018

[4] D. B. Claro, P. Albers, and J.-K. Hao, ‘‘Web service composition,’’ in
Semantic Web Services, Processes and Applications. Boston, MA, USA:
Springer, 2006, ch. 8, pp. 227–245.

[5] E. Newcomer and I. Robinson. (2009). Web Services Coordination
(WS-Coordination) Version 1.2. [Online]. Available: http://docs.oasis-
open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html

[6] E. Newcomer and I. Robinson. (2009). Web Services Atomic
Transaction (WS-Atomic Transaction) Version 1.2. [Online]. Available:
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html

[7] E. Newcomer and I. Robinson. (2009). Web Services Business Activity
(WS-Businessactivity) Version 1.2. [Online]. Available: http://docs.oasis-
open.org/ws-tx/wstx-wsba-1.2-spec-os.pdf

[8] Q. Wang, G. Lv, S. Ying, and J. Wen, ‘‘A policy-driven exception han-
dling approach for service-oriented processes,’’ in Proc. IEEE 16th Int.
Conf. Comput. Supported Cooperat. Work Design (CSCWD), May 2012,
pp. 49–455.

[9] A. Liu, Q. Li, L. Huang, and M. Xiao, ‘‘FACTS: A framework for
fault-tolerant composition of transactional web services,’’ IEEE Trans.
Services Comput., vol. 3, no. 1, pp. 46–59, Jan. 2010.

[10] C. Liu and X. Zhao, ‘‘Towards flexible compensation for business transac-
tions in web service environment,’’ Service Oriented Comput. Appl., vol. 2,
nos. 2–3, pp. 79–91, Jul. 2008.

[11] A. P. Ravn, J. Srba, and S. Vighio, ‘‘A formal analysis of the web
services atomic transaction protocol with UPPAAL,’’ in Proc. 4th Int.
Conf. Leveraging Appl. Formal Methods, Verification, Validation, 2010,
pp. 579–593.

[12] S. Choi, H. Jang, H. Kim, J. Kim, S. M. Kim, J. Song, and Y.-J. Lee,
‘‘Maintaining consistency under isolation relaxation of web services trans-
actions,’’ in Proc. 6th Int. Conf. Web Inf. Syst. Eng., in Lecture Notes in
Computer Science, vol. 3806. New York, NY, USA: Springer, Nov. 2005,
pp. 245–257.

[13] G. Behrmann, A. David, and K. G. Larsen, ‘‘A tutorial on Uppaal,’’
in Proc. 4th Int. School Formal Methods Design Comput., Commun.,
Softw. Syst. (SFM-RT), vol. 3185. Berlin, Germany: Springer-Verlag, 2004,
pp. 200–236.

[14] Gartner. (2017). Gartner Identifies the Top 10 Strategic Technology
Trends for 2018. [Online]. Available: https://www.gartner.
com/en/newsroom/press-releases/2017-10-04-gartner-identifies-the-
top-10-strategic-technology-trends-for-2018

[15] J. Steiman. (2018). Six Trends That Will Shape Customer Service in
2018 (for Better or Worse). [Online]. Available: https://www.forbes.
com/sites/theyec/2018/02/08/six-trends-that-will-shape-customer-
service-in-2018-for-better-or-worse/#6ddf7246672a

[16] D. Petrova-Antonova, D.Manova, and S. Ilieva, ‘‘Testingweb service com-
positions: Approaches, methodology and automation,’’ Adv. Sci., Technol.
Eng. Syst. J., vol. 5, no. 1, pp. 159–168, Jan. 2020.

[17] J. Zhang, A. Zhou, Q. Sun, S. Wang, and F. Yang, ‘‘Overview on fault
tolerance strategies of composite service in service computing,’’ J. Wireless
Commun. Mobile Comput., vol. 2018, pp. 1–8, Jun. 2018.

[18] N. Memon, M. S. Vighio, and Z. Hussain, ‘‘Web services failures and
recovery strategies: A review,’’ Indian J. Sci. Technol., vol. 12, no. 43,
pp. 1–6, Nov. 2019.

[19] P. P. W. Chan, M. R. Lyu, and M. Malek, ‘‘ReliableWeb services: Method-
ology, experiment and modeling,’’ in Proc. IEEE Int. Conf. Web Ser-
vices (ICWS), Salt Lake City, UT, USA, Jul. 2007, pp. 679–686, doi:
10.1109/ICWS.2007.151.

[20] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic con-
cepts and taxonomy of dependable and secure computing,’’ IEEE Trans.
Dependable Secure Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[21] R. Angarita, Y. Cardinale, and M. Rukoz, ‘‘Reliable composite web ser-
vices execution: Towards a dynamic recovery decision,’’ Electron. Notes
Theor. Comput. Sci., vol. 302, pp. 5–28, Feb. 2014.

[22] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy, ‘‘Dependability
in the web services architecture,’’ in Architecting Dependable Systems
(Lecture Notes in Computer Science), vol. 2677, R. de Lemos, C. Gacek,
and A. Romanovsky, Eds. Berlin, Germany: Springer, 2003, pp. 90–109.

[23] M. Little, ‘‘Transaction and web services,’’ ACM J. Commun., Assoc.
Comput. Machinery, vol. 46, no. 10, pp. 49–54, 2003.

[24] G. Pardon. Business Transactions, Compensation and the Try-
Cancel/Confirm (TCC) Approach forWeb Services. Accessed: Jan. 5, 2021.
[Online]. Available: https://cdn.ttgtmedia.com/searchWebServices/
downloads/Business_Activities.pdf

[25] Z. Yang and C. Liu, ‘‘Implementing a flexible compensation mech-
anism for business processes in Web service environment,’’ in Proc.
IEEE Int. Conf. Web Services (ICWS), Chicago, IL, USA, Sep. 2006,
pp. 753–760.

[26] M. M. Schäfer and P. W. D. Nejdl, ‘‘An environment for flexible advanced
compensations of web service transactions (ICWS’06),’’ ACM Trans. Web,
vol. 2, no. 2, pp. 1–14, 2008.

[27] Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz, ‘‘Measuring
fuzzy atomicity for composite service execution,’’ in Proc. 2nd Int. Conf.
Open Big Data (OBD), Aug. 2016, pp. 26–71.

[28] L. Zeng, H. Lei, J.-J. Jeng, J.-Y. Chung, and B. Benatallah, ‘‘Policy-driven
exception-management for composite web services,’’ in Proc. 7th IEEE
Int. Conf. E-Commerce Technol. (CEC), Jul. 2005, pp. 355–363.

[29] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic con-
cepts and taxonomy of dependable and secure computing,’’ IEEE Trans.
Dependable Secure Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[30] A. Liu, Q. Li, and M. Xiao, ‘‘A declarative approach to enhancing the
reliability of BPEL processes,’’ in Proc. IEEE Int. Conf. Web Services
(ICWS), Jul. 2007, pp. 272–279.

[31] K. S. M. Chan, J. Bishop, J. Steyn, L. Baresi, and S. Guinea, ‘‘A fault
taxonomy for web service composition,’’ in Proc. Int. Conf. Service-
Oriented Comput. (ICSOC), 2009, pp. 363–375.

[32] R. Hamadi, B. Benatallah, and B. Medjahed, ‘‘Self-adapting recovery
nets for policy-driven exception handling in business processes,’’ Distrib.
Parallel Databases, vol. 23, no. 1, pp. 1–44, Feb. 2008.

[33] S. Vighio. UPPAAL: Travel Reservation Process (UPPAAL
Models). Accessed: Feb. 9, 2021. [Online]. Available:
https://sites.google.com/a/quest.edu.pk/vighio/home/fault-tolerance-
model

[34] S. Wimmer and P. Lammich, ‘‘Verified model checking of timed
automata,’’ in Tools and Algorithms for the Construction and Analysis of
Systems (Lecture Notes in Computer Science), vol. 10805, D. Beyer and
M. Huisman, Eds. Cham, Switzerland: Springer, 2018, pp. 61–78.

[35] A. P. Ravn, J. Srba, and S. Vighio, ‘‘Modelling and verification
of Web services business activity protocol,’’ in Tools and
Algorithms for the Construction and Analysis of Systems (Lecture
Notes in Computer Science), vol. 6605, P. A. Abdulla and
K. R. M. Leino, Eds. Berlin, Germany: Springer-Verlag, 2011,
pp. 357–371.

VOLUME 9, 2021 95479

http://dx.doi.org/10.1109/ICWS.2007.151


N. Memon et al.: Fault Tolerance Framework for Composite Web Services

NIMRA MEMON received the bachelor’s degree
in computer science and the master’s degree in
information technology from the Quaid-e-Awam
University of Engineering, Science and Tech-
nology, Nawabshah, Pakistan. She is currently
pursuing the Ph.D. degree in information technol-
ogy. She is currently working as a Lecturer with
theDepartment of Computer Science, Government
Girls Degree College Nawabshah, Nawabshah.

MUHAMMAD SALEEM VIGHIO received the
M.Sc. and Ph.D. degrees in computer science from
Aalborg University, Denmark, in 2009 and 2012,
respectively. He is currently working as an Asso-
ciate Professor and the Head of the Department
of Computer Science, Quaid-e-Awam University
of Engineering, Science and Technology, Nawab-
shah, Pakistan. Since 2012, he has been produced
several master’s and Ph.D. students. He has been
credited with several national and international

conference papers and journal articles. His research work focuses on the
verification of software systems, including real-time and embedded systems,
and web services protocols. He is a member of the editorial boards of many
research journals. He is also a member of the board of studies of national
universities.

YAR MUHAMMAD (Senior Member, IEEE)
received the master’s degree in computer engi-
neering from Mid Sweden University, Sweden,
in 2009, and the Ph.D. degree in information com-
munication technology from the TallinnUniversity
of Technology, Estonia, in 2015. He has taught
with the University of Tartu, Estonia. He is cur-
rently working as a Senior Lecturer (Assistant Pro-
fessor) with Teesside University, U.K. He received
a Young Investigator Award, which was awarded

by Springer and IFMBE at 16th Nordic-Baltic Conference on Biomedical
Engineering & Medical Physics and Medicinteknikdagarna 2014, Sweden;
and he was runner-up for the Best Paper Award in the 26th ISSC, Ireland,
in 2015.

ZAHID HUSSAIN ABRO received the B.Sc. and
M.Sc. degrees in computer science from the Uni-
versity of Sindh, Jamshoro, Pakistan, and the Ph.D.
degree in computer science from the Graz Univer-
sity of Technology, Austria, in July 2010. More
than 20 M.S. students and three Ph.D. students
have completed their studies under his supervision.
He has organized four national conferences. His
research interests include software engineering,
particularly agile software development methods,

HCI, mobile HCI, user experience, agile user experience, mobile learning,
and web engineering. He was a member of Federation of Pakistan, Chambers
of Commerce and Industry’s Standing Committee on Research and Devel-
opment (Policy) for the years 2017 and 2018 at the national level.

95480 VOLUME 9, 2021


