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Thesis abstract 

Background 

Mitral regurgitation (MR) is a heterogeneous disease requiring accurate 

investigations to guide optimal management. Cardiovascular magnetic resonance 

(CMR) provides reference standard biventricular assessment and highly 

reproducible MR quantification. Exercise-CMR (Ex-CMR) combines CMR with 

physiological stress; further development may allow comprehensive MR 

assessment. Therefore CMR is ideal to assist clinical decision making and assess 

research outcomes.   

Aims 

The thesis aims were to: 1) Develop and validate an Ex-CMR protocol assessing 

biventricular volumes and great vessel flow in healthy volunteers, 2) Evaluate the 

validated Ex-CMR protocol in primary MR patients, 3) Compare cardiac reverse 

remodelling and residual MR post mitral valve repair (MVr) vs replacement (MVR) 

in primary MR patients 4) Assess cardiac reverse remodelling after percutaneous 

mitral valve intervention for primary MR. 

Methods 

1) Free-breathing, respiratory navigated Compressed-SENSE short-axis cines and 

aortic/pulmonary phase contrast magnetic resonance sequences were validated 

against clinical sequences at rest and used during Ex-CMR in 12 healthy 

volunteers, 2) 10 primary MR patients underwent the validated Ex-CMR protocol, 

3) Of 83 moderate-severe primary MR patients, 72 (30 MVr, 22 MVR, 20 controls) 

completed CMR imaging at baseline and 6 months after mitral surgery or 

observation (control group). 4) Of 11 primary MR patients, 10 completed CMR 

imaging at baseline and 6-months after percutaneous intervention. 

Findings 

1) Biventricular volumes and great vessel flow assessment during continuous 

supine Ex-CMR is feasible in healthy volunteers using the Compressed-SENSE 
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Ex-CMR protocol, demonstrating good/excellent intra/inter-observer reproducibility, 

2) The validated Ex-CMR protocol is feasible in asymptomatic primary MR patients 

demonstrating effective forward left ventricular ejection fraction is augmented by 

decreases in MR, 3) MVR results in comparable cardiac reverse remodelling to 

MVr with lower residual quantitated MR and better right ventricular ejection fraction 

(compared with controls) 4) In primary MR, percutaneous valve intervention results 

in MR reduction and positive left-ventricular reverse remodelling. 
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Chapter 1 Introduction 

 

1.1 Mitral Regurgitation: aetiology, investigation and 

management 

 

Mitral regurgitation (MR) is the second commonest valve lesion in Europe after 

aortic stenosis (1) and is defined as the retrograde flow of blood from the left 

ventricle into the left atrium (2). MR occurs due to the dysfunction of one (or more) 

anatomical components of the complex mitral apparatus. As such, anatomical 

understanding and appropriate imaging are required to diagnose the aetiology of 

mitral regurgitation to guide optimal management (3).     

 

1.1.1 Mitral valve anatomy 

The mitral valve anatomy consists of the mitral annulus, anterior and posterior 

valve leaflets which meet at the commissures and are attached to anterolateral and 

posteromedial papillary muscles respectively by chordae tendinae (4). MR can 

occur as the result of dysfunction in any of these anatomical components therefore 

an accurate description and thorough understanding of these components is 

important (3).   

 

1.1.1.1 Mitral annulus 

The mitral annulus is the anatomical junction between the endocardium of the left 

atrium, the valve proper and the left ventricular endocardium and myocardium (5). 

The mitral annulus is divided into anterior and posterior sections and serves as the 

insertion point for the 2 leaflets. The anterior annulus attaches to the fibrous 

trigone, however the posterior annulus is less supported with fibrous tissues, as 
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such the posterior annulus is prone to enlarge with left ventricular (LV) or left atrial 

(LA) dilatation (6). The mitral annulus forms a 3D saddle shape, during diastole the 

annulus moves with the posterior wall of the LV, creating a more circular shape for 

inflow. During systole, when the valve is closed, the annulus reverts back to an 

asymmetrical shape, with the long axis between the commissures and the short 

axis in the antero-posterior direction (5). 

 

1.1.1.2 Leaflets 

The mitral leaflet anatomy is illustrated in Figure 1-1 and has 2 leaflets; the anterior 

(AMVL) and posterior (PMVL) mitral valve leaflets. The AMVL has a semi-circular 

shape and attaches to 2/5 of the annular circumference and as per the Carpentier 

segmental leaflet classification, it is divided into 3 scallops: A1; anterior, A2, middle 

and A3 posterior (7). The PMVL is quadrangular in shape and attaches to 3/5 of 

the annular circumference and is divided into 3 scallops by 2 indentations: P1 the 

anteromedial scallop, P2 the middle scallop and P3 the posteromedial scallop (6). 

Unlike the PMVL that has indentations to demarcate the scallops, the AMVL does 

not, therefore scallops are defined by comparison to the opposing PMVL scallops. 

Identification of the differing scallops is important in describing pathology of the 

valve. In a normally functioning mitral valve the coaptation length of the leaflets is 

often several millimetres in length to ensure competency against high LV end-

systolic pressures (4). 
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Figure 1-1 Anatomy of the mitral valve leaflets  

An original illustration of a closed mitral valve (left) and short axis CMR image of an 
open mitral valve (right) depicting the mitral valve leaflets, anterolateral (AC) and 
posteromedial commissures (PC) and indentations in the posterior leaflet dividing it 
into the anteromedial scallop (P1), middle scallop (P2) and the posteromedial 
scallop (P3) thus allowing recognition of the opposing anterior (A1), middle A2 and 
posterior (A3) scallops of the anterior mitral valve leaflet.  

 

1.1.1.3 Commissures 

The commissures constitute the area where the AMVL and PMVL meet at the 

annular insertion point and are defined as the anterolateral commissure and 

posterolateral commissures. The commissures often overlap with millimetres of 

overlapping tissue between the leaflets (6).  

 

1.1.1.4 Chordae tendinae 

The chordae tendinae originate from the fibrous heads of the papillary muscles and 

are classified as either primary, if they insert into the free margins of the leaflets; 

secondary, if they insert into the body of the leaflets on the ventricular side or 

tertiary/basal if they connect the base of the PMVL and mitral annulus to the 

papillary muscle (4). The chordae tendinae control the positon of the leaflets at 
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end-systole with primary chordae preventing prolapse of the leaflet margins and 

secondary chordae preventing billowing (6). 

 

1.1.1.5 Papillary muscles 

Typically there are two papillary muscles which originate from between the apical 

and middle third of the LV free wall and provide chordae to both leaflets. The 

anterolateral papillary muscle consists of one body and head with a blood supply 

originating often from one or more left coronary branches. The posteromedial 

papillary muscle comprises two or more heads and more commonly receives blood 

supply from a single coronary artery (either the circumflex or right coronary artery 

depending on dominance) and is therefore more prone to injury in the event of 

myocardial infarction (8). As the papillary muscles attach in the LV, the LV can 

therefore directly affect MV anatomy. Changes in LV geometry can therefore result 

in poor coaptation of the MV by affecting papillary muscle position (6, 8). 

 

1.1.2 Classification of MR 

MR is commonly classified by the underlying aetiology and by using Carpentier 

functional classification. Classified by aetiology, MR is either primary/organic, a 

result of intrinsic disease of one or more valve components or can be 

secondary/functional, which is MR occurring as a result of alterations to LV or LA 

geometry (1). Carpentier’s functional classification classifies MR by the effect the 

underlying lesion(s) has upon the motion of the free margin of the leaflet in relation 

to the annular plane (3, 9). 

 

1.1.2.1 Carpentier’s functional classification 

Carpentier’s functional classification is useful to guide optimal repair techniques 

(Figure 1-2). MR can occur in the context of normal leaflet motion (Type I) 

secondary to annular dilatation, clefts, perforations; due to excessive leaflet motion 

(Type II) as a result of chordal rupture or elongation; due to restricted leaflet 
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movement predominantly in diastole (Type IIIa) for example secondary to 

rheumatic disease; or restricted leaflet motion in systole (Type IIIb) which can be 

secondary to ischaemic or non-ischaemic regional or global LV remodelling with 

leaflet tethering (3, 9). The underlying lesions and possible aetiologies attributable 

to different Carpentier functional classifications are displayed in Table 1-1. 

 

 

 

Figure 1-2 Original illustration depicting examples of Carpentier’s functional 
classification.  

Adapted from (3). Type I, normal leaflet motion; Type II, Increased leaflet motion; 
Type IIIa Restricted leaflet motion (diastole); Type IIIb Restricted leaflet motion 
(systole)
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Table 1-1 Carpentier’s functional classification of mitral regurgitation, corresponding lesions and possible aetiologies  

 

Type  Leaflet 
function/dysfunction 

Lesion(s) Aetiology 

I 
Normal Leaflet motion and 
length 

Annular dilation 
Dilated cardiomyopathy 

Atrial dilatation 

Leaflet perforation  Endocarditis 

II 
Excessive leaflet motion 
(leaflet prolapse) 

Chordal elongation/rupture 

Fibroelastic deficiency 

Barlow's disease 

Marfans/ Ehlos Danlos syndrome 
 

Papillary muscle 
elongation/rupture 

Myocardial infarction 

Endocarditis 

Trauma 

IIIa 
Restricted leaflet motion 
(Diastole) 
 

Leaflet calcification Rheumatic heart disease 

Leaflet thickening/retraction Carcinoid heart disease 
R Commissural fusion Radiation 
S 

Chordal 
thickening/fusion/retraction 

Systemic Lupus Erythematosus 
Anti-phospholipid syndrome 
Cardiac amyloidosis 

IIIb 
Restricted leaflet motion 
(Systole)  
 

Left ventricular dilatation Ischaemic  cardiomyopathy 

Chordal tethering Dilated cardiomyopathy 

Papillary muscle displacement   

Adapted from (9, 10)



7 
 

 

1.1.2.2 Classification by Aetiology: Primary MR 

Primary/Organic MR results from intrinsic disease of the mitral valve apparatus. 

Degenerative mitral valve disease is the commonest form, other causes include: 

rheumatic disease, infective endocarditis, drug-induced and MR associated with 

systemic disease (11). 

1.1.2.2.1 Degenerative MR 

Degenerative mitral valve disease constitutes a spectrum of conditions in which 

structural lesions of the mitral valve are caused by connective tissue changes 

preventing normal functioning of the valve. There are two major phenotypes of 

degenerative disease that lead to mitral valve prolapse; Barlow’s disease and 

fibroelastic deficiency (12).    

Barlow’s disease is the abnormal accumulation of mucopolysaccharides leading to 

mitral valve prolapse that occurs more commonly in younger (<60yrs), female 

patients. Pathologically there is myxoid infiltration which destroys the 3 layer leaflet 

architecture (myxomotous degeneration) and demonstrates collagen alterations on 

histological examination (12). Classically there is bi-leaflet thickening and 

redundancy (13), chordae are often thickened, fused or potentially calcified. The 

aetiology is unknown, however familial/genetic cases have been described (14). 

On echocardiography, Barlow’s disease will often show billowing of the body of one 

or more leaflets and prolapse of the margin of one or more leaflets, with the latter 

allowing MR. MR often occurs in mid to late systole, if as a result of chordal 

elongation (12).  

Fibroelastic deficiency is characterised by the loss of mechanical stability as the 

result of abnormalities in the connective tissue structure (15). There is a deficiency 

of fibroelastic tissue rather than an excess that occurs in Barlow’s disease. As a 

result leaflets are thin and the chordae are thin and friable. MR often occurs as a 

result of rupture of the thin, deficient chords and therefore, commonly is the result 

of prolapse of a single scallop (16). Often patients present with a short duration of 

symptoms that have occurred after rupture of thinned chordae. Typically on 
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echocardiography a single prolapsing scallop is seen, most commonly P2. 

Billowing is not seen, annular dilatation is less significant than in Barlow’s disease 

and annular calcification is rare. MR can occur throughout the entirety of systole, 

especially if as a result of chordal rupture (12).      

Degenerative MR can also result from a syndrome of connective tissue disease. 

Marfans syndrome, Ehlos-Danlos syndrome, osteogenesis imperfecta and 

pseudoxanthoma elasticum often create a Barlow-type mitral valve disease. 

Marfans syndrome, like Barlow’s, shows a high myxoid infiltration, but a tendency 

to more elastic fibre alterations (17).     

 

1.1.2.2.2 Rheumatic MR 

MR as a result of rheumatic heart disease is rare in the developed world, but still 

prevalent in developing counties (18). Mitral stenosis is more common in chronic 

rheumatic heart disease, however significant MR can also occur. In active/acute 

rheumatic heart disease, severe MR can occur as a result of annular dilatation, 

chordal elongation and anterior leaflet prolapse (19). Numerous studies 

demonstrate that rheumatic heart disease in young patients predominantly 

demonstrates isolated MR (often first decade of life), whilst mixed disease is more 

prominent in the second decade and isolated mitral stenosis occurs in later life (3rd 

decade onward) (20-22). It is therefore theorised that patients develop a varying 

degree of MR in the acute phase that remains and patients then develop mitral 

stenosis due to commissural fusion, leaflet thickening, and subvalvular disease. 

Similarly, it is theorised that pure mitral stenosis phenotypes of rheumatic heart 

disease potentially result from a milder carditis and thus minimal MR (23).     

1.1.2.2.3 Infective endocarditis 

Mitral valve infective endocarditis (IE) is the infection of a portion or the entirety of 

one or both mitral valve leaflets that can occur by a variety of pathogens including 

(but not limited to) bacterial, viral and fungal. Infective endocarditis is one of 

commonest causes of acute mitral regurgitation in the developed world (24). Mitral 

valve endocarditis can result in leaflet perforation, chordal rupture and even 
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complete leaflet destruction, therefore the resultant MR can vary in appearance 

and severity. Additional findings on echocardiography can include the presence of 

a vegetation, abscess or pseudoaneurysm and new dehiscence of a prosthetic 

valve, all of which are major criteria in the diagnosis of IE (25).    

 

1.1.2.3 Classification by Aetiology: Secondary MR 

In secondary MR the mitral valve is structurally normal, however its function is 

impaired as the result of either distorted LV geometry, most commonly by dilated or 

ischaemic cardiomyopathy, or as a result of annular dilatation caused by LA 

dilatation, most commonly in patients with chronic atrial fibrillation (AF) (1).  

1.1.2.3.1 Ischaemic MR 

The mitral valve is reliant on the papillary muscles for correct function (6). The 

anterolateral papillary muscle is supplied by the circumflex artery with secondary 

supply from the left anterior descending artery. The posteromedial papillary 

muscles coronary supply is variable, generally from the circumflex in a left 

dominant system and from the right coronary artery in a right dominant system 

(26). Ischaemia or infarction in the territory of the supplying arteries can therefore 

result in papillary muscle dysfunction and therefore MR of an otherwise structurally 

normal mitral valve. Often with a single coronary blood supply, the posteromedial 

papillary muscle is more susceptible to an ischaemic insult. In rare cases the 

papillary muscle can be directly affected by an infarct causing complete or partial 

papillary muscle rupture, often resulting in acute torrential MR (27). However, the 

majority of ischaemic MR cases are a result of papillary muscle dysfunction caused 

either by localised regional wall motion abnormalities adjacent to the papillary 

muscle or by papillary muscle displacement, which provokes increased tethering of 

the mitral valve leaflets (28). Ischaemic MR predominantly occurs post myocardial 

infarction (MI), one study demonstrating mild MR in 38% and moderate/severe MR 

in 12% within 30 days post infarction (29). It can occur as part of acute ischaemia 

creating intermittent ‘flash’ pulmonary oedema, however MR from intermittent 

single vessel occlusion is often mild without an underlying ventricular abnormality 

(30).     
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1.1.2.3.2 Functional MR 

Functional MR is the result of an imbalance between leaflet tethering forces and 

decreased closing forces (31). Increased leaflet tethering is principally caused by 

adverse left ventricular remodelling resulting in apical shift of the papillary muscle 

thus causing leaflet tethering and abnormal coaptation (32). Leaflet remodelling, in 

terms of increased leaflet thickness and length, is a common response, however 

insufficient leaflet remodelling, relative to the mitral annular and LV changes, is 

independently associated with the severity of functional MR (33). Decreased mitral 

valve closing forces can cause functional MR and occur due to reduced LV 

contractility and/or synchronicity (31). Functional MR is common in dilated 

cardiomyopathy (DCM) and the severity of functional MR is strongly associated 

with outcomes of heart failure (HF) patients independent of LV function (34). 

Recently, the concept of proportionate and disproportionate functional MR in 

patients with chronic HF with reduced ejection fraction has been described. 

Proportionate functional MR is where there is a linear relationship between the LV 

end-diastolic volume (LVEDV) and effective orifice area of the mitral valve. These 

patients respond well to treatments that reverse LV remodelling such as 

neurohormonal agonists and LV assist devices. Disproportionate MR occurs when 

ventricular dyssynchrony causes unequal contraction of the papillary muscles and 

thus functional MR greater than expected for the patient’s LVEDV. HF with reduced 

ejection fraction patients with disproportionate MR respond well to treatments of 

any underlying dyssynchrony (e.g. cardiac resynchronisation) and/or the mitral 

valve leaflets (e.g. transcather mitral valve repair) (35). 

1.1.2.3.3 Atrial Functional MR   

Atrial functional MR occurs as the result of isolated mitral annular dilatation and 

inadequate leaflet adaptation despite typically normal LV size and function. Atrial 

functional MR typically occurs in the context of AF and/or HF with preserved 

ejection fraction with severe LA dilatation (31).  
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1.1.3 Imaging Mitral Regurgitation 

The comprehensive evaluation of any valve disease requires the accurate 

assessment of the valve morphology, severity of the specific valve lesion and 

assessment of the resultant effects on adjacent cardiac structures. For the 

assessment of MR, evaluation of valve anatomy, regurgitation severity, 

biventricular dimensions/function, left atrial size and any resultant pulmonary 

hypertension can help to guide optimal patient management (36). Transthoracic 

echocardiography (TTE) is the advised first line investigation for MR assessment 

(1, 37), with transoesophageal echocardiography (TOE) a common second line 

modality in borderline cases or where TTE image quality is poor. Cardiovascular 

magnetic resonance (CMR) has developed as a useful imaging modality to be 

used as an adjunct to echocardiography, especially in borderline cases or those 

with suboptimal echocardiographic windows (38).  

1.1.3.1 Transthoracic Echocardiography 

TTE is the recommended first line investigation in mitral regurgitation assessment, 

as a result of it being a widespread, cheap and portable modality (1, 39). The 

European Society of Cardiology (ESC) and American Heart Association (AHA) 

guidelines both advise that MR is assessed using an integrated approach. This 

involves a combined assessment using semi-quantitative, quantitative and 

qualitative measurements to determine MR severity and various views to assess 

morphology (1, 39, 40). These assessments are to define MR as mild, moderate or 

severe. Additionally, MR can be defined as mild (1+), moderate (2+), moderate-

severe (3+) and severe (4+). Table 1-2 demonstrates the severity definitions 

assessed by various parameters as per the American Society of Echocardiography 

(ASE) guidelines (40). Below each assessment method will be described in-depth.  



 
 

1
2
 

Table 1-2 Integrated echocardiographic severity grading criteria as per the American Society of Echocardiography 

  
Mitral regurgitation severity 

Approach Parameter Mild Moderate Severe 

Structural 
Mitral valve 
morphology 

No or mild leaflet 
abnormality 

Moderate leaflet abnormality 
or moderate tenting 

Severe valve lesions (primary: 
flail leaflet, ruptured papillary 

muscle, severe retraction, large 
perforation; secondary: severe 
tenting, poor leaflet coaptation) 

LV/LA size Usually normal Normal or mildly dilated Dilated 

 
Qualitative 

Colour flow jet 
area 

Small, central, narrow, 
often 

Variable 
Large central jet (>50% of LA) or 

eccentric wall-impinging jet of 
variable size 

Flow convergence 
Not visible, transient 

or small 
Intermediate in size and 

duration 
Large throughout systole 

CW Doppler jet Faint/partial/parabolic Dense but partial or parabolic 
Holosystolic/dense/ 

Triangular 

Semi-quantitative 

VC width (cm) <0.3 Intermediate ≥0.7 (>0.8 for biplane) 

Pulmonary vein 
flow 

Systolic dominance 
(may be blunted in LV 

dysfunction or AF) 
Normal or systolic blunting 

Minimal to no systolic flow/ 
systolic flow reversal 

Mitral inflow A-wave dominant Variable 
E-wave dominant (>1.2 m/sec) 

 

Quantitative 

EROA, 
2D PISA (cm2) 

<0.20 0.20-0.29 0.30-0.39 
≥0.40 

(may be lower in secondary MR 
with elliptical ROA) 

Rvol (ml) <30 30-44 45-59 ≥60 

RF (%) <30 30-39 40-49 ≥50 

Adapted from the ASE guidelines (40). Abbreviations: 2D-PISA, 2-dimensional proximal isovelocity surface area; AF, atrial 
fibrillation; CW, continuous-wave; EROA, effective regurgitant orifice area; LV, left ventricle; LA, left atria; MR, mitral 
regurgitation; RF, regurgitant fraction; RVol, regurgitant volume; VC, vena contracta
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1.1.3.1.1 Qualitative assessment 

 

Morphology assessment 

TTE is the mainstay of assessing morphology of the mitral valve to assess 

underlying aetiology via a 2D approach (41). 3D-TTE can assist in identifying the 

location of valvular lesions, but the current lower spatial and temporal resolution of 

3D-TTE is a limitation when assessing valvular structure (39). In the pre-operative 

setting, if valve morphology is unclear from TTE, then further assessment via TOE 

may be required (41).    

 

Colour flow Doppler 

Visual assessment of the colour flow Doppler jet can give pointers towards the 

severity of MR, but should rarely be used in isolation to define severity. The colour 

flow jet area can be used to exclude MR, but is poor at defining severity as it can 

vary significantly dependant on afterload conditions such as blood pressure (BP) 

and the regurgitant jet eccentricity (42). Via a visual qualitative assessment, central 

jets are prone to overestimation, due to blood pool entrainment in the LA, and 

eccentric jets to underestimation due to the Coanda effect, whereby eccentric jets 

impinge upon the LA wall and follow parallel to the line of the wall, thereby 

decreasing the visual impression of the jet severity (43). Therefore any jet other 

than a small central MR jet, should be further assessed semi-quantitatively via the 

flow convergence/ proximal isovelocity surface area (PISA) and vena contracta 

methods (38). 

      

Continuous wave Doppler intensity 

The density and contour of the MR continuous wave (CW) Doppler trace can be 

useful in determining MR severity with a holosystolic dense and triangular shaped 

CW Doppler trace consistent with severe MR and a faint or partial Doppler trace 
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more common with mild MR (40). However, the technique has several limitations. 

As with all Doppler measurements it is highly reliant upon the Doppler alignment 

with the jet. This can create inaccuracies, for example, a CW Doppler trace poorly 

aligned to an eccentric jet could appear incorrectly less severe. The descriptors for 

moderate MR rely upon the absence of either mild or severe descriptors rather 

than having specific criteria (38). Given the described limitations of qualitative 

methods of assessing MR by echocardiography quantitative and semi-quantitative 

methods have developed.  

 

1.1.3.1.2 Semi-quantitative assessment 

 

Vena contracta 

The vena contracta (VC) is the narrowest portion of regurgitant flow that occurs 

directly downstream of the regurgitant orifice. The VC width is therefore used as a 

measure of the effective regurgitant orifice and has become an important TTE 

assessment for MR as it correlates well with quantitative Doppler techniques in 

both central and eccentric jets (44). Preferably, in MR, the VC should be measured 

in the parasternal long axis view. A VC width of <0.3cm denotes mild MR and 

≥0.7cm severe MR. However, there is significant overlap of intermediate values, 

therefore the use of an additional assessment, such as PISA, is advised in such 

instances. Limitations with this method arise in the underestimation of MR severity 

when multiple jets are present and errors that can occur in jets arising from a non-

circular orifice (40). Additionally, as the measurement being made is small with 

only ≥0.7cm measurement required for severe MR, then slight errors can result in 

severity misclassification (38).  

 

Pulsed wave Doppler measures 

Pulsed wave (PW) Doppler can provide additional semi-quantitative assessment 

(Table 1-2). For example, on mitral inflow assessment by PW Doppler, an E-wave 

velocity of ≥1.2m/s is suggestive of severe MR, whilst a dominant A-wave makes 
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severe MR very unlikely. Additionally, the presence of reverse systolic flow in the 

pulmonary veins, using PW Doppler, is supportive of severe MR (40)    

 

1.1.3.1.3 Quantitative assessment 

Several Doppler techniques exist to perform quantitative assessment of MR by 

echocardiography and derive the mitral regurgitant volume (MR-Rvol), regurgitant 

fraction (MR-RF) and effective regurgitant orifice area (EROA), which are 

parameters indicative of MR severity (40). MR-Rvol is the blood volume that 

regurgitates with each heart beat (ml/beat) and a measure of absolute volume 

overload. MR-RF is the percentage of the LV stroke volume (LVSV) that 

regurgitates back through the mitral valve with each beat. EROA is the mean area 

of the systolic regurgitant orifice (38). The echocardiographic Doppler techniques 

used to calculate these parameters are: the quantitative volumetric method, the 

pulsed Doppler method and the flow convergence (PISA) method (38). 

 

Quantitative volumetric method 

The quantitative volumetric method relies on the fact that blood is incompressible 

and the conversion of mass principle. Essentially, blood leaving the left ventricle 

that does not leave through the aorta, in the context of no intracardiac shunts, must 

leave back through the mitral valve (MR-Rvol).  The aortic stroke volume (SV) and 

LVSV must be measured to quantitate MR by this method. The aortic SV is 

calculated as shown in Equation 1 from measurements of the LVOT diameter using 

2D echo and LVOT velocity time integral (VTI) using PW Doppler. LVSV is 

calculated from LVEDV and LV end-systolic volume (LVESV), measured from 2D 

echocardiographic measurements. As per Equation 2, MR-Rvol is calculated by 

minusing aortic SV from LVSV, MR-RF calculated as the percentage of LVSV 

regurgitating back through the mitral valve and EROA calculated from dividing the 

MR-Rvol by the VTI of the MR jet. The pitfall of this technique can occur if LV 

volume is underestimated, often due to foreshortening or poor acoustic windows 
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(40). This can result in underestimating the MR severity, but can be improved with 

the use of contrast or 3D-echocardiography (45, 46). 

 

Equation 1 – Calculating valve stroke volume with annular and PW Doppler 

measurements 

𝑉𝑎𝑙𝑣𝑒𝐶𝑆𝐴 = 0.785 𝑥 𝑉𝑎𝑙𝑣𝑒 𝑎𝑛𝑛𝑢𝑙𝑢𝑠 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟2 

𝑉𝑎𝑙𝑣𝑒 𝑆𝑉 = 𝑉𝑎𝑙𝑣𝑒𝐶𝑆𝐴 𝑥 𝑉𝑎𝑙𝑣𝑒𝑉𝑇𝐼  

 

 

Equation 2 – Echocardiographic MR quantification (volumetric method) 

𝐿𝑉𝑆𝑉 = 𝐿𝑉𝐸𝐷𝑉 − 𝐿𝑉𝐸𝑆𝑉  

𝑀𝑅𝑅𝑣𝑜𝑙 = 𝐿𝑉𝑆𝑉 −  𝐴𝑜𝑟𝑡𝑖𝑐𝑆𝑉  

𝑀𝑅𝑅𝐹 =  
𝑀𝑅𝑅𝑣𝑜𝑙 

𝐿𝑉𝑆𝑉
 𝑥 100%  

𝐸𝑅𝑂𝐴 =  
𝑀𝑅𝑅𝑣𝑜𝑙

𝑀𝑅𝑉𝑇𝐼
  

 

Pulsed Doppler method 

Similar to the quantitative volumetric method the pulsed Doppler method also 

utilises the conversion of mass principle assessing the blood flow leaving the left 

ventricle, however, it utilises mitral inflow rather than LVSV, assuming that the 

volume of blood that enters the LV (mitral inflow/ mitral stroke volume) that doesn’t 

leave via the aorta must, in the context of no intra-cardiac shunts, leak back 

through the mitral valve (MR-Rvol). The method uses PW Doppler measurements 

at the aortic and mitral annulus, as the annulus is deemed to have the least 

anatomical variability of the valve apparatus. Cross sectional areas (CSA) are 

calculated from measurements of the valve annular diameters and valve stroke 

volume measured from CSA and VTI measured by PW Doppler as shown in 

Equation 1. MR-Rvol, MR-RF and EROA can therefore be derived from the mitral 

and aortic stroke volumes and mitral regurgitation VTI as shown in  
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Equation 3 (40). A limitation of the technique can arise if inaccurate measurements 

of the valve annular diameters occur, as slight errors in measurement can lead to 

significant errors (38). 

 

Equation 3 – Echocardiographic MR quantification (Pulsed Doppler method) 

𝑀𝑅𝑅𝑣𝑜𝑙  =  𝑀𝑖𝑡𝑟𝑎𝑙 𝑆𝑉 −  𝐴𝑜𝑟𝑡𝑖𝑐 𝑆𝑉  

𝑀𝑅𝑅𝐹 =
𝑀𝑅𝑅𝑣𝑜𝑙

𝑀𝑖𝑡𝑟𝑎𝑙𝑆𝑉
 𝑥 100% 

𝐸𝑅𝑂𝐴 =  
𝑀𝑅𝑅𝑣𝑜𝑙

𝑀𝑅𝑉𝑇𝐼
 

 

Flow convergence (PISA) method 

Also known as the PISA method, the method assesses flow convergence that 

occurs proximal to the regurgitant orifice to quantitate MR, as flow through the 

convergence zone is assumed to be equivalent to flow through the regurgitant 

orifice (38). Flow convergence commonly forms hemispheric shells of decreasing 

area and increasing velocity (47) that can be visualised with colour flow Doppler. 

By reducing the Nyquist limit to 15-40cm/s and imaging in the apical 4-chamber 

view (or parasternal view for AMVL prolapse) a PISA radius can be measured (38). 

The PISA radius is measured from the VC to the colour Doppler aliasing threshold 

(seen as a demarcated colour change from yellow to blue, when jet direction is 

away from the transducer); this is used to calculate the area of the flow 

convergence hemisphere, which when multiplied by the aliasing velocity can be 

used to calculate the regurgitant flow (40). Regurgitant flow can then be used in 

combination with CW Doppler measurements of the regurgitant MR jet to calculate 

the EROA and MR-Rvol (38). The calculations required to perform the flow 

convergence/PISA MR quantification method are shown in Equation 4.  
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Equation 4 – Echocardiographic MR Quantification (flow convergence 

method) 

𝑅𝑒𝑔𝑢𝑟𝑔𝑖𝑡𝑎𝑛𝑡 𝑓𝑙𝑜𝑤 = 2𝜋𝑟2 𝑥 𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  

𝐸𝑅𝑂𝐴 =  
𝑅𝑒𝑔𝑢𝑟𝑔𝑖𝑡𝑎𝑛𝑡 𝑓𝑙𝑜𝑤

 𝑀𝑅𝑝𝑒𝑎𝑘 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
  

𝑀𝑅𝑅𝑣𝑜𝑙 =  𝐸𝑅𝑂𝐴 𝑥 𝑀𝑅𝑉𝑇𝐼 

 

The flow convergence/PISA method makes several geometric assumptions which 

can result in errors in MR quantification if not true and therefore has some 

limitations. The method assumes a hemispheric flow convergence into a circular 

orifice that occurs at a planar angle. However, this is not always the case, 

especially in secondary MR where the regurgitant orifice can be elongated by LV 

dilatation and therefore be crescent shaped, in which the method can result in 

underestimation of quantitated MR (40). Additionally, given the PISA measurement 

calculates an instant peak flow rate it may not equal the average orifice area 

throughout the entirety of the regurgitation. To best represent an average EROA 

the PISA measurement should be performed at the time of peak regurgitant 

velocity. However, as MR jets can be dynamic, the method can result in 

underestimation in bimodal regurgitant flow, such as can occur in secondary MR or 

overestimation with late-systolic regurgitant flow, which can occur in primary MR 

(40). 

 

1.1.3.2 Transoesophageal Echocardiography (TOE) 

TOE has many benefits for assessing MR and is useful when TTE has been 

technically difficult or inconclusive, for planning MV surgery or percutaneous 

procedures and for intra-operative use. In general TOE is more accurate at 

defining MV pathology (40) and therefore useful pre-operatively to determine the 

likelihood of a successful repair. This is an important assessment given the 

variable outcomes that the underlying aetiology has on the durability/success of 

MV repair (48) and can be a determinant factor in advising early surgical 
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intervention as per international guidelines (1, 39). TOE uses many of the same 

methods to quantify MR as TTE, but the superior image quality likely makes 

measurements more accurate (40). However, due to its invasive nature, it is not 

ideal for sequential assessment (41) and given sedation is often required or 

general anaesthetic during intra-operative TOE; this can lower blood pressure, 

therefore reducing afterload, which can reduce MR severity (49).    

 

1.1.3.3 Cardiovascular Magnetic Resonance 

CMR is able to measure MR severity and the resultant effect on biventricular 

volumetrics and function accurately. Using balanced steady state free precision 

(bSSFP) sequences, blood pool has natural contrast to myocardium without need 

for intravenous contrast (50) and CMR allows imaging in any plane, without 

restriction due to body habitus and does not use ionizing radiation. As such, CMR 

has become the reference standard assessment for biventricular volume 

assessment (51, 52). Additionally, CMR is useful to assess mitral valve 

morphology in cases where echocardiography has been suboptimal (41). In 

addition to standard 2 and 4-chamber cine imaging, sequences can be planned to 

transect the mitral valve at the coaptation line of individual scallops to accurately 

identify the site of pathology (53). However, the lower spatial and temporal 

resolution of CMR, compared with echocardiography, can result in suboptimal 

assessment of subvalvular apparatus (e.g. ruptured chordae/flail leaflet) or 

vegetations (54).  

CMR can be used to perform qualitative (visual), semi-quantitative and quantitative 

assessment of MR severity. Qualitative assessment involves visualising the MR 

regurgitant jet in the left atrium on cine imaging, which is often visible due to the 

high velocity jet causing signal loss/spin dephasing (55). However, caution must be 

used with visual assessment as jet appearance can be significantly impacted by 

CMR parameters such as sequences used and echo time (56), therefore 

quantitative methods are preferred. Carefully planned cine imaging allows 

planimetry of the anatomical regurgitant orifice area, but it can be difficult to 

accurately align imaging planes and can resultantly be time consuming (38, 57). 
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CMR benefits from accurate quantification of MR, which can be done via indirect or 

direct methods, which shall be presented including their pros/cons.  

 

1.1.3.3.1 Direct MR quantification by CMR     

Direct MR quantification by CMR, involves CMR imaging of the MR jet using Phase 

contrast magnetic resonance (PCMR) sequences planned in line to the MR jet to 

quantitate regurgitant volume. Maximal velocity encoding must be set high to avoid 

aliasing. The use of only one measurement (rather than a combination of two with 

indirect MR quantification methods) is an advantage of the method. However as 

the PCMR imaging must be planned in line to the MR jet, eccentric jets or multiple 

jets can result in inaccuracies by this method and dynamic motion of the mitral 

annulus during ventricular systole can make the PCMR sequences technically 

difficult to plan and apply (58).     

 

1.1.3.3.2 Indirect MR quantification by CMR 

Indirect MR quantification involves the combination of two separate measurements 

to quantitate MR. The main methods of indirect MR quantification by CMR are:  

1. Using LV and aortic stroke volumes (LVSV-AoSV method) 

2. Ventricular stroke volume comparison (LVSV-RVSV method) 

3. Using mitral inflow and aortic forward flow (Mitral annular method) 

 

LV and aortic stroke volume method (LVSV-AoSV method) 

The LVSV-AoSV method works via the conversion of mass principle and assumes 

that no intra-cardiac shunts are present involving the left ventricle. The method 

assumes that blood pumped by the left ventricle, that doesn’t leave through the 

aorta, must leak back through the mitral valve (MR-Rvol). LVSV are derived from 

short axis cine imaging as the calculation of LVEDV-LVESV. Aortic SV are 

acquired from aortic PCMR imaging. MR-Rvol is calculated as LVSV-aortic SV ( 

Equation 5). An example of the calculation is presented in Figure 1-3. 
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Equation 5 – CMR indirect MR quanfication (LVSV-AoSV method)  

𝑀𝑅𝑅𝑣𝑜𝑙 = 𝐿𝑉𝑆𝑉 − 𝐴𝑜𝑟𝑡𝑖𝑐𝑆𝑉   

 

 

 

Figure 1-3 CMR MR quantification by the LV-Aortic stroke volume method 

Short axis cine stack is contoured from base to apex at end-diastole (A) and end-
systole (B) to provide left ventricular end-diastolic and end-systolic volumes 
respectively. The ascending aorta is contoured in every phase on the aortic phase 
contrast magnetic resonance flow imaging (C) to provide the aortic flow loop (D) 
and total aortic forward flow volume. MR regurgitant volume and fraction are 
calculated from the provided measurements (E). 
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The LVSV-AoSV indirect CMR method of MR quantification is often preferred due 

to numerous advantages. The method does not rely on geometric assumptions, 

unlike echocardiographic methods (38, 59, 60), and is not adversely affected by 

the number or eccentricity of the MR jet or the presence of aortic, pulmonary or 

tricuspid regurgitation unlike some CMR quantification methods (58). The method 

has demonstrated superior diagnostic accuracy over the CMR mitral annular 

method in detecting significant MR in mitral valve prolapse (61). Additionally the 

method has demonstrated superiority over TTE with superior reproducibility (59, 

60, 62, 63) and prognostic assessment of MR (63, 64). However, the method relies 

on accurate LV volume analysis, for which there are two accepted contouring 

methods which differ on whether LV trabeculation and papillary muscles are 

included as part of the blood pool or not. Including LV trabeculation and papillary 

muscles as part of the blood pool results in better reproducibility but results in 

higher LVSV and thus higher quantitated MR-Rvol, this must be taken into account 

when interpreting results and performing subsequent CMR to ensure the same 

method is used (58).  

 

Ventricular stroke volume comparison method (LVSV-RVSV method) 

In the context of no intracardiac shunts or valve disease the stroke volumes from 

the left and right ventricle should be equivalent. Therefore using the conversion of 

mass principle and in the context of no intracardiac shunts or other valve disease 

then LVSV and right ventricular stroke volume (RVSV) can be used to calculate 

MR-Rvol by Equation 6 (58). 

 

Equation 6 – CMR indirect MR quantification by ventricular stroke volume 

method (LVSV-RVSV method) 

𝑀𝑅𝑅𝑣𝑜𝑙 = 𝐿𝑉𝑆𝑉 − 𝑅𝑉𝑆𝑉 

 

The advantage of the ventricular stroke volume method is it can be calculated from 

short axis cine imaging without the need for PCMR sequences and therefore the 
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acquisition is time efficient. However, significant disadvantages make it less utilised 

and robust than the LVSV-AoSV method. The method is inaccurate in the context 

of intra-cardiac shunts or other valve disease. The significant prevalence of 

tricuspid regurgitation in the MR population can therefore limit its application (65, 

66). Additionally, as described above in presentation of the LVSV-AoSV method, 

the same caveats regarding methods of LVSV calculation apply; indeed, the issue 

is escalated in additionally requiring accurate contouring of right ventricular (RV) 

volumes, which often demonstrate greater variability than LV volumes (58). 

 

Mitral inflow and aortic outflow method (Mitral annular method) 

Also known as the mitral annular flow method, PCMR sequences are used to 

calculate mitral inflow and aortic stroke volume to derive MR-Rvol, as shown in 

Equation 7. Mitral inflow is assessed with PCMR imaging planned at the midpoint 

of the mitral leaflets whilst open in diastole. The mitral inflow (diastolic component) 

is measured and the mitral regurgitation (systolic component) is ignored (58). 

Aortic stroke volume is derived from PCMR imaging as previously described.  

 

Equation 7 CMR indirect MR quantification (mitral annular method) 

𝑀𝑅𝑅𝑣𝑜𝑙 = 𝑀𝑖𝑡𝑟𝑎𝑙 𝑖𝑛𝑓𝑙𝑜𝑤 − 𝐴𝑜𝑟𝑡𝑖𝑐𝑆𝑉 

 

The mitral annular method suffers from a similar issue as the direct method of MR 

quantification by CMR, as regards difficulties that can arise in accurately planning 

and performing PCMR imaging on a mitral annulus that is often highly mobile 

throughout the cardiac cycle (58).   
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Optimal CMR quantification method 

As described, the direct and indirect CMR methods to quantify MR have varying 

pros and cons. Studies comparing reproducibility between methods provide 

conflicting results. The LVSV-AoSV method has demonstrated superior intra/inter-

observer reproducibility to the LVSV-RVSV method in several studies (60, 67) and 

over the mitral annular method in a study by Le Goffic et al (61). Conversely, Polte 

et al studied reproducibility of all indirect methods finding that the mitral annular 

method had superior inter-observer reproducibility, followed by the LVSV-AoSV 

method with the LVSV-RVSV method the worst with Coefficient of Variance (CV) of 

10%, 14% and 18% respectively. Intra-observer variability was similar between the 

LVSV-AoSV and mitral annular methods, but worse with the LVSV-RVSV method 

with CV of 5%, 5% and 7% respectively. The results were driven by greater inter-

observer variability on contouring the ventricles than PCMR flow imaging (68). 

Therefore no technique has emerged as clearly the most reproducible (58). 

However, more studies demonstrate the LVSV-AoSV method as the most 

reproducible (60, 61, 67) and it has been used in multiple studies to show superior 

reproducibility (59, 60, 62, 63) and prognostication compared to TTE (63, 64) and 

as such is the recommended MR quantification technique by the Society of 

Cardiovascular Magnetic Resonance (SCMR) (69).  

 

1.1.3.3.3 CMR vs echocardiography in the assessment of MR 

Several studies have compared CMR and echocardiographic assessment of MR 

severity, with the majority demonstrating moderate agreement between the 

modalities (59, 62, 63, 70, 71). The majority of comparative studies demonstrate 

superior reproducibility of MR quantification by CMR assessment (59, 60, 62, 63).  

In numerous studies, TTE overestimates MR severity compared to CMR (59, 63, 

64, 71-73), of which several studies demonstrate superior prognostic assessment 

with CMR, suggesting it is more accurate (63, 64).  

Myerson et al performed baseline CMR in 109 asymptomatic patients with 

moderate or severe primary MR on TTE and observed for up to 8 years (mean, 

2.5±1.9 years) for symptom development or other indications for surgery. TTE 
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assessment was performed by integrated qualitative and quantitative assessment 

including assessment of EROA by the PISA method when feasible. CMR 

quantification of MR was by the LVSV-AoSV method. The study suggested a cut-

off of MR-Rvol of >55ml or MR-RF of >40% as predicting those that progressed to 

symptoms or other indications for surgery within 5 years. 91% of patients remained 

free from surgery with an MR-Rvol ≤ 55ml reducing to 21% in those with MR-Rvol 

> 55ml (sensitivity 72%, specificity 87%). At 5 years patients with a MR-RF of 

≤40%, 41-50% and >50% demonstrated surgical free survival in 89%, 59% and 

16% respectively. In comparison, TTE EROA was less discriminatory; an EROA 

<0.4 cm2 predicted surgery free survival in 86% decreasing to 64% with EROA ≥ 

0.40cm2 (64). 

Penicka et al performed baseline CMR in 258 asymptomatic patients with at least 

moderate primary MR and preserved left ventricular ejection fraction (LVEF) 

(>60%) on TTE. Patients underwent combined TTE and TOE assessment with a 

CMR performed within 24hours. MR was assessed by TTE and TOE using an 

integrative approach and MR-Rvol was determined by an average value from PISA 

derived and Doppler volumetric methods. MR was quantified by CMR using the 

LVSV-AoSV method with aortic PCMR acquisition 2-3cm above the aortic valve. 

Severity of MR was classified as moderate or severe using ASE definitions (Table 

1-2). Mean CMR derived MR-Rvol was 17ml smaller than echocardiography 

derived. 76% of grading into either moderate or severe MR was concordant 

between CMR and echocardiography. In the discordant cases, the majority 

occurred in patients with multiple or late systolic jets, which showed poor 

concordance with CMR derived MR-Rvol (К=0.2), whilst patients with holosystolic 

central jets showed very good concordance (К=0.9) which decreased to moderate 

concordance in those with eccentric jets (К=0.53). CMR derived MR-Rvol 

demonstrated the best area under the curve (AUC) in determining mortality (0.72) 

and in combination with need for mitral surgery (0.83). The study suggested a 

CMR quantitated MR-Rvol cut off of ≥50ml best able to predict adverse outcomes 

(all-cause mortality or progression to mitral surgery) during a median follow up of 5-

years (63). 
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LV remodelling post-surgery for primary MR correlates more strongly with MR 

quantitated by CMR rather than TTE. Uretsky et al prospectively observed 103 

patients with primary MR on TTE and performed baseline CMR. 38 patients 

subsequently underwent mitral surgery of which 26 had repeat CMR after 5-7 

months. MR was assessed by integrative approach as per ASE guidelines with MR 

quantitated by the PISA method. MR was quantitated by CMR using the LVSV-

AoSV method. MR severity correlation between CMR and TTE was modest overall 

(r=0.6), but poor in the cohort sent for surgery (r=0.4). Post-surgical LV remodelling 

correlated strongly with MR severity assessed by CMR (r=0.85), however there 

was no correlation between LV remodelling and echo defined MR severity (r=0.32). 

Significantly, only 32% of patients referred for surgery with severe MR, based upon 

echocardiographic assessment, had severe MR on CMR assessment (59). This 

finding was replicated in a recently published study in which 63 patients underwent 

CMR pre and post mitral valve ‘correction’. LV reverse remodelling (change in 

LVEDV) correlated with baseline MR-Rvol (r=0.78) when assessed by CMR, 

however only 37% of patients had severe MR on CMR assessment, despite 

significant MR on TTE; indeed 13 patients (21%) had only mild MR on CMR. This 

led the authors to advise that CMR assessment of MR severity should be strongly 

considered in all patients prior to mitral valve correction/surgery (72).  

Therefore, current studies comparing CMR vs echocardiographic assessment of 

MR suggest CMR MR quantification is more accurate (59, 72), more reproducible 

(59, 60, 62, 63), has superior prognostic value (63, 64) and that TTE may 

overestimate MR severity (59, 72). However, a few caveats exist with direct 

comparisons between TTE and CMR. CMR MR quantification using PCMR can be 

prone to background flow offset errors, which can make flow measurements 

inaccurate (74). This can be reduced by scanning the region of interest at the iso-

centre of the MRI scanner, as this minimizes inhomogeneities in the magnetic field 

(75). Studies solely utilising the PISA method to quantitate MR by TTE may do TTE 

a disservice, as although it is the most utilised method (1), it has significant 

disadvantages in the context of eccentric jets, multiple jets or jets with a non-

circular flow (76, 77). However, as demonstrated by Penicka et al, even when 

using combined TTE/TOE assessment and averaging two separate 
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echocardiographic MR quantification methods, CMR demonstrated superior 

prognostic ability (63). Additionally, current CMR vs echocardiography comparative 

prognostic studies did not utilise 3D-TTE, which has shown superior accuracy of 

MR quantification to 2D-TTE (76). Therefore, studies assessing prognostic 

outcomes of 3D-TTE vs CMR defined MR severity are warranted, but current 

evidence places CMR MR quantification as the reference standard. 

  

1.1.3.3.4 CMR grading of MR severity 

The severity grading thresholds of MR by CMR assessment are less clearly 

defined than echocardiography, with differing recommendations from individual 

research studies and international guidelines. Gelfand et al advises the severity 

grading as demonstrated in  

 

Table 1-3, based upon a CMR study performed in 83 patients with MR, in which 

MR was quantified by the LVSV-AoSV method and thresholds developed to 

optimise correlation with severity on TTE (70). In 2017, the American Society of 

Echocardiography (ASE) and Society of Cardiovascular Magnetic Resonance 

(SCMR) collaboratively advised that due to the paucity of data, CMR should use 

the same severity thresholds of MR-Rvol/MR-RF as echocardiography as 

previously shown in Table 1-2 (40). However as described in chapter 1.1.3.3.3, 

TTE can overestimate MR compared with CMR and data from observational 

studies suggest lower CMR quantified MR thresholds in predicting adverse 

outcomes, with Myerson et al suggesting an MR-Rvol of 55ml and Penicka et al 

suggesting 50ml as a threshold of prognostic significance (63, 64). Therefore it is 

likely that CMR MR severity thresholds are lower than TTE. Larger studies 

spanning the range of MR severity guided by prognostic outcomes are required to 

better define CMR MR severity thresholds. However, a recently published 

consensus statement from international experts advises altered severity cut offs ( 

Table 1-4), based upon all available up to date evidence from comparative 

echocardiography and CMR studies with prognostic data (75).  
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Table 1-3 CMR defined MR severities as per Gelfand et al 

MR Severity Regurgitant 

fraction 

1+ Mild  ≤ 15%  

2+ Moderate  16 – 25%  

3+ Moderate-severe  26 – 48%  

4+ Severe  >48%  

Adapted from (70) 

 

 

 

Table 1-4 Advised CMR MR severities grading from international consensus 

Type of 

MR 

Severity Grading 

Mild Moderate Severe Very severe 

Primary MR-RF <20% MR-RF= 20-39% 
MR-RF 40-50% 

MR-RF >50% 
MR-Rvol >55-60ml 

Secondary 
MR-Rvol 

<30ml 

MR-Rvol  

<30-60ml 
MR-Rvol >60ml N/A 

Adapted from (75). Abbreviations: MR, Mitral regurgitation, Rvol, regurgitant 
volume, RF, Regurgitant fraction 
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1.1.3.4 Exercise imaging in MR 

The timing of intervention in primary severe MR is guided by the presence of 

symptoms or adverse imaging biomarkers in asymptomatic patients (1, 39). 

However, symptoms are subjective and onset in chronic valve disease can be 

indolent, with patients often unaware of subtle changes in exercise tolerance (78). 

MR patients most often initially develop exertional symptoms prior to the disease 

deteriorating and developing resting symptoms. As MR patients naturally have a 

varied range of physical fitness with varied regular exertion levels, the timing of 

symptom development can differ between patients. Therefore, exercise imaging 

can be useful to objectively assess a patient’s symptom status, individual functional 

capacity and determine imaging biomarkers that may benefit from early surgical 

intervention (1, 39, 78). As such, exercise imaging is typically used in 2 situations 

in MR: symptomatic patients with non-severe MR on resting imaging to assess if 

exercise regrades severity and in asymptomatic severe MR patients to detect 

symptoms. (79). Unfortunately dobutamine, which is commonly used in stress 

echocardiography, has afterload-reducing properties which can reduce the degree 

of MR, therefore its use is advised against in the assessment of primary MR (79, 

80). Indeed, dobutamine stress and physical stress can result in differing 

haemodynamic responses in cardiac disease (81). Additionally, compared with 

exercise, pharmacological stress does not as accurately replicate the 

neurohormonal response, assess a patient’s symptoms or functional state and can 

have more adverse events (80, 82). As such exercise imaging is the preferred first 

line stress assessment for MR (79, 83, 84). The following subchapters will discuss 

exercise imaging of MR including the currently identified imaging biomarkers that 

can assist in decision making in MR patients.  

 

1.1.3.4.1 Exercise Echocardiography 

Exercise echocardiography can provide additional prognostic information to resting 

TTE, with the absence of LV contractile reserve (LVCR) (<4% increase in LVEF or 

<2% increase in global longitudinal strain during exercise echocardiography) (85, 

86), limited RV contractile recruitment (87), increase in MR severity (≥1 grade)(88) 



30 
  
or dynamic pulmonary hypertension (defined as an exercise rise in systolic 

pulmonary artery pressure (SPAP) to ≥60mmHg) (89, 90) during exercise 

echocardiography being predictors of poor prognosis.  

Patients with poor LVCR more commonly develop LV dysfunction on observational 

follow-up (86)  with worse post-operative LV function than those with preserved 

LVCR (85). Initial work by Leung et al demonstrated that latent LV dysfunction in 

MR patients could be indicated by a poor LVCR, demonstrated by an increase in 

LVEF of less than 4% on exercise echocardiography and this was associated with 

worse LVEF post-operatively (91). Subsequent work by Lee et al performed 

exercise echocardiography in 71 patients with isolated degenerative MR. During a 

mean follow up of 3±1years, 85% patients without LVCR progressed to mitral 

surgery compared with 42% with LVCR. The absence of LCVR was an 

independent predictor of poorer follow up LVEF and persistent post-operative LV 

dysfunction (85). More recent work by Magne et al suggested that LVCR was 

better assessed by changes in myocardial longitudinal function by assessing global 

longitudinal strain rather than changes in LVEF, demonstrating the absence of 

LVCR was independently associated with a 2-fold increase risk in cardiac events 

(86).      

As regards exercise RV function, Kusunose et al investigated 196 patients with 

isolated moderate-severe MR, demonstrating that exercise tricuspid annular plane 

systolic excursion <19mm (TAPSE) was associated with valve-surgery free survival 

independent of resting LV/RV strain and exercise SPAP, suggesting that exercise 

RV dysfunction provides important incremental prognostic value in managing 

asymptomatic MR (87).           

MR severity can change during exercise, as demonstrated in exercise 

echocardiography. Magne et al performed exercise echocardiography in 61 

asymptomatic patients with moderate/severe degenerative MR to quantify changes 

in MR using the PISA method. 32% of patients had a marked increase in EROA 

(≥10mm2) and MR-Rvol (>15ml). Patients with a rise in MR-Rvol >15ml had a 

worse symptom free survival than those with no significant rise or a decrease in 

MR-Rvol (88). However, in the ‘real-world’ setting, MR quantification during 
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exercise echocardiography can be difficult and not achievable in all patients. 

Coisne et al investigated 71 unselected patients with at least moderate MR 

(primary & secondary MR) and minimal or no symptoms. They found that 

quantitating EROA via the PISA method was feasible in 76% at rest in the supine 

position required for cycling; this decreased to 55% at peak exercise and was 

lower in patients with mitral valve prolapse at 43%. This was in contrast to the 

ability to assess LVCR and SPAP at peak exercise in 71% and 83% of patients 

respectively, therefore suggesting LVCR and SPAP assessment may be more 

reliable in the real-world setting (92). 

Exercise induced pulmonary hypertension (ExPHT), identified on exercise 

echocardiography as developing exercise SPAP ≥60mmHg is associated with 

poorer observational and post-operative outcomes. Suzuki et al performed stress 

echocardiography on 49 patients with at least moderate MR on resting TTE, 

demonstrating worse 2-year symptom free survival in those with ExPHT (90). 

Additionally, Magne et al demonstrated worse post-operative outcomes in patients 

with ExPHT in a study involving 102 patients with primary MR and no/mild 

symptoms. All patients had baseline exercise echocardiography and underwent 

mitral valve surgery; those with ExPHT had significantly more cardiac events 

(postoperative cardiovascular-related death or cardiovascular-related 

hospitalisation, stroke or AF) than those without ExPHT at 39% vs 12% 

respectively.  

As a result of such studies, international guidelines advise that exercise 

echocardiography is useful to risk stratify MR patients and also for patients where 

there is a discrepancy between MR severity and symptoms at rest (1, 37).   

 

1.1.3.4.1 Exercise-CMR 

Exercise cardiovascular magnetic resonance (Ex-CMR) has developed over the 

past three decades to combine the superior image quality of CMR with the first line 

advised method of stress by physical exercise. Ex-CMR as a modality is discussed 

in depth in Chapter 1.2. Given CMRs highly reproducible MR quantification and 

reference standard biventricular assessment, the possibility to assess bi-ventricular 
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function and quantitate MR during Ex-CMR is appealing. Only one Ex-CMR study 

has been performed in patients with MR by Chew et al, who demonstrated the 

feasibility of assessing biventricular volume assessment in 5 severe degenerative 

MR patients. However, MR quantification during exercise was not performed (93). 

Therefore further research is needed to develop a CMR protocol feasible to assess 

biventricular function and quantitate MR during Ex-CMR to take full advantage of 

the capabilities of CMR in this patient cohort. 

 

1.1.3.5 Comparing imaging modalities in MR assessment 

Multiple imaging modalities can be utilised to assess MR patients, each with 

intrinsic benefits and weakness, these are summarised in Table 1-5. 

TTE is the advised first line investigation in MR assessment (1, 39). This is a result 

of significant benefits including widespread availability and cheap cost, portability 

and the ability to instantly visualise MR at the time of imaging. Both TTE/TOE 

share significant weaknesses including requiring the use of geometric assumptions 

in the assessment of MR, inaccuracies in the presence of eccentric or multiple jets 

and Doppler alignment issues that can reduce the accuracy of MR assessment 

(38). As a result an integrated assessment using qualitative, semi-quantitative and 

quantitative measures are advised as one single measurement is not sufficiently 

robust in the assessment of MR (40). TOE overcomes the limitation of acoustic 

windows that can reduce the accuracy of TTE assessments, but does not always 

guarantee good image quality. However, TOE generally offers the most accurate 

assessment of valve morphology of all imaging modalities and pathology 

localisation can be improved with the simultaneous use of real-time 3D-

echocardiography (16). The invasive nature of TOE results in it not being ideal for 

serial assessment (41) therefore often reserved for borderline cases or 

pre/intraoperative use. CMR has the benefit of allowing imaging of the valve in any 

plane, but the decreased temporal resolution compared to echo can limit its use in 

morphological assessment (54). The main strength of CMR is the accurate 

quantification of MR, which appears to offer superior reproducibility (59, 60, 62, 63) 

and prognostic information to TTE (63, 64). This paired with it being the reference 
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standard for biventricular assessment (51, 52) results in it being a useful imaging 

modality for assessing MR. However, CMR is not widely available, is comparatively 

expensive, contraindicated in those with non-compliant implants, poorly tolerate by 

claustrophobic patients, does not allow an accurate instant assessment of MR 

severity at the time of imaging due to significant caveats with visual assessment 

and as discussed does not currently have universally accepted modality specific 

severity definitions (38). Dobutamine stress echocardiography, although in 

widespread use in CAD assessment, is advised against in MR assessment due its 

positive inotropic effect reducing MR severity (79). As such exercise 

echocardiography is preferred as a stress modality in MR. Assessment of changes 

in biventricular function, MR and PASP during exercise TTE provides additional 

prognostic information (85-90), but the modality suffers from the same weaknesses 

described above in resting TTE (38). In addition the majority of exercise-TTE relies 

on post stress imaging and therefore resulting in deceases in peak HR during 

imaging. In contrast Ex-CMR allows assessment of biventricular function during 

continuous exercise (93). However, further research is needed to allow 

quantification of MR during Ex-CMR and Ex-CMR as a modality is mostly a 

research tool, with minimal research performed in valve disease and therefore 

requires significant development before being clinically viable. 
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      Table 1-5 Strengths/weakness of imaging modalities in MR assessment 

Imaging modality Strengths Weaknesses 

Transthoracic 
Echocardiography 

Widespread availability Acoustic windows 

Low cost Geometric assumptions 

Non-invasive Suboptimal Reproducibility 

Instant visualisation of MR Requires integrated assessment 

  Doppler alignment issues 

  Assessment of eccentric/multiple 
jets. 

Transoesophageal 
Echocardiography 

Instant visualisation of MR Invasive 

Fewer restrictions from acoustic 
windows 

Geometric assumptions 

Suboptimal Reproducibility 

Reference standard assessment 
of valve anatomy/morphology 

Requires integrated assessment 

Doppler alignment issues 

Intraoperative assessment Assessment of eccentric/multiple 
jets. 

Cardiovascular 
Magnetic 

Resonance 

Image in any plane  Expensive & not widely available 

Excellent image quality Claustrophobia 

Accurate & reproducible MR 
quantification 

Contraindications: non-compliant 
implants 

Assessment of LV viability/scar Lower temporal resolution than 
echo 

Reference standard Biventricular 
volumes/function 

Limited evidence basis for defined 
severity cut offs 

Exercise 
Echocardiography* 

Additional prognostic information 
from assessment of LV/RV 
function, MR and PASP changes 
with exercise 

Not all patients can tolerate 
exercise 
 
Often reliant on post stress 
imaging 

Allows assessment of 
haemodynamic & functional 
response to exercise 

  

Allows accurate assessment of 
exertional symptoms 

  

Dobutamine Stress 
Echocardiography* 

Technically easier to use than 
exercise echocardiography 

Inotropic effects of Dobutamine 
can reduce afterload and thus MR 
and is therefore advised against 
in MR assessment 

Feasible in patients unable to 
exercise 

Exercise 
Cardiovascular 

Magnetic 
Resonance** 

Potential to utilise benefits of 
CMR during exercise 

Research tool - not in clinical use 
in valve patients 

Imaging feasible during 
continuous exercise 
  

Minimal research in MR patients 

Not all patients can tolerate 
exercise 

 

* In addition to the strengths/weakness of transthoracic echocardiography listed above. ** In 

addition to the strengths/weaknesses of CMR listed above. 
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1.1.4 Management of Primary MR 

 

Primary MR is often a progressive disease. MR causes left ventricular and atrial 

enlargement, which in turn causes increase stress and damage to the mitral 

apparatus, such as annular dilatation which leads to increased EROA, coining the 

phrase ‘MR begets MR’ (39). As a result, MR-Rvol can progress from 5-7ml/year in 

primary MR (94). Severe primary MR patients have an excess mortality rate of 

6.3% per year (11). There are no known medical treatments that alter the natural 

progression of severe primary MR, symptomatic patients may gain relief of 

symptoms by diuretics and afterload reduction but ultimately the only current 

treatment is surgical or percutaneous intervention (11).  

The 2017 ESC guidelines (1) and the 2017 American Heart Association/American 

College of Cardiology (AHA/ACC) guidelines (39) provide similar guidance, as 

regards advising surgical intervention, with a few notable differences. Both 

guidelines advise mitral valve repair (MVr) as a Class I indication, when feasible 

above mitral valve replacement (MVR), if a successful and durable repair can be 

accomplished. Both advise surgical intervention as a Class I indication in 

symptomatic severe primary MR with LVEF>30%. However, for symptomatic 

primary MR patients with LVEF<30%, the AHA/ACC advise surgery as class IIb 

indication and the ESC advise medical therapy in the first instance. As per ESC 

guidance, if symptoms are refractory to medical treatment and the patient has low 

comorbidity then surgery is advised with repair if high likelihood of successful 

repair (class IIa) or replacement if not (class IIb). In the event surgery is deemed 

too high risk then extended medical therapy/percutaneous end-end repair is 

advised (class IIb) (1).  

In asymptomatic patients, the guidelines differ slightly. Both guidelines advise 

surgical intervention as Class I indication where there is evidence of LV systolic 

dysfunction (LVEF<60%) or LV dilatation, defined as LV end-systolic dimension 

(LVESD) ≥45mm (ESC 2017 guidelines) or ≥40mm (AHA/ACC guidelines). The 

AHA/ACC do not extend this guidance to those with LVEF<30%. In asymptomatic 

patients with preserved LV size/function the ESC 2017 guidelines advise surgery 
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should be offered if there is new AF, PASP >50mmHg or there is a high chance of 

a durable repair with low surgical risk and the patient has LVESD>40mm and 1 of 

the following: flail leaflet or LA volume ≥60ml/m2 in sinus rhythm (class IIa) (1). The 

AHA/ACC guidelines broadly provide the same guidance in asymptomatic patients 

with preserved LV size/function but are more liberal also advising surgery is 

reasonable if there is a progressive decline in LVEF or increase in LVESD (class 

IIa) (39). 

 

1.1.4.1 MV repair 

Mitral annuloplasty for primary MR was initially developed in the 1960s, however 

original techniques corrected insufficiency by narrowing the annulus. This resulted 

in 3 issues: 1, the correction resulted in altered anatomy of the valve leading to a 

degree of stenosis; 2, the localized plications used, focused tensile strength in a 

few critical points on the annulus, leading to a risk of sutures tearing out and 3, the 

original annuloplasty was still at risk of recurrent annular dilatation and therefore 

recurrent MR. Carpentier et al developed a surgical annuloplasty technique with 

the use of an annuloplasty frame/ring to overcome the described issues (95). Since 

this important development, MVr has progressed to become the recommended 

surgical technique to treat primary mitral regurgitation, when durable repair is likely 

(1, 39). Numerous surgical techniques have been developed, centring on the aims 

to restore/preserve correct leaflet mobility, to ensure appropriate leaflet coaptation 

and remodel and stabilise the annulus (96). Currently, successful repair is deemed 

likely, if performed by an experienced surgeon, in the vast majority of primary MR 

cases. However, the likelihood of a successful and durable repair is dependent on 

the underlying aetiology and the experience of the surgeon. Successful repairs are 

most likely in isolated posterior leaflet prolapse, with experienced centres boasting 

a near 100% repair rate with low early mortality (<1%) and reoperation rates (97). 

Experienced centres state successful repair is probable, with the use of varying 

surgical techniques, in >98% with PMVL prolapse, in >95% with AMVL prolapse, 

annular dilatation or commissural leaflet prolapse and 70-80% in those with leaflet 

restriction/small leaflets or annular calcification (96). However, early mortality, 
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recurrent MR and re-operation rates are often greater in those with AMVL or bi-

leaflet prolapse with studies reporting varying early mortality rates.  Some boast 

low early mortality (<1%) (98, 99), others, such as Castillo et al demonstrated 4.8% 

early mortality in AMVL prolapse patients, however, the study results may be 

biased by low numbers (n=48) in this group (97). Seeburger et al also 

demonstrated greater early mortality risk in AMVL/Bi-leaflet prolapse patients. The 

study was performed in a high-volume expert centre, using minimally invasive 

techniques, the 30-day mortality was 1.5%, 2.6% and 2.2% for PMVL, AMVL and 

bi-leaflet prolapse respectively (100). Recurrence of MR and reoperation rates are 

similarly higher in those who undergo MVr for AMVL/bi-leaflet prolapse (99, 101). 

The most significant impact on the success of mitral valve repair is surgeon 

experience, with a clear link between surgeon experience and outcome (102, 103). 

Therefore, reference centres of excellence for mitral valve repair have been 

developed. These centres must perform >50 MVr operations per year with >25 per 

specialist surgeon per year. Repair success rates must be >95% and operative 

mortality <1% (11). In addition to reference centres being created to improve 

outcomes, the use of minimally invasive surgery and robotic surgery has also 

developed to improve outcomes. Minimally invasive surgery has longer 

cardiopulmonary bypass, crossclamp and overall procedure times than 

conventional mitral surgery via sternotomy, however despite this it can offer 

equivalent success of repair, stroke rates and early mortality rates. Importantly, 

minimally invasive surgery results in reduced intensive care, hospital admission 

and recovery time as well as boasting preferred cosmetic results (104, 105).  

 

1.1.4.2 MV replacement 

As per current guidelines the contemporary mitral valve replacement is reserved 

for those unlikely to achieve a successful durable repair (1, 39), causing a 

significant reduction in MVR being performed in the developed world. MVR is 

utilised more often in patients with previous cardiac surgery, advanced age, LV 

dysfunction (LVEF<45%), mitral calcification, retraction or tethering of the PMVL or 
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in AMVL prolapse (with ≥2 segments affected)/Barlow’s disease and used by 

surgeons with less experience (96).   

Mitral valve replacement can be performed using either mechanical or tissue 

prosthesis. Mechanical prosthesis are robust with an extremely low possibility of 

structural failure, but necessitate life-long anticoagulation, with which come 

associated bleeding risks (106). Prosthetic valve thrombosis is more common in 

mechanical valves, most obviously in cases of suboptimal anticoagulation and 

mechanical valves are not immune to developing valve dysfunction from annular 

pannus formation, which may necessitate re-operation if significant (107). Despite 

this, mechanical valves are more robust than biological prosthetics with a lower 

need for re-operation (108). A bio-prosthetic valve is indicated if there is significant 

bleeding risk from anticoagulation, prior mechanical valve thrombosis despite 

adequate anticoagulation, in young women considering pregnancy or patients with 

life expectancy presumed to be less than presumed durability of tissue valve (1, 

109). Historic randomised controlled trials comparing mechanical and tissue 

prosthesis’ concur that mechanical valves result in an increased risk of bleeding 

and stroke, whilst tissue valves suffer from structural valve deterioration resulting in 

increased reoperations, with no overall significant difference in long-term mortality 

(110, 111). This finding remains true in modern studies (108). The age cut off at 

which to start offering tissue replacement valves is controversial, but decreasing 

with the advent of improved bio-prosthetics. At present, the ESC guidelines advise 

considering the use of mechanical mitral valves in patients <65years old, but 

advise to base the decision on an informed discussion with each individual 

regarding the risks/benefits (1).    

Historically MVR involved transection of the chordae tendinae which resulted in a 

decrease in post-operative LVEF. Modern surgical techniques with MVR utilise 

chordal preservation to preserve the subvalvular apparatus which results in better 

preservation of LVEF (112-114). Chordal preservation can be partial or complete, 

with full perseveration of the subvalvular apparatus providing superior cardiac 

reverse remodelling (115).        
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1.1.4.3 MV repair vs replacement 

To date, no randomised controlled trials comparing the outcomes of MVr and MVR 

for the treatment of primary MR have been undertaken. Numerous studies have 

been performed to observe outcome differences between MVR and MVr, the 

majority of which were performed before the routine use of chordal preservation 

techniques with MVR or poorly document its use (116-121). Meta-analysis of 

studies inclusive of concomitant coronary artery bypass grafting (CABG) 

demonstrate superiority in MVr over MVR in terms of reduced operative and long 

term mortality (121). Indeed, studies comparing MVr vs MVR in purely isolated 

valve disease (no concomitant CABG) also prefer MVr demonstrating lower 

operative and long term mortality (120, 122, 123). Importantly, MVR is commonly 

used in patients with more complex mitral valve disease, advanced age, reduced 

LVEF and worse NYHA class, naturally resulting in a higher risk group pre-

operatively than those referred for MVr (123). Studies utilising propensity matching 

in an attempt to overcome these biases present conflicting results. Gilinov et al 

found no significant difference between long term survival and freedom from re-

operation between propensity matched MVr and MVR with chordal preservation 

groups to treat degenerative MR (123). Although, Lazam et al found lower 

operative mortality, better long term survival and fewer valve related complications 

post MVr than MVR when treating MR secondary to a flail leaflet, but the use of 

chordal preservation techniques with MVR was not clearly documented in this 

study, potentially biasing results (124). Interestingly, a randomised trial comparing 

MVr vs MVR with chordal preservation in severe ischaemic MR has been 

performed, demonstrating no significant difference in survival or left ventricular 

reverse remodelling at 2-years but with greater recurrent MR in the repair group 

resulting in more heart failure related adverse events and hospital admissions 

(125). Additionally, results from studies assessing cardiac reverse remodelling also 

demonstrate the importance performing chordal preservation with MVR. In 

echocardiographic studies comparing cardiac reverse remodelling between 

MVr/MVR, when chordal preservation is not used, MVr demonstrates superiority 

(117, 118), however, when chordal preservation is used with MVR, cardiac reverse 

remodelling is comparable between the surgical techniques (126, 127). These 
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findings are important as cardiac reverse remodelling is widely accepted as 

associated with more favourable prognosis in a wide variety of cardiac disease 

(128, 129). Therefore MVr/MVR comparative studies predating routine use of 

chordal preservation with MVR may bias the results in favour of MVr being 

superior.  

A frequent compared variable between MVR and MVr is the reoperation rate. 

Studies in primary MR report varying re-operation rates with some demonstrating 

higher reoperations after MVr (especially post AMVL repair) (130), others higher 

reoperations post MVR (124), but the majority demonstrate no significant 

difference between the two surgical options (120, 123). In elderly patients, 

numerous studies (with mixed primary and secondary MR aetiologies) show no 

reoperations being required post MVR, with a variable rate of reoperations post 

MVr (1.4-6.1%) (122, 131); despite this no statistical difference was found. Silaschi 

et al similarly demonstrated statistically comparable rates of re-operation in elderly 

mixed aetiology MR patients undergoing MVR (2.5%) and MVr (2.3%); all 

reoperations required on replacements were on bio-prosthetic valves (132).  

As demonstrated, the vast majority of MVr vs MVR comparative studies utilise 

‘freedom from re-operation’ as an endpoint, however this does not take into 

account all recurrent MR. Indeed, numerous patients who eventually develop 

significant MR may be deemed too high risk for a re-operation resulting in a lower 

re-operation end-point frequency and biased results.  Recurrent MR post MVr is 

not uncommon with variable frequencies reported. Grapsa et al describes recurrent 

mild-mod MR in 23.8% of patients within 6 months (133), Chan et al describe 

recurrent moderate MR (2+) in 5.7% of patients within 3.1±2.5years (134), Kim et 

al reported residual moderate-severe MR in 16.8% at 8.7±5.6years (135) and 

David et al reported recurrent moderate-severe MR of 12.5% at 20 years (136).  

In summary, the MVR vs MVr debate is ongoing. Current evidence supports MVr 

as the first line surgical treatment for primary MR, especially when performed in an 

expert ‘reference’ centre. However, as the MVR cohort is routinely higher risk, this 

can bias studies towards demonstrating MVr superiority. Additionally, given 

surgeon experience/operation volume has a significant impact on MVr outcomes 
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(137), there could theoretically be a similar effect on MVR outcomes. As per 

current guidance (1, 39), MVR is routinely performed in lower quantity than MVr, 

theoretically creating an un-explored bias. Without a randomised trial comparing 

the two procedures using modern techniques in primary MR, the question will not 

be addressed. However, given current evidence, such a trial could currently be 

deemed unethical and therefore rigorous hypothesis-generating observational 

studies are required first. 

 

1.1.4.4 Percutaneous MV interventions 

Mitral valve surgery, with repair when feasible, is currently recommended 1st line 

treatment for mitral regurgitation when indicated (1, 39). However a large 

percentage of severe MR patients, even though symptomatic, get declined surgical 

intervention as they are deemed too high risk. Surgery is often declined due to 

advanced age, severe LVSD or multiple co-morbidities, with one study finding 49% 

of severe MR patients declined surgery (138). Percutaneous interventions have 

emerged as a treatment option for this high risk cohort of patients. Multiple 

percutaneous options exist including edge-edge repair with the MitraClipTM or 

PASCAL system, transcatheter mitral valve implantation (TMVI), transcutaneous 

mitral annuloplasty or percutaneous Neochord placement (139). 

 

1.1.4.4.1 Percutaneous edge-to-edge repair  

Percutaneous edge-to-edge repair can be performed using the MitraClipTM or 

PASCAL systems. The MitraClipTM device procedure was designed to copy the 

central double orifice surgical repair technique initially developed by Alfieri et al in 

1991, which involved suturing the free edges of the leaflets at the site of 

regurgitation and was designed as a simple solution for complex lesions (140).The 

original MitraClipTM system is used via a trans-septal approach to attach a clip 

device, with a tri-axial catheter system, which grasps the mitral leaflet edges to 

create a double orifice (141). Newer designs of the MitraClipTM system have 

followed with the MitraClipTM NT and MitraClipTM XTR (Figure 1-4), the latter 
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designed with longer arms to facilitate grasping of the leaflets and assist in valves 

with large coaptation defects (139, 142). Safety of the MitraClipTM system in 

treating MR was initially demonstrated in the EVEREST (Endovascular Valve 

Edge-to-Edge Repair Study)  trial, in which 107 patients had low mortality and 

morbidity rates and acute MR reduction (64% discharged with ≤1+ MR severity) in 

the majority of cases (143). Subsequently, the EVEREST II trial randomised 

patients with severe MR as a result of mal-coaptation of the A2/P2 scallops, with 

LVEF>25%, who were deemed suitable for mitral valve repair or replacement to 

receive either MitraClipTM or conventional mitral valve surgery. The 5-year follow up 

data demonstrated greater residual MR (3+/4+ MR) and higher rates of subsequent 

surgery in the MitraClipTM group but a non-significantly lower rate of mortality at 5-

years than conventional surgery (144). Both EVEREST trials (I&II) consisted 

mainly of degenerative MR patients with 93% and 74% in EVEREST I and II 

respectively (143, 144). The MitraClipTM has since gained greater clinical use in HF 

patients with secondary MR and has been investigated further in this cohort in the 

form of two randomised-control trials. The Cardiovascular Outcomes Assessment 

of the MitraClipTM Percutaneous Therapy for Heart Failure Patients with Functional 

Mitral Regurgitation (COAPT) trial demonstrated reduced heart failure 

hospitalisation and mortality in patients with heart failure and moderate-severe or 

severe secondary MR treated with MitraClipTM and optimal medical therapy 

compared with those treated with optimal medical therapy alone (145). In contrast, 

the MITRA-FR study demonstrated no difference in primary endpoints (all cause 

death or HF hospitalisation) between the MitraClipTM and optimal medical therapy 

groups (146). The contrasting results are likely attributable to differing inclusion 

criteria. Both studies recruited patients with heart failure with reduced ejection 

fraction (ischaemic or non-ischaemic cardiomyopathy) and secondary MR. MITRA-

FR recruited patients with LVEF 15-40% and at least moderate secondary MR 

(EROA >20mm2, MR-Rvol >30ml). COAPT inclusion criteria was stricter with better 

LVEF (20-50%), worse MR severity (EROA> 30mm2 and RVol >45ml) and 

excluded patients with pulmonary hypertension, moderate/severe RV dysfunction 

or significant LV dilatation (LVESD >70mm). Recent observations comparing the 

studies highlight the importance of ensuring only selected patients (as per the 
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COAPT inclusion criteria) with secondary MR receive MitraClipTM treatment to 

ensure prognostic benefit (147).  

 

 

Figure 1-4 MitraClipTM NTR & XTR side by side (image reproduced with 
permission from Abbot) 

 

The Edwards PASCAL transcatheter mitral repair system is another percutaneous 

device available to perform edge-to-edge repair. The device was designed to 

overcome some of the limitations noted with the original MitraClipTM system and 

therefore was designed to simplify left atrial navigation, use a central spacer to 

improve reduction of MR, and allow for independent leaflet grasping. The initial 

multicentre study using the PASCAL system boasted high technical success rates 

and MR severity reduction (148) and a subsequent multicentre trial demonstrated 

reduced MR regardless of aetiology and improved quality of life, exercise capacity 

and functional status at 30 days (149) with residual MR ≤2+ in all patients and MR 

≤1+ in 82% at 1-year follow up (150).  
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1.1.4.4.2 Transcatheter mitral valve implantation (TMVI) 

After the successful development and widespread clinical use of transcatheter 

aortic valve implantation (TAVI) in high risk aortic stenosis patients (151) and 

effective use of valve-in-valve TAVI for failed aortic bioprosthesis (152) the 

progression to TMVI was inevitable. In clinical practice TMVI is often reserved for 

annuloplasty ring failure (153), failed bioprosthesis (154, 155) or degenerative 

mitral valve disease with mitral annular calcification (156). Various emerging 

transcatheter mitral valve implantation devices exist that are either self-expanding 

(157-159) or balloon expandable (160, 161) and implanted by a trans-apical (157-

159, 161) or trans-septal approach (157, 160, 161). Outcomes from the 

transcatheter mitral valve replacement multicentre registry, including 521 patients 

(60.5% trans-apical access, 90% used SAPIEN valves) that underwent TMVI, 

demonstrate overall excellent technical success in 87% of cases but differing 

outcomes depending on the underlying rationale for TMVI. Those undergoing TMVI 

for bio-prosthetic valve failure demonstrated superior outcomes. Whilst TMVI used 

in failed mitral annuloplasty repairs were prone to significantly more recurrent MR 

and increased requirement for second valve implantation. Finally, TMVI used to 

treat MR as a result of mitral annular calcification more frequently suffered left 

ventricular outflow tract (LVOT) obstruction and higher 30-day and 1-year all-cause 

mortality (162).   

 

1.1.4.4.3 Transcatheter direct annuloplasty mitral valve repair 

Multiple transcatheter devices have been developed to mimic the standard surgical 

mitral valve repair technique that utilises annuloplasty (139), which is especially 

important in functional MR where annular dilatation can be a fundamental 

pathological cause (163). Transcatheter mitral annuloplasty can be performed 

directly or indirectly. 

 

Indirect transcatheter annuloplasty aims to reduce MR by altering the proximity of 

the coronary sinus to the posterior mitral valve annulus. The Carillon mitral contour 

system uses a distal anchor deployed deep in the coronary sinus to apply 
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backward traction, guided by echocardiography and fluoroscopy, to alter the mitral 

annulus shape and reduce MR. A proximal anchor is then deployed near the 

coronary sinus ostium.  Subsequent coronary angiography is performed to ensure 

no coronary artery compromise (due to the proximity of the circumflex artery to the 

coronary sinus) which necessitates recapture/removal of the device and can 

exclude patients from this approach (164). Two single arm trials (TITAN I & TITAN 

II) demonstrated that the device reduced MR severity, HF admission and produced 

favourable LV reverse remodelling (164, 165). A subsequent sham randomised 

control trial (REDUCE-FMR) in 120 patients with functional MR and reduced 

ejection fraction (87 treatment arm, 33 sham control arm) demonstrated reduced 

MR-Rvol and LV volumes in the treatment group compared with the sham control 

group (166).  

 

Direct transcatheter annuloplasty systems have been developed more recently and 

attach a ring or band directly to the mitral valve annulus under echocardiographic 

or fluoroscopic guidance. Although other devices exist (167, 168), to date, the 

Cardioband system has the most published data in clinical use. The Cardioband 

device is implanted via a transeptal approach with the ring positioned at the atrial 

side of the mitral valve annulus. Multiple anchors are used with the first and last 

deployed in the lateral and medial commissures respectively with intermittent 

anchors placed at short intervals in-between (169). In a recent multi-centre study in 

functional MR patients, 123 patients treated with the Cardioband device and 455 

patients treated by MitraClipTM were propensity matched into two groups of 93 

patients. Both device treatments resulted in reduced MR and heart failure 

symptoms but there were greater improvements in functional class and lower all-

cause rehospitalisation and all-cause mortality rates in those treated with the 

Cardioband device (170). 

 

1.1.4.4.4 Neochord procedure 

Transapical off-pump mitral valve repair with neochord implantation, also known as 

the Neochord procedure, uses the NeoChord artificial chordae delivery system 

(NeoChord, Inc., St. Louis Park, MN, USA) to place expanded 
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polytetrafluoroethylene sutures as replacement neochordae to treat degenerative 

mitral regurgitation. The procedure is performed under general anaesthetic on a 

beating heart using transoesophageal guidance and doesn’t require 

cardiopulmonary bypass (171, 172). A multicentre study in 213 patients 

demonstrated procedural success in 96.7% of cases. The underlying aetiology of 

primary mitral valve disease had a significant effect on the composite end-point at 

1 year which comprised of freedom from mortality, severe mitral regurgitation, 

stroke, rehospitalisation, re-intervention and a decrease of at least 1 New York 

Heart Association (NYHA) functional class. Patients with isolated central PMVL 

prolapse had superior outcomes with 94 ± 2.6% reaching the composite end-point, 

compared with 82.6 ± 3.8% and 63.6 ± 8.4% in patients with multi-segment PMVL 

disease and anterior/bi-leaflet mitral valve disease respectively.  Therefore careful 

patient selection is important for optimal outcomes (173).  

 

1.1.4.4.5 Combined percutaneous procedures 

Evidence from conventional surgical intervention suggests combined annuloplasty 

and leaflet repair provides superior outcomes to valve repair or annuloplasty alone 

(174-176), therefore similar outcomes may be found by combining percutaneous 

procedures. Indeed, combined MitraClipTM with transcatheter mitral annuloplasty 

have been reported (177, 178). Given the wide range of percutaneous techniques 

available the ability to be able to combine techniques/tailor the techniques used to 

individual pathology is inviting, but further research is clearly required using 

combined techniques to assess which patients will benefit. 
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1.1.5 Mitral regurgitation: summary 

 

Mitral regurgitation is a common but complex disease, with multiple aetiologies and 

variables that effect prognosis and treatment outcomes. Accurate cardiac imaging 

is essential to assist optimal management. TTE provides a widely available and 

cheap first line investigation, but has limitations with regards body habitus and 

often utilises a semi-quantitative assessment of MR as quantitative assessment 

relies on geometric assumptions and careful Doppler alignment which can reduce 

accuracy. Therefore, in borderline cases additional imaging can be important to 

assist decision making. Exercise stress TTE can provide prognostic information not 

present at rest to assist decision making, but can be similarly limited by poor 

acoustic windows and suboptimal MR quantification. TOE overcomes the issue of 

acoustic windows and allows unparalleled assessment of valve morphology, but is 

invasive and still limited by geometric assumptions to quantitate MR. 

Consequently, CMR has developed as the reference standard in MR quantification 

with superior accuracy, reproducibility and prognostic ability compared to TTE. 

However, CMR assessment of valve morphology is inferior to good quality 

echocardiography owing to poorer spatial and temporal resolution. Therefore a 

multi-modality approach is essential to provide a comprehensive assessment and 

guide optimal management. Surgical intervention is the gold standard treatment in 

primary MR. MVr is recommended when feasible over MVR, on the basis of non-

randomised trials, however further research is warranted in light of recent studies. 

Excitingly, numerous percutaneous mitral valve procedures have developed to 

treat patients not suitable for surgical intervention and suggest a future where 

patients may benefit from combined techniques individualised to best treat their 

disease. 
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1.2 Exercise Cardiovascular Magnetic Resonance:  

development, current utility and future applications 

 

Stress cardiac imaging is the current first line investigation for coronary artery 

disease diagnosis and decision making and an adjunctive tool in a range of non-

ischaemic cardiovascular diseases. Ex-CMR has developed over the past 25 years 

to combine the superior image qualities of CMR with the preferred method of 

exercise stress. Presently, numerous exercise methods exist, from performing 

stress on an adjacent magnetic resonance imaging (MRI) compatible treadmill to 

in-scanner exercise, most commonly on a supine cycle ergometer. Cardiac 

conditions studied by Ex-CMR are broad, commonly investigating ischaemic heart 

disease and congenital heart disease but extending to pulmonary hypertension and 

diabetic heart disease. There follows an in-depth assessment of the various Ex-

CMR stress methods and the varied pulse sequence approaches, including those 

specially designed for Ex-CMR. Current and future developments in image 

acquisition are highlighted, and will likely lead to a much greater clinical use of Ex-

CMR across a range of cardiovascular conditions.  

 

1.2.1 Background 

Stress testing can be a pivotal tool for the diagnostic and prognostic assessment of 

cardiovascular disease. Historically for coronary artery disease (CAD), treadmill 

electrocardiography (ECG) was the reference standard (179, 180).  However, the 

use of stress cardiac imaging for exercise testing has significantly improved the 

diagnostic accuracy for CAD detection compared to exercise ECG alone (181-

186). Thus stress imaging is now the preferred investigation for CAD diagnosis in 

intermediate risk patients and a useful tool for prognostication and decision making 

(187, 188). CMR has several well established benefits over alternative imaging 

modalities, allowing a non-invasive comprehensive multi-parametric assessment, 

with few limitations from body habitus, no ionizing radiation (189), and is the 

reference standard for bi-ventricular volume and functional assessment (51-53). 
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Pharmacological stress CMR has become widely utilised clinically, demonstrating 

superiority over myocardial perfusion scintigraphy by single photon emission 

computed tomography (MPS-SPECT) in the diagnosis (190) and prognosis of CAD 

(191) and recently, a lower incidence of revascularization and non-inferiority in 

major adverse cardiac events compared to CAD management guided by coronary 

angiography with fractional flow reserve (192). However, pharmacological stress 

has more adverse events than exercise stress, as demonstrated in stress 

echocardiography (80, 82), contraindications and side effects patients may not 

tolerate (193) and does not replicate the neurohormonal and haemodynamic 

changes associated with physical exercise. As such, current guidelines advise 

physical exercise as the preferred method for stress imaging, when feasible (83, 

84). Exercise imaging studies primarily focus on CAD, however exercise testing is 

an important decision making tool in numerous cardiac diseases including valvular 

heart disease (37) and congenital heart disease (194).  

Despite the advantages of CMR as a modality and physical exercise advised first 

line, Ex-CMR is not widely used clinically. Limitations include difficulty with image 

acquisition and quality, the expense of commercially available MRI compatible 

exercise devices (195) and that exercise testing is technically more difficult than 

administering pharmacological stress (196). This section will focus on the recent 

development of Ex-CMR as a technique, its current utility and challenges, and its 

potential future applications and technical developments.    

 

1.2.2 Exercise CMR – methodology and development 

Ex-CMR is performed either by exercising outside the scanner bore on a MRI 

compatible adjacent treadmill (197) or by exercising in the MRI scanner, most 

commonly using a supine cycle ergometer. Exercise on a MRI compatible adjacent 

treadmill, utilising a Bruce protocol treadmill test, benefits from the safety of 12-

lead ECG monitoring, essential for identifying ECG changes which may prompt test 

termination, but with the limitation of requiring rapid transfer to the MRI isocenter 

for post stress imaging. In-scanner Ex-CMR overcomes this limitation, as exercise 

can be performed in the scanner bore, with imaging performed during exercise or a 
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brief cessation of exercise. However, CMR scanning during exercise creates 

several issues including increased physical and respiratory motion creating 

artefacts, ECG gating issues and safety cannot be monitored by 12-lead ECG 

(198). Indeed accurate ST segment monitoring is not feasible within the MRI 

scanner bore due to the magnetohydrodynamic effect distorting the surface ECG 

(199). ECG gating issues can occur at maximal heart rates and during exercise. At 

maximal heart rates this can be overcome with real time imaging after exercise 

cessation, as utilised in treadmill Ex-CMR (200), or with ungated real time imaging 

during maximal supine bicycle exercise (198). Exercise inherently causes 

movement, which can result in image acquisition away from the initial planned slice 

location. Movement can be reduced physically by using straps around the chest 

and anterior coil, and by counselling/training the patient. However, meticulous 

image planning is essential to ensure appropriate stress slice localisation. Short 

axis cine imaging, for ventricular volumetric analysis, should be planned with 

sufficient slices beyond the base and apex, to account for movement. Repeating 

left and right ventricular outflow tract views after/during exercise, with free 

breathing imaging, immediately prior to phase contrast imaging of the aorta or main 

pulmonary artery allows re-planning to account for movement that may have 

occurred whilst performing in-scanner exercise. Respiratory navigation can be 

performed to accommodate for respiratory motion and can be performed 

retrospectively with ungated real time CMR imaging by manually ‘gating’ 

respiration using a plethysmograph trace (198).       

 

Numerous exercise CMR studies have been performed using varying methods, 

including treadmill exercise, supine cycle ergometer or supine stepper-stress, 

upright cycle ergometry in an open magnet, isometric handgrip exercise (IHG) and 

prone exercise using either knee flexion or extension with resistance from cables 

or non-ferromagnetic weights. Similar to exercise echocardiography (80), the range 

of applications of Ex-CMR extends beyond CAD to a wide range of cardiac 

conditions (80). Each exercise method has inherent benefits and weakness (Table 

1-6). Treadmill exercise, to date, has demonstrated the most clinical utility, being 

the only validated method for ischaemia detection, however, in-scanner supine 
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cycle ergometer exercise has numerous publications in a broader range of cardiac 

conditions. Each exercise method will be reviewed including its benefits, 

limitations, published applications and the technological and imaging sequence 

developments that have occurred to overcome the described issues of performing 

Ex-CMR.  
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Table 1-6 Characteristics and benefits of the varying exercise modalities used in exercise CMR 

Exercise type 
Commonly 
published 

applications 

Max 
exercise 
intensity* 

Strengths Weaknesses 

O
u
ts

id
e
 s

c
a
n

n
e
r 

Treadmill 

Ischaemia 
testing 
(Regional 
wall motion & 
perfusion) 

Maximal Patients better achieve maximal intensity 
exercise 

Post stress imaging allows recovery of HR before 
imaging Diagnostic 12 lead ECG performed during 

exercise Treadmill test provides separate prognostic data Logistically difficult to image at multiple exercise 
intensities Simultaneous Maximal oxygen uptake testing 

feasible  
Most natural and tolerated form of exercise   

In
-s

c
a
n
n
e
r 

E
x
e
rc

is
e

 

Upright 
cycle 

ergometer 

Flow 
assessment 

Light Allows imaging during exercise No 12-lead ECG monitoring/ST segment analysis 

Allows imaging to multiple exercise intensities Uses open magnet scanner: low field strength (low 
SNR), limited availability, CMR feasible but non-
standard.   

Only modality with upright in-scanner exercise 

Less claustrophobia in open magnet scanner 

  Minimal published studies 

Supine 
Cycle 

ergometer 

Ventricular 
volumes 
Flow 
assessment 

Maximal Allows imaging during exercise No 12-lead ECG monitoring/ST segment analysis 

  Allows imaging to multiple exercise intensities Cycling can be restricted by magnet bore diameter 

  Maximal in-scanner exercise achievable   

Supine 
stepper 

ergometer 

Ventricular 
volumes 
Flow 
assessment  

Vigorous Allows imaging during exercise No 12-lead ECG monitoring/ST segment analysis 

Allows imaging to multiple exercise intensities Lower intensity exercise than cycle ergometer 

Less leg restriction than cycle ergometer   

Prone 
exercise 

Spectroscopy Light-
Moderate 

Allows imaging during exercise No 12-lead ECG monitoring/ST segment analysis 

 Unconventional form of exercise 

 Only modest exercise feasible 

 Logistically difficult to increase resistance 

Isometric 
Handgrip 

Spectroscopy
/Coronary 
endothelial 
function 

Very-light Allows imaging during exercise No 12-lead ECG monitoring/ST segment analysis 

Stable stress HR Atypical form of exercise 

Minimal movement & no magnet bore restriction Limited increase in HR 

   

* Exercise intensity as defined by the American Society of Sports Medicine guidelines (201). Abbreviations: HR, heart rate.
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1.2.3 Treadmill exercise CMR 

Directly analogous to treadmill stress echocardiography, treadmill Ex-CMR is 

performed to achieve the required exercise intensity/THR. The patient is then 

rapidly transferred into the MRI scanner for post stress imaging. Treadmill Ex-CMR 

has progressed from exercising outside the scanner room (202), to the 

development of an MRI compatible treadmill to allow exercise to take place inside 

the scanner room (203) and eventually performed adjacent to the MRI scanner 

(197) (Figure 1-5). For ischaemia studies, this progression has reduced the 

‘cooling off period’ from peak stress to image acquisition, as even a 60-90 second 

delay in performing stress echocardiography image acquisition, has demonstrated 

recovery of ischaemic regional wall abnormalities and thus decreases the 

sensitivity of ischaemia detection (204, 205). Numerous studies in exercise 

echocardiography have demonstrated the differences between peak and post-

stress imaging, specifically demonstrating that peak stress imaging has superior 

sensitivity and accuracy at detecting ischaemia than post stress imaging (204, 206-

209). A direct ‘head-to-head’ comparison in stress echocardiography demonstrated 

that peak stress supine bicycle echocardiography was superior to post stress 

treadmill echocardiography in ischaemia detection (210). Consequently, stress 

echocardiography guidelines recommend post stress imaging be accomplished in 

under 60 seconds (196). However, as CMR can detect ischaemia by assessing 

myocardial perfusion in addition to assessing wall motion abnormalities, treadmill 

Ex-CMR may be less time sensitive post exercise cessation than treadmill 

echocardiography. Varying transfer times have been achieved in treadmill Ex-CMR 

studies (Table 1-7) (197, 200, 202, 203, 211-214). Since progression to an MRI 

compatible treadmill adjacent to the scanner, all studies demonstrate scan initiation 

in under 30 seconds (with the exception of La Fountain et al in which removal of 

the face mask assessing oxygen uptake prolonged transfer time (211)) and cine 

imaging completion in under 60 seconds (212-214).  
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Figure 1-5 MRI compatible scanner adjacent treadmill 

MRI compatible scanner adjacent treadmill, developed and utilised in ischaemia 
studies by the Ohio State University Research group (197), reduces transfer times 
for post stress CMR imaging, whilst still allowing a diagnostic 12-lead ECG 
treadmill test and a simultaneous maximal oxygen uptake test, if required.   
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Table 1-7 The transfer times and resultant imaging heart rates in treadmill exercise CMR studies 

 

 

Patient 

population n= Age 

Treadmill 

location 

Time (s) from exercise 

cessation to stress CMR: 

Peak HR 

Imaging  

HR 

CMR 

finish 

HR  Start 

Cine 

image 

End 

Perfusion 

Image 

end 

Rerkpattanapipat 

(2003) (202) 

Patients 

referred for 

angiography 27 62±11 

Outside 

scanner 

room NS 61 ± 24 N/A 

130 ±20 

bpm 

113 ±16 

bpm NS 

Jekic (2008) (203) 

Healthy 

volunteers 20 39±15 

Scanner 

room 

corner 30 ± 4 45 ± 4 57 ± 5* 

98 ±7% 

THR 

84 ±11% 

THR NS 

Raman (2010) (200) 

Patients 

referred for 

MPS-SPECT 43 54±12 

Scanner 

room 

corner 42± 5  68 ± 14 88 ± 8 

93 ±9% 

THR 

74 ±10% 

THR 

(cine) NS 

Foster (2012) (197) 

Healthy 

volunteers 10 23-67 

Scanner 

adjacent 24± 4  40 ± 7 50.5± 9 

 

98 ±8% 

THR 

86 ±9% 

THR 

81±9% 

THR 

Thavendiranathan 

(2014) (213) 

 

Healthy 

volunteers 28 28±11 

Scanner 

adjacent 21± 2  41 ± 4 N/A 

173bpm 

(146-196) 

 

 

148±14 

bpm NS 
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* Time to peak perfusion, ** 100% of patients completed diagnostic imaging in <60s, exact times not specified. *** CPET face 
mask removal increased transfer time. Abbreviations: BPM, beats per minute; CAD, Coronary artery disease; CPET, 
cardiopulmonary exercise test; HR, Heart rate; MRI, magnetic resonance; N/A, Not applicable; NS, not specified; N=, Number 
of patients; MPS-SPECT, Myocardial perfusion scintigraphy Single-photon emission computed tomography; THR, Target heart 
rat

Sukpraphrute (2015) 

(214) 

Patients with 

known or 

suspected 

CAD 115 59±13 

Outside 

scanner 

room NS <60s** N/A 

88±12% 

THR NS NS 

Lafountain (2016) 

(211) Athletes 10 26±5 

Scanner 

adjacent 36±4*** NS N/A 

>95% 

THR 87% NS 

Raman (2016) (212) 

Patients 

referred for 

MPS-SPECT 94 57±11 

Scanner 

adjacent 25 ± 13 46 ± 16 87 ± 36  

97±10% 

THR 

Cine 

83±11% 

THR 

Perfusion  

76±11% 

THR  NS 
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1.2.3.1 Treadmill Ex-CMR Exercise Protocol 

The current treadmill Ex-CMR protocol entails performing initial resting survey 

imaging and LV cine imaging. The patient is removed from the scanner bore for a 

supine 12 lead ECG, then transfers to the scanner adjacent MRI compatible 

treadmill for an initial standing 12 lead ECG and subsequently performs a symptom 

limited Bruce protocol treadmill test. After achieving THR >0.85 x (220-age), the 

patient is rapidly transferred to the MR scanner for free-breathing multiplane cine 

imaging. 0.1mmol/kg gadolinium contrast is injected prior to stress perfusion 

imaging, after which the MRI scanner table is removed from the magnet bore to 

allow 6-8 minutes of recovery with 12-lead ECG and blood pressure monitoring. 

The imaging is completed with rest perfusion and late gadolinium enhanced 

sequences.  (212). This protocol is compared with adenosine/dobutamine 

pharmacological stress CMR imaging in Figure 1-6 (193, 212, 215).
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Figure 1-6 
Comparison of 
pharmacological 
stress CMR using 
Dobutamine  
Adenosine or 
exercise treadmill 
CMR protocols.  

Estimated times of 
completed protocols 
may vary and may 
be dependent on 
centre experience.  

Abbreviations: ECG, 
electrocardiogram; 
Ex-CMR, exercise 
cardiovascular 
magnetic resonance; 
LGE, late gadolinium 
enhancement; LV, 
left ventricle 

Dobutamine  

stress CMR 

Adenosine  

stress CMR 

Treadmill  

Ex-CMR 
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1.2.3.2  Treadmill Ex-CMR sequences 

CMR imaging sequences used after treadmill exercise have developed, to hasten 

acquisition and remove breath holding. Initially, retrospectively gated sequences 

were used with short breath holds to acquire short axis cine imaging for regional 

wall motion abnormality assessment (202). The use of real time bSSFP imaging 

with either TSENSE or GRAPPA acceleration, allowed progression to free 

breathing acquisition of short and long axis left ventricular (LV) cine images for 

regional wall motion assessment (200, 203, 211-213). Additionally, perfusion 

imaging has been performed in several studies, after cine image acquisition, using 

saturation recovery hybrid gradient echo, echo planar imaging (200, 212).      

Treadmill stress CMR offers several benefits over other Ex-CMR modalities (Table 

1-6).  Patients often tolerate treadmill exercise greater than cycling, as it is a more 

natural form of exercise (216) and some patients are unable to cycle (196).  

Patients more readily achieve >85% age predicted target heart rate on the 

treadmill compared to non-weight bearing exercise (210, 217). The treadmill test 

itself provides diagnostic and prognostic information independent of imaging (200, 

218-220) and a traditional maximal oxygen uptake assessment is feasible during 

treadmill exercise within the MR scanner room (211). Treadmill stress incorporates 

a 12-lead ECG exercise test, which is diagnostic even on an MR adjacent 

treadmill, compared with non-diagnostic ECG monitoring performed when 

exercising inside the MR scanner (221). This monitoring may be vital to assess for 

ST segment changes or arrhythmias which can be absolute indications to 

terminate an exercise test during ischaemia testing (222). Therefore treadmill Ex-

CMR is arguably the safest Ex-CMR methodology to assess CAD. There are 

limitations to treadmill Ex-CMR. Imaging at numerous exercise intensities is 

logistically difficult and post stress imaging restricts the time available before a 

decline in heart rate, thus limiting applications to those achievable within a few 

minutes. The transfer process also interrupts the advised post-exercise ECG 

observation period (222). However, whilst MR stress perfusion is feasible using the 

supine cycle ergometer in healthy volunteers (223), treadmill Ex-CMR is currently 
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the only Ex-CMR modality to demonstrate utility in ischaemia detection in CAD 

patients, with clinical evidence from single and multi-centre studies (200, 202, 212, 

214).  

 

1.2.4 In-scanner Exercise CMR 

In-scanner Ex-CMR can be performed by supine cycle or stepper ergometer, 

upright cycling in an open magnet, exercise in the prone position or using isometric 

handgrip; the strengths and weaknesses of the varying methods are presented in 

Table 1-6. In-scanner exercise overcomes the main limitation of treadmill Ex-CMR 

of heart rate (HR) reductions between exercise cessation and image acquisition. 

Imaging during exercise does however have difficulties. Exercise invariably creates 

movement, increased respiratory motion and interference to the surface ECG, all of 

which increase with increasing workload. Movement can be reduced with the use 

of straps or harnesses, but not entirely, especially at higher levels of exercise. 

Breath held images can be performed during exercise but are non-physiological 

and difficult at higher exercise intensities (198) . Imaging during free breathing can 

cause significant through plane motion, making obtaining reliable flow 

measurements difficult, with the pulmonary trunk especially challenging due to its 

short length before bifurcation (224). ECG interference during exercise can create 

ghosting artefacts with gated images and as previously described, accurate 12 

lead ECG monitoring with ST segment analysis cannot be performed during in-

scanner exercise (198, 199, 221). Finally, reaching maximal heart rate is more 

difficult with supine exercise compared with upright exercise; this is well 

documented in stress echocardiography with comparisons between treadmill and 

supine cycle exercise (210, 217, 225, 226). One explanation is early termination 

due to leg fatigue (210, 222), thus maximal oxygen uptake (VO2max) is often 10-

20% lower in supine cycle exercise than treadmill exercise. Despite this, evidence 

from stress echocardiography demonstrates equivalency or superiority in detecting 

ischaemia over post stress treadmill exercise (210, 217, 225). Indeed, 

comparatively higher blood pressure attained during supine ergometry (210, 217, 

226, 227), results in a similar rate-pressure product to treadmill exercise, such that 
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target heart rates during supine exercise are generally lower when compared to the 

same exercise intensity in the upright position. Despite the described difficulties of 

performing in-scanner exercise CMR, techniques have been adapted, with the use 

of the supine cycle ergometer, such that it is possible to perform in-scanner Ex-

CMR to maximal intensity heart rates with imaging during exercise to assess either 

bi-ventricular function or great vessel flow (198, 224), but often not both, due to 

time constraints of scanning at incremental levels during or immediately post 

exercise. 

 

1.2.4.1 Supine Ergometer Exercise CMR 

The first published use of a CMR compatible cycle ergometer was in 1995 using a 

0.5T whole body scanner to measure exercise changes in aortic flow (228). 

Studies utilising commercially produced cycle ergometers followed in 1998 with the 

use of the Lode BV MRI compatible ergometer (Figure 1-7) on a 1.5T MRI scanner 

(229).  Whilst the majority of Ex-CMR cycle ergometer studies use this system (81, 

198, 223, 224, 229-248), some institutions have created custom made MRI 

compatible cycle ergometers (195, 249, 250). Other approaches include the supine 

MRI compatible ‘stepper’ ergometer, that utilises an up/down motion, such as the 

Lode BV up/down ergometer (251-254), Ergospect cardio-stepper (251) and 

custom built supine steppers as demonstrated in Figure 1-8 (255).  Studies using 

stepper systems report the benefit of reduced upper body motion, thus reduced 

motion artefact, and less restriction of leg movement compared with cycle 

ergometers, however no studies directly comparing the ergometers have been 

performed. Importantly, the up/down motion recruits less muscle mass than the 

cyclical motion. Thus no study has demonstrated supine ‘stepper’ ergometer Ex-

CMR to maximal intensity, as has been demonstrated with supine cycle 

ergometers (198). 
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Figure 1-7 Lode BV supine cycle ergometer during in-scanner supine 
exercise cardiac magnetic resonance 

The Lode BV supine cycle ergometer allows in-scanner exercise, up to maximal 
exercise intensity, during CMR scanning, as demonstrated by La Gerche et al 
(198).  The ergometer attaches firmly to the MRI scanner bed by screw 
attachments and is safe to use in MRI scanners up to 3T. The patients’ feet attach 
into the stirrups and strap securely in place. Resistance can be altered manually in 
1-watt intervals. This ergometer is the most utilised modality in Ex-CMR research 
studies.      
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Figure 1-8 Custom supine stepper ergometer.  

An example of a supine stepper ergometer utilised in research at the University of 
Wisconsin (255). A. The ergometer outside the MRI-scanner. B- The ergometer in 
use. The ergometer allows for exercise via an up/down motion, a technique which 
is reported to cause less movement artefact than the cycle ergometer at the cost of 
less muscle mass recruitment and thus lower achievable maximal heart rates.    
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1.2.4.2 Exercise Protocol 

Exercise protocols used with supine cycle ergometer Ex-CMR vary depending 

upon the aims of the study/investigation. An example protocol is presented in 

Figure 1-9. The number of stages of exercise is variable depending upon the aims. 

A typical protocol often entails a period of supine cycling with no resistance (0 

Watts) on the ergometer, to allow the patient to accustom to the cycling positon 

and the advised cadence. This is followed by a graduated increase in resistance, 

for example by 25 Watts every 2 minutes, until THR is achieved. However, in 

athletes a faster increase in resistance may be advised. The resistance is then 

maintained whilst at the specific exercise intensity heart rate. Indeed minute 

changes in resistance can be made, if required, to ensure tight control of heart rate 

during scanning. Once THR has been maintained for 60 seconds CMR imaging will 

commence. After completion of a specified exercise intensity stage, the process of 

‘ramping up’ resistance, acquiring a stable THR prior to imaging and maintaining 

that THR during imaging is repeated for each exercise stage required. 
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Figure 1-9 Example of supine bicycle Ex-CMR protocol 

An example of a supine bicycle Ex-CMR protocol. In-scanner Ex-CMR protocols may vary depending on indication, number of 
exercise stages required and participant fitness. Participants with superior cardiovascular fitness may benefit from shorter 
intervals between, or more aggressive, increases in resistance to achieve THR before leg fatigue. Using the Lode BV supine 
cycle ergometer, small alterations in resistance are possible, which can assist a tight control of THR. Abbreviations: LV, left 
ventricular; THR, target heart rate; W, Watts.
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1.2.4.3  In-scanner ventricular volumetric assessment 

Supine ergometer Ex-CMR ventricular volume assessment has progressed from 

imaging during exercise cessation with breath holding (81, 195, 238-240, 249), 

breath holding during exercise (250, 251), free breathing with exercise cessation 

(223, 233, 235), to free breathing during continuous exercise (198, 252). This 

progression has been due to the use of novel CMR sequences and the progression 

from the use of retrospective cardiac gating to real-time and un-gated real time 

techniques to overcome issues with ECG gating. 

Initial Ex-CMR studies utilised retrospective cardiac gating with turbo field echo 

planar imaging (EPI) (81, 238, 239) or b-SSFP sequences (195, 249, 250, 256, 

257) to assess biventricular volumes during Ex-CMR. These were not initially 

feasible with free breathing during continuous exercise. However, recently, Chew 

et al used a free-breathing, multi-shot, respiratory navigated cine imaging method 

to assess biventricular function during continuous supine Ex-CMR with 

retrospective cardiac gating. Healthy volunteers exercised to high exercise 

intensities (mean peak HR= 131bpm) demonstrating excellent intra- and inter-

observer reproducibility and highly reproducible Inter-scan LV and RV ejection 

fraction (93).   

Prior to the recent development using retrospective cardiac gating in Ex-CMR by 

Chew et al, published retrospective cardiac gating techniques had not performed 

image acquisition with free breathing during exercise, this was instead achieved 

using real time techniques. The seminal real time Ex-CMR study by Lurz et al used 

a CMR sequence novel at the time (real time radial k-t-SENSE) demonstrating 

higher temporal resolution than the vendor provided sequences in patients 

exercised to submaximal intensity (252). Subsequent real-time Ex-CMR studies 

have utilised alternative techniques to optimise image quality including the use of 

re-binning, which improved SNR and temporal resolution compared with standard 

sequences, but suffered from ECG gating artefacts in 2 patients resulting in them 

being withdrawn from the study (258). Whilst Le et al preferred resorting back to 
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exercise cessation with real time sequences, to overcome ECG interference during 

Ex-CMR and thus optimise image quality (235). 

Reliable biventricular assessment during maximal exercise has been achieved by 

La Gerche et al with the development of an ‘un-gated real time sequence’ (Figure 

1-10). Cine images are acquired by an un-gated real-time technique, physiological 

data is acquired separately, with respiration measured by a plethysmograph 

attached to the abdomen and ECG recorded via a haemodynamic monitor. 

Specialized in-house software was then used to retrospectively synchronise the 

physiological data and cine images. The un-gated technique overcame the issue of 

excessive ECG artefact encountered during high intensity exercise with the gated 

sequence on direct comparative assessment. The cardiac output derived by this 

technique was validated against the direct Fick method with excellent agreement 

and showed excellent correlation with cardiac outputs on repeat Ex-CMR 

performed 1-hour later (198). Although major limitations of this approach are the 

prolonged post processing time and the requirement for bespoke in-house analysis 

software to synchronize the ECG and respiratory movement with the images, it is 

the only method to date to allow accurate biventricular quantification during 

maximal exercise and has since been utilised in a number of clinical studies (231, 

232, 234, 241, 244, 245, 248).  
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Figure 1-10 Example of real-time ungated CMR imaging at rest and during 
maximal exercise.  

Ungated real-time biventricular volume assessment methodology as developed by 
La Gerche et al (198) and subsequently utilised in numerous clinical studies. 
Abbreviations: HLA, horizontal long axis, SAX, short axis. 
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It should be noted that the physiological response to exercise can differ depending 

on exercise type (aerobic/anaerobic/dynamic) and position (upright/semi-

supine/supine) (222). Previous non-CMR exercise studies have published 

contradicting LVEDV responses to supine exercise, demonstrating an increase 

(259), a decrease (260) or no significant change (261-263) in LVEDV with 

exercise. However, a recent meta-analysis of LV function during supine Ex-CMR, 

involving a pooled analysis of 16 studies, demonstrated a significant rise in LVEF 

with exercise, driven by a fall in LVESV, whilst LVEDV remained unchanged (251). 

 

1.2.4.4 In scanner flow assessment 

Ex-CMR studies for flow assessment began by imaging during cessation of 

exercise and have progressed to free breathing acquisition during continuous 

exercise. Ex-CMR studies have predominantly assessed aortic and/or pulmonary 

artery flow, although flow assessment of the superior and inferior vena cava, left 

and right pulmonary arteries and all four pulmonary veins are feasible (264, 265). 

However, inferior vena cava flow assessment requires specialist sequences and 

respiratory compensation owing to significant diaphragmatic movement during 

exercise (265).  

Initially Ex-CMR flow studies utilised retrospective cardiac gating with EPI 

sequences, with the initial study demonstrating feasibility at low resolution and 

heart rates equivalent of low exercise intensity (228). Faster imaging techniques 

were then adopted with EPI sequences and retrospective gating, reducing breath 

hold times to facilitate imaging after cessation of higher exercise intensities in 

healthy volunteers (236) and subsequently patients with congenital heart disease 

(81, 266). 

Ex-CMR flow acquisition using retrospective cardiac gating with free breathing 

during exercise was first performed by Niezen et al in 1998 during low intensity 

exercise (229), and subsequently during moderate exercise intensity (237, 242) 

and post exercise cessation (264). Retrospective gating via pulse oximetry is 

commonly used to overcome ECG gating artefact at higher exercise intensities 

(229, 237). 
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To facilitate optimal image quality during free breathing continuous exercise, Ex-

CMR studies assessing flow have utilised real time imaging. Various techniques 

have been developed, but require the use of either in-house plug-ins for open 

source software or in-house developed specialist software. Steeden et al used a 

spiral phase contrast real time sequence accelerated with sensitivity encoding 

(SENSE) to acquire aortic flow and a radial KT-SENSE sequence to assess LV 

volumes, during light/moderate exercise on the Lode BV (Up/Down) ergometer. 

Aortic flows acquired by the real time technique had good agreement at rest with a 

standard 2D retrospective free breathing flow acquisition technique and at rest and 

during exercise with the stroke volume from LV volumes (267). The same research 

group then utilised real-time unaliasing by Fourier-encoding the overlaps using the 

temporal dimension and sensitivity encoding spiral phase-contrast magnetic 

resonance sequence (UNFOLDed-SENSE) in subsequent studies. Initially the 

UNFOLDed-SENSE aortic flow sequence was used in a magnetic resonance 

augmented cardiopulmonary exercise test (MR-CPET)  to demonstrated  feasibility 

of MR-CPET in healthy adult volunteers (253) and subsequently in combination 

with real time k-t SENSE short axis cines to perform MR-CPET in paediatric 

healthy controls, repaired tetralogy of Fallot and pulmonary arterial hypertension 

(PAH) patients (254). A limitation of this continuous flow technique, highlighted by 

the authors, is the need to continuously measure flow to guarantee acquisition of 

data at peak exercise. This results in acquiring ≤25,000 frames of flow images and 

therefore creates a significant reconstruction and post processing problem. As 

such, the reconstruction requires an online graphics processing unit reconstruction 

system and in-house post processing tool to cope with the volume of data (254). 

Recently, ungated real time biventricular volume and aortic and pulmonary flows 

were performed during exercise to moderate exercise intensity in healthy 

volunteers and patients with pulmonary arterial hypertension, the flow volumes 

acquired were similar to stroke volumes acquired from biventricular volumes (268). 

Therefore, simultaneous Ex-CMR assessment of ventricular volumes and flow is 

feasible during continuous exercise and free breathing via either real-time or ‘un-

gated real-time’ techniques, but all such techniques currently require the use of 
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specialist software/in-house software adaptation which may limit widespread 

attainability.     

 

1.2.5 Upright cycle ergometer 

Cheng et al demonstrated the feasibility of assessing pulmonary artery flow during 

continuous exercise to moderate intensity in adults and children in a 0.5T vertical 

open bore scanner (269). Although upright cycling may be more tolerated than 

supine exercise, it requires the use of an open low field MR scanner, with benefits 

of easing claustrophobia, but inherent issues of lower signal to noise ratio. CMR is 

feasible at lower field strengths (270), however, although the scanners are 

commercially available they are not in mainstream use, as such very few Ex-CMR 

studies have utilised this approach.  

 

1.2.6 Isometric handgrip Ex-CMR 

Isometric exercise involves the contraction of skeletal muscle without the 

elongation of the muscle, as such is also called static exercise (271). This is 

feasible during CMR by IHG exercise or isometric bicep exercise (272). IHG 

exercise comprises the constant squeezing of a lever on a hand dynamometer, 

generally to a percentage of the subjects maximum force. The technique only 

allows for modest increases in heart rate, typically 10-20bpm above resting rates, 

but causes minimal movement. As such, the technique has mainly been used for 

MR-spectroscopy (MRS) or coronary artery flow imaging where minimal movement 

artefact is pivotal and minimal HR increases are acceptable. Weiss et al performed 

the seminal work with IHG-Ex CMR, developing the phosphorus MRS (31P-MRS) 

stress test which remarkably can detect ischaemia in patients with CAD, despite 

minimal stress and increases in heart rate (273). 
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1.2.7 Prone exercise CMR 

Prone Ex-CMR was first employed by Conway et al who performed exercise MRS 

studies using knee extension with a custom system of straps, cables, pulleys and 

weights (274). Numerous subsequent Ex-CMR studies have similarly used prone 

Ex-CMR performing alternative knee flexion with ankle weights (275-277). Low-

moderate intensity exercise is feasible by this approach, with the most significant 

response from the custom knee extension system by Conway et al, with a mean 

stress HR of 119bpm. This technique has other inherent limitations; exercising 

whilst prone is an unnatural form of exercise which uses weights or resistance 

bands attached to the legs, increasing the resistance can be labour intensive, 

requiring alterations during exercise/scanning or exercise cessation. Prone Ex-

CMR often requires an auditory cue from a metronome to determine work speed, 

however if this isn’t strictly adhered to, then the exact workload is unknown.  As 

such, only Conway et al employed incremental resistance by increasing the 

attached weights to the pulley system used. As such, prone Ex-CMR is not ideal to 

assess incremental levels of exercise intensity or where strict HR increases or 

levels are required.  

 

1.2.8 Exercise CMR assessment of cardiac disease  

Ex-CMR has been utilised to study a wide range of cardiovascular pathology from 

coronary artery disease to potential cardiomyopathic conditions and 

structural/congenital heart disease. Ex-CMR is a larger field of research than 

appreciated, with over 70 publications using it as the primary investigative tool 

across a broad range of cardiac diseases. CAD has been investigated by treadmill 

Ex-CMR assessing regional wall motion and/or myocardial perfusion with post-

stress imaging (197, 200, 202, 203, 211-213), or isometric handgrip exercise to 

assess coronary endothelial function by assessing coronary artery cross-sectional 

area change and coronary flow by velocity encoded CMR (278-281). Ex-CMR is 

developing as a useful tool in athletic heart disease with the ability to differentiate 

the athletic heart adaptation from cardiomyopathy, and to risk stratifying endurance 

athletes against RV arrhythmias (232, 234, 243). Of reassurance for the potential 
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widespread future application of Ex-CMR, even patients with complex congenital 

heart disease are able to perform supine exercise in the confines of the MR bore 

during Ex-CMR. Doing so, a wide range of congenital heart diseases have been 

investigated including: Fontan circulation (245, 246, 265, 266, 282, 283), 

transposition of the great arteries (81, 239, 248), tetralogy of Fallot (254, 284, 285) 

and ventricular septal defects (230). The numerous Ex-CMR studies in congenital 

heart disease is unsurprising given the unique ability of CMR to accurately image 

the right heart and complex congenital anatomies by allowing image acquisition in 

any plane. Ex-CMR studies in chronic pulmonary hypertension patients 

demonstrate reduced RV contractile reserve compared with healthy volunteers 

(233) and even those with iatrogenic induced acute pulmonary hypertension (268). 

Additionally, during Ex-CMR post pulmonary endartectomy CTEPH patients display 

an abnormal pulmonary vascular reserve, not appreciable via resting imaging, 

which can be partially reversed by Sildenafil (244). Ex-CMR studies demonstrate 

adolescent diabetics having decreased cardiac reserve compared with non-

diabetic controls (249, 256, 257), which may be a result of impaired cardiac 

energetics being exacerbated by coronary microvascular dysfunction during 

exercise (277). Furthermore, multiple Ex-CMR studies have utilised 31P-MRS as a 

non-invasive means of assessing the myocardial phosphocreatine to adenosine 

triphosphate concentration ratio, a sensitive indicator of myocardial energy status, 

to investigate multiple different cardiac diseases (273, 276, 277, 286-288). 

 

1.2.8.1 Exercise CMR studies in valve disease 

Despite the multiple Ex-CMR studies referenced in section 1.2.8 and the benefits 

CMR can offer in valve disease assessment, very few Ex-CMR studies have been 

performed in valve disease to date, with the small number of studies presented 

below. 

Ex-CMR studies in aortic regurgitation (AR) have demonstrated that isolated AR in 

children and adults decreased during ‘steady state submaximal exercise’ CMR, 

which equated to prolonged light in-scanner exercise on a custom built device 

(289). Roberts et al assessed the short term effects metoprolol and losartan had on 
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exercise haemodynamics in chronic AR patients after supine exercise in a cross-

over study, showing that with metoprolol there was a lower heart rate, greater AR 

regurgitant fraction, lower aortic distensibility and greater indexed EDV and ESV 

compared to Ex-CMR on losartan (290). Recently, a study by Chew et al, 

demonstrated the feasibility of assessing biventricular function during supine 

moderate intensity Ex-CMR in 5 primary MR patients, however simultaneous 

exercise PCMR aortic flow assessment was not performed, preventing 

quantification of MR during exercise, therefore further development and research is 

required to take full advantage of Ex-CMR in this patient cohort (93). An Ex-CMR 

study assessing the exercise biventricular response to percutaneous pulmonary 

valve implantation (PPVI) in patients with either PR or pulmonary stenosis of 

heterogeneous congenital aetiologies, demonstrated that PPVI resulted in 

restoration of RVEF exercise reserves in pulmonary stenosis patients but only a 

mild augmentation of exercise SV post PPVI in PR patients (291). 

 

1.2.9 Comparing Ex-CMR methods 

Within this section, all types of available/previously studied Ex-CMR methodologies 

have been presented, with each having benefits and weaknesses as displayed in 

Table 1-6. To date, treadmill Ex-CMR has demonstrated the most clinical utility, 

with the multicentre EXACT trial, demonstrating excellent diagnostic value in CAD 

and superiority over exercise MPS-SPECT (212). Additionally treadmill Ex-CMR is 

arguably the safest Ex-CMR technique to stress patients with suspected CAD, 

owing to exercise being performed with 12-lead ECG monitoring which is not 

feasible with in-scanner methods. Therefore currently, treadmill Ex-CMR is 

undoubtedly the first choice Ex-CMR method for diagnosing CAD and ischaemia 

assessment. Studies comparing treadmill Ex-CMR and pharmacological stress 

CMR, in the form of adenosine stress perfusion or dobutamine stress cine CMR 

have not been performed. Treadmill Ex-CMR also benefits from simultaneously 

performing a Bruce protocol treadmill test, which provides additional prognostic 

and diagnostic information. However as demonstrated in Figure 1-6, the average 

treadmill Ex-CMR test may take longer than pharmacological stress CMR and 
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requires additional specialist equipment and technician training. In-scanner Ex-

CMR, as discussed, allows for CMR imaging during multiple stages of continuous 

exercise. As such, supine bicycle Ex-CMR is best placed for investigating 

biventricular response and/or flow changes in non-CAD. With further 

developments, the ability to perform biventricular volume, aortic and pulmonary 

flow assessment during exercise will allow for accurate direct quantification of 

aortic and pulmonary flow and indirect assessment of mitral and tricuspid 

regurgitation. Given resting CMR quantification of valvular regurgitant flow has 

demonstrated superior reproducibility and prognostic value over TTE (63, 64, 292) 

and an abnormal response during stress echocardiography can prompt 

intervention in asymptomatic valve disease (1), Ex-CMR could become an 

important clinical tool to assess valvular and congenital heart disease. However, 

commercially available MRI compatible supine cycle ergometers are expensive, 

therefore institutions wishing to perform Ex-CMR research, in which achieving 

maximal heart rates are not required, may opt to create a custom device or utilise 

cheaper alternatives such as prone exercise with ankle weights or resistance 

bands, indeed isometric hand grip may be preferable for performing exercise MRS 

as it produces minimal movement artefact and the modest HR increases achieved 

are sufficient to detect changes in numerous cardiac diseases.         

 

1.2.10 Future of Ex-CMR 

The potential clinical applications for Ex-CMR are considerable, however further 

technological developments and multicentre trials are needed to demonstrate the 

clinical utility of Ex-CMR. Ex-CMR will likely dichotomise into treadmill Ex-CMR as 

an investigation for CAD, and in-scanner Ex-CMR for non-CAD indications, owing 

to the safer monitoring treadmill Ex-CMR offers and the ability to assess 

biventricular volumes at numerous exercise stages with in-scanner Ex-CMR. The 

recently published multi-centre EXACT-COST trial may assist treadmill Ex-CMR 

gaining greater clinical use in CAD diagnosis and assessment (293). In-scanner 

Ex-CMR could benefit from new faster imaging techniques, to further reduce 

scanning and exercise time, to take full advantage of the multiparametric benefits 
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CMR offers. Development of imaging techniques which allow volume and flow 

assessment during continuous exercise that can be analysed in a timely fashion on 

commercially available software is another important need to increase attainability. 

The potential techniques to perform this include Compressed SENSE (C-SENSE) 

imaging with cine and PCMR sequences or the use of intracardiac 4D-flow. 

 

1.2.10.1 Compressed SENSE 

C-SENSE is a novel vendor provided parallel imaging technique that utilises both 

compressed sensing and SENSE parallel imaging to perform faster imaging. C-

SENSE uses variable density subsampling combined with an iterative 

reconstruction algorithm thus combining the wavelet transformation of compressed 

sensing with the coil information of SENSE (294). By combing two fast imaging 

techniques it can be used to higher acceleration factors than SENSE alone (which 

is a clinical standard parallel imaging technique). As such C-SENSE acquires 

images faster than standard SENSE (295, 296). In addition, Compressed SENSE 

has been deemed more robust to respiratory motion than alternative parallel 

imaging techniques, as theoretically the iterative reconstruction process may 

reduce respiratory artefact (297) and studies demonstrate improved robustness to 

motion artefact than SENSE (298). Therefore at present, C-SENSE may 

theoretically be the optimal fast imaging technique for use with Ex-CMR, as it 

allows faster image acquisition (295), is robust to physical (298) and respiratory 

motion (297) and is now vendor provided, thus increasing widespread attainability. 

Research assessing the feasibility of using C-SENSE with Ex-CMR is therefore 

warranted.  

1.2.10.2 4D-Flow 

4D flow has recently emerged as a valuable research tool (299). Its use in Ex-CMR 

has recently been demonstrated as feasible during continuous supine stepper 

exercise in healthy volunteers by MacDonald et al. The study demonstrated 

excellent reproducibility of 4D flow in the ascending aorta and main pulmonary 

artery, but poor inter-observer reproducibility of quantified kinetic energy in the left 

and right ventricles (300). Clearly further research is needed with such emerging 
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techniques to further enhance the capabilities of Ex-CMR, but with further 

technological advances Ex-CMR could potentially revolutionise stress CMR. 

 

1.2.11 Ex-CMR conclusion 

Exercise CMR offers the potential to combine the superior imaging quality of CMR 

with the preferred and physiological method of stress by exercise. Numerous 

exercise options exist, including MRI scanner adjacent treadmills or in-scanner 

exercise with a supine cycle ergometer or stepper, prone exercise or isometric 

hand grip exercises. Imaging during maximal intensity in-scanner exercise is 

feasible using a supine cycle ergometer with ungated real-time imaging. Further 

advances are required to improve acquisition techniques and decrease scan time, 

to allow for a comprehensive multi-parametric assessment during exercise, which if 

feasible could revolutionise stress CMR.    
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1.3 Exercise prescription for cardiovascular imaging 

 

Exercise prescription is the prescription of a defined exercise type and intensity to 

achieve a desired goal. In cardiac imaging the goal is often to ensure appropriate 

stress has been achieved and that it is done in a graduated manner to ensure 

safety, assess functional response and allow imaging at multiple exercise levels if 

required. Exercise imaging is an important aspect of this body of work. This section 

explains the methods in which to prescribe exercise intensity, determine maximal 

heart rates and assess the subjective and objective measures of exercise intensity. 

This understanding is vital to ensure exercise is individually prescribed to each 

patient to ensure equivalent stress levels are achieved despite differing resting 

variables and fitness levels between patients. Additionally, the general explanation 

that follows serves as a rationale for the methodology of the exercise prescription 

used in Chapters 2&3.   

As described in Section 1.2, Ex-CMR has been utilised in multiple studies to 

various exercise intensities which differed depending on individual study aims. 

Exercise prescription is required with exercise cardiac imaging to define the level of 

stress required for the imaging indication. Exercise prescription requires 

determining the patients maximal exercise capacity to allow prescription of 

exercise levels as percentages of the maximal level.  Maximal oxygen uptake 

(VO2max) assessment during cardiopulmonary exercise testing (CPET) is the 

reference standard way to assess maximal exercise capacity/tolerance (301), 

therefore allowing intensities levels to be prescribed as a percentage of the 

confirmed individuals confirmed VO2max. However, assessing heart rate response is 

often done in lieu of VO2max as heart rate is easy to measure and increases in a 

linear fashion with VO2 throughout exercise (302). As a result, for exercise cardiac 

imaging, patients response to exercise is commonly measured by assessing heart 

rate, usually to an age predicted maximal heart rate (HRmax), calculated using a 

formula, which is most often the ‘HRmax=220-age’ formula. The accuracy of the 

predicted maximal heart rate and resultant prescribed exercise stages is important 

to ensure patients are imaged at the desired intensity. Therefore, important 
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aspects pertaining to maximal heart rate prediction, exercise intensity prescription 

and subjective methods of assessing exercise intensity shall be discussed in the 

following sections. 

 

1.3.1 Age predictive maximal heart rate formulas 

As described the optimal method of assessing an individual’s maximal exercise 

capacity is to derive VO2max via CPET testing. However, for cardiovascular 

imaging, this would require an additional test, thus increasing the time and cost of 

exercise imaging. Therefore, age predictive maximal heart rate formulas are an 

accepted method to assist exercise prescription in lieu of performing CPET (201). 

Frequently utilised age predicted HRmax formulas are shown in Table 1-8. The 

commonest utilised equation clinically is ‘HRmax = 220 –Age’. Although the use of 

this formula in stress echocardiography is advised by the ASE (83) and its 

simplicity has resulted in widespread use, the validity of the formula to accurately 

predict HRmax is surprisingly lacking (303). The original formula, attributed to Fox et 

al (304), was created as a rough formulation (with no regression analysis 

performed) of HR decline with age, from 10 studies with varying criteria for having 

reached HRmax ,with the majority investigated aged under 55 years old (303-305). 

Criticisms of this formula are that it can overestimate HRmax in younger patients 

and underestimate it in older patients (305-307). Thus, subsequent formulas, 

created via meta-analysis or laboratory testing, generally suggest a lower intercept 

and smaller age co-efficient (Table 1-8).  

Numerous formulas have been created with varying demographics of the test 

group. Given predictive formulas should not be applied universally but ideally to the 

population in which they were tested (201), using a formula developed from a 

cohort with a wide age range, equal sex representation and broad range of 

physical fitness is important. One such formula was created by Tanaka et al: 

‘HRmax = 208 - (0.7 x age)’. The formula was initially developed from a meta-

analysis of 18712 patients and then validated via laboratory testing on a further 

514 patients (305). The meta-analysis involved 18712 patients from 351 studies, 

with the inclusion criteria of: English language studies, published in peer-reviewed 
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journals, at least 5 subjects per group, adult participants, data on men and women 

reported separately and the maximal exertion being documented using objective 

criteria. As the studies had varying groups of patients, in regards physical fitness, 

Tanaka et al allocated patients into one of three arbitrary groups: Endurance 

trained (regular vigorous endurance exercise ≥3 times a week for ≥1 year), active 

(occasional/ irregular aerobic exercise ≤2 times a week) or sedentary (no 

exercise). Treadmill and cycle ergometer data were pooled together as there was 

no significant difference between the two groups. The meta-analysis showed no 

significant difference in results between men and women for endurance trained 

(206 - 0.7 x age), active (207 - 0.7 x age) or sedentary groups (211 - 0.8 x age). 

When the groups are combined the formula created is: HRmax = 208 - (0.7 x age). 

A laboratory study was performed on 514 patients (277 women and 237 men) with 

a broad age range (18-81years). Patients with a body mass index (BMI) >35 were 

excluded. Maximal exertion was identified by ensuring patients had: a respiratory 

exchange ratio of ≥1.15, a plateau in VO2 with increasing exercise, a respiratory 

rate (max) of ≥35 and a perceived rate of exertion of ≥18 on the Borg rating of 

perceived exertion (RPE) scale. The laboratory study formulated a regression 

equation of ‘HRmax =(209 - 0.7xage)’, which showed no significance difference 

between men or women and was not significantly different to the meta-analysis 

derived equation ‘HRmax = (208 - 0.7xage)’. Therefore, ‘HRmax = (208 - 0.7xage)’ 

was advised as a more generalizable equation than ‘HRmax = 220 –Age’, but due to 

exclusion criteria, may not be valid in those with a BMI>35.
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Table 1-8 Common equations for estimating maximal heart rate and the development method and study cohort 

Equation Author Study method Patient number Population 

220 – age Fox et al (304) Approximate fit from HRmax 

achieved in 10 studies 

Not disclosed Mostly <55yrs (304) 

207 – (0.7 x age) Gellish et al (308) Longitudinal analysis of patients 

over a minimum of 6 annual 

GEX tests 

132 (had a total of 

908 GEX)* 

100 men, 32 women, 

 Age 27-78 

206 – (0.88 x age) Gulati et al (309) ETT via Bruce protocol until 

symptoms or ECG changes (no 

VO2max assessment) 

5437 Women Age 35-86 

208 – (0.7 x age) Tanaka et al (305) Meta-analysis followed by CPET 

laboratory testing. 

18712 (meta-

analysis),  

514 (study) 

Study population:  

237 men, 277 women,  

aged 18-81 

Table 1-8 legend: * 132 participants had multiple GEX over several years, allowing assessment of results from 908 GEX. 
Abbreviations: CPET, cardio-pulmonary exercise test; ETT, exercise tolerance test; GEX, Graduated exercise test; HRmax, 
maximal heart rate; VO2max, maximal oxygen uptake.  
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1.3.2 Prescribing exercise intensities 

Once maximal exercise intensity has been discerned, prescription of the desired 

exercise intensity can be done as a percentage of the maximum. Estimating 

exercise intensity can be done via absolute or relative measures. Absolute 

measures include caloric expenditure, absolute oxygen uptake and metabolic 

equivalent tasks. However, absolute measures can misclassify exercise intensity 

as they do not take into account individual factors such as: age, body weight, sex 

and fitness level. Therefore relative methods are often preferred that include: 

percentage of HRmax (%HRmax), percentage of HRmax reserve method (%HRR), 

percentage of VO2max (%VO2max) and percentage of VO2 reserve (%VO2R) (201). 

Calculating the %HRR via the Karvonen method (310) involves calculating the 

difference between resting HR and maximal HR, dividing the value by the 

percentage of exercise intensity required and adding this value to the resting HR, 

as shown in Equation 8 (302, 310).  

 

Equation 8 – How to calculate heart rate reserve percentage via Karvonen 

method 

%𝐻𝑅𝑅 = ((HRmax − HR rest) x % desired intensity of exercise)  +  HR rest 

 

%HRR and %VO2R methods are often preferred for accurate exercise prescription 

over %HRmax and %VO2max methods as these latter methods can under and 

overestimate exercise intensity in comparison (201, 311, 312). As such, numerous 

studies demonstrate that assessing rises in HR via the %HRR method correlates 

better with VO2max than the %HRmax method (302, 313). This superior correlation 

has been attributed to the %HRR method taking into account resting heart rate and 

therefore the significant variations in resting heart rates than can occur between 

individuals. As such, %HRR is often preferred over %HRmax for exercise 

prescription (201). Indeed, as resting and exercise heart rates are lower in the 

supine than upright positions (227, 314), the use of the %HRR method is likely 
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preferable to a %HRmax method when prescribing exercise intensities for use 

during supine Ex-CMR as it should theoretically better account for this factor. The 

American College of Sports Medicine provide guidance on the classification of 

exercise intensity as presented in Table 1-9 (201). 

Table 1-9 American college of sports medicine classifications of exercise 
intensity by relative methods. 

Exercise 

Intensity 

%HRR or 

%VO2R 

%HRmax %VO2max  Borg scale 

RPE 

(6-20 scale) 

Very light <30 <57 <37 <9 

Light 30-39 57-63 37-45 9-11 

Moderate 40-59 64-76 46-63 12-13 

Vigorous 60-89 77-95 64-90 14-17 

Near maximal 

to maximal 
≥ 90 ≥ 96 ≥ 91 ≥ 18 

Table 1-9 legend: Adapted from American College of Sports Medicine guidelines 
(201), Abbreviations: %HRmax, percentage of maximal heart rate; %HRR, 
percentage of maximal heart rate reserve; RPE, rating of perceived exertion; %VO2 

max, percentage of maximum oxygen uptake; %VO2R, percentage of maximal 
oxygen uptake reserve. 

 

1.3.3 Rate of perceived exertion 

Another method to assess exercise intensity is by assessing the rate of perceived 

exertion (RPE), which can be a useful adjunct to assessing heart rate or oxygen 

uptake to assess both subjective and objective response to exercise. Borg et al, 

developed and refined the Borg scale for rating of perceived exertion (315), which 

correlates moderate-strongly with objective measures of exercise intensity (316, 

317). An example of a Borg scale of ratings of perceive exertion is displayed in 

Table 1-10 and the classification of the points on this scale into exercise intensities 

is presented in Table 1-9.   
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Table 1-10 Rating of Perceived Exertion – Borg scale 

 

  

 

 

 

 

 

  

Rating Rating of Perceived Exertion 

6 No Exertion 

7 
Extremely Light 

8 

9 
Very Light 

10 

11 
Light 

12 

13 
Somewhat hard 

14 

15 
Hard 

16 

17 
Very Hard 

18 

19 Extremely Hard 

20 Maximal exertion 
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1.4 Thesis aims/hypothesis 

Mitral regurgitation is a common valve disease with multiple aetiologies and 

variables that effect prognosis and outcomes post-surgery/intervention. Primary 

mitral regurgitation can benefit from early intervention in carefully selected cases, 

to ensure preservation of LV function post-operatively. However, surgery is not 

without risk and therefore the accuracy of investigations advising intervention is 

paramount. TTE is the first line investigation in valvular heart disease (1, 39) and 

exercise-TTE provides additional prognostic information, not present at rest, to 

assist decision making (79, 80). However, as presented throughout this 

introductory chapter, CMR provides reference standard biventricular assessment 

(52, 53) and CMR quantified MR has superior reproducibility (59, 60, 62, 63) and 

prognostic ability compared to TTE (63, 64). Ex-CMR provides the ability to 

combine the superior image quality of CMR with the preferred method of stress. 

Therefore, further developments of Ex-CMR to allow biventricular function and MR 

quantification during exercise may provide a powerful tool to assist decision 

making in borderline cases of primary MR. To facilitate the widespread clinical use 

of Ex-CMR, protocols need developing using fast imaging techniques that can 

acquire high image quality using widely attainable sequences, software and 

equipment. C-SENSE has recently become vendor provided and offers fast image 

acquisition (295) and is robust to physical (298) and respiratory motion (297). As 

such C-SENSE may be well suited to use during Ex-CMR and warrants 

investigation. 

Once the decision to intervene on mitral regurgitation has been made, patients 

deserve an optimal correction based upon evidence based medicine using the 

most accurate techniques to assess outcomes. Currently MVr, when feasible, is 

advised over MVR (1, 39). Although multiple comparative studies between MVr & 

MVR have been performed, there are several limitations that bias the comparison 

and no randomised studies have been performed in primary MR. The limitations of 

prior studies primarily revolve around: studies performed before the routine use of 

chordal preservation with MVR, the use of TTE to define MR severity and assess 

remodelling and the intrinsic bias that often exists between surgical groups with 

MVR groups often older with more comorbities. Many comparative studies predate 
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modern chordal preservation techniques with MVR (116-121) which when used 

demonstrate comparable cardiac reverse remodelling between MVr & MVR (126, 

127). Given cardiac reverse remodelling is associated with a more favourable 

prognosis in a wide variety of cardiac diseases (128, 129), the lack of use in 

comparative studies is a significant limitation. Prior studies comparing outcomes 

between MVr/MVR have done so using TTE to define MR severity and therefore 

determine the need for surgery or assess cardiac remodelling using TTE. Given 

the inaccuracies and suboptimal reproducibility of MR assessment by TTE 

described in this introductory chapter, comparative studies may be biased by 

suboptimal patient selection. Finally, as described in section 1.1.4.2, patients 

referred for MVR are often older with more comorbidities (96), as such intrinsic bias 

often exist between prospective studies comparing MVr vs MVR. Given the greater 

risk of recurrent MR and potential for increased reoperations post MVr, updated 

studies comparing cardiac reverse remodelling and recurrent MR post MVr vs MVR 

with chordal preservation using the reference standard (CMR) are warranted. 

Ideally randomised trials comparing MVr vs MVR with chordal preservation using 

CMR, as the reference standard, to assess biventricular remodelling and quantify 

MR are warranted. However, due to the current evidence favouring MVr, rigorous 

hypothesis generating research is first required to ensure such studies are ethical 

and necessary. Additionally, the growing options of percutaneous treatments 

available to primary MR patients not suitable for surgery are increasing. Therefore 

continued research, accurately assessing outcomes is essential to assist optimal 

patient selection. Generally, smaller alterations in MR and cardiac reverse 

remodelling occurs post percutaneous intervention compared with surgical cohorts. 

As such, the increased accuracy offered by CMR is especially important when 

studying patients undergoing percutaneous intervention, to highlight smaller, but 

significant changes in MR and cardiac reverse remodelling and therefore assist in 

optimal future patient selection.    

In this thesis the following studies have been performed, using CMR as the 

investigative tool, with the aims/hypothesis of each chapter as outlined: 
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Chapter 2) This study aimed to evaluate the feasibility and utility of biventricular 

function and flow assessment in healthy volunteers during continuous in-scanner 

exercise, using vendor supplied Compressed SENSE sequences and commercial 

analysis software. 

 

Chapter 3) This study aimed to evaluate the feasibility and reproducibility of 

assessing biventricular volumes and MR quantification in primary MR patients 

during continuous supine Ex-CMR, using vendor provided image sequences and 

commercially available analysis software, and to describe the biventricular and 

quantitated MR changes during supine Ex-CMR in asymptomatic primary MR 

patients.    

 

Chapter 4) This study aimed to assess the differences in cardiac reverse 

remodelling and MR reduction post MVr vs MVR with chordal preservation for 

significant primary MR, using sequential CMR and a longitudinal watchful-waiting 

control group (no surgical intervention) for comprehensive assessment.  

 

Chapter 5) This study aimed to assess cardiac reverse remodelling and quantitate 

changes in valvular flow after percutaneous valve intervention for primary MR 

using the reference standard (CMR). 

 

Each of the above chapters contain specific background, methods, results and 

discussion sections. Chapter 2 develops and validates the methodology 

subsequently utilised in chapter 3. Chapter 4 and 5 share similar methodology in 

separate cohorts of patients and are therefore presented separately. Chapter 6 

provides an overall discussion with comparisons between the Ex-CMR results from 

Chapters 2 & 3 and comparisons of the cardiac reverse remodelling results from 

Chapters 4 & 5. 
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Chapter 2  

 

Exercise cardiovascular magnetic resonance: feasibility of 

biventricular function and great vessel flow assessment during 

continuous exercise accelerated by Compressed SENSE 

 

2.1 Abstract  

Background 

Exercise cardiovascular magnetic resonance (Ex-CMR) typically requires complex 

post-processing or transient exercise cessation, decreasing clinical utility. We 

aimed to demonstrate the feasibility of assessing biventricular volumes and great 

vessel flow during continuous in-scanner Ex-CMR, using vendor provided 

Compressed SENSE (C-SENSE) sequences and commercial analysis software 

(Cvi42). 

Methods 

12 healthy volunteers (8-male, age: 35±9years) underwent continuous supine cycle 

ergometer (Lode-BV) Ex-CMR (1.5T Philips, Ingenia). Free-breathing, respiratory 

navigated C-SENSE short-axis cines and aortic/pulmonary phase contrast 

magnetic resonance (PCMR) sequences were validated against clinical sequences 

at rest and used during low and moderate intensity Ex-CMR. Optimal PCMR C-

SENSE acceleration, C-SENSE-3 (CS3) vs C-SENSE-6 (CS6), was further 

investigated by image quality scoring. Intra-and inter-operator reproducibility of 

biventricular and flow indices was performed. 

Results 

All CS3 PCMR image quality scores were superior (p<0.05) to CS6 sequences, 

except pulmonary PCMR at moderate exercise. Resting stroke volumes from 

clinical PCMR sequences showed stronger correlation with CS3 than CS6 

sequences. Resting biventricular volumes from CS3 and clinical sequences 

correlated very strongly (r>0.93). During Ex-CMR, biventricular end-diastolic 
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volumes (EDV) remained unchanged, except right-ventricular EDV decreasing at 

moderate exercise. Biventricular ejection-fractions increased at each stage. 

Exercise biventricular cine and PCMR stroke volumes correlated very strongly 

(r≥0.9), demonstrating internal validity. Intra-observer reproducibility was excellent, 

co-efficient of variance (CV) <10%. Inter-observer reproducibility was excellent, 

except for resting right-ventricular and exercise bi-ventricular end-systolic volumes 

which were good (CV 10-20%).  

Conclusion 

Biventricular function, aortic and pulmonary flow assessment during continuous Ex-

CMR using CS3 sequences is feasible, reproducible and analysable using 

commercially available software. 
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2.2 Introduction 

Stress cardiac imaging is an important tool in assessing valvular (1) and congenital 

heart disease (194) and has significantly improved the diagnostic accuracy for 

CAD detection compared to exercise ECG (182, 183, 185). CMR has several well 

established benefits over alternative imaging modalities and as such is the current 

reference standard for bi-ventricular volume and functional assessment (52, 53). 

Pharmacological stress CMR is well established clinically and has demonstrated 

superiority over MPS-SPECT in the diagnosis (190, 318) and prognostication of 

CAD (191). However, physical exercise allows a more detailed assessment of 

symptoms, functional state and haemodynamic response to a graduated increase 

in workload and has fewer adverse events compared to pharmacological stress 

(80, 82). As such, current guidelines advise physical exercise as the preferred 

method for stress imaging when feasible (83, 84). Ex-CMR combines the superior 

image quality of CMR with the preferred method of stress by exercise. Despite 

development in research over the past 3 decades, Ex-CMR is not widely utilised 

clinically. Treadmill Ex-CMR has demonstrated clinical utility and superiority over 

MPS-SPECT, in the detection of ischaemia in CAD (212). However, heart rate 

reductions during transfer to the MRI-scanner limit its clinical utility beyond CAD 

assessment and make assessment at multiple exercise intensities logistically 

difficult. In-scanner Ex-CMR with a supine ergometer overcomes this issue, but 

CMR scanning during exercise results in increased physical movement, respiratory 

artefacts and ECG gating artefacts, all of which increase with increasing workload 

(198). Originally, Ex-CMR studies, using retrospective cardiac gating, performed 

imaging during exercise cessation and breath holding to overcome these issues 

(238), unfortunately both are non-physiological and reduce clinical utility. The 

development of un-gated real-time cine imaging, utilising post hoc cardiac and 

respiratory gating, has allowed biventricular volume assessment reliably to 

maximal exercise intensity (198). Recently, combining this technique with un-gated 

flow acquisition resulted in the first study assessing bi-ventricular volumes and 

aortic and pulmonary flow during continuous exercise (268). Unfortunately, the un-

gated real-time technique requires specialist software (for post hoc cardiac and 

respiratory gating) and prolonged post processing and analysis time, thus 
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decreasing clinical utility and widespread attainability (198). Also, real time Ex-

CMR studies assessing flow report the technique acquires a significant volume of 

flow data (<25000 images per patient), requiring the use of an online graphics 

processing unit reconstruction system (254). Therefore free-breathing methods that 

can acquire cine and flow image quality using retrospective cardiac gating during 

continuous exercise may increase the clinical utility of Ex-CMR, as specialist 

software and sequences will not be required. Thus increasing attainability and 

reducing post-processing/analysis time. Indeed recently, biventricular volume 

assessment during free breathing continuous exercise using retrospective cardiac 

gating was proven feasible, by using SENSE-2 short axis cine sequences with 

respiratory navigation to compensate for respiratory motion, the use of 

retrospective cardiac gating in this study allowed analysis on standard 

commercially available software (93). Given the ability to assess biventricular 

haemodynamic response and flow through the aortic and pulmonary valves during 

exercise could allow accurate assessment and quantification of valvular heart 

disease and congenital heart disease, a clinically attainable protocol assessing 

both volumes and flow is inviting. However, faster imaging is required to acquire 

PCMR sequences in addition to cine imaging during Ex-CMR before the onset of 

leg fatigue. As highlighted in section 1.2.10.1, C-SENSE is a novel vendor provided 

parallel imaging technique. By combining compressed sensing and SENSE parallel 

imaging, higher acceleration factors and thus faster imaging can be performed than 

by using SENSE alone (295, 296). C-SENSE is reportedly more robust to physical 

(298) and respiratory motion (297) than alternative parallel imaging techniques. 

Therefore C-SENSE sequences may be the optimal technique to facilitate 

biventricular function and flow assessment using retrospective cardiac gating. To 

date, C-SENSE has not previously been utilised in Ex-CMR. This study aimed to 

demonstrate the feasibility of assessing biventricular volume and flow during 

continuous exercise using vendor provided C-SENSE sequences and 

commercially available standard analysis software. 
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2.3 Methods 

2.3.1 Study design 

Protocol development and feasibility testing was achieved by: 1) developing a free-

breathing C-SENSE protocol and validating this against our institute’s standard 

clinical imaging sequences at rest; 2) determining the optimal acceleration of C-

SENSE for PCMR sequences, for use in Ex-CMR, by assessing resting and 

exercise image quality and comparing the derived stroke volumes against standard 

clinical imaging sequences at rest; 3) utilising the C-SENSE protocol (validated 

against clinical sequences at rest) during continuous low and moderate exercise 

intensities to determine if the acquired biventricular volumes and flow have internal 

validity in terms of consistency of ventricular stroke volumes when derived 

separately from cavity volumes and great vessel flow measurements, and whether 

they are concordant with expected supine exercise physiology. 

A supine cycle ergometer (Lode BV) Ex-CMR was preferred to alternative stress 

modalities due to the ability to perform in-scanner imaging during exercise to 

reasonable exercise intensities as compared with alternative modalities discussed 

in Chapter 1.2. C-SENSE was chosen due to its faster image acquisition and 

increased robustness to respiratory and physical motion than other parallel imaging 

techniques as discussed in section 1.2.10.1 (295-298). Retrospective cardiac 

gating was utilised in this study because, as described in Chapter 1.2, it does not 

require specialist sequences or software and thus ensures our developed 

technique has increased widespread attainability and potentially reduced post-

processing/analysis time compared with real-time/ungated techniques.  

This study was approved by a local ethics committee in England (Yorkshire and the 

Humber – Leeds East 18/YH/0168). All participants provided written informed 

consent. All Ex-CMR studies were performed at the Leeds General Infirmary, UK 

(See appendix).  
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2.3.2 Study population 

12 healthy volunteers (8 male, 4 female), aged 35±9 years (mean±standard 

deviation) (range 23-56 years) underwent CMR at rest and during continuous 

exercise using the Lode BV supine bicycle ergometer. Participants were of a 

healthy weight (BMI 23.9±2.3) and of varying levels of physical fitness, performing 

regular exercise between 0.5 and 15 hours a week (mean 5.0±3.5hours).  All 

healthy volunteers had no significant co-morbidities and no contraindications to 

exercise testing as per AHA guidelines (222). 

2.3.3 Patient preparation 

Specific patient preparations were undertaken to reduce common issues 

encountered in supine Ex-CMR, namely motion, respiratory and cardiac gating 

artefacts, to ensure optimal image quality. Prior to entering the scanner room 

patients were counselled on the importance keeping upper body movement to a 

minimum, this was facilitated by ensuring patients held onto the handles attached 

to the ergometer to help steady their upper body (Figure 2-1b). The patient’s feet 

were securely strapped to the pedals of the cycle ergometer, with additional straps 

applied around the feet, if required, to ensure a secure fit, thus smoother cycling 

and reduced excessive motion. Prior Ex-CMR studies report that cycling movement 

can be restricted by leg contact with the MR bore (93). Therefore, prior to scan 

initiation, patient position was optimised, with a trial in the MR bore whilst attached 

to the cycle ergometer, to ensure cycling could be comfortably performed without 

the knee contacting the MR bore and patients advised against moving from this 

position during Ex-CMR. To reduce ECG/cardiac gating artefact, prior to ECG 

placement, the patient’s chest was optimally prepared, including shaving where 

required and cleaning of the skin surface, the ECG was then secured to the 

patient’s chest with tape to reduce movement. The receiver coil was placed on the 

patient atop padding placed at the patient’s sides to reduce/remove contact 

between the coil and ECG leads during exercise which may produce ECG artefact. 

Pad positioning was individually optimised for each patient to ensure receiver coil 

placement did not cover the face or restrict cycling movement. Straps were placed 

around the patient and receiver coil to reduce motion artefact (Figure 2-1).  
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2.3.4 Exercise protocol 

Participants performed supine cycle ergometer (Lode BV, Netherlands) (Figure 

2-1) exercise during CMR using heart rate reserve and an age predictive maximal 

heart rate model (305), to prescribe individualised low (30-39% HRR) and 

moderate (40-59% HRR) exercise intensities. As described in Chapter 1.3, age-

predictive HR models are an acceptable substitute for CPET defined maximal HR, 

when necessary (201). The use of prior CPET to define maximal HR was 

purposefully avoided in this study to remove an additional step in any resultant 

developed Ex-CMR protocol. The age-predictive maximal HR formula validated by 

Tanaka et al (HRmax = 208 - 0.7 x age) was used due to its rigorous validation in a 

generalizable population, as described in Chapter 1.3.1 (305). The 

%HRR/Karvonen method was used to prescribe exercise intensities from the 

calculated HRmax as it better accounts for lower resting and exercising HR in the 

supine position (201).   

After completion of resting imaging, participants exercised with no resistance, 0 

Watts (W), for 1 minute at a cycling cadence of 60-70rpm (with verbal feedback 

given to maintain this) then at an increase of 25W every 2 minutes until ‘low 

intensity’ target heart rate (THR) was achieved; once THR was achieved, smaller 

alterations in resistance wattage were made to maintain THR. HR was stabilised 

for 30 seconds prior to initiating imaging. After completion of imaging at low 

exercise intensity, resistance was increased by 25W initially and every 2 minutes 

until the prescribed moderate intensity was reached and HR stabilised for 30 

seconds prior to initiating imaging. Exercise performed was continuous and all 

exercise imaging acquired during free-breathing. Participants perceived rate of 

exertion were assessed on the Borg scale (Table 1-10) after exercise cessation, to 

ensure correlation with prescribed intensity CMR imaging. 
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Figure 2-1 The Lode BV supine cycle ergometer  

Supine cycle ergometer before (a), during set up (b) and during use (c). 
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2.3.5 CMR imaging 

CMR imaging was performed on a dedicated cardiovascular 1.5 Tesla MRI system 

(Philips Ingenia system, Best, Netherlands). Initial survey and cine imaging was 

performed including: vertical long axis, horizontal long axis, LVOT and right 

ventricular outflow tract (RVOT) views. At rest, our institute’s standard clinical 

protocol to assess biventricular volumes, aortic and pulmonary flow was performed 

to validate the novel C-SENSE protocol.  The C-SENSE protocol was used at rest 

and during continuous exercise to low and moderate intensities. All image 

acquisitions, including cine imaging and PCMR imaging, were retrospectively 

cardiac gated. Through-plane velocity encoded (VENC) PCMR was acquired at the 

aortic sino-tubular junction for aortic PCMR and in the main pulmonary artery 

(MPA) 1cm superior to the valve for pulmonary PCMR. Resting VENC was set to 

150 cm/s and increased to 250cm/s during exercise; the VENC was increased 

further if aliasing occurred. All PCMR sequences were planned with region of 

interest in the iso-centre of the MRI scanner to reduce background phase-offset 

errors (74, 75). 

 

2.3.5.1 Standard clinical protocol 

At rest, our institute’s standard clinical protocol was performed, to allow validation 

of the novel C-SENSE protocol. Biventricular function was assessed using a 

breath-hold multi-phase, multi-slice short axis cine imaging stack. Great vessel flow 

was assessed from aortic and pulmonary through-plane phase contrast velocity 

mapping acquired during breath-hold (SENSE 2) and a separate free-breathing 

acquisition (no parallel imaging) to ensure a comprehensive comparison with the 

novel C-SENSE protocol.  

The clinical short axis cine imaging parameters were as follows: typical field of view 

(FOV) 360x300mm, repetition time (TR) 3.1msec, echo time (TE) 1.56msec, flip 

angle 60°, SENSE factor 2, multishot turbo field echo (TFE) factor 12, TFE 

acquisition duration 37.4ms, phase percentage 67%, slice thickness 10mm, 0mm 

gap, 30 phases, in-plane spatial resolution acquired at 1.88×1.88mm and 
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reconstructed to 1.25x.125mm, matrix 192x158, planned acquisition involved 7x 8-

second breath-holds.  

The Clinical breath held (SENSE 2) PCMR sequence imaging parameters were: 

typical FOV 350x320mm, TR 4.9msec, TE 2.9msec, flip angle 15°, number of 

signal averages 1, TFE factor 4, slice thickness 8mm, 30 phases, phase 

percentage 67%, acquired in-plane spatial resolution 2.5×2.5mm reconstructed to 

1.22x1.22mm, matrix 140x128, Cartesian sampling, planned acquisition time 13 

seconds.  

The Clinical free-breathing sequence (with no parallel imaging) imaging 

parameters were: typical FOV 400x280mm, TR 17msec, TE 2.4msec, flip angle 

40°, number of signal averages 1, slice thickness 6mm, 40 phases, in-plane spatial 

resolution 1.56×2.23mm, matrix 256x126, Cartesian sampling, typical acquisition 

duration: 101 seconds.  

 

2.3.5.2 C-SENSE protocol  

The evaluation protocol involved biventricular function assessment by free-

breathing, respiratory navigated, continuous cine imaging in short axis geometry 

accelerated by a C-SENSE factor of 3 (CS3). Great vessel flow was assessed by 

aortic and pulmonary through-plane phase-contrast imaging, with two separate 

free-breathing acquisitions using CS3 and C-SENSE 6 (CS6) acceleration. CS3 

and CS6 flow acquisitions were acquired to investigate if a higher acceleration 

would result in better image quality as a faster acquisition may be less prone to 

respiratory artefact.  

The C-SENSE short axis cine imaging parameters were as follows: typical FOV 

300x300mm, TR 2.4msec, TE 1.21msec, flip angle 60°, temporal resolution 

32msec. C-SENSE factor 3, multishot TFE factor 13, TFE acquisition duration 

31.5ms, phase percentage 67%, slice thickness 10mm, 0mm gap, in-plane spatial 

resolution acquired at 2.5×2.5mm and reconstructed to 1.34x1.34mm, matrix 

120x120, planned acquisition time 39 seconds. Respiratory navigation was used 

with the respiratory echo-based navigator positioned on the right hemi-diaphragm 

using a 5mm acceptance window with continuous gating level drift.         
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Imaging parameters of the CS3 and CS6 gradient echo PCMR sequences were: 

typical FOV 350x320mm, TR 4.9msec, TE 2.9msec, flip angle 15°, number of 

signal averages 1, TFE factor 4, slice thickness 8mm, 30 phases, phase 

percentage 67%, acquired in-plane spatial resolution 2.5×2.5mm reconstructed to 

1.22x1.22mm, matrix 140x128, Cartesian sampling, planned acquisition time (per 

slice) of 9 and 5 seconds for CS3 and CS6 PCMR sequences respectively. To 

accommodate for potential through-plane motion during exercise, the CS3 and 

CS6 PCMR sequences were performed using a novel ‘PCMR-imaging stack’ 

acquiring 3x8mm overlapping PC-slices orthogonal to vessel flow (Figure 2-2). 

Aortic PCMR sequences used a -3mm gap (thus the centre of the slices are 

spaced 5mm apart) and the pulmonary flows had -5mm gap (thus the centre of the 

slices are spaced 3mm apart).The increased overlap of the pulmonary PCMR 

sequences was to accommodate for the short length of the main pulmonary artery 

prior to bifurcation, which has led to difficulty performing pulmonary PCMR in 

previous Ex-CMR studies (224).  
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Figure 2-2 Novel phase contrast magnetic resonance (PCMR) stack 
technique 

Example of planning of an aortic (A&B) and pulmonary (C&D) PCMR-stack. Aortic 
PCMR-stack geometry, 8mm slices with -3mm slice gap. Pulmonary PCMR-stack 
geometry, 8mm slices with -5mm slice gap. A) planning of aortic PCMR-stack in 
LVOT1 geometry. B)  planning of aortic PCMR-stack in LVOT2 geometry. C) 
planning of pulmonary PCMR-stack in RVOT1 geometry. D) planning of pulmonary 
PCMR-stack in RVOT2 geometry. Abbreviations: LVOT, left ventricular outflow 
tract; PCMR, phase contrast magnetic resonance; RVOT, right ventricular outflow 
tract. 

 

2.3.5.3 CMR imaging during exercise 

During exercise, the above evaluation C-SENSE protocol was used with the 

addition of free-breathing 4-chamber and LVOT/RVOT cine imaging being 

performed to assess for movement during exercise and re-plan the short-axis cine 

imaging and phase contrast imaging geometry if required. 
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2.3.5.4 CMR analysis 

Images were analysed using commercially available software (cvi42, Circle 

Cardiovascular Imaging, Calgary, AB, Canada). LV and RV endocardial contours 

were manually traced with the papillary muscles and trabeculations considered part 

of the ventricular blood pool and volumes calculated by summation of disks (319). 

Aortic and pulmonary flows were assessed by manually contouring the vessel 

endovascular contour in every phase. The CS3/CS6 PCMR-stack was assessed 

for the slice closest resembling the resting standard clinical acquisition to ensure all 

PCMR images had flow assessed at the same anatomical level. Image quality 

assessment was performed on all assessed PCMR images independently by two 

assessors (TC & NJ), whom were blinded to each-others results. Image quality 

was graded on the following scale: 3- excellent, 2- good, 1- adequate & 0- non 

diagnostic; the mean image quality scores from both assessors are presented. 

    

2.3.6 Statistical analysis 

Data were analysed using SPSS version 26 (IBM Corp.) and Microsoft Excel 2010. 

All continuous data were assessed for normality using Shapiro-Wilk test. Resting 

biventricular parameters comparing the breath-held standard clinical with CS3 

respiratory navigated SA acquisitions were assessed by Pearsons correlation and 

the bias and limits of agreement by Bland-Altman plots. PCMR image quality 

scores were assessed by Wilcoxon signed ranks test and the stroke volume 

comparisons assessed by repeated measures analysis of variance (ANOVA) with 

Bonferroni post-test analysis. Repeated measures ANOVA with Bonferroni post-

test analysis was used to compare cardiac volumetric and flow data between rest 

and different stages of exercise. Intra-observer analysis was performed by TC and 

inter-observer analysis by NJ; reproducibility was assessed by the Coefficient of 

Variation (CV) test, the standard deviation of differences between observations 

divided by the mean and by intra-class correlation (ICC) with a two way random 

model for absolute agreement. P<0.05 was considered statistically significant. Intra 

and inter-observer analysis was performed in a blinded method.          
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2.4 Results 

13 healthy volunteers completed the study protocol, 1 volunteer was excluded due 

to ECG gating issues at moderate exercise intensity, leaving 12 healthy volunteers 

for analysis (8 male, age 35±9 years, BMI 23.9±2.3 kg/m2).  

 

2.4.1 Validation of Compressed SENSE protocol at rest 

The novel C-SENSE protocol was validated against clinical standard sequences at 

rest, before being used during Ex-CMR.  

 

2.4.1.1 Biventricular assessment 

At rest, there were no significant differences between the biventricular volumes 

assessed by the standard clinical or novel CS3 short axis sequences, with all 

parameters demonstrating and very strong correlation (r >0.93, p<0.01) (Table 2-

1), minimal bias and acceptable limits of agreement of left ventricular (Figure 2-4) 

and right ventricular (Figure 2-5) indices. Figure 2-3 demonstrates the typical 

image quality comparison between the resting breath-hold standard clinical and 

free-breathing CS3 short axis sequences. 
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Figure 2-3 Comparison of resting short axis cine image quality acquired by 
clinical breath held SENSE 2 sequences and Compressed SENSE 3 
respiratory navigated sequences  

Clinical breath held SENSE 2 sequences at end-diastole (a) and end-systole (b) 
and Compressed SENSE 3 respiratory navigated sequences at and end-diastole 
(c) and end-systole (d). 
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Table 2-1 Validation of Compressed SENSE 3 free-breathing short axis cine 
sequences at rest vs breath-held clinical standard 

Abbreviations: CS3, Compressed SENSE 3; EDV, end-diastolic volume; EF, 
ejection fraction; ESV, end-systolic volume; HR, heart rate; i, Indexed to body 
surface area; LV, left ventricle; RC, repeatability coefficient; RV, right ventricle; SV, 
stroke volume. 

 

 

 

 

 

Measurement Image Sequence Bland Altman Correlation coefficient 

Clinical CS3 RC Upper  Lower Bias R p-value 

LVEDV (ml) 165±39 164±39 7.05 6.34 -7.76 -0.71 0.996 <0.01 

LVEDVi (ml/m2) 88.8±16 88.5±16 3.69 3.33 -4.05 -0.36 0.994 <0.01 

LVESV (ml) 73±23 71±23 10.38 9.46 -11.29 -0.92 0.976 <0.01 

LVESVi (ml/m2) 38.9±10 38.4±11 5.42 4.95 -5.88 -0.46 0.971 <0.01 

LVSV (ml) 92±19 93±19 6.38 6.58 -6.18 0.2 0.986 <0.01 

LVSVi (ml/m2) 50±7 50±7 3.35 3.46 -3.24 0.11 0.974 <0.01 

LVEF (%) 57±6 57±6 4.74 5.2 -4.28 0.46 0.932 <0.01 

RVEDV (ml) 166±36 166±34 8.59 9.21 -7.96 0.62 0.995 <0.01 

RVEDVi (ml/m2) 89.4±16 89.8±15 4.74 5.15 -4.34 0.41 0.991 <0.01 

RVESV (ml) 75±24 75±21 7.27 6.78 -7.76 -0.49 0.992 <0.01 

RVESVi (ml/m2) 40.6±11 40.4±10 3.84 3.6 -4.07 -0.23 0.99 <0.01 

RVSV (ml) 90±18 91±17 6.46 7.56 -5.35 1.1 0.985 <0.01 

RVSVi (ml/m2) 48.8±8 49.4±7 3.51 4.15 -2.88 0.63 0.977 <0.01 

RVEF (%) 55±7 56±6 2.82 3.23 -2.42 0.4 0.985 <0.01 
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Figure 2-4 Bland Altman plots comparing left ventricular indices derived from 
Compressed SENSE 3 vs clinical short axis cine sequences  

Dashed red line represents mean bias (mean difference in cardiac parameter 
between the CS3 and clinical sequences). Dashed black lines represent the 95% 
limits of agreement. Abbreviations: CS3, Compressed SENSE 3; EDV, end-
diastolic volume; EF, ejection fraction; ESV, end-systolic volume; i, Indexed to 
body surface area; LV, left ventricle; SV, stroke volume. 
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Figure 2-5 Bland Altman plots comparing right ventricular indices derived 
from Compressed SENSE 3 vs clinical short axis cine sequences  

Dashed red line represents mean bias (mean difference in cardiac parameter 
between the CS3 and clinical sequences). Dashed black lines represent the 95% 
limits of agreement. Abbreviations: CS3, Compressed SENSE 3; EDV, end-
diastolic volume; EF, ejection fraction; ESV, end-systolic volume; i, Indexed to 
body surface area; RV, right ventricle; SV, stroke volume. 
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2.4.1.2 Comparison of resting PCMR sequences 

Mean resting aortic and pulmonary stroke volumes acquired from all 4 PCMR 

sequences were comparable, with CS3 and CS6 free-breathing flow showing 

minimal bias with both breath-hold and free-breathing standard clinical flow 

sequences (Table 2-2). Bias and limits of agreement of attained indexed stroke 

volumes from different PCMR sequences were assessed by Bland Altman plots for 

aortic (Figure 2-6) and pulmonary flow (Figure 2-7). When compared with the 

current clinical standard breath held imaging, CS3 sequences showed minimal bias 

(aortic flow -0.12m/m2-, pulmonary flow -0.69ml/m2) and acceptable limits of 

agreement for aortic (upper limit 3.98ml/m2, lower limit -4.23ml/m2) and pulmonary 

flow (upper limit 5.9ml/m2, lower limit -7.29ml/m2). Whilst in comparison with clinical 

breath held sequences, CS6 sequences showed  minimally greater bias (aortic 

flow -2.15m/m2-, pulmonary flow -0.73ml/m2) and wider limits of agreement for 

aortic (upper limit 5.61 ml/m2, lower limit -9.91ml/m2) and pulmonary flow (upper 

limit 6.37ml/m2, lower limit -7.82ml/m2). CS6 aortic flow measurements were more 

prone to underestimate aortic flow, with a bias of -2.15ml/m2/cardiac cycle against 

the breath-hold clinical standard in comparison to a minimal bias of -0.12 

ml/m2/cardiac cycle using a CS3 flow sequence. Additionally, pulmonary stroke 

volumes from CS6 sequences only demonstrated moderate correlation with clinical 

free-breathing sequences (r=0.655). Therefore, compared with CS6 sequences, 

CS3 sequences show less bias, stricter limits of agreement and stronger 

correlation with clinical breath held sequences and pulmonary free breathing 

sequences. As such, results demonstrate CS3 sequences to closer represent the 

clinical standard than CS6 sequences, with minimal significant difference in aortic 

or pulmonary flow assessment compared with clinical standard sequences.   
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Table 2-2 Summary of comparisons of resting indexed stroke volumes derived from clinical and C-SENSE accelerated 
aortic and pulmonary flow sequences by Bland Altman plots and Pearson correlation coefficient 

  
  
  
  

  Flow comparison Vs Clinical BH Flow comparison Vs Clinical FB 

  Bland Altman 
Correlation 
Coefficient 

Bland Altman 
Correlation 
Coefficient 

Vessel & 
Sequence 

SV 
(ml/m2) 

RC 

Limits of 
agreement Bias 

(ml/m2) 
RC 

Limits of 
agreement Bias 

(ml/m2) 
Upper Lower r-value Upper Lower r-value 

Aorta 

BH 48.3±7.1 
     

9.49 9.6 -9.38 0.11 0.762 

FB 48.4±5.7 9.49 9.6 -9.38 -0.11 0.762 
     

CS3 48.2±6.7 4.1 3.98 -4.23 -0.12 0.96 6.83 6.6 -7.06 -0.23 0.865 

CS6 46.2±6.4 7.76 5.61 -9.91 -2.15 0.849 6.38 4.12 -8.64 -2.26 0.873 

Pulmonary 

BH 48.9±5.9 
     

8.01 7.48 -8.54 0.53 0.8 

FB 48.3±6.4 8.01 7.48 -8.54 -0.53 0.8 
     

CS3 48.2±7.6 6.6 5.91 -7.29 -0.69 0.915 11 6.39 -6.71 -0.16 0.909 

CS6 48.1±6.6 7.1 6.37 -7.82 -0.73 0.85 6.55 10.8 -11.2 -0.2 0.655 

Abbreviations: BH, breath hold; CS3/CS6, compressed SENSE 3/6; FB, free-breathing; SV, stroke volume 
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Figure 2-6 Bland Altman plots comparing resting indexed aortic stroke 
volumes Dashed red line represents mean bias (mean difference in cardiac 
parameter between the CS3 and clinical sequences). Dashed black lines represent 
the 95% limits of agreement. Aortic stroke volumes (SV) (ml/m2/cardiac cycle) 
derived from breath held (BH), free breathing (FB), Compressed SENSE 3 (CS3) 
and Compressed SENSE 6 (CS6) aortic phase contrast magnetic resonance 
sequences. 
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Figure 2-7 Bland Altman plots comparing resting indexed pulmonary stroke 
volumes Dashed red line represents mean bias (mean difference in cardiac 
parameter between the CS3 and clinical sequences). Dashed black lines represent 
the 95% limits of agreement. Pulmonary stroke volumes (SV) (ml/m2/cardiac cycle) 
derived from breath held (BH), free breathing (FB), Compressed SENSE 3 (CS3) 
and Compressed SENSE 6 (CS6) pulmonary phase contrast magnetic resonance 
sequences. 
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2.4.2 Image quality scoring 

Examples of images defined into excellent (3), good (2), adequate (1) and non-

diagnostic (0) image quality categories are presented in Figure 2-8 and the 

different image quality scores between sequences at rest and during Ex-CMR 

presented in Table 2-3. As expected, resting clinical breath-hold image quality 

scores for aortic and pulmonary flows were significantly higher compared to free-

breathing sequences (p<0.01), except when compared with CS3 pulmonary flow 

(p=0.06). At rest, CS3 flow sequences had the highest image quality scores of all 

free-breathing sequences, including the free-breathing clinical sequence, and 

scores were significantly greater than CS6 sequences for aortic (p=0.02) and 

pulmonary (p<0.01) flow. Figure 2-9 demonstrates the image quality of the different 

resting flow images acquired in the same patient. During exercise the image quality 

scores of CS3 aortic and pulmonary flow sequences were consistently higher than 

CS6 flow sequences. Indeed at moderate exercise intensity, five aortic and two 

pulmonary flow CS6 sequences were considered non-diagnostic, whereas all CS3 

flow sequences were of adequate diagnostic quality. Due to the non-diagnostic 

image quality described in numerous CS6 flow acquisitions at moderate exercise 

intensity, the CS6 flow sequences were deemed unsuitable for Ex-CMR flow 

assessment and future studies. 

 

 

Figure 2-8 Example of image quality scoring of excellent, good, adequate and 
non-diagnostic aortic phase contrast magnetic resonance imag
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Table 2-3 Image quality score comparison between flow sequences at rest and exercise 

 

Flow sequence 

Resting Low exercise Moderate exercise 

Aortic Pulmonary Aortic Pulmonary Aortic Pulmonary 

Clinical BH 2.83±0.24*+# 2.88±0.30*# 

 

Clinical FB 2.21±0.38 2.08±0.45# 

CS3 FB 2.33±0.3# 2.38±0.58# 1.5±0.41# 1.46±0.62# 1.21±0.25# 1.08±0.19 

CS6 FB 1.75±0.32 1.63±0.30 1.33±0.37 1.13±0.22 0.88±0.46 0.88±0.41 

Image quality score: 3- excellent, 2- good, 1- adequate & 0- non diagnostic. * p<0.05 superior to clinical free-breathing 
sequence at same exercise stage, + p<0.05 superior to CS3 sequence at same exercise stage, # p<0.05 superior to CS6 
sequence at same exercise stage. BH, breath held; CS, Compressed SENSE; FB, free-breathing. 
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Figure 2-9 Comparison of image quality of resting phase contrast image 
sequences 

Figure comparing both clinical standard sequences (Clinical breath held SENSE 2 
& clinical free-breathing no parallel imaging) with Compressed SENSE 3 and 
Compressed SENSE 6 sequences. 

 

2.4.3 Supine bicycle exercise 

The participants’ haemodynamic responses to supine bicycle exercise are 

displayed in Table 2-4. Participants’ exercised for a total duration of 1947±542s (32 

minutes 27 seconds ± 9 minutes 2 seconds) and maintained within the target HR 

during each exercise stage increasing from 58±6bpm at rest, to 102±5bpm and 

119±5bpm at low and moderate exercise respectively. Systolic BP rose with 

increasing exercise intensity (119±10mmHg at rest to 143±15mmHg at low and 
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160±24mmHg at moderate exercise), whilst diastolic BP remained unchanged 

(71±8 mmHg at rest to 76±13mmHg at low and 75±13 mmHg at moderate 

exercise). BP was un-recordable at moderate exercise intensity in two subjects. 

Participants subjective RPE on the Borg scale (320) were 9.6±1.8 for low and 

13.7±2.4 for moderate exercise intensities, falling into the target ranges, as per 

American College of Sports Medicine guidelines (201), for the prescribed exercise 

intensities. Therefore, both the objective haemodynamic and the subjective Borg 

RPE scores were within the advised ranges for the prescribed exercise intensities.    

 

2.4.4 Cardiac indices response to exercise 

2.4.4.1 Biventricular volumes 

Table 2-4 demonstrates the cardiac volumetric and flow changes during exercise 

and Figure 2-10 shows the typical image quality obtained during exercise for both 

cine and aortic and pulmonary PCMR images.  

During Ex-CMR, LVEDVi did not significantly alter (88.5±16ml/m2 at rest, 

88.2±15ml/m2 at low an 85.9±14ml/m2 at moderate exercise, p=0.256 for rest to 

moderate exercise), indexed LV stroke volume (LVSVi) increased significantly 

(50±7ml/m2 at rest, 57.2±8ml/m2 at low and 59.5±7ml/m2 at moderate exercise; 

p<0.001 for rest to moderate exercise) driven by a significant fall in indexed LV 

end-systolic volume (LVESVi) (38.4±11ml/m2 at rest vs 31±10ml/m2 at low and 

26.4±10ml/m2 at moderate; p<0.001 for rest to moderate exercise) thus causing a 

rise in LVEF with exercise (57±6% at rest, 66±7% at low and 70±8% at moderate 

exercise; p<0.001 for rest to moderate exercise). Therefore, similar to a recent 

meta-analysis (251), results demonstrate no significant change in LVEDVi, but that 

LVEF is increased during Ex-CMR due to significant decreases in LVESVi. 

During Ex-CMR, indexed right ventricular end-diastolic volume (RVEDVi) 

decreased significantly (89.8±15ml/m2 at rest, 87.2±15ml/m2 at low and 

85.2±14ml/m2 at moderate exercise, p=0.023 rest to moderate exercise), indexed 

right ventricular end-systolic volume (RVESVi) decreased (40.4±10ml/m2 at rest vs 

31.1±10ml/m2 at low and 25.8±8ml/m2 at moderate exercise; p<0.001 for rest to 
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moderate exercise) driving a rise in indexed right ventricular stroke volume 

(RVSVi) (49.4±7ml/m2 at rest, 56.1±7ml/m2 at low and 59.4±7ml/m2 at moderate 

exercise; p<0.001 for rest to moderate exercise) and RVEF (56±6% vs 65±7% at 

low and 70±6% at moderate exercise; p<0.001 for rest to moderate exercise) with 

increasing exercise. Therefore during Ex-CMR, RVEF increased due to a more 

exaggerated decrease in RVESVi than occurred in RVEDVi.    
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Figure 2-10 Typical image quality of cine and phase contrast imaging at rest 

and during Ex-CMR at low and moderate exercise using Compressed SENSE-

3 sequences. 

 

 

 

 



 

Table 2-4 Haemodynamic response to supine bicycle exercise using the C-
SENSE 3 protocol 

 Rest Low 

intensity  

Moderate 

intensity 

ANOVA  

P-value 

Rest  

vs Low 

Low  

vs Mod 

Rest  

vs Mod 

HRR% of HRmax N/A 30-39% 40-59%  

HR (bpm) 58±6  102±5  119±5  <0.001 <0.001 <0.001 <0.001 

Systolic BP(mm/Hg)* 119±10  143±15  160±24  <0.001 0.001 0.038 <0.001 

Diastolic BP(mm/Hg)* 71±8  76±13 75±13  0.605 1 1 1 

Borg RPE 6±0  9.6±1.8 13.7±2.4 <0.001 <0.001 <0.001 <0.001 

Cycle workload (W) 0 52±26 84±24 <0.001 <0.001 <0.001 <0.001 

LVEDV (ml) 164±39 163±36 159±34 0.052 1 0.187 0.192 

LVEDVi (ml/m
2
) 88.5±16 88.2±15 85.9±14 0.066 1 0.173 0.256 

LVESV (ml) 71±23 58±21 49±20 <0.001 0.001 0.001 <0.001 

LVESVi (ml/m
2
) 38.4±11 31±10 26.4±10 <0.001 0.001 0.001 <0.001 

LVSV (ml) 93±19 106±19 110±19 <0.001 0.002 0.193 <0.001 

LVSVi (ml/m
2
) 50±7 57.2±8 59.5±7 < 0.001 0.002 0.177 <0.001 

LVEF (%) 57±6 66±7 70±8 <0.001 <0.001 0.002 <0.001 

Aortic SV (ml) 89±17 102±18 105±18 <0.001 0.001 0.708 <0.001 

Aortic SVi (ml/m
2
) 48.2±7 55.1±8 56.6±8 <0.002 0.001 0.682 <0.001 

RVEDV (ml) 166±34 161±33 158±31 0.003 0.104 0.18 0.025 

RVEDVi (ml/m
2
) 89.8±15 87.2±15 85.2±14 0.002 0.096 0.16 0.023 

RVESV (ml) 75±21 58±20 48±17 <0.001 <0.001 0.001 <0.001 

RVESVi (ml/m
2
) 40.4±10 31.1±10 25.8±8 <0.001 <0.001 0.001 <0.001 

RVSV (ml) 91±17 104±18 110±17 <0.001 <0.001 0.008 <0.001 

RVSVi (ml/m
2
) 49.4±7 56.1±7 59.4±7 <0.001 <0.001 0.008 <0.001 

RVEF (%) 56±6 65±7 70±6 <0.001 <0.001 <0.001 <0.001 

Pulmonary SV (ml) 89±18 100±17 102±16 <0.001 0.007 1 0.012 

Pulmonary SVi (ml/m
2
) 48.2±8 54.3±7 55.2±7 <0.001 0.005 1 0.009 

Abbreviations: BP, blood pressure; BPM, beats per minute; EDV, end-diastolic 
volume; EF, ejection fraction; ESV, end-systolic volume; HR, heart rate; HRR, 
heart rate reserve;  i, Indexed to body surface area; LV, left ventricle; RPE, rate of 
perceived exertion; RV, right ventricle; SV, stroke volume; W, Wat
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2.4.4.2 Flow 

Aortic stroke volumes increased significantly during Ex-CMR from 

48.2±7ml/m2/cardiac cycle at rest to 55.1±8ml/m2/cardiac cycle at low and 

56.6±8ml/m2/cardiac cycle at moderate exercise intensities (p<0.001, rest to 

moderate exercise). Indexed aortic stroke volumes showed very strong correlation 

with LVSVi at rest (r= 0.93), low (r= 0.97) and moderate exercise (r= 0.98). During 

Ex-CMR pulmonary stroke volumes increased significantly from 

48.2±8ml/m2/cardiac cycle at rest to 54.3±7ml/m2/cardiac cycle at low and 

55.2±7ml/m2/cardiac cycle at moderate exercise intensities (p=0.009, rest to 

moderate exercise) and correlated strongly with RVSVi at rest (r= 0.88) and very 

strongly during low (r= 0.90) and moderate exercise (r= 0.97). However, close 

correlation of stroke volumes acquired from PCMR and cine sequences is not 

unexpected given both are assessing similar indices.  

2.4.5 Intra/Inter-observer reproducibility 

Intra- and inter-observer reproducibility is shown in Table 2-5. Intra-observer 

reproducibility of all cardiac sequences assessed at rest and during exercise by CV 

were excellent (CV<10%) and all sequences assessed by ICC were excellent 

(ICC>0.9) with exception of pulmonary flow at low (ICC = 0.892) and moderate 

exercise (ICC= 0.847) and LVSV at moderate exercise (ICC = 0.897).  

Inter-observer reproducibility assessed by CV of cardiac parameters were similarly 

excellent (CV<10%), with the exception of RVESV by CS3 cine imaging at rest (CV 

12.96%) and LVESV and RVESV during exercise, with a CV of 11.38% and 

11.39% at low and 16.61% and 17.93% at moderate exercise intensities 

respectively. Cardiac parameters demonstrated excellent ICC (>0.9) at rest with 

the exception of RVSV & RVEF on clinical sequences and RVESV, RVSV & RVEF 

on CS3 sequences demonstrating good ICC (>0.8). During low intensity exercise 

all cardiac parameters demonstrated excellent ICC (>0.9), which decreased to 

good ICC at moderate exercise (ICC>0.75) with the exception of LVEDV and aortic 

flow which maintained excellent ICC (>0.9). The increase in variability of end-

systolic volumes with increased exercise intensity is unsurprising given the 

significant fall in ESV with exercise which allows for a smaller margin of error.  
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Table 2-5 Reproducibility of biventricular volumetric and flow indices 

Exercise level and 

sequence 

Cardiac Parameter Intra-observer Inter-observer 
CV ICC CV ICC 

Resting Clinical 

 

LVEDV 1.32 0.996 2.12 0.988 
LVESV 2.69 0.989 6.58 0.968 
LVSV 2.47 0.967 4.24 0.920 
LVEF 2.06 0.987 3.75 0.931 

RVEDV 2.29 0.985 2.65 0.979 
RVESV 5.34 0.968 8.60 0.918 
RVSV 3.94 0.953 6.89 0.808 
RVEF 3.55 0.957 6.35 0.877 

Aortic flow FB 1.14 0.990 3.07 0.930 
Aortic flow BH 0.83 0.997 2.05 0.980 

Pulmonary flow FB 1.18 0.993 2.15 0.973 
Pulmonary flow BH 1.40 0.988 1.78 0.981 

Resting 

 

Compressed 

SENSE 3 

Free-breathing 

LVEDV 1.29 0.995 2.50 0.985 
LVESV 3.89 0.976 6.66 0.965 
LVSV 2.89 0.958 3.44 0.942 
LVEF 2.98 0.974 3.41 0.953 

RVEDV 1.92 0.986 4.15 0.937 
RVESV 5.40 0.957 12.96 0.814 
RVSV 3.67 0.945 6.24 0.824 
RVEF 3.23 0.968 7.26 0.817 

Aortic flow 0.83 1.000 1.19 0.993 
Pulmonary flow 2.19 0.986 3.55 0.950 

Low intensity 

exercise 

 

Compressed 

SENSE 3 free-

breathing 

LVEDV 0.76 0.998 3.97 0.953 
LVESV 8.77 0.915 11.38 0.911 
LVSV 4.44 0.907 3.46 0.952 
LVEF 4.72 0.923 4.08 0.916 

RVEDV 1.95 0.984 3.72 0.955 
RVESV 8.78 0.907 11.39 0.909 
RVSV 2.97 0.947 3.07 0.940 
RVEF 4.37 0.934 4.09 0.908 

Aortic flow 1.99 0.986 5.88 0.917 
Pulmonary flow 3.13 0.892 3.84 0.927 

Moderate intensity 

exercise 

 

Compressed 

SENSE 3 free-

breathing 

LVEDV 2.09 0.986 4.27 0.940 
LVESV 9.50 0.952 16.61 0.883 
LVSV 4.17 0.897 4.37 0.849 
LVEF 3.54 0.956 4.96 0.891 

RVEDV 3.48 0.964 5.77 0.878 
RVESV 9.23 0.926 17.93 0.754 
RVSV 3.77 0.923 4.99 0.830 
RVEF 2.95 0.955 5.12 0.837 

Aortic flow 2.22 0.975 4.01 0.918 
Pulmonary flow 6.22 0.847 6.11 0.879 

Abbreviations: CV, co-efficient of variance; Breath held; EDV, end-diastolic volume; 
EF, ejection fraction; ESV, end-systolic volume; FB, free breathing; HR, heart rate; 
i, Indexed to body surface area; ICC, intra-class correlation; LV, left ventricle; RV, 
right ventricle. 
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2.5 Discussion 

This study has shown that 1) free breathing CS3 sequences provide acceptable 

image quality and comparable assessment of biventricular size/function and flow to 

standard clinical sequences at rest 2) it is feasible to assess biventricular volumes 

and flow by CMR during continuous in-scanner supine bicycle exercise using free-

breathing C-SENSE, 3) Using CS3 compared to standard clinical imaging, image 

quality and reproducibility were good, but this was not the case with higher 

acceleration factors (CS6) and 4) Using CS3, we have shown superior 

reproducibility in comparison to the only previous study to perform biventricular 

volume and flow assessment during continuous Ex-CMR (which used un-gated 

real-time sequences) (268). 

To our knowledge, only one prior study, by Jaijee et al, has assessed biventricular 

volume and flow assessment with free-breathing during continuous exercise, and 

did so by utilising an un-gated real-time technique (268). The study was insightful, 

investigating right ventricular dysfunction in acute hypoxia and chronic pulmonary 

arterial hypertension. However the authors didn’t perform image quality 

assessment and demonstrated suboptimal reproducibility, on the basis of ICC for 

intra- and inter-observer variability for RVEF. Our RVEF ICC for intra- and inter-

observer analysis respectively was 0.968 and 0.817 at rest, and 0.955 and 0.837 at 

moderate exercise (vs 0.71 and 0.85 at rest and 0.625 and 0.744 at moderate 

exercise in the un-gated real-time study). One caveat with this direct comparison is 

we only studied healthy volunteers in this study, whereas Jaijee et al studied 

healthy volunteers and patients with pulmonary hypertension (268); patients may 

demonstrate increased respiratory motion, worse image quality and so a resultant 

decrease in reproducibility. Therefore our technique needs testing in patients with 

cardiac disease before direct comparisons can be confidently made. Both studies 

represent a significant progression in the potential clinical utility of Ex-CMR, 

however our study is the first study to demonstrate such feasibility using vendor 

provided sequences with analysis performed on standard commercially available 

software.  
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Comparatively lower heart rates are observed during supine exercise compared 

with upright exercise at the same intensity. Exercise in the supine position results 

in higher blood pressure than upright exercise (227), therefore a similar double 

product (systolic blood pressure x heart rate), which is an index of myocardial 

oxygen consumption (321), is achieved at lower heart rates than upright exercise 

(210, 217, 226). Therefore, we used HRR to determine subject specific THR, with 

the resting heart rate assessed when supine. Importantly, our study aimed only to 

assess subjects to moderate exercise intensity, and not to submaximal or maximal 

intensity. Maximal in-scanner continuous exercise can create significant motion 

artefacts, rendering images non-diagnostic, but more importantly may be unsafe in 

a patient population, given the inability to accurately assess ST segment changes 

which could prompt test termination. However, even at moderate intensity exercise, 

an Ex-CMR protocol assessing biventricular function and flow, may theoretically 

provide additional diagnostic and prognostic information in valvular and congenital 

heart disease, especially for valvular regurgitation assessment.  

 

2.5.1 Biventricular response to exercise 

The haemodynamic response to exercise demonstrated a minimal change in 

LVEDV and a rise in LVSV driven by a fall in LVESV during exercise, which is in 

keeping with a recent Ex-CMR meta-analysis of 16 Ex-CMR studies (251). Indeed, 

our study demonstrated a non-significant decrease in LVEDV with exercise as was 

demonstrated by the majority of Ex-CMR studies in the Ex-CMR meta-analysis. 

These findings replicate the theory that being truly supine (rather than recumbent 

in stress echocardiography) results in near maximal LVEDV at rest and thus no 

significant increase is seen with exercise. Additionally, in keeping with prior supine 

Ex-CMR studies (93, 250, 268, 322), the right ventricular response to supine Ex-

CMR in healthy volunteers in our study demonstrated decreases in RVEDVi, with a 

more significant decrease in RVESVi resulting in rises in RVSVi and RVEF.  
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2.6 Clinical Implications 

The clinical utility of Ex-CMR requires rapid image acquisition using accessible 

free-breathing sequences and analysis software. We demonstrated this is feasible 

using C-SENSE. C-SENSE is a vendor provided, CE-MARK’ed pulse sequence, 

permitting faster image acquisition (295, 296) and greater robustness to respiratory 

motion (297) than standard parallel imaging techniques. Our C-SENSE protocol’s 

ability to assess biventricular haemodynamics and great vessel flow, which could 

be used to quantify valvular forward flow/regurgitant flow, in response to 

incremental exercise could theoretically allow a comprehensive assessment in 

valvular and congenital heart disease. Further research in these patient cohorts is 

required.  In asymptomatic significant valve disease, ventricular 

dilatation/dysfunction or an abnormal exercise response can guide the decision to 

advise intervention (1, 37). Given CMR is the reference standard for biventricular 

assessment and CMR derived aortic and mitral regurgitation quantification displays 

superior prognostic value to transthoracic echocardiography (63, 64, 292), the 

additional assessment during exercise may theoretically provide further prognostic 

information. Additionally, in-scanner MR-CPET is feasible (253) and our protocol 

could be performed in combination, theoretically creating a single comprehensive 

investigation. C-SENSE acceleration may benefit other Ex-CMR applications. For 

example, free breathing first pass perfusion using compressed sensing at rest 

(323) and supine exercise stress perfusion CMR are both feasible (223), therefore 

C-SENSE accelerated Ex-CMR stress perfusion may also be feasible. Our 

technique requires further research to demonstrate feasibility in patient 

populations, assess if additional prognostic information is provided above a resting 

CMR scan and whether C-SENSE can be used for other Ex-CMR applications. 

 

2.6.1 Relevance of study findings in field of Ex-CMR 

Ex-CMR, although niche, is a larger field of imaging and research than is 

appreciated with over 70 publications in the field. As discussed in Chapter 1.2, 

numerous exercise modalities exist and numerous diseases have been 

investigated from coronary artery disease and congenital heart disease to diabetic 
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heart disease. The majority of Ex-CMR studies assessing non-ischaemic heart 

disease have done so using cine imaging or PCMR. Despite this and the significant 

developments in Ex-CMR over the past 3 decades only one prior study (268), 

discussed above, has successfully performed combined biventricular cine imaging 

and PCMR flow assessment of the aortic/pulmonary valves/vessels. This is largely 

in part due to the difficulty of performing imaging of sufficient quality and fast 

enough to acquire the data in the limited time available prior to the onset of leg 

fatigue in the exercising patient. This was feasible in our study due to faster image 

acquisition afforded by the use of C-SENSE sequences. Our developed protocol is 

a significant step forward in the field, as it allows assessment of biventricular 

function and great vessel flow, whilst using widely attainable sequences and 

without the need for specialist software.  The protocol could now be used to assess 

a wide range of structural heart disease. Most importantly, the ability to quantify 

aortic, mitral, pulmonary and tricuspid regurgitation, in the same protocol, during 

exercise significantly opens the door for valvular assessment by Ex-CMR. 

Hopefully the developed protocol will facilitate multiple future Ex-CMR studies in a 

broad range of structural and valvular diseases, with the eventual aim that Ex-CMR 

form part of routine clinical assessment in valve disease patients with borderline 

severe disease where accurate exercise imaging can assist decision making.      

 

2.6.2 Novelty of study findings 

This study has multiple novel aspects and findings, specifically being the first study 

to: use C-SENSE with Ex-CMR, assess the optimal C-SENSE acceleration factor 

for PCMR sequences for use in CMR/Ex-CMR and to validate an Ex-CMR protocol 

assessing biventricular volumes and flow using commercially available equipment, 

software and retrospective gating techniques.  

This is the first study to use C-SENSE with Ex-CMR and demonstrate its feasibility 

in the field. Although Jaijee et al previously demonstrated feasibility of performing 

free breathing acquisition of biventricular volumes/function and great vessel flow 

during continuous exercise (268), ours is the first to do so using retrospective 

cardiac gating techniques, with the benefits of increased widespread attainability 
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already discussed. Therefore ours is the first study to validate an Ex-CMR protocol 

assessing biventricular volumes and flow using easily acquirable commercially 

available software and equipment that can assess a broad range of structural 

cardiac disease. To the best of knowledge, this is the first study to investigate the 

optimal C-SENSE acceleration factor for PCMR sequences, in terms of image 

quality and flow correlation with reference standard, for use in CMR/Ex-CMR. Our 

findings have implications for future Ex-CMR studies but also provide novel insight 

for resting imaging. Indeed, the finding that CS6 free breathing aortic sequences 

underestimate aortic flow may be of importance to those using higher acceleration 

factors in resting clinical imaging.   

 

2.7 Study limitations 

The study sample size is small and in healthy volunteers with a healthy mean BMI 

(23.9±2.3 kg/m2) and a mean age (35±9 years) younger than patients typically 

referred for exercise cardiac imaging. Supine Ex-CMR is feasible in older patients 

(93, 241, 290, 324) and obese patients (249) but may be tolerated less well than by 

our study population, potentially resulting in more respiratory and motion artefacts. 

Thus our technique requires further evaluation in patients with cardiovascular 

disease. As with prior supine Ex-CMR studies using a cycle ergometer (93), knee-

to-bore clearance can restrict use in very tall patients. However, height was not an 

exclusion criteria in this study, with the tallest patient at 182cm. Additionally, all 

patients tolerated the Ex-CMR protocol well, completing the imaging without any 

significant restrictions to performing exercise in the scanner bore. Exercise 

duration in the study was longer than ideal for clinical use, but this was a feasibility 

and validation study, testing numerous sequences therefore prolonging exercise 

duration. Further adaption would be required to reduce exercise times for clinical 

use. This could be achieved by removing sequences depending on the aims and/or 

by removing the low intensity exercise stage and just imaging at rest and moderate 

exercise. Derived volumes and flow from biventricular cine images and phase 

contrast images respectively were not compared directly with the reference 

standard of the direct Fick method, however as we have demonstrated, the 
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biventricular cine and corresponding phase contrast flow stroke volumes correlated 

very strongly, demonstrating the internal validity of our technique. Additionally, our 

results follow prior supine Ex-CMR studies, as demonstrated in a recent meta-

analysis (251), demonstrating  rising stroke volumes with increasing exercise 

driven by a fall in LVESV but minimal change in LVEDV. Inter-scan reproducibility 

was not assessed with this study, but has been demonstrated in our institution 

previously in an Ex-CMR study assessing biventricular volumes using a similar 

retrospectively gated, respiratory navigated short axis cine sequence (93). As 

expected, and demonstrated in prior Ex-CMR studies (230, 250-252), image quality 

decreases with increasing exercise intensity, however our study still demonstrated 

good intra- and inter-observer reproducibility during moderate intensity exercise. 

ECG interference was encountered in one patient, early in the study, such that 

miss-triggering occurred at moderate exercise intensity. This made analysis 

technically unfeasible and so the subject was excluded from the study. Subsequent 

subjects had pulse oximetry attached as a backup cardiac gating technique should 

ECG interference occur, however this was not required.  

 

2.8 Conclusion 

Assessment of biventricular function, aortic and pulmonary flows during continuous 

exercise is feasible during exercise to moderate intensity using a free-breathing C-

SENSE accelerated protocol. The ability to use commercially available analysis 

software with this vendor provided technique increases the potential clinical utility 

of Ex-CMR. The developed protocol allows the direct quantification of flow across 

the aortic and pulmonary valves and indirect quantification of mitral and tricuspid 

regurgitation during exercise. Further evaluation is needed in patients with 

cardiovascular disease to assess the value and reproducibility in a clinical setting.   

 

 

  



 125  
 

Chapter 3  

 

Feasibility of biventricular volume assessment and MR 

quantification in primary MR patients during supine exercise 

cardiovascular magnetic resonance 

 

3.1 Abstract  

Background 

Biventricular volume and great vessel flow assessment during continuous supine 

free-breathing supine Ex-CMR has recently been demonstrated feasible using 

Compressed SENSE-3 (CS3) sequences. Exercise transthoracic 

echocardiography (TTE) provides additional prognostic information in primary 

mitral regurgitation (MR). Resting CMR offers reference standard biventricular 

assessment and MR quantification with superior reproducibility to TTE. Therefore, 

we aimed to determine the feasibility of biventricular assessment and MR 

quantification in primary MR patients using the recently validated Ex-CMR protocol.  

Methods 

10 patients with at least moderate primary MR on TTE (8 male, age 62, 55-67years 

IQR) underwent an Ex-CMR protocol involving free-breathing CS3 respiratory 

navigated short axis cine imaging and free-breathing CS3 aortic phase-contrast 

magnetic-resonance at rest and during individually prescribed low and moderate 

intensity in-scanner (1.5T Philips Ingenia) supine cycle ergometer exercise (Lode 

BV). Intra/inter-observer reproducibility of cardiac indices was assessed by 

coefficient of variance (CV). Images were analysed on commercially available 

software (Circle, CVi) 

Results 

All patients completed the Ex-CMR protocol with no complications. During 

exercise, there were no statistically significant changes in biventricular volumes or 

global left ventricular ejection fraction (LVEF). From rest to low and moderate 
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exercise: right ventricular ejection fraction increased (55±5.4% to 60±6.0% and 

63±6.6% respectively, p=0.001), mitral regurgitant fraction (MR-RF) decreased 

(40±14% to 36±11% and 30±15% respectively, p=0.006) and effective forward 

LVEF increased (38±9.3% to 43±9.3% and 46±11% respectively, p=0.004), which 

is a composite of aortic stroke volume and left ventricular end-diastolic volume. 

Intra-observer reproducibility was excellent (CV <10%), except right ventricular 

stroke volumes (RVSV) during low and right ventricular end-systolic volumes 

(RVESV) during both exercise stages, which were good (CV10-20%). Inter-

observer reproducibility was excellent (CV<10%), except RVESV and mitral 

regurgitant volumes at all stages, left ventricular end-systolic volumes during low 

and MR-RF during moderate exercise, which were good (CV 10-20%).       

Conclusion 

Biventricular assessment and MR quantification during continuous supine Ex-CMR 

is feasible and reproducible in asymptomatic primary MR patients. The use of 

vendor provided sequences and commercially available software increases the 

widespread attainability and potential clinical utility of the technique. Further 

research assessing the techniques prognostic ability in primary MR patients is now 

warranted.  
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3.2 Introduction 

The appropriate timing of surgical intervention in patients with significant primary 

mitral regurgitation is difficult and currently guided by symptom development and/or 

risk stratification by cardiac imaging (1, 39). However, onset of symptoms in 

chronic valve disease can be slow/indolent and patients may be unaware of subtle 

changes in exercise tolerance, even on direct questioning (78). Exercise imaging is 

therefore beneficial to accurately identify patients with a symptomatic response or 

imaging biomarkers that may benefit from early surgical intervention (1, 39, 78). 

Exercise-TTE is useful to risk stratify patients (1, 37), during which, the absence of 

LV contractile reserve (LVCR) (85, 86), limited RV contractile recruitment (87), an 

increase in MR severity (88) or exercise induced pulmonary hypertension (89, 90) 

are predictive of a poorer prognosis. Unfortunately, even in  the research setting, 

suboptimal acoustic windows can prevent stress echocardiography use in ~10% of 

patients (88). This deteriorates further in the ‘real world’ setting, where the 

feasibility of MR quantification (PISA method) during exercise-TTE was only 

feasible in 55% of patients, decreasing further to 43% in patients with mitral valve 

prolapse in a study by Coisne et al (92). The use of Ex-CMR could potentially 

overcome these issues as it is not limited by acoustic windows. Resting CMR 

provides reference standard biventricular assessment (51, 52) with MR 

quantification with superior reproducibility (59, 60, 62, 63) and prognostic ability 

compared to TTE (63, 64). In Chapter 2 the ability to perform biventricular volume 

and great vessel flow assessment during continuous supine Ex-CMR was 

demonstrated as feasible in healthy volunteers. This technique could provide the 

ability to assess biventricular response and changes in quantified MR during 

exercise in MR patients. Additionally the technique should allow calculation of 

effective forward LVEF which has never been previously assessed in MR patients 

during exercise before. Effective forward LVEF is a composite of LVEDV and aortic 

stroke volumes, which allows accurate determination of forward LV pump efficiency 

even in the presence of severe MR and has demonstrated accurate predictive 

value of determining post-operative LVEF in primary MR patients during a prior 

resting CMR study (325). Supine Ex-CMR in primary MR patients is feasible. 

Previous work by Chew et al, demonstrated feasibility of biventricular volume 
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assessment during supine Ex-CMR in 5 degenerative MR patients, however 

simultaneous exercise PCMR aortic flow assessment was not performed, 

preventing quantification of MR during exercise (93). Given that a dynamic 

increase in MR during exercise is associated with poorer outcomes (88), the ability 

to simultaneously accurately assess cardiac reserve and quantitate MR changes 

during Ex-CMR is appealing and could potentially overcome limitations described 

in exercise-TTE.  

 

3.3 Aims 

This study aimed to 1) demonstrate the feasibility of assessing biventricular 

volumes and MR quantification in asymptomatic primary MR patients during 

continuous supine Ex-CMR, using vendor provided image sequences and 

commercially available analysis software (Circle CVi) (as developed in chapter 2), 

2) assess the reproducibility of the acquired biventricular volumes and quantitated 

MR-Rvol and MR-RF by performing intra/inter-observer analysis and 3) describe 

the biventricular and quantitated MR changes during supine Ex-CMR in 

asymptomatic primary MR patients.    

 

3.4 Methods 

3.4.1 Study design and population 

Patients were prospectively recruited from the specialist valve clinic at the Leeds 

Teaching Hospitals NHS Trust. Inclusion criteria: At least moderate primary MR 

with LVEF>55% on TTE and asymptomatic (NYHA functional class I). Exclusion 

criteria: Secondary MR (atrial, ischaemic, functional), significant aortic valve 

disease on TTE (≥moderate severity), presence of AF, prior myocardial infarction, 

significant respiratory disease and any contraindications to exercise stress testing 

according to AHA guidelines (222). At least moderate MR severity on baseline TTE 

was defined by integrative approach using ASE guidelines (40), with severity 

parameters as described in Table 1-2.  
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This study was approved by a local ethics committee in England (Yorkshire and the 

Humber – Leeds East 18/YH/0168). All participants provided written informed 

consent. All Ex-CMR studies were performed at the Leeds General Infirmary, UK 

(See appendix).  

 

3.4.2 Exercise protocol 

The exercise protocol used is identical to that utilised in healthy volunteers in 

Chapter 2 and is described in depth in Chapter 2.3.4. In brief summary: patients 

underwent unloaded (0W) cycling for 1-minute on the Lode BV supine ergometer 

with subsequent increases of 25W every 2-minutes until low intensity THR 

achieved (30-39% HRR). Maintenance of THR for exercise stage was made by 

small alterations in resistance if required and THR stabilised for 30 seconds prior to 

CMR imaging. After completion of resting imaging, the ‘ramping’ process was 

repeated increasing resistance by 25W every 2-minutes until moderate intensity 

THR achieved (40-59% HRR) and heart rate stable for 30 seconds before CMR 

imaging.  

 

3.4.3 CMR imaging 

The CMR imaging performed in this study utilised the CS3 protocol developed and 

validated in healthy volunteers in Chapter 2. Pulmonary PCMR sequences 

validated in the healthy volunteers were omitted from this study, to reduce 

scan/cycle time and as they are not required to quantitate MR. CMR imaging was 

performed on a dedicated cardiovascular 1.5 Tesla MRI system (Philips Ingenia 

system, Best, Netherlands). Initial resting survey and cine imaging was performed 

including: vertical long axis, horizontal long axis, LVOT 1&2 views. Respiratory 

navigated CS3 short axis cine imaging and CS3 aortic PCMR stack, with planning 

centred around the sino-tubular junction (Figure 2-2), were performed at rest, low 

and moderate exercise intensity, during free breathing continuous exercise. Free-

breathing 4-chamber and LVOT images were re-acquired at each exercise stage to 

allow re-planning of the CS3 SA cines and aortic PCMR stack if required. CS3 
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CMR sequence parameters were identical to those developed in Chapter 2 and are 

described in-depth in Chapter 2.3.4.2. 

 

3.4.4 CMR analysis 

Images were analysed using commercially available software (cvi42, Circle 

Cardiovascular Imaging, Calgary, AB, Canada). LV and RV endocardial contours 

were manually traced with the papillary muscles and trabeculations considered part 

of the ventricular blood pool and volumes calculated by summation of disks (319). 

Aortic flows were assessed by manually contouring the vessel endovascular wall in 

every phase. The CS3 aortic PCMR stack was assessed for the slice closest 

resembling the resting acquisition to ensure all PCMR images had flow assessed 

at the same anatomical level. MR was quantitated by the indirect LVSV-AoSV 

method as described in Chapter 1.1.3.3.2. Effective forward LVEF was calculated 

by a ratio of forward aortic stroke volume and LVEDV (AoSV/LVEDV) as previously 

described by Gelfand et al (325). 

 

3.4.5 Statistical analysis 

Data were analysed using SPSS version 26 (IBM Corp.) and Microsoft Excel 2010. 

All continuous data were assessed for normality using Shapiro-Wilk test. The 

differences in continuous variables between rest, low and moderate exercise were 

compared by repeated measures ANOVA with Bonferroni correction for normally 

distributed variables and Friedman’s test with Bonferroni correction (if significant) 

for non-normally distributed variables (326). Intra-observer analysis was performed 

by TC and inter-observer analysis by NJ; the reproducibility was assessed by the 

Coefficient of Variation test, the standard deviation of differences between 

observations divided by the mean. Intra and inter-observer analysis was performed 

in a blinded method. p<0.05 was considered statistically significant.                   
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3.5 Results 

3.5.1 Patient demographics 

Ten patients with at least moderate MR on TTE were recruited (8 male, 2 female), 

with a median age of 62 years (55-67years IQR) and underwent CMR at rest and 

during continuous exercise using the Lode BV supine bicycle ergometer. Patient 

demographics are displayed in Table 3-1. Participants were of a healthy weight 

(BMI 24.8±3.3) and varying levels of physical fitness, with 50% performing no 

regular exercise and group median of 1hour/week (0-2.2hrs/week IQR).  All 

patients had no contraindications to exercise testing as per AHA guidelines (222). 

The underlying aetiology of MR was PMVL prolapse in 7 patients, bileaflet prolapse 

in 2 patients and a congenital cleft in the anterior mitral valve leaflet in 1 patient. 

The majority of patients (n=8) had severe MR on baseline TTE with 1 patient with 

moderate-severe MR and 1 with moderate MR. In terms of prior cardio-respiratory 

medical history: 2 patients were hypertensive, 1 had intermittent supraventricular 

tachycardia and 1 suffered multiple previous pulmonary emboli. Two patients were 

on regular angiotensin converting enzyme inhibitors and 2 on regular beta-

blockers. 
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Table 3-1 Baseline characteristics of patients in the CYCLE-MITRAL study 

Baseline characteristics 

Age (years) 62 (55-67) 

Male 8 

Height (cm) 173±6.7  

BMI (kg/m2) 24.8±3.3 

BSA (m2) 1.9±0.2 

Weekly exercise (hours) 1 (0-2.2) 

Cardiac medications: 

Beta-blockers 2 

ACE inhibitors 2 

MR aetiology: 

PMVL prolapse 7 

AMVL prolapse 0 

Bileaflet prolapse 2 

Congenital 1 

TTE defined MR severity: 

Moderate 1 

Mod-Severe 1 

Severe 8 

Abbreviations: ACE, angiotensin converting enzyme; AMVL, anterior mitral valve 
leaflet; BMI, body mass index; BSA, body surface area; MR, mitral regurgitation; 
PMVL, posterior mitral valve leaflet; TTE, transthoracic echocardiography. 

 

3.5.2 Baseline CMR  

Resting/baseline cardiac indices on CMR assessment are displayed in Table 3-2. 

Baseline LVEF was preserved at 64±4.9%. On CMR assessment, baseline/resting 

quantitated MR categorised MR severity as: 4 with severe MR, 5 with moderate-

severe MR and 1 with mild MR by Gelfand et al criteria (70), with a mean MR-Rvol 

of 56±25ml and MR-RF of 40±14%.      
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3.5.3 Supine bicycle exercise 

The patient’s haemodynamic responses to supine bicycle exercise are displayed in 

Table 3-2. Patients exercised for a mean total duration of 1206±303s (20 minutes 6 

seconds ± 5 minutes 3 seconds), with increasing resistance from 51±16W at low to 

82±10W at moderate exercise. Patients described increasing subjective RPE on 

the Borg scale (320) from 6±0 to 9.5±1.6 and 14.8±1.2 for rest, low and moderate 

exercise intensities respectively (p<0.001). From rest to low and moderate 

exercise, patients HR increased (61±10bpm vs 98±6bpm and 115±6bpm 

respectively, p<0.001), systolic BP increased (128±10mmHg to 145±16mmHg and 

163±27mmHg respectively, p=0.001), whilst diastolic BP remained unchanged 

(78±9 mmHg vs 81±15mmHg and 80±9 mmHg respectively, p=0.665).  

  

3.5.4 Cardiac indices response to exercise 

3.5.4.1 Left ventricular indices 

Changes in biventricular size/function during supine Ex-CMR are displayed in 

Table 3-2. From rest to low and moderate exercise, LVEDVi (112±23ml/m2, 

111±21ml/m2 and 107±22ml/m2 respectively, p=0.185), LVESVi (41±12ml/m2, 

36±9.8ml/m2 and 37±11ml/m2 respectively, p=0.055), LVSVi (71±14ml/m2, 

75±15ml/m2 and 70±15ml/m2 respectively, p=0.156) and LVEF (64±4.9%, 67±5.1% 

and 66±6.1% respectively, p=0.075) remained unchanged (Figure 3-1). As 

demonstrated in Figure 3-2, patients demonstrated a variable left ventricular 

response to exercise, with 4 patients showing the presence of LVCR (≥4% rise in 

LVEF), 4 patients absence of LVCR and 2 patients had an initial augmentation of 

LVEF≥4% at low intensity exercise, which then dropped below resting LVEF at 

moderate intensity, which has been termed ‘partial LVCR’.  
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Figure 3-1 Changes in left ventricular indices during supine Ex-CMR 

LVEDVi (upper-left), LVESVi (upper right), LVSVi (lower left) and LVEF (lower-
right) during supine Ex-CMR. Mean group values depicted by dashed black line. 
Statistical comparison across all exercise stages presented (top of graph), which if 
significant then intergroup comparisons (rest vs low, low vs moderate and rest vs 
moderate exercise intensities) are presented (bottom of graph). Abbreviations: 
EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; Ex-
CMR, Exercise Cardiovascular magnetic resonance; i, indexed to body surface 
area; LV, left ventricular; SV, stroke volume.  
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Figure 3-2 Line graph depicting the variable left ventricular cardiac reserve 
(LVCR) between primary MR patients during supine Ex-CMR.  

4 patients had the presence of LVCR with augmentation of LVEF≥4% (LVCR +, 
green), 2 a partial response with initial augmentation of LVEF ≥4% then 
deterioration in LVEF (partial LVCR, yellow) and 4 had an absence of LVCR 
(LVCR - , red). Abbreviations: Ex-CMR, Exercise Cardiovascular magnetic 
resonance; LVEF, Left ventricular ejection fraction; MR, mitral regurgitation. 

 

3.5.4.2 Right ventricular indices 

From rest, to low and moderate exercise, RVEDVi remained unchanged 

(86±16ml/m2 , 87±15ml/m2 and 87±12ml/m2 respectively, p=1), whilst RVESVi 

showed a non-statistically significant decreasing trend (38±8.0ml/m2, 34±5.0ml/m2 

and 32±6.5ml/m2 respectively, p=0.122) resulting in a significant increase in RVSVi 

(48±11ml/m2, 53±14ml/m2 and 55±11ml/m2 respectively, p=0.027) and RVEF 

(55±5.4% vs 60±6.0% at low and 63±6.6% respectively, p=0.001).  
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Figure 3-3 Changes in right ventricular indices during supine Ex-CMR. 

RVEDVi (upper-left), RVESVi (upper right), RVSVi (lower left) and RVEF (lower-
right) during supine Ex-CMR. Mean group values depicted by the dashed black 
line. Statistical comparison across all exercise stages presented (top of graph), 
which if significant then intergroup comparisons (rest vs low, low vs moderate and 
rest vs moderate exercise intensities) are presented (bottom of graph). 
Abbreviations: EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic 
volume; Ex-CMR, Exercise Cardiovascular magnetic resonance; i, indexed to body 
surface area; RV, right ventricular; SV, stroke volume. 
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3.5.4.3 Mitral regurgitant volume/fraction 

During Ex-CMR, from rest to low and moderate exercise, CMR quantitated MR 

showed a significant decrease in MR-Rvol (56±25ml to 52±23ml and 42±24ml 

respectively, p=0.032) and MR-RF (40±14% to 36±11% and 30±15% respectively, 

p=0.006). On Bonferroni post-test analysis, the differences in MR-RF were 

significant from rest to moderate exercise (p=0.035), but not significant for MR-Rvol 

differences between the exercise stages (Table 3-2) (Figure 3-4).  

 

3.5.4.4 Aortic flow and effective forward ejection fraction 

Despite no significant change in LV dimensions or LVEF during Ex-CMR, indexed 

aortic stroke volume increased from 41±8.3ml/m2/cardiac cycle at rest to 

47±8.3ml/m2/cardiac cycle at low and 47±6.5ml/m2/cardiac cycle at moderate 

exercise intensities (p=0.025). This was likely driven by the above described 

reductions in quantitated MR and allowed a significant increase in effective forward 

LVEF from 38±9.3% to 43±9.3% and 46±11% at rest, low and moderate exercise 

respectively (p=0.004) (Figure 3-4).  
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Figure 3-4 Changes in quantitated mitral regurgitation, aortic stroke volume 
and effective forward LVEF during supine Ex-CMR 

MR-Rvol (upper-left), MR-RF (upper right), aortic SVi (lower left) and effective 
forward LVEF (lower-right) during supine Ex-CMR. Mean group values depicted by 
dashed black line. Statistical comparison across all exercise stages presented (top 
of graph), which if significant then intergroup comparisons (rest vs low, low vs 
moderate and rest vs moderate exercise intensities) are presented (bottom of 
graph). Abbreviations: i, indexed to body surface area; LVEF, left ventricular 
ejection fraction; Ex-CMR, Exercise Cardiovascular magnetic resonance; MR-Rvol, 
mitral regurgitant volume; MR-RF, mitral regurgitant fraction; SV, stroke volume. 
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Table 3-2 The haemodynamic, biventricular and mitral regurgitation indices at rest and during supine Ex-CMR 

  

Rest 

Low 

intensity 

exercise 

Moderate 

intensity 

exercise 

p-values 

All groups  Rest vs 

Low 

Low vs 

Mod 

Rest vs 

Mod 

HRR % Of HRmax N/A 30-39% 40-59% 
 

HR achieved (bpm) 61±10 98±6 115±6 <0.001 <0.001 <0.001 <0.001 

Systolic BP (mmHg) 128±10 145±16 163±27 0.001 0.014 0.228 0.008 

Diastolic BP (mmHg) 78±9 81±15 80±9 0.665  

Borg RPE 6±0 9.5±1.6 14.8±1.2 <0.001 <0.001 <0.001 <0.001 

Cycle resistance (W) 0 51±16 82±10 <0.001 0.025 0.025 <0.001 

LVEDV (ml) 210±41 209±37 199±36 0.116 

 

LVEDVi (ml/m2) 112±23 111±21 107±22 0.185 

LVESV (ml) 77±23 68±19 69±21 0.15 

LVESVi (ml/m2) 41±12 36±9.8 37±11 0.055 

LVSV (ml) 133±22 140±24 131±23 0.156 

LVSVi (ml/m2) 71±14 75±15 70±15 0.179 

LVEF (%) 64±4.9 67±5.1 66±6.1 0.075 

Aortic SV (ml) 77±12 88±13 89±13 0.005 0.006 1 0.052 

Aortic SVi (ml/m2) 41±8.3 47±8.3 47±6.5 0.025 0.076 1 0.042 

Effective Forward LVEF (%) 38±9.3 43±9.3 46±11 0.004 <0.001 0.6 0.001 

MR-Rvol (ml) 56±25 52±23 42±24 0.032 0.906 0.185 0.147 

MR-RF (%) 40±14 36±11 30±15 0.006 0.065 0.297 0.035 
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RVEDV (ml) 162±21 162±19 163±21 0.971 

 
RVEDVi (ml/m2) 86±16 87±15 87±12 1 

RVESV (ml) 72±11 63±8.3 60±13 0.090 

RVESVi (ml/m2) 38±8.0 34±5.0 32±6.5 0.122 

RVSV (ml) 90±16 99±20 104±18 0.034 0.29 0.944 0.076 

RVSVi (ml/m2) 48±11 53±14 55±11 0.027 0.539 0.539 0.022 

RVEF (%) 55±5.4 60±6.0 63±6.6 0.001 0.042 0.791 0.001 

Abbreviations: BP, blood pressure; BPM, beats per minute; CO, cardiac output; CI, cardiac index; EDV, end-diastolic volume; 
EF, ejection fraction; ESV, end-systolic volume; Ex-CMR, Exercise Cardiovascular magnetic resonance; HR, heart rate; HRR, 
heart rate reserve;  i, Indexed to body surface area; LV, left ventricle; MR-RF, mitral regurgitant fraction; MR-Rvol, mitral 
regurgitant volume; RPE, rate of perceived exertion; RV, right ventricle; SV, stroke volume; W, Watts.  
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3.5.5 Intra/Inter-observer reproducibility 

Reproducibility of cardiac parameters assessed by coefficient of variance of intra-

observer and inter-observer measurements are presented in Table 3-3. 

Intra-observer reproducibility of cardiac sequences assessed at rest and during 

exercise by CV were excellent (CV<10%) with exception of good intra-observer 

reproducibility of RVESV (CV 12.38%) and RVSV (CV 10.96%) at low and RVESV 

(CV 10.28%), MR-Rvol (CV 12.17%) and MR-RF (CV 10.62%) at moderate 

exercise intensities.   

Inter-observer reproducibility assessed by CV of cardiac parameters were similarly 

excellent (CV<10%), with the exception of good inter-observer variability in RVESV 

(CV 10.22%) and MR-Rvol (CV 10.63%) at rest, LVESV (CV 10.70%), RVESV (CV 

17.06%) and MR-Rvol (CV 10.38%) during low intensity exercise and RVESV (CV 

16.68%), MR-Rvol (CV 16.74%) and MR-RF (CV 15.23%) during moderate 

intensity exercise.  
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Table 3-3 Reproducibility of cardiac indices by supine Ex-CMR in MR patients 

Exercise stage  Cardiac Parameter Co-efficient of Variance 

Intra-observer Inter-observer 

Rest 

LVEDV 1.56 2.13 

LVESV 3.83 6.17 

LVSV 1.9 3.49 

LVEF 2.08 3.25 

RVEDV 4.59 3.03 

RVESV 7.3 10.22 

RVSV 7.17 6.8 

RVEF 4.8 7.08 

Aortic stroke volume 1.57 2.46 

Effective forward LVEF 1.64 3.24 

Mitral regurgitant volume 5.05 10.63 

Mitral regurgitant fraction 3.75 8.26 

Low 

LVEDV 2.09 4.65 

LVESV 4.85 10.7 

LVSV 2.52 3.33 

LVEF 1.69 3.34 

RVEDV 6.36 8.36 

RVESV 12.38 17.06 

RVSV 10.96 9.93 

RVEF 7.18 9.14 

Aortic stroke volume 2.27 3.57 

Effective forward LVEF 1.68 3.96 

Mitral regurgitant volume 5.98 10.38 

Mitral regurgitant fraction 4.44 7.92 

Moderate 

LVEDV  2.3 3.79 

LVESV 5.05 9.06 

LVSV 2.95 3.18 

LVEF 2.18 3.19 

RVEDV 5.01 4.72 

RVESV 10.28 16.68 

RVSV 6.06 8.32 

RVEF 5.57 8.31 

Aortic stroke volume 3.05 4.08 

Effective forward LVEF 2.24 5.6 

Mitral regurgitant volume 12.17 16.74 

Mitral regurgitant fraction 10.62 15.23 

Abbreviations: EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic 
volume; Ex-CMR, Exercise Cardiovascular magnetic resonance; LV, left ventricle; 
RV, right ventricle; SV, stroke volume.  
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3.6 Discussion 

This is the first study to perform biventricular volume/function and quantitative MR 

assessment during continuous supine Ex-CMR in patients with primary MR. The 

study has 5 important findings: 1, biventricular volume/function and quantitated MR 

assessment during continuous moderate supine Ex-CMR is feasible with the use of 

C-SENSE sequences; 2, the study demonstrates good/excellent intra/inter-

observer reproducibility of biventricular indices and MR quantification; 3, the Ex-

CMR protocol uses attainable equipment, sequences and software, reducing 

barriers to clinical utility; 4, in asymptomatic patients with at least moderate primary 

MR on TTE, effective forward LVEF is augmented by a decrease in MR during 

exercise and 5, the study agrees with prior exercise-TTE studies in demonstrating 

variable LVCR (85, 86, 91) and dynamic changes in MR (88) during exercise 

between asymptomatic primary MR patients. 

 

3.6.1 Response to supine Ex-CMR 

In our group of primary MR patients there was no significant change in biventricular 

dimensions or global LVEF with increasing exercise, but significant increases in 

RVEF and reductions in MR-RF during exercise, which resulted in an increase in 

effective forward LVEF.  

 

3.6.1.1 Changes in LV volumes/function 

Prior exercise TTE studies demonstrate variable changes in LV 

volumes/dimensions with exercise. Numerous exercise TTE studies utilising 

upright exercise with post stress imaging demonstrate a decrease in 

LVEDV/dimensions during exercise (85, 91, 327, 328), whilst exercise TTE studies 

using semi-supine exercise demonstrate a more variable response with Magne et 

al showing decreases in LVEDV (88) and Suzuki et al increases in LVEDVi with 

exercise (90). In keeping with prior studies investigating MR patients during fully 

supine exercise (93, 329), our study demonstrated no significant change in LV 

dimensions during exercise. Chew et al performed supine Ex-CMR to moderate 
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exercise intensity in 5 primary MR patients, showing no change in indexed LV 

volumes (93) and Lavie et al performed radionuclide angiography during supine 

exercise in 11 severe MR patients, also showing no change in indexed LV volumes 

(329). These findings may be attributable to greater venous return/preload at rest 

and during exercise in the supine (with legs elevated in a supine 

ergometer/bicycle) than upright positions (330), which may theoretically maintain 

an unchanged LVEDV at higher levels of exercise compared to upright exercise, 

during which LVEDV appears to decrease in primary MR patients (85, 88, 91, 327, 

328) .  

LV contractility can vary between MR patients during exercise. Indeed, our study 

demonstrated non-statistically significant increases in LVEF during supine Ex-

CMR, whilst Chew et al found significant increases in LVEF (58±4% at rest to 

67±3% at moderate exercise, p=0.04), (93). As discussed in chapter 1.1.3.4.1, the 

change in LVEF during exercise can vary between patients with primary MR, with 

patients having an augmentation of LVEF <4% during exercise-TTE being defined 

as having an absence of LVCR. Exercise-TTE studies demonstrate LVCR as an 

independent predictor of outcomes between groups of primary MR patients, 

despite statistically comparable resting MR severity and indexed left ventricular 

dimensions/volumes and LVEF (85, 86). Due to the variable LVCR response 

between primary MR patients, Magne et al demonstrated no significant 

augmentation of LVEF in their overall cohort during semi-supine exercise TTE, as 

54 (47%) patients had LVCR, whilst 61 (53%) an absence of LVCR. The study 

recruited a similar cohort of patients to ours: asymptomatic patients with least 

moderate primary MR on TTE (as per ASE criteria) and preserved LVEF. 

Therefore the differential findings of LVEF between our cohort and that of Chew et 

al, is not un-surprising and likely explained by differing LVCR between groups. 

Indeed, 4 patients in our cohort failed to augment their LVEF ≥4% at any stage, 

whilst 2 had an initial augmentation followed by a reduction in LVEF during 

moderate intensity Ex-CMR (Figure 3-2).  
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3.6.1.2 Changes in RV volumes/function 

Exercise changes in RV dimensions in primary MR patients have been minimally 

investigated, with the majority of prior exercise studies instead focused on changes 

in RV function (87, 331, 332). Only Chew et al has published the changes in RV 

volumes, also using supine Ex-CMR and demonstrated similar findings to ours. 

Both studies showed no change in RVEDVi during exercise. We showed a non-

significant trend of reducing RVESVi with significant increases in RVSVi and 

RVEF, whilst Chew et al showed a significant decrease in RVESVi and non-

significant increases in RVSVi and RVEF (93). Importantly, RV systolic function 

can differ between primary MR patients and has prognostic significance. Kusunose 

et al demonstrated using exercise-TTE that exercise TAPSE is an independent 

predictor of surgery free survival (87). Similar findings have also previously been 

demonstrated in an exercise radionuclide angiography study by Borer et al, where 

exercise RVEF was the best predictor of outcomes in asymptomatic severe MR 

patients with normal resting biventricular function, even over changes in exercise 

LVEF (332). The prognostic importance of exercise RVEF augmentation is not 

surprising, given changes in RVEF during exercise inversely correlate with 

changes in pulmonary pressures (87, 331, 332), rises in which during exercise are 

an independent predictor of adverse outcomes in patients with at least moderate 

primary MR with no/mild symptoms (NYHA≤II) (89, 90). Therefore, similar to LVCR 

being variable between primary MR patients, exercise changes in RVEF can also 

differ, with prognostic implications. As such, variable changes of exercise RVEF 

between studies with small numbers of patients is not unexpected.     

 

3.6.1.3 Changes in quantitated MR and effective forward LVEF 

MR can be dynamic during exercise. In secondary (functional/ischaemic) MR, 

numerous studies have investigated the dynamic changes in quantified MR during 

exercise TTE (36, 333-337), with patients demonstrating a dynamic increase in MR 

having poorer exercise capacity (337) and poorer outcomes (334, 335). In 

comparison, fewer studies have quantified the dynamic change in primary MR 

during exercise (86, 88, 92, 327). Our cohort demonstrated variable dynamic 
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changes in MR-Rvol during supine Ex-CMR (Figure 3-4). This is in keeping with 

prior exercise-TTE studies quantifying changes in primary MR (88, 327). Leung et 

al investigated 40 patients with at least moderate degenerative MR with exercise-

TTE, demonstrating an increase in MR-Rvol in 32% and decrease in MR-Rvol in 

68% of patients (327). Assessing our cohort by this metric, from rest to moderate 

exercise, 20% demonstrated an increase in MR-Rvol and 80% a decrease in MR-

Rvol. Magne et al investigated 68 patients with at least moderate degenerative MR 

with rest and exercise TTE. 10% of patients were excluded due to suboptimal 

images during exercise, preventing accurate MR quantification. Of the remaining 

61 patients, 32% demonstrated a dynamic increase in MR-Rvol (≥+15ml), 42% 

remained relatively unchanged, and 26% a dynamic decrease in MR-Rvol (≥-

15ml). The study found that patients with a dynamic increase in MR-Rvol ≥15ml 

had a worse symptom free survival (88). Assessing our cohort by the same metric, 

10% had a dynamic increase in MR-Rvol (≥+15ml), 40% remained relatively 

unchanged and 50% showed a dynamic decrease in MR-Rvol (≥-15ml). Therefore 

our study agrees with the prior exercise TTE studies, as regards the variable 

dynamic response that can occur between primary MR patients. Additionally, as 

discussed in section 1.1.3.3.3, MR severity is often overestimated by TTE 

compared with CMR during resting imaging (59, 63, 64, 71-73); the same may be 

true during exercise. Therefore theoretically, during Ex-CMR patients in whom MR 

doesn’t decrease may demonstrate a poorer prognosis, likely progressing along a 

spectrum, with those whose MR increases demonstrating the worse outcomes. 

Further research across a broad range of MR severities and symptom states is 

required to assess this hypothesis.    

In our cohort, reductions in MR during exercise allowed an increase in effective 

forward LVEF. Previously, effective forward LVEF has been demonstrated to be a 

predictor of LVEF post-surgical intervention (325), but changes during exercise 

have not been investigated. Given the measurement accounts for changes in LV 

dimensions, function and MR during exercise it could theoretically provide useful 

prognostic information. Additionally, as presented in Table 3-3 the measurement is 

highly reproducible during supine Ex-CMR and therefore warrants further 

assessment in prognostic studies.     
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Although Ex-CMR studies quantifying changes in MR have not been previously 

performed, our findings of reductions in valvular regurgitation with increasing 

exercise intensity mirror that of prior Ex-CMR studies in patients with pulmonary 

valve disease (285, 291). Lurz et al investigated pulmonary stenosis and 

pulmonary regurgitation patients with Ex-CMR pre and post PPVI, demonstrating a 

reduction in PR occurred in both groups during exercise. Pre-PPVI, both groups 

were unable to augment RVSV with exercise but maintained effective forward 

RVSV by reductions in PR with exercise. After PPVI, RVSV increased in both 

groups with exercise; however there was no significant improvement in the 

augmentation of effective forward RVSV during exercise in the PR group. This was 

attributed the significant reduction in PR pre-PPVI during exercise, due to this, the 

study concluded that exercise augmentations in RVSV post PPVI were mostly due 

to reductions in afterload rather than regurgitation (291). Therefore, Lurz et al 

demonstrated, similar to our study, that reductions in valvular regurgitation during 

exercise can facilitate an increase in effective forward flow. 

 

3.6.2 Reproducibility 

The study demonstrated that biventricular and quantitated MR assessment during 

supine Ex-CMR is highly reproducible with excellent reproducibility (CV<10%) of 

biventricular volumes and function during moderate exercise, with the exception of 

RVESV, which were good (CV 10-20%). However, as MR quantification by the 

LVSV-AoSV method is reliant on 3 measurements (LVEDV, LVESV and total aortic 

forward flow), a decrease in reproducibility occurred with increasing exercise. 

However, we still demonstrated good intra and inter-observer reproducibility at 

moderate exercise intensity (CV 10-20%). Interestingly, effective forward LVEF, 

which as discussed accounts for changes in LV volumes, function and MR showed 

excellent intra and inter-observer reproducibility at all stages (CV<6%). This is 

because it is not reliant on LVESV measurements, which are less reproducible. 

Therefore effective forward LVEF may be a useful assessment for future supine 

Ex-CMR studies. 
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3.6.3 Clinical implications 

The rationale for use of exercise cardiac imaging in asymptomatic MR patients is to 

help determine which patients may benefit from early surgery. The aim is to find 

the optimal timing at which the MR is significant and deteriorating but has not yet 

resulted in such significant cardiac remodelling to cause increased peri-operative 

risk or adverse long term outcomes. As discussed in section 1.1.4, current 

guidelines advise intervention in asymptomatic patients once LV dilatation or 

dysfunction develop or after the onset of AF or if resting PASP is >50mmHg in the 

context of a valve with high probability of a durable repair (1, 39). However, once 

LV dilatation/systolic dysfunction develops, a patient’s prognosis is often already 

adversely affected (338). The use of exercise imaging to tease out which patients 

with normal resting LV size and function are likely to deteriorate could therefore of 

significant use. International guidelines recognise the potential benefit of exercise 

echocardiography, however there are no surgical indications in the guidelines that 

currently utilise exercise TTE due to these ‘not been sufficiently well defined to be 

included in current recommendations’ (1). This is likely a result of a deemed 

insufficiency of current evidence and potentially issues around suboptimal 

reproducibility and inability to acquire diagnostic images in a sufficient proportion of 

MR patients (92), as discussed in section 1.1.3.4.1. Therefore a more robust 

exercise methodology may be required. As discussed, resting CMR is the 

reference standard in biventricular assessment (51, 52) and CMR MR 

quantification provides superior reproducibility and prognostic ability in in primary 

MR compared to TTE (63, 64). As demonstrated in exercise-TTE, LVCR, RV 

function (TAPSE), and dynamic changes in MR are independent predictors of 

outcomes in patients with primary MR (85-88, 91). Therefore the ability to assess 

biventricular function and quantitate MR during supine Ex-CMR is clinically 

appealing. This study has demonstrated the feasibility of accurate biventricular 

volumes, function and quantitated MR assessment during supine Ex-CMR, using 

vendor provided sequences, a commercially available ergometer and standard 

analysis software. These features make it more attainable and potentially more 

clinically viable than alternative free-breathing supine Ex-CMR methods that utilise 

the un-gated real-time method, which require specialist sequences and software 
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and prolonged analysis time (198, 268). Using supine Ex-CMR, in comparison to 

exercise-TTE, there are no limitations from acoustic windows, Doppler alignment 

issues or geometric assumptions, when quantifying MR using the LVSV-AoSV 

method. Indeed, in the research setting Magne et al had to exclude 10% of patients 

(88), as accurate MR quantification with exercise-TTE was not feasible and in the 

real world setting, accurate MR quantification with exercise-TTE was only feasible 

in 43% of patients with mitral valve prolapse (92). Where-as all patients 

successfully completed our supine Ex-CMR protocol with all images acquirable and 

analysable with good/excellent intra/inter-observer reproducibility. This protocol 

now needs using in a larger cohort of primary MR patients who are followed up for 

adverse outcomes to allow assessment of its prognostic ability. If demonstrating 

good prognostic ability, given MR-CPET is feasible (253), the current protocol 

could theoretically be adapted to be performed in tandem, therefore potentially 

creating an even more comprehensive assessment for borderline cases of primary 

MR.  

 

Excitingly, the measurement of effective forward LVEF demonstrated excellent 

reproducibility at all exercise stages in our study. As discussed in section 3.2, the 

measurement has demonstrated prognostic utility in prior resting CMR studies 

(325). Given effective forward LVEF represents the ‘true’ forward flow and takes 

into account changes in both LVEF and MR, it may prove to be a useful single 

indices for use in resting and Ex-CMR. Clearly further CMR and Ex-CMR studies 

are needed to assess whether the measurement provides additional prognostic 

insight over other indices. If so, the use of a single reproducible measurement, 

which accounts for two significant cardiac determinants of outcomes in MR patients 

(MR severity and LVEF), could greatly increase the utility of both CMR and Ex-

CMR in the clinical assessment of MR patients. Especially given, as discussed in 

section 1.1.3.1, current resting TTE assessment of MR is reliant on an integrated 

assessment using multiple measurements (40) and is therefore dependent on 

subjective analysis/combination of the various measurements to define severity. 

Finally, although this study focussed on primary MR patients, it should theoretically 

allow accurate biventricular assessment and valve flow assessment in other 
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aetiologies of MR, aortic valve disease and, by reintroducing pulmonary PCMR 

sequences validated in Chapter 2, right heart valve or congenital heart diseases.  

3.6.4 Limitations 

The limitations in this study revolve around its small sample size and strict 

recruitment criteria, which could limit generalisability, but as will be discussed may 

not limit clinical application. Similar to the study in Chapter 2 and prior Ex-CMR 

studies, the MR scanner bore can restrict knee clearance making supine Ex-CMR 

difficult in tall patients. Importantly, height was not an exclusion criteria and our 

tallest volunteer in this study was 182cm. Our cohorts mean BMI was on the border 

between healthy and overweight (24.8±3.3 kg/m2), with 50% a healthy weight (BMI 

20-25) and 50% overweight (BMI 25-30), and therefore our protocol has not been 

validated in obese patients, who may find supine Ex-CMR more difficult, but supine 

Ex-CMR has previously been demonstrated feasible in obese patients in a prior 

study (249). All patients in our study were asymptomatic (NYHA I) and in sinus 

rhythm. Symptomatic patients may not tolerate supine Ex-CMR as well, which 

could result in increased physical and respiratory motion, artefacts from which 

could make image acquisition and analysis more difficult. The presence of AF may 

make retrospective ECG gating during supine-Ex-CMR more difficult, which could 

prolong image acquisition/exercise time and may impact on image acquisition and 

reproducibility. However, the rationale for developing this protocol for use in 

primary MR patients is to help guide management in borderline cases, where 

patients do not have clinical or echocardiographic indications for 

surgery/intervention at rest. Given the development of symptoms or new onset of 

AF, in the context of TTE defined severe MR, is an indication for surgical 

intervention (37, 39), then the lack of demonstrating feasibility in symptomatic 

patients, or those in AF may not significantly limit its clinical use.  

Cycle duration in the study was longer than ideal for clinical use (mean 20 minutes 

6 seconds), as patients were imaged at two exercise intensities, but well tolerated 

by all patients with none needing to terminate early. As demonstrated in Figure 3-2, 

this gives the benefit of demonstrating patients with an initial favourable exercise 

response prior to deterioration. Such findings would be missed by only imaging at 
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rest and one exercise stage. Future studies are required to assess if such features 

place patients in a different prognostic group. However, if such studies do not 

demonstrate any additional benefit to imaging at low intensity exercise, then 

removal of this stage would reduce overall cycling time, making the protocol more 

clinically viable.  

Patients in our study were exercised to moderate exercise intensity with a mean 

HR of 115bpm and not until exhaustion/peak stress.  However, our achieved HR at 

moderate fully supine exercise was only slightly lower than semi-supine exercise-

TTE studies by Magne et al, which were sufficient to demonstrate prognostic 

significance of LVCR at a mean exercise HR of 127bpm (86) and dynamic 

increases in MR at a mean exercise of HR 125±13bpm (88). Indeed, the LVCR 

study by Magne et al acquired the images to assess LVCR at heart rates between 

90-110bpm (86). Given CMR is a more accurate assessment of biventricular 

volumes/function and MR quantification, the data acquired during moderate supine 

Ex-CMR may theoretically be sufficient to provide beneficial prognostic information.  

As per SCMR guidelines (339), MR quantification in the study was performed by 

assessing aortic flow from PCMR sequences planned at the sino-tubular junction. 

This has the potential to overestimate MR severity compared with aortic flow 

assessed at the valve level (340). However CMR studies demonstrate MR 

quantification by this the technique is highly reproducible (62, 63, 71), provides 

superior prognostic assessment compared with TTE (63, 64) and as such is the 

recommended site and method of MR quantification by CMR (339). Indeed TTE 

MR quantification can overestimate MR severity compared with the LVSV-AoSV 

technique (59, 63, 64, 71-73). As a result, as our recruitment was reliant on 

baseline TTE, our cohorts baseline MR severity on CMR assessment was more 

variable than the planned initial recruitment, with one patient that had moderate 

MR on TTE, having mild MR on baseline CMR assessment. 

Finally, the sample size in this study is small, initial plans for this thesis was to 

include 20 patients in this study; unfortunately recruitment was restricted by onset 

of the COVID-19 pandemic. Fortunately sufficient patients were recruited before 

the onset of the pandemic to demonstrate feasibility and reproducibility in this 
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patient cohort. However, the small sample size prevents in-depth analysis to 

assess if resting CMR can predict exercise changes in biventricular 

volumes/function and quantitated MR. Importantly, recruitment in this study is 

ongoing to overcome this issue and assess the protocols prognostic ability.     

     

3.7 Conclusion 

Assessment of biventricular function and MR quantification during continuous 

supine Ex-CMR to moderate intensity is feasible and reproducible. The Ex-CMR 

protocol utilises vendor provided C-SENSE sequences, a commercially available 

ergometer and standard analysis software, increasing widespread attainability, 

potentially making it more clinically viable. Further research is now warranted to 

assess the prognostic ability of the Ex-CMR protocol in primary MR patients and 

assess feasibility in other valve diseases and congenital heart disease.  
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Chapter 4  

 

Cardiac reverse remodelling for primary mitral regurgitation: 

mitral valve replacement vs. mitral valve repair     

 

4.1 Abstract  

Background  

When feasible, mitral valve repair (MVr) is recommended over mitral valve 

replacement (MVR), to treat primary mitral regurgitation (MR), based upon historic 

outcome studies and reverse remodelling studies using transthoracic 

echocardiography (TTE). Cardiovascular magnetic resonance (CMR) offers 

reference standard biventricular volume and function assessment with superior MR 

quantification reproducibility compared to TTE. In patients with primary MR we 

investigated cardiac reverse remodelling and quantitated changes in MR post-MVr 

vs MVR with chordal preservation, using sequential CMR for comprehensive 

assessment.  

 

Methods  

83 patients with at least moderate-severe MR on TTE were prospectively recruited. 

CMR imaging and 6-minute walk tests (6MWT) were performed at baseline and 6 

months after mitral surgery or watchful waiting (control group). CMR protocol 

included: cines for left ventricular (LV) and right ventricular (RV) volumes, 

aortic/pulmonary through-plane phase contrast imaging. MR was quantitated 

indirectly by the LV-aortic stroke volume method.  

 

Results  

72 patients completed follow-up (Controls=20, MVr=30 and MVR=22). Baseline 

cardiac indices, co-morbidities and surgical risk scores were comparable between 
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surgical groups. Baseline biventricular volumes/function were also comparable 

between groups, except for greater right ventricular ejection fraction (RVEF) in 

controls than MVr and MVR groups (54±8% vs 46±6.6% and 46±9.4% 

respectively, p=0.002). Baseline MR regurgitant fraction (MR-RF) was lower in 

controls than MVr and MVR groups (39±13% vs 50±10% and 52±13% 

respectively, p=0.001). At 6 months, compared with controls, MVr and MVR groups 

demonstrated improved 6MWT distances (+0.1±55m vs +57±54m and +64±76m 

respectively, p=0.002) and decreased indexed left-ventricular end-diastolic 

volumes (-1.3±12ml/m2 vs -29±21 ml/m2 and -37±22 ml/m2 respectively, p<0.001), 

indexed left atrial volumes (+1.2±19ml/m2 vs -27±30 ml/m2 and -39±26 ml/m2 

respectively, p<0.001) and MR-RF (+0.4±7.0% vs -29±11 and  -40±14 respectively, 

p<0.001 ). Biventricular reverse remodelling was comparable between surgical 

groups, except poorer RVEF post-MVr compared with controls (47±6.1% vs 

53±8.0% respectively, p=0.01). MVR resulted in lower residual MR-RF than MVr 

(12±8.0% vs 21±11% respectively, p=0.022).  

 

Conclusion  

In primary MR, MVR with chordal preservation may offer comparable cardiac 

reverse remodelling benefits at 6-months compared to MVr. Larger, multicentre 

CMR studies are required, which if confirmed, might then have implications for 

future surgical practice. 
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4.2 Introduction 

Mitral regurgitation is the commonest valve disease in the US and second 

commonest indication for valve surgery in Europe (94, 341). Current guidelines 

recommend MVr over MVR whenever feasible (1, 39), as observational studies 

comparing techniques typically demonstrate worse early and long-term mortality 

post MVR (120, 121). However, numerous studies supporting this recommendation 

pre-date the routine use of chordal preservation techniques with MVR (116-120), 

which improves cardiac reverse remodelling post MVR (112-115, 342). Indeed, 

cardiac reverse remodelling between MVr/MVR is comparable when chordal 

preservation is used (126, 127) and inferior post MVR when not (117, 118). In a 

broad range of cardiac disease, cardiac reverse remodelling is associated with a 

more favourable prognosis (128, 129), therefore lack of chordal preservation in 

comparative studies may result in significant bias. Importantly, MVR is more 

frequently performed in patients with more complex mitral valve disease, advanced 

age, reduced LVEF and worse NYHA functional class, than patients referred for 

MVr (123). Unfortunately, a randomised trial comparing MVr/MVR in primary MR 

has not been performed and studies using propensity matching in an attempt to 

overcome intrinsic bias present conflicting results (123, 124). In ischaemic MR, a 

randomised trial demonstrated no significant difference in survival or left ventricular 

reverse remodelling at 2-years between MVr vs MVR with chordal preservation, but 

greater recurrent MR in the MVr group, resulting in more heart failure related 

adverse events and hospital admissions (125). In primary MR, recurrent MR post 

MVr is not uncommon, with mod-severe MR reported in 13-17% in longitudinal 

studies (135, 136) and associated with adverse LV remodelling and late mortality 

(343). MVr typically results in equivalent (120, 123, 124) or more reoperations than 

MVR (130), however, the reoperation end-point may not account for all recurrent 

significant MR if patients are not keen, or deemed too high risk for repeat surgery.  

Accurate assessment of mitral regurgitation is paramount to guide the need for 

surgical intervention and provide appropriate outcome comparisons between 

MVr/MVR. CMR is the reference standard for biventricular volume and functional 

assessment (52, 53) and compared to TTE, CMR MR quantification has been 

shown to have superior reproducibility (59, 60, 62, 63) and prognostication in 
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primary MR (63, 64). Importantly, MR severity assessment by CMR and TTE can 

be discordant, especially in cases of late-systolic, eccentric or multiple regurgitant 

jets (63). However, CMR defined MR severity correlates stronger with clinical 

outcomes than TTE (63, 64), suggesting it is more accurate. TTE can also 

overestimate MR severity in comparison to CMR (59, 63, 64, 71-73). Indeed, 

Uretsky et al demonstrated in two studies that only 32-37% of those who 

underwent surgical correction due to echocardiogram-defined severe MR, had 

severe MR by CMR criteria (59, 72). Ultimately randomised trials comparing MVr 

vs MVR and/or comparing outcomes post-echocardiogram vs CMR-guided surgical 

intervention could guide future clinical decision making. Prior to this, rigorous 

hypothesis-generating observational data will be required; this study aimed to 

assess differences in cardiac reverse remodelling and residual MR (assessed by 

CMR) following surgical MVr and MVR with chordal preservation for primary MR, 

compared to a matched control group (moderate-severe MR patients on a watchful 

waiting pathway). A control group has been included in this study to allow a 

comprehensive comparison between the surgical groups and controls.  

 

4.3 Methods 

4.3.1 Study design 

This single-centre prospective observational cohort study recruited patients 

between February 2016 and February 2020 with primary MR from the 

cardiology/cardiac surgery out-patient departments at Leeds Teaching Hospitals 

NHS Trust, Leeds, UK. Inclusion criteria: moderate-severe or severe primary MR 

on echocardiography, aged >18 years, suitable/accepted for surgical intervention, 

with capacity to provide written informed consent. Exclusion criteria: Secondary 

(functional/ischaemic/atrial) MR, contraindications to CMR, significant (≥ moderate 

severity) aortic valve disease, uncontrolled AF >120bpm, NYHA functional Class 

IV, terminal illness, haemodynamic instability, renal failure with an estimated 

glomerular filtration rate of <30ml/min/1.73m2, weight >130kg, pregnancy or breast 

feeding, or inability to lie flat for 60 minutes. A watchful waiting control group was 
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included to allow for a comprehensive comparison with surgical groups and to 

allow assessment of cardiac remodelling that occurs in these groups.   

At least moderate-severe MR was defined by a combined assessment of 

qualitative and quantitative echocardiographic measures as per ASE guidelines: 

vena contracta >0.7cm2, PISA radius >0.8cm, EROA >0.3cm2, MR-Rvol 

>45ml/beat, MR-RF >40% (40). Surgical intervention (timing and technique) was 

decided by a multidisciplinary heart team, as per international guidance (1, 37), 

that were independent from the study. Patients underwent standard pre-operative 

assessment for MV intervention including TOE and left+/- right heart 

catheterisation. Baseline clinical and demographic data were recorded for all 

patients. CMR imaging and 6-minute walk tests (6MWT) were performed at 

baseline and 6-months post-surgery (MVR or MVr) or post watchful waiting (control 

group). 6MWT was performed as per American Thoracic Society (ATS) guidelines 

(344). Written informed consent was provided by all patients. The study was 

approved by the local research ethics committee (Yorkshire & The Humber-South 

Yorkshire 15/YH/0503) and complied with the Declaration of Helsinki (see 

appendix).  

 

4.3.2 CMR imaging 

Baseline and 6-month follow-up CMR were performed (1.5T Philips Ingenia, Best, 

Netherlands). CMR protocol involved: 1. Survey images, 2. LV short axis multi-

slice, multi-phase cine imaging bSSFP sequence (TR 3msec, TE 1.6msec, flip 

angle 60°, SENSE factor 2, 10mm thickness, 0mm gap, in-plane spatial resolution 

1.2 x 1.2mm, 30 phases, matrix 192x131, voxel size 1.88x1.88mm, typical FOV 

340mm), 3. 4-chamber and 2-chamber cine imaging to calculate LA volume and 

right atrial (RA) area, 4. Dedicated transaxial RV multi-slice, multi-phase bSSFP 

cine imaging (TR 2.8msec, TE 1.41msec, flip angle 60°, SENSE factor 1.8, 8mm 

thickness, 0mm gap, in-plane spatial resolution 1.88 x 1.88mm, 20 phases, matrix 

192x143, voxel size 1.88x1.88mm, typical FOV 360mm).5. Two orthogonal LVOT 

and RVOT views to plan aortic and pulmonary PCMR imaging respectively, 6. 

Through-plane aortic and pulmonary PCMR, planned at the aortic sino-tubular 
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junction, orthogonal to the aorta, to assess aortic flow and approximately 1cm 

superior to the pulmonary valve, orthogonal to the main pulmonary artery to assess 

pulmonary flow. VENC was set to 150cm/s as standard and increased for repeat 

imaging if aliasing occurred. All PCMR sequences were planned with region of 

interest in the iso-centre of the MRI scanner to reduce background phase-offset 

errors (74, 75). Other PCMR parameters: typical FOV 350x280mm, TR 5.1msec, 

TE 3.2msec, flip angle 15°, temporal resolution 28msec, number of signal 

averages 1, SENSE factor 2, TFE factor 3, TFE acquisition duration 30.8ms, slice 

thickness 8mm, 30 phases, phase percentage 100%, in-plane spatial resolution 

2.5×2.5mm, matrix 140x112, Cartesian sampling, and typical acquisition times, 12-

15 seconds for breath-held sequences. In patients with AF, two acquisitions of 

aortic/pulmonary PCMR imaging with the same parameters were obtained and the 

results averaged to account for heart rate variation. 

 

4.3.3 CMR analysis 

Images were analysed using commercially available software (cvi42, Circle 

Cardiovascular Imaging, Calgary, AB, Canada). Biventricular endocardial contours 

were manually traced; the papillary muscles and trabeculations were considered 

part of the ventricular blood pool and volumes calculated by summation of disks 

(319). Maximal left atrial volume was calculated using the bi-plane area-length 

method from 2 and 4-chamber cine images during ventricular systole, 

corresponding to the last cine image before opening of the mitral valve (345). 

Maximal right atrial area was measured, inclusive of the right atrial appendage, 

from 4-chamber cine images during ventricular systole, corresponding to last cine 

image before opening of the tricuspid valve (345, 346). Aortic and pulmonary flows 

were assessed by manually contouring the vessel in every phase. As per prior 

studies (62-64) and SCMR recommendations (69), mitral and tricuspid 

regurgitation were quantified indirectly using the following formulas respectively: 

Mitral regurgitant volume (MR-Rvol) = left ventricular stroke volume – aortic stroke 

volume and tricuspid regurgitant volume (TR-Rvol) = right ventricular stroke volume 

– pulmonary stroke volume.  
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4.3.4 Surgical technique 

Surgical procedures were performed by one of four experienced cardiac surgeons 

in our centre, under general anaesthesia using a standard cardiopulmonary bypass 

technique via a 7-10 cm midline sternotomy incision and mild systemic 

hypothermia (30-34°C). Intra-operative TOE was utilised. Systemic heparinisation 

aorto-bicaval cannulation was performed. LA incision was made to expose and 

inspect the pathological mitral valve. All MVr were performed using Gore-Tex 

chordae sutures and supported by a Carpentier-Edwards Physio II annuloplasty 

ring (typical size 29-34mm). MVR were performed using the St Jude mechanical 

valve, Edwards Perimount Magna bioprosthetic valve or St Jude EpicTM
 Mitral 

stented tissue valve with LinxTM
 AC technology (typical size 27-33mm). At least 

partial chordal preservation was performed with MVR as routine practice. The type 

of prosthetic valve, preservation technique and suture placement technique were at 

the discretion of the surgeon. Protamine was administered prior to wound closure 

with stainless steel myowires over mediastinal drains. Mechanical MVR patients 

were treated with life-long anticoagulation (Vitamin K antagonist-warfarin) post 

procedure. In selected cases AF was ablated with radiofrequency and coinciding 

left atrial appendage ligation performed. 

 

4.3.5 Statistical analysis 

Data were analysed using SPSS version 26 (IBM Corp.). All continuous data were 

assessed for normality using Shapiro-Wilk test. Baseline, follow-up/residual and 

the changes from baseline to follow up variables were compared between the three 

groups (control/MVr/MVR). Continuous variables are expressed as mean±SD and 

categorical variables expressed as frequencies and percentages. Continuous data 

was assessed between all groups with ANOVA with Bonferroni post-hoc analysis 

for normally distributed variables and Kruskal-Wallis with Bonferroni post-hoc 

analysis for non-normally distributed variables. Categorical data was compared by 

Fisher’s Exact test, which was preferred to the Chi squared test as this test is less 

valid in small groups and/or those with low frequency of variables (n<5) (326, 347). 

If a significant difference was found between all groups, Fisher’s Exact tests were 
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performed between each group to assess inter-group differences. p<0.05 was 

considered statistically significant.  
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4.4 Results 

Eighty-three patients were recruited and scanned at baseline. By group, 34 

patients underwent MVr (4 dropped out: 1 death, 3 declined follow up: 1 developed 

motor neuron disease and 2 declined due to COVID-19 pandemic); 24 underwent 

MVR (2 dropped out: 2 deaths); 25 controls were observed with watchful waiting (5 

dropped out: 3 deaths, 2 declined follow up: 1 due to claustrophobia and 1 

developed lung cancer). This resulted in 72 patients with paired CMR scans at 6 

months: 30 MVr, 22 MVR (14 metallic, 8 bio-prosthetic valves) and 20 controls 

(Figure 4-1).  

 

Figure 4-1 A figure to demonstrate the studies inclusion/exclusion criteria 
and patient flow 

*2 patients decline follow up imaging due to the COVID-19 pandemic. 
Abbreviations: AF, atrial fibrillation; CMR, cardiovascular magnetic resonance; 
eGFR, estimated glomerular filtration rate; MND, motor neuron disease; MR, mitral 
regurgitation; MVr; mitral valve repair; MVR, mitral valve replacement; NYHA, New 
York heart association.  
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4.4.1 Baseline patient characteristics 

Baseline characteristics of the groups are presented in Table 4-1. There was no 

difference in age or sex between the groups. The underlying leaflet(s) affected 

differed between surgical groups (p=0.014), with a greater proportion of PMVL 

disease in the MVr group and AMVL disease in the MVR group. The proportion of 

patients with flail leaflets was comparable between all groups (p=0.703). NYHA 

functional class was lower in the control, than the MVr and MVR groups at 1.3±0.6 

vs 1.9±0.7 and 2.2±0.7 respectively (p=0.001). There were no statistically 

significant differences in surgical risk scores (Log Euro/Log EuroII/ STS 

Mortality/morbidity) between groups. The MVr and MVR groups had a greater 

proportion of patients with AF than the control group (p=0.021) at 16 (53%) and 13 

(59%) vs 4 (20%) respectively. There were otherwise no statistically significant 

differences in comorbidities between groups at baseline.
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Table 4-1 Baseline patients characteristics 

  

Control 

(n=20)  

Repair 

(n=30) 

Replace 

(n=22) 

P-values 

All groups 

Control vs 

Repair 

Control vs 

Replace 

Repair vs 

Replace 

Male 11 (55%) 24 (80%) 16 (73%) 0.186       

Age (years) 64±18 67±11 66±10 0.935       

Duration to follow-up (days)* 233±8 188±27 194±25 0.001 0.001 0.008 1 

BMI (kg/m2) 24.1±3.3 26.2±3.8 25.3±5.0 0.275       

Systolic BP (mm/Hg) 125±25 125±15 125±13 1       

Diastolic BP (mm/Hg) 73±16 77±13 77±10 0.54       

Heart rate (bpm) 71±10 72±15 72±13 0.885       

6MWT distance (m) 393±118 365±103 358±79 0.485       

NYHA functional class: 

I 15 (75%) 8 (27%) 4 (18%) 

0.001 0.003 0.001 0.256 
II 4 (20%) 16 (53%) 9 (41%) 

III 1 (5%) 6 (20%) 9 (41%) 

IV 0 0 0 

Aetiology: 

Leaflet affected: 

PMVL 12 (60%) 26 (87%) 12 (54%) 

0.027 0.149 0.332 0.014 AMVL 1 (5%) 1 (3%) 5 (23%) 

Bi-leaflet 7 (35%) 3 (10%) 5 (23%) 

Presence of flail leaflet 4 (20%) 8 (27%) 7 (32%) 0.703    



 
 

1
6

4
 

Surgical risk scores: 

Log Euro 5.6±4.7 4.7±3.5 3.7±2.4 0.736       

Log Euro II 1.5±1.4 1.4±1.0 1.6±1.2 0.523       

STS mortality 1.5±1.6 1.2±1.2 1.9±1.6 0.076       

STS mortality/morbidity 11.8±7.1 9.5±4.9 13.2±5.9 0.053       

Comorbidities: 

Smoking History 7 (35%) 14 (47%) 8 (36%) 0.713       

Diabetes mellitus 2 (10%) 1 (3%) 1 (5%) 0.679       

Hypertension 4 (20%) 11 (37%) 6 (27%) 0.486       

Atrial fibrillation 4 (20%) 16 (53%) 13 (59%) 0.021 0.022 0.014 0.781 

Prior myocardial infarction 1 (5%) 0 1 (5%) 0.507       

Prior PCI 2 (10%) 0 1 (5%) 0.183       

Prior Stroke 1 (5%) 0 0 0.278       

Prior TIA 1 (5%) 1 (3%) 1 (5%) 1       

COPD 2 (10%) 1 (3%) 2 (9%) 0.599       

Chronic Kidney Disease 1 (5%) 0 1 (5%) 0.507       

Haemoglobin (g/L) 137±11 143±10 140±14 0.15       

Creatinine (umol/L) 79±14 81±18 88±20 0.244       

* Duration of time until repeat CMR imaging after either surgical intervention or baseline CMR in control group. Abbreviations: 6MWT, 6-minute walk test; 

AMVL, anterior mitral valve leaflet; BMI, body mass index; BP, blood pressure; BPM, beats per minute; BSA, body surface area; COPD, chronic 

obstructive pulmonary disease; NYHA, New York heart association; PCI, percutaneous coronary intervention; PMVL; posterior mitral valve leaflet; TIA, 

transient ischaemic attack.
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4.4.2 Baseline CMR cardiac parameters 

Baseline cardiac parameters as assessed by CMR are presented in Table 4-2. 

There were no statistically significant differences in baseline biventricular volumes 

between the groups, although lower RVEF in the MVR and MVr groups than 

controls at 46±6.6% and 46±9.4% vs 54±8.0% respectively (p=0.002). As per 

Table 4-2, there were no baseline differences in CMR quantified AR, PR or 

tricuspid regurgitation (TR) between the groups. The control group had lower 

baseline quantitated MR than the MVr and MVR groups with an MR-Rvol of 

49±25ml vs 66±26ml and 71±29ml (p=0.002) and MR-RF of 39±13% vs 50±10% 

and 52±13% respectively (p=0.001). There were no statistically significant 

differences on baseline CMR between both surgical groups. Therefore, there were 

no significant baseline differences between the two surgical groups, except 

differences in leaflet involvement
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Table 4-2 Baseline CMR cardiac parameters 

  

Groups P-values 

Control 

(n=20) 

Repair 

(n=30) 

Replace 

(n=22) 
All groups 

Control vs 

Repair 

Control vs 

replace 

Repair vs 

Replace 

LVEDVi (ml/m2) 118±25 124±31 131±27 0.332       

LVESVi (ml/m2) 50±14 56±20 61±19 0.153       

LVSVi (ml/m2) 69±14 68±16 70±13 0.85       

LVEF (%) 59±5 55±7.8 54±8.1 0.173       

LVMi (g/m2) 53±13 62±14 63±18 0.063       

LA volume indexed (ml/m2) 85±23 94±31 107±36 0.063       

AR Rvol (ml) 3.6±3.8 4.2±2.1 3.4±2.4 0.111       

AR RF (%) 4.8±3.9 6.8±3.7 5.8±4.1 0.106       

MR Rvol (ml) 49±25 66±26 71±29 0.002 0.012 0.004 1 

MR RF (%) 39±13 50±10 52±13 0.001 0.002 0.001 1 

RVEDVi (ml/m2) 93±24 94±20 98±17 0.429       

RVESVi (ml/m2) 43±12 51±14 54±16 0.034 0.113 0.041 1 

RVSVi (ml/m2) 52±16 43±10 44±9.3 0.033 0.041 0.102 1 

RVEF (%) 54±8 46±6.6 46±9.4 0.002 0.004 0.005 1 

PR Rvol (ml) 2.3±2.2 3.4±3.3 2.5±1.6 0.421       

PR RF (%) 2.9±2.2 5.2±5.5 3.9±3.0 0.191       

TR Rvol (ml) 12±16 16±15 15±13 0.385       

TR RF (%) 13±14 19±18 17±15 0.353       

RAAi (cm2/m2) 14±3 15±3.8 15±4.3 0.319       

Abbreviations: AR, aortic regurgitation; EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; i, indexed to 
body surface area; LA, left atrial; LV, left ventricular; LVM, left ventricular mass; MR, mitral regurgitation; PR, pulmonary 
regurgitation; RAA, right atrial area; RF, regurgitant fraction; Rvol, regurgitant volume; RV, right ventricular; SV, stroke volume; 
TR, tricuspid regurgitation.
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4.4.3 Surgical variables 

The operation variables are compared between the two surgical groups in Table 

4-3. Thirty patients underwent MVr and twenty-two patients underwent MVR 

(Prosthesis: metallic =14, tissue=8). MVr and MVR groups were comparable in 

terms of concomitant coronary artery bypass grafting (2 vs 2 respectively, p=1.00), 

tricuspid valve repair (5 vs 2 respectively, p=0.685) and AF ablations (1 vs 2 

respectively, p=0.567). There were no statistically significant differences in the 

cardiopulmonary bypass time (CBT) and cross clamp time (CCT) between the MVr 

and MVR groups at 124±26min vs 132±47min (p=0.837) and 96±28min vs 

94±41min (p=0.333) respectively. After dividing the MVR group into those with 

direct MVR (n=16) and those with MVR after an attempted repair (MVRar) (n=6), 

the MVRar group had longer surgical procedure times than direct MVR and MVr 

groups, with CBT of 190±32min vs 111±31min and 124±26min (p=0.001) and CCT 

of 146±39min vs 74±19min and 96±28min (p=0.001) respectively. On sub-group 

analysis, direct MVR patients had equivalent bypass (p=0.216) but shorter cross 

clamp times (p=0.046) than the MVr group.  
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Table 4-3 Operation variable comparisons between surgical groups 

Surgical variable 

Repair 

(n=30) 

Replace  

(8 tissue, 14 

metallic) P-Value(s) 

CABG 2 (7%) 2 (9%) 1 

  

AF ablation 1 (3%) 2 (9%) 0.567 

TV repair 5 (17%) 2 (9%) 0.685 

Bypass duration (min) 124±26* 132±47 0.837 

Crossclamp time (min) 96±28* 94±41 0.333 

  

Repair 

(n=30) 

Attempted repair? 
All 

groups 

MVr 

vs 

MVR 

MVr  

vs 

MVRar 

MVR 

vs 

MVRar 

No 

(n=16) 

Yes 

(n=6) 

Bypass duration (min) 124±26* 111±31 190±32 0.001 0.216 <0.001 0.012 

Crossclamp time (min) 96±28* 74±19 146±39 0.001 0.046 0.071 0.001 

Surgical variables between groups and differences between groups when mitral 

valve replacement was group divided into those that received direct replacement 

and those who had replacement after an attempted repair (MVRar). * Surgical 

duration unavailable for 1 patient in repair group. Abbreviations: AF, atrial 

fibrillation; CABG, coronary artery bypass grafting; MVr, mitral valve repair; MVR, 

mitral valve replacement; MVRar, mitral valve replacement after attempted repair. 
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4.4.4 Functional outcomes 

Changes between the groups from baseline to follow up are presented in Table 

4-4. Differences in NYHA functional class at baseline, follow up and change are 

shown in Figure 4-2. At follow up, compared with controls, the MVr and MVR 

groups demonstrated improved 6MWT distances (+0.1±55m vs +57±54m and 

+64±76m respectively, p=0.002) and NYHA functional class (p<0.001) with no 

statistically significant differences between both surgical groups in either outcome. 

After these changes, there were no statistically significant differences between all 

groups in residual 6MWT distances or NYHA functional class on follow up 

assessment (Table 4-5). 

  

Figure 4-2 Direct inter-group comparisons of baseline, delta change and 
residual NYHA functional class between control, repair and replacement 
groups 

Inter-group statistical comparisons displayed (Control vs repair, control vs replace, 
repair vs replace). Abbreviations: NYHA, New York Heart Association functional 
class.  
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4.4.5 Cardiac reverse remodelling 

Changes to cardiac indices between baseline and follow up CMR are shown in 

Table 4-4 and the resultant residual cardiac indices are compared between groups 

in Table 4-5. Compared with controls, MVr and MVR resulted in comparable 

significant reductions in LVEDVi (-1.3±12ml/m2 vs -29±21ml/m2 and -37±22ml/m2 

respectively, p<0.001), LVEF (+0.4±3.9% vs -8.7±8.9% and -8.8±9.0% 

respectively, p<0.001) and indexed left atrial volumes (+1.2±19ml/m2 vs -

27±30ml/m2 and -39±26ml/m2 respectively, p<0.001) (Table 4-4), resulting in lower 

LVEDVi (94±28ml/m2 and 94±25ml/m2 vs 117±28ml/m2 respectively, p=0.005) and 

LVEF (47±9.2% and 46±8.1% vs 59±5.0% respectively, p<0.001) at 6-month 

follow-up CMR in the MVr and MVR groups compared with controls (Table 4-5). 

There were no statistically significant differences between surgical groups in the 

changes to, or, residual left ventricular volumes/function or left atrial volume. There 

were no statistically significant differences between groups in terms of change to 

right ventricular volumes/function and right atrial areas, resulting in comparable 

residual right heart indices, except for lower residual RVEF in the MVr group 

compared with the controls (47±6.1% vs 53±8.0% respectively, p=0.01). There was 

no statistically significant difference in residual RVEF between MVr and MVR 

groups (47±6.1% vs 50±5.7% respectively p=0.224).  

 

4.4.6 Changes in quantitated valve regurgitation 

Both surgical groups demonstrated a significant reduction in and lower residual 

MR-Rvol and MR-RF compared with the control group (p<0.001) (Table 4-4 & 

Table 4-5). MVR resulted in a superior reduction in MR-RF (-40±14% vs -29±11%, 

p=0.002), resulting in lower 6-month residual MR-RF compared with the MVr group 

(12±8.0% vs 21±11% respectively, p=0.022). There were no significant differences 

between all three groups in changes to or residual quantitated aortic, pulmonary or 

tricuspid regurgitation.



 
 

1
7

1
 

Table 4-4 Change in functional, haemodynamic and cardiac parameters from baseline to follow up assessment 

  Groups P-values 

  

Control 

(n=20) 

Repair 

(n=30) 

Replace 

(n=22) 
All groups 

Control vs 

Repair 

Control vs 

replace 

Repair vs 

Replace 

Systolic BP(mmHg) -0.2±21 +0.8±11 +0.1±12 0.952       

Diastolic BP(mmHg) +0.5±14 +2.8±10 +0.1±9.2 0.510       

Heart rate (bpm) -3.0±10 +3.1±21 -1.8±12 0.359       

6MWT distance (m) +0.1±55 +57±54 +64±76 0.002 0.007 0.005 1 

NYHA class 0.15±0.4 -0.8±0.7 -1.1±0.7 <0.001 <0.001 <0.001 0.281 

LVEDVi (ml/m2) -1.3±12 -29±21 -37±22 <0.001 <0.001 <0.001 0.584 

LVESVi (ml/m2) -1.7±7.4 -4.0±16 -8.3±18 0.360       

LVSVi (ml/m2) -0.1±8.4 -25±15 -28±13 <0.001 <0.001 <0.001 1 

LVEF (%) +0.4±3.9 -8.7±8.9 -8.8±9.0 <0.001 <0.001 0.001 1 

LVMi (g/m2) +0.3±4.3 -3.8±10 -3.7±11 0.256       

LA volume indexed (ml/m2) +1.2±19 -27±30 -39±26 <0.001 0.002 <0.001 0.545 

AR Rvol (ml) +0.3±1.4 -0.3±2.4 -0.2±2.1 0.117       

AR RF (%) +0.8±2.4 -0.8±3.4 -1.1±4.1 0.161       

MR Rvol (ml) -0.1±12 -47±21 -62±27 <0.001 <0.001 <0.001 0.064 

MR RF (%) +0.4±7.0 -29±11 -40±14 <0.001 <0.001 <0.001 0.002 

RVEDVi (ml/m2) -0.9±5.5 -5.0±16 -7.1±20 0.436       

RVESVi (ml/m2) +0.6±5.5 -3.5±14 -9.1±17 0.051       

RVSVi (ml/m2) -3.3±9.0 -1.5±11 +1.9±10 0.487       
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RVEF (%) -0.8±4.0 +1.0±9.5 +4.9±7.9 0.067       

PR Rvol (ml) -0.4±1.5 +0.3±2.0 -0.1±1.7 0.224       

PR RF (%) -0.2±1.7 -0.2±3.4 -0.9±3.3 0.424       

TR Rvol (ml) +0.5±21 -5.1±17 -2.9±13 0.493       

TR RF (%) +2.1±21 -6.6±20 -4.5±14 0.614       

RAAi (cm2/m2) 0.0±2.5 0.0±2.9 -1.1±3.9 0.568       

Abbreviations: 6MWT, 6-minute walk test; AR, aortic regurgitation; BP, blood pressure; BPM, beats per minute; EDV, end-
diastolic volume; EF, ejection fraction; ESV, end-systolic volume; i, indexed to body surface area; LA, left atrial; LV, left 
ventricular; LVM, left ventricular mass; MR, mitral regurgitation; NYHA, New York heart association functional class; PR, 
pulmonary regurgitation; RAA, right atrial area; RF, regurgitant fraction; Rvol, regurgitant volume; RV, right ventricular; SV, 
stroke volume; TR, tricuspid regurgitation.  
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Table 4-5 Residual functional, haemodynamic and cardiac parameters on follow up assessment 

  

Groups P-values 

Control 

(n=20) 

Repair 

(n=30) 

Replace 

(n=22) 
All groups 

Control 

vs Repair 

Control 

vs 

replace 

Repair vs 

Replace 

Systolic BP (mmHg) 125±14 126±12 125±15 0.975       

Diastolic BP (mmHg) 73±10 80±11 77±11 0.134       

Heart rate (bpm) 68±11 75±15 71±8.3 0.141       

6MWT distance (m) 393±109 422±82 422±111 0.586       

NYHA (mean) 1.45±0.7 1.1±0.3 1.1±0.3 0.087       

LVEDVi (ml/m2) 117±28 94±28 94±25 0.005 0.011 0.016 1 

LVESVi (ml/m2) 48±15 52±23 52±20 0.863       

LVSVi (ml/m2) 69±15 42±9.3 42±8.6 <0.001 <0.001 <0.001 1 

LVEF (%) 59±5 47±9.2 46±8.1 <0.001 <0.001 <0.001 1 

LVMi (g/m2) 54±11 59±15 60±17 0.307       

LA volume indexed (ml/m2) 86±28 67±37 69±28 0.115       

AR Rvol (ml) 3.9±4.1 3.9±3.4 3.2±2.2 0.912       

AR RF (%) 5.6±5.1 6.0±4.3 4.6±3.2 0.588       

MR Rvol (ml) 49±23 19±13 9.5±7.0 <0.001 <0.001 <0.001 0.088 

MR RF (%) 39±13 21±11 12±8.0 <0.001 0.001 <0.001 0.022 

RVEDVi (ml/m2) 92±24 89±18 91±20 0.875       

RVESVi (ml/m2) 44±14 48±13 45±12 0.459       
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RVSVi (ml/m2) 49±15 42±8.6 46±11 0.093       

RVEF (%) 53±8 47±6.1 50±5.7 0.011 0.01 0.698 0.224 

PR Rvol (ml) 1.8±1.6 3.7±3.5 2.3±2.2 0.022 0.086 1.000 0.145 

PR RF (%) 2.4±2.0 5.0±4.1 3.0±2.5 0.045 0.058 1.000 0.062 

TR Rvol (ml) 13±17 11±10 12±9.0 0.628       

TR RF (%) 15±20 13±11 13±8.8 0.809       

RAAi (cm2/m2) 14±3 15±3.6 14±3.6 0.511       

Abbreviations: 6MWT, 6-minute walk test; AR, aortic regurgitation; BP, blood pressure; BPM, beats per minute; EDV, end-
diastolic volume; EF, ejection fraction; ESV, end-systolic volume; i, indexed to body surface area; LA, left atrial; LV, left 
ventricular; LVM, left ventricular mass; MR, mitral regurgitation; NYHA, New York heart association functional class; PR, 
pulmonary regurgitation; RAA, right atrial area; RF, regurgitant fraction; Rvol, regurgitant volume; RV, right ventricular; SV, 
stroke volume; TR, tricuspid regurgitation.
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4.5 Discussion 

To our knowledge, this is the first study to compare cardiac reverse remodelling 

and quantify residual MR between MVr and MVR using the reference standard 

(CMR), with a longitudinal control group for comparison. Importantly, at baseline 

the study had naturally well matched surgical groups, with no statistically significant 

differences in cardiac parameters and co-morbidities. The study has three 

important findings: Firstly, MVr and MVR resulted in comparable LV reverse 

remodelling; secondly, RVEF was worse post-MVr vs controls than post-MVR and 

thirdly, MVR resulted in a greater reduction in MR and lower residual MR than MVr. 

As described CMR is the reference standard for biventricular assessment (52, 53) 

and arguably more accurate at assessing MR severity than TTE (59, 63, 64, 72). 

Indeed, disparity in accuracy may increase post operatively, as TTE assessment of 

MR severity is difficult due to acoustic shadow artefacts (348-350) occurring 

secondary to mitral annular rings (implanted during MVr or as a component of a 

bio-prosthetic valve) or more profoundly with metallic prosthesis (349, 350). 

Indeed, the ASE/ESC state no single parameter can reliably quantitate prosthetic 

MR via TTE, advising combined TTE and TOE assessment (348), potentially 

reducing the accuracy of TTE studies comparing residual MR between surgical 

groups (MVr vs MVR). Using CMR, prosthesis-related distortions of the magnetic 

field can create the potential for volume and flow miscalculation. However, this can 

be mitigated with consistent LV basal slice analysis and using indirect MR 

quantification (LVSV-AoSV method), as aortic PCMR, planned carefully to avoid 

artefact, increases the distance from the prosthesis and therefore accuracy of 

PCMR flow assessment (351). Therefore, to date, our study may provide the most 

accurate comparison of cardiac reverse remodelling and residual MR between 

MVr/MVR for primary MR.  

Patients undergoing MVR are typically older with more comorbidities than those 

referred for MVr. In primary MR, propensity matched studies performed to 

overcome these biases present conflicting results, with Gilinov et al demonstrating 

no significant difference between long term survival and freedom from re-operation 
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between MVr and MVR with chordal preservation (123), whilst Lazam et al found 

lower operative mortality, better long term survival and fewer valve related 

complications post MVr . However, Lazam et al specifically assessed patients with 

flail leaflets and the use of chordal preservation techniques with MVR was not 

clearly documented (124). In our study, baseline cardiac indices, surgical risk 

scores and co-morbidities were similar between surgical groups, potentially 

minimising this bias. There were differences in leaflets affected between groups, 

with the MVr group more typically having PMVL disease than the other groups. 

This is unsurprising given PMVL prolapse is more amenable to successful surgical 

repair (96) and international guidelines advise repair whenever feasible (1, 39), 

making this difficult to control for in an observational study. At baseline, compared 

to the watchful waiting control group, both surgical groups demonstrated worse 

NYHA functional class, quantitated MR, RVEF and had a greater proportion of 

patients in AF, demonstrating as expected that the surgical groups were at a more 

advanced stage on the MR severity spectrum. 

Our left ventricular reverse remodelling findings demonstrate equivalency between 

MVr and MVR. These findings are in keeping with prior echocardiographic studies 

(126, 127, 352) and the only prior CMR study (325), which compared remodelling 

at 3 months between MVr and MVR with chordal preservation (n=28). Similar to 

previous studies, we demonstrated a significant decrease in LVEF post-operatively 

(126, 127, 353), finding no significant difference between surgical groups. Given 

previous concerns over poorer LVEF post MVR (117, 118), our results from a 

rigorous study design using CMR to assess remodelling/LVEF, comparing both 

surgical groups at baseline and 6-months post-surgery and against an 

observational control group, will hopefully act as re-assurance against this concern. 

As discussed in section 4.2, prior studies demonstrating poorer outcomes post 

MVR typically have biased baseline variables with older MVR groups with more co-

morbidities (123) and/or predate the routine use of chordal preservation with MVR 

(116-120), with chordal preservation now known to be essential to help preserve 

post-operative LVEF (112-115, 342). Importantly, our study used chordal 

preservation with MVR and had naturally matched baseline variables between the 
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groups, reducing innate bias between surgical groups, and showed no difference in 

cardiac remodelling between MVr and MVR.  

In keeping with Uretksy et al, who similarly assessed cardiac reverse remodelling 

following corrective mitral valve surgery with CMR in two studies, we found no 

significant change in indexed right ventricular size (EDV/ESV) post-MVr and MVR 

(59, 72). Both studies by Urestky et al, the majority of which had MVr, 

demonstrated no significant change between pre- and post-operative RVEF 

(p=0.05). Unfortunately, the studies had small numbers of MVR patients and 

therefore remodelling comparisons between surgical techniques were not 

performed. Our study demonstrated lower RVEF post-MVr vs controls (p=0.01), but 

no statistically significant difference between the two surgical groups (p=0.224). 

However, our MVr group underwent a proportionally greater number of tricuspid 

valve repairs than the MVR group (5 vs 2 respectively), which may have blunted 

the RVEF augmentation in the MVr group. There were however no statistically 

significant differences in the quantified tricuspid regurgitant fraction between the 

groups pre-operatively or at follow-up to support this. Therefore, the lower RVEF in 

the MVr group vs controls may be as a result of a lower reduction in and greater 

residual MR-RF compared with the MVR group.   

MVR compared to MVr resulted in a greater reduction in MR-RF post-operatively 

and hence lower residual MR-RF. Whilst the absolute reduction in and residual 

MR-Rvol was lower for MVR vs MVr, this was not statistically significant. On 

explanation for this, MR-Rvol is a non-indexed measurement, and therefore more 

dependent on haemodynamic variables, chamber size and body surface area, 

whereas MR-RF takes into account the patients LV stroke volume, better 

accounting for these variables. As such, MR-RF has been considered a more 

accurate imaging biomarker of MR severity (354). Our findings of greater residual 

MR post-MVr are in keeping with prior echocardiographic studies (127, 133).  

Our study has the benefit of using a watchful-waiting control group. This has 

provided three specific benefits. 1, highlight the baseline differences between 

patients with mod-severe primary MR on TTE that are observed or referred for 

surgery, specifically demonstrating greater MR and poorer RVEF in those referred 
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for surgery. This is an important finding, as it suggests that quantifying MR and 

RVEF by CMR, rather than categorising severity as per TTE, may more accurately 

define severity. 2, the use of a control group allowed a more comprehensive 

comparison than between two surgical groups alone. Specifically, without the use 

of a control group, the poorer RVEF post-MVr would not have been highlighted. 3, 

the demonstration of minimal cardiac remodelling in the control group over the 6-

month period, suggests that (at least as regards cardiac remodelling) 

asymptomatic primary MR patients with similar characteristics/cardiac indices are 

unlikely to deteriorate quickly and therefore are reasonably monitored by watchful 

waiting with a 6-month interval between imaging. Further studies utilising CMR are 

required to investigate patients on watchful waiting observational management, to 

further define cut offs at which more intensive imaging is required and define when 

early intervention provides prognostic benefit.  

Only one prior CMR study by Gelfand et al has compared cardiac reverse 

remodelling between MVr/MVR (325). The study performed sequential CMR at 

baseline and 3 months in 20 primary MR patients that underwent mitral valve 

surgery (14 MVr, 6 MVR), 14 of which had a further CMR at 27-months. They 

demonstrated MR reduction and cardiac reverse remodelling post-surgery with no 

difference in outcomes between surgical groups. With the caveat of potential 

differences in CMR acquisition and analysis between the Gelfand study and ours: 

the baseline cardiac indices in Gelfand cohort had a lower mean age (53years), 

LVEDVi (113m/m2), LVESVi (45ml/m2), MR-RF (40%), MR-RVol (54ml) and 

higher LVEF (62%) and RVEF (51%) than either of our surgical groups. Indeed 

baseline cardiac indices in the Gelfand cohort bear closest resemblance to our 

control group. Therefore the Gelfand cohort were younger, had less severe MR 

and cardiac remodelling at baseline, potentially suggesting intervention was 

performed earlier in the disease process than in our cohort. Despite this, we 

present similar findings of LV remodelling with reductions in LVEDVi, LVESVi and 

LVEF in both surgical groups. Our study acquired follow-up imaging at 6-months 

demonstrating reduced LVEF than pre-operatively. Interestingly, at 27-months 

follow-up of the Gelfand cohort, the LVEF had normalised and LV volumes had 

further decreased. Therefore a reduced LVEF at 6-months compared to pre-
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operative values in both surgical groups in our study either suggests that cardiac 

reverse remodelling is incomplete with further improvement yet to occur, or that the 

increased LV volumes and lower LVEF pre-operatively in our cohort has resulted in 

poorer post-operative LVEF than compared with the Gelfand cohort. Additionally, 

residual MR was higher in both our surgical cohorts than the Gelfand cohort. This 

may also be a result of potentially earlier intervention in the Gelfand cohort, or 

potentially explainable by differential CMR protocols/analysis between our two 

studies. Further CMR studies, ideally larger and with longer follow-up are required 

to assess the optimal timing of surgery in the disease process for primary MR 

patients to improve outcomes and determine the approximate time at which 

reverse re-modelling post-surgical intervention is complete to assist in the design 

of future studies.  

 

4.5.1 Clinical implications   

Perhaps controversially, our findings of comparable cardiac reverse remodelling 

following MVr and MVR and lower residual MR-RF post-MVR, pose a challenge to 

the current recommendation of ‘repair whenever feasible’. If confirmed in larger 

series, they might suggest that current recommendations could be down-graded to 

permit direct MVR in more complex pathologies in order to reduce surgical 

procedural times. Given that CBT and CCT both correlate with post-operative 

mortality and morbidity (355, 356), relaxing the recommendations in selected cases 

may not adversely affect cardiac reverse remodelling and might positively impact 

on surgical outcomes. Given MVR is arguably more durable, with less recurrent 

MR (127, 133) then our results, if replicated in randomised trials could significantly 

impact clinical practice. However, the decision to offer a patient MVR or MVr has 

multiple facets. Bioprosthetic MVRs are prone to degeneration and are therefore 

best reserved for patients in whom it will last a lifetime (1, 109). A metallic 

prosthesis requires anticoagulation, coming with inherent bleeding risks and 

increased stroke risk if this becomes sub-therapeutic (106, 107). As such, it is 

understandable that a successful MVr is clinically appealing. However, our study 

demonstrates equivalent cardiac remodelling between the techniques and greater 
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MR post MVr. Therefore, in elderly patients in whom a tissue valve replacement 

will last a lifetime or younger patients with another indication for anticoagulation, 

our results suggest that an MVR may be the optimal treatment. Larger multi-centre 

studies will be required, using CMR to assess remodelling and quantify MR and 

with a longer follow-up period to assess clinical outcomes before such clinical 

recommendations could be made.  

Beyond the scope of the comparative findings between MVr and MVR, our study 

also adds to several prior CMR studies (59, 63, 64, 72) demonstrating the benefit 

CMR can offer in the assessment and decision making in mitral regurgitation 

patients. Our results are controversial, potentially challenging the current accepted 

premise that MVr is superior to MVR. Our findings may be in part due to the use of 

CMR highlighting significant changes that may be otherwise missed by TTE. Most 

notably greater residual MR post MVr compared with MVR. As the reference 

standard for biventricular assessment, with MR quantification with superior 

reproducibility to TTE, CMR is arguably the most accurate imaging modality 

currently available to assess MR severity and resultant cardiac remodelling. As 

such, subtle changes are more easily highlighted than with TTE. Therefore our 

findings, when assessed alongside prior CMR studies (59, 63, 64, 72), suggest 

CMR should provide a greater role in the clinical assessment of primary MR 

patients both pre and post-surgical intervention and to accurately guide research 

inclusion criteria and assess outcomes. Further research utilising CMR is therefore 

essential to continue to optimise management of patients with mitral regurgitation.   

 

4.5.2 Limitations 

This was a single centre prospective observational study therefore larger 

multicentre studies are required to validate the findings. We specifically recruited 

patients with primary MR and those undergoing elective surgery, therefore our 

results may not be generalizable to those with secondary MR or undergoing 

emergency surgery. As a non-randomised study intrinsic baseline differences 

between the groups could not be controlled. However, as demonstrated in Table 

4-1, there were no statistically significant differences between the surgical groups 
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in terms of age, sex or comorbidities. Despite differences in the underlying leaflet 

pathology between surgical groups there was no statistically significant difference 

in cardiac reverse remodelling. The group sizes are modest by comparison with 

prior longitudinal MVR and MVr outcome studies, however the use of CMR and its 

high reproducibility for volumes (51, 52) and flow quantitation (59, 60, 62, 63) 

means that much smaller sample sizes are required to detect a change compared 

to standard TTE.  Baseline cardiac indices were equivalent between surgical 

groups, but there was a non-significant tendency towards larger bi-ventricular 

volumes, left atrial volumes and quantitated MR in the MVR group. A larger study 

may have highlighted these differences as significant, potentially making the 

comparative residual cardiac indices between surgical groups more impressive. 

Except for 2 patients who had complete chordal preservation with MVR, MVR were 

performed with partial chordal preservation as routine practice in our study; 

however, complete chordal preservation is the optimal technique (115), which may 

have made remodelling differences between the groups more significant in favour 

of MVR. Finally, our study specifically assessed cardiac reverse remodelling and 

functional changes after 6-months, so the study is unable to confirm that residual 

differences between surgical groups would result in different long term clinical 

outcomes.  

 

4.6 Future directions 

Our findings demonstrate the need for further research comparing MVr vs MVR 

with chordal preservation, specifically using CMR to assess cardiac reverse 

remodelling. Multiple variables are involved in the long term outcomes of patients 

after mitral valve surgery including the effect of the surgery itself, coinciding cardiac 

conditions and other non-cardiac/un-related disease processes affecting 

morbidity/mortality. As such, studies assessing clinical outcomes often use 

significantly large sample sizes to balance out confounding variables (129). Indeed, 

many such studies can span decades, in which time period standards and success 

of treatment can change (124, 130), also potentially impacting results. The 

assessment of cardiac remodelling closely correlates with clinical outcomes (129), 
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doesn’t necessitate long follow up periods to assess (reducing the potential for 

confounding variables to impact follow up assessments) and can be assessed 

accurately and reproducibly by CMR. Therefore assessment of cardiac reverse 

remodelling can be a useful surrogate for assessing clinical outcomes (129). 

Indeed, theoretically it is arguable that non-cardiac processes/diseases more 

proportionally adversely impact a patient’s symptoms, morbidity and mortality than 

they do the cardiac remodelling process. Therefore, ideally future comparative 

studies comparing MVr/MVR should assess both cardiac reverse remodelling using 

CMR and perform long term follow up to assess long term clinical outcomes. This 

approach would allow for comparison of immediate follow up effects between 

surgical groups and assess long term results. Ideally future studies are required to 

build on the work presented in this Chapter. Initially multicentre studies comparing 

MVr vs MVR with chordal preservation in primary MR patients, using CMR to 

assess remodelling and prolonged follow up to assess clinical outcomes. If results 

of such studies prove promising, then a randomised trial comparing MVr vs MVR, 

using recruitment criteria defined from the prior multi-centre studies, would be 

warranted and may significantly alter clinical practice.    

 

4.7 Conclusion 

In primary MR, MVR with chordal preservation may offer comparable cardiac 

reverse remodelling benefits at 6-months compared to MVr. Larger, multicentre 

CMR studies are required, which if confirmed might then have implications for 

future surgical practice.  
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Chapter 5  

 

Assessment of cardiac reverse remodelling following 

percutaneous mitral valve intervention in primary mitral 

regurgitation: a cardiovascular magnetic resonance study 

 

5.1 Abstract 

Background 

Mitral valve repair is advised, when feasible, to treat significant primary MR, 

however many patients are deemed too high-risk and declined surgery. 

Percutaneous mitral valve interventions have been developed to treat this high-risk 

cohort. Accurate assessment of cardiac reverse remodelling is essential to guide 

optimal patient selection. CMR is the reference standard for cardiac volumetric 

assessment and compared to TTE provides superior reproducibility in MR 

quantification pre and post MitraClipTM insertion. Prior CMR studies have analysed 

cardiac reverse remodelling post MitraClipTM in combined cohorts of primary and 

secondary MR patients. However, aetiology of MR can significantly impact 

outcomes. Therefore this study aimed to assess cardiac reverse remodelling and 

quantitate changes in MR after percutaneous intervention for primary MR using the 

reference standard (CMR).  

Methods 

11 patients with significant MR on TTE were prospectively recruited to undergo 

CMR imaging and 6-minute walk tests (6MWT) at baseline and 6 months post 

percutaneous mitral valve intervention. CMR protocol involved: left-ventricular (LV) 

short axis cines, transaxial right-ventricular (RV) cines, two and four chamber cines 

and aortic/pulmonary through-plane phase contrast imaging. MR was quantitated 

indirectly using LV and aortic stroke volumes.  
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Results 

10 patients underwent MitraClipTM for PMVL prolapse with 1 suffering partial clip 

detachment and declining follow-up and 1 patient underwent TMVI for failing mitral 

bio-prosthesis. From baseline to 6-month follow-up assessment: significant 

improvements occurred in NYHA functional class (p=0.019), 6MWT distances 

(205±101m to 269±64m, p=0.016) and RVEF (43±8.3% to 50±9%, p=0.035), 

significant reductions occurred in LVEDVi (118±23ml/m2 to 92±28ml/m2, p=0.001), 

LVESVi (59±20ml/m2 to 47±21ml/m2, p=0.005) and quantitated MR-Rvol (55±23ml 

to 23±13ml, p=0.005). There were no significant changes in LVEF, right ventricular 

or bi-atrial dimensions or quantitated aortic/pulmonary/tricuspid regurgitation. 

Conclusion 

Successful percutaneous mitral valve intervention for primary MR results in 

reduced MR, positive left ventricular reverse remodelling, preservation of LVEF 

and augmentation of RVEF, but no significant changes to right ventricular or bi-

atrial dimensions at 6 months. Larger CMR studies are now required to further 

guide optimal patient selection and compare the varying percutaneous techniques 

available.   
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5.2 Introduction 

When feasible, surgical mitral valve repair is advised as first line treatment for 

significant primary MR (1, 39). However, numerous symptomatic patients with 

severe primary MR are deemed high risk and declined surgical intervention (138). 

Percutaneous mitral valve interventions have developed to treat this cohort of high 

risk patients including the MitraClipTM procedure and TMVI. MitraClipTM has 

demonstrated excellent technical success resulting in acute MR reduction and low 

mortality and morbidity rates in treating high-risk MR patients (143), but has proven 

inferior to conventional mitral valve surgery in a randomised trial (144). In carefully 

selected patients with functional MR and reduced ejection fraction, MitraClipTM 

improves outcomes compared with optimal medical therapy alone (145, 147). TMVI 

is an effective treatment for high-risk patients with recurrent MR after prior mitral 

valve surgery, with proven clinical efficacy post failed bioprosthesis and failed MVr 

with annuloplasty ring (153-155).  

Assessing cardiac reverse remodelling after mitral valve surgery/intervention is 

important to guide future patient selection. Multiple previous studies have assessed 

cardiac reverse remodelling with TTE post MitraClipTM (144, 357-360). One such 

study by Brouwer et al investigated 79 patients (81% secondary MR) with 

echocardiography at baseline, 1 and 6-months post MitraClipTM. Reverse 

remodelling, no remodelling and adverse remodelling occurred in 51%, 42% and 

8% of patients respectively, with a higher mortality in adverse remodelling patients 

compared with reverse remodelling patients (359). The study demonstrated the 

importance of investigating characteristics of patients likely to have 

reverse/adverse remodelling to guide patient selection and success of treatment. 

Therefore the accuracy of the image modality assessing remodelling is also 

extremely important. CMR is the reference standard for biventricular assessment 

(52, 53) and compared to TTE demonstrates superior reproducibility in MR 

quantification (63, 64), even post MitraClipTM (361) and arguably offers a more 

accurate assessment of MR severity than TTE, with TTE more prone to 

overestimate MR severity compared with CMR (59, 72). CMR is therefore the 

optimal imaging modality to assess cardiac reverse remodelling and quantitate 

residual MR post percutaneous intervention. Indeed, prior CMR studies assessing 



186 
 

reverse remodelling post percutaneous mitral valve intervention have been 

conducted. Krumm et al demonstrated reductions in LVEDV, LVESV, LV mass and 

LA area by CMR in 27 patients (13 primary MR, 14 secondary MR) at baseline and 

3 months post MitraClipTM; RV remodelling and changes in quantified MR were not 

assessed (362). Radunski et al investigated biventricular remodelling with CMR in 

12 MR patients (5 primary MR, 7 secondary MR) at baseline and 6 months post 

MitraClipTM, demonstrating reductions in LVEDVi, LVESVi but no change in LVEF, 

LA volumes or RV parameters; unfortunately, changes in quantified MR were not 

assessed (363). Lurz et al demonstrated an acute reduction (within 7 days) of 

LVEDVi and MR-RF post MitraClipTM by CMR in 20 patients (5 primary MR, 15 

secondary MR) and similarly demonstrated no changes in RV parameters or 

tricuspid regurgitant fraction (TR-RF) (364). To date, no CMR study has assessed 

cardiac reverse remodelling post percutaneous intervention in primary MR alone, 

but performed pooled analysis inclusive of primary and secondary MR. Given 

underlying aetiology can significantly impact outcomes post percutaneous 

intervention (162, 357, 360, 365), a focussed study assessing remodelling in 

primary MR using CMR may be beneficial to guide future patient selection. 

Therefore, this study aimed to use the reference standard (CMR) to assess cardiac 

reverse remodelling and changes in quantified MR in primary MR patients post 

percutaneous mitral valve intervention.  

 

5.3 Methods 

5.3.1 Study design 

This single-centre prospective observational cohort study recruited patients 

between June 2016 and January 2020 with moderate-severe primary MR from the 

cardiology/cardiac surgery out-patient departments at Leeds Teaching Hospitals 

NHS Trust, Leeds, UK. The methodology for this study is the same as the study in 

Chapter 4 (described in Chapter 4.3), with identical echocardiographic criteria for 

defining moderate-severe MR and with the same investigations performed (CMR 

and 6MWT at baseline and 6-month follow-up). However, as the study involves a 
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different cohort of patients there are alterations to inclusion/exclusion criteria 

(described below).    

Inclusion criteria: moderate-severe or severe primary MR on echocardiography, 

aged > 18 years with capacity to consent to study participation and have been 

accepted for percutaneous mitral valve intervention.  

Exclusion criteria: Secondary (functional/ischaemic/atrial) MR, contraindications 

to CMR, significant (≥moderate severity) aortic valve disease, uncontrolled AF 

>120bpm, terminal illness, haemodynamic instability, weight >130kg, pregnancy or 

breast feeding, or inability to lie flat for 60 minutes.  

Percutaneous intervention was decided by a multidisciplinary heart team, 

independent from the study, as per international guidance (1, 37) and after patients 

had been declined for surgical intervention. Baseline clinical and demographic data 

were recorded for all patients. The study was approved by the local research ethics 

committee (Yorkshire & The Humber- South Yorkshire 15/YH/0503) and complied 

with the Declaration of Helsinki (See Appendix); all patients provided written 

informed consent.  

5.3.2 CMR imaging 

The CMR imaging protocol utilised in the study is as used in the Chapter 4 study 

and described in chapter 4.3.2. 

5.3.3 CMR analysis 

The methods of CMR analysis used in this study are as per the Chapter 4 study 

and described in chapter 4.3.3. 

5.3.4 Statistical analysis 

Data were analysed using SPSS version 26 (IBM Corp.). All continuous data were 

assessed for normality using Shapiro-Wilk test. The difference between variables 

at baseline and 6-month follow-up were compared. Continuous variables are 

expressed as mean±SD and categorical variables expressed as frequencies and 

percentages. Continuous data was assessed by the paired t-test and Wilcoxon 

signed ranks test for normally and non-normally distributed data respectfully. 
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Changes in categorical data were compared by Fisher’s Exact test, which was 

preferred to the Chi squared test due to low group numbers and small frequencies 

in some categorical variables (326, 347). p<0.05 was considered statistically 

significant.  

 

5.4 Results 

5.4.1 Baseline patient characteristics 

After assessment against the inclusion/exclusion criteria 11 patients were 

recruited.  10 patients underwent percutaneous MitraClipTM procedure and 1 

patient underwent TMVI. 1 patient who underwent percutaneous MitraClipTM 

suffered clip displacement resulting in device failure and declined further 

involvement in the study. This resulted in 10 patients (aged 82±5 years, 8-male) 

completing follow-up imaging after 6.7±1.4 months (9 MitraClipTM & 1 TMVI), who 

were included for analysis. At baseline, 3 patients had NYHA II, 6 patients NYHA III 

and 1 patient NYHA IV symptoms (Table 5-1). The majority (90%) of patients had 

MR as a result of PMVL prolapse and were treated with MitraClipTM. 1 patient had 

a failed bioprosthesis and was treated with TMVI. As expected in this cohort of 

patients, numerous patients had co-morbidities: diabetes (90%), hypertension 

(50%), AF (80%), prior MI (30%), prior stroke (10%), prior transient ischaemic 

attack (10%) and chronic kidney disease (50%). 

5.4.2 Functional and haemodynamic outcomes 

Changes in the functional and haemodynamic parameters are displayed in Table 

5-1. Post percutaneous mitral valve intervention, from baseline to follow up: 6MWT 

distances improved significantly (205±101m to 269±64m, p=0.016) and NYHA 

functional class improved significantly (p=0.019) (figure 5.1). There were no 

significant differences between baseline and follow up in: heart rate (73±7bpm to 

71±15bpm, p=0.568), systolic (126±15mmHg to 135±13mmHg, p=0.333) or 

diastolic (72±10mmHg to 78±8mmHg, p=0.268) blood pressure, haemoglobin 

(120±24g/L to 137±24g/L, p=0.062) or creatinine (113±37umol/L to 122±46umol/L, 

p=0.215).    
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Table 5-1 Changes in haemodynamic and functional parameters after 
percutaneous mitral valve intervention. 

Parameter Baseline 6-months P value 

Systolic BP (mm/Hg) 126±15 135±13 0.333 

Diastolic BP (mm/Hg) 72±10 78±8 0.268 

Heart rate (bpm) 73±7 71±15 0.568 

Haemoglobin (g/L) 120±24 137±24 0.062 

Creatinine (umol/L) 113±37 122±46 0.215 

6-minute walk test distance (m) 205±101 269±64 0.016 

NHYA  

  

0.019 

I 0 4 

II 3 5 

III 6 1 

IV 1 0 

Abbreviations: BP, blood pressure; bpm, beats per minute; NYHA, New York Heart 
association functional class; m, metres. 

 

 

Figure 5-1 Changes in New York Heart Association (NYHA) functional class 
from pre to post percutaneous mitral valve intervention.  
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5.4.3 Follow up CMR data 

Baseline and follow up post percutaneous mitral valve intervention CMR derived 

cardiac indices are presented in Table 5-2. Percutaneous mitral valve intervention 

resulted in a significant decrease in LVEDVi (118±23ml/m2 to 92±28ml/m2, 

p=0.001) and LVESVi (59±20ml/m2 to 47±21ml/m2, p=0.005), but no change to 

LVEF (51±11% to 50±8%, p=0.661) (Figure 5-2). Indexed LV mass (LVMi) 

remained unchanged (73±19g/m2 to 68±21g/m2, p=0.181). Right ventricular 

parameters remained unchanged, except for a significant increase in RVEF 

(43±8.3% to 50±9%, p=0.035) (Figure 5-2). There were no significant changes in 

indexed LA volumes (105±41ml/m2 to 101±32ml/m2, p=0.677) or indexed right 

atrial area (17±4.2cm2/m2 to 17±3.3cm2/m2, p=0.777) (Figure 5-3). Quantitated MR 

decreased with a decrease in MR-Rvol (55±23ml to 23±13ml, p=0.005) and MR-RF 

(51±9% to 29±15%, p<0.001) (Figure 5-4); there were no significant changes in 

quantified aortic, pulmonary or tricuspid regurgitation (Table 5-2).  
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Table 5-2 Comparison of baseline and follow up cardiac parameters 
assessed by CMR imaging 

 

 

Baseline Follow up p-value 

LVEDVi (ml/m2) 118±23 92±28 0.001 

LVESVi (ml/m2) 59±20 47±21 0.005 

LVSVi (ml/m2) 59±14 45±11 0.005 

LVEF (%) 51±11 50±8 0.661 

LVMi (g/m2) 73±19 68±21 0.181 

LAV-i (ml/m2) 105±41 101±32 0.677 

AR Rvol (ml) 5.1±4.1 4.9±3.4 0.878 

AR RF (%) 10±8.9 9.6±7.2 0.959 

MR Rvol (ml) 55±23 23±13 0.005 

MR RF (%) 51±9 29±15 <0.001 

RVEDVi (ml/m2) 100±29 100±29 0.575 

RVESVi (ml/m2) 59±27 53±22 0.169 

RVSVi (ml/m2) 41±6.9 47±8 0.144 

RVEF (%) 43±8.3 50±9 0.035 

Pulm Rvol (ml) 3.1±3.0 2.1±2.1 0.139 

Pulm RF (%) 6.3±5.3 4.4±4.8 0.241 

TR Rvol (ml) 20±16 23±11 0.554 

TR RF (%) 25±21 29±19 0.241 

RAAi (cm2/m2) 17±4.2 17±3.3 0.777 

Abbreviations: AR, aortic regurgitation; EDV, end-diastolic volume; EF, ejection fraction; 
ESV, end-systolic volume; i, indexed to body surface area; LAV, left atrial volume; LV, left 
ventricular; LVM, left ventricular mass; MR, mitral regurgitation; PR, pulmonary 
regurgitation; RAA, right atrial area; RF, regurgitant fraction; Rvol, regurgitant volume; RV, 
right ventricular; SV, stroke volume; TR, tricuspid regurgitation.   
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Figure 5-2 Line graphs depicting biventricular remodelling post 
percutaneous mitral intervention  

Mean values depicted by dashed black line. Abbreviations: EDV, end-diastolic 
volume; EF, ejection fraction; ESV, end-systolic volume; i, indexed to body surface 
area; LV, left ventricular; RV, right ventricular.  
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Figure 5-3 Line graphs depicting changes in indexed bi-atrial dimensions 
post percutaneous mitral intervention.  

Mean values depicted by dashed black line. Abbreviations: LA, left atrium; RA, 
right atrium. 

 

 

Figure 5-4 Line graphs depicting changes in quantitated MR post 
percutaneous mitral valve intervention.  

Mean values depicted by dashed black line. Abbreviations: MR-Rvol, Mitral 
regurgitant volume, MR-RF, mitral regurgitant fraction.  
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5.5 Discussion 

To our knowledge, despite the small sample size, this is the largest CMR study to 

assess changes to biventricular volumes, bi-atrial size and quantitate valvular flow 

using baseline and follow up CMR in a focussed cohort of primary MR patients. 

Importantly, recruitment to the study is ongoing to increase the sample size. Our 

findings are supportive of the use of percutaneous mitral valve intervention in the 

treatment of high risk primary MR patients both in terms of functional 

improvements and cardiac reverse remodelling.  

5.5.1 Functional outcomes   

NYHA functional class and 6MWT distances improved after percutaneous mitral 

valve intervention. This is in keeping with previous studies with well documented 

improvements in NYHA functional class (143, 357, 364, 366) and 6MWT distances 

(366, 367) post percutaneous mitral valve intervention for MR.  

 

5.5.2 Cardiac reverse remodelling  

5.5.2.1 Left ventricular remodelling 

Our study demonstrated positive left-ventricular reverse remodelling in primary MR 

patients treated with percutaneous mitral valve intervention. The findings of a 

reduction in LV dimensions are in keeping with previous studies that utilised 

percutaneous intervention to treat significant MR (362-364). With the MR reduction 

demonstrated in our patients, a consequent reduction in LV dimensions is 

expected, but is not always guaranteed and is dependent on baseline LV 

dimensions and function. Chronic volume overload occurs in chronic MR due to 

dissolution of collagen tissue resulting in reorganization and slippage of myocardial 

fibres which causes remodelling of the extracellular matrix (363). This 

compensatory response normalises wall stress resulting in an asymptomatic stage 

of MR. However, continued prolonged chronic volume overload can cause 

progressive LV dilatation, stretching myocytes beyond their normal contractile 

length and can cause interstitial fibrosis and reduced myofibre content. The 
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decompensation of the dilating LV due to overload from chronic MR can then result 

in patients developing dyspnoea and exercise intolerance. Should intervention not 

be performed in timely manner when symptoms develop or LV dysfunction occurs, 

irreversible LV dysfunction can occur (11). This may be a result of chronic volume 

overload induced myocardial fibrosis, suggested by Velu et al who demonstrated 

worse LV remodelling and outcomes in MR patients with myocardial fibrosis 

identified by CMR compared with those without (368). Our study supports timely 

intervention, as our cohort only had mild LV dysfunction (LVEF 51% in context of 

significant MR), but all demonstrated reverse LV remodelling, evidenced by a 

reduction in LVEDVi and LVESVi  in all patients as shown in Figure 5-2 and 

importantly no significant worsening of LVEF. 

 

5.5.2.2 Right ventricular remodelling 

We found no change in RV dimensions (RVEDVi/RVESVi) post percutaneous 

treatment for primary MR; this is in keeping with prior echocardiographic (369)  and 

CMR studies (363, 364). Despite this, a significant increase in RVEF occurred, 

which was due to a non-significant fall in RVESVi. Similar findings of no change in 

RV dimensions but improved RV systolic function post MitraClipTM have been 

demonstrated in a previous echocardiographic study. Gianni et al performed TTE 

at baseline and 6-months post MitraClipTM in 35 patients with significant functional 

MR. They found TAPSE increased from 16.8±3.9mm to 19.3±4.5mm and PASP 

decreased from 50.1±6.8mmHg to 38.1±6.8mmHg from baseline to 6-months 

respectively post MitraClipTM, but RV dimensions remained unchanged (370). The 

results suggest that reductions in MR after MitraClipTM may not be sufficient to 

reduce RV end-diastolic volumes, but sufficient enough to allow an improvement in 

RVEF, which may be mediated by reduced PASP. Additionally, the findings of no 

significant alteration in RV volumes are in keeping with surgical patients 

(MVr/MVR) presented in Chapter 4.    
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5.5.2.3 Bi-atrial remodelling 

This is the first CMR study to assess changes in right atrial size post percutaneous 

intervention. We demonstrated no significant change in bi-atrial size, in terms of 

indexed left atrial volumes and right atrial area, after percutaneous intervention. 

Prior studies demonstrate conflicting LA remodelling results post percutaneous 

intervention. Krumm et al and Brouwer et al both demonstrated a significant 

decrease in LA size, but used comparatively suboptimal methodology to ours, the 

former using CMR to assess LA area and the latter TTE to assess indexed left 

atrial volumes (360, 362). Given CMR is the reference standard for cardiac volume 

assessment (51), TTE biplane assessment underestimates atrial volumes and has 

worse intra/inter-observer variability compared with CMR biplane measurements 

(371) and LA volumes are a more robust marker of cardiovascular outcomes than 

LA area (372), then our use of CMR to perform area-length bi-plane atrial volume 

measurements is arguably the more robust methodology. Indeed our findings 

mirror that of Radunski et al (363), who similarly utilised CMR to perform bi-plane 

LA volume measurements. The advanced age and comorbidities of our study 

cohort may have impacted on the lack of LA reverse remodelling. Song et al 

demonstrated that increasing age, increasing pre-operative LA volume and the 

presence of AF and hypertension adversely affect LA reverse remodelling (373). 

Therefore our populations age (82±5 years), severe pre-intervention LA dilatation 

(105±41ml/m2) and presence of AF in 80% and history of hypertension in 50% of 

patients, may have negatively impacted LA reverse remodelling.  

 

5.5.2.4 Changes in valvular flow 

Quantitated MR (MR-Rvol/MR-RF) reduced in all patients (Figure 5-4). However, 

percutaneous mitral intervention had no effect on quantitated aortic, pulmonary or 

tricuspid regurgitant volumes/fraction. Significant changes in AR or PR after 

surgery/intervention for mitral regurgitation are not expected or previously reported. 

Conversely TR can improve post mitral valve repair, as described in an 

echocardiographic study by Desai at al (374). TR associated with MR can be 

multifactorial but is most often functional, where MR results in increased LA 
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pressure, causing increased pulmonary artery pressures, resultant RV 

dilatation/dysfunction and tricuspid annular dilatation causing functional TR. MR 

also causes LA dilatation, increasing the likelihood of AF, which in turn can cause 

RA dilatation, therefore tricuspid annular dilatation and resultant functional TR 

(375). Correction of MR can therefore theoretically reduce TR. However no such 

changes have been demonstrated post MitraClip in both echocardiographic (369, 

376) and CMR studies (364). Toyoyama et al investigated 102 MR patients 

(Primary MR 37%, secondary MR 63%) by TTE at baseline and 1-year post 

MitraClipTM; TR regressed in 26%, remained unchanged in 62% and worsened in 

16% of patients. The lack of a reduction in TR may also be due to incomplete 

resolution of MR and therefore less significant reductions in RV afterload/PASP 

that can occur post mitral valve surgery. However, it may also be a result of non-

significant baseline TR in the group, with mean quantitated TR-RF of 25%. 

 

5.5.3 Limitations 

The main limitation of this study is the small sample size. However, in the context 

of prior CMR studies assessing primary MR patients post percutaneous 

intervention the sample size is comparatively large. Lurz et al and Radunski et al 

only included 5 primary MR patients (363, 364). Only Krumm et al had a larger 

cohort of primary MR patients (n=13), but did not assess RV remodelling or 

quantitate MR changes (362). Therefore, to date, our study has the largest cohort 

of primary MR patients treated percutaneously in whom biventricular remodelling 

and changes in quantitated MR have been simultaneously assessed by CMR. 

Additionally, this is the first CMR study to focus solely on changes in primary MR 

patients post percutaneous mitral intervention, rather than perform pooled analysis 

and assess changes in right atrial size using CMR. However, clearly a larger cohort 

of patients would improve the generalisability of the results and may highlight 

statistically significant changes in cardiac parameters not visible at this cohort size. 

Indeed, left atrial volumes decreased, but were not statistically significant, which 

may be altered by a larger sample size. Recruitment in the study is ongoing to 

address this issue.   
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One patient dropped out after suffering partial MitraClipTM detachment and declined 

follow up imaging, excluding them from analysis. Such occurrences could result in 

survivor bias, as negative clinical outcomes resulted in exclusion and this patient 

may have demonstrated different remodelling to those with positive clinical 

outcomes. Therefore the results must be carefully interpreted as demonstrating a 

positive cardiac reverse remodelling in patients successfully treated with 

percutaneous mitral valve interventions.    

 

5.5.4 Clinical implications 

The study demonstrated positive LV reverse remodelling and MR reduction in all 

patients, which is a positive result for expanding the routine use of percutaneous 

interventions in primary MR patients not suitable for surgical intervention. Further 

research is required with additional patients to further study this cohort of patients, 

to allow in depth analysis of pre-procedural predictors of outcomes to further guide 

optimal patient selection. The study investigated patients that had either 

MitraClipTM or TMVI. With only one TMVI patient, comparisons between the two 

techniques could not be done. Future studies comparing varying percutaneous 

techniques to treat primary MR are required to further assess the differences and 

highlight which patients benefit greater from which technique.   

 

5.6 Conclusion 

Primary MR patients treated with percutaneous mitral valve intervention with good 

technical success benefit from left ventricular reverse remodelling, reduced MR, 

improved RV function and functional status. Larger studies using the reference 

standard (CMR) are now required to investigate if our positive results are repeated, 

allow more in-depth analysis and compare varying percutaneous techniques to 

guide optimal patient selection.   
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Chapter 6 Overall Discussion 

Primary mitral regurgitation is a progressive disease, which left untreated can 

progress to significant morbidity and death (11). Surgical intervention is an 

effective treatment option. However, accurate imaging is pivotal to guide optimal 

management including patient selection and timing of surgical intervention or 

percutaneous intervention, if a patient’s surgical risk deemed too high (1, 37). TTE 

is a widely available first line investigation for MR assessment and exercise-TTE 

can provide additional prognostic information to assist decision making (85-90). 

However, TTE can be limited by poor acoustic windows and Doppler alignment 

issues to quantitate MR using geometric assumptions which reduce accuracy and 

reproducibility (38, 50). CMR is the reference standard for biventricular assessment 

(51, 52) and demonstrates superior reproducibility (59, 60, 62, 63) and prognostic 

ability of MR quantification compared with TTE (63, 64). Ex-CMR has been 

developing over the past 3 decades with recent advancements making clinical use 

more promising (93, 198). As such, CMR is a powerful tool for both clinical and 

research assessment of primary MR. The overarching aim of this thesis was to 

utilise existing CMR techniques and develop/validate new Ex-CMR techniques in 

the assessment of primary MR to improve the decision making tools available and 

assess the optimal treatment options available.  

 

6.1 Exercise CMR  

In Chapter 2 a novel free-breathing Ex-CMR protocol assessing biventricular 

function and great vessel flow was developed and validated in healthy volunteers, 

specifically using vendor provided sequences, a commercially available ergometer 

and standard analysis software to increase widespread attainability. The developed 

protocol was subsequently used in asymptomatic primary MR patients in Chapter 3 

and demonstrated the feasibility of the technique in this cohort and revealed 

decreasing MR severity as a mechanism to augment effective forward LVEF in 

asymptomatic patients. The healthy volunteers in Chapter 2 underwent a similar 

supine Ex-CMR protocol to the primary MR patients in Chapter 3. Therefore 
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comparisons can be made. However, there are some important caveats that 

prevent a direct comparison with statistical assessment and why the 2 cohorts are 

not presented in the same study: 1, the healthy volunteers are significantly younger 

and physically fitter, performing more regular exercise and 2, the healthy 

volunteers underwent a longer duration of exercise, as it was a protocol 

development study utilising more sequences and additionally assessing pulmonary 

flow. Both MR patients and healthy volunteers showed no change in LVEDVi with 

exercise. In contrast to healthy volunteers, the primary MR patients demonstrated 

no decrease in LVESVi, and no augmentation of LVSV or LVEF. The MR patients 

demonstrated no change in RVEDVi, whilst in healthy volunteers RVEDVi 

decreased. The differential findings in LV exercise haemodynamics are explainable 

by the variable LVCR found between primary MR patients (85, 86, 91). The 

explanation of an unchanged RVEDVi in MR patients compared with a decrease in 

healthy volunteers is less clear, but was similarly demonstrated by Chew et al (93) 

and potentially explainable by higher pulmonary pressures in MR patients. 

Pulmonary hypertension is a frequent consequence of significant MR which causes 

increased afterload on the RV (377) and can increase further during exercise (89, 

90). This could theoretically prevent RVEDV decreasing during moderate supine 

exercise. Indeed in prior supine Ex-CMR studies, patients with significant 

pulmonary hypertension demonstrate an increase in RVEDVi and decrease in 

RVEF during exercise, compared with a decrease in RVEDVi and increase in 

RVEF in healthy volunteers (244, 268). Thus patients with mild pulmonary 

hypertension may theoretically exhibit an intermediate exercise response, as 

demonstrated in our primary MR patients, where RVEF augments, but not as 

significantly as healthy volunteers and RVEDVi remains unchanged. The ability to 

assess biventricular function and quantitate MR and effective forward LVEF during 

continuous supine Ex-CMR in primary MR patients brings Ex-CMR a step closer to 

the clinical domain. Further research using the developed protocol is required to 

assess the techniques prognostic ability and whether performing CMR at low 

intensity exercise provides added value or whether it can be removed to reduce 

total cycling time.  
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6.2 Mitral valve surgery/percutaneous intervention 

Mitral valve repair, when feasible, is advised over mitral valve replacement in the 

treatment of primary MR (1, 39). Unfortunately no randomised trial has been 

performed to reinforce this guidance. Recent studies suggest prior comparative 

studies in favour of MVr may be a result of intrinsic bias (123, 125). As MVR 

patients are often older with more comorbidities (123) and many studies predated 

the routine use of chordal preservation techniques (116-119), which improves 

cardiac reverse remodelling post MVR (112-115, 342). As such, in Chapter 4 a 

comparison of cardiac reverse remodelling post MVr/MVR with chordal 

preservation was performed using a watchful waiting control group for 

comprehensive comparison. The study demonstrated equivalent left ventricular 

reverse remodelling between the surgical groups, with a greater augmentation of 

RVEF post MVR vs controls and lower residual quantitated MR post MVR. The 

results reinforce the need for large multicentre studies and potentially a 

randomised trial, to further assess MVr vs MVR with chordal preservation. The use 

of CMR in which is pivotal to ensure accurate assessment of cardiac reverse 

remodelling and quantitate MR.  

Percutaneous interventions, such as the MitraClipTM, are a novel treatment for the 

numerous patients deemed too high risk for surgical treatment of primary MR. 

Accurately assessing outcomes post percutaneous intervention is important to 

guide optimal patient selection and CMR offers superior reproducibility in MR 

quantification pre (59, 60, 62, 63) and post-percutaneous intervention to TTE (361). 

As such, CMR studies have investigated cardiac reverse remodelling post 

percutaneous intervention (362-364). However, none have published analysis in 

primary MR alone and as outcomes post percutaneous intervention can be 

significantly affected by underlying aetiology (162, 357, 360, 365), in Chapter 5 a 

focussed study assessing remodelling in primary MR was presented. Impressively, 

the study demonstrated left ventricular reverse remodelling and MR reduction in all 

patients. Further research is now required, to recruit a larger cohort, to allow in 

depth analysis of pre-procedural predictors of outcomes and compare the various 

percutaneous techniques available to further guide optimal patient selection.  
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As the primary MR patients that underwent percutaneous intervention in Chapter 5 

had the identical CMR protocol performed to the control/MVr/MVR groups in 

Chapter 4, comparisons can be made. The caveats being the percutaneous group 

are significantly older, with more comorbidities that resulted in being declined 

surgical intervention, which may affect their cardiac reverse remodelling response 

and different statistical analysis was used in Chapter 4 & 5, therefore only cursory 

comparisons can be made. All intervention groups (MVr/MVR/percutaneous) 

demonstrated positive LV reverse remodelling with reductions in LVEDVi, whilst 

both surgical groups demonstrated reduced LVEF, the LVEF remained unchanged 

in the percutaneous group. This may be a result of less significant decreases in 

MR, with greater residual MR in the percutaneous group resulting in more 

offloading of LVSV into the left atrium. Indeed, left atrial reverse remodelling 

occurred in both surgical groups and not in the percutaneous group and may be, 

as described in Chapter 5.5.2.3, a result of greater residual MR, increased age and 

high incidence of AF blunting LA reverse remodelling in the percutaneous group. 

No intervention group (MVr/MVR/percutaneous) demonstrated statistically 

significant alterations in RV volumes. However, both surgical groups demonstrated 

a non-significant decreasing trend in RVEDVi, whilst mean RVEDVi of the 

percutaneous group remained exactly the same. Interestingly RVEF augmented in 

the MVR and percutaneous groups, but not the MVr group, despite lower residual 

MR in the MVr group. This may be a result of non-statistically significant increases 

in TR in the percutaneous group resulting in greater augmentation of RVEF, with 

more offloading into the RA, whilst both surgical groups demonstrated non-

statistically significant decreases in TR. Indeed, both surgical groups had a mean 

residual TR-RF of 13% whilst the percutaneous group had a mean residual TR-RF 

of 29%. The results of greater MR reduction after surgical vs percutaneous 

intervention are in keeping with the EVEREST II trial and reinforce that 

percutaneous treatments should be reserved for those too high risk for surgical 

intervention, but that LV remodelling and MR reductions can still be achieved by 

this technique in this cohort (144).       
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6.3 General thesis discussion 

The body of work presented in this thesis demonstrates a new method (Ex-CMR) 

via which primary MR patients can be investigated and challenges the current 

recommendation of MVr when feasible being universally superior to MVR. In 

addition to aspects discussed in Chapters 2 through 5 and sections 6.1 and 6.2, 

further insights are appreciated from this body of work when assessed as a whole 

and will be discussed below. 

Timing of surgery for patients with primary MR is important, specifically deciding 

which patients benefit from early intervention. This thesis demonstrates how both 

resting and Ex-CMR could assist this decision and act as a powerful research tool 

for comparing treatment techniques. 

As discussed in depth in section 1.1.3, CMR provides MR quantification with 

superior reproducibility and prognostic ability to TTE. Additionally, resting TTE 

utilises an integrated assessment of multiple measurements, as no single 

measurement is universally reliable in all patients/types of regurgitant jets. As such 

TTE assessment of MR is reliant on a subjective combination of each 

measurement, weighing up the caveats of each measurement in that individual, to 

determine severity. It is therefore not surprising that studies using CMR to assess 

outcomes could provide comparatively controversial results to TTE studies. The 

results highlighted in Chapter 4 pose a challenge to the current surgical 

recommendations, with MVR being deemed comparable to MVr as regards reverse 

remodelling but with greater residual MR post MVr. Indeed, these results are likely 

highlighted because of the greater accuracy of CMR to quantify MR than TTE. It is 

therefore arguable that future studies assessing MR patients should utilise CMR for 

the optimal assessment of MR severity and remodelling pre and post an 

intervention. Indeed, for research studies to accurately compare different 

percutaneous interventions for treatment of primary MR, the greater 

reproducibility/accuracy of MR quantification by CMR is likely essential due to the 

smaller decreases in MR often achieved, often smaller sample sizes and greater 

confounding variables due to being performed in an older population with more 

comorbidity. As regards routine clinical use of CMR, as previously discussed by 
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Uretsky et al (59, 72), it is reasonable to predict after further research, CMR be 

indicated to assess MR severity in cases where TTE/TOE assessment does not 

unequivocally define MR as severe before surgical intervention.  

Theoretically an accurate exercise cardiac imaging modality should highlight 

predictors of asymptomatic MR patients more prone to deteriorate earlier than 

resting imaging and therefore assist patient selection for early surgical intervention. 

As presented, exercise echocardiography provides additional prognostic insight to 

resting TTE (1, 37, 85-90) but does not currently feature in international guideline 

decision to treat cascade pathways. This is partly a result of limitations regarding 

acoustic windows and reproducibility in clinical patients (92). As such a clinically 

viable Ex-CMR protocol is inviting. The first step towards a clinically viable Ex-CMR 

protocol for use in MR patients has been developed within this body of work. 

Further research is needed to build upon this work to move Ex-CMR into the 

clinical realm of primary MR assessment. The identification of effective forward 

LVEF as a highly reproducible measurement during Ex-CMR may help this 

become a reality. As discussed, effective forward LVEF takes into account 

changes in MR and LVEF, providing a single indices depicting ‘true’ forward flow 

with prognostic ability demonstrated in resting CMR (325). Ex-CMR studies 

assessing the prognostic utility of this measurement are now required. The ability 

to reliably measure changes in both LVEF and MR with a single index during 

exercise may prove beneficial, especially given the caveats highlighted above with 

TTE resting and exercise assessment. 

In addition to recognising the importance of LV remodelling and changes in 

quantified MR, the results of this thesis highlight the importance of the right 

ventricle in patients with MR. As discussed in Chapter 6.1, one main difference 

between response to Ex-CMR between healthy volunteers in Chapter 2 and MR 

patients in Chapter 3 was changes in RVEDVi. Additionally, in Chapter 4 both 

surgical groups demonstrated significantly poorer baseline RVEF to the less 

symptomatic control group and post MVr patients demonstrated greater residual 

MR vs MVR patients and poorer follow-up RVEF (compared with controls). Yet 

comparable follow up RVEF was found between the MVR and control groups, 

additionally suggesting a causal link between MR severity and RVEF. Therefore 
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changes in RV size/function, as assessed by CMR, may be a precursor to 

symptom development/deterioration in primary MR patients. This is not a novel 

appreciation, with prior exercise TTE studies (87) demonstrating the prognostic 

importance of the right ventricle. Indeed, deterioration in RV size and function is 

partly mediated by pulmonary hypertension (377) and current guidelines advise 

considering early intervention in asymptomatic patients with PASP>50mmHg (1, 

39). Given CMR offers reference standard assessment of the right ventricle and 

TTE assessment of PASP is reliant on an accurate Doppler tracing not achievable 

in every patient, then CMR assessment of RV function could form an important role 

in future prognostic assessment of MR patients, alongside the assessment of LV 

size/function and MR quantification. Further research using CMR to accurately 

assess the prognostic insight that changes in right ventricular size/function 

provides over time and during Ex-CMR are now required. 
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Chapter 7 Thesis conclusion 

Mitral regurgitation is a heterogeneous disease with multiple aetiologies and 

variables that effect prognosis and outcomes post-surgery/intervention. Accuracy 

of investigations guiding management decisions and assessing research outcomes 

is therefore essential. CMR is the reference standard for biventricular assessment 

and offers superior reproducibility of MR quantification to TTE and therefore ideal 

to supplement echocardiography to optimise decision making and assess cardiac 

reverse remodelling research outcomes. In borderline cases, performing exercise 

cardiac imaging can provide additional prognostic information. Ex-CMR has 

developed over the past 3 decades as an option to combine the superior image 

quality of CMR with the preferred method of stress. However, imaging during 

continuous Ex-CMR comes with numerous challenges. With increasing exercise 

intensity, physical motion, respiratory motion and ECG gating artefacts increase, 

making image acquisition and analysis more difficult. The use of un-gated real-time 

techniques overcomes this issue, but requires prolonged analysis time, specialist 

sequences and software, reducing routine clinical utility. Within this body of work, 

an Ex-CMR technique utilizing vendor provided C-SENSE pulse sequences with 

retrospective cardiac gating and respiratory navigation, commercially available 

equipment and software to assess biventricular volumes and great vessel flow was 

developed and validated in healthy volunteers. Feasibility of the developed Ex-

CMR protocol was subsequently proven in primary MR patients, demonstrating 

good/excellent reproducibility and that decreasing MR in this cohort allowed 

augmentation of effective forward LVEF. The technique now warrants further 

research to assess its prognostic ability in primary MR patients and feasibility in 

other valve diseases and congenital heart disease.  

In primary MR patients, on sequential CMR, no significant difference in LV reverse 

remodelling was found post MVr vs MVR with chordal preservation. However, MVR 

resulted in superior RVEF (compared with controls) and less residual MR. 

Therefore, MVR may offer comparable cardiac reverse remodelling to MVr. Given 

MVr is advised first line whenever feasible, larger, multicentre research is now 

warranted, to assess whether the guidance can be downgraded to allow direct 
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replacements of more complex pathologies, reducing surgical times, without 

necessarily adversely impacting reverse remodelling. When primary MR patients 

are deemed too high risk for surgery, percutaneous mitral valve intervention is a 

useful treatment option, where achieving good technical success offers a reduction 

in MR, left ventricular reverse remodelling, improved RV function and functional 

status.  

 

7.1 Future directions 

In addition to the future applications of the work presented throughout this thesis, 

further studies and developments are required to progress CMR and Ex-CMR as a 

clinical and research tool in the assessment of primary MR patients. These 

potential future developments will be discussed below and possible future studies 

indicated directly from the body of work in this thesis shall be discussed in section 

7.1.1. 

CMR has developed as a useful adjunct to assess MR severity in borderline cases 

or where there is uncertainty of MR severity after TTE assessment. Although MR 

quantification by CMR has demonstrated superior prognostic ability to TTE (63, 

64), limited studies determining how to accurately grade MR severity by CMR have 

been performed. Therefore, further studies to define MR severity by CMR MR 

quantification are required to improve the clinical utility of CMR across the entire 

MR severity spectrum. Once such studies have been completed and MR severity 

definitions by CMR are clearer a randomised TTE vs CMR guided 

surgery/intervention study may prove beneficial. Given the results highlighted in 

two studies by Urestky et al, demonstrated only 32-37% of patients undergoing 

mitral valve surgery for TTE defined significant MR had severe MR by CMR 

assessment (59, 72) and prior prospective observational studies demonstrated 

superior prognostic ability via CMR vs TTE (63, 64), then CMR MR severity 

assessment may better guide the need for surgical intervention. 

4D Flow CMR refers to PCMR with flow-encoding in all three spatial directions, 

resolved relative to all three dimensions of space and to the dimension of time 

along the cardiac cycle (378). It allows dynamic visualization of flow in multiple 
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orientations and accurate and reproducible quantification of MR using the 

retrospective valve tracking method. The technique potentially allows more 

accurate direct quantification of MR compared with 2D PCMR sequences, 

especially in MR jets that change direction and shape significantly during systole, 

which occur more commonly in primary MR (379). Further research is required to 

assess whether 4D-flow MR quantification provides additional/superior prognostic 

information to standard 2D PCMR techniques, but the technique demonstrates 

significant promise. The recent demonstration of feasibility of 4D flow assessment 

during supine Ex-CMR is exciting (300). Technological developments to hasten 

acquisition times and further research assessing feasibility in patients with MR are 

required to assess the potential clinical utility of the technique. 

 

7.1.1 Potential future studies 

Based on the body of work presented in this thesis, several future studies could 

progress the field of CMR and Ex-CMR in the optimal management of primary MR 

patients.  

Future Ex-CMR studies are required to build upon the feasibility studies presented 

in Chapters 2&3. The feasibility of accurate and reproducible assessment of other 

valve diseases and structural heart disease with the validated CS3 Ex-CMR 

protocol is indicated. Insights from Chapters 2&3 suggest the protocol should be 

widely applicable and useful in a wide range of valve diseases and structural heart 

disease. Larger studies to assess the prognostic utility of Ex-CMR in primary MR 

patients are indicated. The additional prognostic information exercise-TTE affords 

over resting TTE suggests Ex-CMR may become a useful prognostic tool in the 

future. Ex-CMR could potentially identify primary MR patients who benefit from 

early surgical intervention, thus justifying intervention before cardiac 

decompensation, reducing peri-operative risks and improving long term clinical 

outcomes. As such, future studies are indicated performed in the following order if 

positive results in the initial studies: 

1. Larger Ex-CMR studies assessing prognostic ability of the CS3 Ex-CMR 

protocol in primary MR patients, with the performance of baseline Ex-CMR 
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and observation for outcomes including development of symptoms or need 

for mitral valve surgery. 

2. Exercise-TTE vs Ex-CMR observational studies to compare prognostic 

ability and define any prognostic cut offs for clinical use in primary MR 

patients. 

The results presented in Chapter 4 demonstrating equivalent cardiac reverse 

remodelling between MVr and MVR with chordal preservation, but greater residual 

MR post MVr require further studies. If the results are replicated in larger 

multicentre studies, the current guidelines of repair whenever feasible could be 

relaxed, initially to allow direct MVR in elderly patients in whom a tissue MVR 

would last a lifetime or patients with a current indication for anticoagulation. This 

may allow for reduced surgical times, peri-operative risk and at least equivalent 

cardiac reverse remodelling and thus potentially clinical outcomes. As such, future 

studies are indicated to further question superiority between MVr and MVR with 

chordal preservation, performed in the following order if positive results in the initial 

studies: 

1. Multicentre studies comparing MVr vs MVR with chordal preservation in 

primary MR patients, using CMR to assess remodelling and prolonged 

follow up to assess clinical outcomes.  

2. Randomised control trials comparing MVr vs MVR with chordal preservation 

with recruitment criteria defined by prior multi-centre studies.   

Finally, the use and variety of percutaneous interventions to treat primary MR is 

increasing. As demonstrated in the differing results between MITRA-FR and 

COAPT trials, careful patient selection is vital to ensure optimal outcomes (145-

147). As shown in Chapter 5, percutaneous mitral valve intervention can result in a 

reduction in MR and positive cardiac reverse remodelling. Further research 

assessing predictors of favourable outcomes and compare the varying and 

emerging percutaneous interventions are required to help guide patient selection 

and optimal patient management. CMR is a vital tool in future studies due to the 

multiple benefits in MR and biventricular assessment presented throughout this 

thesis. As often smaller improvements are seen post percutaneous than surgical 
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intervention and are performed in older populations with greater co-morbidities and 

thus confounding variables. As such future comparative percutaneous studies 

require an imaging modality with excellent reproducibility/accuracy to highlight 

differences between treatments.  

With further research, CMR and Ex-CMR has the potential to significantly improve 

patient selection for early intervention, guide optimal surgical management 

strategies and therefore improve long term outcomes and quality of life in patients 

with primary MR. 
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