
Collaborative Interfaces for 
Ensemble Live Coding 
Performance

Ryan Philip Kirkbride

Submitted in accordance with the 
requirements for the degree of 

Doctor of Philosophy

The University of Leeds
School of Music
December 2020





The candidate confirms that the work submitted is his own and that appropriate credit has been

given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and that no quo-

tation from the thesis may be published without proper acknowledgement.

The right of Ryan Philip Kirkbride to be identified as Author of this work has been asserted by

him in accordance with the Copyright, Designs and Patents Act 1988.



Acknowledgements

First and foremost I would like to thank my supervisors, Dr. Luke Windsor and Dr. Guy Brown.

Their counsel and guidance has been invaluable over the course of this PhD. It was not a straight-

forward journey but you always supported my decisions and continuously helped develop my ideas.

Thank you. Special thanks to the incredibly talented and hard-working Lucy Cheesman, Laurie

Johnson, and Innocent Granger for their time and dedication as members of the The Yorkshire

Programming Ensemble. This would not have been possible without your contributions. This

work was conducted as part of the White Rose College of Arts & Humanities ‘Expressive Non-

verbal Communication in Ensemble Performance’ network and I am incredibly grateful for the

support from all of those involved. As well as my supervisors, this involved Dr. Renee Timmers,

Dr. Helena Daffern, Dr. Catherine Laws, and Dr. Freya Bailes. I would also like to personally

thank fellow network students, Sara D’Amario and Nicola Pennill, for the countless hours spent

working together on the various network activities over the years, it was a joy to work with you.

I would also like to thank Dr. Alex McLean for introducing me to live coding and inspiring me

to work on my own projects, which he has continually supported. He has also given up his time

and energy organising many of the live events and workshops that I took part in as part of this

PhD and, if it wasn’t for people like Alex, people like me wouldn’t get the opportunity to share

their own crazy ideas with the world. I am also very grateful to the live coding community for

embracing my work; it has been a real driving force of motivation. I would be remiss if I did not

thank my parents who, although never quite understood what it was that I was doing, were always

supportive and encouraging me to pursue my passions. Thank you for everything you have done

for me over the years. To my partner, Elspeth, whose strength has kept me going through all the

ups and downs of this journey, you have my eternal gratitude. I could not have done this without

you.

This work was supported by the University of Leeds through the White Rose College of the

Arts & Humanities.

ii



Abstract

This research is a practice-led investigation into collaborative user interfaces within the practice

of live coding; the act of writing computer code for generating improvised music live in front of

an audience. It examines the impact of user interface design parameters on group creativity and

explores the roles of data, text, and programming languages as media for musical communication.

Utilising a multi-faceted research method that combines iterative “participatory design” (Spinuzzi,

2005) with performance-led “research in the wild” (Benford et al., 2013), this research couples

ethnographic and autoethnographic observations to gain insight into the practice of ensemble live

coding and inform software design. Three novel collaborative interfaces have been developed as

part of this research that explore various facets of musical collaboration in live coding. Each inter-

face was developed through an iterative and reflexive methodology focused on user-centred design

and was employed in a cyclical process of artistic practice and refinement based on user evaluation

and in-depth study. The first interface, entitled Troop, is a shared text editor that allows multiple

performers to collaborate on the same single body of code together. The second, CodeBank, ex-

plores how private working in a collaborative context affects creativity and improvisation. Finally,

PolyGlot, combines multiple live coding languages into a single collaborative interface that enables

live coding musicians to play together, regardless of their knowledge of languages. As well as

these three graphical interfaces, the functionality of an existing live coding language, FoxDot, was

extended to help facilitate the sharing of musical information within an ensemble. Each interface

was used in live performance by The Yorkshire Programming Ensemble and evaluated through

group interview sessions that examined the themes of immediacy, trust, and risk with regards to

both human-computer interaction and intra-ensemble communication as well as the experience of

personal- and group-flow states.

iii



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Recording Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Contextual Background 6

2.1 What is Live Coding? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Programming as performance . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 The TOPLAP manifesto draft . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Show us your screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Improvisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.6 Existing technologies for live coding . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Collaboration and Network Music in Live Coding . . . . . . . . . . . . . . . . . . . 15

2.2.1 Network music systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 The role of the network in network music . . . . . . . . . . . . . . . . . . . 18

2.2.3 Network music systems for collaborative live coding . . . . . . . . . . . . . 20

2.2.4 Futures of live coding collaboration . . . . . . . . . . . . . . . . . . . . . . . 25

3 Method 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Rationale for Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Research in the wild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



3.3.3 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Chapter structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Foundation Work 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 FoxDot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Player objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Time-dependant variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Troop: An Interface for Real-Time Collaborative Live Coding 43

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Phase 1: Inital Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Phase 2: Operational Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Phase 3: Language Agnosticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6.1 Personal reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6.2 User evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6.3 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6.4 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.5 Potential in pedagogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6.6 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Developing a Language for Live Coding in Ensemble Performance 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Phase 1: Modelling Interpersonal Musical Relationships . . . . . . . . . . . . . . . 74

v



6.2.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Phase 2: Player-Key Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Phase 3: Extending Player-Keys for Musical Behaviours . . . . . . . . . . . . . . . 87

6.4.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5.1 Personal reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5.2 User evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.3 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 CodeBank: Public and Private Working in Ensemble Live Coding 104

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Phase 1: Initial Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Phase 2: User Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.5 Phase 3: Synchronisation and User Monitoring . . . . . . . . . . . . . . . . . . . . 117

7.5.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.5.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.6.1 Personal reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.6.2 User evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.6.3 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

vi



8 Polyglot: A Multilingual Interface for Collaborative Live Coding 132

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3 Phase 1: Initial Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.3.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.4 Phase 2: Language-Specific Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.4.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.4.2 Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.4.3 Evaluation and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.5.1 Personal reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.5.2 User evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.5.3 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9 General discussion and conclusions 150

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.4 Addressing the Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Appendix A: Performance Descriptions 175

A.1 Leeds Algorave, Open Data Institute, Leeds - 28/04/17 . . . . . . . . . . . . . . . 175

A.2 Algorave Assembly Lunchtime Concert, Leeds - 27/04/18 . . . . . . . . . . . . . . 177

A.3 International Conference on Live Interfaces, Porto - 14/06/18 . . . . . . . . . . . . 181

A.4 Rehearsal session, various locations - 26/04/17 . . . . . . . . . . . . . . . . . . . . 183

A.5 Rehearsal session, various locations - 06/06/17 . . . . . . . . . . . . . . . . . . . . 185

A.6 Together In Music conference, York - 14/04/18 . . . . . . . . . . . . . . . . . . . . 186

A.7 Algo-Rhythms, Rotterdam, 28/04/2019 . . . . . . . . . . . . . . . . . . . . . . . . 188

A.8 Rehearsal session, Sheffield - 09/12/18 . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.9 TOPLAP End of Cycle Party, Access Space, Sheffield - 19/12/18 . . . . . . . . . . 194

A.10 Late at the Library: Algorave, London - 05/04/19 . . . . . . . . . . . . . . . . . . 197

A.11 Rehearsal session, Sheffield - 07/05/19 . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.12 AlgoMech Festival, DINA Club, Sheffield - 18/05/19 . . . . . . . . . . . . . . . . . 204

vii



Appendices

Included in this thesis:

Appendix A. Written performance descriptions.

Included as files accompanying this thesis:

Appendix B. Troop project files.

Appendix C. Troop user evaluation questionnaire responses.

Appendix D. FoxDot project files.

Appendix E. CodeBank project files.

Appendix F. Polyglot project files.

viii



Recording Documentation

Included as files accompanying this thesis.

Recording A. ch5 1a-Rehearsal-09 04 17.mpg

Recording B. ch5 1b-Leeds Algorave-28 04 17.mp4

Recording C. ch5 2-Algorave Assembly-27 04 18.avi

Recording D. ch5 3-ICLI-14 06 18.mp4

Recording E. ch6 1a-Rehearsal-26 04 17.mpg

Recording F. ch6 1b-Rehearsal-06 06 17.mpg

Recording G. ch6 2-Together in Music-14 04 18.mpg

Recording H. ch6 3-Algo Rhythms-28 04 19.mpg

Recording I. ch7 1-CodeBank Rehearsal-09 12 18.mpg

Recording J. ch7 2-TOPLAP End of Cycle Party-19 12 18.mpg

Recording K. ch7 3-British Library Algorave-05 04 19.mpg

Recording L. ch8 1-Rehearsal-07 05 19.mov

Recording M. ch8 2-AlgoMech Festival-18 05 19.avi

ix



List of Figures

2.1 Comparison of SuperCollider and ixi-lang syntax . . . . . . . . . . . . . . . . . . . 12

2.2 TidalCycles code for a polyrhythmic drum beat . . . . . . . . . . . . . . . . . . . . 13

2.3 Example of a Sonic-Pi live loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Network Music classification graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Overview of performance-led research in the wild . . . . . . . . . . . . . . . . . . . 32

4.1 Example of typical FoxDot code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Comparison of FoxDot code with Python’s standard library. . . . . . . . . . . . . 38

4.3 FoxDot code for playing multiple notes simultaneously. . . . . . . . . . . . . . . . . 38

4.4 Example FoxDot code using the play SynthDef. . . . . . . . . . . . . . . . . . . . 39

4.5 Example FoxDot code using the every method. . . . . . . . . . . . . . . . . . . . . 39

4.6 FoxDot Pattern transformations and output. . . . . . . . . . . . . . . . . . . . . . 40

4.7 Comparison of transforming FoxDot Pattern objects and Python lists. . . . . . . . 40

4.8 Example Pattern functions used to generate sequences. . . . . . . . . . . . . . . . 41

4.9 Example FoxDot code using a TimeVar. . . . . . . . . . . . . . . . . . . . . . . . . 42

4.10 Example FoxDot code using a TimeVar shared between two player objects. . . . . 42

5.1 Early version of the Troop interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Final design of the Troop interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Troop’s Network diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Example of scrambled text in Troop. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Screenshot of inconsistent text contents across Troop clients. . . . . . . . . . . . . 50

5.6 The Yorkshire Programming Ensemble. Photo by Aaron Ratcliffe. . . . . . . . . . 51

5.7 Representation of multicoloured text in Troop using user ID numbers. . . . . . . . 54

5.8 Python Code for calculating a user’s location after a text operation. . . . . . . . . 55

5.9 Troop interface with transparent background. . . . . . . . . . . . . . . . . . . . . . 56

5.10 Still frame from the Algorave Assembly performance . . . . . . . . . . . . . . . . . 56

5.11 Troop interface overlaying on SuperCollider’s oscilloscope. . . . . . . . . . . . . . . 58

5.12 Windows used to start a colour merge sequence in Troop. . . . . . . . . . . . . . . 60

5.13 Progression of Troop’s font colour merge. . . . . . . . . . . . . . . . . . . . . . . . 61

5.14 Class Compliant User Interfaces using Troop . . . . . . . . . . . . . . . . . . . . . 64

5.15 User satisfaction response graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



5.16 Photos of Troop being used by various ensembles. . . . . . . . . . . . . . . . . . . 70

5.17 Troop used at Tidal Club, Sheffield. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 FoxDot code using the follow method . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Screenshot from a rehearsal session. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 FoxDot code using the follow method with chords. . . . . . . . . . . . . . . . . . 76

6.4 FoxDot code using the player-key data structure. . . . . . . . . . . . . . . . . . . . 78

6.5 Flow chart diagram of psuedo-reactive player-key data type. . . . . . . . . . . . . . 78

6.6 Tree structure relationships of parent and child player-key data structures . . . . . 79

6.7 Python code for player-key operator overloading . . . . . . . . . . . . . . . . . . . 80

6.8 FoxDot code using player-keys to select single notes from a chord. . . . . . . . . . 80

6.9 FoxDot code using player-keys and a logical “equals to” test. . . . . . . . . . . . . 81

6.10 FoxDot code using player-keys and a logical “greater than or equals to” test. . . . 81

6.11 FoxDot code combining multiple logical tests with the same player-key. . . . . . . . 81

6.12 Code for the player-key map method. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.13 FoxDot code using the player-key map method. . . . . . . . . . . . . . . . . . . . . 83

6.14 FoxDot code using functions as input for the player-key map method. . . . . . . . . 83

6.15 FoxDot code using player-key to map pitch to panning. . . . . . . . . . . . . . . . 84

6.16 Circular reference error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.17 FoxDot code using the player-key transform method. . . . . . . . . . . . . . . . . 88

6.18 FoxDot code using the the player-key accompany method. . . . . . . . . . . . . . . 89

6.19 Code for the versus method from the player object class. . . . . . . . . . . . . . . 90

6.20 FoxDot code using the versus method. . . . . . . . . . . . . . . . . . . . . . . . . 91

6.21 Photo from Algo-Rhythms performance . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1 CodeBank’s Network diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Screenshot of the CodeBank client interface. . . . . . . . . . . . . . . . . . . . . . 107

7.3 Close up of the CodeBank Code Repository . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Action Buttons used for interacting with the CodeBank interface . . . . . . . . . . 109

7.5 Screenshot of the CodeBank server interface . . . . . . . . . . . . . . . . . . . . . . 110

7.6 Comparison of headphone use over the course of a CodeBank session. . . . . . . . 112

7.7 Screenshot of the updated CodeBank client application and chat box. . . . . . . . 113

7.8 Window for adjusting the beat in FoxDot from CodeBank. . . . . . . . . . . . . . . 114

7.9 Photo from the End of Cycle performance. . . . . . . . . . . . . . . . . . . . . . . . 115

7.10 Frame from video of Sheffield Algorave performance with CodeBank. . . . . . . . . 117

7.11 User monitoring functionality of CodeBank . . . . . . . . . . . . . . . . . . . . . . 118

7.12 CodeBank chatbox with flashing borders. . . . . . . . . . . . . . . . . . . . . . . . 119

xi



7.13 Login window for CodeBank with TidalCycles language option. . . . . . . . . . . 119

7.14 Photo from Late at the Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.1 Polyglot network diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2 Login window for the Polyglot interface. . . . . . . . . . . . . . . . . . . . . . . . 135

8.3 Photo of Polyglot being used with 4 users. . . . . . . . . . . . . . . . . . . . . . . . 136

8.4 Screenshot from a Polyglot rehearsal recording. . . . . . . . . . . . . . . . . . . . . 137

8.5 Updated login interface for Polyglot . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.6 Screenshot of the AlgoMech performance with the blurring text cursors. . . . . . . 142

8.7 Polyglot interface showing feedback on an error in the SuperCollider tab. . . . . . 144

9.1 Project gantt chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.2 Spectrum of affordance for a live coding interface framework and a collaborative live

coding interface framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.3 Examples of comments being used during performance. . . . . . . . . . . . . . . . 160

xii



1. Introduction

1.1 Context

Live coding is a relatively young and interdisciplinary, primarily musical, performance practice that

uses computer programming as its medium. Performers generate music through the construction

and reconstruction of algorithms using programming languages while projecting their screens for

the audience to see (Mori, 2015). It emerged at the turn of the millennium and is still a relatively

unexplored area of research (Burland and McLean (2016) and Magnusson (2014) for example). It

crosses the disciplines of music and computer science, as well as their many sub-disciplines, and

explores the act of composition as performance. The practice of live coding is not restricted to just

the creation of music but can also be used to generate visuals, using such environments as fluxus1

and livecodelab2, and even create interactive dance choreography (Sicchio, 2014).

Live coding is very often enacted as a solo performance, but why is this? It might be due

to the complicated nature of setting up collaboration software and synchronising computer clocks

but may also be because of the nature of the style of performance itself. Working together with

other people to compose a constantly evolving piece of music in real-time may not only give rise

to artistic and social conflicts but would be a cognitively challenging task to begin with. The issue

is further confounded by the fact that the network of live coders is spread out so wide that many

practitioners are simply too estranged from one another to develop fruitful artistic relationships.

Research suggests that “being a member of a music ensemble can enhance subjective wellbeing,

support the development of musical identity and a sense of purpose” and traditional types of group

music making, such as singing, “can foster happiness as well as provide musical and social benefits”

(What Works Wellbeing, 2016). Computer programmers are often associated with the stigma as

the lonely introvert working in solitude in a badly lit room and this image would not be inaccurate

when describing a live coding event. Unfortunately, there is no “industry standard” for ensemble

live coding and this leaves many practitioners without access to an aspect of musical performance

that can benefit their wellbeing and mental health. This is not to say that there are no existing

musical collaborations in the community of live coding but many live coding ensembles consist of

performers based in research at the cutting edge of the practice such as OFFAL3, BEER4, and the

Cybernetic Orchestra5.

1http://www.pawfal.org/fluxus/, accessed: 28/05/19
2https://livecodelab.net/, accessed: 28/05/19
3https://offal.github.io/, accessed 18/10/20
4http://www.beast.bham.ac.uk/offspring/beer/, accessed 18/10/20
5https://global.mcmaster.ca/activity/cybernetic-orchestra/, accessed 18/10/20

1

http://www.pawfal.org/fluxus/
https://livecodelab.net/
https://offal.github.io/
http://www.beast.bham.ac.uk/offspring/beer/
https://global.mcmaster.ca/activity/cybernetic-orchestra/


A common practice in live coding is to project your screen so that the audience can see exactly

what you are doing. Too often the live coder is seen to be static behind the glow of their laptop

with a look of intense concentration on their face, so sharing the contents of the screen is the

main medium of communication between performer and audience. Performers’ movements are

usually limited to just fingers typing on keyboards and viewers are unable to connect any meaning

between movement and sound so the projected code is the only means of linking what is seen

and what is heard. But programming languages are just that; languages. They don’t make sense

without an understanding of its lexicon and syntax, and some audience members are left severely

disadvantaged when this is the case. With these language barriers in place it begs the question,

are audiences able to interpret collaborative musicianship in ensemble live coding performances?

The prevalence of internet-based technologies has enabled live coders to take part in networked

performances that allow performers to play together from geographically separate locations. Con-

sequently, a live coding performance does not always require a performer to be physically present

with the audience in a venue. For ensembles, this also means communication between performers

can be limited as they are not able to see each other during a performance. Many groups will make

use of an instant-messaging application, which raises the question; how does a separate channel of

communication affect ensemble performance? Not all live coding ensembles perform from different

locations, however, and many perform together on stage. Here, communication is no longer limited

to a digital channel but can also be realised physically; performers can look at each other, nod

and wave, and even dance with one another. Does the physical presence of performances affect

audience perception or is it just the music that counts? The questions raised here are just a few

that this body of work will explore with the objective of developing more engaging methods of

practice for live coders. While the primary goal of this work is to better facilitate communication

and collaboration in live coding, it is also an exploration of methods for engaging the public with

a new and exciting performance practice.

1.2 Method

Practice-based, or artistic, research is research that takes place “in and through art practice” such

that the “artistic practice is not only the result of the research, but also its methodological vehicle”

(Borgdorff, 2010, p. 46). With regards to this thesis, the focus will not just be on the artistic

outcomes of ensemble live coding, i.e. the performances, but also the encompassing process of

developing the tools and craft en route to reaching these outcomes. This research will use a mixed-

methodology approach, combining practice-based research with ethnographic studies to create new

performance software as well as develop tacit knowledge and produce novel musical performances

that explore multiple facets of collaborative live coding.

2



The development of the software will also be largely informed through the study of live perfor-

mances, a method that shares many similarities with the performance-led “research in the wild”

methodology described by Benford et al. (2013). They suggest that performance-led research is

based on the foundation of three activities; practice, study, and theory. While Benford et al.

(2013) primarily consider the act of performance to be the practice, this thesis is embedded in

practice-based research, which, as mentioned above, considers practice to consist of both the artis-

tic outcomes and their methodological vehicles. Here the practice involves the development of

software for collaborative live coding as well as its application in live performance contexts. These

performances will be documented and studied using an ethnographic approach, which will help

inform future design decisions. The development of these interfaces themselves will be done itera-

tively over the course of several “design phases” and follow guidelines for software design outlined

by Norman (1998). In each design phase, the results from studying the performance and user

feedback will be used to improve the software going forward. This methodology, known as “partic-

ipatory design” (Spinuzzi, 2005), frames design the as the research itself in that the design leads

to the production of artefacts, systems, and practical or tacit knowledge. After the final design

phase, more in-depth reflection on the success and failures of the interface will take place, using

guidelines for evaluating software for musical improvisation outlined by Gifford, Knotts, Kalonaris,

and McCormack (2017).

1.3 Outcomes

The key contributions to knowledge from this thesis are:

1. The collaborative live coding environment, Troop, that allows multiple performers to work

on the same code together simultaneously (Chapter 5).

2. The development of the live coding language, FoxDot, to become a vehicle for ensemble

communication and the creation of dynamic musical relationships (Chapter 6).

3. The CodeBank performance system, which splits live coding performance into public and

private activities to encourage experimentation and improve musical output (Chapter 7).

4. The multilingual collaborative live coding environment, Polyglot, that allows users to collab-

orate using up to three different live coding languages simultaneously (Chapter 8).

5. A series of recorded and transcribed ensemble performances using the software above (Ap-

pendix A).

3



1.4 Thesis outline

While the current chapter briefly describes the context of the problem being addressed by this

research, Chapter 2 does so in more detail. It provides a contextualisation of this PhD with regards

to the practice live of live coding and its ties to improvisation as well as the history of musical

collaboration over a computer network as a whole. It also discusses a wide range of technologies

used by existing live coding ensembles, both technologically homo- and heterogeneous. With this

research properly contextualised, Chapter 3 goes on to discuss its methodology, which includes the

research questions and the rationale behind them. It outlines the theories used to design, develop,

and critically reflect upon the use of any collaborative interfaces that will be developed to address

the research questions and discusses the challenges that will likely be faced as a result of these

choices.

Several pieces of software have been developed that facilitate collaborative live coding in dif-

ferent ways and each is discussed primarily within their own chapter. Of these software outputs

there are three graphical user interfaces and a live coding language that supports inter-musician

communication through code. The latter is called FoxDot, which has been in development since

2015 but was primarily designed for solo performance. Chapter 4 outlines the foundation work

on FoxDot that has taken place prior to the start of this PhD research and should provide the

reader with enough information about its features and syntax to understand the technical dis-

cussion in subsequent chapters. The first graphical user interface developed is Troop, which is a

shared live coding text editor in which all participating users edit the same body of code together

simultaneously. Each user has a labelled cursor and a different coloured font to help identify each

users’ contributions. This not only helps users see the ongoing actions of their co-performers but

also gives audiences insight into the collaborative processes as the different coloured text become

interweaved over time. As a direct result of the research into the Troop editor, several features

were added to the FoxDot language that allow users to share musical information and create dy-

namic musical relationships within their code. Chapter 6 documents the process of adding these

features and improving FoxDot as a vehicle for ensemble communication. Chapter 7 introduces the

CodeBank system, which gives performers a private workspace to test ideas using code and listen

to the results before the audience. Instead of adding code to a single body of text, it is represented

as a repository of small chunks of code, known as “codelets”, that can be opened in any user’s

private workspace and edited. This aims to give users the confidence to experiment more, while

also providing audiences with the most polished musical experience possible. The last interface

developed is Polyglot, which is discussed in Chapter 8. Polyglot uses much of the source code

from the Troop interface but extends its functionality to utilise three live coding languages instead

of one. The interface incorporates multiple text boxes that allow concurrent editing, each one

4



connected to a separate live coding language. Users given a labelled cursor and different coloured

font to help performers and audience members alike track the changes to the code over time.

Each of these chapters are accompanied by video documentation of rehearsals and performances

using the different software at each design phase. The videos themselves are transcribed and

discussed with the aim of developing the knowledge to be able to answer the research questions

posed in this PhD thesis. The final chapter, Chapter 9, addresses these questions using data

gathered throughout the thesis.

5



2. Contextual Background

2.1 What is Live Coding?

2.1.1 Definition

Before answering the question of “how can the practice of ensemble live coding be improved?” we

must first define what that practice consists of. The earliest documented live coding performance

took place in 1985 by Ron Kuivila (TOPLAP, 2004) but it wasn’t until the turn of the millennium

that live coding appeared as we know it today. One of its earliest descriptions can be found in

(Collins, McLean, Rohrhuber, & Ward, 2003) in which it is described as “coding music on the fly”

and “tweaking or writing the programs themselves as they perform”. Since then, the popularity of

live coding has risen and many new practitioners and technologies have shaped the practice as it

has evolved. The following is a more recent definition, taken from the TOPLAP1 website, which

was created in 2004 to help promote the practice of live coding:

Live coding is a new direction in electronic music and video, and is getting somewhere

interesting. Live coders expose and rewire the innards of software while it generates

improvised music and/or visuals. All code manipulation is projected for your pleasure.

Live coding works across musical genres, and has been seen in concert halls, late night

jazz bars, as well as algoraves. There is also a strong movement of video-based live

coders, writing code to make visuals, and many environments can do both sound and

video, creating synaesthetic experiences.

In layman’s terms, live coding is the creation of music and/or graphics through the use of

computer programming languages live in front of an audience, where the program generating

the output is edited by the performer while it is still running. This is a stark contrast to more

traditional computer programming where code is saved, compiled, and then run in its entirety.

It has a strong focus on the visual elements of performance, with some live coders only creating

graphical output, and all code being projected for the audience’s pleasure. Often performers start

from a “blank slate” and write all of the code for generating music during the performance (Brown

& Sorensen, 2007; Magnusson, 2011a).

Computers are very good at running many simple commands over and over again in a loop and

this behaviour lends itself well to the creation of dance music, which is why live coding is often

1TOPLAP stands for Temporary Organisation for the Promotion of Laptop Algorithm Performance - see http://

toplap.org/

6

http://toplap.org/
http://toplap.org/


experienced at late-night club events known as Algoraves2 (short for Algorthimic Rave). This is

not to say that live coding can only be used to perform electronic dance music, but it is very good

at it. Live coding is not just limited to music either. As mentioned previously it can be used to

generate real-time graphics and has also been used to live choreograph dancers (Sicchio, 2014).

Live coding is still a developing practice and has been used within a wide variety of styles and

genres of music, with many more still to come.

2.1.2 Programming as performance

A live coder is someone who writes computer programs that generate music; so are they performers

or are they composers? Or are they something else entirely? The ambiguity here brings into

question the role of the live coder within the context of traditional western music and the composer-

performer relationship. Many researchers feel that “live coding is, in many ways, more similar to

musical composition than to instrumental performance.” (Aaron, Blackwell, Hoadley, & Regan,

2011). This sentiment is shared by Magnusson (2011a), who suggests that “the live coder is

primarily a composer, writing a score for the computer to perform” but the act of composition

is, in and of itself, the performance. Similarly, Blackwell and Collins (2005) state that “live

programming includes notation, but the notation is ‘performed’ automatically by the computer,

without error”. There is no such thing as “wrong notes” for a computer but a live coder may enter

values in their code that produce less than satisfactory results but are still embedded within the

overall sonic experience of the performance; “We are observing a kind of ‘live studio’ composition

where mistakes – perhaps there are no such thing, just consequences – cannot be ‘corrected’”

(Emmerson, 2007, p. 113). Very often live coders will choose to “purposely embrace error and

failure” (McLean, 2017) in their performance, which brings to mind one of Brian Eno’s oblique

strategies; “honour your error as the hidden intention” (Garland, 2001). It suggests that the

indeterminacy of one’s own actions should be incorporated into practice as opposed to being

avoided. Computer programs (especially those that are written in front of an audience) are also

susceptible to bugs and errors themselves and these can occur during a live performance. For

live coders it is often about “allowing those errors and glitches to occur in a context that works

aesthetically” (Collins et al., 2003); a philosophy sometimes known as “errormancy” (Cascone,

2011) where errors act as divine intervention in artistic practice.

Due to the risks involved when working glitch and error, live coding is a cognitively demanding

task and is as much about “braving the challenges of coding music on the fly” (Collins et al.,

2003) as it is about performing music. The high level of difficulty is part of live coding’s appeal

and by deciding to live code, live coders choose “to embrace the challenge of live coding; the

virtuosity of the required cognitive load, the error-proneness, the diffuseness, all of these play-up

2http://algorave.com/, accessed 06/11/2018

7

http://algorave.com/


the live coder as a modern concerto artist” (Blackwell & Collins, 2005). Things can, of course, go

wrong during performance but “‘recovery’ is a skill in itself as all the best performers take risks”

(Emmerson, 2007, p. 112) and by embedding risk within their practice itself, live coders attempt

to elevate themselves to a higher echelon of musical performance. The significance of error and

failure in live coding performance places the role of the live coder in a unique juxtaposition between

composer and performer to create an artistic practice that is a “fascinating fusion of composition

and improvisation” (Freeman & Van Troyer, 2011).

2.1.3 The TOPLAP manifesto draft

The TOPLAP Manifesto Draft (TOPLAP, n.d.) was developed with the aim of providing a set of

rules for live coding performances and is often referred to when attempting to define the practice; as

done so by Burland and McLean (2016); Flašar (2016); Magnusson (2014); Sicchio (2014); Swift,

Sorensen, Martin, and Gardner (2014) among others. It makes several demands, most notably

“Obscurantism is dangerous. Show us your screens”, which have heavily impacted the practice of

live coding. Many defining qualities of live coding, such as screen projection, improvisation, and

embracing error, are mentioned in the manifesto and are likely responsible for shaping the practice

into its current state. The concept of live coding as a challenge is at the heart of the manifesto

and this is exemplified well in two lines: “[We prefer] The skillful extemporisation of algorithm as

an expressive/impressive display of mental dexterity” and “No backup (minidisc, DVD, safety net

computer)”. This puts a focus on improvisation without any backup or safety reset, which would

likely result in mistakes and even program crashes. Perhaps this is the origin of the live coding

culture choosing to “embrace error and failure”. In an era of pre-recorded performances and auto-

tune, there is clearly a vision in this manifesto for pursuing a sense of “liveness” that pushes against

even the ideas of improvisation being restricted by musical conventions (Auslander, 2008, p. 64).

Like the Art of Noises manifesto (Russolo, 1913), the TOPLAP Manifesto Draft aims to guide

artists into a new manner of performance practice. Where Russolo had the bold new idea that

noise could be music, TOPLAP promotes the idea of the algorithm as an instrument intrinsically

tied to a human performer and pushes against the ubiquity of artificial intelligence in the 21st

century. Of course, there are problems with manifestos and the reality of the implementation does

not always align with the theory that it was built upon. Perhaps the most famous example of this

is the communist manifesto and its failed realisation within the Soviet Union. Forcing the idealism

of a manifesto upon people will always result in push back and in the field of live coding there are

already performers choosing to hide their screens in protest and pre-write their code just because

they can. A manifesto is a vision, but not everyone’s vision. This is partly why the TOPLAP

manifesto is still labelled as a draft; it is a definition open to change.

8



2.1.4 Show us your screens

The projection of the performer’s screen is a practice that is commonplace in live coding (Mori,

2015) and is demanded of the performer as part of the TOPLAP Manifesto Draft. This is just

one of the ways that live coding differs to other types of musical performance because “in most

other musics the score is hidden from the audience (it is either visible to the performer/s only, or is

memorised in advance of the performance) and therefore the process of musical creation is partially

hidden” (Burland & McLean, 2016, p. 2). Unlike other performance practices live coding exposes

the processes at play through the act of projecting one’s screen and gives the audiences an insight

into what is going on. In fact, there are multiple roles for the screen that can be considered:

Primarily it is used by the performer to construct the performance, but importantly

it is also often a key part of the performance. Observing how the code changes and

its relationship to the music can elicit an aesthetic response just as can the auditory

component of the music. Moreover it can help the audience appreciate simply that it

is possible to create such a performance live, which they may not have previously con-

sidered. Finally, the code may also be a (partial) record of the performance, useful for

teaching or other communicative activities after the performance. (Blackwell, McLean,

Noble, & Rohrhuber, 2014, p. 139)

Furthermore, the screen also provides a level authenticity to the live performance: it acts as

proof that the performer is not just “pressing play” and then checking their emails for the remainder

of a performance (Zmölnig, 2016). A common criticism of electronic dance music (EDM) and, more

broadly, modern pop music is the apparent lack of authenticity; performers seemingly rely on auto-

tune and drum-loop software to create songs, and performances tend to be closer to pre-recordings

than live music. This opinion is well exemplified in an online article from 2012 that surfaced

after reality TV star, Paris Hilton, made her debut as a DJ (Mann, 2012). While the views

of Mann are not universally shared, the disconnection between an artist’s physical actions and

musical output in EDM performances have proliferated the misconception that electronic music is

simply pressing play. The projection of the screen in live coding alleviates this problem by giving

audiences a deeper insight into the processes by showing every single mouse-click and key-press

that occurs during a live performance. The use of the computer keyboard requires both hands to

be used almost constantly and a high level of attention given to the computer screen. As with most

laptop performances, this results in a lack of bodily movement and can be often be perceived as

detrimental to the overall performance. However, projecting a performers’ code for the audience

can compensate for this. A recent review of live coder Joanne Armitage’s performance described

the use of screen projection as “highly effective, not least of all in that it’s an innovative way of

providing a visual element to the standard person standing at a laptop performance”(Nosnibor,

9



2016).

Magnusson (2011a) states that the code itself is also “a representation of what occurs in the

sonic domain” and can help audience decipher the complex musical patterns they are listening to.

This may not always be the goal for performer, but for an audience member who is eager to learn

about the practice of live coding it is quite essential. For some the screen projection is the primary

source of engagement. One member of a survey of live coding audiences said that “[the code] must

be shown. If not I find these events to get boring quickly because the generated music usually has

little change over time” (Burland & McLean, 2016). However, another survey respondent felt that

the large focus on the code had a negative impact on their experience: “Mostly I am annoyed by

the visual display as it pulls the focus away from the human performers and the listening”. There is

clearly a disparity in opinion and perception of projected code in live coding performance. “If the

code takes on the role of ‘performer’ in live coding events then the way in which that is accessible

and visible becomes crucial in order for the audience to have an optimal experience.” (Burland &

McLean, 2016). One way of improving audience experiences of live coding is attempting to engage

with the audience either by using text to communicate directly, or other visualisation techniques

(McLean, Griffiths, Collins, & Wiggins, 2010) but more often than not a live coder will opt for a

raw display of their code.

The projected code is arguably a “representation of the performer” (Burland & McLean, 2016)

that is undergoing an embodiment of the programmer’s thoughts. Live coding is a performance of

mental dexterity after all; music is not created by movements of the body, but the organisation of

one’s thoughts. In this sense the screen becomes an extension of the body (Mori, 2015); or, even,

the mind. Thinking of the performer in this context also changes the relationship with the code

from an audience’s perspective:

In this context the audience themselves, rather than the programmer, might be regarded

as the “end-user”. The audience are not producing the code, but they are consuming it.

But without knowledge of the language, their consumption even of executable code can

be considered as secondary notation. This is an unusual perspective from which to view

code documentation, but one that may become increasingly common in fields where

descriptions of software artefacts are shared between non-programmers. (Blackwell &

Collins, 2005, p. 9)

2.1.5 Improvisation

When positing the question, “why would anyone want to live code music?” Collins et al. (2003)

state that “live coding allows us to keep a sense of challenge and improvisation about electronic

music-making”. Live coding becomes rather pointless if not for its improvisational aspect, as it

10



would no longer be “live” and the music could be more effectively composed using other, non-text-

based applications. Improvisation in music allows performances to be catered to the mood of the

room in which it takes place. In live coding “the music is often improvised, created in the moment,

and the performers’ awareness of their surroundings can have an impact on the way in which the

performance unfolds” (Burland & McLean, 2016). Live coding is, in many ways, composition as

live performance, but shares many similarities with jazz music, which is famed for improvisation,

as opposed to traditional music composition (Aaron et al., 2011). As Steve Lacy says, in free jazz,

“the music always has to be – on the edge – in between the known and the unknown” (Bailey, 1992,

p. 54) and the element of “risk and uncertainty adds excitement” to an improvised performance

(Burland & Pitts, 2012). This also holds true for live coding; things can even go wrong to the

extent that programs crash and performances are required to start over.

There are a number of ways to approach a live coding performance and one of those is to start

with the proverbial ‘blank-slate’ (Brown & Sorensen, 2007; Magnusson, 2011a), wherein the live

coder creates a musical program in its entirety in front of an audience. This can be a drawn out

process, but it is nevertheless a demonstration of virtuosity and skill. This is not always the case,

however, and different performers have different approaches to the way they make music. In the

advent of newer, more terse live coding languages this process has become a much more viable

performance practice and no longer sacrifices large amounts of time for typing.

2.1.6 Existing technologies for live coding

There are many languages used by a variety of live coders and each one has its own unique style,

affordances, advantages, and disadvantages. It is beyond the scope of this research to discuss every

live coding system that exists but this section will outline a few of the more notable languages and

environments in an effort to portray the rich and diverse landscape of live coding technologies.

Possibly the most widely used environment is SuperCollider (McCartney, 2002), which is both

a live coding language and audio synthesis engine that makes up the foundation for several other

notable live coding languages such as TidalCycles (McLean, 2014), ixi-lang (Magnusson, 2011b),

and the present author’s own Python-based live coding environment, FoxDot (Kirkbride, 2016),

which is discussed in more detail in Chapter 4. SuperCollider is a powerful digital signal processing

(DSP) environment that gives users access to a range of oscillators which can be patched together

using code in real-time, like a text-based abstraction of a modular synthesiser. It also contains

many functions and routines that allow users to schedule events in the future, such as the occur-

rence of notes, and many numerical patterns that can be easily transposed and transformed while

being played. SuperCollider uses a client-server model to separate the language and the audio

synthesis; the server, an application called ‘scsynth’, is dedicated to generating sound and the

client, called ‘sclang’, sends trigger messages using Open Sound Control (OSC) (Wright, Freed,

11



et al., 1997). Multiple clients can send messages to a single server, which makes collaborative

networked performances relatively simple, and several libraries have been written to extend the

capabilities of networked collaboration in SuperCollider, such as tempo synchronisation and data

sharing (discussed in Section 2.2.3).

It is logical to follow on from SuperCollider with ixi-lang (Magnusson, 2011b); a mini-language

written in the SuperCollider language, ‘sclang’, for quick and easy live coding. This is not to say

that ixi-lang is any less powerful or less expressive than SuperCollider; in fact it has access to all of

SuperCollider’s functionality but provides a layer of abstraction that makes live performance more

viable. ixi-lang uses a “a highly simple syntax with strong expressive constraints” designed to be

“easily understandable by the audience who would be able to follow each step of the performance”.

Figure 2.1 is a comparison of SuperCollider and ixi-lang code that are performing almost identical

actions. Both sets of code perform a short repeated melody using a “SynthDef” (a pre-defined

digital instrument created using combinations of oscillators and wave envelopes) called ‘piano’.

SuperCollider requires explicit instructions and program constructs to perform this routine whereas

ixi-lang does the same thing in only a few characters of code. An agent, in this case ‘agent1’, is

assigned a series of notes to play using square brackets and derives its pitch and duration from the

numbers and the white-space in the square brackets. Not only does this save the performer from

typing separate instructions for pitch and duration, but also gives audience members a visuospatial

relationship between code and sound. Agents are quantised automatically (as is the norm in

most traditional western music), which also saves the performer valuable seconds in extra typing.

However, this is not necessarily the desired outcome; Magnusson himself said he “became tired

of the strongly timed structure of ixi-lang performances” and suggests that there is a trade-off

between flexibility and simplicity within the language.

Pdef( \agent1,

Pbind(

\instrument, \piano,

\degree, Pseq([2,4,7,6,7],inf),

\dur, Pseq([1/2,1,1/2,1,1],inf),

)

).quant_(~tempo);

(a)

agent1 -> piano[2 4 7 6 7 ]

(b)

Figure 2.1: Comparison of (a) SuperCollider and (b) ixi-lang syntax

With regards to timing in live coding, perhaps one of the most interesting languages to discuss

is TidalCycles, or Tidal for short. Like ixi-lang, it is a mini-language embedded within another pro-

gramming language although, in this instance, it is based in the functional programming language,

Haskell3. Tidal uses functions of time to create musical events from cyclical pattern structures. As

3https://www.haskell.org/, accessed 06/11/2018

12

https://www.haskell.org/


musical patterns change throughout a performance, Tidal uses time to calculate what the current

musical event is as opposed to re-calculating the entire performance up to that point. On top of

this, TidalCycles uses a notion of rational time such that durations for musical events and patterns

can be subdivided by any rational number as opposed to powers of two as in traditional western

music. Figure 2.2 is an example of TidalCycles syntax that plays two rhythms simultaneously;

the first is a bass drum, followed by a hi-hat, and then a snare and the second is made up of two

claps. The “sound” function converts these names of audio samples into sound and also parses the

text for rhythmic information. Separating groups of samples by a comma within square brackets

tells the language to play each group within the same duration. The bass drum, hi-hat, and snare

samples are played at “a third of a cycle” each and the claps at “half a cycle”, creating a very

simple polyrhythm.

d1 $ sound "[bd hh sn, cp cp]"

Figure 2.2: TidalCycles code for a polyrhythmic drum beat

The exploitation of time is common in live coding and one of the more novel methods of

this is temporal recursion. In computer science recursion is the process of telling a function to

call itself and is a powerful technique in solving complex mathematical problems. A temporal

recursion does the same thing, but schedules the self-referential call in the future. Recursion is

not a new concept (Dijkstra, 1960) but the use of temporal recursion may only have been around

since 1996 and is still not a widely used practice (Sorensen, 2013). Some examples of live coding

languages that incorporate this technique are Impromptu (Sorensen & Gardner, 2010) and its

spiritual successor, Extempore (Sorensen, 2011). What makes temporal recursion so interesting in

a live coding context is that the function can be modified during run-time so that when it calls

itself, it may call a modified version of itself. This allows the programmer to become responsive

and dynamic within their own musical programs through what Sorensen and Gardner calls “cyber-

physical programming”.

Live coding has been used as a tool for teaching programming within schools in recent years

as part of the Sonic-Pi project (Aaron, 2016). Sonic-Pi is a Ruby4 based live coding environment

created to engage schoolchildren with computing and therefore needed to be simple in design. The

result was a constructive teaching mechanism that also doubled as an effective performance tool,

which has been used widely in the Algorave community. Sonic-Pi uses the traditional programming

concept of loops and “if-statements” to perform music, but with a slight twist; it uses a “live loop”

that allows its contents to be edited at run-time, thus allowing it to be live coded. This is a useful

way to provide school children with immediate feedback to changes they make in code and the

4https://www.ruby-lang.org/en/, accessed 06/11/2018

13

https://www.ruby-lang.org/en/


loop functions and has been used effectively in live performances.

live_loop :boom do

with_fx :reverb, room: 1 do

sample :bd_boom, amp: 10, rate: 1

end

sleep 8

end

Figure 2.3: Example of a Sonic-Pi live loop

Similar to Sonic-Pi, Earsketch (Xambó, Freeman, Magerko, & Shah, 2016) has been used in

schools to help teach children about computer science concepts through music. Earsketch is a web-

browser interface that acts as DAW but requires the user to use Python code to organise samples

and loops within the piece of music and is (to an extent) live-codable. Earsketch has been designed

with collaborative methods of practice in mind but focuses more on collaborative programming as

opposed to collaborative performance. Browser-based live coding has been popularised by Roberts

and Kuchera-Morin (2012), who introduced the live coding environment, Gibber, which allows

the user to access “high-level audio synthesis and sequencing” in their own web browser using

JavaScript5. Embedding a live coding environment in a web browser relieves the user of having to

download and install any prerequisite software, which can often be time-consuming, complicated,

and at the expense of hard-disk space. With the software being inherently online it also provides

a platform for networked performances between users on the same web page, which is currently

facilitated by a Gibber add-on called Gabber (Roberts, Yerkes, Bazo, Wright, & Kuchera-Morin,

2015). The downside to browser-based software, however, is that performances will rely on an

internet connection, which is not always available at venues.

Many live coding languages are domain-specific and embedded within existing general-purpose

languages, such as TidalCycles within Haskell, Sonic-Pi within Ruby, and Gibber within JavaScript.

Another example is FoxDot that is a module for the Python6 programming language that comes

with its own programmable interface. It focuses on an object oriented programming (OOP)

paradigm where agents within the program have states that change over time and can be accessed

by other agents in order to build dynamically changing musical systems.

There exist many environments for live coding and more are being developed every year. Those

mentioned here are only a handful of the languages that relate to the creation and manipulation

of music, but there exist even more for working with graphics and other media. Each language

provides a different approach to programming, composition, and performance; each with their own

set of strengths and weaknesses. There is no “one size fits all” for the human musicians that use

these languages but by having a large variety of them, there is a greater chance that a live coder

5https://www.javascript.com/, accessed 06/11/2018
6http://python.org/, accessed 06/11/2018

14

https://www.javascript.com/
http://python.org/


might find the language that best suits their performative needs.

2.2 Collaboration and Network Music in Live Coding

2.2.1 Network music systems

Many computing terms, such as desktop, window, client and server, are metaphors for real life

objects and actions that are designed to make it easier for users to understand the processes

taking place on their computer. The term “network” is one such metaphor, which describes the

process of sharing information between multiple interconnected computers. We can also think

of a group of musicians as a network in that they are all interconnected through the sharing of

musical information as they play music together. Jason Freeman closes the loop on this metaphor

by saying that “all music is networked. You can think about an Orchestra as a client-server

network, where a conductor is ‘serving’ visual information to the ‘client’ musicians, or a peer-to

peer networking model in an improvising Jazz Combo” (Barbosa, 2006, p. 14). With this in mind

it feels like it is only a natural progression that, in the internet age, musical networks allow “a

group of musicians, located at different physical locations, interact over a network to perform as

they would if located in the same room” (Lazzaro & Wawrzynek, 2001). In a technological sense,

“network music happens when people make music with computer networks” (Ogborn, 2018) and

any live coding performance that involves communication mediated by technology is inherently

network music due to its computer-based domain.

Figure 2.4: Network Music classification graph taken from (Barbosa, 2003).

Network music systems can be categorised along two axes that pertain to the time dimension

for interaction, between synchronous and asynchronous, and the spatial location of participants,

between co-located and remote (see Figure 2.4). Situated in this 2D plane is a taxonomy of four

15



categories for network music systems; co-located musical networks, remote music performance sys-

tems, shared sonic environments, music composition support systems. For example, early network

music performances, such as those by The League of Automatic Composers in the 1970s (Bischoff,

Gold, & Horton, 1978), required performers to be co-located due to technological restrictions

but modern-day commercially available applications, such as ArtsMesh7, now allow musicians to

perform together from opposite sides of the world. Music performance is usually a synchronous

task but an example of an asynchronous network music system might be a web application for

composition that allows multiple editors to work on the same piece from across the internet.

Hugill (2005) defined a taxonomy for network music (referred to as internet music and therefore

focuses on network music over wide-area networks) that categorised music systems based on the

technique used to generate music as opposed to time and space. They are as follows:

• “Music that Uses the Network to Connect Physical Spaces or Instruments”

• “Music that is Created or Performed in Virtual Environments, or Uses Virtual Instruments”

• “Music that Translates into Sound Aspects of the Network Itself”

• “Music that Uses the Internet to Enable Collaborative Composition or Performance”

• “Music that is Delivered via the Internet, with Varying Degrees of User Interactivity”

It could be argued that, as you move from one end of the location axis to the other, there

exists a point at which performers are not physically in the same space together but feel that they

are together presently through digital representations, such as an avatar or webcam view. This

is sometimes referred to as ‘telematic co-location’. We live in an era where we are constantly in

communication with one another across the largest computer network in the world; the internet.

So ubiquitous is the nature of online sharing via social media and instant messaging (IM) that

we forget about the physical distances that separate us and take for granted the fact that we

are almost always telematically co-located. Perhaps we should not think of the axis in terms of

spatial location but spatial perception and how close we feel to our co-performers when using a

network music system. Malcolm Arnold said “music is the social act of communication among

people, a gesture of friendship, the strongest there is” (Johansson, 2009, p.9) and as inter-personal

relationships have moved to a cybernetic plane so too should should music performance in a way

that retains music’s inherent social nature. As Pauline Oliveros suggests, “as the technology

improves exponentially and ubiquitously then eventually there will be no reason not to perform

music at a distance” (Oliveros, 2009).

For years network musicians have relied on audio streams to be sent over a network to create

music. Even at the speed of light, data takes time to be sent from one machine to another; a delay

7https://www.artsmesh.com/, accessed 06/11/2018

16

https://www.artsmesh.com/


which is called latency. When this latency is experienced in a perceptible way, it is called network

“lag”. This is one of the most common problems encountered in network communication and can

occur in a variety of different applications; musical or otherwise. Network lag is most commonly

experienced in online gaming and a theoretical in-game interaction provides a useful illustration

of the problem and its solution; Two players, A and B, are playing an online shooting game and

each person is located in a different part of the world but connected to the same game server.

Player A shoots player B but in the time it takes to send the event over the internet, player B

may have moved and player A’s shot would now be calculated as inaccurate. How do online games

accurately represent real-time events happening in different locations with high levels of latency?

The technique for achieving this is known as “lag compensation” (Valve Software, 2017). The

server, running its own simulation of the game, keeps a history of all the players’ locations for a

small amount of time (around 1 second) and then estimates where a player was, adjusted for lag,

when an event occurs. So in this example, the server would move player B back to where they were

when player A shot them and both players would be notified of the accurate hit. In a musical sense,

it is a bit like two performers sending audio over the internet and both playing slightly ahead of

each other before a computer synchronises the two audio streams for an audience. Unfortunately,

playing music purposely out of sync in this manner would be a difficult feat to achieve for even

highly proficient musicians. This does bare similarities to the piece, Fields, by David Bird (2010)

in which two performers, separated 150 yards, play a snare drum in time to a personal metronome

they can hear in an earpiece in order to accurately compensate for the latency of sound from

the other musician and supports the performers in gradually changing tempo independent of one

another. Unlike the speed of sound, however, the time it takes to send audio over a network is

not always constant and network musicians are often faced with varying latency times, making

computer implementations similar to the above more difficult. This variation in latency, knows as

“jitter”, is often caused by unaccountable forces such as increased network loads or the encryption

and decryption of network messages. With larger networks the issue of jitter becomes increasingly

noticeable, as each node a network message passes through between its source and destination will

add a slight delay. Ogborn (2018) outlines three possible ways of addressing the issue of latency

and jitter in network music:

1. Use periodicity in music to synchronise each musician to the previous period of audio received

over the network

2. Delay local algorithmic events to synchronise with the reception of events received from other

connected performers

3. Avoid metric structures altogether and allow latency and jitter to play a part in the musical

performance

17



Ninjam (Cockos Incorporated, 2018) is one example of software that uses periodicity in music to

synchronise musicians over a network. Each connected user sends an audio stream to one another

playing at the same tempo then plays along with the stream they then receive; “So when you play

through an interval, you’re playing along with the previous interval of everybody else, and they’re

playing along with your previous interval”. The problem here is that this is not a natural way of

playing music together for many musicians in that they won’t actually be playing with each other

at the same time. Ninjam is designed for rehearsal and not live performance as each connected user

will be hearing a slightly different combination of audio streams. It could be used to coordinate

several performances in separate locations as part of a larger musical project but no two versions

of the music would be the same. Ogborn makes use of the second method outlined above in his

own ensemble, the very long cat ensemble, using a “zero latency network music configuration”

(Ogborn & Mativetsky, 2015). The very long ensemble is made up of one live coder and one tabla

player who connect over the internet to play music together. There is a natural delay between

the formation and realisation of an idea in live coding so it doesn’t matter if the live coder hears

the tabla player at a slight delay as long as the sonic events created by the live coder are then

further delayed for both musicians such that they occur at the same time in relation to what the

tabla player is playing. This means that “the tabla player simply plays along in sync with what

he hears. However, the live coding performer monitors the sounding result of their live coding at a

small, calibrated delay equal to approximately the time it would take for network audio [...] to do

a complete round trip between the two locations. It is as if the local monitoring of the live coding

were to line up in time with itself as transmitted and then transmitted back”. This is an excellent

method for synchronisation over a large-scale network but problems arise as more non-algorithmic

performers are included in the system. Latency would not be able to be accounted for if there were

two tabla players, for example, as they would not be able to play in sync with each other due to

network delays. The last method for network music collaboration involves creating non-metrical

music or incorporating lag and jitter into the piece of music, such as Atau Tanaka’s Global String

system, which uses network traffic between connected musicians to generate parameters for audio

synthesis (Kim-Boyle, 2009). While embracing the issues inherent to network music as creative

constraints, or ignoring them altogether, solves some of the technical problems involved, it does

mean that musicians who wish to play together over a network are limited by the type of music

they are able to play.

2.2.2 The role of the network in network music

As mentioned previously, a computer network is a technical analogy for a network of social re-

lationships between people but, at the same time, a computer network that facilitates human

communication is also a space in which social interaction exists. Music is a social function and,

18



therefore, network music can be considered a collection of social relationships that are mediated

through technology as much as they are by music. Computer networks, and the music systems

we use to communicate over them, are public spaces that place constraints on us just as the real

world does. “If networks are about relationships between people, then they are also about power,

control, and governance. The everyday perception that our lives are evermore influenced by hidden

algorithms is only possible because networks connect those algorithms to all of us” (Ogborn, 2018).

We are bound by both social conventions established by our culture’s society and the program-

matic rules implemented by the software we use to create music. The constraints of any algorithm

used in networked software will always govern our actions and affect the way we interact with one

another using technology.

Some researchers explore this idea more than others and consider social structures explicitly in

developing their network music systems. For example, Fencott and Bryan-Kinns (2010) developed

an interface to investigate how privacy and awareness within the system affected group interaction

and Knotts (2016) implemented a voting system to instil a level of democracy in a large telematic

ensemble. Even without addressing social relationships in the design of a network music system,

they will, by their very nature, affect the way users behave as part of a social group. So how

do we a consider network music system in the context of human (acoustic) music performance?

Are they a multi-user instrument? Or perhaps, they are performance pieces in their own right?

With the notion of a computer network being a social space to communicate in, one could think

of improvised network music as something close to John Cage’s musicircus 1967, in which any

number of performers are invited into a space to “perform simultaneously anything or in any

way they desire”8. Cage was one of the first to separate form and material in music composition

and in musicircus the only form is the simultaneous music-making in a single space, with the

material being created by the performers in any way they please. In this regard, the development

of technology that allows multiple people to share a network space to make music together could

be considered a loose form of composition. However, composer Max Neuhaus regards his network

music projects “not as a self-contained musical work in itself but as a collective instrument or

musical architecture through which participants develop relationships through musical dialog”

(Kim-Boyle, 2009). Perhaps network music systems are more about nurturing social relationships in

a way that give the users more power and control over the music, as opposed to a more authoritative

musical work. Let us then examine the network music systems that exist for live coding and how

they are used to facilitate musical and social communication in ensemble performance.

8https://johncage.org/pp/John-Cage-Work-Detail.cfm?work ID=273, accessed: 22/11/2018

19

https://johncage.org/pp/John-Cage-Work-Detail.cfm?work_ID=273


2.2.3 Network music systems for collaborative live coding

Live coding is a technology-based performance practice that can be extended through software

to create networked music systems for ensemble performance. This can be done by adapting the

existing functionality of a live coding environment or through the use of an external application

designed for enabling musical communication between live coders. Shared timing information is

an important aspect of traditional ensemble performance (Janata & Grafton, 2003) and when live

coding metric-based music, performers must also share timing information across their computers

using some application or protocol. The TidalCycles language (McLean & Wiggins, 2010) allows

users to tightly synchronise their performance environments as long as their computer clocks are

synchronised using a common network time protocol (NTP) (Mills et al., 1985), such as Network

Time Protocol daemon (ntpd) or Precision Time Protocol daemon (ptpd)9. The SuperCollider lan-

guage also enables performers to synchronise their environments’ clocks from within the language

itself but requires additional program libraries, knows as ‘quarks’, to be installed or developed. For

example, the Birmingham Ensemble for Electroacoustic Research use the ‘Listening Clocks’ quark

(Wilson, Lorway, Coull, Vasilakos, & Moyers, 2014) and popular live coding ensemble, Benoit

and the Mandelbrots10, have developed their own clock synchronisation library, ‘BenoitLib’11, to

manage the sharing of timing information across a network.

One of the characteristics of live coding that make it so unique is its direct manipulation

of musical material through computer code. It is unsurprising, then, that practitioners have been

exploring methods for collaboratively working with code in a variety of ways. As with coordinating

timing information over a network, distributing and manipulating code across multiple performers

requires some protocol or application for facilitating the process. This might be a distributed

memory across a network that acts as a virtual “bulletin-board” that users can post and retrieve

data from as is the case with the live coding environment, Impromptu (Sorensen, 2010). Users

coding within Impromptu can write a tuple of data to the memory space that contains the item

of data and a corresponding signature, such as <“tempo”. 120>, which can then be read from

the memory space by requesting a tuple with a signature that matches “tempo”. The live coding

duo, aa-cell, have also used the Impromptu environment to incorporate data sharing into their

collaborative practice by using its Inter Process Communication mechanism, which allows them

to define functions and variables on the other’s computer directly (Brown & Sorensen, 2007). In

contrast to this method, the PowerBooks Unplugged ensemble shares their SuperCollider code

with each other, as opposed to data, to be edited and re-purposed however other members of the

ensemble feels (Rohrhuber et al., 2007). With this system, performers sit at various points in the

9https://tidalcycles.org/howtos.html#multi laptop, accessed: 21/11/18
10http://www.the-mandelbrots.de/, accessed: 05/02/2017
11https://github.com/cappelnord/BenoitLib, accessed: 05/02/2017

20

https://tidalcycles.org/howtos.html#multi_laptop
http://www.the-mandelbrots.de/
https://github.com/cappelnord/BenoitLib


room and write small portions of code for generating sound, called “codelets”, that are shared with

the rest of the ensemble using an interface similar to an IM application. They then edit the incoming

codelets and use them to generate slight variations of their co-performers’ audio, creating a musical

experience that changes depending on the listeners location within the room. This performance

system has been further developed and made publicly available as a library called ‘The Republic’

(de Campo, 2014). Similar to The Republic is LOLC, which is a “textual performance environment”

that aims to facilitate methods of practice common to both improvisation and composition, with

a focus on conversational communication (Freeman & Van Troyer, 2011). It is a platform for

sharing shorthand musical patterns, which are then played or transformed and re-shared by other

performers. It cites avant-garde ensemble improvisation pieces such as John Zorn’s Cobra (Zorn,

1987), which only defines rules for communication and not music, as a consideration for its design.

This is particularly interesting as it postulates the idea that network performance systems could

be regarded as compositions themselves, similar to the comparison drawn between network music

systems and John Cage’s Musicircus in Section 2.2.2.

Code sharing and collaboration can also be achieved without IM-style applications, such as

through the browser-based system Extramuros (Ogborn, Tsabary, Jarvis, Cárdenas, & McLean,

2015), which allocates each connected performer a small text box on a web page into which they

can input code. These text boxes are visible to any other connected performer, who are also free

to make edits. Extramuros is a “language-neutral” application and can be used with any language

that allows commands to be “piped” into it, which improves accessibility for a wider range of live

coding practitioners. This does require the languages to be configured to take text as an input,

but popular environments, TidalCycles and SuperCollider, already work with the platform. By

incorporating all of the performers’ code into one web page, it can be displayed to the audience

using only one projector. This solves many issues that prevent live code ensembles from projecting

their code, which is often “nontrivial to implement with five or more performers” (Wilson et al.,

2014). In contrast to The Republic, code evaluated by one user in Extramuros is evaluated for

every other connected user simultaneously.

With browser-based software comes web applications and communication over the internet.

Live coding language, Gibber (Roberts & Kuchera-Morin, 2012), is run in the browser and can be

used collaboratively with other users on a variety of levels using a library extension called Gabber

(Roberts et al., 2015). This is a combination of a chat-room interface and shared text buffers

similar to the Extramuros platform. Unlike Extramuros, text buffers are not all publicly displayed

and are only visible by clicking on a user’s name within the chat-room. Users can write code in

a “personal editor”, which is executed only on their own machine, and in a “shared editor” that

other connected users can contribute to. Gabber uses two modes of what it calls “state sharing”

for collaborative live coding; local (the default) and remote mode. In the local mode, users are

21



expected to be co-located and generate their own unique audio on their local machine but can

also execute code on their co-performers’ machines. Using certain keyboard shortcuts, users can

broadcast code from within their personal editor to be executed on all connected machines or they

can evaluate code in a shared editor that is run on only for the users connected to that shared

editor. In contrast, the remote mode for Gabber assumes that all users are separated geographically

and all code is executed on every performers’ machines.

Collaborative live coding over the internet is not restricted to just browser-based environments

and most modern programming languages provide an interface for connecting to other applications

over the internet, known as web services. SuperCopair (de Carvalho Junior, Lee, & Essl, 2015) is

a package developed in Coffee Script for the Atom.io editor12 that allows users to collaborate over

the internet with the SuperCollder live coding environment. It combines functionality from two

existing packages, atom-supercollider and atom-pair, to utilise cloud service, Pusher13, to push

code execution actions across the internet to other users. SuperCopair provides users with higher

levels of control over how code is executed than other collaborative live coding interfaces; users

can choose whether code is only run locally or broadcast to other connected users, and they can

also decide if code received from other users is run immediately or if they would like to be asked

permission beforehand.

Much of the research in collaborative live coding has focused on temporal synchronisation, code

sharing, and instant messaging, but little on the transfer of audio streams directly over a network.

By working only with code as the medium for ensemble communication, live coders give up the

opportunity to collaborate with other technology-based practitioners, especially in telematic music

performance. To enable the collaboration of performers (live coders and otherwise) over large

geographical areas, Knotts (2016) developed several systems, such as “Union” and “Flock”, which

utilise the transfer of audio data, as opposed to code, over a network. For examples, the “Union”

system uses a Music Information Retrieval (MIR) library in SuperCollider to analyse incoming

audio data from connected performers and mixes them together based on spectral similarity. One

performer is present in the performance space and acts as the curator of this process by ensuring

that the collated music is coherent, and then broadcasts the mixed audio out via the internet to be

listened to by online audiences and also the performers themselves. This is particularly interesting

as performers are subject to 5-20 second delay between sending their audio stream and hearing it

mixed together in the final output. High latency in data transfer is one of the biggest problems in

using audio data directly in network music and can make it very hard for performers spread over

large areas to collaborate closely with their musical material. Using an artificial intelligence to

mix different streams together at the time of receiving data may help to overcome this challenge

aesthetically, but brings into question the performer-composer relationship with regards to the

12https://atom.io/, accessed: 23/11/2018
13https://pusher.com, accessed: 23/11/2018

22

https://atom.io/
https://pusher.com


computer.

Live coding collaboration is not always technologically homogeneous; that is, not all performers

use the same software to create music together. When this is the case, performers will often need to

coordinate timing information through an extra piece of software or adapt their own performance

environment. This is well exemplified by Algorave pioneers, Slub, whose members use different

software but do “make a network on stage, but this is only to create a shared clock so that [they]

may coordinate tempo changes, and share the same down beat” (McLean, 2015). When this is the

case, an extra layer of technology is required to coordinate timing across a network. This highlights

the difficulty in realising one of the most fundamental musical facets of ensemble performance in live

coding and network music as a whole; playing in time. In an effort to make this process as simple as

possible, Ogborn (2012) developed the tool, EspGrid, which enables clock synchronisation for any

live coding language that can send and receive OSC messages. This allows multiple different live

coding languages to synchronise their clocks and even enables live coding languages to synchronise

with other music-making software. The EspGrid software runs in the background and finds other

EspGrid instances running on any computer connected to the same network, which then agree

on a metric structure to use. Live coding environments can then query the local EspGrid for the

tempo and beat values for scheduling their own musical events. Developers can create “helper

objects” that are built into the various pieces of music software to make it easier to communicate

with EspGrid, which already exist in popular software such as ChucK, Max, and SuperCollider

and can be easily developed for other technologies. This helps address one of the most difficult

issues with collaborating using the technologies discussed above; the pre-requisite that everyone

involved uses the same language. Traditional ensembles typically use multiple different instruments

as they all speak the same language; music. With live coding, however, performers will often need

to use the same language to collaborate using a specific interface, such as Extramuros or Gabber.

The browser-based interface, ‘Estuary’ (Ogborn, Beverley, del Angel, Tsabary, & McLean, 2017),

which was originally designed to only utilise TidalCycles, now enables several different live coding

languages to be used simultaneously (Del Angel, Teixido, Ocelotl, Cotrina, & Ogborn, 2019).

Unfortunately, the languages accessible to Estuary are only based in Haskell so languages such as

FoxDot and Sonic-Pi cannot currently be used with it. However, this is a strong indication that

multi-lingual live coding is not only possible, but could become standard practice in the future.

Not only do live coders collaborate with one another using different software, but there are also

several instances of live coders performing with non-live coders in contexts both mediated and un-

mediated by technology. An example of the latter would be the piece Fermata for bass clarinet and

Threnoscope (Furniss, 2016). The Threnoscope is a live coding system developed by Magnusson

(2013) that is designed for 8 channel speaker systems and focuses on the use of microtonal drones.

Magnusson considers it a musical work in its own right that affords high levels of improvisation but

23



has been combined with other instruments to create new pieces, such as Fermata. In this piece,

collaboration occurs only at the listening level and is not facilitated by any other technology, such as

the sharing of code or audio data. The Threnoscope has also been combined with instruments that

have been augmented by technology, such as the resonating cello (Eldridge & Kiefer, 2017), as part

of the practices of the Braindead Ensemble (Polimeneas-Liontiris, Eldridge, Kiefer, & Magnusson,

2018). Audio signals generated by the Threnoscope are played through speakers and captured by

transducers attached the bodies of acoustic instruments that resonate and create a new signal that

is captured by the instrument’s pickups. This act of live coding collaboration is occurring at the

hardware level and creates a “acoustic network” as opposed to a network created with computers.

The live coding and piano duo Off<>ZZ14 have collaborated for several years and have explored

various methods for performing together. This often involves the augmented piano, known as the

Codeklavier (Veinberg & Noriega, 2018), that allows the performer to use the piano as an interface

for live coding. In a recent performance at the International Conference on Live Coding 2019 in

Madrid, Off<>ZZ used the Codeklavier to perform lambda calculus on input data from the live

coder and then route the output back into live coded musical algorithms (Veinberg & Noriega,

2019). Both hardware and software technologies have been implemented in this instance, which

allows data to be manipulated and shared between live coder and non-live coder, which facilitates a

deeper level of inter-performer collaboration. The live coding and electronic drum kit act, Canute,

share data in a similar fashion. The drummer “produces probability distributions of hits on his

drum kit, visualising them and sending them” to the live coder to be transformed using TidalCycles

(McLean, 2015). Data is how live coding represents music and if traditional instruments can be

augmented to create and manipulate it, then there are many exciting possibilities for heterogenous

collaboration in the field of live coding.

As well augmenting physical instruments and reducing network latency, several practitioners

have developed specific interfaces to enable live coders and non-live coders to collaborate effectively.

Lee and Essl (2013) developed a system in which a performer uses a tablet to interact with a tone

matrix (pitch in the y-axis and time in the x-axis) and a live coder can modify its contents during the

performance. This might involve changing the number of columns and rows or altering the timbre

of the voice being triggered by the performer. This creates a very interesting relationship between

performers that draws parallels with the ‘leader-follower’ roles found in many other styles of music

making. The tablet performer (follower) is wholly constrained by the features of the interface

presented to them by the live coder (leader). That being said, the live coder does not contribute

any musical material (unless through another application) to the performance but defines the rules

for what material is possible to create. To give non-live coders more consistency in a collaborative

interface, Sarwate, Rose, Freeman, and Armitage (2018) developed four prototypes for facilitating

14https://www.keyboardsunite.com/offzz/, accessed: 07/05/2019

24

https://www.keyboardsunite.com/offzz/


collaboration between live coders and non-live coders. The first was a program that allowed a

non-coder to create a melody using a Novation Launchpad15, which would then be transformed by

the live coder in a call and response format. However, the complex mechanism for triggering the

transformations and lack of visual feedback for the non-coder made it very difficult to use. The

second prototype gave the non-coder more visual feedback and utilised a persistent loop structure

that the non-coder could update via the Novation Launchpad and the live coder could update

using code. While the live coder could also transform the whole sequence the non-coder was not

able to undo these change, which did not satisfy practical requirements. However, Sarwate et al.

felt this prototype did improve on the first. The third prototype explored signal processing by

allowing the live coder to map custom curve functions to parameters in the effect chain that the

non-coder’s ouput signal (via an electric guitar) was going through. The non-coder was not able to

relate the continuous data shown in the interface to the discrete musical data they were used to and

struggled to generate musical material. The last prototype was a physics based interface in which

balls bounced off the walls in a square and triggered notes when lines drawn between the walls

were crossed. Non-coders could adjust the trajectory of the balls using a MIDI controller, which

could also be used to manipulate global effects such as filters and delays, and the live coder could

adjust the location of the lines (that triggered notes when crossed) and their musical mappings.

The physics based style of making music led to some challenges in interacting effectively due to

its unpredictability and complexity, such as difficulty creating rhythms by changing the location

of lines based on the trajectory of a ball when it has been altered. Based on this study, Sarwate

et al. suggested that, when designing interfaces that enable collaboration between live coders and

non-live coders, the “[m]usical state should be represented visualized in a mutually modifiable

interface with musical representations intuitively familiar to the performers”.

2.2.4 Futures of live coding collaboration

What does the future hold for collaboration in live coding? It is a difficult question to answer but

there are some who have made predictions about what multi-person opportunities may be available

in the future.

An area of further great potential is collaborative or competitive coding. Performers

can pass code to each other to modify, allowing a very abstract sense of musical trans-

formation, and even work in a Chinese whisper style remix circle. Games might be set

up where coders have a fixed time limit to complete some goal with a restricted set

of tools. One could even imagine a live coding version of the rap ‘dis’ battle where

coders compete to aurally insult one another, or a hacker style ‘root war’ in which they

subvert each other’s computer systems. (Collins et al., 2003, p. 322)

15https://novationmusic.com/launch/launchpad, accessed: 07/05/2019

25

https://novationmusic.com/launch/launchpad


Ensemble performance is likely going to be part of the future of live coding, but will perfor-

mances be of a collaborative or competitive nature? Competition provides a platform for novel

improvisations but performance systems specifically designed for this style of musical interaction

are, perhaps, not generalisable to a broader range of musical styles. This PhD thesis aims to

develop live coding interfaces for facilitating collaborative creativity that can be employed in a

wide range of musical and performance styles. In it I present a total of three live coding interfaces

and the extension of a live coding language for ensemble performance. The first interface, Troop,

is a collaborative text editor for live coding that enables live coders to work together. Where

Extramuros separates users’ code into text boxes, Troop combines concurrent, real-time coding

into a single text buffer using colour as a means for identifying which live coder has written what.

Troop makes use of the FoxDot live coding language, whose functionality has been extended as

part of this research. Syntax has been added that allows users to share information between music-

generating agents in a simple and robust way, enabling a more collaborative style of coding. Where

many collaborate environments allow data to be shared between instances, such as Impromptu,

FoxDot embeds this process within in its core data-model, allowing live coders to create musical

relationships in the code that adapt to changes made by co-performers.

Another two graphical user interfaces are also presented in this thesis. The first is CodeBank,

which inspired by version control tools used for collaborative software engineering projects. In an

attempt to present that process within a microcosm in musical performance, CodeBank provides

each performer with a private workspace that they are free to test and try out ideas before sharing

their code publicly with an audience and their co-performers. This interfaces shares many similar-

ities to the Republic performance system, using the distribution of small sections of code known as

“codelets” as the main medium for collaboration. In contrast to the Republic’s decentralised audio

generation, CodeBank utilises a public repository where all codelets are evaluated to be heard by

the audience. Finally, the Polyglot interface explores cross-language collaboration by extending the

concurrent text-editing ability of Troop to combine multiple live coding interpreters into a single

interface. It uses the decentralised network time-keeping tool EspGrid to synchronise multiple lan-

guages into a single, coherent performance system. Polyglot shares many of the same ideals as the

Estuary interface; to allow any group of live coders to collaborate together. However, it also shares

the same distinctions that the Troop interface has with Estuary’s predecessor, Extramuros, which

is that the editor does not distinguish users by text box but allows them to edit code together.

26



3. Method

3.1 Introduction

This research project is a practice-based investigation into ensemble performance in live coding,

which aims to address the research questions outlined below. This chapter discusses the motiva-

tions for pursuing this area of research and outlines the methods and processes used to explore

collaboration in the practice of live coding.

3.2 Rationale for Research

My first introduction to live coding was in 2014 and, since then, I have been developing my

practice, as well as my own performance language (see Chapter 4 for an in-depth discussion). I

performed primarily as a solo improviser of electronic dance music but it became an increasingly

lonely experience as time went on. I attempted to remedy this by collaborating with an electronic

musician / drummer but found that there were limitations to what we could achieve together

when combining our two separate performance systems. One of the most challenging aspects of

the collaboration was that we were unable to see the other’s screens or share data between systems

and the rehearsals that we did have were unrewarding. This is not always the case for computer

musicians collaborating with heterogenous software systems, see Slub (McLean, 2015) for example,

but even when I was personally able to perform with other live coders I felt that there needed to

be something in place to facilitate a more satisfying and creative collaboration. As described by

Derek Bailey in the quote below, finding fruitful collaborations became a priority for me in order

to progress as an practitioner of improvised music.

For most people improvisation, although a vehicle for self-expression, is about playing

with other people and some of the greatest opportunities provided by free improvisation

are in the exploration of relationships between players. (Bailey, 1992, p. 105)

Consequently, the main motivation for this PhD is developing my own creative practice and

successfully moving it from a solo performance context into a group one. Where many practice-

based computer music PhD commentaries present software as part of a series of musical works,

such as Armitage (2017) and Knotts (2018) for example, I aim to develop more generalisable

platforms for facilitating improvisation while simultaneously exploring how these platforms affect

group interaction. As discussed in the previous chapter, there already exist several methods for

27



collaborative live coding but few that allow me to work with, or develop, my own performance

software. This research project allows me to further my practice as an improvising live coder

through developing new interfaces for collaboration using my own live coding language.

What makes a good interface for collaboration live coding? Can existing methods for collabo-

rative live coding be improved upon? These are some of the questions sit at the crux of this thesis.

From first hand experience as a live coding practitioner I have found that the majority of live

coding performances, especially of those who are inexperienced, are enacted as a solo performance.

There are a number of explanations for this: the existing methods for collaboration are not effective

enough at facilitating ensemble interaction, software is too complex to set up for new performers,

or there may be lack of locally available collaborators. Perhaps it just that most live coders are

content to perform on their own due to the breadth of control they are afforded by their software.

The solo performer has seemingly become the de facto in electronic music as technology has de-

veloped to give much more control to a single person over a live performance. Emmerson states

that in the field of electronic music “the sound producing power of a solo performer has become

polyphonic – capable of creating many layers of the musical stream. Thus the move to groups of

performers in this field has been tentative and solo artists remain a majority” (Emmerson, 2007,

p. 114). He goes on to note that IDM labels such as Warp and Rephlex are “dominated by solo

artists”, further indicating that the world of electronic music tends to be a solitary one. This is not

to say that electronic music is performed solely by individuals; many of the most prominent acts

in recent years, such as Autechre and Orbital, are made up of multiple performers. Research has

shown that playing music and singing together is beneficial to one’s well-being (Clift et al., 2010;

MacDonald, 2013), but this benefit is perhaps often overlooked in electronic music. Developing

effective interfaces for collaborative live coding could allow electronic musicians to come together

and enjoy the social benefits of group music making through live coding. Another downside of the

abundance of solo live coding performances is that it perhaps gives the impression to onlookers that

“this is the way things are done” and that an authentic live coding performance is only achieved

through performing on your own and this only serves to perpetuate the commonplace nature of

solo live coding.

Live coders usually project their screens so audience members can experience the creative

processes that take place during performance; but do interfaces for ensemble live coding also reveal

the processes that occur in inter-performer communication? Several methods for collaborating

involve using multiple screens, some of which are not projected, and this surely conceals the

communicative actions that might take place within the code. Even when every ensemble members’

code is visible, are the responses to their co-performer’s actions even clear to an audience? There

are many shared aspects between improvised jazz performance and live coding (Burland & McLean,

2016) and part of the excitement for audiences at a jazz gig is attributed to “seeing the interaction

28



of the players” (Burland & Pitts, 2012), so why shouldn’t that be the same for live coding? Few

existing collaborative interfaces compile all of the code being written by a group into one place,

the notable exception being Extramuros (Ogborn et al., 2015), and this obfuscation of ensemble

communication may discourage live coders from performing in ensembles. As a practice embedded

in the culture of improvisation it feels like a wasted opportunity that not more live coders are

performing together.

The overarching goal of this research is to develop interfaces that are more effective for facil-

itating collaboration in ensemble live coding. In order to do this I need to examine what “more

effective” means in this context. Successful facilitation of a collaborative performance will have

an effect on the outcomes of the musical activity, but how can that effect be measured? Is it

the production of a higher aesthetic quality of music, or is it the cultivation of synergy within an

ensemble? Or perhaps an interface that shares with the audience the communicative signalling

that takes place across the ensemble is best? Is it possible to achieve all of the above or must

some aspect be sacrificed to realise the others? For all musicians creating better music is in their

mind when they pursue a new creative endeavour so I will not be addressing this explicitly in

my research questions, although the quality of the produced music will be a consideration when

evaluating an interface. This presents two research questions that, when answered, will provide

insightful knowledge into collaborative live coding and the role that software can play in it;

1. How can collaboration in ensemble live coding be better facilitated through performance

systems, such as language, and interface design?

2. How are collaborative interfaces used to reveal the creative processes at play in ensemble live

coding performance?

By addressing these questions through the development of collaborative interfaces for ensemble

live coding, I will explore the themes of group creativity, joint action, and ensemble communication

as well as crossing the disciplinary boundaries of music and computer science.

3.3 Methodology

3.3.1 Research in the wild

This research aims to produce software that will explore various aspects of ensemble performance,

computer programming, and any other areas of research that fall between these fields. Much of

the work will be grounded in practice-led research but at the crux of this work is the design of

interfaces that enable live coding in a collaborative context. With regards to the research questions

outlined above, interfaces will be designed to facilitate ensemble live coding and reveal creative

29



processes. The design of anything is rarely perfect in its first iteration and is often improved over

time through use in the world by those it was designed for:

Much good design evolves: the design is tested, problem areas are discovered and

modified, and then it is continually retested and remodified until time, energy, and

resources run out.

(Norman, 1998, p. 142)

A methodology that uses design as the focal point of practical research is known as “participa-

tory design” (Spinuzzi, 2005). It frames the process of design as the research itself; the production

of artefacts, systems, and practical or tacit knowledge. It draws on a range of research methods to

“iteratively construct the emerging design, which itself simultaneously constitutes and elicits the

research result as co-interpreted by the designer-researchers and the participants who will use the

design”. This philosophy forms the foundation on which the software development will be carried

out as part of this research. Interfaces will be developed for collaborative live coding using an

evolutionary and user-centred design approach. Each interface that is created will undergo sev-

eral “design phases” in which it will be created and modified, used and tested, and its success or

failure reflected upon and discussed. The outcomes of these reflections will feed into the following

development phase and this process will continue until a satisfactory result is achieved. Broadly

speaking there are two types of methodological approach for evaluating software for computer sup-

ported cooperative work; ethnographic studies that aim to “characterise the interaction and group

processes” in naturalistic observations and laboratory studies that take place in controlled envi-

ronments (Fencott, 2012). Xambó, Laney, Dobbyn, and Jorda (2011) suggest that the evaluation

of musical interfaces should take place in contexts that are as close to “real” as possible, which

deters me from pursuing a laboratory-based methodology for this project. Ethnographic studies

are useful for gaining deep understanding of users’ behaviour but are often difficult to perform as

they require access to a group of musicians for a sustained period of time and that group must be

comfortable using novel or uncommon interfaces. New technology takes time to learn and observa-

tions can only realistically take place over longer periods than those afforded to lab-based studies.

In participatory design the research methods should be “shot through the entire research project;

the goal is not just to empirically understand the activity, but also to simultaneously envision,

shape, and transcend it in ways the workers find to be positive” (Spinuzzi, 2005). Longer term

observational studies also allow musicians who already play together and have developed chemistry

to use new technologies in realistic rehearsal and performance contexts and ‘forget’ that they are

in a study and demonstrate more authentic behaviours. These methods have been used to study

electro-acoustic musicians presented with prototyped software (Merritt, Kow, Ng, McGee, & Wyse,

2010) and suggests that similar approach would be an appropriate methodology in this instance.

30



For these reasons I am choosing to pursue an ethnographic study; observing a group of performers

in both rehearsal and performance settings over large periods of time coupled with reflexive inter-

views in order to assess the quality of the interfaces and explore how they impact group creativity

and communication. Evaluation of the software from real-world users will be intrinsic to the design

process itself, and is a key aspect of participatory design research (Bϕdker, Grϕnbæk, & Kyng,

1995) and has been used to develop a range of digital musical technologies Geiger et al. (2008);

Landry and Jeon (2017).

From an artistic perspective, a longer length study is also beneficial with regards to developing a

portfolio of musical works. As a practice based heavily in improvisation, much of the success of any

performances will depend on good ensemble chemistry and confidence using the interfaces. Without

being able to use the interfaces for longer periods of time these would be difficult to develop. An

ethnographic approach to this project also allows for the documentation and analysis of how the

ensemble chemistry develops over time. Gifford et al. (2017) proposed several considerations that

should be made when evaluating interfaces for musical improvisation; namely the “trust, risk and

responsibility” of the interface, ability to achieve “flow”, and the sense of “immediacy” that the

interface gives its users. In their paper the “general approaches to evaluating the quality of a

particular interface, and the success of a given improvisation” are tailored to improvisation as a

solo performer as opposed to an ensemble, but lay solid foundations for assessing the success of

digital interfaces for improvised music making and will be considered in the context of collaboration

in place of individual and computer creativity. Gifford et al. go on to say that the best way to

evaluate an interface is by just using it and reflecting on how good the experience feels. These

guidelines will be used as part of the evaluation of the interfaces, which will take place in the form

of personal reflection and group interviews with users.

Integral to the software development process is continual evaluation and feedback into the

design through live performances, or “research in the wild” (Benford et al., 2013). There are

several reasons for pursuing this method; it puts technology into the hands of the artists who can

find new and unintended uses, it engages the public and enriches cultural life within society, and,

most importantly, it provides an opportunity to test the software in the context for which it was

designed:

The public deployment of artworks offers a test-bed for putting emerging technologies

into the hands of users in a ‘realistic’ situation, meaning a situation in which the

technology needs to be made to work and is treated in some sense a professional product

(Benford et al., 2013)

It should be stated that in their paper, Benford et al. frame “research in the wild” as a

performance-led methodology, as opposed to a practice-based one and there is an important dis-

31



tinction between these two methods and should be clarified. Where Benford et al. are concerned

with the refinement of a singular artwork through real world instantiations of it, practice-based

research examines all aspects of artistic work that lead to the production of an artefact, such as

a performance. In the context of this research project the software design, alongside musical per-

formance, is considered key to the practice and, consequently, the research. Software development

is not just the means to an ends here, but also an artistic process that will produce contributions

to the understanding of collaborative live coding as well as craft knowledge through reflection and

study. The “research in the wild” methodology may be proposed with respect to developing art-

works as opposed to supportive tools for creating art, but much of the process can be implemented

in the same way. It consists of three inter-related activities that all inform each other in some

way; practice, studies, and theory (their relationships are outlined in Figure 3.1). Practice, as the

name suggests, is the development of works led by the artist. In this research it consists of both

the development of software for collaborative live coding and the creative performances that utilise

them. The second activity is studying the artwork, which, in this instance, will consist of evaluat-

ing the user experience of the software in practice and considering its impact on improvisational

creativity. Lastly, there is theorising. This is the generation of models or frameworks, or even just

identifying phenomena that take place when experiencing the artwork. Where the studies explain

what is happening within the practice, theories bring together results of the studies to explain to

why they are happening.

Practice

StudiesTheory

Artist-led 
experiences

Concepts and 
frameworks

Understanding 
experience in the wild

[1] Provide data

[2] Iteratively 
refine

[3] Ground

[4] Sensitise

[5] Guide

[6] Critical 
reflection

[7] Inspire

[8] Inform[9] Build on

Figure 3.1: Overview of performance-led research in the wild, adapted from (Benford et al., 2013)

Where time and sample size allows, quantitative data will also be collected from users through

the use of anonymous online surveys. Combining quantitative and qualitative data collection is

32



known as “across-method” methodological triangulation (Bekhet & Zauszniewski, 2012) and is

used to enhance understanding and increase the validity of results. One of the weaknesses of using

an ethnographic methodology is the limited sample size used for observations, which will usually

only consist of one or two small groups of participants. Triangulating the methodologies can

enrich the study and provide another perspective when evaluating the interfaces. Adapted from

the “Questionnaire for User Interface Satisfaction” (Chin, Diehl, & Norman, 1988), the survey will

ask participants to rate various aspects of an interface and also provide written answers where

appropriate. Similar questionnaires have been used to evaluate live coding interfaces, such as ixi-

lang (Magnusson, 2011b), and will help provide useful information into the general usability of the

developed systems.

3.3.2 Participants

In this section I will introduce myself as a practitioner-researcher and outline my role within the

ensemble-based practice that takes place over the course of this PhD; I will not only be designing

the live coding interfaces, but also incorporating them into my own practice and reflecting on my

experience. Autoethnography is the process of interpreting one’s actions in a as-close-to objective

manner as possible, positioning the researcher as “the object of inquiry” in an ethnographic study

(Crawford, 1996). It is often used as a technique for understanding one’s own practice Bartleet

(2009); Spry (2016) but it has also been used in HCI to inform requirements analysis and system

design (Cunningham & Jones, 2005). Of course, this research will also involve other musicians as

it is a study of collaboration and ensemble performance and similar self reflexive methods have

been used in ensemble contexts under the name of “informed observation” (McCaleb, 2011). This

work combines both ethnographic and autoethnographic approaches in its pursuit of examining

the creative processes and inter-personal communication that occurs in musical practice and feeds

the results back into the design-testing-refinement cycle of developing software for collaborative

live coding. In his book, The Design of Everyday Things, Norman advocates that design should

be “based on the needs and interests of the user” but suggests that the designer is not a good

representation of the end-user:

Designers are not typical users. They become so expert in using the object they have

designed that they cannot believe that anyone else might have problems; only interac-

tion and testing with actual users throughout the design process can forestall that.

(Norman, 1998, p. 151)

Being both the developer and a practitioner does mean that there is an inherent bias in the

design of the software I use and this will also be the case when developing collaborative interfaces

as part of this research. However, using the software with other live coders as part of an ensemble

33



will allow me to collect rich data from the user feedback and observations and incorporate it into

subsequent software design phases. The practice-based work will be carried out with a newly

formed ensemble made up of musicians with varying levels of experience in music, programming,

and live coding as a whole. This will help collect data that is more representative of the average

user, compared to an expert, and put the user at the centre of the design process. This originally

consisted of myself and computer musicians, Lucy Cheesman and Laurie Johnson; all of whom

are based in the wider Yorkshire area and prompted us to name our collaboration The Yorkshire

Programming Ensemble or TYPE for short. Lucy is an accomplished live coder who performs using

the Tidal Cycles language under the moniker of “Heavy Lifting” and Laurie, while an experienced

performer and programmer in his own right, had not done any live coding prior to the start

of this project. The ensemble’s line-up was expanded to include a novice live coder, Innocent

Granger, in December 2018. One of the difficulties of performing long-term observational studies

is getting consistent access to the performer’s schedule but by being part of the ensemble itself I

am guaranteeing complete insight into the rehearsal and performance processes of the group.

3.3.3 Considerations

As mentioned in Section 3.2, new or inexperienced live coders tend to perform in a solo capacity.

I see this as problematic for several reasons; for a first-time performer, getting up on stage and

overcoming nerves is a difficult task, made even more challenging when having to deal with these

anxieties on your own. The reason for the prevalence of solo performance in live coding is, in part,

due to the technical challenge of setting up existing collaborative systems, which requires a certain

level of expertise. This is just one of several barriers to entry in live coding; a preexisting level

of technical knowledge is required. Even installing programs can be a difficult task for some and,

with almost all live coding software being open source, there is often limited documentation. If

you do manage to install your live coding language of choice, you then need to learn how to use

it. Live coding is not an intuitive way of making music; your first time will probably involve an

empty text editor, with no buttons or dials that indicate how to make sound. This, too, requires

reading through minimal documentation, as well as watching tutorial videos, and a lot of trial and

error. This process is especially difficult if you have never done any computer programming before

as it means you also have to learn a lot of fundamental concepts, such as syntax, data structures,

and functions. Now that you’ve installed all the software you need and mastered the language,

you want to play music with other people. However, you now need to install more programs and

libraries, which usually require some technical understanding of computer networking, to do so. At

each point in this journey there are points of failure that might stop the progression of a potential

live coder and live coding ensemble; software may not install correctly, documentation might not

exist, and you may just not have the technical knowledge to implement a particular live coding

34



system.

3.4 Chapter structure

Each interface developed as part of this research will be presented primarily within its own chapter,

which will discuss its motivation, development, and use in practice. The creation of a completely

original idea is a rare thing indeed and, so, the design of any interface will, of course, take inspiration

from existing studies into collaborative music making. Each chapter will outline the motivation

for developing a specific interface and draw upon the advantages and disadvantages of technologies

that have addressed similar problems previously.

The main body of work in each chapter will relate to the practice-based research and involve

“documenting and describing the work” extensively (Benford et al., 2013). The development

process will be iterative and take place over several “phases” and each phase will contain docu-

mentation on the design and development of the interface as well as a written description of any

live performances. All performances will be recorded using a video camera recorder, or through

screen recordings where appropriate, and provided on an accompanying SD Card. Following the

documentation will be a discussion of the performance on the impact the interface had on its

success or failure.

The final section of each chapter will be its conclusion, in which the interface, and its effect

on performance and ensemble communication, will be evaluated. The framework for evaluation

is taken from (Gifford et al., 2017), which provides the guidelines for the personal reflections and

participant interviews that are presented in this section. Gifford et al. posit that the best way to

evaluate an interface is by just using it and reflecting on how good the experience feels, and this

notion sits at the heart of this research.

At the core of the research questions outlined in this PhD, there is one fundamental question

posed with regards to collaborative live coding; how can it be improved? But what does this mean?

Improving ensemble performance applies both to the performers and to the audience; making the

communication of ideas clearer for both those using the systems and also those experiencing them

as listeners and viewers. Live coding is an audiovisual experience and its use of code projection

can sometimes leave audience members feeling distracted or even confused. Increasing the number

of performers could potentially open up the possibility of alienating audiences by further obscuring

the creative processes through the use of more screens or complicated performance systems. The

research aims to address these issues by developing user-centred interfaces that provide performers

with simple means of collaboration and an audience-engaging system image, while also improving

the stagecraft and creative output of live coding ensembles.

35



4. Foundation Work

4.1 Introduction

My interest in live coding began about 18 months prior to the start of this PhD when studying

for my masters in Computer Music at the University of Leeds. I fell in love with the idea of

composition as performance but found that there were limitations with the currently available

software. The two most popular live coding environments at this point seemed to be TidalCycles

and SuperCollider but neither satisfied the requirements I had for improvising with programming

languages. SuperCollider’s strength is in its flexible sound-synthesis capabilities but the verbosity

of its syntax means that even simple sequencing of a few notes requires significant amounts of

typing. I wanted the low-level control over the sound but felt that the delay between forming

an idea and implementing it as code was too great and this meant that the development of the

music was too slow. On the other hand, TidalCycles is a much more terse language that focuses

on the quick manipulation of musical patterns. In 2015, though, it was not possible to trigger or

manipulate software synthesisers, which was something I wanted to utilise in my own practice. In

response to this I began developing the live coding environment, FoxDot, to allow me to control

software synthesisers built with SuperCollider and also sample playback in a succinct and dynamic

manner. I have continued to develop FoxDot and have since performed with it across the U.K.

and abroad. FoxDot features heavily as part of the practice undertaken during this PhD project

and this chapter describes its key features and syntax in order to better inform the reader going

forward in this document.

4.2 FoxDot

FoxDot is a live coding environment based in the Python programming language and focuses on

readability and OOP in the manipulation of musical patterns (Kirkbride, 2016). It is very similar to

the TidalCycles language developed by Alex McLean (McLean & Wiggins, 2010) but allows users

to program musical patterns of synthesised sounds that are stored in SuperCollider as opposed

to just audio samples, which was not possible in TidalCycles when I began developing FoxDot.

Shortly after this, however, TidalCycles added this functionality through the SuperCollider “Su-

perDirt” quark1. Even though both languages share many similarities, FoxDot differentiates itself

by incorporating more elements for traditional western music, such as scales and meter, that do

1https://github.com/yaxu/SuperDirt, accessed: 06/11/2018

36

https://github.com/yaxu/SuperDirt


not feature as prominently in TidalCycles. This was a conscious decision to not only appeal to

users coming from backgrounds rooted in more traditional music theory but also make any musical

knowledge gained through its use transferable to other musical practices. Similarly, the choice of

Python as the host language makes FoxDot accessible to a wider audience; Python is one of the

most popular programming languagues in the world2 and its simple and clean syntax also makes

it great for newer programmers as well.

FoxDot operates primarily as a middleware between the user and the SuperCollider audio engine

and acts as both a replacement for SuperCollider’s own language, SCLang, and a framework for

music making that provides users with a library of pre-programmed synths and pattern functions.

This setup allows users to spend less time typing and worrying about how to do something and

more time being creative. I have been constantly supported in my development of FoxDot by the

creator of TidalCycles, Alex McLean, and it has since taken on a life of its own and has developed

a user base from all over the world including Europe, South America, and Asia.

4.2.1 Player objects

FoxDot reserves all lower-case, two-character variable names, e.g. aa, p1, and bd, to be used as

“players objects”. These are the objects that play audio based on instructions given to them.

The first instruction given is telling it what instrument, known as a “SynthDef”, to play. Users

assign a SynthDef (short for synth definition) to a player object by using two ‘greater than’ signs,

called the ‘double arrow’ in FoxDot, followed by the name of the SynthDef and a pair of brackets.

For example, to assign the “pluck” synth to the player object p1 you would use the code p1 >>

pluck(). This would start playing a single note on repeat until the player object is told to stop

using p1.stop().

p1 >> pads([0, 1, 2, 3], dur=8, oct=(4, 5))

Figure 4.1: Example of typical FoxDot code.

More instructions can be given to player objects by supplying arguments in the brackets fol-

lowing the name of the SynthDef. The first argument is the pitch of the notes, which are written

as degrees of the current musical scale. Other arguments need to specified with a keyword but can

be done so in any order. Keyword arguments usually use a shorthand version of their description

e.g. dur to specify duration and oct for octave. Each argument can be a single value, a list of

values that are used in sequence, or a group of values that specify multiple sound events to be

played simultaneously. For example, the snippet of code in Figure 4.1 shows a player object using a

2http://pypl.github.io/PYPL.html, accessed: 13-02-16

37

http://pypl.github.io/PYPL.html


SynthDef called “pads” to play the first four notes of the scale in both the fourth and fifth octaves

for eight beats at a time.

# Summing the product of two lists using FoxDot

p1 >> pads([0, 1, 2, 3]) + [0, 0, 4]

# Summing the product of two lists using Python's builtin library

p2 >> pads([sum(x) for x in itertools.product([0, 1, 2, 3], [0, 0, 4])])

Figure 4.2: Comparison of FoxDot code with Python’s standard library.

A list of values can also be added to the player object to create variations in a sequence in a

very simple way, whereas achieving the same outcome using Python’s standard library of functions

is more difficult and verbose. For example, the code in Figure 4.2 shows two player object playing

the exact same sequence of notes, the first four notes of the scale with every third note shifted up

four steps, but executed in different ways; the first is simply using the ‘plus’ operator on the player

object to add the values together and the second is using Python’s itertools module to calculate

the Cartesian product of the lists and summing the values.

# Using groups of values within a sequence

p1 >> pluck([(0, 2, 4), 1, 2, (3, 5, 7, 9)])

# Adding a tuple of values to create a chord sequence

p2 >> pluck([0, 1, 2, 3]) + (0, 2, 4)

# Using a group to play notes in multiple octaves

p3 >> pluck([0, 1, 2, 3], oct=(4, 5, 6))

Figure 4.3: FoxDot code for playing multiple notes simultaneously.

Multiple notes can be played simultaneously from within the same player object by grouping

values into a tuple data structure using round brackets. This can be done either within a sequence

or added to the player object to create a chord sequence, as shown in Figure 4.3. These can also be

used in other attributes to play notes across multiple octaves, in separate channels, and to combine

multiple levels of effects concurrently.

FoxDot can also be used play back audio samples using a special SynthDef called play. Instead

of taking a list of numbers as its first argument it takes a string of characters where each character

is mapped to a different sound, similar to how samples are triggered in ixi-lang. Encoding the

information in a string allows it to be parsed for information about how the sequence should be

played back. The parser looks for different types of brackets, which manipulate the sequence in

various ways. For example, putting two or more characters in round brackets will alternate which

sample played on each loop through the sequence and wrapping characters in square brackets will

38



# Simple sequence of samples

p1 >> play("x-o-")

# Using brackets to alternate samples used

p2 >> play("(x-)(-x)o-")

# Playing a triplet of hi-hat samples on the 4th step

p3 >> play("x-o[---]")

# Using curly braces to select a sample at random

p4 >> play("x-{o-x}-")

Figure 4.4: Example FoxDot code using the play SynthDef.

play them successively in the duration of one step, as shown in Figure 4.4.

# Reversing a sequence every 3 beats

p1 >> play("x-o-").every(3, "reverse")

# Plays a note 4 steps up on the offbeat

p2 >> pluck([0, 1, 2, 3]).sometimes("offadd", 4)

# Randomise the order of the duration sequence every 3 beats

p3 >> pluck(dur=[0.75, 0.75, 0.5]).every(3, "dur.shuffle")

Figure 4.5: Example FoxDot code using the every method.

FoxDot also allows users to transform any sequence used by a player object by calling functions

at regular intervals using the every method. This tells the player object to transform a sequence

using a specific function every n number of beats. By default the player object will perform the

transformation on the pitch or sample sequence, but another attribute can be specified by name

with the function, as shown in Figure 4.5. The frequency of these transformations can also be

indeterminate; using the method often, sometimes, and rarely will call the function at random

intervals within high to low frequency ranges.

4.2.2 Patterns

A Pattern in FoxDot is a container-type object, similar to Python lists, but much more versatile

for managing and transforming sequences. Python lists are not very flexible when it comes to

transformations and, as demonstrated in Figure 4.2, even summing the product of two lists is an

overcomplicated task. The Pattern data-type gives users the ability to combine multiple sequences

using traditional mathematical operations and allows custom behaviour to be added to simple data

structures. A Python list is transformed into a Pattern by simply prepending it with an upper-case

‘P’, as shown in Figure 4.6. The Pattern object then handles any transformation logic applied to

it, such as basic arithmetic or other methods.

39



# Creating a simple Pattern object

my_pattern = P[0, 1, 2, 3]

# Repeat each element 3 times

print(my_pattern.stutter(3))

-> P[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]

# Reverse the entire contents

print(my_pattern.stutter(3).reverse())

-> P[3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0]

# Multiply by another Pattern object

print(my_pattern.stutter(3).reverse() * P[2, 1])

-> P[6, 3, 6, 2, 4, 2, 2, 1, 2, 0, 0, 0]

Figure 4.6: FoxDot Pattern transformations and output.

Python lists only have a small number of methods for transforming their contents. They can

insert or remove single values, extend the list with the contents of another, or reverse the order.

This is not a satisfactory amount of control for the manipulation of sequences for music. Another

downside is that these methods change the list in place, which means they do not return a new

version of the list, but transform the list and return nothing. This makes composing multiple

transformations for Python lists difficult as it is not possible to immediately call a second method.

Custom functions can be written to combine multiple transformations but, as shown in Figure 4.7,

the order, and subject, of the transformations is not always clear. Readability and control flow is

better when using methods attached to a single object, which is another reason why the Pattern

object was developed.

FoxDot also has a collection of functions that generate useful Pattern sequences, such as a

linear series. Using Python’s “slicing” syntax, users can create a large sequence using very few

characters; instead of explicitly writing every value, users can specify the start, end, and step

size of the series separated by a colon. For example, a user could generate a Pattern of the odd

numbers between 1 and 10 by typing P[1:10:2]. Multiple linear series can be combined into a

single Pattern by separating the specifications with a comma, as shown in Figure 4.8.

# Using Pattern method to perform transformations

P[0, 1, 2, 3].stutter(3).reverse() * P[2, 1]

# Using functions to perform transformations on a list

multiply(stutter(reverse([0, 1, 2, 3]), 3), [2, 1])

Figure 4.7: Comparison of transforming FoxDot Pattern objects and Python lists.

Another set of functions for generating Pattern objects, known as ‘named functions’, are

functions that take single value inputs and output a new Pattern. These can vary from simple

40



# Combining series in a single Pattern

print(P[1:10:2, 5:0:-1])

-> P[1, 3, 5, 7, 9, 5, 4, 3, 2, 1]

# Generating durations using Euclidean rhythms

print(PDur(3, 8))

-> P[0.75, 0.75, 0.5]

# Create a Pattern of length x, whose last values is y

print(PStep(5, 4, 0))

-> P[0, 0, 0, 0, 4]

# Example of looping named Pattern functions

print(PStep([5, 3], 4, 0))

-> P[0, 0, 0, 0, 4, 0, 0, 4]

Figure 4.8: Example Pattern functions used to generate sequences.

functions, such as PStep, which takes 3 values, x, y, and z, and returns a sequence of x length that

ends in y with every other value set to z, to more complex functions, such as PDur, that calculates

Euclidean rhythms (Toussaint et al., 2005). Named functions can be ‘looped’ by supplying a list of

values as an input, which will extend the Pattern with the output of the function for each input

value in the list, as shown in Figure 4.8.

4.2.3 Time-dependant variables

Music, for many people, is the change in sound over time and representing it as a series of events

in sequence may not always be the most effective way. In FoxDot, for example, a user may have

a chord sequence in which each chord is played for 8 beats each. Using a duration of 1 beat per

note, it would be relatively simple to work out that each chord needs to be played 8 times in a

row, and could easily be implemented by ‘stuttering’ a Pattern 8 times. Changing the duration

of the player object, though, would require the user to update the number of times the Pattern

would need to be ‘stuttered’ in order to hold the correct pitch values for 8 beats at a time. If

the duration was changed to 1/4 beats then the user would need to stutter the Pattern 32 times.

Things get more complicated when a sequence of different durations is used; if the duration was

changed to something like [3/4, 3/4, 1/2] then the user now has a more difficult calculation to do in

order to stutter their chord sequence. This will only add to their cognitive load, break their flow,

and slow down the performance. What happens if the duration is a random values? How would

one organise their sequence to play each chord for 8 beats? The answer to this was to introduce

a data-type called a time-dependant variable, or “TimeVar”, for short, that holds a value for a

duration of time as opposed to being a step-by-step sequence.

A TimeVar is instantiated using the keyword var and takes a list of values and durations as

arguments, as shown in Figure 4.9. Any transformation made to the value, such as addition or

41



# A TimeVar is used to hold pitch values for 8 beats

p1 >> pads(var([0, 1, 2, 3], dur=8), dur=1/4)

# A TimeVar is used to create a chord sequence

p2 >> pads(var([0, 1, 2, 3], dur=8) + (0, 2, 4), dur=1/4)

Figure 4.9: Example FoxDot code using a TimeVar.

multiplication, returns a new TimeVar that contains a relationship to the original such that when

the value changes, so too does the new, transformed value. For example, a TimeVar is created that

hold the values 0 and 1 for 4 beats each and a second TimeVar is created by multiplying the first

by 2. When the first TimeVar holds the value 0, the second will also hold the value of 0. When the

original TimeVar holds the value of 1 after 4 beats have elapsed, the second TimeVar then holds

the value of 2. This can be useful for creating chord sequences and shared variables that are used

by multiple player objects that change their value at the time, as demonstrated in Figure 4.10.

# A TimeVar is created

chords = var([0, 3, 0, 4], [16, 8, 4, 4])

# It is used to create a chord sequence backing

p1 >> pads(chords + (0, 2, 4), dur=chords.dur)

# And a melody that revolves around the tonic of the chord

p2 >> pluck(chords + [3, 2, 0], dur=1/2)

Figure 4.10: Example FoxDot code using a TimeVar shared between two player objects.

4.3 Considerations

This is a practice-led PhD and FoxDot forms the basis of my current musical practice. Throughout

this research I will be exploring how user interfaces can be vehicles for expressive ensemble live

coding performance with FoxDot at its core. The motivation for this research stems from the desire

to play music with others in a way that goes beyond the levels of interaction that currently exist

within the landscape of live coding. I am aiming to shift my own practice from a solitary venture

to a social one and bring FoxDot with me on this journey. By developing my practice-led research

around FoxDot I am definitely placing a constraint on myself, but FoxDot is at the heart of my

practice and my practice is at the heart of this research. This chapter should not only provide

the reader with a better understanding of the syntax that will be discussed frequently throughout

this document, but also provide them with the insight into why this research features FoxDot so

prominently.

42



5. Troop: An Interface for Real-Time

Collaborative Live Coding

5.1 Introduction

This chapter introduces the collaborative live coding interface, Troop, that allows users to work on

the same piece of code together simultaneously. Troop gives audiences insight into the performer’s

interactions, not just their musical decisions, and offers performers a holistic view of the textual

material enabling direct interaction with one another.

5.2 Motivation

On a typical laptop performance, Emmerson notes that creative actions are usually heard and not

seen:

At its most paradoxical the ‘laptop performer’ may move little and think a lot: the

clues of will, choice, and intention will be inferred from the sounding flow or through

apparent responses to the sounds of other performers (Emmerson, 2007, p. 112)

By contrast, the practice of live coding often strives to give audiences insight into performances

through the projection of code, which is a key part of the TOPLAP manifesto: “Give us access

to the performer’s mind, to the whole human instrument. Obscurantism is dangerous. Show us

your screens” (TOPLAP, n.d.). The projection of the performer’s screen is seen as fundamental to

live coding performance but audiences reception can be divisive (Burland & McLean, 2016). Code

and music are intrinsically linked during performance and this is understood by the audience who

often expect to be able to follow musical events and relate what is on the screen to the consequent

sonic experience (Magnusson, 2011a). The downside of this is that some audience members feel

that watching the screen “pulls the focus away from the human performers and the listening”

(Burland & McLean, 2016, p. 10). Burland and McLean suggest that by projecting their work

performers allow their code to become a representation of themselves but one could argue that

this is only accessible to a minority who are able to decipher the code’s meaning. In comparison

to other styles of performance live coding can be relatively static; performers may move in rhythm

with their music but the constraint of using a computer keyboard to compose/perform in real-time

does not afford very expressive movement. As a consequence the code becomes the outlet for self

43



expression and, without it, the audience will rarely gain insight into the mind of the performer.

Research has shown that being able to see a performer in close proximity improves the experience

of live music (Burland & Pitts, 2012) and live coders often rely on the projection of their code to

develop a level of intimacy with the audience.

As the number of live coders performing together increases, so too does the number of screens

required to project all of the ensemble’s code. This is a well documented issue and some live

coding ensembles, such as the Birmingham Ensemble for Electroacoustic Research (BEER), are

not always able to project their code in its entirety:

BEER has experimented with the common live coding practice of projecting code [...]

although we have not done this consistently. One reason is simply that this raises

additional technical demands, which can be difficult to meet in some situations. The

second is that, although we appreciate the way in which code projection can enhance

an audience’s experience by making clearer connections between performer activity and

the resulting sound, it is nontrivial to implement with five or more performers. (Wilson

et al., 2014, p.55)

The relationship between the audience members and the projected code is not universal and

even those who appreciate that its role is integral to the performance style of live coding believe

there is room for improvement. One participant from Burland and McLean’s study stated “I

really enjoy seeing the projected code. I still think the community has a long way to go in terms

of stagecraft while preserving the legibility of code” (p. 10). Zmölnig (2016) suggests that a

potential solution “is to provide additional information on the screen that is not a presentation of

the source code itself, but instead some kind of visualisation of the running program”. Zmölnig is

referring to the computational processes involved in a live coded performance but perhaps the idea

of the “running program” could also be interpreted as the cognitive processes that occur during

performance, such as those involved with musical creativity, but the argument could be made that

code’s projection in itself already addresses this.

Live coding shares many of the same characteristics that make live jazz performances so in-

teresting in that each performance is usually improvised and therefore unique (Magnusson, 2014).

Music is created in the moment and the aspect of risk and uncertainty adds excitement to the

event as it does in jazz (Burland & Pitts, 2012). Jazz audiences want “to be close to the musicians,

see them interact with each other and see them play as clearly as they could hear them” (Brand,

Sloboda, Saul, & Hathaway, 2012, p. 9), which suggests that the creative process accounts for

as much of the appeal of improvised jazz as the music itself. The concept of sharing with the

audience the creative processes that emerge from the dynamic interaction between performers is

fundamental to the design of Troop.

44



In a similar manner to Google Docs (Google Inc., 2017) Troop uses a shared text buffer, which

enables concurrent word processing over the internet. A live coding editor that enables this style

of collaboration was proposed as an addition to the Impromptu live coding environment (Brown

& Sorensen, 2007) but was never realised. Troop aims to make this a reality and allow live coders

to collaborate directly on the same material such that they can see, as well as be part of, the

live composition. Working within the same document live coders not only share their immediate

textual material with one another but also their cognitive workspace; traces of each contributor’s

thought patterns are left in the document as each keystroke updates the code, visible for all to

see. This on-screen interaction makes the collaborative process transparent and accessible to the

audience and allows the performers to share their musical ideas with one another in real-time. Each

performer is allocated a different coloured font to help distinguish their individual contributions.

By comparison, contributions in Google Docs can only be separated when viewing a document’s

version history and not in real-time.

Without being able to see co-performers’ code with the use of a shared text buffer, live coders

often rely on performers listening to one another’s contributions, which creates a latency between

the instantiation of a musical idea and a corresponding co-performer’s reaction. It could be argued

that this stifles the interactive processes that appeal to audiences when watching improvised music.

In addition to this, the audience’s attention can be divided when performers’ code is projected

across multiple screens. If the audience feels that the projection of just one screen “pulls the focus

away from the human performers and the listening” then dividing their attention between multiple

screens could only have a detrimental effect on an audience’s response. In some cases, a lack

of projection equipment may mean not every performer’s screen is visible but in either scenario

the process of creative collaboration is obfuscated by the separation of the performers’ expressive

representations in their code.

As discussed in section 2.2.3 there are several existing programs that facilitate collaborative

live coding such as Extramuros (Ogborn et al., 2015), The Republic (de Campo, 2014), and LOLC

(Freeman & Van Troyer, 2011). Many, if not all, of these do not address collaboration at the textual

level, which is the primary medium in which the practice of live coding takes place. Extramuros,

for example, allocates each connected performer a small text box on a web page into which they

can each write code. This allows them to create their own code and request and modify other

performer’s code within the same window but it does not necessarily encourage users to develop

music together using the same textual material. It does, however, reduce the number of screens

necessary to project during the performance, which could improve audience experiences.

Gabber (Roberts et al., 2015), the network performance extension to the JavaScript based

language, Gibber, does allow users to interact with each others code directly within the same text

buffer. This allows for only one screen to be projected but all performers’ work to be displayed.

45



Originally Gabber used “a single, shared code editor” but it was found to be problematic “as

program fragments frequently shifted in screen location during performances and disturbed the

coding of performers”. It also did not show the cursor locations of performers, which no doubt

made it hard to see who was editing what part of code at any one time. Gabber has since moved

to a more distributed model in which users can request and edit another user’s code in a similar

manner to Extramuros. The single, shared text buffer model may have proved problematic in this

instance but it has seen much mainstream success, most notably in Google Docs (Google Inc.,

2017) and SubEthaEdit (TheCodingMonkeys GmbH, 2014), and has prompted the development

of the present collaborative editor, Troop.

5.3 Phase 1: Inital Implementation

The purpose of the Troop software is to allow multiple live coders to collaborate within the same

document in such a way that both performers and audience members alike will be able to identify

the changes made by the different contributors. It also reduces the technical complexity of setting

up multiple screen projections by collating all of the coding activity into one window, which can

be viewed from a single projector. This section outlines the initial steps taken to achieve this

and briefly describes the network architecture and communication protocol used throughout this

project.

5.3.1 Development

During this phase Troop was designed to interface solely with the Python-based live coding lan-

guage, FoxDot (Kirkbride, 2016). Python is useful for rapid prototyping and comes with a built-in

package for designing graphical user interfaces (GUIs) called Tkinter. This, along with its ability

to easily import FoxDot into its environment, was the reason Python was chosen as the language

for Troop’s development. The philosophy behind Troop is that all performers should seemingly

share the same text buffer and contribute to its contents simultaneously. To allow each performer

to differentiate their own contributions from others each connected performer is given a different

coloured label that contains their name. This label’s position within the input text box is mapped

to the location of the respective performer’s text cursor, as shown in Figure 5.1.

Over the course of a performance, the text buffer naturally would begin to fill up as more code

is written by performers. With multiple collaborators it would not always be possible to separate

the individual contributions and it becomes unclear as to whom has written what; even to the

performers themselves. This problem was identified by Xambó et al. (2016), stating there is a

challenge in “identifying how to know what is each other’s code, as well as how to know who has

modified it”. To help combat this problem and differentiate each performers’ contributions each

46



Figure 5.1: Early version of the Troop interface.

connected performer is allocated a different colour for text (see Figure 5.1) and highlighting. By

doing this performers can leave traces of their own coloured code throughout the communal text

buffer. This is an example of one of Norman’s user-centered design principles; using technology

“to make visible what would otherwise be invisible, thus improving feedback and the ability to

keep control” (Norman, 1998, p. 192). Editing a block of another performer’s code interweaves

both their font colours and also their thought processes, creating a lasting visual testament to

a collaborative process; or at least until someone else makes their own edit. The colour of the

text entered by each performer matches the colour of their marker to retain a consistency in each

performers’ identity. It is customary in live coding for evaluated code to be temporarily highlighted

and by doing this in separate colours it allows both audience and performers to identify the source

of that action.

Performers’ contributions are also measured in terms of quantity of characters present. In

the bottom right corner of Figure 5.1 there is a bar-chart that displays the proportion of code

contributed by each performer. As a collaborative performance tool it is particularly interesting

to keep track of this information and could be used as a creative constraint for performances in

the future. Finally, the background colour for the text area was changed and line numbers were

added, which helps users identify locations of specific code when communicating about the code

itself, shown in Figure 5.2.

To edit code together, the text in Troop’s buffer needs to be replicated across all performers’

computers such that when one user enters a new character, it appears in the same position for all

other users also. The simplest way to implement this is to use a centralised synchronous networked

performance model, similar to that of LOLC, where each performer uses a client application that

47



Figure 5.2: Final design of the Troop interface.

connects to a server, which manages all communication between the clients (see Figure 5.3). When

a user presses a key, the client application sends a message to the server with this information and

stores it in a queue data structure. The server then forwards this message to all connected clients in

the order that the queue received them. This is also the case for mouse-clicks and direction-button

presses on the keyboard, which update the location of a user’s text cursor. This ensures that

all client applications receive the same data in the same order. The use of decentralised network

topologies is also common in networked live coding performance (Lee & Essl, 2014) but storing the

correct order of messages is critically important and this is best handled by a dedicated application

running on the centralised server. Messages are transferred using TCP/IP to ensure they are all

sent over the network.

A disadvantage to storing messages in a queue on the server is that there is sometimes a

noticeable delay between a user pressing a key and the corresponding letter appearing on that

user’s screen. Once a key is pressed, a client must wait for the information to be sent to the server

and then back again before it appears in the text editor. During periods of high activity the message

queue becomes “backed up”, which increases the delay. If the server application is running on the

local machine then the latency is negligible but connecting over the internet to a server running in a

data centre in London can be problematic; on average it takes a few milliseconds for a character to

appear but the latency between key-press and the character being displayed could be up to several

seconds depending on the level of activity and speed of the internet connection. While this does

keep the text synchronised across all clients, it was not an ideal user experience during testing.

48



Figure 5.3: Troop’s Network diagram.

The proposed remedy was to process local key presses immediately on the client instead of waiting

for them to be sent to the server. This made the system much more responsive but was prone to

having clashes in the order of the text between the clients, such as those seen in Figure 5.4. This

issue mainly arose when two users were editing the same line, caused by keystrokes being processed

immediately on a local machine not being processed in the same order as the queue residing on

the server, thus giving each connected user a different body of text. This issue was exacerbated

when users were deleting multiple characters, especially over multiple lines, causing several lines of

text to merged into one jumbled line. As the number of connected clients increased so too would

the chance of this error occurring. To combat this, the original text synchronisation algorithm

was re-implemented for users editing the same line, such that keystroke messages were sent to the

server and processed in the same order. Keystroke messages were still processed immediately in

all other cases, improving the responsiveness of the program while still minimising as many clashes

as possible.

Figure 5.4: Example of scrambled text in Troop.

The nature of Troop’s concurrent text editing means that code in each client’s text buffer

is identical so there is no need to use a shared name-space, such as those used in (Lee & Essl,

2014; Sorensen, 2010), as the data is reproduced on each connected machine. An advantageous

consequence of this is that Troop need only send raw text across the network and no data needs to

be serialised in order for the program to be replicated on multiple machines. All code is evaluated

on every connected client’s machine so that users connected over a wide area network, such as the

49



internet, can all hear the same music.

5.3.2 Practice

Initial rehearsal sessions, various locations - 09/04/17

Video recording: ch5 1a-Rehearsal-09 04 17.mpg.

The first few instances using Troop with members of TYPE were run as online workshop sessions

as both other members of the group were new to the FoxDot live coding language. This meant that

much of the text was used as direct communication as opposed to musical code. Embedding the

instructional conversation within working code examples that could then be directly manipulated

by other participants was very useful and helped express ideas and concepts that otherwise might

have been hard to grasp. Due to the discursive nature of these sessions, most of the text was

used to ask questions and describe functions or syntax rather than create working, musical code.

This created a very saturated screen as lines of code were separated by blocks of comments and

discussion. It was difficult to understand what was happening outside of your own code and was

described as “chaotic”. Lucy suggested we discuss strategies for the rehearsal for future sessions.

The music from these sessions, such as the one recorded and included in this thesis, was often

simple and rigidly metrical. Learning to use Troop also required Laurie and Lucy to learn how to

use FoxDot and their inexpertise was reflected in the music. Although simple there were, however,

some interesting textural elements at times as we began to experiment with the array of effects

available in the software. There were also some issues with text consistency that occurred when

multiple users were editing lines close together. The yellow text at the bottom of the editor in

Figure 5.5 is in a nonsensical order even though the it was written by only one user. It was unclear

what caused this error but the likely cause was that another user deleted text spanning multiple

lines while the yellow text was being entered but before the location of cursor was updated. This

error only occurred on a small number of occasions but was significant enough to force everyone

to stop any sound, delete all the text, and start over.

Figure 5.5: Screenshot of inconsistent text contents across Troop clients.

50



Leeds Algorave, Open Data Institute, Leeds - 28/04/17

Video recording: ch5 1b-Leeds Algorave-28 04 17.mp4.

See Appendix A.1 for performance description.

TYPE’s inaugural public performance took place in Leeds at the Open Data Institute (ODI) at an

Algorave organised as part of Leeds Digital Festival1. This was an event that I organised alongside

Alex McLean and Joanne Armitage alongside the ODI team funded by WRoCAH as part of their

knowledge exchange program. The event featured 10 artists live coding music and visuals and also

hosted workshops the following day. Performance set-up differed to the majority of our rehearsals

in that we were co-located and audio only needed be produced from a single laptop. My laptop

ran the server application and generated audio and Lucy and Laurie connected to the server using

the client application over the ODI Wi-Fi.

Figure 5.6: The Yorkshire Programming Ensemble. Photo by Aaron Ratcliffe.

5.3.3 Evaluation and outcomes

One of the most surprising things about these early rehearsals and performances was how we

achieved a balance between each performer’s varied musical influences. Lucy is a sound artist

who often works without tempo or metre, Laurie performs in a “doom jazz” band and makes/pro-

duces drone music, and I come from a background of indie-rock and melodic techno. We all had

experience with improvisation but in very different ways. The Algorave itself helped provide an

aesthetic direction for this performance; music for people to dance to. This helped pin each of our

eclectic musical backgrounds to a common thread; repetition. Much of the music produced was

1https://leedsdigitalfestival.org/, accessed 06/11/2018

51

https://leedsdigitalfestival.org/


centered around repeated rhythmic and melodic sequences with slight variations but both Lucy’s

and Laurie’s affinity for timbre based music did shine through at points. Towards the end of the

set in particular were some rougher textures created on the fly that lent themselves well to the

club night vibe. Much of group improvisation stems from the reactions to a co-performer’s actions

and the dynamism with which a performance evolves. The TidalCycles language was developed

to be particularly terse and allow performers to react quicker to other musicians’ actions for just

this reason (McLean, 2015). As a group that has only started learning how to use both Troop and

FoxDot a few weeks prior, the ability to react in a dynamic way had not yet come and there were

long periods of simple, repeated structures. Similarly, the group had only been playing together for

a short period of time and many live coding groups, such as ALGOBBZ who were also performing

that night, develop their chemistry over a number of years. At this stage in the project it could just

be that the quality of music was a reflection of our lack of chemistry as opposed to the limitations

of the software.

One of the immediate benefits of the Troop interface compared with other methods for live

coding collaboration for the ease of set-up. Audio is not distributed across multiple laptops in

Troop, which means only one laptop is required to be connected to the speaker system. Because of

this, the instances of FoxDot running on each machine do not need to be tightly synchronised, which

further reduces the complexity of set up for performance. Simplifying the set-up for collaborative

performance helps reduce the barrier to entry for newer live coders who may be put off more

complex systems if they don’t have the necessary technical knowledge to operate them.

However, there were still several issues with the system with regards to its functionality. On

several occasions, in both rehearsal and performance, text was became scrambled and inconsistent

across multiple clients. For Troop to give performers the experience of editing the same body of

code it needs to be identical for every connected user. The algorithm currently implemented for

achieving this is unsatisfactory and should be improved. During the Leeds Algorave performance

these errors did act as an impetus for creative decisions by forcing us to start from scratch, but

this, at its root, is an unwanted behaviour for the system. The idea of being forced to start over is

not new in live coding; the ixi-lang environment contains a “suicide” function that, when executed,

will randomly crash the system at the start of a bar (Hutchins, 2015). Perhaps this practice could

be utilised as a tactic for future TYPE performances.

An unexpected outcome from this initial phase of development was the effectiveness of Troop

as a teaching tool. Early rehearsal sessions were run as informal workshops for teaching the basics

of the FoxDot language, with many of them taking place from several different locations over the

internet. Users could write questions about specific parts of the code and I could either answer

directly or even write new code to demonstrate certain features. This opens up exciting possibilities

for hosting live coding workshops over even larger geographical areas for people who live in parts

52



of the world without access to a local live coding community. As a pedagogical tool itself, Troop

allows teachers work directly with their student’s material and correct any minor syntax errors

while allowing them to continue to practice without being interrupted by errors.

This phase of development has shown that Troop has the potential to be a powerful tool for

collaboration but the high occurrence of errors and inconsistencies in the text leaves room for

improvement. One way to ensure text is replicated correctly across all clients is to re-implement

the original algorithm that sent all keystroke messages to the server and storing them in a queue

before sending them back to the clients. However, the high latency associated with this approach

is less than ideal in musical performance where so many actions are time-sensitive. The alternative

to this would be implementing a more complex algorithm for concurrent text editing, similar to

the one implemented in Google Docs.

5.4 Phase 2: Operational Transformation

To combat scrambled text and high latency when communicating over the internet, the decision

was made to implement a more sophisticated algorithm for managing multiple text inputs over a

network. There is an algorithm called operational transformation (Ellis & Gibbs, 1989), which is

implemented in many popular collaborative text editors such as Google Docs and SubEthaEdit,

that ensures text consistency across multiple clients while maintaining high responsiveness of the

system (Baumann, 2015). This section describes the implementation of the operational transfor-

mation algorithm and its effect on Troop in a performance setting.

5.4.1 Development

Operational transformation considers character insertions and deletions as operations on a matrix

of characters. The server application maintains a copy of the shared document and keeps track of

the changes, called operations, made by each client. An operation is a function that is performed

on the entire text contents and returns a new version of the text with characters inserted or deleted.

A client will apply any local changes immediately and then update the text using operations sent

from other users in the order they were made. This allows the system to be responsive to a user’s

interactions but also effectively preserve the order of text across all the connected clients. This

is similar to the original algorithm I implemented but in operational transformation the server

keeps track of all the operations and is able to combine local and incoming operations into a

single operation, called a transformation, in the order they are processed and ensures that text is

consistent for each connected client.

This was implemented in Troop using the Operational Transformation library for Python devel-

53



Here is some multi 

coloured text edited by 

three users in total.

The numbers on the right 

correspond to the ID 

number of the user that 

added a particular 

character.

The text that user sees 

is coloured depending on 

the ID of the user.

0000000000000000000000000

0001111111111111111111112

22222222222222

111111111111000000000000 

2222222222222222222222222

2222222222222220000000000

0000000000000000000000000

222222222222222222200000 

0000000000001111111111111

111111111111111111

Figure 5.7: Representation of multicoloured text in Troop using user ID numbers.

oped by Tim Baumann, which is maintained at his GitHub2. It contains modules for representing

the client and server objects as well as one for creating and transforming text operations. This

library handles all of the synchronisation aspects of the operational transformation algorithm as

long as it is implemented in the program correctly. This complex task was further complicated by

the fact that the colour of fonts was also required to be synchronised across the multiple clients.

Previously Troop would simply insert a single character with a user’s associated font colour but

operational transformation requires the text to be replaced with a new, transformed version and

would consequently remove any colour information attached to it. Information about each char-

acter’s author needed to be explicitly stored and was achieved by using a second text document,

hidden from the user, that applied the same incoming operations to it, but would insert the client’s

ID number in place of each character. After this document was updated, the colours of the main

text could be ‘refreshed’ using the ID numbers’ locations, illustrated in Figure 5.7.

The location of each user’s text cursor also needed to be calculated based on the incoming

operation messages. Similar to text insertion in the previous phase of Troop’s development, a

single character insert would move the cursor forward one place, and a single delete would move it

backwards. As mentioned above, the operational transformation algorithm deletes the entire text

contents when inserting or deleting characters, which causes all of the text cursors to be moved to

the start of the document. To keep track of users’ text cursors, a function was written (see Figure

5.8) for calculating the location of the cursor after an operation was applied to the document. This

function, along with another called get operation size, would make useful additions to Tim

Baumann’s operational transformation library and help others working on similar projects. This

code has been submitted to be added to the GitHub repository so that it will be made publicly

available in the future.

Another change added to Troop was the ability to set the interface background to transparent,

2https://github.com/Operational-Transformation/, accessed: 20/02/19

54

https://github.com/Operational-Transformation/


def get_operation_index(ops):

""" Returns the index that a cursor should be *after* an operation """

# If the last operation is a "skip", offset the index or

# else it just moves it to the end of the document

if isinstance(ops[-1], int) and ops[-1] > 0:

index = ops[-1] * -1

else:

index = 0

for op in ops:

if isinstance(op, int) and op > 0:

index += op

elif isinstance(op, str):

index += len(op)

return index

Figure 5.8: Python Code for calculating a user’s location after a text operation.

which would allow it to overlay a visual accompaniment program. This was a result of a discussion

with members of TYPE, which resulted in a desire for more ways to relate code to sound during

performance. A menu option was added to interface that, when clicked, sets the background of each

element of the interface to black and then removes all of the black pixels, thus making it appear

transparent, as shown in Figure 5.9, with the aim of allowing Troop to overlay audio reactive

software.

5.4.2 Practice

Algorave Assembly Lunchtime Concert, Leeds - 27/04/18

Video recording: ch5 2-Algorave Assembly-27 04 18.avi

See Appendix A.2 for performance description.

Algorave Assembly was an event run by the University of Leeds as part of Leeds Digital Festival

in April 2018. It consisted of day-time workshops and performances, talks, a panel discussion, and

ended with a late night Algorave. It was funded by The Centre for Practice Research in the Arts

(CePRA) and aimed to introduce A-level students to new forms of music making that they may

encounter if they chose to study music at a university level.

As part of this event, TYPE was asked to play during both the lunchtime concert and the

evening Algorave; and both performances were extremely different. I will be talking only about

the lunchtime concert as I felt it was the more interesting of the two performances, mainly because

it was not an Algorave performance itself and allowed us to express ourselves unconstrained by

55



Figure 5.9: Troop interface with transparent background.

the expectation to make electronic dance music. As we were performing to an audience who were

unlikely to have experienced live coding or Algorave before, we wanted to make the connection

between code and sound as clear as possible. To do this we overlaid SuperCollider’s oscilloscope,

which displays the waveform for the audio being generated, with the Troop interface using the

transparent background mode, as shown in Figure 5.11.

Figure 5.10: Still frame from the Algorave Assembly performance.
Used with Permission from The University of Leeds.

56



5.4.3 Evaluation and outcomes

In the evening Algorave performance we aimed to make music for people to dance to by focusing

on developing rhythms and repetitive musical patterns as an overarching aesthetic goal. Com-

paratively, we didn’t have a goal in this performance; it was a free improvisation in the sense

that there was no predefined material but we were, of course, constrained by the affordances of

the FoxDot software. Having been playing together for over a year we were much more in tune

with one another’s performance habits and we were able to compliment each other’s styles well

while we navigated a much more open-ended performance. The introduction of the operational

transformation algorithm was also beneficial to the performance as it made Troop more responsive

and reliable, making it easier to produce a varied soundscape by fine-tuning the timbres and create

more generative percussive rhythms.

Free improvisation performances often find themselves on the the atonal and arhythmic ends

of the musical spectrum but our performance was still highly metric in its timing and featured

several harmonic components. This likely reflected the number of Algorave performances we had

done together in which experimental techno music had become our norm, as well as the musi-

cal limitations of the FoxDot software. Another contrast to more traditional free improvisation

was the explicit discussion of emerging performance goals; we communicated the idea of moving

into specifically defined sections, percussive and Algorave, by writing comments within the code

itself. This formal agreement between performers to pursue an aesthetic goal midway through a

performance is unconventional but the use of code comments shared the communicative process

with the audience, who responded positively through laughter. As we entered the Algorave section

we introduced more identifiable musical elements such as four-to-the-floor kick drums and a bass

synth, moving the performance away from a free improvisation and closer to an EDM jam session.

I think we were happy with this outcome as we hadn’t set out to try and free improvise the whole

performance and it felt right to show a little of the musical style we had been developing while

performing on the Algorave circuit. We did not move completely away from free improvisation

and indeterminacy, however, as we finished the performance be incorporating the sound of Super-

Collider crashing into the closing of our set. In live coding you are often in complete control of the

computer’s actions but listening to the powerful sounds of the computer taking it back presents a

striking dichotomy of the human and the computer in performance.

From a technical standpoint, one of the main issues with this performance was with Laurie

erroneously being logged out then being assigned a new colour when logging back in again. This

was caused by a network issue, which was likely a result of the machine hosting the Troop server

application being overloaded. It was being run on the same laptop generating audio and the

oscilloscope visuals, which probably starved the server application of computing power, causing it

57



to drop messages and log Laurie out. These sorts of issues are hard to plan for and will happen in

live performances from time to time. After having to log into Troop a total of three times, Laurie’s

contributions to the code were separated into three different colours, one of which was the same as

another user, as is the case in Figure 5.11. Coupled with the oscilloscope in the background, this

created a very frenetic visual effect and probably did more to obscure what was actually happening

in the performance. A useful feature to implement would be the ability to re-log into Troop and

resume coding with the same coloured font.

Figure 5.11: Troop interface overlaying on SuperCollider’s oscilloscope.

The use of many different coloured fonts in this performance prompted discussion within TYPE

about how the manipulation of these colours could be used in an aesthetic capacity. Over the course

of a typical performance, the coloured text would become highly interwoven and this non-uniformity

might give the impression that the group was lacking in synergy. It might reflect, inaccurately,

that performers’ creative thoughts were at conflict with one another, when the reality was that the

more the coloured text was spliced together, the more we were playing off each other’s ideas. This

was definitely an idea we wanted to explore in performance and could potentially lead to aesthetic

changes to future iterations of Troop regarding user’s font colours.

Throughout its development, we have found that we have really enjoyed using Troop to combine

our musical ideas in FoxDot but there are many different live coding languages available and it

would be great to share this tool with as many live coders as possible. To do this Troop would need

to become language agnostic in a similar vein to Extramuros. Currently Troop simply imports the

Python code for FoxDot directly into its environment but this would not be possible for languages

not based in Python, such as TidalCycles or Sonic-Pi. Adding the ability to interface with multiple

different live coding environments would be a great way to introduce collaborative live coding to

58



more people.

5.5 Phase 3: Language Agnosticism

To bring collaborative live coding with Troop to as many live coders as possible, the decision was

made to adapt the program and allow it to be used in conjunction with languages other than

FoxDot. The section describes how this was implemented and the impact that this has had on the

Troop project and the live coding community as a whole.

5.5.1 Development

In previous phases of development, Troop simply imported FoxDot into its own codebase using

Python’s import keyword. As this is not possible to do with other live coding environments,

Python’s subprocess module, which allows external programs to be run from inside a Python

application, was to be used instead. A module was added to Troop called interpreter.py that

defines the classes used for communicating with host live coding languages. Each one spawns a

process and pipes text into it whenever code is evaluated in Troop, then reads any output from

the process and prints it to the Troop console. Currently there are interpreter classes for the

FoxDot and TidalCycles languages and a generic interpreter than could potentially be used with

any language; if a program can take a raw string input and convert that to usable code then Troop

will be able to communicate with it. Specifying the mode flag at the command line, followed by

the name of the desired language, will start the client with a different interpreter to FoxDot like

so:

python run-client.py --mode TidalCycles

The interpreter can also be selected from a drop-down menu while Troop is running, which

potentially means multiple languages could seamlessly be integrated into the same performance

provided the set up is correct. By giving performers flexible access to multiple live coding languages

Troop can enhance musical expressivity and broaden the channels for collaboration.

Not all live coding environments can take text as an input using Python’s subprocess module.

For example, this is case for popular live coding environments SuperCollider and Sonic-Pi. These

two particular environments, however, do allow for text to be executed when received over OSC. As

well as interpreter classes created using Python’s subprocess module, Troop’s interpreter.py

module contains classes for evaluating code over OSC. For SuperCollider and Sonic-Pi it contains

language-specific information, such as the OSC address to send code to, but a general-purpose OSC

interpter also exists that would make adding more language-specific classes simple. Unfortunately,

sending code over OSC is a one-way process and output from the external program does not get

59



printed to the Troop console.

As discussed in Section 5.4.3, there were some issues with users logging back into an existing

session. If users disconnect from Troop they are treated as a new user when they log back and are

assigned a new colour when they reconnect. To avoid this from happening, the Troop server now

keeps an address book of all the users that connect and stores their login name and IP address. If

a user is disconnected and then logs in with the same name and address, the server will re-assign

that user their user ID and text colour. If two users connect with the same IP address (a feasible

possibility if two users on the same local network connect to a server over the internet) and the

same name then the second user to attempt to connect will be shown an error message.

(a) Colour palette for selecting merge colour (b) Window for selecting duration

Figure 5.12: Windows used to start a colour merge sequence in Troop.

Also discussed in Section 5.4.3 was the idea that font colour could be explored as a way to

highlight collaboration within the ensemble. During a typical performance with Troop, users will

edit the code written by their co-performers, interweaving the performers’ colours within the text.

These combinations of colours are evidence of performer collaboration but, over the course of a

performance, they can make the code look confusing and hard to read. The lack of uniformity in

colour may also suggest that there is a lack of cohesive communication when, in reality, that is not

the case. In an attempt to emphasise collaboration in Troop, a function to “merge” users’ colours

over the course of a performance was added. From the menu users can select a colour (Figure

5.12a) and set the duration required for the font colours to merge (Figure 5.12b), which activates

the colour merge sequence. A computer represents a colour as three numbers between 0 and 255,

with each number relating to the strength of the colour’s red, green, and blue (RGB) channels.

This means a colour can be represented as a point in a three-dimensional space whose co-ordinates

would be equivalent to its RGB value. During the colour merge sequence, Troop moves each user’s

individual colour towards the colour selected by the user within this space. As this happens, Troop

refreshes the colour of the text ten times per second with the updated RGB values, creating the

appearance of the text colour naturally blending into one. The result can be seen in Figure 5.13,

which shows three users editing code in Troop and their user colours merging into light-green over

60



Figure 5.13: Progression of Troop’s font colour merge.

time.

5.5.2 Practice

International Conference on Live Interfaces, Porto - 14/06/18

Video recording: ch5 3-ICLI-16 01 19.mp4

See Appendix A.3 for performance description.

Having been improvising together at late-night Algoraves together for over a year, TYPE wanted

to explore live coding ensemble performance in a more structured and conceptual way. We had

been playing with Troop’s colour merge sequence tool and wanted to combine it with a frame-

work for improvisation in order to accentuate the creative communication within the ensemble

and demonstrate Troop’s strength as a collaborative tool. We came up with an idea for a piece

called fingerprints and submitted a performance proposal to the International Conference on Live

Interfaces (ICLI), which was accepted shortly after. Below is part of the description taken from

the proposal:

This is an improvised musical performance that explores the idea of ownership in

collaboration. When working within a shared text editor the notion of ownership is

continually brought into question as the textual material created by one performer is

constantly reshaped by the other members of the performance. The performance begins

with each live coder creating a separate strand of musical code before moving on to

edit someone else’s existing strand. They are then tasked with transforming what

is considered code ‘owned’ by someone else into something that no longer resembles

(sonically) the original algorithm. This act of reshaping a user’s identity within the

code creates a driving force of change and unpredictability. Music is still created with

considerations towards the overall sonic output, so changes are gradual but definite.

Each performer must let go of the idea of the ‘self’ and allow their work to be lost

within the combined efforts of the group. As each musical strand is constantly in a

state of flux, performers must react and adapt to the changes in real-time. The aim

is that through these actions performers will no longer think about their contributions

with a sense of the self but with a sense of communal action that allows the music to

61



emerge and evolve naturally from joint processes as opposed to being driven by a single

user or musical impetus.

The piece all voices are heard (Saunders, 2015) by James Saunders explores group

behaviours in a similar manner, drawing on research in the social sciences into “the

similarity heuristic and consensus decision making”. It “asks players to compare per-

formed sounds and make alterations until all players are playing the same material, and

consensus is reached” where all the material is seemingly preexisting and performers

choose the order in which it is played in repeated cycles until the order is eventually

agreed upon. In fingerprints, however, performers are tasked with generating their

own material and sharing it with one another over the course of the performance. fin-

gerprints also draws inspiration from the piece, Mind Your Own Business (Hummels,

2013), written by Jonas Hummel for the Birmingham Laptop Ensemble, in which the

ensemble starts with three synthesized sounds and each performer is given one or more

attributes (rhythm, pitch, timbre, and manipulative effects) to explore as a group,

which they alternate between over the course of the performance. Unlike in Mind Your

Own Business, the performers in fingerprints are able to control any number of musical

attributes but alternate between the strands of code in the shared editor itself. The

Troop software itself has been repurposed for this performance to help emphasise the

transition from individuality to group collaboration; by default each user is assigned a

different coloured font to help identify the separate contributions but over the course of

fingerprints each user’s assigned colour will converge to the same shade as to accentuate

the coalescing of the performer’s minds.

The piece is an exploration into collaborative techniques for introducing high levels of variety in

short spaces of time in collaborative live coding with Troop. It challenges the idea of ownership and

authority and aims to create a completely democratised piece of music that still gives performer’s

individuality. Once each performer writes a separate line of code, they “rotate” and work on one

another’s code; changing it in a way that no longer reflects the original author’s idea but still fits

within the overall aesthetic of the soundscape. You are constantly treading on each other’s toes

but continually discovering novel musical ideas from the code created by others. The performance

took place at the Passos Manuel bar in Porto and only I was physically present as Laurie and

Lucy were connecting remotely via a publicly accessible Troop server. This demonstrated Troop’s

potential as a powerful tool that enables international collaboration. Even connecting to a Troop

server running in a different country, the interface remained responsive and accurate thanks to the

operational transformation algorithm implemented in Phase 2.

62



5.5.3 Evaluation and outcomes

This ended up being a much more difficult performance than we expected. We approached it in

a very different way than we had done before and this definitely placed us outside of our comfort

zone. There was often a tension between following “the rules” and following one’s instincts while

trying to perform without the “sense of self”. However, by focusing on a process driven by change,

as opposed to an aesthetic goal, we explored a broad range of electronic textures and produced

more challenging rhythmic patterns than we had done in previous performances. Continually re-

inventing existing lines of code, as opposed to creating new ones, pushed the music into territories

we wouldn’t normally go into in our typical performances. Interestingly, by approaching this

performance with a specific process we probably incorporated more free improvisation techniques

than we did in the Algorave Assembly performance in which we stated it was a free improvisation

from the start. The focus on process helped prevent us from falling into old habits but it did

feel restrictive and uncomfortable at times. While we agreed this performance was a worthwhile

endeavour, we felt that we enjoyed more loose improvisation that encouraged self-expression and

where ideas can be easily shared and developed using Troop.

As a conceptual piece, the process-centered style of performance with fingerprints worked well

when combined with Troop’s colour merge sequence to highlight the collective coding as a single

work of the ensemble as opposed to the sum of the individuals’ contributions. However, there are

some aspects of the colour merge feature that could be improved upon. For instance, the final

colour is not informed by any sort of performance data; it is arbitrarily chosen at the start of the

performance and set to merge together over given period of time. It seems like a bit of a wasted

opportunity to not have utilised at least the data available in Troop’s character-tracking graph

to inform the colour merge in some way. The final colour could potentially have been calculated

based on the average of all the user colours and weighted by their contributions to the code at

each point in time. This would have still represented the collaborative nature of the work but also

underlined the individual performances that come together to make it and would also have been

a better semiotical tool for indicating to the audience what was actually happening during the

performance.

During this phase the ability to use Troop with different live coding environments was added.

There are many live coding languages, and many more popular than FoxDot and Troop should

be a tool that allows any live coder to collaborate. After adding this feature it was great to see

Troop being used by members of the live coding community. The live coding duo, Class Compliant

Audio Interfaces (CCAI), use TidalCycles and drum-machines to perform and also utilised Troop

for sharing code during a performance at Sheffield’s Access Space (see Figure 5.14). It is amazing

to see Troop used in a performance, even before the project is completed, and it provides tangible

63



Figure 5.14: Class Compliant User Interfaces using Troop, Access Space, Sheffield, 15/03/18.
From https://www.youtube.com/watch?v=3BWfPvdEy o, accessed 20/03/18

evidence that Troop is a useful asset in ensemble performance.

5.6 Conclusions

5.6.1 Personal reflection

By separating users’ contributions by colour, the creative processes at play during performance

are revealed to the audience as they overlap and intertwine. Augmenting the software to merge

these colours over time emphasises the idea that the individual contributions of ensemble members

are part of a greater whole. One of the research questions for this thesis is “how are collaborative

interfaces used to reveal creative processes at play in ensemble live coding performance?” and

I believe that Troop does reveal these processes very effectively. Being able to see, and directly

work with, co-performers textual material opened exciting possibilities for ensemble interaction;

during the performance at Leeds University in Section 5.4.2, it was very musically satisfying to

combine code to create new ideas in the moment. This is something that would be very difficult

to do without working with each others’ code directly, as you do in Troop. Similarly, being able to

make comments in the code and communicate ideas, such as moving onto a new section, explicitly

revealed creative processes to both members of the ensemble and the audience. The research

question “how can collaboration in ensemble live coding be better facilitated through performance

systems, such as language, and interface design?” is explicitly addressed by allowing users to

collaborate with one another directly in the code.

In terms of strategies for performing together with the tool, it would seem that overarching

aesthetic goals were more successful than defining processes to be implemented in performance.

Improvising freely with Troop, without any pre-assigned roles, often led to the discovery of novel

64

https://www.youtube.com/watch?v=3BWfPvdEy_o


musical ideas that emerged from the combination of multiple performers’ contributions to the code.

Using a stricter framework that defines how one codes, such as the one implemented as part of the

performance at ICLI in Section 5.5.2, potentially stifled creativity but were interesting to explore

nonetheless.

An unintended benefit of using Troop as an interface for ensemble live coding was the ease

of set up. Only generating audio from one laptop, which requires no audio synchronisation lets

you approach set up with a “plug and play” attitude. There is very little configuration needed

and only using one sound source also makes it a sound engineer’s dream when performing as part

of a larger line up with lots of acts; something very common in the Algorave scene. Combining

this with the user friendly interface and easily distributed software, Troop facilitates ensemble live

coding well, even before a performance has started. A secondary goal of this research is to lower

the barrier to entry for collaborative live coding and reducing the time and effort required to set

up for a performance goes a long way in achieving this.

There are also some negatives regarding the Troop interface. One issue that has been partic-

ularly difficult to address is that of syntax highlighting. Modern text editors, such as Atom3 or

VSCode4, use coloured text to help make code easier to read, which would be useful when collabo-

rating. However, because Troop uses different coloured fonts to differentiate users’ contributions, it

makes syntax highlighting an almost impossible task. Although the use of italics and bold are used

to highlight comments and keywords respectively, it is not as effective as using colour to identify

syntax. Furthermore, the use of the bar chart to represent total contribution by using each user’s

colours has also been an issue. In Section 5.3.1 using the amount of characters a user could type

was discussed as a potential creative constraint for a future performance. The idea would be to

stop one user from dominating the performance and give users with small contributions time to

write code on their own and “catch up” to others. However, after using the Troop system a num-

ber of times TYPE developed good chemistry and a balance across all performers’ contributions

and felt that there was no need to implement a character-limiting constraint. It was a personal

decision to leave the contributions graph as part of the interface as I was quite fond of its aesthetic

quality and it still provided useful information about the performance to both the audience and the

performers. It does mean that particular small (or large) contributions are made more explicitly

clear and could, potentially, be quite embarrassing for a particular performer if they have a mental

block and don’t write code for a few minutes. That being said, this was never case during any

of our performances, but it is something to keep in mind for, perhaps, ensembles made up of live

coders with various levels of performing experience.

3https://atom.io/, accessed 25/10/2018
4https://code.visualstudio.com/, accessed 25/10/2018

65

https://atom.io/
https://code.visualstudio.com/


5.6.2 User evaluation

As mentioned in Section 3.4, the interfaces developed over the course of this PhD will be evaluated

through practice and by assessing key creative properties outlined by Gifford et al. (2017); the

notion of “trust” in the interface, the ability to achieve “flow”, and the sense of “immediacy’

associated with the interface. “Trust” here refers to “handing over of responsibility for some part

of the music production to the computer” and having confidence that it will take some effective

creative risks when doing so. The creative risks taken by the interface are actuated by the host

language, such as FoxDot, as opposed to Troop itself so I will be assessing the level of trust in

the interface to work correctly and allow users to take creative risks. At the end of this project

I interviewed the members of TYPE and asked them to discuss the concepts of trust, flow, and

immediacy with regards to using Troop and it raised some interesting points. It should be noted

that at this point TYPE now had the addition of Innocent Granger, whose contributions are more

notable in the following chapters, as well its original members of Lucy Cheesman, Laurie Johnson,

and myself. When asked about how much trust they had in Troop to allow them to take creative

risks in our improvisations, Lucy gave a very insightful response:

I guess the trust level is more, like, about how we play together because I feel like if I

dropped something, like, that’s a bit of a clanger, it’s not gonna, like, stress you guys

out. [...] I feel like something that’s really nice about Troop is that I can kinda see

what everyone else is working on really easily, so, if I see that, like, ‘oh, actually Ryan’s

writing a whole new player’, then I better, like, not change something major ’cause it

will, like, clash with what he’s doing. Or if I see that people are just, like, tinkering

round with stuff, then I’m, like, ‘oh I can do a major change here’. So it’s, like, really

immediate in that sense of, like, I can see exactly what everyone is up to and, erm,

then I sort of can then – in terms of, like, taking risks – will try stuff out I know when

it’s gonna be an appropriate time to do that.

When asked if that means she feels that trust in her co-performers was more important than

trust in the software, she replied “Yeah I think so but I think Troop allows that because it allows

me to kinda see what you guys are up to and also allowed us to practice together loads in a really,

like, low-maintenance and low-effort way, which has enabled us to build that trust up”. Trust

between ensemble members is very important in improvisation and this holds true for live coding.

Interestingly, Troop seems to strengthen the level of trust between performers by giving them a

real-time overview of the process of coding and helps inform performers’ creative decisions, such as

when musical changes should be introduced. Practising together over the internet also enabled us

to build up trust and we were able to do this much more frequently than if we had had to rehearse

in person. Lucy referred to these online practices as “low-maintenance and low-effort”, which was

66



one of the goals of this entire PhD; making ensemble live coding as easy and accessible as possible.

Innocent said “I trust the software to do what I expect it to do” but he also stressed the

importance of trusting himself “to know that [...] I’m not gonna play something that’s just gonna

make everyone’s ears bleed”. Along with trusting co-performers, there is also a strong feeling of

responsibility and self-awareness among some members. He goes on to say that “every time Troop’s

fallen over in our performances it’s more down to, err, human error than the software itself. So,

umm, yeah either playing too many, uhh, things at once, or just pressing stop”. The latter example

he provided is a reference to the occasions where one of the ensemble members accidentally triggers

the keyboard shortcut for clearing the scheduling clock. Laurie feels like these instances of human

error are easier to overcome with “four pairs of hands” but goes on to say that the error itself is

“like a refresher as well, it just strips- the music takes a break for a bit and layers die away kinda

gradually, not- it doesn’t just stop instantly but actually works quite well”. This is particularly

interesting as it demonstrates that there is trust in the interface, in the sense that Gifford et al.

discuss it, that it will support us in a creative manner in the case of failure. I then asked the group

if they managed to achieve a sense of flow when performing with Troop and, again, Lucy provided

some useful insights:

I would say, like, when compared to Tidal, like when I’m playing gigs on my own, if

something goes wrong in- when I’m playing with TYPE, it... it takes me out of it less

because... I think because it’s easier to recover because there’s more of us. It’s like

not all on me it’s like if I, if I, you know I, like, if something goes horribly wrong, you

guys can help fix it and recover and, like, turn in round, in a way. And I don’t if that’s

– I mean obviously it’s partly to do with Troop because obviously we’re all working

together and we can all, like support each other in, kind of like, correcting any errors

– but I also think, like, from a kinda confidence and just, like, capacity perspective,

erm, I think it’s easier to, sort of, stay in the flow and to keep things going with Troop

compared to playing solo, definitely. And I think that’s a combination of the software

and also just of the nature of playing with other musicians.

This sentiment was shared by the rest of the group. Again it seems that the act of playing as

an ensemble with a strong sense of trust played more of an impact than the interface. Performers

did achieve a sense of flow when performing with Troop but this was mainly due to the confidence

in their co-performers, on whom they could rely to help deal with problems such as errors. It

is difficult to say, at this point, whether Troop is facilitating this sense of flow without a direct

comparison with other collaborative interfaces, but future chapters will enable this with potentially

fruitful results.

Lastly, I asked whether they felt they had a sense of immediacy when using Troop regarding

67



both their own musical expression and their ability to communicate ideas with the rest of the

ensemble. For Innocent, confidence in your own ability was key to musical expression. He said “if

there’s something happening and you think of something you can immediately get it out there,

umm, it just depends, I guess, on your level of confidence in terms of how... how confident you

are to play that without any sort of guarantee of how it’s gonna sound”. As with any method of

music-making, it is difficult to perfectly recreate a musical idea in your head with the instrument

in your hands and, without confidence in your own ability, you may feel like your new musical idea

may be more disruptive than constructive in an ensemble context. Because of this, many changes

to code, and consequently sound, are incremental during performance, perhaps not giving users a

true sense of immediacy. Lucy confirms this by saying “I also think that, like, in one sense, it’s

very immediate but in another sense I’m more likely to, like, start with a simple idea and build it

up”. When asked about the ability to react to their co-performers’ musical changes, Lucy stated:

I find Troop pretty good for stuff like that because you can see what everybody’s up

to. So, like, I can see if, like, someone is creating a new player at the same time as me

and I can kinda feed off that to an extent, erm, in a way that can be a bit disruptive

sometimes but it’s quite easy for that disruption to be positive because I can, you know,

I can take elements from somebody’s pattern or something like that. So I would say

personally I find that quite, erm, a positive feature in Troop.

The incremental nature of self-expression in Troop allows users to to see, as well as hear, the

changes being made to the code over longer periods of time. This allows the performers to adapt

to any “disruptive” changes in the music in a way that takes the improvisation to interesting

new places. The collaborative act of coding seems to invariably lead to disruption in musical

performance, but our coding styles have adapted to this by only making small incremental changes

to the music where possible. This, coupled with the ability to see each others code as it is being

written, consequently helps inform our own musical decisions. With Troop we actively try and

avoid disruption but it invariably occurs regardless and this seemingly enables fruitful musical

ideas to develop as a response.

5.6.3 Quantitative evaluation

Over the course of the project Troop has seen an uptake in use within the live coding community

and this larger sample size of users has allowed me to collect user feedback through an online

survey. The data was collected using a Google Form that was available from Troop’s GitHub

repository page. All responses were anonymous. The survey was adopted from a user satisfaction

questionnaire proposed by Chin et al. (1988) and has been used to evaluate user satisfaction of the

live coding language, ixi-lang (Magnusson, 2011b). A total of 7 responses were collected between

68



19 March 2018 and 19 February 2019. The repository has been ‘starred’ by 90 GitHub users but

only ‘cloned’ by 12. Given that the number of users who have used Troop extensively is likely

between those numbers, 7 responses is an estimated 15-20% response rate. The survey contained

37 questions, many of them requiring qualitative answers, but a small subset of these asked users

to rate various facets of the interface on scale between 1 and 9. Results can be seen in Figure 5.15.

All respondents found Troop to be wonderful as opposed to terrible and easy to use as opposed to

difficult, but some felt that it was inadequately powered and inflexible. This was not the case in

every instance as at least one respondent rated each attribute 9 out of 9.

Terrible

Difficult

Frustrating

Inadequate

Dull

Rigid

Coloured fonts not helpful

Hard to learn

Wonderful

Easy

Satisfying

Powerful

Stimulating

Flexible

Coloured fonts helpful

Easy to learn

1 2 3 4 5 6 7 8 9

Figure 5.15: User satisfaction response graph. The yellow line is the mean, the green block
represents the standard deviation, and the orange lines are the lowest and highest responses.

Users were also asked if using Troop to collaborate changed the way they live coded. Two users

felt that it had no effect on how their style of live coding but five out of the seven respondents did

feel that the interface affected the way they approached their practice. One user (A1) wrote “It

gives me time to reflect upon changes in the sound because with other users making changes there

is no rush for me to evolve the sounds”. This is not necessarily a direct result of using Troop as

an interface for collaboration but from the act of collaborating itself. Live coding is a cognitively

demanding tasks and requires listening, thinking, planning, and typing skills, and it is difficult to

manage it all simultaneously in front of a live audience but spreading the load across an ensemble

allows performers to allocate more time to each facet of performance including, arguably the most

important, listening.

Live coders are not only having to apply multiple skill-sets during performance, but they also

have to manage different musical aspects too, such as rhythm, melody, sound design, and form.

Live coding as an ensemble allows performers to work on specific aspects of the music that they

would not otherwise be able to dedicate as much time and effort to. This was clear in one user’s

(A5) response, which was “In a team scenario, one is able to focus on one’s strengths when solo

performance requires you to cover all aspects of live coding performance I.e creating new tracks,

editing/enhancing tracks, transitions, etc”, suggesting that playing together as an ensemble allows

the group to maximise their potential by having the individuals focus on the musical features they

69



are most comfortable with.

One user (A4) did specifically mention how using the Troop interface with other live coders

influenced how they would perform; “I think about things differently when collaborating with

others – with troop you can see how other people are developing the code which in turn influences

the decisions I make”. Being able to see co-performers’ code being written in real time gives users

an indication of what is about to happen next and allows them to adapt their own code in response;

realising one of the main goals of the Troop project.

The responses above demonstrate that live coding as part of an ensemble seems to reduce the

cognitive load for individual performers, giving them more time for reflection and allows them to

focus on their individual strengths. Furthermore, utilising Troop within an ensemble also helps

give live coders insight into their co-performer’s actions and helps facilitate collaboration and

communication in live coding ensemble performance.

(a) Crash Server.
Photo courtesy of Crash Server.

(b) Kolmogorov Toolbox.
Photo by Tatiana Soshenina.

Figure 5.16: Photos of Troop being used by various ensembles.

5.6.4 Impact

Making collaborative live coding simple and giving those with limited technical knowledge the

opportunity to live code music as a group has been a key consideration while conducting this

research. However, Troop has also had an impact among the more established members of the live

coding community; it was shown in Section 5.5.3 that Troop was utilised by the Algorave duo,

Class Compliant Audio Interfaces, of which one half is Alex McLean who is credited as co-creating

the Algorave movement. Troop was also used by Hungary-based duo, Kolmogorov Toolbox, in

a performance at the International Conference on Live Coding 20195, arguably the largest live

coding event in the world, and demonstrates that Troop can be used as a tool for collaboration at

the highest level of live coding performance. Troop’s overseas impact has also been demonstrated

by the French live coding duo, Crash Server, who use it regularly to perform with. Photos from

5Conflicting Phases - Kolmogorov Toolbox. http://iclc.livecodenetwork.org/2019/programa.html#pn19, ac-
cessed: 25/01/2019

70

http://iclc.livecodenetwork.org/2019/programa.html#pn19


performances of both these acts can be seen in Figure 5.16.

5.6.5 Potential in pedagogy

Music has been used as a useful teaching analogy for computer science in younger age groups,

as demonstrated by software such as Scratch (Ruthmann, Heines, Greher, Laidler, & Saulters II,

2010) and the live coding language Sonic-Pi (Aaron, 2016), and collaborative live coding can help

move student thinking “from an individual to a social plane” (Xambó et al., 2016). Troop was used

as part of a live coding workshop in Sheffield in March 2018 in a purely pedagogical, as opposed

to a performative, context. When adding the ability to use different languages with Troop during

Phase 3 of development, I had very little knowledge of any environment other than FoxDot and I

wanted to test how well the interface functioned when being used with an alternative language. A

TidalCycles workshop takes place every month in Sheffield, called Tidal Club6, and organisers were

happy to use Troop as part of the session. As someone who has very little knowledge of TidalCylces

language, I assumed the role of student as opposed to teacher and found that Troop was a useful

tool for group learning. More experienced users could implement more complex compositions of

functions and fix syntax errors to allow for a smoother coding process for less experienced users

like myself. Another useful benefit of using Troop as a teaching tool was that the workshop leader

could write code to demonstrate how to use a specific function and then users could immediately

change values and listen to how it affects the sound. In a typical workshop session, users would

have to read the text off a screen or projector and write the code themselves, which would be

susceptible to syntax error if even one character was copied incorrectly. A teacher would then

have to visit each student that had errors and go through the problem several times. Using Troop,

however, allows for teachers and workshop leaders to address these issues quickly and directly using

the program.

(a) Using Troop with TidalCycles. (b) Close up of with multiple users connected.

Figure 5.17: Troop used at Tidal Club, Sheffield.

Collaborative software development through the use of “paired programming” has become

popular in the industry as a style of agile development and has also been explored in a remote

6https://tidalclub.github.io/, accessed: 28/02/19

71

https://tidalclub.github.io/


context (Flor, 2006). Education has followed suit and employed paired programming in teaching

software engineering and studies have found that working closely with others meant that students

were “working harder and smarter on programs because they do not want to let their partner

down” (Williams, 2001). Specific tools have even been developed for managing larger-scale software

projects, such as GitHub Classroom7, with a view to making computer programming education

a collaborative practice. Troop has the potential to be utilised as teaching tool in schools for

both paired programming and larger groups of students too. Live coding provides an exciting

and engaging topic of study for teaching computer science and moving it into a collaborative

context could provide a better and more enjoyable learning experience, as has been the case in the

paired programming studies and using real-time collaboration software, such as Google docs, in an

pedagogical capacity can provide “a more productive learning system” (Google Inc., 2018).

5.6.6 Final thoughts

This chapter has demonstrated Troop’s strengths as a tool for facilitating collaboration in ensemble

live coding. It is also clear that TYPE have started to develop a way of playing together, beginning

to generate tacit knowledge of the system and how they tend to interact with one another. Troop

has been adopted by several ensembles across Europe and received positive feedback in a user

satisfaction survey. Working with the same textual material allows live coders to easily share and

combine ideas to create novel musical sequences. But how does the live coding language itself

affect how these musical ideas are communicated during performance? Is it possible to develop

a language that enables better and more responsive sharing of musical information when coding

within in the same body of text? The following chapter explores these possibilities in more detail

in the hopes of further improving ensemble performance in live coding with Troop.

7https://classroom.github.com/, accessed: 01/05/2019

72

https://classroom.github.com/


6. Developing a Language for Live Coding

in Ensemble Performance

6.1 Introduction

This chapter introduces several features that were added to the FoxDot live coding language during

the development of the Troop interface, discussed in Chapter 5, to improve musical collaboration

during improvised ensemble performance. Troop facilitates real-time cooperative work by giving

users access to a shared text editor, but it seems necessary to address how properties of the code

itself can afford different levels of collaboration. For example, collaboration can occur at an inter-

personal level when performers write human-readable comments in the text or when editing a

partner’s existing code – but is any collaboration occurring at an inter-musical level? This chapter

posits the question, “how can a programming language be developed to facilitate inter-musical

communication in live coding?”. This question will be addressed first from a computer science

perspective and potential computer programming paradigms will be discussed. It should be noted

that it is beyond the scope of this project to compare every programming paradigm that exists so

only the two most prevalent in live coding environments, functional and object-oriented, will be

discussed.

Functional programming is utilised in popular live coding languages such as Tidal (McLean

& Wiggins, 2010), which is embedded in Haskell, and Extempore (Sorensen, 2011), which is

based on the Lisp-based language, Scheme. As the name suggests, this style of programming

focuses on evaluations and transformations of mathematical functions, which hold no state. In

contrast, object-oriented programming, used in SuperCollider (McCartney, 2002) and FoxDot, is

often wholly dependant on data-types, known as objects or classes, that hold a state that can

be changed or accessed by functions that are specific to that class, called methods. While the

use of mathematical functions to compose music in real time is a unique and exciting practice,

object-oriented programming is often used to represent complex and real-world systems (Kindler

& Krivy, 2011) and it could be argued that modelling inter-performer interaction through text

would be more appropriately addressed through an object-oriented programming paradigm.

FoxDot is based in the Python programming language, which is primarily an object-oriented

language but also supports other programming paradigms, such as functional and procedural.

Due to the focus on object-oriented programming in FoxDot, it would make an appropriate host

language for modelling inter-personal musical relationships. The Troop interface also primarily

73



uses FoxDot as its interpreter and has been the language of choice for performances by TYPE

since its creation. The goal of this chapter is extend the functionality of the FoxDot environment

to allow multiple performers to efficiently and effectively share musical information when working

together using Troop. This should be accomplished through the use of interdependent relationships

created using code that tie together the separate strands of music produced in improvised ensemble

performance.

6.2 Phase 1: Modelling Interpersonal Musical Relationships

6.2.1 Development

FoxDot began development in 2015 with the goal of creating “dynamic musical systems” in solo live

coding performance (see Section 4.2) and the library will be expanded here in an attempt to model

inter-personal musical relationships that can be implemented using the Troop software or otherwise.

FoxDot uses “player objects” that are given instructions by the user for different musical attributes,

such as pitch or duration, that are continually iterated over until stopped. Player objects store

the data for these instructions and the last musical event played can be accessed at any time by a

user or another player object. This model allows for inter-dependant relationships between player

objects to exists where musical attributes for one player object can be derived from another by

accessing its state. For example, the pitch of one player, p1, is determined by the pitch of another,

p2, by instructing p2 to check the state of p1 for its pitch value when triggering a sound in

SuperCollider. This data is stored in player object’s attribute dictionary, called attr, which holds

keys, the shorthand names of the musical attributes, and their corresponding values, sequences of

numbers representing musical information. To access a specific sequence from the dictionary, such

as the pitch, a user only needs to type the name of the dictionary followed by the name of the key

as a string in square brackets. For example, accessing the pitch data from a player object called

p1 would be achieved by typing p1.attr[‘‘pitch’’]. This can be utilised during a performance

to create references between player objects in the code such that one player is seemingly playing

along with another. However, this is only possible if both players are also using the same duration

as well as pitch, which could be shared by referencing p1.attr[‘‘dur’’]. This is a very verbose

way of connecting two player objects and is also restrictive and unrealistic. The goal was to model

real-world inter-musical relationships, which may share some aspects but vary others, and this does

not. Another problem with this method was that the relationships were not reactive; if the pitch of

p1 was changed then p2 would still be referencing the old values and the relationship would have

to be updated by re-evaluating the code referencing p1.attr[‘‘pitch’’]. Managing this during

a live performance would be time-consuming and would add to the already taxing cognitive load

74



that live coding puts on a performer.

The process of modelling more realistic inter-musical relationships began by adding function-

ality to the player objects that would better recreate basic behaviours of improvising musicians.

This began by implementing a method called follow, which allows one player object to follow the

pitch of another while using a different duration. When a player object calculates the values with

which to trigger a sound, it checks if it has been assigned another player object to follow and then

accesses the current state of that player object to retrieve the pitch value. The code in Figure 6.1

exemplifies how the follow method can be used to define a relationship and be combined with

simple addition to create harmonies.

p1 >> bass([0, 1, 2, 3], dur=4)

p2 >> pluck(dur=1/2).follow(p1) + [2, 4]

Figure 6.1: FoxDot code using the follow method in which a player, p2,
is following another, p1,and alternatively increasing the pitch by two and

four steps to play notes a third and fifth above the note played by p1.

The pitch from p1 is being accessed every time p2 sends a message to SuperCollider, so p2 is

always using the correct pitch value even if the data in p1 is changed. This is a huge improvement

on referencing the data directly via the attribute dictionary as now the relationship is much more

reactive and works independent of the rhythm of the player objects.

6.2.2 Practice

Rehearsal sessions, various locations - 26/04/17 & 06/06/17

Video recordings: ch6 1a-Rehearsal-26 04 17.mpg & ch6 1b-Rehearsal-06 06 17.mpg.

See Appendices A.4 and A.5 for performance descriptions.

This phase of development coincided with the early development of the Troop interface, which was

being tested regularly through practice sessions with members of TYPE. Our first performance

together took place on April 28, 2017 but we did not make use the follow method during it. As

noted in Chapter 5, most of the initial sessions using Troop were run as workshops and I would

introduce the ensemble to different facets of FoxDot. One of the most recent additions to the

langauge was the ability model musical relationships using the follow method but it was only

introduced a number of days before the first performance and we did not utilise it. We did not

perform together again for a number of months after this as both Troop and FoxDot were being

further developed and tested. Due to this, I am only able to include extracts from rehearsal sessions

during this period.

75



Figure 6.2: Screenshot from a rehearsal session.

6.2.3 Evaluation and outcomes

One of the common themes that arose during rehearsal was that the follow method was used

almost exclusively at the start of the session, or at the beginning of a new musical section. This

was not something explicitly discussed by the group and is an example of tacit knowledge of

FoxDot; not just knowing the syntax but the intangible development of how it has been used in

performance. It allowed performers to work on separate strands of musical code without having

to worrying about clashing melodies or accompaniments. If one user starts writing a line of code

that involves pitch data, another can just implement the follow method and add a list of values

with the relative certainty that the two sequences will compliment each other. This process also

means that users do not have to worry about continuously updating their code to accompany the

changes made elsewhere as the pitch data of the player object using follow will always use the

most up-to-date data. It has proven a useful tool for collaborative live coding in Troop but there

are still issues regarding its flexibility in practice.

p1 >> pads([(0, 2, 4), (3, 5, 7), (4, 6, 8)], dur=[8, 4, 4])

p2 >> bass(dur=1/2).follow(p1)

Figure 6.3: FoxDot code using the follow method with chords.

The follow method was developed so that musical layers created by different users could be

connected quickly and easily using Troop and this is achieved for the most part but only allows

for musical sequences to be associated in the pitch domain. Other attributes, such as rhythm or

amplitude, can not be followed unless the values are copied and pasted from one line to another or

referenced using a player’s attribute dictionary. As mentioned previously, these methods are more

76



time consuming to manage and do not create a dynamic relationship that is reactive to changes

made to code.

The follow method also fails to create a relationship that is flexible to multiple notes being

played simultaneously. Examining the code in Figure 6.3 for example; a player object, p1, is

playing a very simple chord sequence based on triads and another player object, p2, is connected

to it using the follow method. The bass player object, p2, cannot play the root note of the chords

in isolation as the follow method forces all of the pitch values to be shared between the player

objects such that there is no way of accessing a specific subset of these values. To create the

relationship where p2 only plays a single note, the sequences would have to be rewritten such that

p2 contained the pitch information and p1 was told to follow it, adding a triad of notes to create

the chords. Doing this in the middle of performance would be time-consuming and would require

rewriting other users’ code; defeating the entire point of using language as a means to facilitate

collaboration.

To enhance FoxDot’s ability to create inter-musical connections within code, the player object

relationships need to become much more flexible; a connection should be able to be made between

any attribute, not just pitch, and attributes should be able to undergo transformations, such as

multiplication, subset creation, or conditional mapping of values.

6.3 Phase 2: Player-Key Data Structures

The best approach for meeting the requirements outlined in the evaluation of Phase 1 is shifting the

behaviour away from the player object but to a new class entirely. Instead of creating relationships

between player objects, users should be able to create relationships between player attributes, which

can then be used by the player objects. This approach also enables relationships to exists between

attributes of the same player object, which can be used to create some interesting self-referential

musical ideas. This object is called a “player-key”.

6.3.1 Development

A player-key is a data structure that holds a value, or group of values, that can be updated

externally. When a mathematical operation, such as multiplication, is applied to it a new “child”

player-key object is returned that stores a reference to its “parent” and the operation used. When

accessed, the child player-key checks the value held by its parent, applies the operation, and

returns an up-to-date value. For example, in the flow chart shown in figure 6.5, a new variable

called myValue is created by accessing the pitch value for the player p1 and adding 4. This creates

a child player-key, which keeps a reference to its parent, p1.pitch, and stores an adding function

and the value 4 so that when its value is needed it simply calls the adding function on the current

77



value of its parent and adds the value 4.

p1 >> pluck([0,4,[7,10],9], dur=p2.dur)

p2 >> sitar(p1.pitch + 4, dur=[1,1/2,1/2])

Figure 6.4: FoxDot code using the player-key data structure.

The player-key’s behaviour could be thought of as a form of reactive programming or lazy

evaluation that allows for dynamic changes in a programs state. For each attribute in a player,

such as pitch, duration, or amplitude, there is a respective player-key data type that is being

updated internally. It should be noted that the follow method still exists, but simply gives a

player object a reference to the ‘followed’ player object’s pitch attribute player-key. This retains

the behaviour exhibited by the follow method created in Phase 1 but now other attributes can be

‘followed’ by referencing them when giving a player object instructions. The example in Figure 6.4

shows code that define two player objects, p1 and p2, that follow the other’s pitch and duration

attributes.

 myValue == 7p1.pitch == 3

 myValue == 4p1.pitch == 0

Parent

Child

p1.update(“pitch”, 0)

p1.pitch == 3p1.update(“pitch”, 3)

TI
M
E

myValue = p1.pitch + 4

Figure 6.5: Flow chart diagram of psuedo-reactive player-key data type.

As mentioned above, a child player-key holds a relationships to its parent when a mathematical

operation is applied to them. This is done by overriding the methods associated with mathematical

operators in the player-key class to return a child player-key. Figure 6.7a is an example of operator

overloading; the add method (called when the ‘+’ symbol is used with a class) returns a new

player-key that contains a reference to the original (the self variable) and a function for adding

the two values together. Performing a second operation on a child player-key will create another

child player-key that, when accessed, will look to its parent, which will in turn look to its own

parent, to return the value. A player-key can have any number of children and any child can have

its own children. This creates a tree structure wherein each player-key is a node and any child

player-key links back to the root parent, as demonstrated in Figure 6.6.

One of the shortcomings of the follow method was the inability for player objects to access

individual items from a group of values, such as a chord, when following other player objects.

78



Just as the player-key’s methods for addition and subtraction can be overridden to return a child

player-key, so too can the item access method, known as the getitem method (see Figure 6.7b).

A chord is stored as an array of pitches, e.g. chord = [1, 3, 5], and any item in the array can

be accessed by using square brackets and the correct index. The correct syntax to retrieve the

first item in the array in this example would be chord[0], which would return the value of 1. By

treating the getitem action as a function, a child player-key can be created that will always hold a

single value from a player object’s attribute. Instead of just returning the first item in the array, it

returns a player-key that checks the array’s contents, which is updated whenever the player object

plays a different chord, and returns the first item of the new array. Figure 6.8 is a snippet of

FoxDot code for creating a bass that plays the first note from a chord sequence played by another

player object.

+ 2

0

- 4

x 3 % 7

Root Node

Parent Node

Child Node

Figure 6.6: Tree structure relationships of parent and child player-key data structures.
Each child node also stores the function that was applied to it.

In addition to the use of mathematical operators and the getitem method, player-keys can

also be used in conjunction with basic logic. That is, when a player-key is asked if it is equal to,

less than, or greater than another value, it will create a child player-key whose value will be 1

when the value of the parent player-key satisfies the statement and 0 when it does not. The code

in Figure 6.9 shows how the “equals” operator can be used to create conditional behaviour; the

second player, p2, will only have an amplitude of 1 when the pitch of p1 is 4 and will be silent

otherwise.

These logical tests can be combined with other mathematical operators to create dynamic

conditions. For example, a user may want to pan a player to the left stereo channel by setting

the pan attribute to -1 whenever the pitch of another player is equal or greater than 4. This can

be done by using the ‘greater than or equal to’ operator, which uses the >= symbol, to create a

new child player-key and then multiply it by -1 to create a child of that player-key, as shown in

Figure 6.10.This idea can be taken further by also panning the player object to the right channel

79



def __add__(self, other):

parent = self

function = lambda value: value + other

return PlayerKey(parent, function)

(a)

def __getitem__(self, index):

parent = self

def function(value):

if isinstance(value, PGroup):

return value[index]

else:

return value

return PlayerKey(parent, function)

(b)

Figure 6.7: Simplified Python code for overloading the (a) addition
operator and (b) element access method for the player-key data type.

when the pitch value is less than 2. To do this, another logical condition is applied to the same

player-key and then added, as shown in Figure 6.11.

p1 >> pluck([(0,2,4), (2,4,6), (3,5,7), (4,6,8)], dur=4)

p2 >> bass(p1.pitch[0], dur=1)

Figure 6.8: FoxDot code using player-keys to select single notes from a chord.

The combination of conditionals and multiplications can be considered a mapping function from

one player-key to another but its complexity increases every time a new possible output is added.

To simplify mapping player-key values to specific output values, a method called map was created

that allows a user to specify specific output values for a given set of input values. The method

takes a dictionary of values and creates a new function that is supplied to to the child player-key,

as shown in Figure 6.12. For each value in the mapping dictionary the function will test if the

parent player-key is equal to it, and return the corresponding output value if it is. Users can also

supply functions in place of single input values that will be evaluated with the parent player-key

as an input and return the corresponding output value if it returns true. Similarly, the output

values can also be functions that will transform the value of the parent player-key in some way.

This creates a flexible method for that lets the user create both simple one-to-one relationships

and more complex and dynamic mappings.

This method can be very useful for creating musical relationships between player object at-

tributes that don’t use numerical values. For example, instead of using a series of numbers to

80



p1 >> pluck([0, 2, 4, 6], dur=1)

p2 >> sitar(p1.pitch + 2, amp=(p1.pitch == 4))

Figure 6.9: FoxDot code using player-keys and a logical “equals to” test.

represent audio files stored on the computer, FoxDot uses a sequence of characters in a string1. It

would be impossible to use mathematical operators to create relationships with the non-numerical

values in the string, but the map method provides a way to achieve this. For instance, the code in

Figure 6.13 shows how the map method can be used to change the pitch of a player object based

on the character being used to select a sample; when the character used by p1 is “o” (which is a

snare drum) the pitch for p2 will be set to 2, and when the character is “=” (an open hi-hat), the

pitch will hold the value of 4. Any other character will result in the pitch being 0, which is the

default value if none of mapping functions are satisfied.

p1 >> pluck([0, 1, 2, 3, 4, 5])

p2 >> sitar(pan=(p1.pitch >= 4) * -1)

Figure 6.10: FoxDot code using player-keys and a logical “greater than or equals to” test.

Being able to use functions as both input and output arguments in the mapping dictionary

gives performers a flexible way of thinking about musical relationships between player objects.

Without this feature a user could only map a single value in one attribute to another single output

value. This helps solve issues such as users not knowing the range of values that might be used

as input and mapping multiple input values to a single output value. Taking Figure 6.14 as an

example; the pitch of p2 will be 2 steps above that of p1 when the pitch of p1 has a value of less

than, or equal to 4. If it is above 4 then the default option is used, which sets the pitch to 4 steps

above the pitch held by p1. If the user has used single values to create a one-to-one mapping, then

changes to p1 would disrupt the mapping and leave the relationship meaningless as it would only

be using the default values. Using logic in this way gives performers a flexibility and allows them

to create versatile relationships that will still have meaning, even if changes are made to the code.

p1 >> pluck([0, 1, 2, 3, 4, 5])

p2 >> sitar(pan=(p1.pitch >= 4) * -1 + (p1.pitch < 2))

Figure 6.11: FoxDot code combining multiple logical tests with the same player-key.

1The reason for doing so is discussed in Chapter 4, and similar practices are used in other live languages, such
as ixi-lang (Magnusson, 2011b)

81



The use of functions in these mapping dictionaries starts to blur the line between object-oriented

and functional programming in FoxDot. The ability to pass functions as input and outputs is

similar to how other live coding languages operate, such as TidalCycles and Extempore, that are

embedded in functional programming paradigms. I would argue, however, that the combination

of functions in FoxDot is closer to the representation of musical behaviours and relationships than

the building blocks of an algorithmic composition.

def map(self, mapping, default=0):

# input functions

functions = []

# Convert default output to function

if not callable(default):

default_func = partial(lambda x, y: x, default)

# Convert input values to functions

for key, value in mapping.items():

if not callable(key):

test_func = partial(lambda x, y: x == y, key)

if not callable(value):

result_func = partial(lambda x, y: x, value)

functions.append((test_func, result_func))

# Define mapping function to test input functions

def mapping_function(value):

# For PGroups

if isinstance(value, PGroup):

new_values = []

for item in value:

new_values.append(mapping_function(item))

return PGroup(new_values)

# For other values

for func, result in functions:

if bool(func(value)) is True:

return result(value)

return default_func(value)

return self.spawn_child(mapping_function)

Figure 6.12: Code for the player-key map method.

It is interesting to note that player objects can reference their own attributes to create useful

and dynamic behaviours that can simplify processes that, otherwise, would require explicit hard-

coding. For example, a player object can derive its stereo panning based its own pitch, such that

higher-pitched notes are heard in the right channel, and lower-pitched notes in the left, as shown

in Figure 6.15. In this trivial example, this does not offer a huge benefit to the coder but as the

array of data representing pitch became more and more complex, the rules defined in the map

method would still be applied consistently and the user would not have to worry about updating

the panning attribute whenever they updated the pitch.

It is possible for a player-key to reference itself and create a recursive loop that would continue

82



p1 >> play("x-o(-([-o]=))", dur=1/2)

p2 >> pluck(p1.char.map({"o": 2, "=": 4}), dur=1/4)

Figure 6.13: FoxDot code using the player-key map method.

p1 >> pluck([0, 1, 2, 3, 4, 5])

p2 >> sitar(p1.pitch.map({lambda x: x <= 4: lambda y: y + 2}, default=lambda z: z + 4))

Figure 6.14: FoxDot code using functions as input for the player-key map method.

indefinitely, causing the FoxDot interpreter to crash. This can be caused by one player object

referencing an attribute of another, which is subsequently updated to reference the attribute of the

original player object. The player-key would continually look up its parent, which was itself, and

then repeat this action indefinitely. Python does have a maximum number of recursive calls, and

will raise an error if this is reached, but FoxDot will become unresponsive while this is happening.

To combat this issue a test for circular referencing was added, which recursively checks a player-

key’s parent until it either finds the root or a reference to itself and raises an error in the latter

case (shown in Figure 6.16).

6.3.2 Practice

In this section I reflect on several improvised performances by The Yorkshire Programming Ensem-

ble using Troop in which we made use of the player-key class. One of these performances, Algorave

Assembly, has already been discussed in some depth in the previous chapter, but in this section I

will concentrate on the effect of using FoxDot, as opposed to Troop, on the ensemble interaction.

Together In Music conference, York - 14/04/18

Video recording: ch6 2-Together in Music-14 04 18.mpg.

See Appendix A.6 for performance description.

Together in Music was a three day conference held at the National Centre for Early Music in York

that aimed to bring together academics and practitioners to examine ensemble performance from

a variety of backgrounds and disciplines. I was part of the organising committee, along with PhD

students, Sara D’Amario and Nicola Pennill, and academic staff from the universities of Leeds,

Sheffield, and York. The conference was generously supported by both the White Rose College of

the Arts and Humanities (WRoCAH) and the Society for Education, Music and Psychology Re-

83



p1 >> pluck([0, 1, 2, 3, 4, 5], pan=p1.pitch.map({lambda x: x > 2: -1}, default=1))

Figure 6.15: FoxDot code using player-key to map pitch to panning.

# Step 1

p1 >> pluck([1,2,3,4])

p2 >> pluck(dur=p1.pitch)

# Step 2

p1 >> pluck(p2.dur)

# Raises this error

ValueError: Circular reference found: p1.pitch to itself via p2.dur

Figure 6.16: Circular reference error.

search (SEMPRE). TYPE were asked to perform as part of the conference’s evening entertainment

and showcase ensemble performance in a relatively unknown context; live coding. We had used

the new player-key syntax several times in rehearsals leading up to this event and this was the first

time we had used it in performance.

Algorave Assembly Lunchtime Concert, Leeds - 27/04/18

Video recording: ch5 2-Algorave Assembly-27 04 18.avi.

See Section 5.4.2 and for more information about this performance and Appendix A.2 for its

description.

6.3.3 Evaluation and outcomes

The Together in Music performance, like the Algorave Assembly lunchtime concert, was not gov-

erned by the aesthetic goal of making EDM. We approached this performance as a free improvi-

sation although we were starting to develop our own style of experimental dance and psychedelic

inspired music and knew we would be using that as a rough template for how the music would

sound. When we weren’t playing at Algoraves, and we were afforded the opportunity, we tended

to frame our performances as free improvisations guided by FoxDot’s sonic palette and metric

constraints. The performances were much more focused on the process of creating the music than

the music itself and achieving the feeling of “peak jamming”. We would often come into these per-

formances with an initial idea and open minds. We started the performance by using soft drones

and exploring the space in the sound and then just reacting to each other’s creative choices. This

process of building on each other’s work and reacting to changes lead us into periods of various

musical styles that involved funky percussive rhythms and psychedelic minimalist transcendence.

84



These are styles that exist within our repertoire but when and how they emerged in the perfor-

mance were not discussed explicitly prior to the start of the performance. Part of improvisation

and experimentation also means that a small mistake can have large consequences on the music.

For example, at 17:30 Laurie changes a synth’s amplitude to 869 instead of .869, which creates a

distorted growl that dominates anything else in the mix for over ten seconds. These ‘errors’ are an

important part of the live coding aesthetic for me, though, as it highlights that these performances

are real and are being created live for the audience by humans, not computers. We don’t always

know what is about to happen next and if we tell the computer to do something stupid, it won’t

think twice about doing it.

We also made a conscious effort to use more player-key syntax where possible to try and create

a more cohesive ensemble performance whose musical elements felt connected and with purpose.

We used the player-keys to great effect but Lucy and Laurie both subverted my expectations by

exploring their unintended uses as well. At minute 4 Lucy mapped the duration of one synth

to the “chop” effect of another using the code chop = z1.dur. This was interesting for several

reasons; The first is that the player-key was being used as an input value for an attribute that

it itself did not represent, i.e. it was not being used as a duration value. The second is that it

is an effective way to explore un-intention in improvised live coding performance. There is often

an explicitness to the way we, as an ensemble, write our code but using player-keys in this way

introduces a level of uncertainty, which makes the process rather exciting. In the context of the

performance itself, it created an echoing polyrhythmic effect, as the chopped up elements of the

synth overlapped themselves in unpredictable rhythms. Laurie also explored non-direct mappings

by setting the amplitude of one player follow the values used in the “echo” effect applied to a

percussive sequence using amp = p3.echo. The “echo” value was being randomly selected from

0, 0.25, 0.5, or 0.75 and this caused the synth to drop in out of the mix as the amount of echo

varied. Like Lucy, Laurie was not using the player-key to copy an attribute of one player object

to another, but explored the unintended consequences of creating a musical relationship between

two layers across their different attributes. We try to keep an element of experimentation in our

improvisation and subverting the computer program’s intended use creates unexpected outcomes

that keep performances fresh.

Just as it was for the the follow method, the player-key objects were useful as a platform for

getting started in the performance. It allowed us as an ensemble to work on separate code but

use a single connected thread to tie it together musically. Player-keys were also more versatile

than the follow method, as they allowed us to utilise attributes of the player objects other than

pitch. For example, in the Together In Music performance, Lucy connected two player objects via

their low-pass filter values to ensure that their prominence within the overall mix would be equal.

85



The two musical layers shared the same values for the same attribute and the relationship could

be easily identified within the music, which could be described as a ‘direct’ musical relationship

created by the player-key. There were also several instances of ‘non-direct’ musical relationships

created using player-keys where one player object’s attribute is used as an input for a different

attribute. An example of this can be taken from the same performance when Laurie uses the

syntax amp = p3.echo to connect the amplitude of a melodic synth to the amount of the “echo”

effect (a comb delay) was applied to a percussive sequence. The synth would only have a non-silent

amplitude when the echo effect was being applied and this created quite stark contrasts in density

in the music, which would range from scattered strikes of drum kit samples to densely packed

percussive reverberations combined with warm electronic synth tones.

The player-key class has definitely provided us with more options for ensemble communication

within the code than just using the follow method. We are not limited into only thinking about

pitch when creating musical relationships, but can also consider rhythm, amplitude, and timbre,

which made for many interesting musical moments during the performances. Like the follow

method, however, there were also some unexpected uses of the player-key that resulted in the

development of novel musical ideas or acted as catalysts for musical change. For example, Lucy

doubling and halving pitch values in both performances was not something I would have thought

to do myself, but worked well in both cases. Halfway through the Together in Music performance

Lucy doubled the pitch values in the player object, l2, which was using the “prophet” synth and

taking its pitch from a fast-moving melody generated by another player object, z4. Due to the large

difference in durations of the two player objects, the pitch being picked up by l2 was always near

the start of the melody’s cycle and varied little. Multiplying the value by two, however, increased

the variation in tonality and moved it into a higher register, which helped generate momentum

as we began working on new musical ideas. During the Algorave Assembly performance, Lucy

also halved the value of a player-key to use at pitch data. This would have had a dramatic affect

on tonality had any of the source player-key’s values been odd and caused Lucy’s synth to play

sharp notes. Looking back I think I don’t think that would have worked too well in the context

of the performance at that time but it would have been interesting to see how we adapted to the

discordant texture of the music that would surely have emerged.

While we had experimented with using it in rehearsal, at no point in these performances did

we make use of the map method. This was disappointing as I felt it provided a means to create

more complex musical relationship and could make for interesting conditional structures as part

of the algorithmic composition aspect of live coding. However, after discussing this with Laurie

and Lucy, we all agreed that part of the problem was that the syntax was quite complicated and

required a deeper knowledge of the Python language, and functional programming as a whole,

to use to its full potential. I have used it on a few other occasions during a performance, but,

86



due to the complexity of the input arguments and lack of syntax highlighting in Troop, the code

was never touched by the other members of the ensemble. As a domain-specific language, FoxDot

only requires the user to know a handful of Python commands before being able to create music.

However, going beyond its fundamentals seemingly demanded users learn more about computer

programming than music making, which did not happen as organically during rehearsals as it had

done for the follow method and the basic player-key syntax.

It is interesting to see how much functional programming was present in the development of the

player-key class given that a choice was made at the start of this chapter to use an object-oriented

programming model instead. Perhaps it is only possible to represent real-world ensemble behaviour

in code through the combination of multiple programming paradigms. The use of inline lambda

functions in Python is quite a verbose process and the map method would often combine multiple

instances of these when used. Those unfamiliar with Python’s lambda keyword, such as Laurie

and Lucy, may find the use of map daunting because of this. To further complicate the matter,

the map method also requires users to create a Python dictionary of mappings that include lambda

functions, which could also be difficult to newer users of the language.

I would still like to create more interesting musical relationships that are more complex than

simple logical tests or mathematical operations, but the execution would need to be simpler than

what has been developed so far. One of the aims of this PhD is to lower the boundaries to entry to

ensemble live coding and the map method does not do this; even Laurie and Lucy, who have been

using FoxDot for over a year, were put off by the complicated syntax and use of lambda functions.

The map method is also difficult to read from the audience’s perspective. It is not a requirement

for performers’ code to be easily interpreted by the audience, and it very often isn’t, but it is my

own opinion that by making code easier to interpret for the layperson, live coding can become a

more open and inclusive practice.

6.4 Phase 3: Extending Player-Keys for Musical Behaviours

6.4.1 Development

So far the examples using the player-Key data structure have only implemented explicit relation-

ships, such that given a value for the parent player-key the value of the child will be predetermined.

This can be useful in replicating some existing musical techniques but, across the many genres of

music that exist, relationships are not always so straightforward. In fact, what is being described

as dynamic relationships may not be relationships but behaviours, as Emmerson (2007) suggests:

Social behaviour implies a process in time, the dynamic interaction of elements, while

social relationship may be a static snapshot of a state of affairs (possibly from within

87



a behaviour sequence) and is thus independent of narrative time. This is the deepest

and longest established of music’s many models (p. 45)

The direct relationship created through simple mathematical functions, such as p1.pitch +

4, is actually just a static snapshot of a greater and more complex relationship that changes over

time, which Emmerson considers as musical behaviour. Up to this point, the transformation of

player-keys have only been performed using standard mathematical operators that are part of the

Python programming language. This does mean that player-key relationships can be created easily

and their meaning easily inferred, but they are inflexible for the end user; input values supplied

to create player-key relationships must be a number or another player-key. What happens if a

user wishes to create a relationship that involves calling an external function, for example? They

are unable to do so as they are only limited to the basic arithmetic operations. To combat this,

a transform method has been added to the player-key class to allow users to supply their own

functions and customise their player-key relationships. For example, if a user wishes the combine

the current beat with a player-key using modulo division to derive a value, they may think that

using Clock.now()% p1.pitch would be the correct way to achieve this. However, Clock.now()

would return only a single number that represents the time in the clock at the point at which the

line code was evaluated, which would not increase with time. Figure 6.17 shows how the transform

method can be used to correctly combine the current beat number with a player-key using a simple

lambda function that calls Clock.now() every time a new value is requested from the player-key.

# Basic code to start a player object

p1 >> pluck([1, 2, 3, 4])

# Incorrect way of relating p1.pitch the current beat

p2 >> pads(Clock.now()\% p1.pitch)

# Correct way of relating p1.pitch the current beat

p2 >> pads(p1.pitch.transform(lambda x: Clock.now()\% x))

Figure 6.17: FoxDot code using the player-key transform method.

This is a trivial example but demonstrates how users can incorporate their own custom functions

to create more dynamic player-key relationships that may evolve over time. However, this does

require the use of Python lambda functions, which, as discussed in Section 6.3.3, are often tricky

to use. The transform method can take any “callable” object as an input, which means users

can supply both functions (as above) and any object with a valid call method. Adding the

transform method enables a Python object to be called as if it were a function but allows for the

object’s state to be altered. Combining the player-key’s transform method with a callable object

that holds state – and can use that state to make decisions about what values to return – can help

88



create more interesting (and perhaps indeterminate) behaviour for the player-key. Some real-world

musical behaviours can only be represented through this method, such as pitch accompaniment.

# Basic code to start a player object

p1 >> pluck([1, 2, 3, 4], dur=8)

# Using 'accompany()' transforms the player-key

p2 >> pads(p1.pitch.accompany())

Figure 6.18: FoxDot code using the the player-key accompany method.

An Accompany class was created to represent the behaviour of pitch accompaniment in a way

that can be used with the player-key’s transform method. When calculating its own value, a

player-key will call its given Accompany object with itself as an argument. The Accompany object

will then check if the parent key’s value has changed since the last call and return a new value

if so. The new value will be the closest note that completes a third or fifth above or below the

parent key’s value. To introduce some indeterminacy into the procedure, some randomness was

also introduced to select the second closest harmonic value one third of the time and the third

closest value one tenth of the time.

To represent this behaviour mathematically, we will let x be the parent player-key and let y

be the player-key that is accompanying x. We can derive the player-key’s current value (yt) by

selecting the value closest to yt−1 from the set [xt−5, xt−3, xt, xt +2, xt +4]. This simple function

creates a dynamic behaviour and ties together two musical strands to create organic sounding pitch

material. To help simplify its use during performance, an accompany method was added to the

player-key class so users don’t have to invoke the Accompany class directly using transform, as

shown in Figure 6.18. Of course, accompaniment is not always just completing a third or a fifth

above a note and the relationship can be configured by the user by supplying different values when

calling the accompany method.

Another type of ensemble behaviour that is of interest is that of “play” within indeterminate

music; processes that occur during a performance in which “[t]here may be some autonomy, with

players exercising choice about how they might realize a piece based on internal preferences, or

possibly a self-determined aim or purpose” (Saunders, 2017). In ensemble-based pieces this is

sometimes accompanied by a goal, such as reaching a group consensus like in the piece reaching

an acceptable and stable solution (2018) by James Saunders, but indeterminate music will always

have a form that is defined by rules for what actions can and cannot be taken by performers. This

can range from performers being given almost complete free-reign over the music, as in Musicircus

(1967) by John Cage, through to the rigorously structured rules, like in the game piece, Cobra

(1984), by John Zorn.

89



def versus(self, other_key, rule=lambda x, y: x > y, attr=None):

""" Sets the 'amplify' key for both players to

be dependent on the comparison of keys """

# Get reference to the second player object

other = other_key.player

# Get the attribute from the key to versus

this_key = getattr(self, other_key.attr if attr is None else attr)

# Set amplifications based on the rule

self.amplify = this_key.transform(lambda x: rule(x, other_key.now()))

other.amplify = this_key.transform(lambda x: not rule(x, other_key.now()))

return self

Figure 6.19: Code for the versus method from the player object class.

Live coding subverts the idea of “play” by having the human performer define the rules for

performance and then re-define them while they are being followed by the computer. This could

be simply writing notation and changing it while it is being played or implementing a stochastic

probability model and tweaking its input parameters during the performance. At the heart of inde-

terminacy lies improvisation, which is integral to the human processes of live coding. Considering

the computer as a performer, though, a live coding performance is only indeterminate because the

rules (algorithms) are not known prior to the start. Without creating software for writing its own

code, such as Tidal Autocode2, the computer is given little autonomy within a performance. Can

the computer be given the agency to “play” within a live coding performance, and can that process

be propagated from the computer to the human performers through representation of “play” in

the code?

There is an entire field of research into computer simulation of musical creativity and the

application of machine learning in music but it is beyond the scope of this PhD to explore these

concepts in ensemble live coding; instead of giving the computer the ability to make informed

creative decisions mid-performance, playful rules are being explored that consider the output of

each performer’s code to create indeterminate musical structures. “Sometimes the beauty of play

resides in the tension between control and chaos” (Sicart, 2014, p. 83) and even simple rules that

determine when player objects can and cannot play could give them the agency to disrupt the

performance in some unexpected way.

As opposed to adding the functionality of the behaviour to the player-key itself, a method has

been added the player object class, called versus. It takes a player-key as an input argument and,

by default, compares the its value to that of the same player-key attribute of the player object. It

2https://github.com/kindohm/tidal-autocode, accessed: 05/04/19

90

https://github.com/kindohm/tidal-autocode


# Basic code to start a player object

p1 >> pluck([1, 2, 3, 4], pan=[-1, -0.5, 0.5, 1])

# Start a "versus" against the pitch value in p1

p2 >> pads([0, 5, 2]).versus(p1.pitch)

# Scale and map

p2 >> pads([0, 5, 2], dur=1/2).versus(abs(p1.pan) * 4, attr="pitch")

Figure 6.20: FoxDot code using the versus method.

then maps the output of this comparison to an “amplify” attribute that acts as a logic gate for

playing a note. By default the comparison only tests which value is larger but this can be configured

by the user by supplying a lambda function. For example, if a user supplies a pitch player-key as

the input, then method creates a relationship between two player objects where only the one with

the highest pitch will play a note at any one time. A user can also compare two different attributes

by specifying the second attribute as an argument, as shown in Figure 6.20. Different attributes

often operate within different ranges but can be scaled accordingly by multiplying the player-key

input by an appropriate factor. For example, values for panning will always be between -1 and 1

whereas pitch can be almost any number. As shown in Figure 6.20, multiplying the absolute value

of the panning player-key by 4 will scale the range from -1 to 1 to between 0 and 4, making it

much more suitable for comparison to pitch values.

6.4.2 Practice

Algo-Rhythms, Rotterdam, 28/04/2019

Video recording: ch6 3-Algo Rhythms-28 04 19.mpg.

See Appendix A.7 for performance description.

This event defined itself as “deconstructing the way we think about the myriad of socio-cultural

possibilities that the interface between music and digital technology opens up”3 and took place at

a venue called Worm Rotterdam but, due to some scheduling conflicts, only Lucy and Laurie were

able to attend the performance in person and Innocent and I had to connect remotely over the

internet. The difference in performing remotely compared to live in front of an audience is stark.

Without being able to feel the energy in a room and feed off of it during the performance, you

often have rely on information from people in the venue. It’s a very strange feeling; listening to

your performance through your headphones gives you no real indication as to what the sounds is

actually like in the room’s acoustics and the level of anxiety before a performance is considerably

3https://worm.org/production/algo-rhythms-3/, accessed: 08/05/2019

91

https://worm.org/production/algo-rhythms-3/


less. Even though I was the only one on the stage during the ICLI performance, discussed in

Section 5.5.2, it felt much more of a group performance than this one. Perhaps this is because that

the ICLI performance met more of my expectations of what a performance should be; a stage, a

sound system, an audience. Most of our communication takes place within the code so the fact

that Laurie and Lucy were performing remotely didn’t actually affect me. However, being the

remote performer was much more discomforting and was perhaps the stimulus for some of the

more awkward rhythmic sections that occurred, particularly at the start of the performance. It is

interesting to see that technology can do so much to connect us in music over great distances but

it cannot replace a live audience.

Figure 6.21: Photo from Algo-Rhythms performance. Courtesy of Creative Coding Amsterdam.

6.4.3 Evaluation and outcomes

Before we started the performance, Lucy texted the group to say that the event was “more of a

sit down kind of thing” so we decided not to make dance music, but to focus more on the texture

of the sounds we were making. This posed an interesting challenge as FoxDot is more tailored

to creating rhythms and melodies, but it does afford a degree of control over sound quality in

certain contexts. It also posed a problem when considering the nature of the new functionality

that has been added into FoxDot during this development phase; melodic accompaniment and

playful boolean comparisons for switching musical layers “on” and “off”. The latter looks at

FoxDot’s musical components as discrete musical events but timbre-based music very often does

not. Similarly, if a piece of music is not focused on the combination of harmonic elements, then

the implementation of melodic accompaniment may not even be required. That being said, the

accompany method was used at several points during the performance but the versus method was

92



only used once.

It was clear after the performance that, even though I felt I had demonstrated how to use the

versus method to the rest of the group, they did not truly understand how it worked or how to use

it. In its most simple implementation, it compares pitch values of two FoxDot player objects, but

pitch was not always central to this performance and using versus with other FoxDot attributes

(and scaling values) requires several extra keyword arguments. The accompany method, on the

other hand, does not require extra keyword arguments and is only really applicable to the pitch

attributes. Even though we did not make tonality a focal point of the performance, we could easily

add a melodic accompaniment that would add a generative element to the music. An example

of this was around minute 22 where Lucy used zc.pitch.accompany() to connect a marimba

synth to the “donk” layer that was playing microtonal pitch values. I hadn’t explored the idea of

accompaniment in microtonality but the result of this usage meant that the two musical sequences

seemed to “fit” together without creating much dissonance. It also meant that Lucy did not

have to think about microtonal values when setting this up as it would all be handled by FoxDot.

Another unexpected use of the accompany method occurred halfway through the fifth minute when

Innocent used r1.pitch.accompany() in a sliding “prophet” layer, i2. At that point the r1 layer

was playing two notes together, both of which were “accompanied” by the i2 layer, adding a level

of intensity to the sound and also creating a connection between the musical elements. I think,

in some respects, the accompany method was used as “play” as a way of exploring unintended

consequences and leaving some creative decisions up to the live coding language and then pursuing

the musical output that follows.

The infrequent use of the versus method suggests that learning new functions and syntax for

live coding takes more than just one or two practices and needs to be embedded into a personal

repertoire before being utilised during performance. At the time of writing TYPE had been

performing together for two years and we had developed a certain style of live coding, which makes

it quite difficult to accommodate new language-based features. In some instances it has been

straightforward because the new syntax felt like a natural progression from the older syntax, such

as when using the accompany method. Using player attributes via the player-key class has been

prevalent in our practice for some time now and adding a single, self-descriptive method was very

easy to incorporate into performance. The versus method, however, uses a different structure to

any function we had used before; the method is appended to the player object’s SynthDef and takes

a player-key reference as an input, which is unlike any syntax we would use, which is probably why

the ensemble was so reluctant to try it out during the live performance.

Another issue with the performance was the network connectivity problem that occurred during

the performance where we had to start again. Ordinarily if someone is disconnected from Troop

due to networking issues, they can disconnect and log in again. Unfortunately Lucy had issues

93



reconnecting as she was never properly disconnected from the server and her laptop was also

responsible for generating audio for the audience in Rotterdam, so troubleshooting was not feasible

for her. The best course of action was to start over completely and we were able to finish the

performance without any more interruptions. However, it did take a few minutes to find the group

flow again after we had resumed. We were peak jamming at the point of the crash and suddenly it

was stopped against our will, which brought on a very frustrating feeling. Once you are out of that

flow, it is very hard to find it again, especially given a short time constraint, which adds pressure

to the situation. We managed to find a middle ground by the end but the music immediately after

the break was particularly weak because of this break in flow.

6.5 Conclusions

6.5.1 Personal reflection

Since the start of this PhD research, FoxDot has grown significantly as a language and its breadth

of functionality with relation to ensemble performance has increased with it. Several of these

additions have become frequently used tools within the improvisational work of TYPE and have

proven beneficial to our practice. FoxDot has helped improve our ability to succinctly express

collaborative musical ideas and foster creativity during performance. For example, during phase

1 of development, we often used the follow at the start of a jam to connect our lines of code

musically, which allowed us to focus on other aspects, such as rhythm or timbre. The nature of the

follow meant that two lines would share the same base pitch value regardless of any changes made

to either line of code, thus allowing performers to edit their musical layer without the worrying

about playing unsuitable notes.

The use of the player-key data type in phase 2 was very similar. It was often used early in

performances, enabling members of the ensemble to connect to a single musical thread, such as

one sequence’s pitch, but work on other aspects of the music independently. It also gave users

more flexibility in what attribute their code could follow. For example, when Lucy used the low-

pass filter player-key as an input for another layer’s low-pass filter during the Together In Music

performance, she brought the two sequences together in terms of their equalisation, which is not

something that the follow method would have enabled her to do. The player-key also enabled

more flexible pitch-based relationships too. Using follow on a player object playing multiple

notes together in a chord would copy all of the notes being played but, by using a player-key’s

getitem method, users can specify which note of the chord they wish to access. This helped

create multi-directional musical relationships within the code where, previously, they were only uni-

directional (in the sense that multi-note sequences could only be added to a single note sequence

94



but now a single note sequence can be determined by a multi-note sequence). The player-key was

also integral to one of my personal favourite moments during a TYPE performance. During the

Algorave Assembly performance, Laurie created shifting chord accompaniment at minute 21 by

using the syntax b1.degree + var([2,4,6]), which complimented the bassline I was creating

perfectly. This was a very satisfying moment and was facilitated by the very simple feature of the

language.

There was also a lot of experimentation among the group with the player-key class. For example,

at minute 15:35 during the Together in Music performance, Lucy uses the syntax z4.degree *

2 to double the pitch degree of a player-key and create an exponential relationship between the

pitches of two musical sequences. Where doubling the frequency would play the same pitch in

a higher octave, this effect increased the range of pitches played, which created a more drastic

melody that juxtaposed with its source. Similarly, during the Algorave Assembly performance,

Lucy divided a pitch player-key by two, which created a relationship in terms of movement up and

down the scale, but was not explicitly one-to-one and made for some interesting tonal combinations.

Another interesting use of the player-key data-type occurred when performers created relationships

between different musical elements, such as when Laurie linked a layer’s echo delay time to another

layer’s amplitude during the Together In Music performance. The values were both appropriately

between 0 and 1 and, when implemented, created the effect of two sounds increasing and decreasing

in density together as one would be louder and the other repeated and embellished through its echo

effect. As mentioned in Section 6.3.2, this practice was an effective way of exploring unintended

consequences in live performances. Using the same attribute for sharing player-keys, i.e. using

the syntax dur = p1.dur, would give the user an expected result. They are already aware of

the duration of p1 and are essentially reusing it in another facet of the music. Using different

attributes, however, introduces an element of uncertainty and indeterminacy.

While some features introduced to FoxDot were beneficial for mediating ensemble interaction,

some were perhaps too complicated to be fully realised during performance. I thought that the

map method developed in phase 2 would be a powerful tool that would enable the group to create

interesting musical relationships but it was rarely used during performance. The use of Python’s

lambda syntax with this feature seemed to be too complex compared to just combining player-keys

with simple mathematical operators. I have found it very difficult to make musical transformations

flexible while still remaining simple to use. FoxDot was designed to be a simple musical interface

and that is how we, as a group, learned to use it; simply. Adding levels of complexity that

require deeper understanding of Python’s functional programming modules was a step out of our

comfort zone, which made it hard to include in our practice. The same was true for the versus

method, which was not utilised by any other member of the ensemble (other than myself) due to

its dissimilarity to any other syntax that we tended use in performance. This is an example of

95



Norman’s warning that “designers are not typical users” (Norman, 1998, p. 151) in that I had

become so expert in the system I was unable to foresee that anyone else would have any problems

using it. However, testing these features with a group of end-users has made these issues clear and

helped guide development in a more user-centred direction.

The FoxDot functions introduced in this chapter that had similarities to natural language,

such as follow, basic player-key syntax like p1.pitch, and accompany, were successfully (and

frequently) used by the ensemble during performances. Other, more complex, features were not

incorporated into our practice as easily and this can most likely be attributed to the time taken

to learn them. Children are often taught programming with the use of drag-and-drop graphical

interfaces, such as Scratch (Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010), because

representations of physical objects are easier to understand than code that is delimited by unusual

characters such as semicolons and curly braces, which is one of the reasons why live coding is

such a fundamentally challenging practice. Brusilovsky, Calabrese, Hvorecky, Kouchnirenko, and

Miller (1997) suggest that “mini-languages” are better alternatives to learning general-purpose

languages. They state that the large size of a general-purpose language “makes it difficult to

understand the material properly, thereby failing to form a strong cognitive infrastructure” when

learning it (p. 67). FoxDot can be considered a mini-language embedded within the Python

general purpose language. As a wider range of syntax from Python was introduced throughout

this chapter, such as lambda functions, the more difficult it became for members of TYPE to

implement the functionality they necessitated. FoxDot’s role as a mini-language began to blur

with Python’s extensive general-purpose library and the less experienced programmers struggled

during live performance. Using more common aspects of natural language might be able to help

audiences relate the code they see to the outcome they hear, which is important to the live coding

audience experience (Burland & McLean, 2016).

Given that I started this chapter by discussing the benefits of OOP for developing the player-

key functionality I was surprised by the amount of functional programming that was required in

the software development. Although it was not often used during performance, the use of lambda

functions was necessary in the back-end code for defining the player-key behaviours. Whenever

a child player-key was created, it required passing it information about the parent and a trans-

formation function. Computer music has a history of focusing on the transformation of musical

structures, such as Laurie Spiegel’s Manipulation of Musical Patterns (Spiegel, 1981), and func-

tional programming provides a means for representing these transformations as well as combining

them and moving them around a program as data themselves. However, functional programming

is not a widely taught programming paradigm, even at a university level, and the concept shares

more commonalities with high-level mathematics than it does with natural language. This means

it can be difficult for many new programmers and computer musicians to develop an effective un-

96



derstanding of functional programming such that they would be able to use it in their own practice.

There is an unfortunate trade-off between the power and flexibility of functional programming as

a creative interface and the semiotic familiarity that can be made available through simple OOP

design.

The foremost research question that is being addressed in this PhD is “how can collaboration in

ensemble live coding be better facilitated through performance systems and interface design?”. A

live coding language is a performance system in its own right; it is a technology that enables musical

creation in a live setting. Adapting the language to help facilitate inter-personal collaboration in

live coding ensembles has been successful, to a degree, and has also opened new avenues for

exploring indeterminacy in our performances.

6.5.2 User evaluation

Once again the ideas of “trust”, “flow”, and “immediacy” with respect to the collaborative creative

interface were discussed in an interview with all members of TYPE, but this time with regards

to FoxDot itself as opposed to Troop. The success or failure of each collaborative element of

functionality that was added to FoxDot was also discussed as part of the interview. There was

unanimous praise for FoxDot’s clear syntax, which made it easy to collaborate, especially when

editing the same line of code as a co-performer. However, this is related more to Python’s focus

on readability as opposed to any FoxDot functionality developed during this chapter and will not

be discussed here. After outlining the different collaborative functions that were added to FoxDot,

i.e. the follow method, player-keys, and extended player-key methods, the group was asked for

their general thoughts on the language as a facilitator of ensemble improvisation. Lucy stated:

It is nice because it’s really easy to, like, drop something in that is coherent with

something somebody else has done. You can borrow, say, like, the pitch values, erm

or use, like, accompany or follow, which I’d completely forgotten about, as a way of

making sure what you’re doing is in line and not clashing.

It was the general consensus that, while useful at the time, the follow method had been

superseded by the play-key syntax as the way to share pitch information among FoxDot players

while playing. It was also noted that using the player-key structures helped manage the amount of

code being written in the Troop text buffer and better keep track of what other user’s were doing.

Lucy: “I liked it [the player-key syntax] because I think like, well, we tried out defining

patterns didn’t we? And that was good but it just felt like quite a lot to kind of get

your head round whereas, like the, using the p1.pitch or p1.amp or whatever seemed

a much, like, speedier way of taking, like, little bits of pattern from other parts of the

97



code and reusing them. I don’t know why, maybe it’s like another thing to think about

if there’s another line of code that’s got the pattern in it somehow.”

Laurie: “I think if you set up too many patterns, melodic or rhythmic patterns as well,

often it can get a bit confusing [...] it kind of unifies, the pitch especially, a bit more

than having it all over the place and less musical definition maybe. That might be even

more of a problem when you got so many people that are working at the same time. It

can become a bit overloaded tonally.”

Lucy: “Yeah I think, definitely since we’ve become a four piece, we’ve had to keep a bit

more of an eye on the expansion of the code [everyone laughs] because it was already

a bit of a problem when there was three of us. And now there’s four of us, it’s like...

[hand gestures] and I think that does, as Laurie says, it simplifies all of that”

Ryan: “The player-keys?”

Lucy: “Yeah because you’re not, like...”

Innocent: “It makes it easier to keep everything in line so that we don’t have clashing

sounds. Umm, if someone’s creating, umm, a different amp pattern and someone has

a different amp pattern over there, but if you unify those and then change one thing

slightly, umm, then it’s more in line with everything else. Umm, which means you’re

collaborating... the sound is more unified than when everything is playing individually,

so it’s more of a song. It’s more musical.”

Lucy: “I think it helps the transitions as well between, like, sections because you can

transition, like, so you’ve got [...] four players all referencing the same, say, pitch

pattern. You can start to change that pattern and it transitions, you know, the music

in a much more, kind of, consistent and coherent way.”

The player-key syntax not only makes it easier to manage the amount of code being used by the

ensemble, it also helps manage tonality and transitions between musical sections. For Innocent,

the idea of achieving more musicality in performances is important and player-keys allow us to do

this easily as a group. Of course, arhythmic and atonal music can be more musically interesting

for many listeners but this is arguably easier to create as an improvising ensemble (as opposed

to more rhythmically and harmonically complimentary music) as you can just disregard your co-

performer’s code. When asked about the level of trust in FoxDot with the ability to take more

risks, Lucy responded:

I don’t know because I wouldn’t necessarily do anything particularly risky with it

but I think it improves your confidence of like ‘Oh I’m gonna bring in a new player’

98



and I know it’s gonna sound alright because I’m gonna borrow the pitch values from

somewhere else for example

This sentiment was shared by the rest of the group; the player-key functionality may not

increase the level of risk-taking in an action, but gives performers more confidence in completing

tasks, such as adding a new line of code. Sharing musical information, such as pitch or rhythm,

in this simple way allows for new code to be introduced into a performance with the confidence it

will not be “clashing” and can then be subjected to the iterative process of editing and evaluation.

Like using the follow method as a jumping off point for musical ideas, this was not a technique

that was explicitly discussed and developed by the group, but naturally emerged through practice.

It is another example of tacit knowledge being created through real-world use of the software over

a period of time.

The group was then asked about why some functions, such as the player-key map, transform,

and versus methods were never really utilised in live performances even though they were intro-

duced and explained in rehearsals. Below was the response:

Lucy: “I think in terms of technical knowledge it was just a bit over my head [...] I

noticed something that when I was playing with Graham [Dunning] in London actually

[...] I noticed I was using much simpler code than I would solo and when I was trying to

do something complex I was, like, bobbing my head enjoying myself and then I would,

like, try and do a complicated bit of a code and I would, like, stop and kind of back off

and it was like taking me out of it a little bit, like out of the flow of the performance

[...] I actually do know that stuff but it’s almost like, to stop and think about it almost

like breaks me out of that like improvisational flow. And so I tend to just stick with

like the simpler bits”

Innocent: “I think if it’s more complicated, if the syntax is more complicated, especially

in a live environment having to think about that takes you out of the flow”

Laurie: “It becomes more of a technical exercise than expressing yourself”

It is clear that the gap in technical knowledge of FoxDot, and functional programming within

Python, between myself and the rest of the group was larger than I had anticipated. The cognitive

load put on less experienced Python programmers to incorporate more powerful, yet complicated,

functions was more than enough to affect their improvisational flow. As mentioned previously,

the achievement of flow is an important part of group improvisation and disrupting that can be

detrimental to performance. It is interesting to note, however, that Lucy had used Troop to perform

using TidalCycles and found that, even though she was confident with her technical abilities in that

language and would utilise them during solo performance, she found herself using much simpler

99



techniques to avoid breaking any group flow with her collaborator. She elaborates on why she feels

using less complicated code in ensemble performance is important in achieving flow as part of a

group:

I think [using simple code] is more important when you’re playing in a group because

you need to be much more tuned in to what everyone else is doing whereas if I’m like

playing solo [...] I will, like, have a much better handle on what’s going on because I’m

in control of everything and so I’m more likely to do that step back, put in a complicated

bit of syntax whereas I think with FoxDot, and particularly when jamming with Troop,

I’d say [...] I’m so, like, conscious of what you guys are all doing and typing at pretty

much all times, like, with my eyes darting about, I almost don’t have the headroom

to be, like, ‘Oh I’m gonna do a lambda function that I don’t really know how to do’.

Like, it’s just kind of more... the energy works a bit better if it’s simple I think [...]

and you can still do so much that’s like really great sounding with the simple syntax.

I don’t feel limited, really, by the kind of, well, simpler functions.

The idea that the “energy works a bit better if it’s simple” is particularly interesting. Simple

code means that everyone is able to understand it and will not not require any extra time or

cognitive energy to do so. The downside of reducing the technical complexity of the syntax is that

it arguably lowers the perceived skill levels of the performers in that they are not demonstrating to

the audience a deep technical understanding that might be expected of a virtuoso coder. However,

the creative utility of the performers has been demonstrated several times in our practice through

the re-purposing of these tools in search of unintended consequences and outputs. For example,

when Laurie mapped a the value of an “echo” effect to a player object’s amplitude, he created

a novel musical relationship using very simple syntax that transcended the player-key’s original

design intentions. Furthermore, with simple syntax, there is no exclusion within the group between

those who can understand and those who cannot:

Laurie: “It’s like, being able to share it [the complex syntax] amongst everyone...

everyone would need to be really solid with it, and [if] that’s not the case – [or] it’s less

likely to be the case – then it’s less collaborative I guess.”

Lucy: “Yeah sometimes I see you doing stuff, Ryan, and I’m like ‘what the fuck?’

[laughs] and I don’t want to go and, like, change values because I like literally would

be like-”

Innocent: “Yeah you don’t want to break it.”

Lucy: “I think that’s not necessarily a problem but I do think for like a truly collabora-

tive performance you are kind of a little bit bound by that simplicity, because I notice

if you write a really complicated line of code then the rest of us don’t touch it.”

100



The imbalance in code complexity between myself and the rest of the ensemble can lead to

moments where very little collaboration occurs due to members of the ensemble not having the

confidence in their knowledge to edit the code. One of the research questions posited in this PhD

is “how can collaboration in ensemble live coding better facilitated through performance systems,

such as language, and interface design?” and it seems that making syntax for collaboration as

simple as possible is a key aspect of designing a language for collaborative live coding. The

complexity of the syntax also affected the immediacy that the group felt when performing:

Innocent: “The limitation comes from your level of knowledge. If you don’t know the

syntax to take the idea from your head onto a screen then that’s where the limitation

is. That’s where you don’t get that immediacy because you’re taking the time to think

about how to translate.”

Lucy: “Exactly! It’s that translation, exactly that.”

Innocent: “So if you know more, if you have more technical knowledge about, umm,

sort of the language that we use then you can just do that a lot easier”

Lucy: “Without thinking about it almost [...] I just do it. But like, that’s the difference,

it’s that fluency of, like, ‘am I translating or do I just know’ [...] there’s an element of,

like, translation, that’s exactly it, I hadn’t thought about it that way.”

Laurie: “I think what you were saying earlier as well about a lot of the changes that

people were making were incremental. They’re not, kind of- a lot of them aren’t huge,

they’re all kind of small little... you can actually imagine the sound you’re hearing with

that one change that you make.“

Innocent: “You start with something small and then you might hear a change you want

to make and then you make that one change and then it’s like, yeah-”

Lucy: “Yeah it’s tweaking isn’t it? Whereas If you’re like suddenly like ‘I wanna take

the pitch from that and do this to it and blah blah blah’ It gets [to] a point of complexity

where you can’t hold that in you head along with all the other stuff you’re doing.”

The sense of immediacy felt by the group when collaborating over FoxDot comes with a deeper

technical understanding of the language, which itself, develops with time and practice. Lucy was

also asked to compare her performance with Troop using Tidal with those perfoming with TYPE

and FoxDot. Below is her reply:

There’s two things. So one is Tidal just doesn’t have those nice ways of, like, inter-

acting between two different lines of code or two different players so instantly that’s

functionality that’s just not there with Tidal and, erm, for all the reasons we discussed

earlier, that’s a really positive thing about FoxDot. The other thing, I would say, which

101



is probably like a bit less tangible is that with FoxDot I’ve only really played in TYPE

and so I’ve developed my whole style of coding around you guys. Now I’ve played

collaborative gigs with Tidal – I’ve played with Alex [McLean] and with Graham [Dun-

ning] – and they both have completely different styles and completely different from

my style of coding and that does make it quite difficult to, like, sometimes interact

with each other’s code because they’ll be, like, using a function that I never use and

don’t really understand and don’t really know how it fits together and they’ll be using,

like, different samples or you know just a completely different approach. I think it’s

[FoxDot] much better set up for that [collaboration] and I think you’ve made conscious

decisions around that in the development of it and I think that definitely plays out

when we’re jamming together. And I would say compared to when we first started as

to now, I feel like it’s just got better and better and again that’s a little bit about our

development as users but also the development of the software

The focus on collaborative functionality in FoxDot has improved Lucy’s experience of ensemble

performance but it was not the only thing to do so. It was also benefited by the time spent

rehearsing together, developing tacit knowledge of the systems, and a style of coding that revolves

around collaboration.

6.5.3 Final thoughts

While not all of the features developed over the course of this chapter were fully utilised in TYPE’s

creative practice, the moments in which they were often led to satisfying and novel musical ideas.

They were also frequently used in unintended ways, which allowed us as a group to incorporate a

level of indeterminacy into our performances and gave us the impetus to pursue new and exciting

improvisational avenues. The features that were not incorporated into our practice tended to rely

on functional programming in Python and involved more complex syntax. While I personally felt

that this would give the ensemble a greater level of flexibility and control in our performances,

such as the map and transform methods for the player-key data structure, it did require a higher

level of technical knowledge, which was not there for all members of the group. It was clear from

the user evaluation that this disparity created an environment in which the performances did not

always feel collaborative and increasing the complexity of the code was one of the fundamental

barriers to achieving flow during performances. This starts to answer two of this thesis’ research

questions regarding language as a collaborative tool for live code. It seems almost trivial to say

that simplifying a collaborative language’s syntax would lower the barrier to entry to ensemble live

coding but it seems that it also helps facilitate the collaboration itself. Simple code allows per-

formers to better manage the various facets of performance, such as keeping track of co-performers’

102



actions and connecting musical elements through code, as well as staying in flow.

This chapter has seen the addition of several new functionalities to the FoxDot language, which

arose from practice with the Troop software that allows users to share the same body of text as

they work. The combination of FoxDot and Troop has enabled TYPE to collaborate at a deeper

level and create dynamic musical relationships with our code. However, research has suggested

that “individuals working separately generate many more, and more creative [...] ideas than do

groups” (McGrath, 1984, p. 131) and perhaps working in one shared text buffer stifles creativity

and the generation of new ideas. Can an interface be developed where live coders work individually

but towards a shared goal, while still being facilitated by the linguistic features developed over the

course of this chapter?

103



7. CodeBank: Public and Private

Working in Ensemble Live Coding

7.1 Introduction

This chapter introduces a collaborative interface for live coding entitled CodeBank that has been

designed to facilitate interaction in ensemble performance while offering performers a “safety net”

for experimentation in an attempt improve the overall quality of improvised music. Quality in

experimental and improvised music, however, is often subjective. For example, failure, especially

in the context of electronic and computer music, can have its own aesthetic properties (Cascone,

2000), which come in the form of glitches and crashes, but it may not be desired by the performer.

CodeBank is designed to give performers more control over their performance and introduce only

meaningful changes into the music.

CodeBank is an interface that offers performers a “private” workspace to experiment in before

sharing their work with a “public” performance space. This allows performers to take larger risks

with their code without the fear of disrupting the flow of a collaborative performance. Each

connected user is synchronised to a single “performance server” that is dedicated to generating

audio for an audience and changes made to code in a user’s private workspace can be heard

through headphones. CodeBank implements a technique for managing collaborative projects in

software development called version control, but in the microcosm of a live coding performance.

Version control is the process of managing changes in data where developers contribute to a shared

repository by “pushing” changes from their own private version and “pulling” the changes made by

other contributors to keep up to date. This chapter posits the question, “how does private working

in group live coding affect performance?”, which it aims to answer over the course of CodeBank’s

development.

7.2 Motivation

Early sessions using the Troop editor were sometimes described as “chaotic” and even a “ca-

cophony”, such as in Section 5.3.2. The confluence of several different threads of musical exper-

imentation would often lead to a harsh juxtaposition in the music, which was rarely (although

not never) the desired outcome. CodeBank is an endeavour to remove the elements of chaos and

discord from real-time collaborative live coding while still facilitating musical interaction during

104



performance.

While researching collaborative digital musical interaction Fencott and Bryan-Kinns (2013)

found that having their own digital “space” to work in, participants enjoyed themselves more when

creating music together through a digital interface. The study required participants to create music

together using the same interface but with three different control parameters; c0, c1, and c2. In

the first, c0, all music modules were both audible and visible to everyone else in the session. The

second, c1, was the opposite in that only data “pushed” to a publicly shared space could be heard or

seen by the other participants. The last control parameter, c2, was the same as c1 but participants

could look at another user’s “personal space” if they explicitly chose to. Participants were then

asked to fill out a questionnaire regarding their experience. Although not statistically significant,

participants felt the best music was created when they had a private workspace (c0=5, c1=12,

c2=8) and they also enjoyed themselves more (c0=5, c1=13, c2=8). Interestingly, participants

felt they edited the music together the most when working with interfaces with private spaces

(c0=4, c1=11, c2=8) but also felt they worked more on their own (c0=3, c1=10, c2=13). From

these results Fencott and Bryan-Kinns suggest that splitting musical interaction into a public and

private spaces should be a “key design consideration”, which has become the focal point of the

CodeBank project.

The CodeBank editor also takes inspiration from popular version control tools, such as Git1 and

Mercurial2, that are used in group software development projects. Version control keeps a history of

changes made to a shared repository of code, including the identity of a contributor, and developers

work on their own private version of the repository by “pushing” and “pulling” the changes made

by themselves and their team. The parallel between private and public working in version control

and the suggestions for musical interaction by Fencott and Bryan-Kinns is interesting considering

that live coding shares traits with both software engineering and musical interaction.

CodeBank utilises private working and the testing of code before pushing it to the audience in

contrast to the Troop interface in which all code was audience-facing and executed live. During a

TedX talk3 Alex McLean stated that live coders are “not software engineers” as there is no problem

to be solved and that they are “more interested in causing problems than solving them”. Alex

is referring to the process of software engineering and what the code is used for but live coding

uses the same basic tools, computer code, just in a very different way. Version control is usually

utilised in projects that involve multiple files and large amount of data whereas live coders will

often work within a single document. Thus the tools for collaborating in a software development

project might not be appropriate for a music performance but why can’t they be appropriated to

be used by ensembles in live coding? In the same video McLean describes a live coder as a “person

1https://git-scm.com/, accessed 28/02/18
2https://www.mercurial-scm.org/, accessed 28/02/18
3https://www.youtube.com/watch?v=nAGjTYa95HM, accessed 28/02/18

105

https://git-scm.com/
https://www.mercurial-scm.org/
https://www.youtube.com/watch?v=nAGjTYa95HM


on stage making code writing software on stage that generates music”. As writers of software

it could be argued that a more collaborative live coding experience occurs when contributing to

the same piece of software. However, without the use of a designated collaboration tool, such as

Troop or Extramuros, live coders are only sharing sound, not code. That is not to say that live

coders don’t experience musical interaction through sound, but that there exists another layer of

communication that can be explored by bridging the gap between music and code.

7.3 Phase 1: Initial Implementation

7.3.1 Development

The design for the CodeBank interface takes its inspiration from the ‘History’ class (Rohrhuber et

al., 2007) which is part of a SuperCollider extension called the Republic (de Campo, 2014). This

system, most notably used by the live coding ensemble Powerbooks Unplugged, allows users to

share sound and text across a network of laptops through the distribution of “codelets”. These are

small bodies of code, typically one or two lines in length, that can be used, altered, and redistributed

by performers to generate sound, stored on each machine in chronological order. Performers use

shared resources but work independently from one another to collaborate. CodeBank works in a

similar manner but the independent working is not public facing in the same way that it is with the

Republic. In fact, CodeBank could be considered an inverted version of the Republic; the shared

repository of codelets are the audience-facing interface for creating sound whereas the performers’

code is hidden from view.

Server

Client ClientClient

FoxDot FoxDot FoxDot

Figure 7.1: CodeBank’s Network diagram.

CodeBank, like Troop, uses a client-server network model. Unlike Troop, the server application

plays an active role in performance. The server is connected to both the speakers and projector

106



and acts as the system interface to the audience. The CodeBank interface is built using Python’s

Tkinter library, which allows it to easily communicate with the FoxDot live coding environment.

Figure 7.1 outlines the basic network topology for the system; client applications connect to the

server, which in turn updates clients with new information received from other connected clients.

Audio is generated on both the server and the client machines such that users can listen to the

performance using headphones connected to their own computers. This also allows users to listen

to changes made to code in their private workspace before committing it to the server. The client

and server are synchronised using FoxDot’s internal clock synchronisation methods4, which means

performers can hear their private version of the code alongside the rest of the music in real time.

While CodeBank’s mechanics for collaboration draw heavily on those found in version control,

the implementation for pushing and pulling code to and from the server is slightly different. With

version control software, such as Git, you are required to manually pull code from the shared

repository to keep up to date whereas CodeBank automatically pushes new code from the server

to all connected clients. CodeBank also implements a reservation system such that no codelet can

be edited by different users at any one time to avoid conflicts in the code.

Figure 7.2: Screenshot of the CodeBank client interface.

Client application

Figure 7.2 shows a typical screenshot for a connected client with five key elements labelled; the

Code Repository (a), Action Buttons (d), Private Workspace (c), User List (d), Console (e). The

User List contains information about the connected users and their associated colours. Each user’s

colour is used as the background for codelets that have most recently been edited by that user. In

figure 7.2, User 1 is associated with orange and User 2 with blue, thus allowing each codelet’s last

4https://foxdot.org/docs/using-the-tempoclock/, accessed: 29/07/2019

107

https://foxdot.org/docs/using-the-tempoclock/


editor to be easily identified.

The Code Repository is the largest element of the user interface and displays information about

the codelets being used to generate audio. This is considered to be the “public” facet within the

public/private duality of the system. Figure 7.3 shows four codelets that have been added to the

code repository, each with a different coloured background or text. When a user pushes a new

codelet it appears in this window with its background set to the corresponding user’s colour. A

users reserves a codelet for editing by clicking on it, which allows it to be edited without interference

from other users. When a codelet is reserved its background and font are set to grey but its outline

is changed to the respective colour of the user who has reserved it. For example, the top codelet in

figure 7.3 is currently being edited by the user that is associated with orange, User 1. The second

codelet has a pink background and font colour to indicate that this codelet contains a syntax error.

In figure 7.3 the codelet is missing a closing bracket for the sawbass operation and changing the

colour helps draw attention to this. Information about the error is also given in the console. All

other codelets are displayed with the background colour associated with the user that last updated

it.

Figure 7.3: Close up of the CodeBank Code Repository

The Private Workspace is a text box that allows users to interact with their code. In traditional

live coding there is usually a keyboard shortcut, such as Ctrl+Return, that evaluates some, or all,

of the code. This is the same for CodeBank but it only evaluates the code on the client’s machine

so that the user can hear the effects of their changes within the context of the rest of the music.

To interact with the codelets in the Code Repository, the user must use the Action Buttons, which

define the possible actions that can be made by the user. The first button is the PUSH button

that pushes the contents of the user’s private workspace to the server. If a user has clicked on a

codelet, and consequently pulled it into their private workspace, then using the PUSH button will

update the existing codelet instead of adding a new one to the repository.

The SOLO button can be used to help identify individual sounds or sequences. Fencott and

Bryan-Kinns found that separating an interface into two music modules added a level of confusion

and users found it difficult to isolate an element or sound. To counter this problem, the SOLO

108



mechanism was added to CodeBank; it uses the solo() function from FoxDot to group together

any player objects in the private workspace and play only them, allowing the user to better pinpoint

certain sounds.

The RESET button is only effective when a codelet has been pulled from the repository for

editing. A user can press the RESET button to undo any changes and notify the server that

the codelet is no longer reserved. Earlier iterations of a codelet can be accessed by using the

ROLLBACK button. After a codelet is pulled from the repository, pressing the ROLLBACK

button will display the code that was contained by the codelet before it was updated and pressing

it multiple times will display previous versions. Like version control tools and The Republic’s

History class, this allows users to revert back and use older versions of code if they want to.

Figure 7.4: Action Buttons used for interacting with the CodeBank interface

If a codelet is no longer being used it can be hidden from view by pulling it from the repository

and pressing the HIDE button. If a user wants to revisit a codelet that has been hidden, they

can press the VIEW HIDDEN button, which will display all the hidden codelets. Pushing the

codelet will remove the hidden status from the codelet, making it visible to all users again. To

stop all sounds a user can press the CLEAR CLOCK button. Lastly, the console gives feedback

to the user, such as error messages, but can also be used to display useful information through the

evaluation of Python’s print() command. Doing this in the private workspace will only display

in the console of the local user and not clog up the console of other connected users.

Server application

The server-side application shares many similarities with the client but does not have a private

workspace or console, as shown in figure 7.5. This is because it is the audience-facing component of

the application and is designed to be displayed using a projector whereas the client-side application

is not. Information about the code repository and user list is displayed to the audience so that

they can see the colours associated with each user. This also allows them to identify which codelets

are being edited (or have been edited) by which user.

One of the key requirements of the system is that the audio produced by both client and server

applications is identical and, critically, temporally synchronised. The instance of FoxDot running

on the server application is considered the “master” instance and the client applications must

synchronise their clocks to it. This was achieved by extending the FoxDot TempoClock class and

allowing instances to connect over a network and automatically update each other when one tempo

109



Figure 7.5: Screenshot of the CodeBank server interface

is changed.

One of the other challenges for replicating audio across client and server was ensuring that ran-

domly generated sequences were identical on each machine. Live coders often utilise indeterminacy

for creating melodic and rhythmic sequences, among other things, and if audio is to be identical

across multiple users’ machines, then the randomness needs to replicable. Computer-generated

random numbers are not truly random, but use algorithms to generate pseudo-random numbers.

Python, for example, uses the Mersenne Twister algorithm which has a period of 219937 − 1 and

can, essentially, generate an impossibly large series of values before repeating itself5. Making sure

these pseudo-random series are replicated across multiple computers seems like a difficult task but

the algorithm itself is actually deterministic given a number input, known as a “seed”. As well as

using the server instance of FoxDot as a master clock, it can be used as a master seed to generate

identical pseudo-random sequences on each client machine. Not only is this useful for creating

indeterminate melodies and rhythms, but also for scheduling events with random periods. For

example, a user might schedule a sequence to repeatedly reverse with unspecified intervals and

these would need to be identical for each user to ensure audio is correctly replicated.

7.3.2 Practice

Rehearsal session, Sheffield - 09/12/18

Video recording: ch7 1-CodeBank Rehearsal-09 12 18.mpg.

See Appendix A.8 for performance description.

For this rehearsal, the server was set up on a separate laptop connected to loudspeakers and users

5https://docs.python.org/2/library/random.html, accessed 24/10/2018

110



connected over a local wireless network. Headphones were used to listen to the audio output of

code executed in private workspaces. The display with the server running on is not visible in the

accompanying footage and, unfortunately, it is not possible to identify some of the sources of the

sounds during this practice. As a result it was difficult to be specific about individual ensemble

members’ actions during the rehearsal.

This was the first rehearsal using CodeBank and we decided to not try and do anything dif-

ferently to how we would normally rehearse in terms of process. However, listening back to the

audio afterwards it seems we produced music in a very different way. It sounded succinct; there

were not small iterative changes and it almost felt like it was an already edited and mixed track,

not an improvisation. Comparing this to performances using Troop, such as the Together In Mu-

sic conference in Section 6.3.2, there were no errors or mistakes that affected the musical quality

(although the audio did cut out at one point) and it was kind of amazing to listen to this piece of

music that was completely improvised but did not have the organic, free-improvisation aesthetic

that all of our previous performances embodied.

7.3.3 Evaluation and outcomes

After using the CodeBank system, all performers noted that the style of live coding differed con-

siderably compared to previous collaborative performances using Troop. Lucy stated:

“It changed the way I was interacting with the code in that I was being more

thoughtful about the changes I was making, but consequently paying less attention to

what you guys were doing. Compared to using Troop where I have a general awareness

of what you’re both up to. I think it slowed me down a bit but also encouraged more

significant changes rather than incremental ones.”

The slower process of coding meant that each time code was added or changed, it had more

impact on the overall sound but that changes did not occur very frequently. There were several

moments in the rehearsal where large amounts of time went by when every user was editing their

own local version of code then pushing their changes to the public repository simultaneously,

resulting in large shifts in the music. While this was an exciting process to be part of, it was also

quite uncomfortable because the music would tend to change in a way you would not expect it to.

Being able to experiment in your own workspace meant that any incremental change made to the

code was only heard by the local user and would not give any indication to anyone else as to where

the sound was headed.

The slower coding style also encouraged much more active listening compared to using Troop.

Figure 7.6 shows two stills from the recording; one with members of TYPE wearing headphones to

listen to the output from their private workspaces and another with the headphones removed to

111



(a) Using headphones to listen to the private
workspace audio.

(b) Listening to the audio generated by
codelets in the public repository.

Figure 7.6: Comparison of headphone use over the course of a CodeBank session.

better listen to the audio from the public repository. It was quite common for the group to remove

their headphones and take a moment to listen carefully to the sound. This led to well thought out

musical decisions that had more impact than the smaller incremental changes that occurred while

using Troop.

It also emerged early on that there was a need for improving the user experience of the system,

such as adding more control options from the keyboard. At this point, the action buttons could

only be activated by clicking on them but live coders tend to use keyboard shortcut commands to

control their interface and both Lucy and Laurie felt that using the mouse disrupted the flow of the

session as they had to really think about using the mouse to control the interface. It was suggested

that some of the more commonly used action buttons, such as PUSH, should be accessible from a

keyboard shortcut to minimise the disruption. It would seem that the pre-existing tacit knowledge

of navigating live coding interfaces using keyboard commands was so strong and ingrained in

muscle memory that the cognition required to swap to a mouse or touch-pad would actually break

the sense of flow.

7.4 Phase 2: User Experience

7.4.1 Development

After Phase 1, it was felt that the overall user experience of the CodeBank system could be

improved. One of the priorities for users was to add better control mechanisms through keyboard

shortcut commands. The first to be added was for pushing code to the server as this is one of the

most frequent actions a performer uses. It was decided that the shortcut would use three keys, as

opposed to two, so that it would be difficult to accidentally push code while editing it in the local

workspace. The shortcut that was chosen was Ctrl+Shift+Enter as it is an augmented version of

the shortcut for running code locally, Ctrl+Enter. Another action that users felt was disruptive

was the act of pulling codelets from the public repository into the local workspace. This was

112



also accomplished using the mouse but both Lucy and Laurie felt it could be simplified through

keyboard control. It was decided that using the Alt key in combination with directional keys could

be used to highlight a codelet and pulled into the local workspace by pressing Enter.

Another addition to the program was a parser to disable users from changing metric attributes,

such as tempo, in the local workspace. Doing so would change the tempo for all users as the tempo

clocks were connected using the interface embedded in FoxDot and not in CodeBank. Using regular

expressions (Goyvaerts, 2016), code could be stopped from being run in the local workspace that

altered the Clock.bpm attribute, such as Clock.bpm = 144 or Clock.bpm += 10.

Figure 7.7: Screenshot of the updated CodeBank client application and chat box.

When using the Troop interface, code comments were often used as a way to discuss the music

and what should happen next in a performance. However, trying to do this while using CodeBank

was problematic. Users were much more focused on their own personal workspace when using the

interface and, while they would appear in each user’s console, comments would quickly disappear

from view as more code was executed. This brought up the idea of adding an explicit “chat

box” that would be reserved for discussion as opposed to code. CodeBank requires users to be

co-located but communicating even short messages can be slow when done verbally. For example,

one performer wants to share the message “let’s start a new section”. Signalling to other users

to take off their headphones then telling them they think they should start a new musical section

would be quite slow and cumbersome, but typing into a small box “let’s start a new section”

and pressing return would show this message immediately to all connected users who could either

respond with a simple “ok” or looking at the first performer and nodding in agreement. Figure

113



7.7 shows the interface with chat feature implemented; there is a small text entry box to the right

of the action buttons and a ‘send’ button next to it. Users pressing ‘send’ or the return key will

post a message with their name into the box above. To make the discussion as transparent as

possible, the messages are also displayed in the server application such that they can be seen by

the audience. In other styles of improvised music making, such as jazz, the communication between

performers is often quite visual and is part of the appeal to audiences so the decision was made to

make all media for communication in CodeBank visible as well.

Figure 7.8: Window for adjusting the beat in FoxDot from CodeBank.

Another feature that was added to CodeBank as a result of user testing was a ‘clock nudge’

adjustment window. Some users found that the downbeat in their local workspace would occasion-

ally drift from the public server by a few milliseconds. The tempo clock in FoxDot can be adjusted

by small amounts if a user is out of sync with the server, but this is usually done manually with

code evaluated explicitly in the private workspace. This was inconvenient and values had to be

changed several times in order to synchronise clocks as tightly as possible. It also required that

users memorise certain syntax to do this correctly. A specific ‘clock nudge’ window was added to

simplify this process (see Figure 7.8) which allows users to increase or decrease the nudge value

by 0.01 seconds by clicking on the the left and right arrows. Upon pressing the buttons, the new

nudge value will be applied instantly and users will be able to hear the results and fine tune the

level of synchronisation between client and server.

7.4.2 Practice

TOPLAP End of Cycle Party, Access Space, Sheffield - 19/12/18

Video recording: ch7 2-TOPLAP End of Cycle Party-19 12 18.mpg.

See Appendix A.9 for performance description.

This was the first public performance using CodeBank and took place at Access Space; a charity-

run venue that supports many artistic practices in Sheffield and has hosted several live coding

events over the years.

114



Figure 7.9: Photo from the End of Cycle performance. Photo by Emily Stewart.

7.4.3 Evaluation and outcomes

This was a strange performance in many ways; we had decided to start by doing something “festive”

as this was a Christmas party of sorts. This was more difficult than anticipated and it wasn’t long

before we moved into the more comfortable territory of techno and EDM. The transition between

these styles benefited from the slow and meaningful approach CodeBank enforces; it felt gradual

and meaningful, which might have been difficult to achieve had we all been making lots of small,

iterative changes.

As the performance reached the halfway mark we started to fall into old habits as the syn-

chronisation mechanism stopped working and we relied on making more changes directly to the

public code instead of working on the idea locally. This played a big part in changing the overall

aesthetic of the music. Up until the 15 minute mark, listening to the performance felt more like

listening to a pre-recorded industrial techno track rather than an improvised performance, similar

to the experience from the rehearsal session in Section 7.3.2. Once we started to push codelets

without listening to them in the private workspace we started to lose the cohesiveness of the musi-

cal quality, which is why the last 10 minutes sound so incongruous. We would often have periods

like this using Troop where we would have to navigate the music to find a new idea to work on

but the juxtaposition of this explorative style against the more structured and purposed music we

had produced did not work well in the context of the overall performance. This was a shame as

our take away thoughts from the performance focused on this and somewhat tarnished what was,

overall, a very accomplished performance.

During the first 15 minutes of the performance every change to the code seemed meaningful

and succinct. When the tempo was changed to 140 bpm and we moved onto a more percussive,

sample based section (05:30), we discussed the change using the chat feature, which was a lot easier

than trying to do it by talking. However, not all performers were aware of the messages appearing

115



in the chat window. Lucy felt that she “wasn’t really keeping an eye on the chat box” and added

“maybe because of where it’s located? I was focusing more on the left of the screen where the code

is”. She did go on to say, however, “I think the chat was good for audience engagement/interaction

as we got a few laughs there”. At 18:10 Lucy and I have a discussion, the result of which is passed

down the line to Innocent via Laurie through speech. Instead of typing in the chat box, we opted

to communicate verbally, which took a large amount of time. It was clear that the chat box was

not being utilised properly in its current state and needed to be improved.

From around the 10 minute mark in the video you can see three out of the four performers with

their headphones around their necks and only occasionally putting them on for brief moments, as

seen in Figure 7.10. It later emerged that, in the time leading up to this point, everyone experienced

clock drift and were no longer in sync with the server. With complex rhythms at play it was hard

to re-synchronise, even using the ‘clock nudge window’, and most of us only used headphones to

listen to any larger textural changes made to the music in the private workspace.

One factor causing clock drift was the combination of changing tempo and network latency;

the change in tempo always happens at the start of the next bar but the reference point may differ

across laptops depending on when the code is executed. For example, let’s say that the current

tempo is 120 bpm and the latency for sending data from the client to the server, and vice versa,

is 0.25 seconds, i.e. 0.5 beats. A user pushes code to change the tempo to 150 bpm at 3.1 beats

into a 4-beat bar. The code is sent as a codelet to the server where it is activated at beat 3.6 and

schedules the tempo change for the start of the next bar, beat 4. The code is then transmitted to

the other performers and activated at beat 4.1, which schedules the tempo change at the start of

the next bar, which occurs at beat 8. By the time the client applications will have reached beat

8 (2 seconds later) and changed tempo, the server clock will already be at beat 9, one whole beat

ahead of the client. To re-synchronise with the server, clients will have to set the clock nudge to 0.4

seconds (1 beat at 150pm), which, without calculating manually and understanding the problem

that caused the drift, might take a lot of trial and error to solve. One way of addressing this issue

could be to make the ‘clock nudge window’ made more sophisticated by allowing the user to pick

if the nudge value is changed in seconds or in beats and use different increment values such as 1,

0.1, and 0.01. Ideally the process of adjusting for clock drift would be taken care of automatically

and is something I am keen to improve for future performances.

One observation I made while watching the performance back was that the management of the

codelets was done very well. Every so often one performer might take it upon themselves to clear

unused codelets from the interface using the HIDE button, creating a clear canvas to work on. It

was particularly useful having four group members as three could continue working on code if one

was taking time hiding codelets. This meant that there was no slow down in terms of code creation

while removing any unused code. We did not, however, make use of the ROLLBACK button that

116



Figure 7.10: Frame from video of Sheffield Algorave performance with CodeBank.

allows users to return to previous versions of a codelet’s history. We had not properly explored this

in rehearsals and the practice of going back in time is not something we are used to doing as live

coders. Very often our performances involve pursuing creative avenues as they appear and these

often lead further and further away from the point of origin, but having the ability to backtrack

could be an interesting approach in future performances, but needs to be explored further in group

rehearsals.

The last five to ten minutes felt a bit more ‘lost’ than the earlier parts of the performance. We

seemed to be stuck in quite a repetitive loop without a clear direction or end-point to aim for.

I don’t know if this was due to a lack of coordination or inspiration, or if some of the technical

issues with CodeBank’s timing mechanism played a part in this. My hypothesis is that taking

our headphones off discouraged us from spending time working in the private workspace, which

consequently led to less meaningful musical changes when compared to earlier in the performance.

However, speaking to a member of the audience, they felt that it went very well; “It sounded like

you knew what you were doing – everything gelled”. They also commented on how surprising it

was that the level of coordination across multiple performers was so high; “I felt like it was more

that, like, with one person, one person knows what they’re doing but with four people it would

sound, sort of, uncoordinated. It’s cool how it didn’t sound like a mess of noise”.

7.5 Phase 3: Synchronisation and User Monitoring

7.5.1 Development

After our initial practice sessions in Phase 1, Lucy noted that, because she was putting more

thought into her own code, she was paying less attention to the actions of her co-performers.

117



This happened on several occasions for everyone in both rehearsal and the performance in Phase

2. During performances with Troop the changes to the audio were, like changes to the code,

incremental. In CodeBank, however, a user might change a codelet significantly within their local

workspace and consequently create a large shift in the soundscape when pushed to the public

repository. It is often difficult to navigate the improvisation during these more abrupt changes,

which sometimes render the code in your private workspace obsolete. If good improvisation is

like a good conversation, then this is like someone interrupting you mid-sentence with an off-topic

question. To better manage this problem, a “user monitoring” function was added to the system

that allows a user to listen to the incremental changes made by the monitored party from their

private workspace. In the User List section of the client interface (labelled ‘d’ in Figure 7.2),

boxes were added to the left of each user’s name that, when clicked, started monitoring the user,

indicated by a black square in the box as shown in Figure 7.11.

When a user is monitored, all locally evaluated code is sent to the server and forwarded to

the users who are monitoring them. The code is evaluated, rendering identical audio streams, and

displays the code to the user in the console. Clicking the box a second time removes the black

square and stops the monitoring process, such that the local user would only hear the the audio

generated by their own code and the code in the public repository. Multiple users can be monitored

simultaneously to give performers an indication of any upcoming musical changes.

Figure 7.11: User monitoring functionality of CodeBank.

As well as giving users the ability to monitor each other, the chat box was updated to grab

more attention when a new message is received. The border of the chat box flashes with the colour

of user who has sent a message, as shown in Figure 7.12. During the performance, information

was mainly communicated aurally as opposed to through the chat box. This might be quick for

passing on information to the person at your side, but passing a message down a line of several

people can be quite slow compared sending a single message through the chat box. There were also

some unintended side-effects caused by addition of the chat feature; the chat input box is located

directly next to the CLEAR CLOCK action button that, when clicked, stops all sound. On several

occasions in rehearsal, a user would attempt to click in the chat input box but accidentally press

the CLEAR CLOCK button and silence everything. To stop this from happening, the CLEAR

CLOCK action was moved to be only activated from the drop down menu, or executed explicitly

through code.

During the performance several clients ended up out of sync with the server. This meant that

118



Figure 7.12: CodeBank chatbox with flashing borders.

performers spent large periods of time without wearing headphones and not utilising the private

workspace. Consequently it felt as if the latter stages of the performance were not as well thought

out as earlier sections. In an effort to address this, the timing mechanism of FoxDot was updated

to better synchronise musical events across multiple computers. Prior to this, FoxDot would

increment its clock’s beat counter by 0.0001 beat every “tick” and activate a scheduled event (such

as playing a note) when the beat counter was equal to the scheduled time. However, these “ticks”

were sometimes inconsistent and two separate instances of FoxDot would drift out of sync over

larger periods of time. This was changed to simply use the number of seconds elapsed since the last

tempo change to calculate the current beat, which timings much more consistent across multiple

instances of FoxDot. Furthermore, another issue discussed in Section 7.4.3 in which tempo changes

were not coordinated correctly was also addressed with this update. Instead of just sending the

beats-per-minute value over the network, the start time of the the last tempo change is also sent

to connected instance of FoxDot so that, even if the tempo change happens at different times, the

reference point for the change is the same.

Figure 7.13: Login window for CodeBank with TidalCycles language option.

The CodeBank system has also been made language agnostic in the same vein as Extramuros

and Troop, which allows a wider range of live coders to engage with this style of collaboration.

One of the main goals of this research is to make collaborative live coding as accessible as possible

but limiting these tools to work with only one language is contrary to this idea. Like Troop,

119



CodeBank’s functionality has been extended to interface with other live coding environments.

However CodeBank’s action buttons are specifically tied to features in FoxDot, such as SOLO and

RESET, which means these features need to be reproducible in the desired host language. To

address this, ‘interpreter classes‘ were added that contain the necessary code in the host language

to be evaluated to reproduce the necessary functionality of CodeBank’s action buttons. So far

the only classes that exist are for interfacing with FoxDot and TidalCycles as the actions such

as SOLO and RESET are difficult to reproduce in other environments such as SuperCollider and

Sonic Pi. When connecting to the CodeBank server, users are now presented with a drop-down

menu (see Figure 7.13 in which they can select to live code with FoxDot or TidalCycles. If the

language chosen does not match the one used on the server application, which is selected using a

command-line flag, then the user is not able to connect to the server and is informed of the correct

interpreter needed.

7.5.2 Practice

Late at the Library: Algorave, London - 05/04/19

Video recording: ch7 3-British Library Algorave-05 04 19.mpg.

See Appendix A.10 for performance description.

This was an Algorave event that took place at the British Library in London in association with

the Alan Turing Institute. At the time of writing, it was the largest Algorave to ever take place

in the UK, outside of a festival, with an audience of 700 people. TYPE were asked to perform at

the event and we decided to use the opportunity to perform with CodeBank in its third phase of

development. Unfortunately, Lucy was unavailable to play at the time, so only Laurie, Innocent,

and myself performed at this event. I was hoping to use screen capture technology to record the

feed from the CodeBank server laptop but due to issues with the display refresh rates at the venue,

I could not mirror my displays and therefore could not record the screen. Furthermore, the video

recording did not capture the screen contents correctly due to a high contrast between the dark

room and bright screen, which means I am unable to accurately describe the code used during this

performance (this is discussed further in Section 7.5.3).

7.5.3 Evaluation and outcomes

Speaking to some audiences members who had seen us perform before with Troop, they felt it

was one of our best performances to date. Watching the recording back I definitely felt that the

affordances of CodeBank lent themselves to creating a succinct musical performance. There were

several distinct sections to music and the transitions between them mostly felt fluid. Much of the

120



Figure 7.14: Photo from Late at the Library. Photo by Coral Manton

performance was spent with a four-to-the-floor kick-drum rhythm underpinning bright chord stabs

and melodies, although we were able to find periods of variety by moving to minor scales and

experimenting with darker and more distorted textures.

An unfortunate aspect of this performance was the amount of reused musical material that

featured from previous performances, including those we did with Troop. I was the main guilty

party here and perhaps the pressure of playing to a larger audience with a new interface caused me

to experience some performance anxiety and I fell back on musical elements that we had played

before and knew would work. CodeBank was designed to encourage users to experiment with

new material and create novel musical ideas by providing performers with a personal workspace to

experiment in but in the end it is up to the performer to create the music.

This was a technically difficult performance for several reasons; we had to use some low-powered

technology, which resulted with some synchronisation issues, and the volume of the PA system was,

at times, too loud to hear anything through headphones. The first issue was brought on by the fact

that CodeBank requires an additional laptop that is dedicated to running the server application. I

used my personal laptop for this as it has a fast CPU and plenty of memory, which meant I had to

borrow a laptop, which was much less powerful. The issue with computing power mainly concerns

FoxDot and its synchronisation mechanism; adding CPU-intensive effects, such as a comb delay or

reverb, delays the music by a fraction of second and the private workspace and public audio become

de-sychronised momentarily until the local audio “catches up”. This is a huge problem for those

who don’t have access to high-spec computers and ensemble live coding should not be reserved for

those who can afford a spare laptop. Innocent also experienced issues with synchronisation early

on in the performance, and found it difficult to listen to the output from his private workspace.

This was particularly frustrating as it had worked perfectly when had tested the set-up earlier

in the day. The second issue was caused by sound levels. It was difficult to hear the output

121



from CodeBank’s private workspace during the performance, and this was made more onerous by

the synchronisation issues that arose. Laurie said the speakers in the venue “drowned out” the

audio from his headphones and found he couldn’t tell the difference between the public and private

audio once we had started working several different musical layers. This meant that much of the

performance was spent without headphones off by all users, which is not a problem in and of itself,

but when experimental and/or incremental changes are being pushed to the public repository,

as opposed to being developed in the local workspace, it defeats the purpose of using CodeBank.

Most live coding, including our own practice with Troop, is performed in this manner; making small

changes that both the audience and the performer hear at the same time. However, CodeBank is

designed to hide these incremental changes from the audience such that hear only a “final” version

of a musical decision. When these two styles of live coding are combined it upsets the balance in

the aesthetic of the whole performance. It could, of course, be argued that CodeBank itself upsets

the aesthetic balance of conventional live coding by hiding the incremental changes away from

the audience, but I will discuss this further in the conclusions of this chapter. A clash between

incremental and more meaningful musical changes occurred during the performance at 28:00 when

Innocent introduced a bell synth. He did so without using the private workspace and then began

to make incremental changes to the codelet. At this point he could not hear output from the

local workspace, so evaluating code locally would be pointless as he would only hear changes once

pushed to the public repository anyway. Consequently, the incremental changes occurred slower

than one might expect in a more conventional live coding performance because of the extra time

needed to push and pull the codelet to and from the repository.

Viewing the video recording of the performance, one might notice that the screen projection is

almost completely white. This is caused by the high contrast between the dark room and bright

interface and meant that almost no on-screen action was captured. This a major problem for

documenting CodeBank performances. The interface is also very bright compared to typical live

coding interfaces and it doesn’t seem to match the aesthetic style of the late-night Algorave. If I

were to develop another version of CodeBank I would add a “night mode” that sets the background

of the interface to black with white text.

7.6 Conclusions

7.6.1 Personal reflections

CodeBank is designed to help reduce human error and improve the overall quality of collaborative

live coding performance and, to some extent, this has been achieved. Before discussing this, there

is also something to be said about these design goals in the context of the philosophy of live coding.

122



For many practitioners, live coding is “embracing error” and letting failure lead you in musical

performance, but CodeBank arguably does the opposite. While it does provide a safety net for

experimentation it also lets users try and fail with ideas without fear of doing so in front of a live

audience. The CodeBank system actively encourages users to experiment and let error and failure

guide them in performance but in a space they can be comfortable in doing so. This does lead

to a delay between the formation of ideas and their eventual sonification for the audience and it

could be argued that this reduces some of the “liveness” in live coding. The counter argument is

that by allowing performers to experiment in a local workspace, CodeBank supports improvisation

and the creation of spontaneous musical ideas. CodeBank also implements a far more complex

interface than Troop and a user’s attention is split between several different key features, such as

the local workspace, the public repository, and the chat box. The complex nature of the interface

seems to place a larger cognitive load on the user and forces them to either spread their mental

resources across multiple facets of the interface or sacrifice their attention on one feature to focus

on another.

One of the research questions posed in this PhD is “how can collaborative interfaces be used

to reveal creative processes at play in ensemble live coding performance?” and it has yet to be

addressed in this chapter. I don’t feel that CodeBank reveals creative processes and, if anything, I

believe it obfuscates them. From the audience perspective, codelets appear on the screen but the

process in which they are developed is completely hidden. Even when one user edits an existing

codelet, the only indication that a change has been made to the code is the change in background

colour, indicating a new user has updated it. It is difficult to keep up with changes, especially as

the codelet’s spatial location can change quite drastically when being updated. Furthermore, the

codelets themselves only contain black text with no syntax highlighting; I would have liked to add

this and make code clearer to both audiences and performers, but this would have taken a lot of

extra work. Text in the codelet would have to be added one character at a time and placed in the

codelet at specific positions in the x and y axes. Syntax highlighting would also have be tailored

specifically to each user colour to avoid code being illegible against various background shades.

This would definitely have been possible, but I felt that cost of time and effort would outweigh the

benefits.

Some features in CodeBank were not utilised very frequently, most notably the ROLLBACK

button that, when used, would revert a codelet to its state before the last edit was made to it. The

implementation of the feature was inspired by the collaborative software engineering tool, version

control, and provided some interesting possibilities for performance, such as the re-introduction

of previous musical themes. However, in practice, it was only ever used to revert simple changes

to codelets, such as playing a stopped sequence. This was, in part, due to the fact that “rolling

back” was not something that members of TYPE were used to doing in their own performance

123



practices, both together and apart. It is a novel idea but required a much more conscious effort

to utilise and did not feel intuitive to use. It also required a level of learning, which is true for

several aspects of the CodeBank interface, as the experience is very different to traditional live

coding. CodeBank has many features that take time to know and understand, several of which are

accessed via the action buttons. The use of buttons in live coding is very rare, as most interaction

with the interface occurs through text and keyboard shortcuts, and this took some getting used to.

As suggested by members of TYPE, several mouse-based actions, such as clicking on codelets to

pull them into the local workspace, were also given keyboard shortcuts in an attempt to maximise

the accessibility of the interface via the keyboard and tap into the ingrained tacit knowledge of

keyboard-based control for live coding interfaces. However, not all of CodeBank’s functionality

can be accessed using the keyboard, such as hiding and un-hiding codelets, and I think this is one

of the main contributing factors to the larger cognitive load placed on the performer when using

CodeBank.

There are also several technical challenges to playing with CodeBank; the first of which con-

cerns the means of synchronisation between a performer’s local version of FoxDot and the version

generating audio for the audience. Initial synchronisation of FoxDot instances can be quite straight

forward and the user is given some level of control over it through the use of the clock nudge win-

dow, but problems arise as drift occurs over the course of a performance. This seems to be related

to computing power. CPU intensive effects can result in delays to note onsets and cause them to

fall out of sync with other instances of FoxDot. There is no method for rectifying this other than

waiting for your laptop to catch up. This can be quite frustrating and, as happened in both our

performances, can cause you to play without the use of headphones and push more incremental

(and unknown) changes to the public repository. Furthermore, CodeBank requires any ensemble

that uses it to also have an extra machine to host the server application. While computer tech-

nology is more affordable than ever, evident in such projects as the Raspberry Pi6 or Arduino7,

these lightweight computers don’t often meet the specifications necessary to effectively run a live

coding language such as FoxDot. This means that CodeBank requires access to an extra PC with

sufficient computing power to be used effectively in live performance, which is not always possible.

I would argue that the CodeBank interface helped us create “better” music in the sense that

musical contributions were polished and succinct, and errors and mistakes could be overcome in

the local private workspace. However, the amount of communication while using CodeBank was

less than when we used Troop and we combined to create novel musical ideas less frequently. For

example, in the Algorave Assembly performance at the University of Leeds (discussed in Section

5.4.2), there was a very satisfying moment when “the combination of ideas” led to the creation of

“a fresh musical sequence”. In CodeBank, however, it was closer to having complimentary musical

6https://www.raspberrypi.org/, accessed: 29/04/2019
7https://www.arduino.cc/, accessed: 29/04/2019

124

https://www.raspberrypi.org/
https://www.arduino.cc/


sequences being played together at the same time. This definitely helps create a seemingly well-

crafted musical performance, but perhaps does not deliver the organic creative experience we are

used to having while playing together with Troop.

7.6.2 User evaluation

Similar to the user evaluation of Troop, I asked members of TYPE to consider notions of trust,

risk, flow, and immediacy (Gifford et al., 2017) and evaluate CodeBank as a tool for self expression

and ensemble communication as well as compare these aspects of the interface with Troop. With

Troop, there was a much stronger need to trust in the co-performers more than the interface itself

so I started by asking if the feeling between co-performers differed when using CodeBank. Here is

Lucy’s response:

It’s hard to know what people are up to, so... a little bit it’s like... I guess it’s trust but

it’s also like having that familiarity of playing together and being able to anticipate to

an extent what kind of things somebody might be doing, erm, and that’s something

where I think particularly for us, like, as a group, because we’ve played so much in

Troop and we have that, kind of, familiarity with one another, erm, and because with

Troop, you can kind of see really easily how people, like, work with the code, I find that

works quite well in CodeBank. I think if we’d used CodeBank first and then changed

to Troop we’d probably have a really different dynamic as a group of players because

we wouldn’t... we wouldn’t have that, kind of... I don’t know how to phrase it, like...

this kind of base level of just understanding would have developed differently. Like the

understanding between us as players, would have developed really differently, because

you wouldn’t see the development process because with CodeBank you just kind of see

the finished product

Without the experience of playing together with Troop and being able to learn each other’s

habits CodeBank may not have been as much of a success. The musical combinations in Troop

came from reacting and adapting to incremental changes whereas in CodeBank we tend to only

experience the “finished product” of a musical idea. Even when using the ‘user monitoring’ tool, it

is difficult to know what is happening elsewhere in the ensemble, which is important in anticipating

co-performers’ changes. Lucy also suggested that CodeBank might not allow users to develop this

level familiarity. Developing trust in your co-performers is extremely important and CodeBank

may not be a good tool for facilitating this in an ensemble. This was felt by all of the ensemble:

Innocent: “When we perform as a group in CodeBank, it feels like you’re in your own

little space, erm, then you push out the code and... but the development process feels

125



very, erm, separate to the rest of the group. Erm, and, yeah, not knowing what someone

else is doing makes it harder to anticipate, erm, what’s gonna happen basically”.

Lucy: “I feel a bit like, in... in CodeBank it’s more like... like, say you’re in, like, a

typical band and you have, like, a drummer and a guitar player and a bass player and

a singer, it feels a bit more like that, like we’re all in our own little world. So, like, I’m

more likely to react to something you do by changing something I’ve done, whereas in

Troop I feel much more likely to go and, like, tinker about with other people’s code”

There is more of a sense of independence within the group when using CodeBank compared

to using Troop. This impedes the inter-personal development of musical ideas and also makes it

difficult to anticipate, and consequently react to, musical changes during performance. However,

this does seem to promote a mindset of perfectionism when creating music with CodeBank, Lucy

said “I’m much more of a perfectionist about my bit... And not, like , in a conscious way but

that’s... I think that is, reflecting how I use it I think ”. This does mean that the changes that

are pushed to the public repository are more developed and audiences hear a polished version of

everyone’s musical ideas, instead of the small steps of the implementation of a musical idea, as it

would occur when using Troop. However, only working with each other’s fully developed ideas is

not conducive of ensemble collaboration. Innocent said “being able to push out something that’s

more developed means that there’s less room for other people to change that as well, which I think

might be the reason why you go back and actually work on the stuff you created”. The notion of

independence also seems to discourage users from making changes to each other’s codelets as any

change made might be felt as an attack on someone’s “finished product”. On this topic, Lucy said

“it also feels maybe like a bit more rude? ’Cause like, I mean it’s something that someone’s, like,

crafted really perfectly and being like ‘actually I’m just gonna change that’ whereas everything’s

a bit more, like, in flux [in Troop] I guess”. Upon asking about how easy it is to achieve flow and

feel like you’ve reached a groove in CodeBank in comparison with Troop, Lucy responded:

Yeah, I think with Troop it’s just is easier because [...] everything is just a bit, like,

speedier. But I think you’re more likely to, like push something that’s not right or

that’s a bit jarring, or like, break that flow in Troop, I’d say. Umm, but then it’s also

in a way, like, maybe a bit easier to fix stuff like that in Troop. ‘Cause you haven’t, like,

pushed a whole big thing that you’ve spent ages working on and someone else pushes

their big thing at the same time and they clash, that would never happen in Troop.

But small clashes happen more often

Evidence can be seen of these “small clashes” occurring in several Troop sessions discussed in

the previous two chapters, such as the performance at the ICLI discussed in Section 5.5.2. As we

126



experimented with percussive samples during the performance we found that the “rhythms battled

against each other” but we continued to explore the musical sequences that were emerging. On

these smaller clashes, Laurie said “it increases the potential the music more drastically in certain

unexpected directions, I guess”. Lucy also commented on this by saying that, in CodeBank, “if

I push something that sounds crap I’ll just take it straight back and change it. Whereas I think

with Troop we’re more, like, likely to kind of work with those – like Laurie says – like we’re more

likely to kind of go ‘ok that element’s a bit weird but let’s pursue that and let’s see how we can,

like, morph stuff from that’. I think we’re more like, kinda just more fluid when we’re playing in

Troop”. Lucy also went on to say:

CodeBank feels a lot more like playing a solo gig to me and if you’re like talking about

personal flow I think when I’m playing a solo set I feel I have a very different, like,

feeling, which is that, like, there’s much more pressure and you don’t have that time

to kind of step back and think about what you’re gonna do. Like you have to really

be, like, on the ball and focused, which in a way, is a sense of flow, but is also means if

something goes wrong you’re really taken out of it, whereas I think when we’re playing

with Troop, and I would say CodeBank has a similar feel to that, but when we play

with Troop, I don’t feel that, like, same intensity of focus, which, like, means you never

get into that kind of real, like, depth of just, like, your heads in the code and that’s

what you’re doing. But also it means you can’t get, like, snapped out of it either. It’s

like a more, like, even state.

The achievement of a flow-state is important in good improvisation but the discussion above

suggests it could be detrimental to collaborative live coding performance. Flow is often defined

as “the state in which people are so involved in an activity that nothing else seems to matter”

(Csikszentmihaly, 1991, p. 4), which can also include co-performers. Giving users a personal

workspace allows them to momentarily forget about the audience and their co-performers and

become engrossed in their own work, finding a temporary state of flow. However, it becomes an

experience closer to playing a solo set than group jam. In contrast to this, members of TYPE

felt that live coding together with Troop gave them a feeling of confidence in their co-performers

which allowed them to take more risks, but perhaps did not enable performers to enter a flow-

state. Instead, what we did experience may be closer to “peak jamming” (Swift, 2013), which is

the rewarding feeling achieved by taking part in a good jam session that keeps us coming back for

more. Our experience with Troop is also probably closer to “group flow” (Sawyer, 2006), which

is a state of flow relating to a group of musicians that “can inspire musicians to play things that

they would not have been able to play alone, or that they would not have thought of without the

inspiration of the group” (Sawyer, 2015, p. 95). Research into flow often concerns the individual

127



but Sawyer believes that group flow is achieved as a collective unit, where “everything seems to

come naturally; the performers are in interactional synchrony” and “each of the group members

can even feel as if they are able to anticipate what their fellow performers will do before they do

it”. The idea that we are achieving group flow within Troop also helps explain why Lucy doesn’t

get “snapped out it” when things go wrong during a performance in the same way she does when

performing on her own. Being in group flow allows us to be aware of our co-performers’ actions

and have trust in the ensemble to navigate any errors, whereas encountering a problem while in an

individual flow-state can be a huge disruption. Instead of chasing the feeling of a good jam session

and achieving group flow, CodeBank encourages its users to work independently in the pursuit of

a well-crafted final artefact. Innocent feels this is mainly caused by the expectations imposed on

the performers through the CodeBank interface:

I don’t know, it’s just different to... to using Troop just because we interact and build

up the music. Umm, I think with CodeBank there’s an expectation, because we know

how it works – you can sample the sounds before it goes live, there’s an expectation

of perfection, which means that, umm, the music doesn’t build up, umm, organically

as it would with Troop when you might put out something weird, like Laurie said, and

then work with that. In CodeBank, umm, the expectation, at least internally, would

be, uhh, sounding polished because we’ve had time to play around with it first.

By giving users a private workspace to test out their musical ideas, CodeBank imposes an

expectation of perfection in each musical contribution. This makes it harder to collaborate on

codelets as they are rarely works in progress, but have a sense of finality about them. Members

of TYPE were also asked about the immediacy of the interface, and to consider how easy it is to

communicate with the rest of the ensemble. There were several comments regarding the use, or

lack thereof, of the chat box feature that was added to the interface:

Lucy: “I feel like the chat box is a really really good idea in theory. In practice, I just

don’t look at it, and again that’s partly ‘cause I’m like – what I talked about about

being so focused on what I’m doing – like, I look in the chat box and there’s, like, loads

of messages and I’m just like ‘Ohh I haven’t read any of those’. And I would say, like,

in Troop [...] we just, like, type little notes, like, in the code, I’m just much more aware

of what everyone’s doing in Troop including if they’re, like, typing little notes.”

Innocent: “Yeah I think there’s a lot more interaction, erm, in Troop, umm, and I’m

the same – I don’t look at the chat box in, uhh, in CodeBank, erm, because I’m focusing

on- on the code so much. So I look up and I see stuff and I’m like ‘oh, well, I missed

all that’.”

128



Lucy: “So I would say, like, probably in CodeBank I’m more listening for changes,

like, you know in Troop we might be like ‘oh let’s do a percussive bit’ and then do a

percussive bit. I think in CodeBank I’m more listening for changes so I’m more like ‘oh,

what are they up to?’ erm, so I guess more like a traditional way of, like, improvising

with other musicians; by ear.”

The independent flow-state achieved by members of the ensemble causes individuals to focus

solely on their own work and become incognisant of the rest of the interface, including the chat

box. This makes ensemble communication very difficult in CodeBank. With Troop we are able

to add comments next to specific parts of the code to communicate and draw attention to certain

aspects of the performance whereas in CodeBank it’s not as easy to relate a specific chat message

to a specific part of code. Of course, other methods of musical improvisation, such as jazz, do not

have such explicit modes of communication and, perhaps, should not be relied so heavily upon.

However, with each performer so heavily invested in their own work, other non-verbal modes of

communication are also difficult to achieve without the chat box and performers are reacting more

to what they hear than what they see. Innocent found that communication was so slow via the

chat box, he found himself using verbal communication more during the performance at the British

Library:

When I first started playing with Troop, erm, it was just pretty different, like, seeing

messages, umm, in there and, like, just little notes and little jokes and- but that was

a fun element to it. Erm, and with CodeBank I’ve found myself, erm well in, like, the

British Library Algorave, I found myself talking to Laurie, erm, a bit more rather than,

like, putting in a little note, umm, in there. Umm, but yeah, I think the communication

aspect is- is really fun, umm, and in Troop, erm, it’s a lot better and a lot more

immediate, erm, than CodeBank.

He also stated that the communication using Troop was not only better and more immediate,

but also more enjoyable than in CodeBank. Communication in CodeBank is very functional,

whereas the lighthearted (and often off-topic) discussion in Troop also fostered a positive social

atmosphere within the group. This helped develop a sense of ‘team spirit’, which aids in achieving

group flow. Lucy also states that she is much more aware of the rest of the ensemble’s activities,

including explicit chat messages, when using Troop as opposed to CodeBank, and this is another

likely indicator that Troop is better at facilitating group flow than CodeBank. It seems that being

cognisance of one’s co-performers’ actions is a pre-requisite for developing group flow in live coding,

but this would not always be possible while in a hyper-focused individual state of flow. That being

said, group flow and individual flow do not have to occur simultaneously, as Sawyer states, “[t]he

group can be in flow even when the members are not; or the group might not be in flow even when

129



the members are” (2006, p. 159).

7.6.3 Final thoughts

Some interesting comparisons can be drawn between the themes that have emerged from the

reflections discussed above and the results from the study conducted by Fencott and Bryan-Kinns

(2013). In the study, most users felt that the overall quality of the music improved when given a

private or personal space to work in and a similar feeling is shared by TYPE with respect to the

musical output created in CodeBank. The ability to spend extra time perfecting a sequence helps

improve the aesthetic quality of the music. Fencott and Bryan-Kinns’s study also found that users

felt they worked more on their own when given a private space to work in, which was also true for

TYPE when using CodeBank. Members of TYPE experienced flow on an individual level much

more in CodeBank than they did with Troop, which often resulted in a much more independent

creative style. However, the study also showed that users enjoyed themselves more and felt like

they were editing the music together when given a private workspace, which was not necessarily

in line with how CodeBank users felt. The private space seemed to create a disconnect between

performers in CodeBank and placed an emphasis on contributing more fleshed-out musical ideas

instead of developing them together. Furthermore, the less formal channels of communication in

Troop improved the social aspect of playing music together, whereas in CodeBank performers were

so focused on their private workspace, explicit communication existed only in a functional capacity.

This is probably one of the main reasons that members of TYPE enjoyed using Troop more than

CodeBank, but was never considered as part of its design. Simplifying the interface and making

performers’ contributions public-facing should facilitate both social interaction and, consequently,

the achievement of group flow and should be integral to the design of future collaborative live

coding interfaces.

The first research question posed in this PhD is “how can collaboration in ensemble live coding

be better facilitated through performance systems, such as language, and interface design?” and

the development of CodeBank has provided an interesting answer. I was interested in improving

how collaboration was facilitated but, based on answers given by members of TYPE, inter-personal

collaboration is actually impeded when using CodeBank. Despite this, the overall quality of music

generally improved. Performers tended to introduce musical sequences as “finished products” and

this made it difficult to collaborate while developing these ideas as there was very little room for

change and a larger sense of ownership of individual contributions. Furthermore, the emphasis

placed on independent working in CodeBank, which did help ensemble members achieve a sense

of flow and consequently benefited individual creativity, decreased performer’s awareness of their

co-performer’s actions. This included messages sent via the chat box section of the interface, which

is an explicit channel of communication. Even though much of our ensemble communication was

130



non-verbal and implicit, such reacting to musical changes, the chat box exists to communicate ideas

quickly and directly. Not being aware of messages in this part of the interface means performers

might not always be informed with respect to larger musical decisions, such as starting a new

section. Moreover, the chat box is also the only facet of the interface that allows for informal

communication; one of the most enjoyable parts of our rehearsals and performances when using

Troop. In Troop, the “chat” is present within the code itself and it became quite a performative

action whereas, in CodeBank, the code and chat is separated and less focus and attention was

placed on this mode of communication.

By developing CodeBank and reflecting on practice in this manner, one thing has been made

clear; the interface used does make a difference in terms of collaboration. Separating the coding

activity into private and public spaces shifted performers’ priorities, fostered more individual than

group flow, and even affected the quality of the music created. If asked to choose between to Troop

and CodeBank to collaborate with, the answer would depend on what the ensemble’s performance

goal is, and I think that it is important that an ensemble gets to have this choice. The goal

may be oriented towards the playing experience (achieving group flow and peak jamming) or the

creation of high-quality music and the ensemble can choose the interface better suited to achieving

success. Members of TYPE felt that Troop allowed for better and a more immediate sense of

communication and was also more fun to use. While CodeBank has its advantages, it did not

give the group the same level of satisfaction and enjoyment as when coding together within the

same text buffer. Troop is also a far more accessible interface and requires no extra technology

to run. But can the Troop interface be improved upon? In an attempt to make ensemble live

coding accessible to as many live coders as possible, both Troop and CodeBank have been adapted

to work with multiple live coding languages, but these languages cannot be utilised within the

interfaces at the same time. To bring a broader range of live coders together, could an interface

be developed that allowed multiple languages to run together simultaneously?

131



8. Polyglot: A Multilingual Interface for

Collaborative Live Coding

8.1 Introduction

This chapter introduces a cross-language live coding interface, Polyglot, that allows multiple users

to easily collaborate with one another without requiring a shared knowledge of the same live coding

language. Currently live coders who wish to use interfaces for collaborative live coding, such as

Troop or CodeBank, are required to know the same language, which means for every available

live coding environment there are less potential collaborators to work with. Polyglot is a direct

response to this problem and aims to give live coders with different skill-sets the opportunity to

work together using the same medium that made Troop so effective. Polyglot uses much of the

same technology that was developed as part of the Troop interface in Chapter 5 but extends the

software to allow concurrent collaboration across multiple text buffers, and live coding languages,

simultaneously.

8.2 Motivation

As has been discussed throughout this document, research has shown that music is an inherently

social activity and making music together with others has been known to be beneficial to one’s

mental well-being (Clift et al., 2010; MacDonald, 2013). The focus on improvisation in live coding

often leads to it being compared to jazz improvisation (Aaron et al., 2011) and if good improvisation

is often referred to as a “musical conversation” (Monson, 2009, p.76), how can you have a good

conversation if you aren’t speaking the same language?

One of the main obstacles to ensemble live coding with Troop and CodeBank, among other

collaborative interfaces, is that all members of the ensemble must use the same language. There

are many different languages available and more are being developed every year. This reduces the

chances of knowing the same language as another live coder, making it difficult to find suitable

collaborators. This is not to say this cross-language live coding does not exist. In fact, members

of the pioneering Algorave act, Slub, have always worked together using their own individual

environments, only sharing some metric information over a network to perform together (McLean,

2015). However, from my own experience, and the discussion in Section 2.2.3, this practice does

not reflect the majority of live coding ensembles, which tend to work homogeneously with regards

132



to language.

While many skills in programming are transferable across languages, there are also different

programming paradigms which require the user to think differently about approaching the problem

they wish to solve. The constraints of the problem itself are often the main consideration when

choosing a programming paradigm or specific language and we have already seen that there are

several live coding languages based in either functional or object-oriented styles of programming

(see discussion in Section 6.1). Creative musical practice is not an exact science and there is no “one

size fits all” method for approaching it. The co-existence of these two programmings paradigms in

live coding is a testament to this and indicates that there will likely always be multiple languages

to live code with. In a more traditionally musical sense, there are also multiple ways to represent

musical notation; while the Western hemisphere may be used to the note and staff system, there are

a variety of musical and rhythmic representations from around the world including Indian tabla

drumming notation (Courtney, 1994) and the Japanese Kunkunshi notation style (Thompson,

2008) among others.

There are often technical issues when attempting to “play together” in a live coding context,

especially when musicians are using different programming languages. Most types of music require

performers to be in time with another, which, when live coding, often demands a level of technical

knowledge to set up if there is not a mechanism for doing so built into the software. For example,

FoxDot allows users to connect to a master clock, which measures the latency between machines

and sets and adjusts the tempo accordingly as long as the users’ machine clocks are already

synchronised using an existing protocol. However, FoxDot has no knowledge of how other live

coding environments, such as TidalCycles, handle timing and would not be able to synchronise

with it unless done manually by ear. Protocols for synchronising computer clocks have existed for

some time, such as NTP, but the flexible nature of tempo and metre add a level of complexity on top

of the basic clock synchronisation problem. Ogborn (2012) addressed this issue by developing a the

EspGrid software, which is an implementation of a peer-to-peer tempo synchronisation protocol

and does not require users’ machine clocks to be synchronised using NTP or any other means.

Each performer runs an instance of the EspGrid software on their machine, which works behind

the scenes to calibrate the relationship between the local machine clock time and the beat counter

run by EspGrid. Users can query their local EspGrid instance for information about the tempo

and current beat position in the metric grid to synchronise different music software, namely live

coding environments, together over a network. In his paper, Ogborn, discusses the idea of “helper

objects” that are built into the various pieces of music software to make it easier to communicate

with EspGrid, which already exist in popular software such as ChucK, Max, and SuperCollider

and can be easily developed for other technologies. In Polyglot, multiple live coding languages

and their respective EspGrid helper objects are combined into a single application that enables

133



collaboration while keeping all live coders tightly synchronised.

8.3 Phase 1: Initial Implementation

8.3.1 Development

Polyglot is the aggregation of several existing technologies for that were built for live coding;

collaborative text editing like that found in Troop, temporal synchronisation through EspGrid,

and audio generation from various live coding environments (typically using SuperCollider in some

capacity). Figure 8.1 is a network diagram for a standard Polyglot set-up that outlines how the

various facets of the system are connected. At its core, it is a collaborative text editor application

similar to Troop that uses a client-server model to allow users to send keystroke and mouse-click

information over a network. Unlike Troop, Polyglot allows users to edit multiple text buffers at

the same time within one window. Each buffer corresponds to a different live coding environment

that Polyglot sends code to in order to generate audio. An instance of the EspGrid application

runs in the background on the client machines and calculates metric information using its own

synchronisation algorithm. Each live coding language uses this information to set up its own

time-keeping mechanisms and generate music in time with the others.

EspGrid

SuperCollider

PolyGlot 
Server

FoxDot

PolyGlot
Client

SuperCollider

TidalCycles

PolyGlot
Client

SuperCollider

PolyGlot
Client

PolyGlot
Client

EspGrid

EspGrid

Figure 8.1: Polyglot network diagram.

The Polyglot interface can communicate with three live coding environments; FoxDot, TidalCy-

cles, and SuperCollider. SuperCollider is made up of a live coding language, sclang, and an audio

134



engine, scsynth, and the latter is utilised by both FoxDot and TidalCycles to generate sound.

Therefore SuperCollider is required to be running on any machine that generates audio but this

complicates proceedings when running multiple live code languages on the same machine. Audio is

generated in SuperCollider when it receives OSC messages with unique ID numbers from FoxDot

and TidalCycles but any message received with a duplicate ID number is discarded. Furthermore,

running multiple interpreters simultaneously consumes a large amount of computing power and

can overload the SuperCollider audio server, and is usually best avoided.

The set-up in Figure 8.1 shows each live coding interpreter being run on a different client

machine and one client not running any interpreter at all. Polyglot gives users the flexibility

to only run the interpreters they need to on their own machine. Distributing the audio across

multiple computers in this way enables the maximum amount of computing power to be allocated

to each language and alleviates the issue of duplicate message ID numbers. Upon starting the

application, users are greeted with a login window (shown in Figure 8.2) that lets them select the

“active languages” they wish to run on their local machine. Users participating in the performance

without running an active languages can interact with a “dummy interpreter” that will send code

to their co-performers without executing it locally.

Figure 8.2: Login window for the Polyglot interface.

As an application that has much of the same functionality as Troop, it makes sense to re-use

the same code-base instead of writing the Polyglot software from scratch. Polyglot extends the

Troop software by using multiple text buffers, which also requires the server application to host

multiple instances of the operational transformation server-side program (see Section 5.4.1 for a

discussion on how this works).

The client application uses one text buffer for each interpreter, FoxDot, TidalCycles, and Su-

perCollider, which are also accompanied by a console for displaying information and error messages

135



Figure 8.3: Photo of Polyglot being used with 4 users. Photo by Lucy Cheesman.

being returned by each language. Synchronisation of the audio is handled by the EspGrid soft-

ware, which runs in the background as a daemon program and has to be started manually by

the user before starting Polyglot. EspGrid automatically finds other computers on the network

running the program and then agrees on a metric grid, which is accessible through its API. Each

language requires a mechanism for accessing this information that Ogborn calls “helper objects”

and are “necessary and not hard to create”. Ogborn himself has developed a helper object for the

SuperCollider environment, and has also helped TidalCycles developer, Alex McLean, create one

for the language. As part of this project, a helper object for the FoxDot environment has also been

developed that regularly requests the tempo and metric grid from EspGrid and updates FoxDot’s

scheduling clock accordingly if it has changed. This proved to be a difficult task as EspGrid did

not work as expected on the Windows operating system, which is used by all members of TYPE.

However, Ogborn was very willing to listen to feedback and improve the program accordingly over

several weeks of correspondence, updating, and testing. The EspGrid software does work best if

all users share the same version of operating system but perhaps this slight pitfall can be improved

in time and allow any live coder, regardless of their set-up, to collaborate.

8.3.2 Practice

Rehearsal session, Sheffield - 07/05/19

Video recording: ch8 1-Rehearsal-07 05 19.mov.

See Appendix A.11 for performance description.

136



The first recorded use of Polyglot came at a rehearsal prior to an upcoming performance at the

Festival of Algorithmic and Mechanical Movement (discussed in Section 8.4.2). Due to prior

commitments, only Laurie and myself were present at the rehearsal but we managed to set up

and synchronise Polyglot correctly. Both Laurie and I are most comfortable using the FoxDot

environment but have some experience with TidalCycles and SuperCollider’s audio synthesis pro-

gramming. We did not, however, have proficient skills in SuperCollider’s pattern library, which is

used for scheduling note events, and decided to approach the rehearsal slightly differently to how

Polyglot was intended to be used. Instead of separate audio streams connected to each text buffer,

we decided to use only two, FoxDot and TidalCycles, and to use the SuperCollider text buffer to

create a SynthDef that we could trigger from the other environments. This allowed us to live code

in a way that we had never done before. It should be noted that the recording for this rehearsal

is incomplete as the camera ran out of battery, but both Laurie and I were so engrossed in what

we were doing that we failed to realise this for over thirty minutes.

Figure 8.4: Screenshot from a Polyglot rehearsal recording.

8.3.3 Evaluation and outcomes

The music we produced in this session was rooted very much in minimalism, although this was not

explicitly our intention. By using SuperCollider as an interface to control timbral parameters of the

music we shifted away from our usual creative process of writing algorithmic notation for multiple

pre-written synths to exploring the use of a single texture embedded in repetitive rhythmic and

melodic structures. The constraint of only using one SynthDef forced us to think much more about

the sound as opposed to form and prompted us to produce music that warrants a deeper level of

listening in order to follow the slow transformation of the synth’s qualities.

Both Laurie and I agreed that this was a completely new way of live coding for us and was

137



only really made possible because of the Polyglot interface. Being able to interact with the music

at both the structural level (through FoxDot and TidalCycles) and the timbral level (through

SuperCollider) at the same time was extremely engaging and doing so collaboratively made it even

more entertaining. As mentioned above, we were so engrossed in this style of music creation that

we did not realise the power had run out of the camera for over thirty minutes. It was new and

exciting and powerful. Neither Laurie nor I consider ourselves to be sound artists and would not

rate our audio synthesis skills very highly, but this was a very fun and engaging way to experiment

with synthesis and learn how changes at the oscillator level effect the overall music. This was a

completely unintended outcome from the Polyglot project but has definitely opened the avenue to

novel and fruitful collaborations between different styles of live coding.

There were still some issues with the interface that could be improved, however. With each

performer hosting a different live coding language, it was not possible to get feedback in the console

for the language not being hosted on the local machine. If I was to print out the list of available

SynthDefs in FoxDot, I would have had to look at Laurie’s screen to see the console output.

Similarly, if Laurie wrote TidalCycles code that contained syntax errors, he wouldn’t know this

until I saw it in the console on my screen and told him. This would be an even greater problem

to those connected to the server and not running any live coding languages on their machine as

they would receive no feedback in the console whatsoever. It would be a great addition to give

users the ability to run live coding environments locally without synchronising with the EspGrid

software so that they could receive better information from the respective live coding language.

8.4 Phase 2: Language-Specific Feedback

8.4.1 Development

One of Donald Norman’s rules for user-centred design is “use technology to make visible what

would otherwise be invisible, thus improving feedback and the ability to keep control.” (Norman,

1998, p. 192). In the rehearsal session in Phase 1, the feedback was limited to only the locally

hosted language and not the others. This makes it difficult to identify syntax errors or see key

values such as tempo or scale. To combat this problem, a feature was added to Polyglot that

allows users to select languages they wish to be “active” on their computer but not generating

audience-facing sound output.

This is achieved through the login interface, shown in Figure 8.5, with the use of tick-boxes

prior to the main interface being opened. Languages with the the “sync” option left un-ticked will

not run any code required to connect to the EspGrid. This is not a perfect solution, however, as

the communication between Polyglot and SuperCollider takes place over OSC with no means of

138



Figure 8.5: Updated login interface for Polyglot

retrieving the program’s response. Therefore it is impossible to provide users with feedback from

SuperCollider from within the Polyglot window. In spite of these issues, it is still a step in the

right direction for the design of the interface.

8.4.2 Practice

AlgoMech Festival, DINA Club, Sheffield - 18/05/19

Video recording: ch8 2-AlgoMech Festival-18 05 19.avi.

See Appendix A.12 for performance description.

The Festival of Algorithmic and Mechanical Movement, i.e. AlgoMech, takes place each year in

Sheffield and usually hosts an Algorave evening. TYPE were invited to perform and we decided

we would use the Polyglot interface in our performance. Unfortunately, only one rehearsal with

Polyglot involving all the members of TYPE took place before this event and not everyone felt

comfortable using multiple languages during a single performance, especially with regards to editing

SuperCollider SynthDef code. Instead of combining the multiple languages together into a unified

performance style, as done in the rehearsal with Laurie and I discussed in Phase 1, we decided to

approach the performance from a more pragmatic viewpoint.

The motivation for Polyglot’s development stems from the desire to remove the barriers to

collaboration that are created as a result of the many different live coding languages that are

available. Although it does provide a novel way to interact with, and combine, multiple live coding

languages into a single performance, it exists primarily to allow two or more users to use different

live coding languages from within the same interface and it should be used as such as part of its

user testing “in the wild”. For this reason we decided to use the languages we felt comfortable

using for the majority of the performance and then try a more experimental approach towards the

end by incorporating the SuperCollider language and editing the SynthDef source code.

139



8.4.3 Evaluation and outcomes

In many senses this was a difficult performance; there were issues with the projector and laptops

freezing and this made it difficult to find the level of group flow that we usually achieve when

performing together. We had some trouble keeping audio synchronised at a tempo other than

80bpm (EspGrid’s default tempo) which was frustrating as our Algorave performances tend to fall

under the umbrella of techno music and we would often set the tempo to around 128bpm. To pick

up the energy level, though, we found we could play everything at double speed so the music felt

like it was being played at 160bpm, producing fevered drum and bass sections. It was great that we

were able to adapt to this constraint at times but it did push us out of our comfort zones for much

of the performance unfortunately. We were also not able to make the most of the SuperCollider

interpreter and spend time developing textures in the way Laurie and I did previously, which was

a real shame but this was an Algorave performance at the end of the day and we were still able to

combine TidalCycles and FoxDot well to produce a set of improvised algorithmic dance music.

It is difficult not to focus on the technical difficulties that were encountered during the perfor-

mance, most notably was Innocent’s unresponsive editor. He was unable to enter characters as the

interface froze on more than one occasion. This issue was highlighted by the fact that his was the

laptop connected to the projector, which displayed all of these problems to the audience. This is

likely caused by the inefficient implementation of the operational transformation algorithm used

to display updated text. In Polyglot and Troop, the entire contents of the text buffer is deleted

and replaced whenever it is updated. Consequently, the entire contents needs to be coloured every

time a character is added or deleted and this takes longer as the total number of characters in

the buffer increases. This process seemed to be manageable when only using a single shared text

buffer in the Troop interface but the performance suffered greatly when three text boxes were

being updated simultaneously. This was likely the cause of both the freezes and the location of the

the text cursors to update incorrectly (as shown in Figure 8.6). This brings to mind the problems

that occurred with Xerox’s pioneering development of the mouse and GUI desktop; “the benefits

[...] were completely outweighed by the slow response speed. The display could not always keep

up with the typing.” (Norman, 1998, p. 181). Just as it was the case for Xerox, the core idea

behind Polyglot was not necessarily bad but the engineering solution used did not do it justice.

It does highlight, however, that computational performance should be taken into account when

designing more complex software for making music. There are two possible ways of addressing the

problem of Polyglot’s poor performance: one is to completely re-implement the source code using

a programming language faster than Python and the other is to improve the current algorithm

being used. Given the amount of work it would take to achieve only a possible benefit, the latter

appears to be the best choice of action. Two potential ways of improving the Polyglot algorithm

140



are as follows:

• Update the contents of the text boxes not in use by the local user at a much slower rate,

reducing the frequency of deleting and replacing its contents.

• Instead of replacing the contents after each update, update the text box at the location of

each character insert/delete.

The feedback system during this performance was not perfect either, again for two reasons.

The first is that users have to install all of the software for which they want to receive feedback.

If two users who each have a different language installed on their laptop wish to use Polyglot to

play together, they would have to install the other language in order to get information printed

to their consoles. A remedy to this would be to send the feedback information to any users that

are not currently running that language. This way, a user who does not have FoxDot installed

could run print(Clock.bpm) to view the tempo from within the FoxDot text box and see the

results on their laptop. There is still an issue with this proposed feature, as there is still no way of

receiving feedback from the SuperCollider interpreter over OSC. However, a command-line version

of SuperCollider’s interpreter, sclang, does exist and can be activated as a Python subprocess.

This opens the possibility of combining the two communication channels into a single process that

is accessible to Polyglot. The sclang process could be started from Polyglot, which would listen

for code input over OSC, and output any feedback into the Polyglot console.

Another unfortunate aspect of the performance was linked to the synchronisation of the two

sound-producing laptops. In the sound check several hours prior to the performance we were able

to connect to EspGrid successfully and change tempo without the two computers going out of sync.

However, this was not the case when it came to the live performance and we were stuck on 80 bpm

for the entirety of the performance. This was frustrating as we were performing at a dance-music

event and tempo is important when setting a beat. It was still possible to play everything twice

as fast to achieve the feeling of a 160bpm tempo, but this was faster than what we would have

liked to use. One alternative to crossing our fingers and hoping EspGrid will behave would be

to use just one laptop for audio output as the EspGrid will synchronise all local languages very

effectively as there is only one machine clock being considered. The downsides to this would be

the lack of feedback to other users not hosting the languages (although remedied by the additions

discussed above) and the computational strain put on one computer. The latter may lead to high

CPU usage and crashes in SuperCollider but it would solve many issues with synchronisation and

is an avenue worth considering.

Given the technical difficulties, the performance went well but the multiple disruptions made

it difficult to find a sense of flow and there were several moments where the music stagnated for

minutes at a time while these technical issues were being addressed. For example, the opening

141



Figure 8.6: Screenshot of the AlgoMech performance with the blurring text cursors.

few minutes of the performance consisted of a simple drum beat and repeated baseline groove.

Although repetitive, the combination of percussive sounds from TidalCycles and synth textures in

FoxDot complimented each other well. As the performance went on we were able to embellish the

music in the higher registers and managed to hit a good jam centered around the synth baseline.

As the pitch of the baseline started to change more frequently, the default major scale didn’t match

the darker, grittier tones we were creating with and we moved into a minor scale. This transition

took place mainly using FoxDot; the ability to adapt to something we didn’t like proved to be quite

difficult when not using an unfamiliar language. Once we had made the transition, we were able to

add more percussive elements using TidalCycles with more confidence. With the added confidence

came more succinct and varied musical elements. The fevered drum beats created in TidalCycle

combined well with the dark synth riff’s being generated using FoxDot to produce some great

moments of industrial drum ‘n’ bass. This was a performance that centered around confidence;

perhaps working with more simple pitch patterns gave us more confidence to work with textures

more freely and also the ability to do so using a language we were less familiar with. It is hard

to feel confident when you are standing in front of an audience with your computer freezing, and

that likely also contributed to the more ‘stagnant’ sections of music that occurred alongside the

technical disruptions.

As we attempted to use the SuperCollider editor later in the performance, we were unable to

debug errors and struggled to make the most of it’s ability to work with the oscillators in more

fine-tuned detail. We did, however, manage to experiment with the sound textures using FoxDot

but it would have been interesting to hear the effect of a live manipulation of a SuperCollider Syn-

thDef, given the integration with both TidalCycles and FoxDot. Even with the number technical

difficulties, though, I really enjoyed using TidalCycles in a performance. I don’t have the confi-

dence in my abilities with the language to perform solo with it but using it alongside the ensemble

142



and within the context of Polyglot where I can also use FoxDot made it easier and gave me the

confidence to try new things. I knew Lucy would be able to help with syntax errors and that the

group would be able continue to make music if I didn’t know what to do. I think with time and

practice the confidence in my abilities with TidalCycles and SuperCollider would improve through

using Polyglot as a platform for sharing knowledge and group learning.

8.5 Conclusions

8.5.1 Personal reflection

Polyglot is a much more technically complex piece of software compared to Troop and this was,

ultimately, its undoing. In theory, Polyglot allows live coders to collaborate regardless of whether

they use the same language but incorporating three text buffers into one editor perhaps proved

overambitious in practice when using laptops with limited resources. There were times, particularly

when one or more text buffer contained a large amount of text, when keyboard inputs would take

upwards of 5 seconds to be processed. During the performance at Algomech Festival, Innocent even

found that characters would take 30 seconds to a minute to appear on his screen. Donald Norman

notes that for many pioneering technologies this sort of problem is not unusual; the potential

power of the system is not matched by the technology available and so does not deliver results

with adequate performance.

The ambitious nature of the project led to the creation of an exciting and novel tool but,

for Polyglot, “the spirit was willing but the implementation was weak” (Norman, 1998, p. 181).

Troop was created using Python to better integrate with FoxDot and much of its code was re-

used in developing Polyglot. Python is not an efficient language and as applications written in

it become more complex, the performance decrease becomes more noticeable. The engineering

solution used needs to be informed by the complexity of the system and, given what I know now

about the complexity of the Polyglot system, I would have opted to write the program in a language

optimised for speed, such as C++.

Polyglot was originally designed as a means for multiple live coders to collaborate together in the

highly effective way that was facilitated by Troop, even if they did not know the same live coding

language. However, after the success of the experimental rehearsal session that took place with

myself and Laurie (described in Section 8.3.2), we felt that Polyglot also afforded us the opportunity

to showcase a level of multilingual virtuosity in a performance. Unfortunately, each ensemble

member had varying levels of confidence with each language and, coupled with the technical issues

described above and in the previous section, this resulted in a very disjointed performance. The

alternative approach to the performance would have been to return to Polyglot’s original purpose

143



Figure 8.7: Polyglot interface showing feedback on an error in the SuperCollider tab.

and to collaborate using only the language that each performer was most comfortable with, but that

would have resulted in Lucy using TidalCycles by herself and the rest of the group collaborating

within FoxDot. Without utilising SuperCollider as a manipulator of sound synthesis algorithms,

then any performance, given the context of this ensemble (a group of live coders that regularly play

together only using FoxDot), would have felt closer to a technical demonstration than a musical

improvisation. The true potential of Polyglot will only be exhibited if all three languages can

be combined together in a structured and well-thought out piece or if it used as a facilitator of

collaboration for live coders of different languages. The AlgoMech performance in Section 8.4.2

was the final performance scheduled as part of this research project and, unfortunately, organising

another that involved other live coders using SuperCollider and TidalCycles was not feasible within

the available time constraints of this PhD. This is partly to blame on my own shortsightedness as

I prioritised collecting observational data of the same ensemble using a new interface over utilising

the software in the context for which it was designed.

With regards to the research questions posited in this thesis, Polyglot provides some interesting

potential answers. Addressing the first question, “how can collaboration in ensemble live coding

be better facilitated through performance systems, such as language, and interface design?”, it

seems that cross-language collaboration is possible, and can be very fruitful, when using Polyglot.

However, just as it was the case in Chapter 6, there was a disparity in the level of technical knowl-

edge between ensemble members that, when combined with a resource-intensive and unresponsive

program, created a difficult performance environment. There is definitely potential for Polyglot

to be used as a powerful tool for cross-language collaboration, particularly when utilising Super-

Collider’s relationship with FoxDot and TidalCycles as their sound synthesis engine. However, for

Polyglot’s potential to be fully realised, it will have to be run on more powerful machines in its

144



current state or re-written in a more efficient language.

Much of Polyglot’s functionality is identical to Troop, such as the coloured fonts that help

audiences identify contributions, but is spread over three separate text buffers. This is similar to

the set-up in the Extramuros interface and so suffers from the same issues; the creative processes

at play are separated and difficult to see from the audiences perspective. While it may seem

that separating the coding activity into three separate text boxes may obfuscate the ensemble’s

interactions, the coloured fonts in Polyglot are consistent across the text boxes and audiences and

performers can still see who has written what and where.

8.5.2 User evaluation

As with previous user evaluation sections, the concepts of “trust”, “risk”, “flow”, and “immediacy”

were discussed in an interview with members of TYPE regarding the Polyglot interface. When

asked about the level of trust in Polyglot to take risks during performance, Lucy made an interesting

point about how her risk-taking was not only constrained by the interface, but also about the

performance setting itself:

That was a high pressure gig situation, like, we were on late and sandwiched between

two really like high energy, like, dance floor acts that obviously makes you feel like you

have to bring that energy as well and we were all, like, tired and a bit overexcited, like

me personally I can barely even remember it [...] So I was just like ‘play it safe’ and

we’d had issues in practice and stuff not sounding good between Tidal and FoxDot so

I was just like ‘play it safe’ in that gig 100% and that was partly the software but also

partly the context.

She went on to elaborate that she felt that we were not as well prepared for the performance as

we should have been and we probably would not have performed using Polyglot if it there wasn’t the

need to collect performance documentation for this research. She did go on to say that “considering

the stress levels of that gig, it actually sounded pretty good, like all things considered. There was

a lot of pain going on”. Part of that “pain” was regarding the slow performance of Polyglot, which

dramatically affected the feeling of immediacy for the performers:

Innocent: “Well for me, umm, I had issues with, sort of, lags, umm, it would start out

OK but it gets to a point where it’s so slow and everything is taking about 30 seconds

to show up on the screen after I type it that it- it’s just not working at all, so that’s

the only issue that I had but you guys didn’t seem to have that problem.”

Lucy: “I didn’t have it as bad as you but it was sometimes, like, 20 seconds, like,

everything would just stop and you’d have to wait for it to refresh so that’s obviously

challenging”

145



Have to wait 20-30 seconds to be able to express your ideas in the code is frustrating and

does not make for a successful interface for musical improvisation. This lack of immediacy in the

interface also disrupted the ability to achieve flow during the performance. Lucy stated:

I think, like, that the fact that it was so slow to respond made that [achieving flow]

quite challenging. I would say also, I had a lot – because I was sort of thinking about

the Tidal window more – I lost a lot of the awareness of what you guys were going,

which, like, is just a bit jarring for me sometimes when you’re just like ‘oh where’s

that sound come from?’ but then I realise Innocent’s written a whole new Player and I

hadn’t even noticed he was typing it, like, which happens sometimes when we use Troop

but I think it was more distinct. For me that is an important part of the flow; that

awareness. [...] It’s a completely different way of working because you’ve got different

languages and in terms of, like, the interactivity and the flow and the collaborative

elements it’s harder. [...] Switching between languages is, like, just makes your brain

short circuit a little bit sometimes

Not only did Polyglot’s slow response speed affect the group flow, but the increased cognitive

load of having to think about multiple languages and multiple text buffers made it difficult to

achieve flow during the performance. Laurie made a good point about the arrangement of the text

boxes, that we were “just so used to looking just vertically at the lines within that window”. Per-

haps an alternative interface layout would have improved the ability to keep track of co-performers’

actions and maintain a level of flow in the performance. The difficulty of using multiple languages

simultaneously was noted by the group, but this did not deter them from seeing the creative

possibilities that could be available from further practice with the interface:

Lucy: “I think inherently it’s got huge amounts of potential to be an even more exciting

tool than Troop but I just think it- it needs that time investment from us and we haven’t

been able to give it that yet.”

Laurie: “Bit more of a learning curve, definitely, because you need three times the

expertise”

Lucy: “Yeah and a completely different way of thinking about the music that you

make”

Innocent, in particular, found having multiple languages present in the same interface difficult

to cope with and actually felt that the presence of code he did not fully understand was detrimental

to the practice.

Innocent: “Umm, there isn’t any benefit to, umm, to that tab [TidalCycles] because I

don’t understand it, umm, but I think not being able to understand what’s going on is

146



also a bit of a barrier. Because if I’m- if we’re all using FoxDot and, umm, and we’ve

got our players and got our percussion I can look at what’s going on and understand,

umm, where the sound is coming from, umm, whereas if the percussion is coming from

Tidal then I don’t really understand what’s going on or where the sound is coming

from, umm, I don’t know it just feels, I don’t know...”

Ryan: “Is it exacerbated by seeing code that doesn’t make sense to you? Is it more

confusing than if you were just listening and couldn’t see the code?”

Innocent: “Yeah I suppose. If there was this percussion bit going on and I wanted to

create another percussion bit, if it was in the same language I could see how the other

one is built and then I can build mine to be in line with that. Umm whereas when I

don’t know how it’s being created in Tidal then I can’t. [...] It makes it difficult to

create a new line of code to sit nicely alongside what’s already there”

Lucy: “It’s an added layer of complexity and I would say that even knowing both

FoxDot and Tidal, that was hard I think there was also like, I think the sounds are

really different in Tidal, like it’s got a really different sonic character. That means it’s

really hard to get things like to work nicely together.”

This “barrier” created by the use of incomprehensible code from other languages draws simi-

larities with the user evaluation in Chapter 6, in which members of TYPE felt that some FoxDot

syntax was overly complex and its use in performance only by some members did not foster a sense

of true collaboration. This could also be the case here where only some members of the group are

able to effectively code in the other available languages in Polyglot, resulting in some ensemble

members feeling ostracised and an un-collaborative environment. Furthermore, the each language

has a different “sonic character”, which makes it even more difficult to create complimentary music

across the different text buffers. Innocent did suggest that more uniformity, such as using the same

set of samples, may have helped and a similar sentiment is shared by the others regarding visual

information during performance:

Innocent: “If you were able to use FoxDot samples in Tidal then, I guess, I would also

be able to see at a glance... a bit of a recognition and I could see where that sound is

coming from”

Ryan: “So the visual aspect is important for collaboration?”

Lucy: “I would say definitely, for me I’m, like, not a great musician. If we were sat

there playing instruments I would find it much harder to be like ‘ohh it’s in this key’

[...] Just being able to look and be, like, ‘right, Ryan’s using these numbers, I’m gonna

use those numbers and it’s gonna be the same’. It’s much easier for me.”

147



While the visual element of collaborative interfaces is beneficial, it is also important that all

members of the ensemble are able to understand its contents to ensure the most fruitful collabora-

tions and help cultivate a feeling of group flow. My intuitions were that the rehearsal session with

Laurie was more successful that the live performance at Algomech Festival, and this may have, in

part, been due to the similar levels of technical knowledge that we had in both the TidalCycles

and SuperCollider languages. I asked Laurie what his thoughts on that session were:

Laurie: “It was interesting just being able to tinker with the core generator of the

sound. It’s something that I really really enjoy – I don’t understand it nearly enough

to do that freely and have that translation process where I can think of the sound and

modification and put it straight down.”

Lucy: “Yeah because there’s another layer because you need to understand, like, sound

synthesis first principles basically don’t you?”

Laurie: “Yeah and then work out how that’s represented in the SuperCollider code,

which is another thing, erm, but I really enjoyed using the same SynthDef in both

FoxDot and Tidal because, again, that kind of – that has that unification we’ve been

talking about. It actually did happen, and what I was saying about changing one thing

and it trickle down to all the different, erm, players that was incredible”

Lucy: “Yeah that’s an area where I think there’s huge amount of potential with Poly-

glot”

Laurie also felt a similar level of satisfaction in that session and even described the experience as

“incredible”. Using the same SynthDef in both FoxDot and Tidal also helped address the problem

with clashing sonic characters of the two languages and Lucy recognised this a potential strength

for the Polyglot interface for the future.

8.5.3 Final thoughts

One of the most important points to make is that Polyglot was never truly used for its intended

purpose over the course of this chapter. It was designed as a collaborative interface to allow live

coders to collaborate at deep level regardless of the language they wished to use but was utilised

in practice as a demonstration of multilingual live coding virtuosity. Unfortunately, TYPE are not

yet virtuosos in more than one live coding language and the combination of multiple languages in

this style of performance context was actually detrimental to performers’ experience, disrupting

both the feeling of group flow and collaboration. Ideally Polyglot would have been also have been

used in practice in a context in which three users each used a separate language to play together,

synchronised using EspGrid, but, due to time constraints, this was not possible. However, it is clear

148



that there is potential for Polyglot to also become a tool for cross-language collaboration at a deeper

level than just temporal synchronisation and shared code; it can also unify the languages’ “sonic

characters” by sharing SuperCollider SynthDefs in both FoxDot and TidalCycles and editing them

live in the SuperCollider text buffer. This technique was briefly explored in a rehearsal session and

the process of combining multiple languages was described as “incredible” by Laurie, suggesting

an exciting possible avenue of creative interaction that could be pursued in future. However,

Polyglot did suffer from poor performance; in certain situations characters could take up to 30

seconds to appear on screen after being typed and users’ cursors would appear to lag and blur.

This made performing with the interface difficult and slow and there was little sense of immediacy.

Perhaps another implementation of the software built with a faster programming language than

Python would be able to handle the functionality better but it is unlikely to be used effectively in

a performance setting in its current state, although it does provide the foundations for a promising

method for cross-language live coding collaboration.

149



9. General discussion and conclusions

9.1 Introduction

The main aim of this research was to produce software that explored aspects of both ensemble

performance and computer programming and examine how they are learned, used, and adapted

through practice-led research. To achieve this, two research questions were posited based on the

rationale outlined in Section 3.2, and are listed below:

1. How can collaboration in ensemble live coding be better facilitated through performance

systems, such as language, and interface design?

2. How are collaborative interfaces used to reveal the creative processes at play in ensemble live

coding performance?

To answer these questions, four interfaces, including a language, for collaborative live coding

were developed and iteratively refined over the course of this project. Each interface was an

exploration into an aspect of ensemble interaction within the context of live coding, which has the

unique characteristic of using text as part of its performance medium. Unlike most other forms

of music-making, this text can be used to explicitly communicate information between performers

and the audience. The line between verbal and nonverbal musical communication is often blurred;

code is often self-descriptive, which allows the musical intention to be directly interpreted provided

you understand the basic syntax. The way technology mediates this communication plays a crucial

role in how a live coding performance is both delivered and received, and this notion forms the

basis on which this PhD research has been conducted. This chapter presents a short overview of

the timeline in which this research was conducted before discussing some final reflections on the

work and addressing the main research questions followed by my closing thoughts.

9.2 Timeline

Figure 9.1 is a Gannt chart outlining the development of each interface starting in March 2017 and

ending in June 2019. Each asterisk also marks the location of a recorded rehearsal or performance

that has been included in this thesis. The chart illustrates the iterative approach used to develop

the interfaces, with feedback and reflection being used to inform the subsequent design. While

it may seem that there were roughly the same number of performances with each interface there

were closer to 15 performances, and many more rehearsals, that took place using Troop during this

150



time. Troop and FoxDot were developed together over a 27 month period whereas the duration

of the development and practice for CodeBank and Polyglot were just 9 months and 3 months

respectively. Although it appears that a disproportionate amount of time was spent working on

Troop, it should be stated that large sections of the time associated with its development were spent

writing code that were reused in the subsequent interfaces. For example, TYPE had no public

performances between April and November 2017 while the operational transformation algorithm

was being implemented, which was re-used as part of the Polyglot software. During these periods,

however, TYPE did continue to rehearse together and started to develop chemistry as an ensemble

through using Troop. As will be discussed further below, this could be a contributing factor to

the group’s reluctance to use subsequent interfaces as we developed an affinity for the style of

performing that we had developed, which became ingrained in the Troop software as time went

on.

03-17 04-17 05-17 06-17 07-17 08-17 09-17 10-17 11-17 12-17 01-18 02-18 03-18 04-18 05-18 06-18 07-18 08-18 09-18 10-18 11-18 12-18 01-19 02-19 03-19 04-19 05-19 06-19

Troop * * *
FoxDot * * *

CodeBank ** *
PolyGlot **

Figure 9.1: Project gantt chart. Each asterisk marks the occurrence of a
documented performance or rehearsal.

9.3 Discussion

When I started this journey I approached it from mainly an engineering perspective; I asked

myself “how do I design the best user interface for collaborative live coding?” and I set about

developing software that I thought would make the process as simple as possible. I thought that

if it was made easy then of course the collaboration would be easy also. While there exists a large

body of literature on HCI for computer supported co-operative work, the unique blend of musical

performance and computer programming makes live coding difficult to contextualise in this field.

The variety of network music systems discussed in Section 2.2 is a testament to the breadth of

interfaces used for collaborating in computer music. Music – even electronic music – is about

people at its core and musical collaboration is about people’s ideas working together. In the end

this journey has been primarily about gaining tacit knowledge about how to improvise with other

people while trying to create a digital platform that helps facilitate that process. I have come to

learn that there is no one-size-fits-all “secret recipe” to creating an interface for collaborative live

coding and that there is no substitute for practice and chemistry when creating music.

This is not to say that the software I designed had no effect on the music. Just as an instrument

will affect how music sounds, the medium we use to make music together will affect how it feels

151



to create it. If you are in a state of flow and the software doesn’t behave as you would expect it

to – perhaps it is slow to respond or enters characters in the wrong order – then that flow state

can be disrupted. These are issues with performance and implementation as opposed to flaws in

the software’s design, but in a domain that is embedded in technology as much as live coding is

they do need to be considered when looking at the final product. In Section 8.5.2, for example

it is clear just how much Polyglot’s poor responsiveness hindered achieving flow in performance

from both Innocent and Lucy’s comments. However, the impact of the interfaces on performance

was not always negative. In a performance style that requires performers’ eyes to be locked on

their screens, bespoke collaborative software does help with the sharing of information and ideas.

Without the ability to see co-performer’s actions it is difficult to share and build on each other’s

ideas; a key part of group improvisation. Being able to do this in real-time through the Troop and

Polyglot software enabled performers to inform their own creative decisions in the same way an

improvising jazz musician might infer creative intent through physical gestures (Seddon, 2005).

While the development of the collaborative interfaces has been a key focus of this research, they

are not works of art in themselves; it is the musical performances created using them that are, in

fact, the creative artefacts. Through these performances I have developed new tacit knowledge in

how to collaborate as a group of live coding improvisers, which has not only provided me with

better a understanding of my own practice but also guided the design of subsequent collaborative

interfaces. But, if these interfaces are not works of art, then it begs the question “what is the role of

the collaborative interface within a musical performance?”. Are they instruments in and of them-

selves? Are they improvisational compositions similar to Cage’s Musicircus? Perhaps something

in between? As part of his “frameworks and affordances” model, Mooney (2011) separates tools

for music-making into two categories; physical and conceptual frameworks. He defines a frame-

work as “any entity, construct, system, or paradigm – conceptual or physical – that contributes

in some way to the composition or performance of music” and “any single framework can also be

regarded as a collection of independent, smaller, frameworks”. Physical frameworks are the inter-

actional tools used to create or compose music, such as instruments and manuscript paper, as well

as recording equipment and music software like Sibelius or SuperCollider. Conceptual frameworks

are the intangible tools used to structure music and performance, such as notation, scales, and

free improvisation. Contextualising the practice of live coding using this model, we can define text

editors and live coding languages separately as physical and conceptual frameworks respectively,

but we can also combine these into the singular entity of the “live coding interface”. We could even

go as far as to include the keyboard and mouse as physical frameworks that contribute to the live

coding interface framework. The affordances of a framework exist along a spectrum of how easy

they are to actualise by the user. For example, a live coding interface typically affords the ability to

type characters onto the screen but it is more difficult to arrange those characters into valid syntax

152



for generating music. Harder still is the ability to collaborate with another performer without the

addition of some networking functionality to the interface. A collaborative interface offers such

additional affordances by embedding network communication within its core functionality. High-

lighted by Figure 9.2, the process of ‘sharing code and/or data’ becomes a much easier task when

using a collaborative live coding interface. Arguably, it makes it easier to share information than

actually generate music using code. As a consequence, this unlocks other conceptual frameworks,

such as group creativity, that enable creative interaction with other musicians through sharing in-

formation that would be near impossible otherwise. A framework will often leave a “characteristic

fingerprint on the musical output” but does not predetermine it. Instead it provides a spectrum

of possibilities that can be explored through creative practice and the role of the collaborative

interface in performance is to extend these capabilities in an effort to enrich musical performance.

Easy

Impossible

Typing characters 
on a screen

S
pe

ct
ru

m
 o

f a
ffo

rd
an

ce

Easy

Impossible

S
pe

ct
ru

m
 o

f a
ffo

rd
an

ce
Generating music

Sharing code 
and/or data

Typing characters 
on a screen

Generating music

Sharing code 
and/or data

Live coding 
interface

Collaborative
live coding 
interface

Figure 9.2: Spectrum of affordance for a live coding interface framework and a collaborative live
coding interface framework. Adapted from (Mooney, 2011).

9.4 Addressing the Research Questions

1. How can collaboration in ensemble live coding be better facilitated through per-

formance systems, such as language, and interface design?

Before answering this question, the notion of what “better facilitated collaboration” is must first

be addressed. As has been discussed throughout this thesis, Gifford et al. (2017) provides a

framework for evaluating digital interfaces for creative improvisation, which includes assessing how

well an interface enables flow, provides a sense of immediacy, and allows its users to take risks.

To evaluate a digital interface for facilitating collaborative improvisation the same properties have

153



been examined but in the context of how well they are achieved by a group of users. Good

collaboration occurs when performers are able to experience a sense of group flow, immediacy in

communication as well as human-computer interaction, and trust in both their co-performers and

the interface to take creative risks in live performance.

By allowing users to write code together and also communicate directly within a single, shared

text buffer, the Troop interface facilitated collaboration at a deep and meaningful level. As one

survey respondent (A4) said, “I think about things differently when collaborating with others –

with troop you can see how other people are developing the code which in turn influences the

decisions I make”. Being able to see co-performers’ coding activity is an important aspect of

TYPE’s own performance practice, as Lucy mentioned in Section 5.6.2, it allows her to “feed off”

her co-performers and gives her visual information to make informed decisions about what musical

element to change. Furthermore, working on the same body of code as a group allows for errors

to be addressed faster using “four pairs of hands”, as Laurie said (p. 67).

Troop’s shared console also notifies all ensemble members of error messages immediately. To

resolve errors while working independently, live coders would have to communicate technical infor-

mation verbally, which can be an arduous process. By sharing both code and information about

the error, Troop gives users immediate access to the tools required to fix errors and continue with

a performance. Dealing with errors is an important part of live coding practice and Lucy believes

“it’s easier to stay in the flow and to keep things going with Troop compared to playing solo”

because of the trust she has in her co-performers to “help fix it and recover” (p. 67). This trust

was built up over a period of months and was mostly achieved through regular rehearsals using

the Troop software. Troop has been extremely beneficial to organising these rehearsals too; the

ability to play together over the internet has enabled the ensemble to rehearse more frequently and

develop a level of trust and synergy much quicker than if they had had to rehearse in person every

time.

Where Troop helped facilitate live coding collaboration through the medium of text, FoxDot

was also able to enable collaborative practice through the medium of data. The FoxDot player-key

syntax simplified and accelerated data-based collaboration, such as sharing patterns of numbers,

between performers using Troop. While our synergy as an ensemble improved through regular

rehearsals, using the player-key made the process of collaboration “easier” and helped create more

“unified” and “coherent” music (p. 98), as discussed in Section 6.5.2. During the development of

FoxDot’s collaborative syntax features it became clear that programming languages are not the

most intuitive interfaces. Using representations of real-world actions, such as pitch accompaniment,

were more useful in practice than theoretical programming constructs, such as lambda functions,

even though they offered more powerful and flexible control over musical sequences. When more

complex syntax was utilised during performance, it was only ever done so by a small subset of the

154



ensemble, which was deemed “less collaborative” by the others (p. 100). Lucy also felt that using

simple code was “more important when you’re playing in a group because you need to be much

more tuned in to what everyone else is doing” (p. 100). Being able to see your co-performers’ code

is one thing but it is also important to understand it in order to use that information to inform

your own decisions. Using simple and easy-to-remember syntax, like the player-key data type, also

helped improve performers’ confidence in taking risks and reduced the time required to “translate”

musical ideas into code (p. 101), which also gave performers a better sense of immediacy in the

software.

It could be argued, however, that using simple syntax lowered the level of skill on display

during performance as the members of the ensemble were now showcasing a breadth of technical

programming knowledge. Creativity, in any form, is often associated with a high level of skill, but

members of TYPE demonstrated their creative utility on a number of occasions despite embracing

more simplistic linguistic features. In 1969, the Scratch Orchestra was created and brought together

musicians of varying levels of skill (Cardew, 1969). In fact, the level of skill was so varied that

they did not refer to themselves as musicians, but as “enthusiasts” and their concept of music was

not limited to the purely auditory domain but was referred to “flexible and depends entirely on

the members”. Like simplifying FoxDot’s syntax, this was designed to make the shared musical

experience as inclusive and open as possible. For the Scratch Orchestra, it was a “Utopian vision

of open enquiry and unfettered exploration, of an all-inclusive form of social music-making and

performance” (Parsons, 2001). The Scratch Orchestra also demonstrated how creative musical

performance could take place despite the varying level of skill among the group. They would often

play “popular classics”, including music by composers such as Mozart and Brahms, but with only

one performer knowing the full piece. The remainder of the orchestra would play along to the best

of their abilities and fill in any unknown sections with improvised material and “variation arose

naturally from differences of ability and from the wide disparity between intentions and results”.

In a similar vein to the Scratch Orchestra, the Portsmouth Sinfonia was created in 1970 by a group

of students at the Portsmouth School of Art where the only criteria for joining was that you didn’t

know how to play your instrument. The idea was that the music they played would be about

coming together and just enjoying the process. As a result, attempted performances of classical

pieces of music became unique interpretations filled with dissonance and uncertainty. Brian Eno,

who performed as part of the orchestra, said that this range of ability created great musical variety

but that is was “achieved not by people trying to do something different from one another, but

by accidentally doing something different; this sense of a limitation being turned into a strength”

(Cairns, 2004). Despite a disparity in the levels of skill and knowledge in TYPE, performers

were also able to open new avenues for creativity by exploring code in ways it was perhaps not

designed for; Laurie mapping amplitude and “echo”, Innocent using the accompany syntax on a

155



whole chord, and Lucy doubling and halving pitch values for example. Constraints can often drive

creativity (Stokes, 2005) and technical limitations can force artists to find innovative ways to make

music (White, 2019). Using simple syntax not only strengthened the feeling of collaboration during

performance, but also enabled creative utility of the code despite a range in the level of skill among

the ensemble.

Chapter 7 saw the introduction of a new collaborative interface, CodeBank, which was more

complex in its set-up than Troop. The complexity was, in part, created by the separation of

commands into independent parts of the interface, such as the text editor, shared code, and chat

features, which were all handled simultaneously within the shared text buffer in Troop. Giving

users a private text editor to test out their ideas gave them more confidence but the overall code

development was not of the same collaborative nature as it was when we had used Troop. Lucy

said that, with CodeBank, “I’m more likely to react to something you do by changing something

I’ve done” (p. 126). Furthermore, private working in ensemble live coding did not foster the

same sense of familiarity and trust between performers as working with Troop, which also made

it difficult to edit co-performers’ code. Given the time and privacy to develop one’s own code in

CodeBank, performers also felt that there was “an expectation of perfection” and that “being able

to push out something that’s a lot more developed means that there’s less room for other people

to change that” (p. 128). As a consequence, the music did not develop very “organically”, but

this striving for perfection did lead to the creation of well polished pieces of music. This raises the

question; what is the goal of the ensemble? To achieve “peak jamming” (Swift, 2013) or to create

a high-quality piece of music? This research is primarily concerned with the former but a system

like CodeBank gives ensembles the choice of focusing on achieving group flow in improvisation or

creating highly-polished musical performances.

The separation of many of Troop’s features into separate aspects of the interface seemed to

increase the cognitive load on the performers who felt that they were “focusing on the code so

much” (p. 128) that they were incognisant of chat messages and the content of the public codelet

repository. Without a clear overview of the entire system state, including explicit chat messages,

users lacked the awareness of the rest of the ensemble to achieve group flow. Users tended to enter

states of personal flow in this method of working but found that not only were they unaware of chat

messages and changes to codelets, but they would also be easily disrupted from this state as soon as

they encountered an error. Unlike with Troop, this error usually had to be dealt with independently,

which meant it would often take longer to resolve. Users also felt that communication in Troop was

“a lot better and a lot more immediate” (p. 129) as they could combine code and communication

into one action, which helped fix errors, demonstrate new ideas, and also send informal messages.

It also appears that more functionality does not always equate to a better program; CodeBank

introduced several new live coding functionalities, such as “rolling back” changes made to codelets,

156



that were accessible through button presses but were rarely utilised during performances. Even

though they provided users with novel types of interactions, they were not intuitive to the practice

that had developed as an ensemble through using Troop.

Collaborating with Troop made achieving group flow easier than it did with CodeBank as

it provided a greater sense of immediacy when using the interface. The final project, Polyglot,

attempted to emulate this but across a language barrier by combining multiple shared text buffers

into a single window, each connected to a different live coding language. While this system was

limited by several technological constraints, it did show promise as a potential tool for showcasing

multilingual live coding virtuosity. Just as complex FoxDot syntax was detrimental to collaboration

in Troop, including an unknown language’s syntax in the editor made it “difficult to create a new

line of code” (p. 147) that would compliment it as there was no way of knowing what the unknown

language’s code would sound like. One of the most consistent themes across these interfaces has

been the reliance on visual information of the system state to achieve group flow. Seemingly an

essential aspect of the practice, members of TYPE have found that being able to see and understand

one another’s code assists them in making creative decisions during performance. However, even

if all performers using Polyglot could understand all of the languages being used, there are still

issues that arise as a result of multi-lingual live coding; they don’t inherently share the same “sonic

character” (p. 147), which can make it difficult to write code in one language to compliment code

in another. This was, to some extent, addressed in a rehearsal in which the same SynthDef was

being triggered in both FoxDot and TidalCycles, and edited at its source in SuperCollider. As

Lucy says, this opens a “huge amount of potential” (p. 148) for cross-language collaboration at

the deep and meaningful level that is currently facilitated through the Troop interface. It would

have been interesting to see what tacit knowledge might have been developed had there been more

opportunities to explore the relationship between sound source manipulation and the coding of

rhythm and pitch using Polyglot in this way. Unfortunately, Polyglot’s use of multiple text buffers

does create problems; users’ attentions are divided in a similar way to how they were when using

CodeBank. Even informal chat messages are ignored if users are not working in the same text

buffer. As soon as the system state is divided into multiple parts, the cognitive load required

to keep track of everything is multiplied and impedes the ensemble’s ability to achieve a group

flow-state. Furthermore, there still exist technical issues with the Polyglot interface that relate

to performance on low powered computers. Its poor responsiveness during performance hindered

the ensemble in establishing any sort of flow, group or individual, and also removed any sense of

immediacy in the ensemble communication via text.

Many of the tools that helped facilitate collaboration in our own performances emerged through

the tacit knowledge developed over time using the interfaces “in the wild”. The combination of

this craft knowledge and the iterative and reflexive methodology of participatory design formed a

157



symbiotic relationship that produced better software for collaborative live coding. By reflecting

on practice and identifying the emerging themes and strategies it was possible to develop new

iterations of software that attempted to adapt to performers’ implicit needs. In Section 7.4, for

example, I added keyboard shortcuts to the CodeBank interface to allow users to push code to

the public workspace without having to use the mouse to click a button as this was the learned

behaviour of the users. The cognition required to break the muscle-memory habit of navigating

an interface with the keyboard was enough to disrupt a user’s sense of flow, which is key to

improvised musical performance. The question, “how can collaboration in ensemble live coding be

better facilitated through performance systems, such as language, and interface design?”, may not

be completely answered, but through the cyclical process of reflection and software development

this research has provided several insights into how it can be achieved. I have found that users need

total access to the system state, including all of the code and any explicit written communication.

Separating these divides users’ attention and inhibits group flow, but it is better to do this than

not provide all of the possible information. The system state also includes all of the user’s current

and previous actions; this can be well represented through colour association and should be made

explicit wherever possible. Performances were also successful when everything was as simple as

possible. This included set-up, syntax, as well as functionality. A simple set-up that allows users

to connect and play together over the internet enables more frequent rehearsal time and helps

develop trust and synergy amongst the ensemble. Simple syntax gives all members of the ensemble

a level playing field with regards to their technical ability and minimises the time it takes to

translate musical ideas into code on a screen. Simple functionality, or at least functionality that

does not over-extend past users’ existing muscle-memory, can help users learn systems more easily

and minimise the cognitive work required to adapt to new processes. Simplifying the software

itself can also help reduce performance issues on lower powered computers which can otherwise be

a source of frustration and distraction, inhibiting an ensemble from achieving group flow.

2. How are collaborative interfaces used to reveal the creative processes at play in

ensemble live coding performance?

This research question was posited in response to the lack of ensemble interaction made explicit

by the majority of existing collaborative live coding interfaces. By developing interfaces with the

aim of addressing this issue, how would creative processes be revealed in performances throughout

this study? What does “revealing creative processes” even mean in this context? Is it something

that occurs by design in the interface that highlights aspects of a live coding performance that

would otherwise be invisible? This is how I tended to address this question when designing col-

laborative interfaces; asking myself how I could make these processes clearer to both performers

and audiences alike. However, there were also unexpected methods for performer interaction that

158



occurred throughout this process that not only translated traditional ensemble interaction into a

digital medium but also created new ways to interact with those experiencing the performance.

These examples of creative processes being revealed were the result of the learned tacit knowledge

that came from using the software, not just testing it.

Even as early as the initial rehearsal sessions using Troop there were instances of what I describe

as “signposting” in the code that helped guide co-performers to the source of certain sounds or

errors. In writing, signposting is the act of guiding your reader through a static document using

structured sections and connecting phrases as the reader navigates the work from left to right, top

to bottom. In live coding, however, the document is in a dynamic state of flux and its structure does

not reflect the chronology of which it was written. To signpost for the readers, i.e. co-performers

and members of the audience, TYPE would use code comments in a spatial dimension to draw

attention to certain sections of code. Early on in our time as an ensemble this was often used to ask

questions about syntax or errors but as the skill level of the group increased we continued to use

comments in a more conversational, and even evaluative, way. Where members of a jazz ensemble

might nod in approval in the direction of their co-performer who just produced a particularly great

solo, we found ourselves adding comments onto the ends of lines of code that complimented that

particular addition, as seen in Figure 9.3a for example. The use of comments also became quite

performative over time; directed to the audience as much as they were to the rest of the ensemble.

Figure 9.3b shows part of a screenshot from the Algorave Assembly lunch time concert in which I

float the idea of moving onto a percussive section and Laurie responds with good humour, which

translated well to the audience as it garnered some laughter. There were even times where lines

that only contained comments were evaluated repeatedly in order to flood the console with text

and bring attention to crucial information such as the amount of time remaining in a performance.

This is a great example of “misuse” of an interface and epitomises the tacit knowledge accrued

through real-world use of the software in a prolonged ethnographic study. Comments are features

of computer code that are intended for humans only (they are discarded at the first stage of

compilation into binary computer code) so to the computer, evaluating a line of comments does

absolutely nothing but to those looking at the interface it communicates information with a sense of

urgency and importance. This was not a behaviour that was imparted on the interface through its

design but one that emerged through use in the hands of a real ensemble performing and rehearsing

together over time.

When performing with CodeBank, which didn’t use a traditional a shared text buffer, it became

increasingly difficult to signpost the code. CodeBank separated the code and the comments into

different sections of the interface and, as noted in Section 7.6, was described as obfuscating creative

processes as opposed to revealing them. Unlike Troop and Polyglot, CodeBank did make use of

spatiotemporal relationships, i.e. the occurrence of an action related to its location in the interface.

159



(a) (b)

Figure 9.3: Examples of comments being used during performance.

The most recently edited code would be at the top of the public repository and the most recently

added message would be at the bottom of the chat log. However, the difference in frequency of

changes to either part of the interface would mean that the most recent chat message would, more

often than not, be out of date or unrelated to the most recent code changes. As mentioned above,

the spatial signposting using comments had become part of our performance practice itself, not

just a feature of the interface, and by removing it we lost access to an important means of revealing

our creative processes to both the audience and to each other.

With this in mind, a possible extension of the Troop and Polyglot interfaces would be to add

a temporal relationship to the code by highlighting each character as it is entered then fading the

highlight out over time. It has already been demonstrated in Section 5.5.1 that the font colours

of these interfaces can be augmented to change over time and by adding this behaviour at the

individual character level we can make use of both space and time to share more information and

make more informed decisions during a performance. While some aspects of the design of the

interfaces resulted in the obfuscation of creative processes, there were several elements of their

designs that helped reveal them. Troop, for example, did so very effectively; performers could

see and work directly on their co-performers’ textual material, which was made very visible to

the audience. Working on the same body of code also enabled performers to combine together

for new and exciting modes of ensemble interaction. For example, during the Algorave Assembly

performance, described in Section 5.4.2, there were several moments in which performers came

together within the code to create rich and satisfying musical combinations. Using colours to

denote the author of each character highlights these combinations to the audience that would not

otherwise be possible if not for Troop’s functionality. One of the downsides to using text colour in

this way, however, is that it becomes very difficult to implement any sort of syntax highlighting,

which can make writing syntactically correct code difficult at times.

Syntax complexity also plays a role in revealing creative processes in ensemble live coding.

Complex syntax creates a language barrier that even exists within an ensemble of relatively ex-

perienced live coders; as Lucy said, if someone writes “a really complicated line of code then the

rest of us don’t touch it” (p. 100). Ensemble interaction can only be seen by an audience if it is

160



actually occurring and using varying levels of technically complex code can impede this. TYPE

felt that using simple code facilitated our interactions better and helped develop synergy within

the group; “the energy works a bit better if it’s simple” 100, and this has translated well to au-

diences during performances. The CodeBank interface separated ensemble live coding into public

and private activities such that audiences could only see and hear “finished” codelets and were not

privy to their development in performers’ private workspaces. Audiences were not able to see any

sort of history of a codelet, just the identity of the last performer to update it, which meant there

was no evidence of interaction displayed on screen. The creative processes were actually obscured

as opposed to revealed by the CodeBank system. As mentioned above, the separation of informal

chat messages and code into separate features of the interface also impeding the ensemble’s ability

to signpost the performance with interactional text and performative comments, further restricting

creative processes from revealing themselves. The use of code comments as a medium for commu-

nication is another example of the tacit knowledge developed using Troop; the de facto method of

communicating within the code did not happen by design but it became an integral part of the

practice. If we consider this style of communication to be “craft knowledge” then perhaps the

transition to a chat-box style of conversation was just “different” as opposed to worse. In either

case, these differences do provide evidence that the design of an interface can affect how ensemble

interaction is demonstrated to audiences in live coding performance. Regardless of these issues,

however, giving performers a private text box to work in did yield highly polished musical results,

as one audience member said, “it sounded like you knew what you were doing – everything gelled”.

Like the Extramuros collaborative live coding system, Polyglot uses multiple text buffers within

a single display but, unlike Extramuros, they are separated based on language instead of user.

Combining all of the code within a single screen only requires a single projector for it to be shown

to the audience and helps alleviate any problems associated with using multiple projectors. Like

Troop, Polyglot uses coloured fonts and name-tags that are consistent across text boxes to help

audiences identify performers’ code and follow their interactions, regardless of which text box they

have used. Separating the code into more than one text box is unavoidable when using multiple

languages simultaneously but by giving users an identifiable coloured font and name-tag, ensemble

interactions in the code are made visible to the audience. This also allows users to signpost code

relative to its location, similar to Troop, even if it is not a language they are using themselves.

However, the addition of text buffers for languages that were not known to some performers made

inter-language collaboration quite difficult. Innocent said that not being able to understand code

written in TidalCycles was a “barrier” for him (p. 147) as he would often use the syntax or values

of other FoxDot code when writing something to accompany it. By combining multiple languages

into a single interface, creative processes can become obscured between ensemble members as it is

not always possible to decipher meaning from one language to another. The ability (or perhaps

161



requirement) to not only see but to understand co-performers’ code in order to collaborate effec-

tively likely became ingrained in our practice as a result of performing together for such a long time

using the same language across the whole ensemble. This sort of tacit knowledge can take time

to un-learn or adapt and Polyglot would have benefited from longer rehearsal periods and several

more performances “in the wild”. Better yet, it would be useful to bring together a variety of

live coders who specialised in each of the FoxDot, TidalCycles, and SuperCollider languages. This

would provide a useful insight into the effect of real-time visual information about collaborator’s

code on performance and would also create a novel audience experience.

9.5 Conclusion

Through a series of iterative and reflexive software design cycles I have produced four interfaces for

collaborative live coding including the extension of a live coding language. Each interface explores

various facets of ensemble communication within the context of live coding, which has the novel

characteristic of being primarily mediated through text, with the aim of better facilitating group

collaboration and revealing creative processes to performers and audiences alike. I have used a

participatory design methodology to develop these interfaces, which focused on working with users

over long periods of time in an attempt to better understand performers’ tacit knowledge and

encapsulate it within the software’s design. I have also embedded myself within this project as a

practitioner-researcher, playing both the roles of designer and user, to not only better understand

the process of collaborative live coding but also to develop my skills as a live coding musician.

This provided me with the invaluable experience of being able to understand the ensemble’s tacit

knowledge of the systems that would otherwise be difficult to communicate if I was acting as a

third-party observer. The evaluation of these designs combined autoethnographic reflections and

observational studies of performances recorded “in-the-wild”, as well as group interviews with the

TYPE ensemble over the course of a two year period. Included in this thesis are twelve recordings

from rehearsals and performance that took place during this time that showcase a portfolio of

musical styles ranging from algorithmic dance music to experimental noise music. Through these

performances we developed tacit knowledge in how to improvise together and use our interfaces

to collaborate effectively without commonly used techniques for ensemble communication such

as eye contact and body language. This knowledge, which I sometimes refer to as performance

style or practice, was used as a guide to improve each iteration of the interface’s design. As

well as developing my artistic practice, I have also gained technical skills in software development

and creating network applications for collaborative music performance, which I hope to continue

building on in the future in a creative capacity.

Several themes emerged as a result of this work that illustrated key aspects of the ensemble’s

162



interaction with the software. Firstly, there was a trade-off between an interface’s complexity and

the ability to achieve a sense of group flow while using. Simplicity in design fostered a greater sense

of group flow as it minimised the cognitive load on the performers and allowed them to cognisant

of their co-performer’s actions while also focusing on on their own musical output. Simplifying

the coding language itself also gave the ensemble members a “level playing field” such that each

performer could understand – and be understood by – the others. The interpersonal chemistry

of the group improved as a direct result of this. It also reduced the time spent deciphering

code, freeing performers up to concentrate on creating music as opposed to interpreting it. Like

with many constraints, using simplified syntax encouraged the group to come up with new and

innovative ways of writing code. In doing so the group would often subvert the language’s intended

use, adding an element of indeterminacy and experimentation to a performance.

Another pattern of behaviour that emerged throughout this study was the “signposting” of

code; adding comments with a spatial or temporal relationship to specific parts of the code to help

both the co-performers and audience members navigate the dynamic-natured text. What started

as a useful method for learning (questions and demonstrations) grew into a conversational and

performative act that became idiosyncratic of our practice. Spatial signposting proved a key facet

to our performance practice as, without it, the ensemble struggled with a crisis of identity and it

became difficult to share creative processes with each other and the audience.

The ability to rehearse and perform telmatically also proved to be an important part of the

ensemble’s musical development. Using the internet to facilitate rehearsals enabled the group to

practice together more frequently as it was much easier to co-ordinate schedules without incorpo-

rating travel times or rehearsal space. The high frequency of rehearsal sessions led to the rapid

development of trust and synergy among the group, which are key factors for successful improvisa-

tion. By using interfaces that were able replicate the environment for performing apart as it they

are together, the ensemble were also able to rehearse in a way that would translate effectively to a

live, co-located performance. By contrast, the ensemble found having to rehearse using a system

that required performers being co-located (CodeBank) quite problematic. Living in separate cities

essentially only allowed the group to rehearse on weekends and this was not possible on a weekly

basis. As a result less time was spent practising with CodeBank and the ensemble was not able

to develop the same level of chemistry nor virtuosity when performing with it. Strong telematic

functionality also proved valuable when scheduling gigs overseas as it allowed the ensemble to per-

form with only a subset of its members in the venue. Our society is increasingly experiencing life

online and remote musical performance could well play a part in its future.

One thing that has not been mentioned over the course of this thesis is the profound effect

this research has had on my social well-being. As well as producing several pieces of software for

musical collaboration I have also developed some excellent friendships that have transcended the

163



musical ensemble dynamic. Lucy, Laurie, and Innocent have not only become my collaborators

and helped me broaden my musical horizons, but have also become my close personal friends. The

long and arduous journey of the PhD student is typically a solitary one and having people to rely

on and support you throughout the process has made it feel much more achievable. I had been

working on FoxDot and performing as a live coder independently for some time but doing it with

friends at my side breathed new life into the practice for me. I would probably argue that, out of

all of the things that have happened as a result of this research, this has been the best.

164



References

Aaron, S. (2016). Sonic pi – performance in education, technology and art. International Journal

of Performance Arts and Digital Media, 12 (2), 171–178.

Aaron, S., Blackwell, A. F., Hoadley, R., & Regan, T. (2011). A principled approach to developing

new languages for live coding. In Proceedings of the international conference on new interfaces

for musical expression (pp. 381–386). doi: 10.5281/zenodo.1177935

Armitage, J. L. (2017). Portfolio of original compositions with written commentary (Unpublished

doctoral dissertation). University of Leeds.

Auslander, P. (2008). Liveness: Performance in a mediatized culture. London: Routledge.

Bailey, D. (1992). Improvisation: its nature and practice in music (2nd ed.). London: British

Library National Sound Archive.

Barbosa, Á. M. M. (2003). Displaced soundscapes: A survey of network systems for music and

sonic art creation. Leonardo Music Journal , 13 , 53–59. doi: 10.1162/096112104322750791

Barbosa, Á. M. M. (2006). Computer-supported cooperative work for music application (Unpub-

lished doctoral dissertation). Universitat Pompeu Fabra.

Bartleet, B.-L. (2009). Behind the baton: Exploring autoethnographic writing in a musical context.

Journal of Contemporary Ethnography , 38 (6), 713–733.

Baumann, T. (2015). Operational transformation - OT explained. http://operational

-transformation.github.io/. (accessed 23/04/18)

Bekhet, A. K., & Zauszniewski, J. A. (2012). Methodological triangulation: An approach to

understanding data. Nurse researcher , 20 (2).

Benford, S., Greenhalgh, C., Crabtree, A., Flintham, M., Walker, B., Marshall, J., . . . Row Farr,

J. (2013). Performance-led research in the wild. ACM Transactions on Computer-Human

Interaction (TOCHI), 20 (3), 14.

Bird, D. (2010). Fields. http://davidbird.tv/new-page-2, accessed 26/11/18.

Bischoff, J., Gold, R., & Horton, J. (1978). Music for an interactive network of microcomputers.

Computer Music Journal , 2 (3), 24–29. doi: 10.2307/3679453

Blackwell, A., & Collins, N. (2005). The programming language as a musical instrument. In

Proceedings of psychology of programming interest group (pp. 284–289). Brighton, United

Kingdom.

Blackwell, A., McLean, A., Noble, J., & Rohrhuber, J. (2014). Collaboration and learning through

live coding (dagstuhl seminar 13382). Dagstuhl Reports, 3 (9).

Borgdorff, H. (2010). The production of knowledge in artistic research. In M. Biggs & H. Karlsson

165

http://operational-transformation.github.io/
http://operational-transformation.github.io/
http://davidbird.tv/new-page-2


(Eds.), The Routledge companion to research in the arts (pp. 74–93). Abingdon: Routledge.

Brand, G., Sloboda, J., Saul, B., & Hathaway, M. (2012). The reciprocal relationship between

jazz musicians and audiences in live performances: A pilot qualitative study. Psychology of

Music, 40 (5), 634–651.

Brown, A. R., & Sorensen, A. C. (2007). aa-cell in practice: An approach to musical live coding.

In Proceedings of the international computer music conference (pp. 292–299). Copenhagen,

Denmark.

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., & Miller, P. (1997). Mini-languages:

a way to learn programming principles. Education and information technologies, 2 (1), 65–83.

Burland, K., & McLean, A. (2016). Understanding live coding events. International Journal of

Performance Arts and Digital Media, 12 (2), 139–151.

Burland, K., & Pitts, S. (2012). Rules and expectations of jazz gigs. Social Semiotics, 22 (5),

523–543.

Bϕdker, S., Grϕnbæk, K., & Kyng, M. (1995). Cooperative design: techniques and experiences

from the scandinavian scene. In Readings in human–computer interaction (pp. 215–224). San

Francisco: Morgan Kaufmann. doi: 10.1016/B978-0-08-051574-8.50025-X

Cage, J. (1967). Musicircus.

Cairns, D. (2004). Portsmouth sinfonia. https://www.portsmouthsinfonia.com/media/

sundaytimes.html. (accessed 01/11/19)

Cardew, C. (1969). A scratch orchestra: draft constitution. The Musical Times, 110 (1516),

617–619.

Cascone, K. (2000). The aesthetics of failure:“post-digital” tendencies in contemporary computer

music. Computer Music Journal , 24 (4), 12–18. doi: 10.1162/014892600559489

Cascone, K. (2011). Errormancy: Glitch as divination. http://www.theendofbeing.com/

2012/04/19/errormancy-glitch-as-divination-a-new-essay-by-kim-cascone/. (ac-

cessed 24/11/2016)

Chin, J. P., Diehl, V. A., & Norman, K. L. (1988). Development of an instrument measuring user

satisfaction of the human-computer interface. In Proceedings of the SIGCHI conference on

human factors in computing systems (pp. 213–218). doi: 10.1145/57167.57203

Clift, S., Hancox, G., Morrison, I., Hess, B., Kreutz, G., & Stewart, D. (2010). Choral singing

and psychological wellbeing: Quantitative and qualitative findings from english choirs in a

cross-national survey. Journal of Applied Arts & Health, 1 (1), 19–34.

Cockos Incorporated. (2018). Cockos incorporated — ninjam. https://www.cockos.com/

ninjam/.

Collins, N., McLean, A., Rohrhuber, J., & Ward, A. (2003). Live coding in laptop performance.

Organised sound , 8 (03), 321–330.

166

https://www.portsmouthsinfonia.com/media/sundaytimes.html
https://www.portsmouthsinfonia.com/media/sundaytimes.html
http://www.theendofbeing.com/2012/04/19/errormancy-glitch-as-divination-a-new-essay-by-kim-cascone/
http://www.theendofbeing.com/2012/04/19/errormancy-glitch-as-divination-a-new-essay-by-kim-cascone/
https://www.cockos.com/ninjam/
https://www.cockos.com/ninjam/


Courtney, D. (1994). The cyclic form in north indian tabla. Percussive Notes, 33 (6), 32–45.

Crawford, L. (1996). Personal ethnography. Communications Monographs, 63 (2), 158–170.

Csikszentmihaly, M. (1991). Flow: The psychology of optimal experience. New York, NY: Harper

and Row.

Cunningham, S. J., & Jones, M. (2005). Autoethnography: a tool for practice and education.

In Proceedings of the 6th ACM SIGCHI New Zealand chapter’s international conference on

computer-human interaction: making chi natural (pp. 1–8). doi: 10.1145/1073943.1073944

de Campo, A. (2014). Republic: Collaborative live coding 2003–2013. In A. Blackwell, A. McLean,

J. Noble, & J. Rohrhuber (Eds.), Collaboration and learning through live coding (Dagstuhl

seminar 13382) (Vol. 3, p. 152-153).

de Carvalho Junior, A. D., Lee, S. W., & Essl, G. (2015). Supercopair: Collaborative live coding

on supercollider through the cloud. In Proceedings of the first international conference on

live coding (pp. 152–158). doi: 10.5281/zenodo.19347

Del Angel, L. N., Teixido, M., Ocelotl, E., Cotrina, I., & Ogborn, D. (2019). Bellacode: localized

textual interfaces for live coding music. In International conference on live coding (pp. 27–36).

Madrid, Spain.

Dijkstra, E. W. (1960). Recursive programming. Numerische Mathematik , 2 (1), 312–318.

Eldridge, A., & Kiefer, C. (2017). The self-resonating feedback cello: interfacing gestural and gen-

erative processes in improvised performance. In Proceedings of the international conference

on new interfaces for musical expression (pp. 25–29). doi: 10.5281/zenodo.1176157

Ellis, C. A., & Gibbs, S. J. (1989). Concurrency control in groupware systems. In Proceedings of

the 1989 ACM SIGMOD international conference on management of data (pp. 399–407).

Emmerson, S. (2007). Living electronic music. Aldershot: Ashgate Publishing, Ltd.

Fencott, R. (2012). Computer musicking: Designing for collaborative digital musical interaction.

(Unpublished doctoral dissertation). Queen Mary University of London.

Fencott, R., & Bryan-Kinns, N. (2010). Hey man, you’re invading my personal space! privacy

and awareness in collaborative music. In Proceedings of the international conference on new

interfaces for musical expression (pp. 198–203). doi: 10.5281/zenodo.1177763

Fencott, R., & Bryan-Kinns, N. (2013). Computer musicking: HCI, CSCW and collaborative

digital musical interaction. In Music and human-computer interaction (pp. 189–205). London:

Springer.

Flašar, M. (2016). Listening with the eyes: Remarks on live coding performance. Media | Archive

| Performance, 7 . http://www.perfomap.de/map7/media-performance-on-gestures/

listening-with-the-eyes-remarks-on-live-coding-performance. (accessed 24/11/16).

Flor, N. V. (2006). Globally distributed software development and pair programming. Communi-

cations of the ACM , 49 (10), 57–58.

167

http://www.perfomap.de/map7/media-performance-on-gestures/listening-with-the-eyes-remarks-on-live-coding-performance
http://www.perfomap.de/map7/media-performance-on-gestures/listening-with-the-eyes-remarks-on-live-coding-performance


Freeman, J., & Van Troyer, A. (2011). Collaborative textual improvisation in a laptop ensemble.

Computer Music Journal , 35 (2), 8–21.

Furniss, P. (2016). Live coding meets augmented instruments. https://petefurniss.wordpress

.com/2016/01/12/live-coding-meets-augmented-instruments/. (accessed 07/05/19)

Garland, Z. (2001). BBC - h2g2 - oblique strategies. http://www.bbc.co.uk/dna/place

-nireland/A635528. (accessed 24/11/16)

Geiger, C., Reckter, H., Paschke, D., Schulz, F., Poepel, C., & Ansbach, F. (2008). Towards

participatory design and evaluation of theremin-based musical interfaces. In Proceedings

of the conference on new interfaces for musical expression (pp. 303–306). doi: 10.5281/

zenodo.1179545

Gifford, T., Knotts, S., Kalonaris, S., & McCormack, J. (2017). Evaluating improvisational

interfaces. In Proceedings of the improvisational creativity workshop. Prato, Italy.

Google Inc. (2017). Google docs - create and edit documents online, for free. https://www.google

.co.uk/docs/about/. (accessed 02/02/17)

Google Inc. (2018). G suite for education — google for education. https://edu.google.com/

products/gsuite-for-education/. (accessed 01/05/19)

Goyvaerts, J. (2016). Regex tutorial, examples and reference. https://www.regular-expressions

.info/. (accessed 12/12/18)

Hugill, A. (2005). Internet music: An introduction. Contemporary Music Review , 24 .

Hummels, J. (2013). Mind your own business — Jonas Hummel’s archive. http://jonashummel

.de/archives/projects/myob/. (accessed 24/01/2018)

Hutchins, C. C. (2015). Live patch / live code. In Proceedings of the first international conference

on live coding (pp. 147–151). doi: 10.5281/zenodo.19346

Janata, P., & Grafton, S. T. (2003). Swinging in the brain: shared neural substrates for behaviors

related to sequencing and music. Nature Neuroscience, 6 (7), 682–687.

Johansson, M. (2009). Instant music & messaging: Interconnecting music and messaging (Un-

published doctoral dissertation). KTH Royal Institute of Technology.

Kim-Boyle, D. (2009). Network musics: Play, engagement and the democratization of performance.

Contemporary Music Review , 28 (4-5), 363–375. doi: 10.1080/07494460903422198

Kindler, E., & Krivy, I. (2011). Object-oriented simulation of systems with sophisticated control.

International Journal of General Systems, 40 (3), 313–343.

Kirkbride, R. (2016). Foxdot: Live coding with python and supercollider. In Proceedings of the

international conference of live interfaces (pp. 194–198). Hamilton, Canada.

Knotts, S. (2016). Algorithmic interfaces for collaborative improvisation. In Proceedings of inter-

national conference on live interfaces (pp. 232–237). Brighton, United Kingdom.

Knotts, S. (2018). Social systems for improvisation in live computer music (Unpublished doctoral

168

https://petefurniss.wordpress.com/2016/01/12/live-coding-meets-augmented-instruments/
https://petefurniss.wordpress.com/2016/01/12/live-coding-meets-augmented-instruments/
http://www.bbc.co.uk/dna/place-nireland/A635528
http://www.bbc.co.uk/dna/place-nireland/A635528
https://www.google.co.uk/docs/about/
https://www.google.co.uk/docs/about/
https://edu.google.com/products/gsuite-for-education/
https://edu.google.com/products/gsuite-for-education/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
http://jonashummel.de/archives/projects/myob/
http://jonashummel.de/archives/projects/myob/


dissertation). Durham University.

Landry, S., & Jeon, M. (2017). Participatory design research methodologies: A case study in

dancer sonification. In International conference on auditory display (pp. 182–187).

Lazzaro, J., & Wawrzynek, J. (2001). A case for network musical performance. In Proceedings of

the 11th international workshop on network and operating systems support for digital audio

and video (pp. 157–166). doi: 10.1145/378344.378367

Lee, S. W., & Essl, G. (2013). Live coding the mobile music instrument. In Proceedings of

the international conference on new interfaces for musical expression (pp. 493–498). doi:

10.5281/zenodo.1178592

Lee, S. W., & Essl, G. (2014). Models and opportunities for networked live coding. In Live coding

and collaboration symposium. Birmingham, United Kingdom.

MacDonald, R. A. (2013). Music, health, and well-being: A review. International journal of

qualitative studies on health and well-being , 8 (1), 20635.

Magnusson, T. (2011a). Algorithms as scores: Coding live music. Leonardo Music Journal , 21 ,

19–23. doi: 10.1162/LMJ a 00056

Magnusson, T. (2011b). ixi lang: a supercollider parasite for live coding. In Proceedings of

international computer music conference (pp. 503–506). Huddersfield, United Kingdom.

Magnusson, T. (2013). The threnoscope: A musical work for live coding performance. In Interna-

tional workshop on live programming at the international conference on software engineering.

San Francisco, CA, United States of America.

Magnusson, T. (2014). Herding cats: Observing live coding in the wild. Computer Music Journal ,

38 (1), 8–16. doi: 10.1162/COMJ a 00216

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch program-

ming language and environment. ACM Transactions on Computing Education, 10 (4), 16.

doi: 10.1145/1868358.1868363

Mann, M. (2012). No talent is required to perform electronic dance music. https://

www.straight.com/music/no-talent-required-perform-electronic-dance-music. (ac-

cessed 05/04/19)

McCaleb, M. (2011). Embodied knowledge in ensemble performance: The case of informed obser-

vation. In Proceedings of the conference on performance studies. Aveiro, Portugal.

McCartney, J. (2002). Rethinking the computer music language: Supercollider. Computer Music

Journal , 26 (4), 61–68.

McGrath, J. E. (1984). Groups: Interaction and performance. Englewood Cliffs NJ: Prentice-Hall.

McLean, A. (2014). Making programming languages to dance to: live coding with tidal. In

Proceedings of the 2nd ACM SIGPLAN international workshop on functional art, music,

modelling & design (pp. 63–70). doi: 10.1145/2633638.2633647

169

https://www.straight.com/music/no-talent-required-perform-electronic-dance-music
https://www.straight.com/music/no-talent-required-perform-electronic-dance-music


McLean, A. (2015). Reflections on live coding collaboration. In Proceedings of the third conference

on computation, communication, aesthetics and x. (pp. 213–220). Porto, Portugal.

McLean, A. (2017). Live coding – POTAC – medium. https://medium.com/potac/live-coding

-1eb06f0ddf26. (accessed 19/01/17)

McLean, A., Griffiths, D., Collins, N., & Wiggins, G. (2010). Visualisation of live code. In

Proceedings of electronic visualisation and the arts (pp. 26–30). doi: 10.14236/ewic/EVA2010

.6

McLean, A., & Wiggins, G. (2010). Tidal–pattern language for the live coding of music. In

Proceedings of the 7th sound and music computing conference (p. 331—334). Barcelona,

Spain.

Merritt, T., Kow, W., Ng, C., McGee, K., & Wyse, L. (2010). Who makes what sound? supporting

real-time musical improvisations of electroacoustic ensembles. In Proceedings of the 22nd

conference of the computer-human interaction special interest group of australia on computer-

human interaction (pp. 112–119). doi: 10.1145/1952222.1952245

Mills, D., et al. (1985). Network time protocol (Tech. Rep.). RFC 958, M/A-COM Linkabit.

Monson, I. (2009). Saying something: Jazz improvisation and interaction. Chicago, IL: University

of Chicago Press.

Mooney, J. (2011). Frameworks and affordances: Understanding the tools of music-making. Journal

of Music, Technology & Education, 3 (2-3), 141–154.

Mori, G. (2015). Analysing live coding with ethnographic approach - a new perspective. In

Proceedings of the first international conference on live coding (pp. 117–124). doi: 10.5281/

zenodo.19343

Norman, D. A. (1998). The design of everyday things. London: MIT Press.

Nosnibor, C. (2016). Review: ’Silver Apples’. headrow house, leeds, 24th august. http://www

.whisperinandhollerin.com/reviews/review.asp?id=13148. (accessed 08/12/16)

Ogborn, D. (2012). Espgrid: a protocol for participatory electronic ensemble performance. In Audio

engineering society convention 133. http://www.aes.org/e-lib/browse.cfm?elib=16625.

Ogborn, D. (2018). Network music and the algorithmic ensemble. The Oxford Handbook of

Algorithmic Music, 345–361.

Ogborn, D., Beverley, J., del Angel, L. N., Tsabary, E., & McLean, A. (2017). Estuary: Browser-

based collaborative projectional live coding of musical patterns. In Proceedings of the inter-

national conference on live coding. Morelia, Mexico.

Ogborn, D., & Mativetsky, S. (2015). Very long cat: Zero-latency network music with live coding.

In Proceedings of the first international conference on live coding. Zenodo.

Ogborn, D., Tsabary, E., Jarvis, I., Cárdenas, A., & McLean, A. (2015). Extramuros: Making mu-

sic in a browser-based, language-neutral collaborative live coding environment. In Proceedings

170

https://medium.com/potac/live-coding-1eb06f0ddf26
https://medium.com/potac/live-coding-1eb06f0ddf26
http://www.whisperinandhollerin.com/reviews/review.asp?id=13148
http://www.whisperinandhollerin.com/reviews/review.asp?id=13148
\ifx\scrollmode http://www.aes.org/e-lib/browse.cfm?elib=16625 \scrollmode http://www.aes.org/e-lib/browse.cfm?elib=16625


of the first international conference on live coding (pp. 163–169). doi: 10.5281/zenodo.19349

Oliveros, P. (2009). From telephone to high speed internet: A brief history of my tele-musical

performances. Leonardo Music Journal Online Supplement to LMJ , 19 , 2–5.

Parsons, M. (2001). The scratch orchestra and visual arts. Leonardo Music Journal , 11 , 5–11.

doi: 10.1162/09611210152780601

Polimeneas-Liontiris, T., Eldridge, A., Kiefer, C., & Magnusson, T. (2018). The ensemble as

expanded interface sympoetic performance in the brain dead ensemble. In Proceedings of the

international conference on live interfaces. (pp. 117–125). Porto, Portugal.

Roberts, C., & Kuchera-Morin, J. (2012). Gibber: Live coding audio in the browser. In Proceedings

of the international computer music conference (pp. 64–69). Ljubljana, Slovenia.

Roberts, C., Yerkes, K., Bazo, D., Wright, M., & Kuchera-Morin, J. (2015). Sharing time and

code in a browser-based live coding environment. In Proceedings of the first international

conference on live coding (pp. 179–185). doi: 10.5281/zenodo.19351

Rohrhuber, J., de Campo, A., Wieser, R., van Kampen, J.-K., Ho, E., & Hölzl, H. (2007). Purloined

letters and distributed persons. In Music in the global village conference. Budapest, Hungary.

Russolo, L. (1913). The art of noise: futurist manifesto. New York, NY: Something Else Press.

Ruthmann, A., Heines, J. M., Greher, G. R., Laidler, P., & Saulters II, C. (2010). Teaching

computational thinking through musical live coding in scratch. In Proceedings of the 41st

acm technical symposium on computer science education (pp. 351–355). doi: 10.1145/1734263

.1734384

Sarwate, A., Rose, R. T., Freeman, J., & Armitage, J. (2018). Performance systems for live coders

and non coders. In Proceedings of the international conference on new interfaces for musical

expression (pp. 370–373). doi: doi.org/10.5281/zenodo.1302627

Saunders, J. (2015). all voices are heard (2015) - james saunders. http://www.james-saunders

.com/all-voices-are-heard-2015/. (accessed 24/01/2018)

Saunders, J. (2017). What’s the point? balancing purpose and play in rule-based com-

positions. http://www.james-saunders.com/whats-the-point-balancing-purpose-and

-play-in-rule-based-compositions/. (accessed 02/04/19)

Sawyer, R. K. (2006). Group creativity: musical performance and collaboration. Psychology of

music, 34 (2), 148–165. doi: 10.1177/0305735606061850

Sawyer, R. K. (2015). Group creativity: musical performance and collaboration. In R. Caines &

A. Heble (Eds.), The improvisation studies reader: Spontaneous acts (p. 87-100). Abingdon:

Routledge.

Seddon, F. A. (2005). Modes of communication during jazz improvisation. British Journal of

Music Education, 22 (1), 47–61. doi: 10.1017/S0265051704005984

Sicart, M. (2014). Play matters. Cambridge, MA: MIT Press.

171

http://www.james-saunders.com/all-voices-are-heard-2015/
http://www.james-saunders.com/all-voices-are-heard-2015/
http://www.james-saunders.com/whats-the-point-balancing-purpose-and-play-in-rule-based-compositions/
http://www.james-saunders.com/whats-the-point-balancing-purpose-and-play-in-rule-based-compositions/


Sicchio, K. (2014). Hacking choreography: Dance and live coding. Computer Music Journal ,

38 (1), 31–39. doi: 10.1162/COMJ\ a\ 00218

Sorensen, A. C. (2010). A distributed memory for networked livecoding performance. In Proceedings

of the ICMC2010 international computer music conference (pp. 530–533). New York, NY,

United States of America.

Sorensen, A. C. (2011). Extempore. http://extempore.moso.com.au/. (accessed 05/12/2016)

Sorensen, A. C. (2013). The many faces of a temporal recursion. http://extempore.moso.com

.au/temporal recursion.html. (accessed 05/12/2016)

Sorensen, A. C., & Gardner, H. (2010). Programming with time: Cyber-physical programming

with impromptu. In Proceedings of the ACM international conference on object oriented pro-

gramming systems languages and applications (pp. 822–834). doi: 10.1145/1869459.1869526

Spiegel, L. (1981). Manipulations of musical patterns. In Proceedings of the symposium on small

computers and the arts (pp. 19–22). Philadelphia, PA, United States of America.

Spinuzzi, C. (2005). The methodology of participatory design. Technical communication, 52 (2),

163–174.

Spry, T. (2016). Body, paper, stage: writing and performing autoethnography. Abingdon: Rout-

ledge.

Stokes, P. D. (2005). Creativity from constraints: The psychology of breakthrough. New York:

Springer.

Swift, B. (2013). Chasing a feeling: Experience in computer supported jamming. In Music and

human-computer interaction (pp. 85–99). Springer.

Swift, B., Sorensen, A., Martin, M., & Gardner, H. (2014). Coding livecoding. In Proceedings

of the SIGCHI conference on human factors in computing systems (pp. 1021–1024). doi:

doi.org/10.1145/2556288.2557049

TheCodingMonkeys GmbH. (2014). SubEthaEdit4. https://www.codingmonkeys.de/

subethaedit/. (accessed 02/02/17)

Thompson, R. (2008). The music of ryukyu. In A. Tokita & D. W. Hughes (Eds.), The Ashgate

research companion to japanese music (p. 315). Aldershot: Ashgate Publishing, Ltd.

TOPLAP. (n.d.). Manifesto draft - TOPLAP, note=accessed 08/12/16, year=2004,. http://

toplap.org/wiki/ManifestoDraft.

TOPLAP. (2004). Historical performances - TOPLAP. https://toplap.org/wiki/

HistoricalPerformances. (accessed 05/04/19)

Toussaint, G. T., et al. (2005). The euclidean algorithm generates traditional musical rhythms. In

Proceedings of BRIDGES: Mathematical connections in art, music and science (pp. 47–56).

Banff, Alberta, Canada.

Valve Software. (2017). Source multiplayer networking - valve developer community.

172

http://extempore.moso.com.au/
http://extempore.moso.com.au/temporal_recursion.html
http://extempore.moso.com.au/temporal_recursion.html
https://www.codingmonkeys.de/subethaedit/
https://www.codingmonkeys.de/subethaedit/
http://toplap.org/wiki/ManifestoDraft
http://toplap.org/wiki/ManifestoDraft
https://toplap.org/wiki/HistoricalPerformances
https://toplap.org/wiki/HistoricalPerformances


https://developer.valvesoftware.com/wiki/Source Multiplayer Networking. (ac-

cessed 26/11/18)

Veinberg, A., & Noriega, F. I. (2018). Coding with a piano: the first phase of the codeklavier’s

development. In Proceedings of international computer music conference (pp. 93–98). Daegu,

South Korea.

Veinberg, A., & Noriega, F. I. (2019). ICLC 2019. http://iclc.livecodenetwork.org/2019/

programa.html#pn8. (accessed 07/05/2019)

What Works Wellbeing. (2016). Music, singing and wellbeing in healthy adults.

https://whatworkswellbeing.files.wordpress.com/2016/11/wellbeing-singing

-music-briefing-nov20162.pdf. (accessed 12/10/2018)

White, A. (2019). Analog algorithms: Generative composition in modular synythesis. In Proceed-

ings of the australasian computer music conference (pp. 68–73). Melbourne, Australia.

Williams, L. (2001). Integrating pair programming into a software development process. In

Proceedings 14th conference on software engineering education and training (pp. 27–36). doi:

10.1109/CSEE.2001.913816

Wilson, S., Lorway, N., Coull, R., Vasilakos, K., & Moyers, T. (2014). Free as in beer: Some

explorations into structured improvisation using networked live-coding systems. Computer

Music Journal , 38 (1), 54–64.

Wright, M., Freed, A., et al. (1997). Open sound control: A new protocol for communicating

with sound synthesizers. In Proceedings of the 1997 international computer music conference

(p. 10). Thessaloniki, Greece.

Xambó, A., Freeman, J., Magerko, B., & Shah, P. (2016). Challenges and new directions for

collaborative live coding in the classroom. In Proceedings of the international conference of

live interfaces (p. 65-73). Brighton, United Kingdom.

Xambó, A., Laney, R., Dobbyn, C., & Jorda, S. (2011). Collaborative music interaction on

tabletops: an HCI approach. In BCS HCI 2011 workshop on when words fail: What can

music interaction tell us about hci? Newcastle Upon Tyne, United Kingdom.

Zmölnig, I. m. (2016). Audience perception of code. International Journal of Performance Arts

and Digital Media, 12 (2), 207–212.

Zorn, J. (1987). Cobra. Basel, Switzerland: Hathut.

173

https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://iclc.livecodenetwork.org/2019/programa.html#pn8
http://iclc.livecodenetwork.org/2019/programa.html#pn8
https://whatworkswellbeing.files.wordpress.com/2016/11/wellbeing-singing-music-briefing-nov20162.pdf
https://whatworkswellbeing.files.wordpress.com/2016/11/wellbeing-singing-music-briefing-nov20162.pdf


Appendix

174



Appendix A: Performance Descriptions

A.1 Leeds Algorave, Open Data Institute, Leeds - 28/04/17

Video recording: ch5 1b-Leeds Algorave-28 04 17.mp4

(0:00 - 11:30) The first ten minutes of the performance centered around a bright melody and

steady kick drum beat at 120 bpm. A constant feature of this performance was that majority of

the code was written by myself in the green font. Troop’s bar chart in the photograph in Figure

5.6 shows that I have written at least double the amount of code as my collaborators. This is not

completely unexpected as I had been using the FoxDot language for a number of years whereas

the rest of the ensemble had only started to learn it over the last few months.

(11:30 - 16:30) At the 12 minute mark we had reached a crescendo of sorts by increasing the

density of the snare drum pattern, which used transformations of the Cuban cinquillo rhythm

that is found in many modern Latin-American pop songs. It seemed this crescendo was felt by all

performers as the scale was then changed and the drumbeat was removed by minute 13, leaving

a barrage of electronic horn sounds. Percussion was gradually added back in and the horns were

replaced with a ghostly synth stab and we returned to the bright melody and snare drum rhythm

used to begin the set. The drum pattern was made more complex by applying more transforma-

tions to it and the bright melody was altered to create bursts of dissonance with a distorted bass

synth added in the background.

(17:00 - 18:30) At this point you can see some discussion between the performers, with Laurie

gesturing towards his screen to say that the text had become “scrambled”. The error that had

occurred in practice had now happened during a live performance. Due to the scrambled text, it

was very difficult to update code effectively and the music had changed very little over the last

few minutes. In an attempt to alter the overall soundscape I decided to change key and move it

up two semitones. We tried to remove some elements from the music in order to get control over

the situation, which involved stopping and deleting much of the code. I felt that this transition

was well executed as the music did not change too abruptly and made a significant change in the

musical direction. If anything the error was actually a positive thing as it became a driving factor

for change in the music to recover the situation. Live coding is often described as the process

of “embracing error” and letting failure lead you in musical performance and this moment was

175



definitely an example of this.

(20:00 - 28:40) We were not able to fully tame the error and at midway through minute 20

Laurie was standing with his hands on his hips looking exasperated because the text had become

scrambled again. I made an executive decision at this point to start from scratch. I stopped all

of the audio except a single bass synth note on repeat and gave it a varying high-pass filter effect

in order for us to buy some time to delete the entire contents of the text buffer and regroup. We

were still getting some errors in FoxDot so we made the decision to stop all of the audio, much to

the delight of the audience. We wanted to end the performance on a bang and decided to increase

the tempo. Again, this was a case of “embracing error” and using it is a driving force for musical

change. The tone of the music after the break was much darker and closer to minimal techno

than the Afro-Caribbean rhythms we were exploring previously. Similar to the first 10 minutes

of the performance, we ramped up to a crescendo by adding more musical elements and utilis-

ing dense snare drum rhythms. We finished by playing as many snare drums samples as we could

before cutting all of the audio, creating a blast of noise, which seemed to be a crowd pleasing move.

176



A.2 Algorave Assembly Lunchtime Concert, Leeds - 27/04/18

Video recording: ch5 2-Algorave Assembly-27 04 18.avi

(00:00 - 01:50) The first sound was created by Lucy who introduced a synth called “snick”

which combines a haunting high-pitched tone and semi-rhythmic clicking sound. I responded by

introducing a simple woodblock sequence with a repeated rhythm and heavy reverb filter to try

and embellish the atmosphere. Laurie then added hi-hats and shakers, keeping in line with the

higher frequencies and staccato rhythms already established. I develop the woodblock sequence by

“stuttering” it every 7 beats but at twice the playback rate, further exploring the higher ranges

of frequencies. This was not decided beforehand but, after rehearsing and performing together for

just over a year, we had developed a chemistry that allowed us to instinctively react to each other’s

music. Lucy then changed my percussive sequence by spacing out events and I edited the pitch of

the “snick” synth to alter every 12 beats. Lucy then “stuttered” the sequence created by Laurie,

creating a density to the sound. Being able to work within the same textual material provides you

with the ability to not only easily replicate the techniques being used by your co-performers, but

also affect them directly if you so wish. Without sharing our code via Troop, Lucy may not have

known which functions I was using to create the sounds that I was (“stutter”) and may not have

been able to easily reproduce the effect elsewhere in the code. This is a perfect example of how

Troop gives performers complete holistic control over the performance as they are able to pick and

choose aspects of the code they wish to alter.

(01:54 - 04:30) At the start of minute 2 I began to explore some lower frequencies for the “snick”

synth and added some wave-shape distortion and a “chop” effect to see what would happen if we

moved out the high pitched percussive section we had currently found ourselves in. The rhythm

felt free and loose at this point and very much like a free improvisation; it had an almost human

quality to it. Laurie then introduced a new synth, called “donk”, in a lower octave, seemingly

following suit to my previous change. As we started to make more drastic changes to the mix I

replaced the “snick” with a “prophet” synth while keeping all other aspects of the layer the same.

(04:30 - 05:50) Unfortunately, Laurie’s laptop then suddenly disconnected from the server, which

was likely caused by a network drop. For Lucy and I, though, the program continued to work and

we carried on while Laurie attempted to reconnect. At that point in the performance I felt that

the sound was very centred around one tone and I decided to change the root note by moving

it two semitones every 32 beats. Laurie managed to reconnect successfully but his font colour

had changed from blue to green, and his previous contributions on the character-tracking graph

177



had gone. Lucy stopped and deleted one of the percussive sequences and Laurie increased the

sustain value of the “donk” synth. Without realising it, we had entered into a synth heavy section

and started to find a groove. This would often happen during rehearsals and performances; we

compliment each other’s changes quite subconsciously when responding to both the music and the

code in Troop. Being able to see, as well as hear, your co-performer’s work allows you to make

predictions about the direction of the musical flow and also take inspiration for your own work.

(06:00 - 06:35) Laurie then increased the density of the “donk” rhythm further and, using varying

octaves, also expanded the spectral variety. I introduced an ambient tone in a lower octave to flesh

out the overall sound, perhaps subconsciously countering the last change made by Laurie, while

he also added a kick drum to the percussive sequence. At this point, we began to overload the

computer’s CPU, which caused SuperCollider to generate a glitching sound as it could not render

audio correctly. Reducing some of the CPU intensive effects, such as reverb and delay, resolved

the issue and we managed to move forward without any more trouble. Perhaps inspired by these

gritty and glitched artefacts, distortion was added to the ambient tone, which created a contrast

with the fluttering blips of the “donk” synth in the octaves above it. Once again our creative

decisions during performance are being influenced by computer error. This is one of the beauti-

ful things about live coding; it really is live and unscripted and you are never far away from a crash.

(06:45 - 09:40) I decided to add some repeated calls to to the “offadd” method in order to gen-

erate more notes from the “donk” synth; a layer that I was really enjoying at that point. It’s a

very satisfying feeling when the combination of ideas - Laurie’s initial creation of the code and

my own editing - contributes to a fresh musical sequence. I again changed the root note to move

up another two semitones every 32 beats with the idea that this change in tonality might signal

a greater musical change overall. Lucy eventually stopped the “donk” sequence, which made the

soundscape suddenly feel very sparse. Lucy also changed the key to mixolydian and increased the

tempo by 20 beats per minute; indeed, a change was coming. Lucy also introduced a snare drum

based sequence that seemed to carry more urgency within the performance. I added distortion to

the marimba in order to increase its prominence within the overall mix and it, too, began to carry

a strong, dedicated rhythm. Laurie also updated the accompanying percussive sequence to match

this steady rhythm and, once more, we ended up on the same page through the use musical and

textual cues, as we entered a new phase in the performance.

(09:45 - 09:55) I wrote “percussive section?” in a comment, which was as much for the audi-

ence as it is my co-performers, and Laurie replied in the affirmative. This was received with a

laugh from several members of the audience, and further indicated that a change in the music

178



was approaching. This interaction between Laurie and myself was facilitated by Troop and the

audible response from the audience highlighted the fact that audiences are gaining insight into the

ensemble’s communication through this tool.

(09:55 - 14:30) We removed all of synth tones within the soundscape and established a regu-

lar rhythm while still maintaining a sense of groove. I introduced a four-to-the-floor percussive

sequence and utilised the “stutter” method to create an iterative sound gesture by pitch shifting

the samples and Lucy responded by creating a sparse percussive rhythm of her own. As we de-

veloped our percussive sequences, Laurie began to write a long line of code for use with a synth

called “zap”. Its introduction was subtle, but solid. It didn’t take anything away from the per-

cussive background, which had been increasing in intensity as Lucy and I continued to embellish

the sequences. Laurie’s “zap” sequence uses a TimeVar for its duration to achieve an interesting

rhythmic effect.

(14:30 - 19:50) I attempted to make the “zap” sequence more melodic while Lucy introduced a

“space” synth, which created a soft background for the remainder of the mix to sit on. We stripped

back the mix to just these synths and minimal percussion, which created a sense of space and a

shimmering texture.

(19:50 - 20:45) We had reached the latter stages of the performance at this point and we were

beginning to strip a lot of the sound back. Using comments within the code, we decided to finish the

performance with something closer to what one might experience at an Algorave. Consequently, I

added a deep, but simple, bass line using a player object called b1 and Lucy began to build up a

distorted and gritty rhythm in the background.

(20:45 - 21:40) Laurie created a player object, z5, and began to craft a pulse wave sequence that

utilised the pitch from the bass synth by using the syntax b1.degree + (0, var([2,4,6])) to

set the pitch data. It played the same pitch as the bass but also added a second note that would

complete a third, a fifth, and a seventh above it for a bar each in turn and sounded great when

it came in. This is a very similar musical relationship to the one Lucy made by using the follow

method and adding a TimeVar to the player object (shown in Figure 6.2) but was created using a

player-key instead. Pitch-based relationships are an integral part of our performances and using a

player-key in this instance meant that Laurie didn’t have to worry about matching the root note

of his chord as it would always compliment the bass.

(21:40 - 22:45) At the same time, Lucy had been working on her own line of code that would

179



introduce a saw-wave based synth called “star”. She used the pitch from Laurie’s pulse-wave

sequence, z5 but halved the value by using the code, z5.degree / 2. Had the degree of z5 been

odd at any point, then the values derived from dividing them by two would have ended with .5,

causing FoxDot to play a note a semitone higher, i.e. an accidental. However, this did not happen

as z5 was referencing the pitch from b1, which used only even numbers.

(22:45 - 25:10) Laurie got disconnected again and we get several error messages appearing in

Troop’s console relating to this. Lucy and I continued but we began to experience audio jitter and

some samples going out of sync. Laurie managed to log back in but, once again, was assigned a

new font colour and it clashes with my own, which may have been very confusing for the audience.

As we approached the end of the performance we thought it might be a good time to embrace the

crash that seemed inevitable at that point. I added an extremely noisy synth and we started to

push SuperCollider to its limit, adding effect after effect to reproduce the glitched artefacts from

before. In the process we nearly crashed Troop but it hung on to let us finish and ride out the

distorted and glitched sounds.

180



A.3 International Conference on Live Interfaces,

Porto - 14/06/18

Video recording: ch5 3-ICLI-14 06 18.mp4

(0:00 - 02:25) The performance started with each of the performers writing a separate line of

code to generate a musical sequence. I chose an ambient drone, Lucy a percussive resonance

synth called “space”, and Laurie was working with percussive samples. The drone slowly became

a shimmering tone while the “space” sounds were sporadic but haunting and playing a simple

sequence on repeat. The percussive samples were being played back at a reduced playback speed

and provided a crunching backdrop. After a few minutes the first rotation occurred. I edited the

“space” sequence to slide its pitch up and down and Laurie updated the drone. Lucy added a call

to “stutter” the percussive samples every 7 beats and they began to appear more frequently, and

rhythmically, within the overall mix.

(04:20 - 05:10) We continued to rotate through each others’ code making changes but it wasn’t

until the fourth minute that any synth was changed. Lucy switched the drone synth to a pulse-wave

based synth, “prophet”, which created a more dynamic backdrop to the rest of the music. The

synth sounds were then chopped up, creating an echo effect with irregular and disorienting pulses.

I introduced a new, softer drone to thicken the sound. The pitch of the echoing pulse synth was

derived from the “space” sequence but modified the value every other note. Although connected,

the two layers seemed a world apart.

(05:15 - 06:15) Suddenly there was a large distorted sound caused by Laurie applying a comb

delay effect to the percussive samples that disappeared soon after. The frequency of note onsets

began to increase and the sound started to become dense. However, within a few moments the

number of sound events was reduced and the overall soundscape was taken to a softer and calmer

place. This was helped by replacing the “space” synth with a “marimba”, further dampening the

tone. By this point the contributions made by each performer were scattered throughout the text

buffer and I could no longer keep up with who has done what and the identities of the different

sounds were lost. The font colour had begun to merge toward a single colour, further indicating

this loss of the individual among the collective.

(08:30 - 10:10) Several percussive sounds were introduced, some bright and some distorted. The

rhythms battled against each other and, with that, became more and more dense. We suddenly

181



found ourselves shifted within the mix as the marimba was replaced by a distorted and alien sound

accompanied by a synthesised soprano. We have managed to produce bright percussive tones and

low bass notes that could be straight out of a grime track. By this point the colours had nearly

completely merged and the individuality is lost; it became very difficult to identify the changes

made to the audio by the separate performers.

(10:45 - 15:40) The shift in soundscape forced each performer to develop their musical ideas

to accompany this change. A bass line was introduced that followed the pitch from the soprano

and resulted in a ghostly and haunting sound. Shortly after its introduction, the bass became

much more staccato and harsh, emphasising the foreboding sound that had emerged. For a few

minutes the musical ideas at play were explored further by each performer. The soprano sound

was then transformed into a more staccato sequence itself using the “chop” effect, perhaps drawing

inspiration from the shortened bass notes. The density of the crunchy percussive rhythm was also

reduced, seemingly following suit. The bass notes became even shorter and we were left with large

amount of empty space in the texture. One by one the sounds were removed but the reverb effect

being applied to the remaining sounds created a thicker and warmer texture. The tempo was then

increased and just as it felt the piece might ramp up to a crescendo, the performance was over and

the sounds faded away.

182



A.4 Rehearsal session, various locations - 26/04/17

Video recording: ch6 1a-Rehearsal-26 04 17.mpg

(02:10 - 03:15) Laurie started by creating a simple sequence with a bell sound and Lucy used

the follow method to connect her own “dirt” synth to it. She tried out a few different values to

add to her player object; first she added 3, then a triad to create a chord using Laurie’s bell as its

tonic, then using a FoxDot TimeVar (shown in Figure 6.2) to iterate over the first, third, and fifth

note of the chord for two beats at a time . At this point the durations for both the bell and “dirt”

synth were the same, which did not make for an interesting interaction but Laurie then uses the

PDur function to utilise a Euclidean rhythm and create a contrast between the two layers.

(03:15 - 09:30) Lucy set the note onset delay to half a beat and created an offbeat groove within

the mix. She didn’t have to worry about what value she uses for pitch as it is always connected

to that of the bell sequence and one will always compliment the other regardless of the duration

used. We then explored textures for several minutes by adding and manipulating effects on the

existing player objects.

(09:30 - 10:20) I changed the bell to a “blip” synth and use the every method to “rotate” the

melody every 4 beats. This moves every element in the list containing pitch information over by 1

and the first element then becomes the last. Again, even though the pitch data was being altered,

the audio generated by the “dirt” synth was still determined by its connection to the other player

object though the follow method regardless.

(13:25 - 15:00) The jam had become dense and noisy and it felt like stripping away most elements

would be the best thing to do. Lucy had introduced a noise-based sequence that was mostly filling

out the background of the mix but just after minute 14 she decided to use the follow method again

to connect it with the fluttering melody created by the “blip” synth. The bursts of noise are not

what many would consider “traditionally musical” but the variation between the lower and higher

registers created through the connection to the “blip” synth created a surprisingly complimenting

combination of textures.

(15:00 - 24:16) Lucy tried out a few different synths and settled on the “dab” synth, which

generated more conventional chords to accompany the the “blip”. The jam continued for several

minutes but, unfortunately, we experienced a few errors and, from minute 18 onward, we spent

most of the time trying to find the source of the issue. The session ended with us all experimenting

183



with the available layers before being disconnected by a network error.

184



A.5 Rehearsal session, various locations - 06/06/17

Video recording: ch6 1b-Rehearsal-06 06 17.mpg

(00:00 - 01:30) This session only consisted of myself and Laurie and started with each of us

defining a melodic sequence. I assigned a “karp” synth to r1 and created a simple melody that

“rotated” every 4 beats. Laurie instantiated a player object, z1, which utilised a viola synth and set

it to follow the pitch of r1 and added the values [2, 5, 7]. This created a relationship between

r1 and z1 but it was difficult to hear any musical connection between the two sequences. This

was due to z1 deriving its pitch from r1 but having much longer note lengths. As soon as the

accompanying pitch was played by z1, the pitch had changed in r1 and no longer complimented

it.

(01:55 - 02:10) Laurie decreased the duration of z1 and I increased its sustain and lowered it by

an octave. At the time I couldn’t put my finger on what was wrong but I was trying to remedy

the situation by giving the viola sequence more prominence. It felt like the “karp” sequence should

have been deriving its pitch from the viola but it was the other round. It created a strange sense

of disconnection between the melodies but without causing any real dissonance.

(02:10 - 04:00) I tried to develop the viola sequence so that it acted as the accompanying

background to the brighter melody being played by r1; I doubled the length of z1’s duration and

sustain and also added a fifth on top of the pitch values to strengthen the sound. This did go some

way in making the mix feel more complete and the connection between the two layers felt stronger.

There is some discussion between Laurie and myself about syntax for a few moments before we

continue.

(04:00 - 05:10) I again increased the duration and sustain of the viola and the sounds begin

to overlap. The strange interconnection between r1 and v1 seemed to compliment the ghostly

textures that were being developed. Although not implemented well initially, Laurie and I pursued

the music that emerged having used the follow method and developed an interesting soundscape

with it. Just as it had done previously (see Section 5.3.2) the embracing of an error led us into a

great improvisation session and made for exciting and unpredictable outcomes.

(05:10 - 51:15) The follow method was not used again for the remainder of the session but it

provided a useful platform for beginning the rehearsal and allowed us to easily work on a shared

piece of musical material together.

185



A.6 Together In Music conference, York - 14/04/18

Video recording: ch6 2-Together in Music-14 04 18.mpg

(00:00 - 01:35) The performance started with each of us working on separate lines of code but

with very similar tonality, revolving around the root note of the scale. Laurie began by building

up some subtle background chords using the “keys” synth and assigning it to the player object,

z1. I introduced a soft-yet-noisy drone synth called “klank” using a player object, k1 and added a

varying low-pass filter effect to it to bring it in and out of the foreground. Lucy created a player

object called l1 and used the “space” synth to fill out the higher frequencies of the mix, but still

keeping consistent within the overall dark textures of the sound. At 1:27 Lucy updated Laurie’s

“keys” sequence to reference the low-pass filter values used in k1, using lpf = k1.lpf, and tied

the two layers together within the mix.

(01:35 - 02:10) At 1:36 you can hear me say “ooh yeah” as I was pleasantly surprised as Laurie

began to move his chords a away from the tonic. I reacted by changing the the simple TimeVar I

was using in k1 to z1.degree[0] to reference the root note of the chords and further emphasise

the new tonal direction of the performance.

(02:10 - 04:00) Lucy seemingly wanted to connect all the active layers together and replaced the

notes defined in z1 with l1.degree such that both k1 and z1 were deriving their pitch values from

l1. This meant that z1 was now using single values as well as chords and that k1 was referencing

its pitch using z1.degree[0]. Ordinarily in Python, using this syntax to access a single number

would raise an error but the player-key method for getitem (as shown in Figure 6.7b) checks

if the value accessed is a group or not and returns the value if not.

(04:00 - 06:20) Lucy changed the “chop” effect applied to the “klank” synth to use the duration

value from z1 by using chop = z1.dur. This created an interesting polyrhythmic effect, as the

chopped up elements of the drone overlapped each other with varying degrees. In a similar fashion,

Laurie changed the amplitude of z1 (the “keys” sequence) to follow the values used in the “echo”

effect applied to a percussive sequence, p3, using amp = p3.echo. The “echo” would be value

randomly selected from 0, 0.25, 0.5, or 0.75 and the sound of the “keys” synth were dropping in

out of the mix.

(06:20 - 09:25) The next few minutes saw us move away from melody and texture and into a more

percussive section that explored more rhythmic effects. There was even more experimentation with

the player-keys during this period. Laurie applied a “cut” effect, which shortens the duration of

186



a sample’s playback, to Lucy’s percussive sequence with p3.dur / 2 as its in input. This created

short staccato bursts of the various samples Lucy was using, including a female voice. Up until

then the sequence had been quite dominating but this change helped even out its presence against

the other punchy percussive layers being developed elsewhere, especially p3 as the density of that

layer’s rhythm would vary greatly over time. I then introduced a soft synth called “ambi” into the

mix as a backdrop for the dense percussive rhythms to sit on top of.

(09:25 - 11:30) Lucy changed the duration of the “ambi” synth from 8 beats to the value of

p1.dur so that it would follow the duration of one of the main percussive sequences and also

applied a “chop” effect to it. It created a minimalistic alien melody that prompted us to remove

some of the density from the performance and focus on a more sparse and sporadic percussive

section.

(11:30 - 13:10) The sparsity of events did not last long as Laurie introduced a player object, z4,

and created a rising melody sequence using the “donk” synth, which utilised Euclidean rhythms

commonly found in dance music. A wooden snare-like sound was being triggered on the second

beat of each bar, which gave the overall rhythm a regularity that had not been present until this

point. Lucy then added the pulse-wave based synth, called “prophet” on top of this, and I brought

in a distorted bass using the player object l2.

(13:10 - 16:15) Lucy updated the “prophet” sequence to use z4.degree as its pitch value, taking

it from the fast-paced “donk” synth that Laurie introduced earlier. The duration of the “prophet”

sequence was 6 beats per note whereas the “donk” sequence used a series of durations all below 1

beat per note. This created a very similar effect to one that emerged in Section 6.2.2 (rehearsal

session B) when the player object that was “following” another also had a longer duration. The

longer notes produced by the “prophet” synth seemingly held a snapshot of z4’s constantly moving

melody and seemlessly merged it into the background. At 15:35 Lucy doubled the value by using

z4.degree * 2, which moved the “prophet” sequence exponentially into the higher registers. Pitch

relationships are generally linear and doubling the frequency of the notes could easily have been

achieved by moving the sequence up an octave, but the transformation not only moves the pitch

into a higher register, but also increases the range of pitches used by the “prophet” sequence,

making it more interesting to the listener.

187



A.7 Algo-Rhythms, Rotterdam, 28/04/2019

Video recording: ch6 3-Algo Rhythms-28 04 19.mpg

(04:10 - 05:10) The soundscape contained several interesting rhythmic and timbral features at this

point but was becoming very dense and seemed to be reaching a crescendo, which was emphasised

by the rising frequencies of the “prophet” synth. I implemented one of the new features of FoxDot

developed during this phase by setting the pitch of the “prophet” synth to r1.pitch.accompany().

This created a relationship between the soaring “prophet” notes and the simple harmony being

played by the “swell” synth. Interestingly the “prophet” layer accompanied the two notes of the

harmony with two different notes, which added to intensifying crescendo.

(05:10 - 06:05) Innocent accidentally left the frequency cutoff for the “prophet” synth at 16,

which all but silenced the layer, but was the catalyst for a change in the music. Several changes

to parameters throughout the code which slowly started to add more space to the overall sound.

Innocent added a “pluck” layer with a duration of 1/3 and also used r1.pitch.accompany() as

its pitch input, which created a tonal relationship to other layers in the music, but also created a

sharp rhythmic contrast as it punched through the long sustained notes currently at play.

(06:05 - 08:00) Lucy tentatively began to type r1.stop before deleting it, as she saw there were

two layers using it as the source for pitch information. However, I did feel that the music needed

to be stripped back and decided to stop it myself in an attempt to move on to a new section in the

music. I replaced the r1.pitch.accompany() in the “prophet” synth layer with a simple melody

and began to work on the sequence. Shortly after I did the same for the “pluck” sequence. Innocent

stopped the “spark” sequence and suddenly the soundscape feature almost no bass frequencies at

all and felt very empty.

(08:00 - 10:20) The sparse atmosphere was short lived as Laurie introduced a growling “saw-

bass” synth to a layer called zx to fill out the mix. This was soon accompanied by a bright and

choppy “star” synth layer created by Lucy that used i2.degree * 2 (double the pitch value of

the “prophet” synth layer) as its pitch input. To compliment the more fleshed out soundscape, I

increased the sustain on the repeated “pluck” layer and added a repeated to call to the “offadd”

method.

(10:20 - 11:40) Innocent introduced a new layer, called i4, using the “nylon” synth and created

a relationship with the bass line Laurie had developed by using zx.pitch.accompany(). Laurie

188



responded to this focus on the bass by adding the zx.degree value to the melody used by the

“pluck” synth layer. This added a nice level of variation to the melody, which had a polyrhthmic

feel to it having been combined with the “offadd” method.

(11:40 - 13:00) I decided to try out the new versus method by calling versus(i3.pitch) on

the i2 layer. The result was that the “pluck” and “prophet” synths started to take turns to play,

combining to create a call-and-response. This also helped create a bit more space in the mix

without explicitly removing a layer, and the indeterminacy kept the music feeling organic.

(13:00 - 13:35) I decided to silence every layer apart from those with names starting with “i”

to try and emphasise the use of versus but the amplitude values used in the i2 layer meant that

it did not always generate sound when its pitch value was greater than its versus counterpart,

i3. This perhaps created too much space in the mix and I added back in the percussive sequence.

Even if this did not work the way I had intended, it did create a sharp contrast to the density and

timbre of the music.

(13:35 - 14:05) Another interesting outcome of my decision to silence several layers at once

was that it affected the pitch relationship created by Innocent in the i4 layer, which was using

zx.pitch.accompany(). The zx layer had stopped, so i4 had nothing to accompany and played

the same note on repeat until we brought back in the bassline using zx. The single repeated

note developed a level of tension, which was then released as the accompanying relationship was

resumed with the reintroduction of the bass.

(16:00 - 17:20) Lucy’s interface froze and her cursor got stuck in the middle of the line. It wasn’t

until Laurie wrote a comment in the code that Innocent and I were aware of the problem but we

tried to continue while Lucy examined the issue. Lucy was not able to log back in and it seemed

the best course of action was to close everything down and restart.

(17:25 - 18:35) After a few minutes delay while we restarted the Troop server and reconnected,

we resumed our performance. I started by adding a breathy drone synth, called “klank”, while

Lucy created a sequence of robotic sounds and Laurie introduced the “donk” synth with a layer

named zc.

(19:30 - 22:00) Lucy added a “marimba” synth that used zc.pitch.accompany() as its pitch

input. The zc sequence was using a linvar to generate microtonal pitch values that linearly

oscillated between the root note and its fifth. I had not foreseen that the accompany method

189



would be combined with these sorts of pitch values and it was interesting to hear the results.

The “marimba” synth was also playing microtonal notes, which creates a harsh clashing of tones

but complimented the other layers thematically. We hadn’t discussed the use of microtonal work

prior to the performance, and it was surprising to see it make an appearance, and the use of the

accompany method helped keep the theme consistent across multiple layers easily, while adding

variety to the process.

(22:00 - 23:55) Lucy changed the tempo to 130 beats per minute, then 140 shortly after in an

effort to ramp up to a conclusion. Following that thread, she also replaced the delicate notes of the

“marimba” synth with a “varsaw”, which drastically altered the overall soundscape to something

much noisier and disruptive. The microtonal notes felt too strong at that point so I decided to

alter the zc layer to only play a microtonal value every third note and alternate between the root

and fifth for the other notes. Meanwhile, Innocent created a new line using the “prophet” synth

that did use zc.pitch.accompany() as a text input, but with a longer duration of 8 beats per

note. Lucy also added a pitch-shifted and distorted snare drum on repeat, which added to the

urgency of the outro.

(24:45 - 25:55) Laurie writes “strip back?” as a comment, suggesting that we start to remove

elements from the mix to fade out the music. Interestingly, Innocent adds a heavy kick drum with

a low-pass filter applied, which starts to carry the beat. While Lucy and Laurie start to remove

some layers, I decided to spread the kick drum out a bit as not to completely undo Innocent’s

code, but to try and fit it in with the “stripping back” process that was happening at the time.

Lucy and Laurie then removed all synth-based elements and we were left with just two percussive

sequences. Lucy then cleared the clock and brought the performance to a well-executed close.

190



A.8 Rehearsal session, Sheffield - 09/12/18

Video recording: ch7 1-CodeBank Rehearsal-09 12 18.mpg

(00:00 - 02:50) The session began with someone introducing a simple hi-hat rhythm that stuttered

itself every few beats. After a minute a low, droning tone was introduced at 01:20 and was shortly

followed by short and sporadic notes from the “keys” synth. At 01:53 I took my headphones off

briefly to listen to the mix before deciding to pull the codelet containing the “keys” synth from

the public repository. It isn’t until 02:30 that an audible change to the soundscape (an increase in

pitch of the drone) was heard. At almost the exact same time, both a “space” and “donk” synth

were introduced. It felt like the result of everyone’s musical ideas were realised simultaneously and

seemed to create a sense of unity about the music.

(02:50 - 03:30) Just after the 3 minute mark I pushed my updated codelet into the public domain,

which introduced more bass frequencies into the mix and created a thicker and warmer texture.

The changing chord sequence also helped add some variety to what had become quite a repetitive

and monotonic sound.

(03:30 - 05:10) Lucy introduced a heavy kick drum sequence with a 5/8 over 8/8 polymetric

rhythm, which added momentum to the music but without an overly obvious beat. At around

04:30 Laurie added a low-pass filter to the kick drum sequence to remove the treble from its attack

and smooth out its sound to blend better with the mood of the rest of the music. He had spent

much of the session up to this point with only one headphone on, listening to the mix and obviously

felt that the EQ of the drums needed adjusting.

(05:10 - 06:20) At this point, a stuttering effect was added to the kick drum layer; echoing the

build up of the hi-hats that started of the practice. The “space” synth was then lifted into a higher

octave, creating a nice contrast within the mix, especially against the low frequencies of the kick

drum and “keys” sequence.

(06:20 - 08:15) Everything seemed to be coming together nicely and each different element added

by the group complimented the dark and atmospheric mood of the music. We continued to develop

our ideas further for several minutes, creating a rich and dense sound that was starting to build

up a lot of tension.

(08:15 - 09:15) An arpeggiated synth was added and it immediately cut through the mix, sig-

191



nalling an impending musical change. Over the course of the following minute we began to strip

out sounds from the lower frequencies and started working on brighter and more melodic sequences,

while still keeping the driving kick drum and hi-hat combination.

(09:15 - 10:30) We began to strip the layers back further still by replacing the hi-hats with soft

burts of noise and clicks. The distorted bassline that had been pulsating in the background now

pulsed less frequently, creating a soft 3/4 polyrhythmic rhythm against the even brighter synth

notes in the foreground.

(10:30 - 12:30) The scale was changed from major to minor and a percussive note with a quick

rhythm was immediately introduced, giving impetus to the new musical direction. No further

change occurred until 11:10 when the tempo was increased, adding an even greater sense of urgency

to the music.

(12:30 - 13:45) A snare-drum rhythm reminiscent of an army marching band was introduced at

the end of minute 13, but was changed to hi-hat at 13:27. At 13:40 the kick drum sequence was

put through a high-pass filter, which created a real sense of tension as if the music wasn’t quite

complete without the bass frequencies of the drum.

(13:45 - 15:25) A descending and distorted melody was added, which took centre stage within

the mix immediately. Short flurries of kick drum samples were played before being taken away

and returning to that sense of tension. It wasn’t until 14:55 that the kick drum returns for good,

adding a steady beat, filling out the mix and carrying the momentum of the music.

(15:25 - 17:15) At 15:30 a delicate high-pitched pulse-wave synth was added that sat above the

distorted melody. It expanded the tonal range of the music and added a new dimension to the

sound. A high-pass filter was applied to the kick drum sequence for the last bar of the eight-bar

cycle, adding a small amount of tension before releasing it.

(17:15 - 17:50) The distorted melody was replaced with dissonant synth chords, adding tension

and a sense of foreboding to the mood, possibly indicating greater musical changes were to come.

(17:50 - 19:10) The kick drum was changed from four-to-the-floor to a three-over-eight Euclidean

rhythm, which removed a lot of the density from the mix and slowed the pace of the music down.

At 18:02 an accordion-sounding synth was introduced along with sporadic clap samples, creating

a sort of dark electro-sea shanty vibe, which was definitely not something we had planned on

192



exploring at any point in the rehearsal.

(19:10 - 20:00) A throbbing bassline was added, which shifted constantly between metric and

polyrhythmic rhythms.The accordion sound was stripped back to only play in the last bar of a

four bar cycle, but provided an interesting contrast to the lower frequencies of the bass.

(20:00 - 20:40) The four-to-the-floor kick drum was re-introduced along with sporadic dubstep

snare samples, which created a steady, yet off-kilter beat. A barrage of cowbell and woodblock

samples were added to the mix, but only for a moment as Lucy pushes a codelet that contains an

error and stops all the sound.

(20:40 - 23:55) Lucy asked “Why is it pink?” referring the colour of the codelet she had just

pushed the public repository. I hadn’t properly explained this feature of the system yet and, after

clarifying what she had asked, I reply “Oh, that means there’s an error”. There was no error

raised when running the code in her private workspace, but the codelet was coloured pink when

pushed and also caused the audio to stop completely. The next minutes consisted of debugging and

discussion and we realised there was a Type Error1 being raised because the Lucy had changed the

player object’s input to a string, but it was being referenced as a player-key by another codelet,

which required a number.

(23:55 - 24:50) We resumed the jam and Innocent introduced some new samples including a male

voice shouting “huh”, much to Lucy’s delight. The kick drum was slowly stripped back until it

only played on the first and last beat of the bar, creating a lot of space in the mix. Further space

was made when the cowbell rhythm was removed shortly after.

(24:50 - 26:15) The array of samples that Innocent had brought in were sped up and played

quicker, creating a funky and minimalistic beat.

(26:15 - 26:41) A simple voice-like synth chord was added that alternated between two notes but

it added an element of seriousness to music, which had become quite playful up to this point. It

was starting to feel like we were building up to a slick IDM section when the battery in the camera

ran out and cut the recording tantalisingly short.

1Ironic.

193



A.9 TOPLAP End of Cycle Party, Access Space,

Sheffield - 19/12/18

Video recording: ch7 2-TOPLAP End of Cycle Party-19 12 18.mpg

(00:00 - 00:15) We synchronised to the CodeBank server using the ‘clock nudge window’ and a

single clap sound to make sure what we heard in our headphones was identical to what we heard

through the PA system. Once we were all synchronised we began to play.

(00:15 - 01:40) Since the performance was taking place so close to Christmas we decided to

start with something one might describe as “festive”, which involved sleigh bell and tambourine

samples, and the occasional woodblock. We started to introduce a few synths that played a single

repeating chord with an offbeat rhythm and a bright melody in the upper octaves that definitely

fit the theme of “festive”.

(01:40 - 03:30) A simple drum beat with a low-pass filter applied was then added to carry the

music and give the audience something to nod along to. The bright melody soon began to run up

and down the scale and a mix of hi-hats, maracas, and castanets and were introduced on top of

the drums, adding to the groove.

(03:30 - 05:30) A soft, but definite, snare drum came in on every other beat and helped keep up

the momentum but the overall sound started to become murky, overly dense with percussion, and

repetitive.

(05:30 - 07:30) The tempo was changed to 140 bpm and the bright synth sounds were removed

to leave only the layers of percussive samples and a single synth tone. This helped alleviate some

of the issues with the music and ended up creating quite a nice groove.

(07:30 - 08:50) The droning synth changed into an offbeat and staccato stab in the lower octaves

and fuelled the groove we had developed. The kick drum layer was removed from the mix, creating

some tension that was swiftly released following the reintroduction of the kick drum and also the

addition of multiple snare samples.

(08:50 - 10:25) More synth presence within the mix created a darker atmosphere to the music and

the pace was slowed down by removing every other kick drum sample. The build up in suspense

194



was being very well coordinated.

(10:25 - 11:35) A deep and distorted bass synth seemed to suddenly scream in the background and

the performance was given a jolt of energy. The slower kick drum stopped things from escalating

further but it was definitely indicative of a more high-octane musical direction.

(11:35 - 11:55) In contrast to the dark and gritty bass, a soaring “soprano” synth was introduced

and the kick drum was changed back to four-to-the-floor. Things came together perfectly here and

there were definitely some bodies moving in the crowd.

(11:55 - 14:00) A formant filter was applied to the drum samples, which removed most of the

bass frequencies and created a level of tension. This tension was released as the filter was removed

at 12:08, bringing back the high-energy electronic dance music. In true EDM fashion, we added a

“drop” at 12:28 to try and surprise the audience and give them a break from the repetition.

(14:00 - 15:00) At 14:07 a distorted synth with sharp attack was “solo’d”, which left it as the

only layer playing. The sequence’s varied rhythm was of great amusement to Laurie who bent over

laughing to himself. It’s always fun when something surprises you during performance! Each layer

was gradually added back in and by 14:50 we were back with a strong and steady beat.

(15:00 - 16:25) A single note with a reversed envelope was added on repeat before its duration

was stretched to 8 beats. It seemed that some performers had become out of sync with the server

and were not able to listen to the audio in private workspace properly, causing them to introduce

elements into the public repository to listen to them instead.

(16:25 - 18:10) The tempo was slowed down to 70 bpm for a few bars to create the effect of a

“break down” but was quickly changed back to 140 bpm to give the performance a boost of energy.

However, the bassline was slower and the level of distortion applied to it increased with every beat,

resetting after 8 beats. This coincided with a whirring tone that would reach a crescendo at the

same point.

(18:10 - 18:40) At this point Lucy turned to me to ask about moving on to develop a new musical

idea. Instead of using the chat box in CodeBank, the message was passed down to Laurie, who

then passed it down to Innocent, which took nearly 25 seconds.

(18:40 - 19:25) A barrage of distorted and glitchy samples were added, accompanied by a range

195



of snare drums that appeared sporadically before returning to a regular beat at 19:05. Laurie and

Lucy shared a joke, causing them to laugh. Having co-performers in a good mood on stage always

helps alleviate any nerves and makes for a more enjoyable performance.

(19:25 - 20:50) At 19:50 a lot of the main drum layers were removed from the mix, although

some of the higher frequency percussion remained. The kick drum was reintroduced along with a

seemingly random selection of other samples. Several sets of headphones were not being worn and

many more smaller and incremental changes being made to the public code, which suggested that

we were not making as much use of the private workspace as earlier in the performance.

(20:50 - 22:15) A single high-pitched note was introduced and the bassline was altered to slide

up in frequency over several bars, creating an element of suspense. At 21:50 the single note was

also updated to rise in pitch in the same style as the distorted bass, further adding to the build

up in tension.

(21:15 - 22:45) I added a clap sample on every downbeat before doubling and quadrupling its

speed shortly after, creating a continuous wave of noise. I was not testing these changes in the

private workspace as I felt that their addition (and removal at 22:45) was time-critical.

(22:45 - 23:50) The music continued to loop for another minute, seemingly building to a crescendo

that never came as the music was stopped midway through the last bar of an 8 bar cycle. A rising

synth line continued to slide higher in frequency indicating a resolution but instead faded away

and the performance was over.

196



A.10 Late at the Library: Algorave, London - 05/04/19

Video recording: ch7 3-British Library Algorave-05 04 19.mpg

(00:00 - 01:30) We decided to start the performance slowly and build up the textures and melodies

before introducing too many percussive elements. I introduced a soft noise-based drone, which was

soon accompanied with bright synth chords and a simple, repeated “crunchy” rhythm.

(01:30 - 02:10) A harmony was added to the drone and, after listening to output in my head-

phones, I added a faster rhythm made from percussive samples being played between 5 and 10

times faster than their usual rate.

(02:10 - 03:10) A soft kick drum was then introduced together with a ‘pluck’ sound, which gave

the music a little more impetus and energy. The amount of noise in the drone momentarily soared

above the mix before fading into the background as some syncopation was added drum beat. All

three performers put their headphones on as we started to work in the private workspaces and

looked to introduce a change to the music.

(03:10 - 04:20) A soft bass synth was added and shifted the tonality of the sound slightly. This

change was accompanied by the increase in density of the “crunchy” percussive layer. It was no

surprise This came just after the kick drum sequence was changed in a similar manner and this

change complimented it well.

(04:20 - 05:30) A synth with a sharp attack playing a major seventh chord was added using the

Euclidean rhythm 5 over 16, which dominated the mix for what felt like a long time. The samples

in the kick drum sequence were played back at 4 times their normal speed for the last few beats

of a 4 bar cycle, which started to add some tension to the music.

(05:30 - 06:35) I turned to the others to say “I’m gonna add a heavy kick in now” as I felt that,

with tension in the music rising, it was the right time. I decided not to write this message in the

chat window as I didn’t want to let the audience know about the upcoming change. While working

on this, the synth playing the repeated major seventh chord was updated to follow the pitch of the

bassline, using the player-key syntax, which created quite a large shift, and variety, in tonality.

(06:35 - 08:05) The four-to-the-floor kick drum came in next and added a lot of energy and

drive to the music. At the 7 minute mark, a simple percussive layer was added, which seemed to

197



replace the “crunchy” sequence that had been in the background previously, consisting of samples

of finger-snaps, hi-hats, and snare drums. In the same instance, a shifting low-pass filter (with a

varying degree of resonance) was applied to the major seventh chords, which not only added some

timbral variety, but also balanced the overall mix. The simple percussive layer was emphasised by

replacing soft snare drum samples with heavier ones that might appear in a dub-step or drum and

bass track. In the context of the light mood of the music we were playing it had a strange effect;

seemingly slowing down the piece by spreading the beat emphasis over a great period of time.

(08:05 - 09:25) The bassline was removed from the mix, which also killed any player-key relation-

ship that existed with it, such as the major seventh chords. This simple changed removed any sort

of change in the music regarding pitch and signalled some sort of change was coming. The heavy

kick drum sequence was also stopped, further heightening the suspense. A fast hi-hat sample was

added just as the chord stabs were also removed, leaving just the bright chords stabs that were

introduced at the start of the performance and some light percussion. There was definitely an

impending change in the music.

(09:25 - 10:50) After a short discussion, the scale was changed to the mixolydian and a kick

drum was added at the start of each bar. At 09:55 The bright synth chord stabs were changed

to a simple repeated riff using first and seventh note of the scale and moved down one octave.

Combined with the sawtooth texture of the synth, this shifted the atmosphere of the music to a

darker mood.

(10:50 - 12:20) The density of persussive samples was building up and a male voice shouting

“aye” could be heard. I added a bright sitar counter-melody to contrast the dark synth riff, which

seemed to take inspiration from classical Indian music. There was a bit of a clash between this

and the newly added bassline and the music ended up with a “muddy” quality. This was fixed

soon after, with the bass playing the root chord notes for the first, seventh, and fourth notes of

the scale.

(12:20 - 13:45) The dark sawtooth riff was made much brighter by moving it up two octaves

and chopping the sound up to create a rippling effect to the notes. A kick drum was introduced

at the start of every bar, whose duration was slowly decreased over several bars until it reached a

four-to-the-floor rhythm. I applied a high-pass filter to the overall mix for the last bar of the 8-bar

cycle so that, at 13:42, all of the bass was removed, developing a moment of tension, before being

added back in at the start of the next bar, creating a “drop” effect.

198



(14:30 - 15:40) A deep distortion effect was added to the bass notes, with the intention of adding

a psychedelic feel to the music. Shortly after, all percussive sections were removed, leaving only

the sitar and bright synth melodies playing.

(15:40 - 16:30) Staring with an off-beat shaker sample, percussion was slowly added back into the

mix. This was followed by a soft kick drum and the snare-drum pattern from minute 7, but played

at a faster playback speed to create the effect of a woodblock sound. After these, the psychedelic

bass notes were introduced, followed by the four-to-the-floor kick drum, which got a good reaction

from the crowd.

(16:30 - 18:20) We changed the scale to minor, which transitioned quite awkwardly. The bass

and the bright synth riffs were using notes that appeared in both mixolydian and minor scales so

only the pitch of sitar melody changed in a meaningful way. Eventually the change propagated

across to the bassline as it played some minor notes, but it did not feel very well co-ordinated at

the time. We removed several layers of the mix such that we were only left with the distorted bass

and minimal percussion and the occasional male voice sample shouting “aye!”.

(18:20 - 20:45) The voice sample reminded me that there are also some beat-boxing samples in

FoxDot and I decided to create a simple rhythm using these and theamen function that replicates

the rhythm of the “amen break”. The mix had started to feel a little ‘close’ since the level of

distortion and reverb on the bass had been reduced and, to combat this, the “space” synth was

introduced. It added a great contrast to the short staccato beat-box rhythm and complemented

the the bass well. Innocent used the new accompany feature that had been added to FoxDot to tie

together the “space” synth with the bass through pitch.

(22:15 - 23:30) The beat-boxing samples were re-introduced and accompanied by a mix of male

and female vocal samples. An overdrive effect was added to the bass, intensifying the dark and

brooding atmosphere that was being developed. At 23:00 you can hear a formant filter being

applied to the bass, which, when combined with the overdrive effect, generates a gnarly sounding

electro-bass that brings in more overtones as the input values for the filter increase.

(23:30 - 24:35) The beat-box samples are once more removed from the mix, leaving the off-beat

shaker sample as the only percussion. The bass’ pitch is alternated every other note and is soon

accompanied by a short off-beat synth and ride cymbal. The whole sound seemed to rumble,

creating the feeling of suspense, which was intensified as the formant filter continued to distort the

rhythmic bassline. The suspense was soon dissipated as a heavy hitting kick drum was introduced

199



at 24:10, which injected the set with a large hit of energy.

(24:35 - 25:35) I added some waveshape distortion to the kick drums to soften their impact

but keep the four-to-the-floor rhythm intact. Similarly, the impact of the distorted bass was also

reduced by shortening the sustain, removing any overlapping bass sounds. The distortion on the

kick-drum was removed and we returned to our dark and dense loop.

(25:35 - 26:10) The offbeat ride cymbal was replaced by a much more staccato hi-hat sample

and the kick drum sequence was “stuttered” every few beats. There was a conversation between

the three of us and we agreed to make a more drastic change to the music.

(26:10 - 27:25) The kick drum was slowed down drastically and the distorted bass removed.

The breathy, sustained synth and sporadic offbeat stabs were left fluttering in the higher registers

against a contrasting use of the “donk” synth that utilised much lower frequencies to create per-

cussive sounds. At 27:05, a bright and echoing note was added, using a synth called “pasha”, as

the kick drum sequence was stopped completely.

(27:25 - 28:00) We continued to strip the layers back to leave a few synths playing sporadic

and spaced out notes, accompanied only by a hi-hat sample played on the second and fourth beat

of the bar. A swelling synth would occasionally push through the foreground only to fade away

and leave the echoes of the “pasha” and “donk” synths scattered polyrhythmically throughout the

foreground.

(28:00 - 28:40) A repeated bell synth was introduced by Innocent, who was no longer using

headphones. Even though it played just a single note at a 1/4 beat duration, it combined well with

the “donk” layer to create a nicely syncopated rhythm. At 23:27 you can hear a screaming burst

of noise, which was created by Laurie when he changed the playback rate of the crash cymbal that

had been triggering every 8 bars. This seemed to symbolise the next movement of the set.

(28:40 - 29:25) The “pasha” synth was updated to play a short and repeated melody instead

of random notes at random times. There was another brief conversation between the performers

then the kick drum was re-introduced slowly. The pitch of the bell was changed to be dependant

on that of the “pasha” sequence, which added tonal variety to the layer as well as its rhythm.

(29:25 - 30:40) Again, a four-to-the-floor kick drum was re-used but within the context of the

current soundscape it felt very different; a brighter timbre and notes in higher registers created

200



an almost ‘oriental’ atmosphere with plenty of space in the mix. Even though the tempo was the

same as it had been in previous sections, it didn’t feel as intense because of this. The player-key

relationships being used by Laurie and Innocent created warm sounding harmonies that didn’t

constantly repeat themselves, and kept the melodies and counter-melodies interesting to the lis-

tener.

(30:40 - 31:40) A distorted bass line was added to flesh out the lower frequencies of the mix,

which had been focused primarily on the higher end of the spectrum. An out of tune note created

by Laurie using a linvar as pitch would sound in the last few beats of a four bar cycle, creating

a brief dissonance and providing a sharp contrast to the harmonies that were currently present in

the mix.

(31:40 - 32:10) A snare roll was added for the last two bars of every four bar cycle to build some

suspense for the ending. This occurred four times before we scheduled a synchronised clock stop

at the end of the final snare roll and finished the set.

201



A.11 Rehearsal session, Sheffield - 07/05/19

Video recording: ch8 1-Rehearsal-07 05 19.mov

(00:00 - 00:35) We introduced percussion sequences in both TidalCycles and FoxDot to make

sure we were in sync and then updated them to add some syncopation and groove.

(00:35 - 00:55) Some code was already written in both the FoxDot and TidalCycles text buffers

that define short melodic structures. We ran the code, which triggered the simple SynthDef that

was defined in the SuperCollider text buffer. The synth was based on a triangle wave multiplied

by a pulse wave, which gave it a slightly grainy effect.

(00:55 - 01:55) The amplitude of the triangle wave was increased, as well as the frequency of the

pulse wave, which intensified the grainy texture of the synth. The pulse wave was then removed

altogether, leaving a very soft timbre sound behind.

(01:55 - 03:20) I replaced the triangle wave with a sawtooth wave, which created bright and

strong tones. At 02:50 I lowered the frequency of the synth and gave the whole soundscape a

new tonality, before returning to the previous value. Laurie increased the sustain for the FoxDot

sequences, which gave the synth more emphasis and time to breath within the mix.

(03:20 - 04:00) Laurie then doubled the frequency, moving the pitch up an octave. The frequency

was modulated by a “line” input, which increases or decreases a value over time, and changed the

frequency over a period of 16 seconds. Longer notes can be heard sliding their frequency whereas

shorter notes are closer to the root frequency of the note they are playing.

(04:00 - 05:05) We both decided to work on the existing musical sequences for a few moments;

Laurie using FoxDot and myself using TidalCycles. TidalCycles is a very good language for the

algorithmic manipulation of patterns and, through the use of only a few simple functions, I was

able to remix the TidalCycles melody. I wanted to make a more drastic change, though, and at

05:00 I set the sequence to play just one note per cycle.

(05:05 - 07:35) I started to develop a running melody over the chromatic scale in TidalCycles

while Laurie worked with the synth’s envelope, changing both its levels and duration.

(07:35 - 08:45) I decided to change the saw wave to a variable saw wave, which had a surprisingly

202



significant impact on the timbre of the sound. Combined with its envelope, the synth was generating

“bleep” sounds that might be expected to come from a sine wave oscillator instead of a saw wave.

I opened the SuperCollider window to check the input arguments for the variable saw wave and see

how I could manipulate it. I changed the “width” argument to a sine wave, which created a much

brighter timbre, which, at times, sounded like a cheap imitation of a trumpet sound. Meanwhile,

Laurie had been developing the FoxDot code and updating the pitch input, which added a level of

variety to the tonality and combined well with the sustained and overlapping notes.

(08:45 - 09:45) The change in tonality prompted larger changes in the music; I started to create

a dense and noisy, but simple, sequence using TidalCycles’ “gabba” and “off” samples. I increased

the density to the point where the sounds blended together to feel like one single tone, before

suddenly undoing these changes and returning to a simple rhythm. All the while, Laurie had been

making subtle changes to the synth’s frequency by shifting it several hertz over time.

(09:45 - 11:05) The overall density of the mix had also increased at this point, but this was

counteracted by Laurie’s changes to the synth’s envelope, which cut the sound short and put an

end to the overlapping notes sitting in the background. I started to change the pitch input for the

melody defined in TidalCycles. At 10:50 I divided the frequency input for the synth by 8 to move

both FoxDot and TidalCycles sequences down 3 octaves. I then changed the divisor to 4 in place

of 8 to move the pitches back up an octave, but still keeping a darker and grittier texture to the

sound.

(11:05 - 11:30) I then decided to try and add a choppy effect to the synth by multiplying it by

a pulse wave with a short period. However, after the first period, the synth would go silent as

SuperCollider would think the note had finished playing and then remove it from memory. This

unintentionally resulted in a short period of deep staccato notes. Instead of trying to pursue my

original idea, I increased the frequency of the pulse wave to create a densely choppy synth sound

that had a ‘robotic’ quality to it, similar to the timbre at the start of the rehearsal.

(11:30 - 12:26) I tried manipulating the frequency input for the pulse wave but could hear no

changes to the timbre and, so, had to open SuperCollider several times to check the contents

of the console. Not getting console output in the interface is definitely one of the downsides of

communicating with an environment using OSC as opposed to directly through subprocesses as

Polyglot does with TidalCycles and FoxDot. Laurie, meanwhile, flirts with adding a “chop” effect

manually to the synth sequence in FoxDot before removing it and focusing on changing the pitch

input instead.

203



A.12 AlgoMech Festival, DINA Club, Sheffield - 18/05/19

Video recording: ch8 2-AlgoMech Festival-18 05 19.avi

(00:00 - 02:40) The performance started with a simple drum beat being introduced using Tidal

followed shortly by a bass and a siren-like synth note on repeat created in FoxDot. There were

some technical issues with connecting Lucy’s laptop to the projector and weren’t able to remedy

this for a several minutes.

(02:40 - 03:05) We eventually managed to connect Innocent’s laptop to the projector and were

able to focus on the code as opposed to the technical set-up. We started to embellish the percussive

elements by introducing high-frequency bursts of noise. At 03:05 you can start to see that the

location of each performer’s text cursor begins to blur as Polglot stops refreshing properly. It

eventually corrected itself, but was a sign of the technical issues to come.

(03:05 - 05:00) A “pluck” synth was added in the FoxDot text box, which played a single note

on repeat. At 04:17 the pitch of this synth starts to alternate between the tonic and the mediant,

which creates a contrast against the darker, almost industrial tone of the music.

(05:00 - 06:00) This tonal shift prompted us to pursue a “psychedelic” aesthetic, which is some-

thing we had visited before in performance. The octave of the both the “pluck” and bass sequences

began to move up and down at seemingly random intervals and a hard kick drum was added using

Tidal.

(06:00 - 07:00) The sustain of the “pluck” sequence was then shortened drastically and it virtu-

ally disappeared from the mix. The sustain value was set using a linvar, which would increase

and decrease over time and bring the “pluck” layer to the foreground briefly before fading away.

Meanwhile, the Tidal-based drum sequence was being stripped back to leave a sparse beat.

(07:00 - 08:25) A “space” synth was introduced in the FoxDot text box and the bass was

given a new set of pitches to follow. The “pluck” synth, connected to the bass using the Fox-

Dot accompany() syntax, seamlessly began to “play along” with this new pitch data. I added

an offbeat clap and noise sample using Tidal and we started to pick up the momentum of the

performance.

(08:25 - 09:00) Innocent turned to me and explained that the editor had become virtually unre-

204



sponsive to him and was not properly updating every performer’s text cursor. I guessed this was

likely caused by the amount text in each buffer so I decided to remove as much as I could from the

FoxDot text box without disrupting the music. This helped give Innocent some control over text

input but the issues with the text cursors continued for some time.

(09:00 - 11:20) The bass line chord sequence was simplified and the use of the minor key combined

well with the noisy and off-kilter drum patterns created in Tidal. Innocent suggested that I project

my screen as my laptop was more powerful but after some time searching I could not find the

necessary adapter and I had to ask Laurie if he could do the projection. Unfortunately there was

also no available adapter for him and Innocent had to remain as the projector-facing performer,

even though his interface appeared the least responsive.

(11:20 - 12:15) To try and improve Polyglot’s responsiveness for Innocent, we stripped back as

much code and audio as possible but still Innocent’s GUI would go white whenever he tried to

interact with it. We decided to continue the performance to the best of our abilities but it meant

that Innocent could barely contribute.

(12:15 - 12:40) I began adding a drum sequence in the Tidal text box using the “feel” sample

bank. I didn’t know what type of samples it contained but I had seen it used in other performances

and decided to just play all of the samples in a row and, luckily, it generated a distorted drum

loop with a lot of energy.

(12:40 - 14:20) The scale was changed in FoxDot, which caused a large tonal shift in the bass line.

I didn’t have a lot of experience using Tidal so, using a comment, I asked Lucy to come and join

me. Sustained synth notes began to appear in the background of the mix as Lucy began to write

some Tidal code. I started experiment with the number of samples played in one of Tidal’s cycles,

alternating between 8 and 6, which would create a polyrhythm every 4 cycles. Lucy introduce

sporadic and stuttered clap samples to add to the frenetic atmosphere that we were building up.

(14:20 - 15:00) The bass’ pitch sequence changed and the background synths were given much

more prominence within the mix as the percussive sequences seemed to become stripped back, only

to return with bursts of frantic claps and snare drum hits.

(15:00 - 16:25) A distortion filter was applied to the bass sequence that started to growl as the

amount of distortion increased over several bars then reset. This rough texture seemed to juxtapose

the Major-key chord sequence that was being utilised by the bass and the scale was changed once

205



more to reflect the darker mood. Innocent tried to find a workaround for his unresponsive interface

by opening a separate text editor and copying and pasting text into the Polyglot editor, which

seemed to give him some success.

(16:25 - 17:40) A regular clap sample was introduced on the third beat of the bar using Tidal,

which helped increased momentum of the music. The synths in the higher register played off of

the dark and grungy bass line, combining to create harmonies and dissonance and helped develop

the ominous atmosphere.

(17:40 - 18:45) The distorted bass was then removed momentarily and a low-pass filter applied

to the clap samples to move them into the background. We were left with dissonant and ghostly

synth notes on top of a variety of percussion before the bass was re-introduced but in alternating

octaves this time. Again Innocent had to open a separate text editor to copy and paste text in.

(18:45 - 20:20) Many of the percussive elements were removed, leaving behind the menacing

combination of the distorted bass and synth. My face began to be lit up by my computer screen as

I was checking the names of samples in the TidalCycles samples library and I wanted to add a new

sample. I chose “wood”, which added a rhythmic sawing of wood sound. I replaced this quickly

with a more simple “can” sample. The existing sequences were elaborated on, but still within a

very stripped back sonic backdrop.

(20:20 - 22:00) Lucy manipulated some Tidal code to create a glitchy rhythmc using the “can”

sample and I opened a SuperCollider SynthDef in the appropriate text box to try and incorporate

some sound design elements into the performance. Innocent added some synth stab samples as

Lucy continued to elaborate her glitchy, almost mechanical-sounding, layer from within the Tidal

buffer.

(22:00 - 23:10) A kick drum was added into with a four-to-the-floor beat to try and give the music

some energy. I was trying to edit SuperCollider code but could not hear the results of changes

and had to continually open SuperCollider to check the console for feedback on Syntax errors and

I spent a good deal of time trying to deal with this problem.

(23:10 - 25:00) Some more percussion-based sequences were added and the TidalCycles patterns

were elaborated on by Laurie and Lucy. I continued to try and run SuperCollider code and update

a SynthDef but struggled to get it to work as I was not able to identify if there was a syntax error

or not. At 24:40 you can clear hear me say to Laurie “yeah I tried that but it’s not working” as

206



he makes suggestions on how to fix the issue.

(25:00 - 25:55) I decided to leave the SuperCollider code alone and add a snappy snare drum

using FoxDot to try and up the energy levels for the final five minutes of the performance. This

was shortly followed by rapid hi-hats as we aimed for a big finish.

(25:55 - 28:00) An electronic bass was added that derived its pitch from the higher-pitched synth

sounds. Slowly more filters and effects were applied until the bass became a wobbly and de-tuned

alien voice. This was offset by a burst of noise created using Tidal occurring on the offbeat of

the last beat of the bar. By minute 29, however, the alien bass sounds were removed, leaving the

high-pitched synths as the most prominent feature once more.

(28:00 - 29:10) At 28:30 the majority of the percussion layers in both the FoxDot and TidalCycle

text boxes were removed, leaving only the overlapping synths playing and finishing on a melancholic

note.

207


	Acknowledgements
	Abstract
	Table of Contents
	Appendices
	Recording Documentation
	List of Figures
	Introduction
	Context
	Method
	Outcomes
	Thesis outline

	Contextual Background
	What is Live Coding?
	Definition
	Programming as performance
	The TOPLAP manifesto draft
	Show us your screens
	Improvisation
	Existing technologies for live coding

	Collaboration and Network Music in Live Coding
	Network music systems
	The role of the network in network music
	Network music systems for collaborative live coding
	Futures of live coding collaboration


	Method
	Introduction
	Rationale for Research
	Methodology
	Research in the wild
	Participants
	Considerations

	Chapter structure

	Foundation Work
	Introduction
	FoxDot
	Player objects
	Patterns
	Time-dependant variables

	Considerations

	Troop: An Interface for Real-Time Collaborative Live Coding
	Introduction
	Motivation
	Phase 1: Inital Implementation
	Development
	Practice
	Evaluation and outcomes

	Phase 2: Operational Transformation
	Development
	Practice
	Evaluation and outcomes

	Phase 3: Language Agnosticism
	Development
	Practice
	Evaluation and outcomes

	Conclusions
	Personal reflection
	User evaluation
	Quantitative evaluation
	Impact
	Potential in pedagogy
	Final thoughts


	Developing a Language for Live Coding in Ensemble Performance
	Introduction
	Phase 1: Modelling Interpersonal Musical Relationships
	Development
	Practice
	Evaluation and outcomes

	Phase 2: Player-Key Data Structures
	Development
	Practice
	Evaluation and outcomes

	Phase 3: Extending Player-Keys for Musical Behaviours
	Development
	Practice
	Evaluation and outcomes

	Conclusions
	Personal reflection
	User evaluation
	Final thoughts


	CodeBank: Public and Private Working in Ensemble Live Coding
	Introduction
	Motivation
	Phase 1: Initial Implementation
	Development
	Practice
	Evaluation and outcomes

	Phase 2: User Experience
	Development
	Practice
	Evaluation and outcomes

	Phase 3: Synchronisation and User Monitoring
	Development
	Practice
	Evaluation and outcomes

	Conclusions
	Personal reflections
	User evaluation
	Final thoughts


	Polyglot: A Multilingual Interface for Collaborative Live Coding
	Introduction
	Motivation
	Phase 1: Initial Implementation
	Development
	Practice
	Evaluation and outcomes

	Phase 2: Language-Specific Feedback
	Development
	Practice
	Evaluation and outcomes

	Conclusions
	Personal reflection
	User evaluation
	Final thoughts


	General discussion and conclusions
	Introduction
	Timeline
	Discussion
	Addressing the Research Questions
	Conclusion

	Appendix A: Performance Descriptions
	Leeds Algorave, Open Data Institute, Leeds - 28/04/17
	Algorave Assembly Lunchtime Concert, Leeds - 27/04/18
	International Conference on Live Interfaces, Porto - 14/06/18
	Rehearsal session, various locations - 26/04/17
	Rehearsal session, various locations - 06/06/17
	Together In Music conference, York - 14/04/18
	Algo-Rhythms, Rotterdam, 28/04/2019
	Rehearsal session, Sheffield - 09/12/18
	TOPLAP End of Cycle Party, Access Space, Sheffield - 19/12/18
	Late at the Library: Algorave, London - 05/04/19
	Rehearsal session, Sheffield - 07/05/19
	AlgoMech Festival, DINA Club, Sheffield - 18/05/19


