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Abstract

The Worst-Case Execution Time (WCET) of tasks is an important

data to give confidence that Real Time Systems will meet its timing

requirements. Unfortunately, due to its tractability, this data is gener-

ally unknown. Measurement-Based Timing Analysis (MBTA), which

relies on observing execution times driven by test data, has become a

promising approach in the recent years. Some of the current testing

techniques may take a relative long time at triggering decisions be-

cause they require very specific data of the input space. Conversely,

Constraint-Based Testing (CBT) can cope better with these decisions

as well as being more efficient. State-of-the-art approaches integrat-

ing CBT with MBTA have applied code coverage metrics designed

for functional testing but not for WCET. Therefore, important func-

tions such as generating test data for a path potentially leading to

a large execution time are omitted. A central contribution of this

work embraces CBT. Its objective is to meet code coverage needs

for WCET. The evaluation compares this approach to state-of-the-

art Search-Based Testing (SBT) in MBTA and Random Testing (RT)

methods and shows that, in most cases, CBT not only does not un-

derestimate the largest observed execution time but also it achieves

this data earlier.

A downside of MBTA is that it normally underestimates the WCET.

To face this issue execution time data is recently combined with prob-

abilistic models. The current probabilistic protocol is hard to auto-

mate. Others probabilistic approaches have found alternative ways to

achieve similar results automatically. The second main contribution

aims for integrating this latter protocol and evaluating its applicabil-

ity. The evaluation, which uses execution time data from test gener-

ators, shows that SBT and RT are more likely to generate data that

enable this new approach. The WCET predictions are found more

accurate by definition.
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Chapter 1

Introduction

Embedded systems play a central role in modern society because they allow us to

have a more comfortable, efficient and safer life thanks to their ability to automate

some tasks. These devices are present in products and services we use daily

such as transport, mobile phones or electrical appliances. As a consequence, this

industry is experiencing an unprecedented growth in the last years [1]. Likewise,

the size of the software packed in these systems has been growing and is expected

to follow this trend in the foreseeable future. An example of this growth in the

realm of embedded avionics systems is illustrated in Figure 1.1.

Figure 1.1: Software and code size evolution of Airbus and Boeing civil airplanes
plus the Concorde. Left side data obtained from [2, 3] and rightside one from [4].
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Despite the fact that computer systems offer multiple advantages, they produce

some new engineering problems as well as some psychological or social ones [5].

The engineering costs become apparent when developing these systems. To meet

the quality standards a verification process is performed as part of the devel-

opment. This quality assurance is particularly relevant for a subset of these

systems, known as Safety-Critical Systems, since in the event of a system not

working correctly i.e., not delivering a correct output, they may endanger human

life, potentially damage the surrounding area, and even cause monetary losses far

higher that the cost of the system itself.

The verification costs of Safety-Critical Systems is around 50% in the aerospace

domain [6]. Most of the Safety-Critical Systems, also require a correct output

within a time bound [7]. These systems which must meet timing requirements

are known as Real-Time Systems.

1.1 Real-Time Systems

The timing correctness of Real-Time Systems is only achieved when the tasks

response time is no greater than their deadlines which are set in the specification

[8]. Depending upon the consequences of overrunning a deadline, Real-Time Sys-

tems are often categorized as: A) hard when a failure to meet a timing constraint

is considered a failure in the system. It may or may not be catastrophic e.g., an

accident produced by a failure in the flight control systems. B) firm when the

outcome is not useful if it is late, e.g., a camera catching a landscape where the

item of interest is not available any longer but it was when the record button was

pushed. C) soft when the result only has an impact on the performance of the

application e.g., the usual lag when playing on-line games.

Occasionally, the importance of meeting the timing requirements is confused with

the notion of Safety-Integrity Levels [9]. The Safety-Integrity Levels take into

account the consequences (severity) of a potential failure that is handled in the

system and the likelihood of occurrence to determine whether the Safety-Integrity

Level is acceptable or not. However, the notion of Safety-Integrity Level is devised
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for the functional domain of the system, and not for the timing one. For example,

a software task may have a high Safety-Integrity Level but a low importance if

the deadline is overrun and the other way around. In hard Real-Time Systems

timing may impact safety so again it is mandatory to argue about what events

lead to a potential deadline overrun, what the consequences are, and how likely

they occur. Such an argument must consider a mitigation plan for the system

when a deadline is overrun e.g., system reset.

It is important to remark that not all Real-Time Systems are Safety-Critical. A

good example would be an Algorithmic Trading System where a delay in buying

an asset could cause millions of dollars in loses. This system would be deemed

as Business-Critical but not Safety-Critical as it has no means to cause physical

damage.

To guarantee that a computing system will meet its timing requirements a neces-

sary condition is that the system is built with an analysable timing behaviour [10].

Hence, the programming language must either provide with some guarantees of

the software (timing) analysability [10] or the programmer should consider these

requirements when writing the software [11]. Worst-Case Response Time analysis

[8] is a process advocated to provide confidence that tasks deadlines will be met.

Such an analysis relies on a scheduling algorithm which decides how to map the

software tasks with the available computing resources that enable their execu-

tion. To deliver a reliable Worst-Case Response Time the Worst-Case Execution

Time (WCET) of software tasks is needed. This data is not only indispensable

for Worst-Case Response Time but also very hard to determine accurately. In

fact, according to some conversations with people from the industry, its cost is

around 1% of the 50% of the above-mentioned verification cost.

1.2 The WCET Problem

Before attempting to solve any problem it is worth questioning whether the prob-

lem is indeed solvable. From the computability point of view, when a problem

does not always have an algorithm to solve is said to be undecidable [12]. Along
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with decidability, it is vital to evaluate the tractability of a problem. The notion

of tractability stems from the efficiency of the algorithm i.e., how long an arbi-

trary algorithm takes to process an input with size n.

An algorithm is said to be tractable where it exhibits a polynomial time and in-

tractable otherwise [12]. In practice, intractable problems are often deemed as a

deeper problem [12] than undecidable ones due to the limited hardware resources

and the need to get an acceptable result in a reasonable time.

In the WCET case there are several issues that hamper its determination from a

computability perspective. On the decidability side, when analyzing the WCET

of a program it is assumed that the program finishes, validating such an as-

sumption would mean solving the undecidable halting problem [13]. Likewise,

the number of iterations of the loop (if they are present on the code) must be

known. Calculating such a number is, in general, undecidable [14]. For this rea-

son loops exhibited in Real-Time Systems are often written considering the need

for analysability [10]. The same problem arises for recursive functions though re-

cursion is not allowed in certain languages used in Critical Real-Time Embedded

Systems [15] to avoid exceeding the memory budget [10].

Theoretically, the path containing the WCET should be feasible which means

that there exists some input data that is able to exercise it. Otherwise, the re-

sults can be pessimistic. Guaranteeing path feasibility is generally undecidable

[16] as well. On the complexity side, a diagram of the WCET tractability is dis-

played in Figure 1.2.

The outermost circle in Figure 1.2 contains the actual WCET that corresponds

to state coverage achievement. This criterion encompasses all plausible execution

states of a program running on a hardware platform. Considering that the exe-

cution time of a program depends on the physical environment, the underlying

hardware, the state of this hardware, the interference of different components,

the state of the software, the structure of the code, the input of the system and

the compiler optimizations, the search space for state coverage is massive [13, 17].
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Figure 1.2: Timing estimates trades-off accuracy and complexity.

Hence, it is hard to quantify. Nonetheless, hardware specifications may help to

give an approximation by analyzing the features of performance enhancement

units.

After state coverage, structural code coverage metrics have been proposed for

timing analysis [16, 18]. These metrics were originally devised in the functional

testing domain and not for the timing one [19]. A striking feature of code-coverage

metrics is that, under certain assumptions e.g., output of the compiler, they can

be ported to different systems as they are software-based.

Path coverage is advocated to measure how many paths along the code have been

traversed. For these reasons path coverage [13, 20] is often employed in WCET

analysis. In some cases in which the execution time is mainly driven by paths,

the largest observed execution time - also named High-Water Mark (HWM) - is

arguably close the WCET. This fact is depicted in the purple circle in Figure 1.2

showing a better tractability than state coverage but worse than branch cover-

age. Unfortunately, although path coverage is generally more tractable than state

coverage, an exponential explosion of the number paths generally occurs with the

increase in software size [17].

Lastly, branch coverage consists of considering all the decisions available in the
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code e.g., predicates in the control flow, loop guards. This criterion is depicted in

the innermost circle in Figure 1.2 and results more tractable than path coverage.

However, this criterion is generally insufficient as some combinations of branches

i.e., a path, may raise the HWM substantially.

1.3 WCET Approaches

The former section was dedicated to explain the vicissitudes of the WCET prob-

lem. This section tackles the solutions or approaches to face it.

WCET analysis falls within a field known as timing analysis which is concerned

with the study of the execution time bounds or estimates [13]. At the core, ap-

proaches are advocated to analyze the execution time either by observing execu-

tion times and select the largest one or to build analytical methods to compute an

upper bound of the WCET. Since the WCET is generally unknown because of its

intractability, the main objective of the analysis techniques is to give confidence

we are close to it [18]. Underestimating the WCET could lead to unexpected

deadlines misses. By contrast, estimations should not be overly pessimistic be-

cause it may render the system hard to schedule if such values are used.

Given the WCET absence, a confidence interval is composed by the HWM col-

lected after testing, and, if available, a Computed WCET (CWCET) that, as we

shall see, an analytical method would calculate. Regardless of the approach, dur-

ing any WCET analysis the main four plausible scenarios displayed in Figure 1.3

may become apparent. Next, we explain each case in detail:
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Figure 1.3: Four plausible cases of WCET analysis assuming WCET never
matches either HWM or CWCET and HWM ≤ CWCET. Red line denotes the
uncertainty interval where the actual WCET is.

(a) This case shows a controlled case where the WCET has a known confidence

interval between HWM and CWCET. In some exceptional cases we may

have observed the WCET when HWM = CWCET = WCET . This may

happen in some embedded platforms whose software and execution time

are very time-predictable. From an analysis perspective this is the best

plausible outcome assuming that the CWCET data is reliable.

(b) In this scenario the developer is misled by the CWCET result since the

WCET is greater than it. This happens when the process composing the

CWCET is not reliable. Hence the definition of upper bound is violated by

the CWCET. A deadline miss may occur unexpectedly on account of this

wrong assumption.

(c) The third case seems to contradict the basis described at the beginning

of this section since the collected HWM is greater than the WCET. This
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apparent paradox can be be explained if we consider the set of inputs or

events the system is tested against. An example is given in Figure 1.4.

Figure 1.4: Data coverage.

From the innermost circle to the outermost we observe that: Firstly, the sys-

tem is tested by a subset of events dictated by the requirements. Secondly,

when the system is deployed, it will experience its own life-time events that

will depend, in large measure, on the deployment context. Next, there is

a superset of plausible events a system may experience followed by the su-

perset of all events including the impossible ones. For the sake of applying

a simple solution to the WCET problem the developer may run some tests

containing input data that can not happen when deployed. Yet, the col-

lected HWM will provide with enough confidence that the WCET of the

life-time events is upper-bounded.

(d) The last situation arises when there is no process to give an upper bound

of the WCET by means of a CWCET. The developer may be happy with

the resulting HWM but they acknowledge that the WCET is somewhere on

the right.

Irrespective of the analysis scenario from Figure 1.3, in order to calculate a

CWCET or to observe a HWM there exists three main techniques [21]:

1. Dynamic or Measurement-Based Timing Analysis (MBTA) approaches col-

lect the execution times after testing from a physical target or a repre-
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sentative simulator from which the HWM is picked. They are prone to

underestimate and the user must supply input data. Such an input data

was traditionally generated manually, the production was expensive and

it may only be available late in the development [16]. Hence, automatic

techniques are sought.

2. Static Timing Analysis (STA) builds a model of the software and hardware

to derive a CWCET. It is not concerned with the HWM, and does not

require the user to provide input data. Yet, the developer may need to

write some annotations in the code [10]. With the timing data of individual

parts of the code along with its structure a path analysis process is able

to identify the WCET path and derive a CWCET as a result. Perhaps

the main limiting factor of this approach is its need to model hardware

provided that modern hardware modeling is far from trivial. Let alone,

hardware details may be subject to Intellectual Property clauses and thus

the details may be undisclosed.

3. Hybrid approaches aim for combining the advantages of both methods for

the sake of confidence in the results, portability i.e., extrapolation of the

process to others benchmarks with different technologies and processes, or

relaxation of testing requirements [22]. For example, by collecting execution

times in different parts of the code (dynamic analysis) a hybrid approach

would compose a CWCET from the structure of the code and thus it would

apply Static Analysis techniques yielding to an approximation as if path

coverage were achieved [22].

Bearing in mind that testing is seldom perfect and the WCET path may not

be observed in dynamic approaches, a safety margin is sometimes added to the

execution time data. Traditionally, an industrial practice to add a 20% to the

HWM [21] was used, however this figure has an unclear justification. It used to

be added when the software ran in time predictable architectures so originally it

was advocated to handle imperfect path coverage.
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In the recent years, the safety margin has been defined by using probabilistic ap-

proaches whose original objective was to compensate for the lack of path or state

coverage. The upside of these methods is their ability to argue about how likely

a certain execution time will be exceeded. Unfortunately, to compute the results

an elaborate statistical process must be carried out and that is why automation

of the calculations is sought [23]. This requirement is hard to fulfill with state-

of-the-art approaches. Furthermore, when the final CWCET is estimated using a

probability distribution, current methods disregard the asymptotic idiosyncrasies

of the distribution used as well as common uncertainty in the execution time data.

In sum, these inaccuracies negatively damage the confidence of the CWCET [20].

Outside the realm of probabilistic analysis for MBTA (MBPTA), some other

works [24] have applied an equivalent analysis but with some advantages. These

approaches use different probability distributions that enable full automation of

the analysis process. A careful application of this approach may also improve the

CWCET results.

1.4 Test Generators

Test data plays a central role in Hybrid and MBTA. Automatic test generation is

an area dedicated to decide such test data. To give an example of its importance,

Tracey in 2002 speculates that the automation of test data generation may save

between £1 million and £1.5 million in jet engine controllers [16]. Some works

have extrapolated these techniques to MBTA [16, 18]. However, the objective of

the Test Generators differ. These objectives consist of:

1. To test specific parts of the code so as to collect their local HWM

e.g., decisions, that are later used for a path composition algorithm to

calculate a CWCET [25]. Obviously, this would correspond to scenarios

a) and b) from Figure 1.3.

2. To traverse the paths leading to the largest execution times [18] i.e., max-

imizing the HWM. This objective is more suitable for the most common
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MBPTA which is concerned with the prediction of extreme events [26].

To our knowledge, there exists 3 types of test generation applied to MBTA:

• Random Testing (RT) consists of assigning random values to the input

data. It has a trivial implementation but is generally awkward [18]. Its

implementation may be static or dynamic.

• Search-Based Testing (SBT) is a dynamic test generation embracing

meta-heuristics which consists of informed search algorithms advocated to

find a good solution in a reasonable time [27]. Metaheuristics require to

be provided with proper guidance for a successful search by means of an

objective function. In the SBT arena, the guidance is often supplied after

instrumenting the Software Under Test (SUT) which generates overhead

[28]. Moreover, this approach may struggle when targeting decisions whose

activation depends on very specific values of the input domain [29, 30] e.g.,

equalities. These untested decisions may contain some loops that have a

great impact on the HWM or CWCET so this approach might not be ideal

for achieving a great degree of code coverage. Despite this limitation, SBT

has been embraced extensively for MBTA [16, 31, 18].

• Constraint-Based Testing (CBT) [32] targets achieving the greatest

degree of coverage as possible. It tackles test-generation as a Constraint

Satisfaction Problem (CSP), another field of Artificial Intelligence advo-

cated to find a solution considering a list of constraints.

Sometimes a function to optimize is added in which case a constraint-

optimization problem [27] is addressed. This solution has been embraced

in STA when estimating a CWCET from a graph with execution time data

[33]. Unfortunately, the calculation process is oblivious to infeasible paths

[33] which is a source of pessimism. The same constraint solvers could be

useful at identifying them. Yet, it seems that so far, this process is ineffi-

cient and can only focus on a subset of infeasible paths [34]. Infeasible paths

is also a problem in some hybrid approaches [35]. Because of the way they
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compose the CWCET information about the infeasibility must be provided

manually.

Even though some of its underlying solving algorithms are NP-hard [27],

constraint solvers have gained momentum in the recent years [36]. This is

due to the significant improvements both in the solving algorithms and hard-

ware processing power. Despite its disadvantages, CBT has been claimed

to be the best test generation technique for code coverage [37]. This is be-

cause in contrast to metaheuristics, which may struggle with discrete search

spaces, CSP can cope with such a non-continuous space.

Even though the WCET literature often focus on the confidence of the results

[13], in an industrial setting, it is relevant to argue about the efficiency of the

analysis applied. This is because normally any industrial project, results are due

by a deadline [18]. Thus, even though a WCET analysis process is automatic,

attaining results in a reasonable time is essential.

Eventually, the portability of the WCET analysis process is important to allow

the application of a solution in a wider array of problems. To meet this objective

software-based path composition processes are often employed [35, 32].

1.4.1 Path Explosion

A central challenge for the use of CBT is the collection of constraints. Decid-

ing the list of constraints to formulate a CSP is a key step to maximize the

effectiveness of CBT generate test vector targeting code coverage. This implies

that some form of exploration of the structure and collection of values from the

SUT. As a consequence, path explosion emerges as the main problem to deal with.

Several approaches have been put forward [38] such as the use of sound Static

Analysis techniques to reduce the number of paths to be analyzed or using

heuristic techniques to prioritize paths which may be more relevant than oth-

ers.
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Current CBT approaches in MBTA explores a graph model by using Depth-

First Search (DFS) [39]. The resulting analysis is only able to generate branch

coverage test suites. This is due to the fact that such a Test Generator (TG)

is designed for functional testing but not for MBTA. Hence, an obvious objec-

tive like maximizing loop iterations with test data can not be achieved by this

test generation process. Let alone, this method is not concerned with the notion

of paths which is very important for WCET analysis. Another downside is that

these approaches derive an inefficient graph model because it collects unnecessary

information for the application of CBT for MBTA [40]. Such an inefficiency slows

down the search time and increases the memory space when search algorithms

are applied [39].

In summary, a path exploration process targeting relevant paths for the WCET

so as to generate test data is needed. Heuristic approaches could help at targeting

these sort of paths whereas search algorithms such as Best-First Search (BFS)

strategies [27] may be instrumental to deal with the efficiency by focusing on the

greatest execution times in the first place.

1.5 Research Challenges

Given its ability to achieve a good degree of code coverage, CBT results in a

promising approach to be applied to MBTA. However, some challenges are iden-

tified and they are outlined as follows:

1. To identify search strategies that can be integrated with the former process

so as to build paths that can potentially lead to the largest execution times

first.

2. To conceive an optimal program slicing that eliminates the inefficiencies of

the current CBT applied to MBTA.

3. To investigate how the use of constraint solvers applied to CBT may also

help at identifying infeasible paths and thus reduce the pessimism in CWCET

estimates.
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Lastly, given the described issues with modern MBPTA [23] and the identification

of potentially better approaches [24] the last challenge is.

4. To devise a novel MBPTA to achieve full automation and calculate more

confident results.

1.6 Hypothesis

Our central hypothesis is:

The proposed Constraint-Based Testing process provides the

best test generation process in terms of increasing the largest

observed execution time and collecting this result earlier than

state-of-the-art approaches. The novel probabilistic analysis is

able to derive safety margin with an automatic process and its

results are more confident than standard approaches.

1.7 Thesis Outline

The rest of the thesis lays out as follows: Chapter 2 outlines the literature sur-

vey and provides some relevant fundamentals for the WCET analysis problem.

Chapter 3 describes the suggested CBT process and tackles challenges 1,2 and

3. Chapter 4 relaxes some assumptions of the former chapter and provides addi-

tional case studies for the proposed approach. Chapter 5 addresses Challenge 4.

Finally, Chapter 6 offers the conclusions of the overall thesis.
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Chapter 2

Literature Survey on Worst-Case

Execution Time

The first approaches to tackle the WCET problem are based on Static Analysis

[13]. As stated earlier, this strand analyzes the flow of the program which is later

combined with time data from analysis of the hardware. By integrating both pro-

cesses with a set of rules dictated by the structure of the program, a CWCET is

derived. Measurement-Based Timing Analysis (MBTA) and Hybrid have gained

momentum in the recent years [17] because they do not require hardware mod-

eling. Despite this advantage, two central challenges stand out: a) Deciding test

data and b) how to handle underestimations. As for a) test generators literature

is useful. Paradoxically, Static Analysis techniques are relevant for test genera-

tors and Hybrid approaches. With respect to the b) problem, a new promising

approach on probabilistic analysis may improve state-of-art methods.

This chapter commences outlining Static Analysis in Section 2.1. Next, in Sec-

tion 2.2 dynamic approaches are detailed. Section 2.3 explores the literature of

test generators in order to face challenge a). By contrast, with the aim for provid-

ing a probabilistic solution to challenge b) Section 2.4 offer a literature survey on

Measurement-Based Probabilistic Timing Analysis (MBPTA). Lastly, Section 2.5

summarizes the content of the chapter and outlines the research contributions.
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2.1 Static Analysis

Static Analysis is a set of techniques whose purpose is to calculate safe approxima-

tions to the actual values computed at run time [41]. The reason for calculating

approximations is that calculating exact computing values would raise decidabil-

ity issues [41]. The accuracy of such estimations trades-off the computation time

of the analysis [42].

These techniques are common in program verification and compilers since they

are able to anticipate the violation of certain assumptions. Further, they are able

to recognize redundant or unnecessary software statements which may help to

improve the integrity and performance of the program [15]. Most notably, Static

Analysis techniques for our problem domain include:

1. Data flow analysis consists of calculating or approximating plausible values

in a specific point of a program q. It achieves that by representing the

program under analysis by a Control Flow Graph (CFG) [41]. A CFG is

often deemed as the standard representation of programs [6]. In a CFG,

each node represents a block whereas directed edges describe the control

flow to go from one node to another. A CFG also comprises an entry and

exit node.

2. Abstract interpretation may be deemed an instance of data flow analy-

sis. It aims at computing approximate safe values by mapping a program

states set and even memory locations to a finite set of abstract states. This

mapping is delivered by the so-called abstraction function [11]:

α : L→M

where L and M are complete lattices. By contrast, the opposite to α is the

concretization function γ:

γ : M → L

This function is in charge of returning the approximate values of the compu-

tation from the abstract domain. By employing this technique approximate
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values in a specific program point, q, can be derived. Such a q can be an

arbitrary node or edge in a CFG.

3. Program slicing consists of analyzing statically the program but omitting

some parts that are deemed unnecessary for the analysis [11]. The heuristic

is usually defined with the pair 〈q, V 〉. Where q has the above definition, and

V is a subset of the variable in the point q. Considering 〈q, V 〉 a program

slice would collect all statements which may have an impact of the variables

in V . The program representation that enable an efficient program slicing

is the Program Dependence Graph [11] which is often a subset of the CFG.

4. Symbolic execution analyzes the program by replacing input variables

by symbols. Other symbols may also be added when an unknown function

is called [43]. In order to deliver the execution, a symbolic execution engine

is employed. Such an engine stores information of each control flow path

about the branches traversed up until an arbitrary point q. Having reached

the statement of interest the conditions to check are supplied to a constraint

solver which returns, if there exist, concrete values to traverse that path and

evaluate that property e.g., checking whether an assertion at the end of a

function will be violated [43].

More precisely, Static Timing Analysis STA uses additional techniques to be able

to calculate an upper bound of the WCET. The derivation of the CWCET is

delivered by these three phases.

1. Instruction Set Architecture level infers flow information including loop

bounds from the Software Under Test (SUT).

2. Microarchitectural analysis consists of calculating execution time in a spe-

cific hardware of basic blocks. A block is a list of instructions that does not

contain any jumps [44].

3. Path analysis integrates information of the previous two stages to derive

the longest execution path. This means that despite path coverage in-

tractability, STA is able to consider the execution time of all paths. This is
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because a linear constraint solver is able to compute that global CWCET

from a graph containing the structure of the SUT along with local CWCET

computed using static analysis. As said in the former chapter, the com-

positions of the CWCET often entails including infeasible paths which is

claimed to be a source of pessimism [34]. These techniques are inefficient

because they often add unnecessary computations to the already complex

problem of path analysis. Let alone only a subset of infeasible paths is ana-

lyzed because of this issue and also some states can not join for the analysis.

Static Timing Analysis (STA) literature offers a wide array of loop analysis meth-

ods that are quite relevant for our problem domain since counting the number of

iterations of loops can give us an indicator about what paths could potentially

lead to the HWM.

In this respect, the seminal loop analyses relies on annotations supplied by the

user [45]. Nonetheless, this method requires human intervention which in turn

requires understanding of the code. This may be troublesome since code gener-

ators are often employed in the embedded industry [19]. Let alone annotations

data must be acceptably right. Such surmises may not be true in reality [7].

On the contrary, STA techniques provide automatic techniques to calculate loop

bounds [10]. Some of these techniques employ a loop pattern matching approach

to calculate the maximum number of iterations [10]. Unfortunately, compiler op-

timizations like loop unrolling may introduce a mismatch between the source and

object code. The only commercial available STA tool, aiT [46], provides with

different loop patterns that are generated by different compilers to complete this

verification step.

In the context of object-oriented programming, Gustafsson [42] apply abstract in-

terpretation for timing analysis. This analysis unrolled every single loop rendering

a state space quite large and thus struggling with large pieces of code with loops.

As a result, for abstract interpretation to produce good results the accuracy had

to be diminished towards the end of the analysis. More recently, Lokuciejewski

et al. [11] uses a combination of abstract interpretation and Ehrhart polynomials
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for loop analysis. The motivation of this method stems from the observation of

a wide array of industrial real-time benchmarks display loops whose statements

do not affect the computation of loop iterations. It is fair to say that this is an

important prerequisite to write time-predictable software [10]. The advantages

of this approach are that they are not only much faster to analyze than tradi-

tional loop analysis delivered in abstract interpretation but also it avoids pattern

matching for loops in the analysis. Soon after that, Barlett and Bate [14] de-

fine a method to tightly calculate iterations in non-rectangular nested loops i.e.,

loops whose iterations depends on outermost loops, as standard static methods

compute pessimistic results. The approach is based on inductive data which are

computed by means of testing. These data are later supplied to some mathemat-

ical formulas which calculate the number of iterations. Such an analysis is able

to cope with up to 8 levels of nesting that was believed to be a sound bound of

nested loops in industrial code.

Given that calculation of the loop bounds is undecidable in general, the loops

implemented on real-time software are restricted to the so-called Presburger

subset of integer arithmetics. Intuitively, to calculate the number of iterations

sum series are normally employed [47, 10] but this series can not be applied

to every sort of arithmetics. The Presburger subset of arithmetics restricts the

summation limits to: integer constants, symbols representing constants, bound

variables which stand for index variables for an arbitrary loop, operators +, −
and multiplication by an integer constant [10]. It is fair to say that this is the

common practice to write loops for a timing analyzable piece of software [10, 14].

A drawback of STA is that they are prone to significantly overestimate the WCET

though they are able to give tight figures in specific cases due to the success at

modeling the systems and all its plausible inputs. In spite of these advantages,

they are very dependent on the model of the processors whose hardware design

may be subject to Intellectual Property rights [48]. Further, hardware modeling

may not be correct due to errors in the implementation or in its documentation.

The advent of performance-enhancing hardware units such as pipelines, caches,

branch prediction or speculative prediction has exacerbated the issue of hardware
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modeling [21]. Recently, it has been claimed that STA has reached its limitation

due to these difficulties at modeling modern and complex hardware [17, 18]. In

essence, because of the nature of STA, it struggles severely with the portability

objective.

2.2 MBTA and Hybrid Approaches

Unlike Static Analysis, MBTA requires collecting execution times from a real em-

bedded target or a representative simulator [13]. By running the software with

different input data, execution times are triggered and they serve as a empirical

evidence of the performance. Due to its nature, this approach is the easiest to

port. The central downside is that it normally underestimates the WCET which

is normally deemed a worse situation than overestimation as it may produce an

unexpected deadline overrun.

In the middle ground, Hybrid approaches combine the advantages of both ap-

proaches [21]. By observing execution time data hardware modeling is not nec-

essary. Next, this data is processed with static path analysis techniques. To

do so, they divide the SUT into different components, whether it be branches,

subpaths, or others parts so as to collect execution times in all or many of these

a components [49, 32]. This data is later used to derive a global CWCET. By

embracing this approach the developer does not have to supply test data to tra-

verse paths leading to the highest execution times and sometimes she may reuse

test data from structural code coverage testing.

Some of these techniques are orientated to provide results as if path coverage were

achieved [49] whereas others encompass both path and state coverage [32]. In the

first case, the path composition may include infeasible paths and thus increase

pessimism that is only reduced if the developer provides with some annotations

[35]. The underlying reason is because some path composition approaches only

read the structure of the code but not the data flow [50]. Perhaps the main up-

side of hybrid techniques is their ability to relax exhaustive testing as this path

analysis compensates, to an extent, for the underestimation [51, 20].
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In the second case, the SUT is divided into “segments” [32] to which test data

maximizes the execution time [25]. The observations of these segments are col-

lected in a multicore architecture and thus the hardware may substantially in-

crease these local HWM or render a great deal of underestimation because the

maximum has not been properly exercised with the input data. In conclusion, it

is hard to argue about how realistic the CWCET is as the flow of the execution

time is very sensitive to the hardware architecture whereas the flow of the pro-

gram is what is normally modeled.

Unlike, state coverage, code coverage metrics are easier to quantify. The notion of

structural code coverage or just code coverage stems from functional software

testing [6]. One of the main problems traditionally in functional software testing

was to systematically test software and code coverage aims to give a solution to

it. Particularly, structural code coverage testing is developed to tell how much

the requirements are implemented in the code [19]. It delivers results by exe-

cuting test cases. The notion of test case - according to the definitions of civil

aerospace safety standard or DO-178C [19] - is composed by a test vector (or

input data), execution conditions and expected output data. A set of test cases is

known as a test suite. It is worth noting that, from the certification perspective,

a test case must be linked to the requirements or the specification. Otherwise, no

verification would be performed on the system [52]. More precisely, code coverage

testing checks whether I) requirements are complete with respect the code, II)

test suite is complete, III) There is no code to be deployed that should not be

there.

There exists a range of coverage criteria that indicates how much input data has

traversed the SUT. Only a subset of these metrics are of interest for our WCET

problem domain. In particular, block coverage also known as statement coverage,

consists of covering all statements of the SUT at least once. Decision Coverage:

Also called branch coverage, it is achieved when all feasible decisions are visited

at least once. In other words, the decisions that if-else, switch-case, ternary op-

erator ? : , and for, while, do-while loops.
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Code coverage test cases are sometimes imperfect or poor, which is to say some

part of the code are not tested. This issue is known as non-covered code in the

verification process [19]. Non-covered code lays bare a weakness of the MBTA and

Hybrid approaches in the sense that their results are only reliable as long as good

coverage is achieved. By having non-tested blocks or branches path composition

algorithms may struggle and the confidence of the HWM may strain credulity.

Admittedly, this is a point in favour of embracing STA techniques.

A relevant coverage metric that, to the best of our knowledge, is not addressed

in the safety standards but is certainly relevant for WCET is path coverage. The

number of paths has been claimed to grow exponentially with software size [17]

however that is not always the case [53]. It is estimated that the number of

atoms in the universe is 1082. Having a code with a sequence of if conditionals

would only need 82· log2(10) = 273 decisions with non repeated conditions in the

predicates would probably have more paths than atoms the universe.

The last and arguably hardest to control testing achievement is state coverage.

Such a coverage would entail to collect all plausible execution times and thus

record all plausible execution states leading to the actual WCET. The underly-

ing hardware the SUT runs on is the contributing factor that has the last word

on deciding how big the search space is. Performance acceleration units such as

caches, multi-cores with different level of caches or bus arbitration have a massive

impact on the execution time [44]. A truth which must not be shirked is the fact

that in some scenarios state coverage trivializes code coverage criteria as a met-

ric to describe the execution time. This is because - as said in the introduction

chapter - the execution time depends on a wide array of independent variables

and the software structure is only one of them.

Apart from the hardware platform and its equipment, there exist some pieces of

software (See Listing 1 in the Appendix) where the implementation contains large

blocks delivering arithmetic operations. The execution time may be sensitive to

the operands because of the underlying numeric algorithms [54]. In these cases,
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to achieve a confident HWM is not only necessary to hit the block but to identify

what operands or test vector maximizes the execution time of these blocks. This

issue, deciding the test vector is the bulk of the work and is discussed in the next

section.

2.3 Test Generation for Measurement-Based Tim-

ing Analysis

As stated in the beginning of this chapter, a central challenge of dynamic ap-

proaches is to decide test vectors to be fed. Therefore, test generation is our

point of departure. Apart from Random Testing (RT) which does not really have

an objective, there are only two test generation methods to be investigated for

MBTA. On the one hand, Search-Based Testing (SBT) aims at finding extremes

of an objective function by a process similar to trial-and-error which entails try-

ing numerous test vectors. Unfortunately, the theory of meta-heuristics [27] is

not concerned with telling whether the extreme observed is the global extreme or

not. On the other hand, Constraint-Based Testing (CBT) relies on an accurate

mathematical description to find, if there exists, a solution by using the constraint

solver. Such a solution is indeed the test vector. It goes without saying that this

approach can only be applied as long as the process can be modeled mathemati-

cally which, in the WCET problem, is arguable. More formally, a Search-Based

Test Generator (SBTG) and CBTG may be defined as follows.

Definition 2.3.1. Be I the input variables and D the domain of these variables.

A SBTG, is a tuple 〈I, D, M, F〉 where M is a metaheuristic and F an optimiza-

tion function. M seeks what values of I optimizes F .

Definition 2.3.2. A CBTG, is a tuple 〈I, D, C, S〉 where C is a tuple C =

〈c1, · · · , ck〉 of constraints with k ∈ N that I must meet. S is a constraint solver

that finds values, if there exists, for I considering its domain D, and a set of

constraints C’ ⊆ C.

The rest of this section first scrutinizes the literature on SBT and then CBT.
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2.3.1 Search-Based and Random Testing

When it comes to SBT, the seminal work devising search algorithms for testing

Real-Time Systems harks back to 1997 by Wegener et al. [55]. In this work

Wegener et al. employ Genetic Algorithms that unveil more extreme execution

times - both smaller and larger - than the ones identified by manual and RT. Later

on, Wegener [56] shows how Evolutionary Testing i.e., test vectors generated by

Evolutionary Algorithms which consists of a subset of metaheuristics, was able to

attain a greater HWM in comparison to the test vectors executed by the devel-

opers in an industrial setting. Conversely, Groß [57] exposes some limitations of

evolutionary testing like lack of branch coverage when SUT exhibits deep nesting

structures. Additionally, Groß defines a prediction metric of the testability i.e.,

how easy the software to test is, of a piece of software by means of Evolutionary

Testing. Likewise in 2002, Tracey [16] embraces a Genetic Algorithm and Sim-

ulated Annealing to generate test vectors for structural code coverage and for

MBTA for the control software of a jet engine. In his Ph.D. Tracey [16] defines

fitness function for different predicates often found in programming language but

to achieve this guidance the SUT must be instrumented.

Despite its momentum, SBT was not without its downsides. In 2004, McMinn

[29] contends that SBT has some relevant limitations like their inability to trig-

ger decisions whose predicate satisfiability depends on very specific data of the

input domain e.g., equalities such as (x - 2 * y) == 1, deep nesting structures

or the fact that the test data generated may be completely pointless. That is

why the test vectors trigger a number of exceptions that probably would not be

reached when the system is deployed (disjoint union of plausible and all events

in Figure 1.3).

The same year, to cope with this issue Harman et al. [58] apply the so-called

Testability Transformations which are derivations of a SUT to facilitate test gen-

eration. Yet, these transformations will produce valid test data for the original

program. Results of this work give confidence that the former difficult branches

are triggered, however it requires a big number of test iterations i.e, in the order
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of thousands, to trigger such branches for the transformed and optimized ver-

sion. In addition, some of these program transformations may not be accepted

by Spark or Ada compilers as they might produce some overly long statements

of conditions.

Testability transformations have also been applied to timing analysis [59], but

they have different objectives and techniques. For example, one transformation

is orientated to linearly reduce the execution time of the SUT. This technique

still would not be valid for Critical Real-Time Systems as the analyzed system

is not the same one as the one deployed. Other techniques like smoothing the

landscape of execution times, may be more promising as they are less invasive

with the SUT since they only alter the execution time landscape.

The advent of hardware performance-enhancement units imposes stronger re-

quirements to test generators due to enlarging the state space as well as exe-

cuting the worst-case timing behaviour of these units. In 2009, Khan and Bate

[31] develop several objectives to guide the search, including hardware states e.g.,

maximizing cache misses. One objective of this work is to establish what opti-

mization functions are the most appropriate depending upon the properties of the

SUT. As a result, the heuristic just optimizing the execution time gives the best

results generally. The main limitation of this experimental framework method

is that it reads profiling performance counters that are only available in certain

processors from ARM architecture [18].

More recently in 2016, Law and Bate [18] come up with another SBTG imple-

menting a Simulated Annealing. Some of the optimization functions were crafted

considering certification requirements of covering the blocks of cutting-edge jet

engine control software for which a guidance of stressing the structure of the code

was needed. Their main contributions are the optimization functions driven by

the guidance of the only commercial available instrumentation tool for MBTA

[35]. Some of these fitness functions allow, for instance, to maximize the loop

counts and focus on non-tested blocks. This latter heuristic gives the best results

for 25% benchmarks that happened to be industrial controllers. Aside that, the
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heuristic just maximizing the execution time generally performed the best. For

the majority of the benchmarks the variability across different fitness function

was less than 10%. In spite of the fact that some fitness functions target achiev-

ing good coverage and hit around 90% of the instrumentation points the analysis

of the results do not say how much such new functions help at triggering patho-

logical branches like the ones identified by McMinn [29].

Lastly, RT hinges on feeding random test vectors to the SUT. This approach is

the simplest to implement but it is perhaps worse than SBT at achieving a good

degree of coverage. Godefroid [30] points out that this sort of testing would only

hit a simple equality branch such as x == 10 in 1 out 232 having a 4 bytes integer.

2.3.2 Constraint-Based Testing

While SBT is the application of meta-heuristics to testing, Constraint-Based Test-

ing (CBT) is the application of Constraint-Satisfaction Problem (CSP) to testing.

A constraint optimization problem would also include an objective function to

optimize [27] but that happens to be irrelevant for our problem domain. More

formally a CSP is defined as:

Definition 2.3.3. A CSP consists of a triple (I, D, C) in which: I = 〈i1, . . . , in〉
is a n-tuple of input variables, D = 〈d1, . . . , dn〉 is also a n-tuple of domains

associated to each variable in I. A constraint tuple C = 〈c1, . . . , ck〉 holds a list

of k of constraints that the input variables with their domain must meet.

The objective of CBT is to execute as many paths from the SUT as possible by

identifying appropriate test vectors [37]. The first techniques to compute test

vectors based upon program analysis date back to the 70s [60]. In this work King

[60] applies for the first time symbolic execution. The analysis was applied to

small pieces of code and the processing power was a limitation. In 2002, Hen-

zinger et al. [39] applies CBT to functional testing by using Static Analysis of

the code. After parsing the code a graph known as Control Flow Automaton

(CFA) is derived. Unlike standard CFG, the notion of CFA [39] has instructions

on the edges rather than in the nodes. These instructions enable later to generate
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a test vector to hit a specific statement [40]. More importantly, it collects all the

statements from the SUT even though some of them are not necessary to apply

CBT to achieve branch coverage. To be able to produce a test vectors set to hit

branch coverage, DFS [27] is launched on the CFA. Notwithstanding, due to the

great deal of states the CFA collects it explodes when the program to analyze is

big.

In 2008, Holzer et al. [40] devise FShell, a query-driven test generator that

provides with a layer of abstraction to the Henzinger et al.’ [39] CBTG. The

breakthrough was to express in the form of query the generation of test vectors

to meet a coverage criteria after parsing a source code written in ANSI-C.

An inherent problem to software testing is path explosion [38]. To deal with the

problem two main strands have emerged: I) To use heuristics methods in or-

der to focus on a subset of paths. These approaches collect information statically

from the CFG or use dynamic information from the branches traversed at run

time to guide the heuristic. II) Sound static analysis may alleviate path explo-

sion by synthesizing information of previous subpaths explored that is reused to

explore other paths of interest. Other techniques are advocated to merge paths

and thus reduce their number.

When it comes to graph search strategies like Best-First Search BFS [27] also

called Branch and Bound [47] are advocated to identify the best solution or a

combination (i.e., path) in graph exploration problems in the first place. Key

algorithms in Artificial Intelligence such as A∗ or Dijkstra are based on this kind

of search [27]. The price to pay is to elaborate a bound of the cost of getting at

the goal node [47]. This bound is used as guidance and serves to choose amongst

candidate nodes to explore. Though BFS is challenging to implement, this heuris-

tic may be instrumental in composing a path to analyze as well as attaining the

results as soon as industry wishes [18].

It is important to remark that some works have integrated CBT and SBT [61,

62, 63]. For instance, Xie et al. [61] supply dynamic symbolic execution with a
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path heuristic computed dynamically so as to focus on unexplored paths. Results

show how this combination generally outperforms both in efficiency i.e., number

of test vectors produced to meet the coverage objective, as well as the degree

of coverage to random and Breadth-First Search. By contrast, in comparison

to the default Dynamic Symbolic Execution, the coverage results are relatively

similar whereas the greatest impact is in the optimization of the performance.

Unfortunately, the evaluation does not show a comparison with a metaheuristic.

The other interesting feature about this work is that this hybrid test generation

heuristic may sometimes be led to an unfruitful direction which would damage

its performance w.r.t random and breadth-first search.

Conversely, Baars et al. [63] aim for integrating the information supplied by

symbolic execution to an enhanced fitness function to be used in SBT. The re-

sults does not generally show a significant improvement in branch coverage w.r.t

standard fitness function but certainly increases the performance of the enhanced

test oracle to meet the coverage objectives. Alternatively, Galeotti et al. [62]

propose a dynamic switch between the symbolic execution and SBT. Though the

combination details of both strategies is an open question, their evaluation shows

that symbolic execution should be run for a relatively long time after a test vec-

tor improves its fitness. On average, their hybrid test generator improved branch

coverage on 11% with respect to a standard Genetic Algorithm and pure dynamic

symbolic execution.

In the realm of applying CBT to MBTA, in 2009, Zolda et al. [32] employ FOR-

TAS [64], an analysis framework for the reduction of optimism i.e., underestima-

tion, for MBTA. Such a framework is equipped Instruction Path Enumeration

Technique (IPET) [65] an algorithm to derive a CWCET from timing observations

along the code. FORTAS employs a divide and conquer algorithm to divide the

program into segments [32] which are then supplied to IPET to derive a CWCET.

The test-generation part of FORTAS is delivered by FShell [66] despite the fact

that it is a code coverage test generator and is not concerned with the notion

of paths. Since FORTAS framework uses segmentation and IPET to derive a

CWCET Bünte et al. [67] believe that a good way to increase the confidence of
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the CWCET was to maximize the local HWM of the segments from which the

global CWCET was derived. For this reason Bünte et al. devise Balanced Path

Generation I and II [67] code coverage-based rules to guide FShell to generate

test vectors to increase this local HWM of these segments.

After that, Bünte et al. [25] devise FORTAS Reduction of Optimism a test gen-

eration process which combines FShell test generator with a Genetic Algorithm.

To the best of our knowledge this is the only work that combines CBT and SBT

for MBTA. Such a protocol guarantees, when feasible, branch coverage thanks

to FShell. The resulting test vector is mixed with random test data only in

the first iteration. After that, test vectors are engendered by the Genetic Algo-

rithm. FORTAS results outperform Balanced Path Generation both in efficiency

and maximization of the CWCET. However, if there is no care when mixing

constraint-based test vector with the data generated by the GA the resulting test

vector may struggle to hit the type of branches as displayed in Listing 3.1. Fur-

thermore, these last cases where FShell was used they were advocated to increase

the CWCET in a complex target architecture equipped with three cores [32].

This objective of increasing the CWCET and not the HWM may not be useful

if probabilistic approaches are employed whose extreme results verification relies

on extreme observed data [68]. Furthermore, as noted before, since the CWCET

is conformed by hardware states perhaps the resulting figure may be unrealistic

and overly pessimistic.

2.4 Measurement-Based Probabilistic Timing Anal-

ysis

Considering that the largest execution times may be hard to trigger by test data

and in normal operation may occur infrequently, MBTA may be combined with

probabilistic models which are able to justify statistically a safety margin and

thus MBPTA is engendered. Extreme Value Theory (EVT) is a field of statistics

dedicated to the predictions of extreme unobserved events [69, 70, 71]. In a
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nutshell, the application of EVT consists of the following steps [72]:

1. To test the performance of the SUT empirically and collect exe-

cution times. Then for this data the hypothesis of identically distributed

and/or independence must be checked for (Xi)
n
1 , where (Xi)

n
1 is the list of

observations Xi, i = 1, 2, . . . , n collected.

2. Choosing the maximal observed data from (X)n1 since this data is the

only one of interest for the EVT fitting. Two hitherto methods of selection

are Block Maxima (BM) and Peaks-over-Threshold (PoT) [73]. The for-

mer consists of partitioning the sampled data (X)n1 into equally sized blocks,

whose sizes are specified beforehand b. Then the maximum of each block is

picked. The latter selects all values (k) in (X)n1 above a certain previously

defined threshold, un. In either case, the block size b or the threshold un

should be supplied.

It is worth saying that this decision is hard to automate and is the main

obstacle to automate EVT analysis computations [23].

3. Evaluate whether EVT can be applied which is determined by examin-

ing the maxima data derived in the previous process and checking whether

this distribution converges to any EVT distribution [74].

4. Fit an EVT distribution which is obtained by fitting extreme observed

data. The resulting distribution may be a Generalised Extreme Value Dis-

tribution (GEV) which would be attained by using the BM principle or

a Generalised Pareto Distribution (GPD) obtained using the PoT selec-

tion. The shape parameter (ξ) serves to differentiate the name of the GEV

distribution, namely, Weibull (ξ < 0), Gumbel (ξ = 0) and Frechet (ξ > 0).

5. The verification of the distribution is checked by comparing the curve

of the maximal observations to the probability distribution described by the

parameters (average µ, scale σ and shape ξ ). Additionally, sometimes spe-

cific extreme events prediction of the tail are compared against an empirical

data using scoring rules [75].
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6. Calculating a probabilistic WCET (pWCET) from the resulting

EVT distribution. This is delivered by estimating a value q(p) associated

with exceedance probability p such that P{Xi > q(p)} = p.

In reference to the literature survey, the seminal paper in applying EVT to timing

analysis is by Edgar and Burns in 2001 [76] where they use Gumbel distribution

to derive a pWCET. However, Edgar and Burns fit the distribution with raw data

rather than selecting the maximal data of the sample as EVT analysis dictates

[69, 70].

In 2005, Bernat et al. [77] applies another form of probabilistic analysis by using

copulas to the execution time data collected in instrumentation points. The no-

tion of copulas consists of the calculation of a new probability distribution from

two empirical ones [77, 78]. While convolution is applicable when two distri-

butions are independent, copulas can be considered its counterpart when these

distributions are dependent. One of the upsides of copulas is that they enable

computing a lower or upper bound from the resulting distribution. However,

they are very hard to compute due to the exponential complexity of the number

of distributions as input [77].

In 2009, Hansen et al. [79] revisits EVT and applies Gumbel distribution as well.

Yet, Hansen et al. do not check the independence and identical distribution of

the supplied data as EVT analysis mandates [69, 70]. In 2010, Griffin and Burns

[80] stands on central assumption in any distribution. That is that all predicted

values of the curve can be possible in reality which is not true in timing analysis.

To set an example he proposes a program with few and specific execution times

and shows how the Gumbel distribution underestimates and provide unrealistic

values. Later on, Cucu-Grosjean et al. [26] investigates the EVT requirements

so as to design new systems whose resulting execution times can be successfully

supplied to EVT. To achieve this, they conclude that a randomization of the

execution times is needed which includes the need to remove the dependence of

previous execution times to meet the independent hypothesis. This occurs for

instance when a cache holds data of previous execution.
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To meet this objective, Kosmidis et al. [81] implements time-randomization ei-

ther by software [81] or by hardware [82]. Hardware randomization consists of

implementing random allocation of memory blocks in the caches or random bus

arbitration in the case of multicores. On the other hand, software randomiza-

tion [81] randomizes the memory layout by using special compilers and run-time

allocators. The latter is unlikely to be accepted from a safety point of view

since some memory layouts may not be tested when deployed [23]. Perhaps the

main upside of using time-randomization is the fact that the developer can cover

execution time states just by using structural test vectors. Unfortunately, this

approach is advocated to indeed achieve state coverage which - as pointed out

in Section 1.2 - has the worst complexity. Another downside of these architec-

tures is the fact that same test data triggers not only one but random execution

times. Such a consequence damages the controllability of the performance testing.

In 2012, Cucu-Grosjean et al. [26] shows a detailed statistical analysis for EVT

application. Unfortunately, such a protocol process relies on the achievement of

generally intractable path coverage assumption for its correct application. In ad-

dition, the authors employ a so-called Exponential Tail Test (ETT) which was

meant to tell whether Gumbel distribution could be applied to the data or not.

In 2015, Lesage et al. [20] develops a framework that computes a ground truth

by calculating an actual WCET. With such a data the experimental framework

checks the accuracy of the derived pWCET by using EVT. Moreover, this frame-

work sheds light on how the lack of structural code coverage worsen this pWCET.

The same year Castillo et al. [83] delivers a case study with automotive bench-

marks using the GPD distributions rather than Gumbel distribution which be-

longs to the GEV one. In 2016, Lima et al. [84] warns that time-randomized

architectures are not enough to guarantee EVT application and additional sta-

tistical tests must be included to check for instance whether EVT can be applied

to the data. In addition, they extend the application of EVT to the others GEV

distributions which have different asymptotic properties [85]. This analytical con-

sequence becomes apparent by Fedotova et al. [86] where for the same exceedance

probability of 10−9 large differences are attained by using Gumbel and Frechet,
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e.g., 7.7 ms vs 5900 ms [23]. In tandem with this observation, Lima [87] proves

that resulting probabilities are very sensitive to the selection of extreme data for

fitting. So as to enforce EVT application, Lima and Bate [68] formulate Indirect

Estimation in Statistical Time Analysis (IESTA) which helps at the EVT ap-

plication by padding the actual execution time observations and deriving a new

distribution which is suitable for EVT application.

Considering the achieved research knowledge in EVT-based MBPTA, Gil et al.

[72] outlines a list of challenges to be addressed. These challenges are split in three

categories: 1) The execution time data resulting from testing that are supplied

to EVT, 2) The statistical analysis of EVT itself 3) Interpretation of the EVT re-

sults and its relationship with the safety requirements of the overall system. The

1) challenge is a quite divergent one since it argues about the representativeness

[23] of the execution time data which could entail to change the entire testing

process. It’s been claimed that to achieve representativeness the system must

be tested as if deployed (also called statistical testing [36]). Unfortunately, this

process often generates multiple Execution Time Profiles (ETPs) [23]. Another

aspect is that representativeness does not necessarily imply statistically friendly

distributions. In other words, it is not surprising that the data do not fit any

statistical model due to its intrinsic shape or discreteness [80]. Disconcertingly,

a spread idea amongst most of the MBPTA works [26, 20] is the calculation of

exceedance probability in a fixed manner disregarding how much uncertainty i.e.,

difference between the HWM and WCET, we may have. In addition the calcu-

lation of exceedance is oblivious to the selection of maxima and the asymptotic

properties of the distributions. Such a fixation hinders the possibility of using a

MBPTA as a posterior statistical correction [72] and thus its usefulness is ques-

tioned.

Outside the realm of literature about the application of EVT in timing anal-

ysis, some others research works are not only stimulating but also potentially

applicable. In 2000, Garrido [88] develops ETT whose actual objective is to give

confidence in the Goodness-of-Fit GoF of the tail of distributions where there

are no observations. The motivation behind this test is to give confidence in
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structural reliability analysis where the predictions about the integrity of bridges

had to be achieved by having a small number of samples (case studies are usually

around 150 observations [24]). The main interesting feature of this test is that it

endows with extreme events prediction power to non-EVT parametric distribu-

tions that meet certain assumptions. Hence, the entire sample rather than some

few extreme observations ones are used to fit a parametric distribution. The

check is done against an underlying EVT distribution whose tail predictions are

compared against the parametric one. The first version of ETT requires to fulfill

an assumption that enable the fit of the Gumbel distributions as an underlying

EVT distribution to check the results.

Later on, Diebolt et al. [24] relaxes such an assumption and extend the analysis

to the rest of the GEV distributions with the so-called Generalized-Pareto Dis-

tribution Test (GPDT). As a consequence, more parametric distributions can be

fed to extreme events predictions. Another feature of this probabilistic approach

is that, even though it is not oblivious to the selection of maxima, by using para-

metric distributions simulations can be carried out in order to derive a look-up

table to chose a sound number of excesses [88, 24]. This piece of data depends

on the employed distribution and the number of observations. Therefore, a tail

test based MBPTA may achieve full automation which is actually one of the chal-

lenges of EVT-based MBPTA [72, 23].

Deciding which fitting method gives the best results and verify its implementation

is another challenge in MBPTA [72, 23]. In this respect, a paper worthy of

mention is submitted by Friederichs and Thorarinsdottir [75] in 2012 in which

EVT distributions are fitted using Simulated Annealing algorithm maximizing the

p-value of the GoF tests using data from winds. After running the experiments

they observe the low variation of the shape parameter of the EVT which means

that the asymptotic properties shouldn’t vary much. The Search-Based Fitting

(SBF) process is sometimes referred to as maximum Goodness-of-Fit estimation

[89]. It is yet to be investigated how SBF may make a difference at meeting the

prerequisites of tail tests as well as how to satisfy themselves.
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2.5 Summary and Research Contributions

This chapter has surveyed a relevant part of the WCET the literature. STA stood

out as the initial approach for WCET analysis but it seems that modeling modern

hardware has set the limit of its application. Some of its techniques have been

applied to Hybrid analysis in its attempt to predict a CWCET coming from an

hypothetical path coverage [35]. Nonetheless, this estimation may be pessimistic

due to the inclusion of infeasible paths, or in complex hardware architectures,

the combination of the execution states predicted in the CWCET may also be

unrealistic.

As MBTA circumvent the issue of modeling and achieves portability this ap-

proach has engrossed us. For this method to be effective exhaustive testing must

be performed thereby automatic test generation is sought. There are only two

central approaches for MBTA: I) SBT which is relatively simple to implement

but occasionally struggles to achieve the same coverage as CBT. In particular, it

shows worse performance when the satisfaction of one or more predicates depend

only on very specific input of the search space [62]. Furthermore, to achieve good

guidance the code need to be instrumented [16, 18] requiring an instrumentation

tool and normally generating overhead in the SUT [28] II) CBT is deemed effec-

tive for the code coverage objective but needs a precise constraint-based model

to deliver results.

Hybrid test generation combining both of the above techniques has been applied

for software testing [63, 62] but not many works have been produced for MBTA

[25].

So far, a strict CBT has never been applied to WCET and the state of the art

CBTG applied to MBTA is designed for functional testing and has the following

limitations [39, 40]:

Z It is not concerned with the notion of path and thus it is not generally

possible to identify the WCET path by merely delivering branch coverage.
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Z Important objectives such as maximizing the loop iterations are not con-

sidered since the objective is hit a loop at least once.

Z The derived graph of the SUT collects unnecessary statements and con-

sequently damages the performance of the search strategies to build path

constraints.

Z The search strategy applied is DFS to achieve branch coverage. Yet, by

applying BFS the most promising paths could be composed first.

From these premises our research contributions on test generators can be split

into a) CBT on its own:

1. To deliver a path composition algorithm based upon BFS that builds paths

to be analyzed by using a CBTG. These paths not only lead to the largest

execution times but these are computed first.

2. To evaluate the accuracy of the guidance given to the BFS in the form of

cost.

3. To devise an optimal program slicing for MBTA which eliminates the inef-

ficiencies of current approaches reducing the number of paths to analyze.

4. To evaluate the effects of the slicing in the run-time of a CBTG and discuss

the impact on the test generation.

5. To show how this test process can be used to reduce the pessimism if an

hypothetical CWCET is composed by infeasible paths by detecting such

paths.

b) CBT in relation to SBT and RT.

6. To evaluate the results and performance of the proposed CBTG process

against state-of-the-art SBTG and a Random Test Generator (RTG) where

the main objectives are to maximize the HWM and attain results promptly.
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As for the assumptions, most importantly the test generation is restricted to in-

teger, floating and fixed points and enumerates which is claimed to be reasonable

assumption for a large number of Real-Time Systems [16]. On the technical side,

it is assumed that the source code of the SUT is available and there is no instru-

mentation or any other path-based composition process to derive a CWCET.

On the other hand, EVT has been the cornerstone of MBPTA in the recent

years. Perhaps the main upside of this approach is to justify a safety margin

by using a probabilistic argument when no other way of calculating a CWCET

is feasible. Despite so, the lack of code coverage has already been reported to

damage the pWCET results [20]. However, when looking into the details of

EVT and its deployment within the context of MBPTA two main issues are

worth investigating, namely, execution time data and EVT analysis itself. By

approaching the execution time data problem from the testing point of view,

three option arise so as to supply useful data to EVT [23].

Z To test the system as if deployed in which case several distributions could

be possible but representativeness of the data would be achieved [23].

Z To generate a distribution such that the derived maxima data for fitting

optimizes EVT distribution fitting [84].

Z To test the system in a way to maximize the HWM so as to verify extreme

events predictions of EVT using scoring rules [75].

From these 3 possibilities we have chosen last one for our CBTG because it

provides with the greatest generality for the industry which may or may not be

interested in probabilistic analysis. On the MBPTA side, the following issues

have become apparent:

Z Because of the maximal observation decision, EVT-based MBPTA approach

struggles to be automated. This objective is important for the industry if

EVT is to be embraced.

Z The extrapolations of the EVT tails not only have been computed disregard-

ing how much uncertainty there exists after the HWM but also neglecting

the asymptotic properties of the tails.
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Z Though tail tests embrace EVT underneath, the selection of maxima can

be automated.

Z Search-Based Fitting (SBF) is a promising fitting method and it may be

helpful at meeting tail tests assumptions.

From these issues, we draw our attention to tail tests and SBF and the following

research contributions are to be provided:

7. To formulate a novel tail-tests-based MBPTA advocated to provide full

automation and calculate tighter pWCETs.

8. To evaluate the applicability of such an analysis for the resulting unbiased

execution time data from different test generators as well as figuring out

what are reasonable exceedance probabilities using the HWM data repre-

senting known uncertainty.

9. To assess how SBF may help at the application of tail-tests based MBPTA.
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Chapter 3

Constraint-Based Testing for

Measurement-Based Timing

Analysis

With the purpose of understanding a pathological case for SBT which CBT could

analyze easily consider Listing 3.1. This code is advocated to represent fault

accommodation code of industrial software where few pathological inputs trigger

a checking list implemented by one or several loops. The main branch of this

program would be triggered in so far as sensor fault flag is activated. This in

turn depends on very specific values of the three input variables. Assuming the

input data takes a long range, say, [−104, 104] the satisfaction of the predicate

could be a burden for SBT and thus the central loop - which obviously has a big

impact in the execution time - may not be executed or may take a very long time.

1 f unc t i on c h e c k i n i t i a l i n p u t ( S igna l1 : in Input S i gna l ; S igna l2 :

in Input S i gna l ; S igna l3 : in Input S i gna l ) re turn Boolean

2 i s

3 s e n s o r s f a u l t : Boolean := S igna l1 − S igna l2 = 10 and S igna l1

− S igna l3 = 20 and S igna l2 − S igna l3 = 10 ;

4 begin

5

6 i f s e n s o r s f a u l t then

7 f o r I in Array Range ’ Range loop

8 Sensor s Vector ( I ) := RESET;
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9 end loop ;

10 end i f ;

11

12 re turn s e n s o r s f a u l t ;

13 end c h e c k i n i t i a l i n p u t ;

Listing 3.1: Needle in a haystack pathological case where SBT would struggle at

hitting the only the if decision in the code.

The underlying reason is that state-of-the-art approaches in the context of SBT

[18] map the objectives of the test generator into different optimization functions

to guide the search algorithm. The result of this methodology is the exploration

of a landscape whose shape is determined by the guidance provided. Hence, this

guidance is critical to generate appropriate test vectors. In this respect, as men-

tioned in the previous chapter, some testability transformations [58] have given

some evidence about the coverage achievement. However, on the efficiency side,

CBT could potentially make a big difference without any elaborate transforma-

tion of the code.

From the CBT perspective, the existing knowledge of the source code e.g, branch

predicates, loop iterations, is not only required but also it could be used to im-

prove the test generation results [63]. Therefore, it would be interesting to endow

with this knowledge other forms of searches e.g., CSP, graph exploration algo-

rithms, and to evaluate the results.

Returning to the needle in a haystack example, CBT would formulate this bench-

mark as a CSP by identifying the input data and its domain along with the

constraints to be met. A sketch of the plausible representation is depicted in

Listing 3.2.

1 Input data :

2 −10000 <= Signa l1 <= 10000

3 −10000 <= Signa l2 <= 10000

4 −10000 <= Signa l3 <= 10000

5

6 Const ra in t s :

7 S igna l1 − S igna l2 = 10
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8 S igna l1 − S igna l3 = 20

9 S igna l2 − S igna l3 = 10

10

11 /∗ P lau s i b l e output o f a c on s t r a i n t s o l v e r :

12 {9980 , 9990 , 10000} ; ∗/

Listing 3.2: CSP Listing 3.1.

The above description of a CSP could be provided to a constraint solver, which

would determine whether there exists one or more feasible solutions, and if so it

would print them. In this case a plausible solution to assign to our test vector

would be O = 〈{9980, 9990, 10000}〉. The analysis of this code is trivial given

that there are only two paths from which the WCET path is obvious. However,

this test vector on its own would not achieve path coverage as the negation of

the controlling variable must also be encompassed. It is fair to say that with

this approach, the CSP is oblivious to what the most promising paths are from

a WCET analysis perspective.

State-of-the art approaches in CBT for MBTA using FShell [40, 32] would achieve

branch coverage by means of DFS with no regard on how each branch contributes

to the execution time either. Yet, by including some path heuristics [38] such

as BFS, we could point out that the first branch has a greater cost than the other

one would be able to pick this branch in the first place. The price to pay for this

advantage is to define a sound cost.

Another downside of current approaches would become apparent in the derived

graph i.e., CFA, the block in line 8 would be on the edges and the search strat-

egy would explore it even though it does not have an impact on the traversed

branches of this software. The resulting challenge here would be to conceive an

optimal program slicing. A truth that must not be shirked is that an important

objective in the MBTA works where FShell was deployed [32, 67] is to maximize

local HWMs collected in different points in the code. Next, these observations

serve to build a global CWCET which is calculated by using the path composition

IPET. By contrast, one of our objectives is to maximize the global HWM so as

to give confidence in probabilistic approaches to derive a CWCET in the form of
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pWCET.

Admittedly, the collection of constraints from the program analysis of this bench-

mark is simple, however, real-world software is generally more complex than this

program. To be able to provide some automation to more examples as well as

evaluate our research contributions we have implemented GenI, a test generation

framework.

The research contributions of this chapter are outlined next:

(a) Contributions 1, 2, 3 and 4 from Section 2.5 which proposes path-composition

heuristic based upon BFS and an optimal program slicing with their appro-

priate evaluations.

(b) Contribution 5 from Section 2.5 with four case of studies which are rep-

resentative of Real-Time Software. The purpose of this evaluation is a)

to evaluate of the effect of the slicing on the run-time of the CBTG and

b) to assess the performance of the different test generators. The key as-

sumptions here is that path coverage can be achieved and the constraint

collection values can be collected statically.

The rest of the chapter is organized as follows: Section 3.1 addresses contribution

3 since it is the first step before applying contribution 1 which are explained in

Section 3.2. contribution 2 is offered in Section 3.2.4 as well as in each case study.

The GenI framework details for reproducibility are presented in Section 3.3. The

effectiveness of contribution 4 is discussed in Subsection 3.1.4. Next, Section 3.4

presents the four case studies for contribution 5 which include data for the con-

tributions 2 and 4. Lastly, a summary of the chapter is given in Section 3.5.

3.1 Optimal Program Slicing for Constraint-Based

Testing

The notion of testability of a piece of software is relevant in the context of software

as it anticipates the degree of difficulty of testing. Two implicit properties of the
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testability are [19, 6]:

• Observability, which is regarded as the property of the software that allows

examination of its inputs, internal variables, and outputs in order to decide

whether a test passes or fails.

• Controllability, that determines how much the software output is driven by

the input data.

Whereas observability is often achieved by debuggers, instrumentation tools or

health monitoring systems [9], controllability is particularly relevant for CBT as

we aim for identifying test vectors to achieve a great degree of coverage. Nonethe-

less, certain pieces of software or software constructs may not possess such a prop-

erty. For example, variables declared in a program whose values are independent

of the input variables e.g., constants, variables computed in a loop, are examples

of non controllability. The presence of infeasible paths could also hinder the con-

trollability as it would be hard to hit certain branches.

By contrast, certain statements in programs may not have a bearing on the flow

of the program or give no relevant data for the constraints. Therefore, from CSP

formulation these statements are redundant. To give an example of controllable

and redundant statements consider the program in Algorithm 1.

Algorithm 1 Example of controllability and redundancy

1: procedure foo(a)
2: k ← 10 .uncontrollable statement but necessary to collect
3: b ← a + 3 .redundant statement
4: c ← a * 2 .relevant statement used in the constraint
5: if c = k then .Constraint collection
6: c ← ∅ .redundant statement
7: end if
8: c ← c + 1 .redundant statement
9: end procedure

A program slicing to apply CBT would collect the constraint c1 = 〈c = k〉 and

the input variable a. However the c and k are unknown variables for the CSP

formulation. For this reason, we would need to collect the statement at line 2
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even though it is not controllable along with the statement at number 4 because

it is controllable and is the only way to exercise the constraint. The rest of the

statements would be redundant as they do not have any impact on the constraint.

It is worth noting that program slicing may share common objectives with irrel-

evant constraint elimination [38]. While the latest may use constraint solver

to detect redundant statement, program slicing does not necessarily computes

feasibility check. Some others state-of-the-art approaches such as amorphous

slicing [58, 59] aim for integrating in a single flag variable all the former variables

controlling such a flag. However, to our understanding, there is not guarantee

that the folded expression does not contain non-controllable variables.

Next subsection proposes some heuristics to be used for program slicing so as to

collect the minimum data for a complete CSP description.

3.1.1 Program Slicing Heuristics

Before introducing the heuristics for program slicing it is worth clarifying some

simple terminology often used in software testing. More accurately the notion of

definition when a variable v is written e.g., v = 3 and use when a variable is read

e.g., v is read in x = v + 1.

To systematically collect the minimum constraints of the SUT by using program

slicing two central heuristics, H1 and H2, must be used: H1 aims for identify-

ing the input variables, their domain and the constraints to collect. To build the

constraints, H1 collects predicates which controls the flow of the program. These

predicates entails, decisions in if-else and switch-case constructs as well as loop

guards. On its own, H1 may be incomplete as it may allude to variables that are

not in the input, I.

To fill this gap and connect the input variables with variables in the constraints

H2 collects intermediate variable definitions, V , by discriminating whether a

variable defined in these definitions controls subsequent constraints or they are
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redundant. More formally, to understand the function of H2 two definitions are

established.

Definition 3.1.1. Be V the set of variables declared in a program P, a definition

of variable vi, Def(vi | vi, . . . vn) uses variables vi, . . . vn ∈ {V ∪ I} where V

are the variables declared in the program and I the set of variables from the test

vector. A definition of a variable vi, Def(vi | vi, . . . vn) is said to be controllable,

Cont(Def(vi | vi, . . . vn)) if it uses {I ′ | I ′ ⊆ I ∧ |I ′| > 0} or uses {V ′ | V ′ ⊆
V ∧{∃ vj ∈ V ′, Def(vj | I ′)}}. Hence, Def(vi) is controllable when uses I ′∪V ′:
Cont(Def(vi | I ′ ∪ V ′))

Definition 3.1.2. Be V ci ∈ {V ∪ I} the variables used in a constraint ci ∈ C
located at a program point qi, and be Def(V ci) definitions of the variables in V ci.

The heuristic, H2, collects ∀ci ∈ C and V ci ∈ ci up until point qi the definitions

which are controllable, Cont(Def(V ci)), or constants.

A simple algorithm of this optimal program slicing would be as follows:

Algorithm 2 Optimal Program Slicing for CBT

1: function Program Slice(P)
2: .H1 application
3: 〈I,D〉 ← CollectInputDataAndDomain(P)
4: C ← CollectFlowStatements(P)
5:

6: D ← H2(I, C, P) .H2 application collecting relevant definitions
7: C ← C - non-controllable(C, D) .remove non-controllable constraints
8: return 〈I, C,D〉
9: end function

Algorithm 2 describes the program slicing process. The first two statements

collect in essence input data and the constraints. After that, H2 collects only

relevant definitions for the constraints which link input data and the constraints.

Lastly, in line 7, if there is any non-controllable constraint it is removed. The

result is the program slice of P whose description is optimal to apply CBT with

path coverage criterion.
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With this algorithm equipped with H1 and H2 the minimum data to elaborate

CSPs can be attained. However, a graph representation is still needed. This new

graph-based representation is the result of the program slicing. It is worth ques-

tioning what difference does it make with respect current approaches [39]. This

answer is answered from a theoretical point of view in the next two subsections.

An empirical analysis comparing the effect with and without slicing is offered,

wherever possible, in each case of study of this thesis.

3.1.2 Reducing Graph Complexity

Even though the program slicing has substantially synthesized the SUT we still

need to build a representative model of the SUT so as to derive consistent path

constraints. A good representation that enable search algorithm to be performed

is a graph. State-of-the-art approaches [39] also build a graph after parsing the

source code.

In the first place, to be able to understand our research contribution the notion

of a Constraint-Graph (CG) must be defined.

Definition 3.1.3. A CG of a program P is a tuple 〈G, s0, δ〉 where G is an acyclic

graph G = (V,E) with vertices V and edges E ⊆ {V × V }. δ is the label set such

that δ ⊆ {V ∪ E}. It holds the constraints, C, and definitions, D, derived by the

optimal program slicing.

To prove the difference between a CFA and a CG consider the following defini-

tions: Given a program P from which a CFA, GCFA, and a CG GCG are derived.

GCFA holds all the statements from P whereas GCG will only store the minimum

to trigger the constraints because of the optimal program slice. To meet a cer-

tain coverage criteria a search must be launched inexorably. Thus, assuming the

same search strategy is launched on the resulting graphs G corresponding to the

exploration of GCFA and G′ from GCG would become apparent.

A common practice to measure search strategies performance [27] is to evaluate

the graph complexity of the graph they deploy. The three main variables to

measure the complexity of a search are:
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• b: Branching factor or the maximum number of successors of any arbi-

trary node.

• d: The depth of the most superficial goal node.

• m: The maximum length of any path in the state space.

The last two metrics, d and m, consider the path length. An arbitrary path

length mG in this exploration, assuming that it contains redundant statements,

will be composed by some redundant statements r plus the minimum ones k.

Hence the mG = r + k whereas the same exploring G′ will only be composed by

k, so mG′ = k. By operating we get:

mG

m′G
=
k + r

k
= 1 +

r

k
(3.1)

Hence, the length of any arbitrary path in the proposed CG will be:

mG′ =
mG

1 + r
k

In reference to the branching factor the G and G’ may also be different if the SUT

contains uncontrollable flow statements, rb, because of the inefficient program

analysis applied in CFA. The branch reduction would have a similar reduction

factor between bG′ , the branching factor of the G′ and bG the branching factor of

the CFA assuming rb redundant branches and kb minimum controllable ones.

bG′ =
bG

1 + rb
kb

These performance differences become apparent when the assumptions are met

and we run search strategies on top of the CG and CFA graphs. As mentioned

before, FShell runs DFS on top of the CFA [39] to achieve branch coverage. Such

an algorithm has a complexity O(bm) in time and O(b ·m) in space [27]. Hence

when r > 0 or rb > 0 the time and space of the search will be different and

smaller for the CG’ however the required data to transform deliver a CSP will be

the same.
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3.1.3 Graph Comparison Example

In order to better understand the application of the former theory this section is

in charged with presenting an example. Firstly, a relevant function from a toy

autopilot software [15] is read. It is worthy of note that this code is acyclic so

the exploration graph of CFA and CG is very similar to the actual CFA and CG.

Firstly, consider graphs in Figure 3.3.

Figure 3.1: CFA example.

Figure 3.2: CG example

Figure 3.3: Comparison of graph models.

Figure 3.1 displays the resulting graph after analyzing the SUT by using the

notion of CFA. On the other hand, Figure 3.2 depicts the resulting CG. By

definition, the CFA inferred by FShell program analyzer collects all statements

yielding a more complex graph. The statements surrounded by the red shapes
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on graph 3.1 are redundant to trigger subsequent branches but the CFA includes

them though. Unlike CFA, the CG computed only collects the minimum state-

ments required to exercise paths.

To give some data consider the shortest path in the CFA of Figure 3.1: πs,G =

{u0, u1, u13, u14} having just two vertices {u0, u1}, k = 2 that are really needed to

execute the first branch (Present = Target). However, to reach the end point it

needs to traverse {u13, u14} so r = 2. Hence, ms,G = k + r = 4. On the other

hand the minimum path only takes two vertices: πs,G′ = {v0, v1} for the CG on

Figure 3.2 yielding to ms,G′ = k = 2. Replacing this number in the speed-up

equation of Section 3.1.2 we get:

ms,G′ =
ms,G

1 + 2
2

= 0.5 ·ms,G (3.2)

So the shortest path of the CG is the half of the shortest path of CFA. Lastly, if

consider one of the longest path in both examples we get: πl,G = {u0, u2, u4, u5, u6,

u7, u8, u9, u10, u11, u12, u13, u14} where k = 8, {u0, u2, u4, u5, u6, u11, u12, u13} and

r = 5. On the other hand, πl,G′ = {v0, v2, v4, v5, v6, v7, v8, u9} and again k = 8.

By proceeding in the same way as before:

ml,G′ =
ml,G

1 + 5
8

=
8

13
·ml,G (3.3)

Because this software does not contain uncontrollable decisions the branching

factor is similar. This sets an example on how CFA representation is not optimal

for CBT application as well as how the CG achieves an optimal representation of

the SUT.
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3.1.4 Effect of the Slicing on the Effectiveness of a CBTG

The effectiveness of a CBTG is understood as its ability to produce sound test

vectors. Regarding the impact of the slicing on a CBTG it is worth remembering

the entire purpose of the slicing is to clear the original program so as to build a

CSP that is more likely to be feasible and thus to generate a test vector. Fur-

thermore, it also aims for minimizing the number of computations by reducing

the number of constraints to be processed.

From a CSP point of view, there is no distinction between uncontrollable pred-

icates or redundant statements as they are both normally added as constraints.

The effects of including all the statements of the default program depends on the

constraint solver applied or the processing of the paths-to-constraints program.

In our framework, if no slicing were applied, two main scenarios would become

apparent:

• The effect of the slicing has no effect and thus the default program would

match the sliced one.

• More constraints would be added to the problem. This alternative would

entail:

1. In the CBTG from GenI an exception is launched as there are some

declared variables in the constraints that are not mapped in the input

data.

2. In the constraint solver employed, SCIP [90], default range of vari-

ables is [0,∞), (∞ is encoded as the largest possible data type of

SCIP variables) which may not match the variables declared along

program execution. If the constraints provided intermediate variables

i.e., declared variables which are not the global input data, and the

constraints allow a feasible solution in the default range, then a feasi-

ble solution is returned. Otherwise, the problem is ticked as infeasible.

This is demonstrated in the experiment below.
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3. Even though the actual range of the uncontrollable or redundant vari-

ables was given, when assigning the resulting values to test vectors,

run time debugging errors could pop up. That is why those variables

SCIP provides are obviously not in the context or their range overflows

the declared range in the program.

In order to evaluate the default values of SCIP to undefined variables, we are

creating two CSPs one which contains a redundant variable, t 0, whose constraint

is consistent with the default value (Listing 3.3) and another one (Listing 3.4) in

which its constraint is inconsistent with the default range.

1 Minimize

2 0

3 Subject To

4 c1 : i 0 + i 1 > 11

5 c2 : i 0 − 2 i 1 > −1
6 c3 : t 0 > 0

7 Bounds

8 0 <= i 0 <= 1000

9 0 <= i 1 <= 1000

10 End

11

12 s o l u t i o n s t a tu s : opt imal s o l u t i o n found

13 ob j e c t i v e va lue : 0

14 i 0 1000 ( obj : 0 )

15 i 1 500 ( obj : 0 )

16 t 0 100000 ( obj : 0 )

17

Listing 3.3: CSP with an undefined variable in a constraint.

As described on Listing 3.3, SCIP makes the range assumption described above

and prints a feasible solution. On the contrary, if we impose to t 0 a negative

value as portrayed in Listing 3.4, the value of t 0 is not printed, yet the defined

ones do.

1 Minimize

2 0

3 Subject To
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4 c1 : i 0 + i 1 > 11

5 c2 : i 0 − 2 i 1 > −1
6 c3 : t 0 < 0

7 Bounds

8 0 <= i 0 <= 1000

9 0 <= i 1 <= 1000

10 End

11

12 s o l u t i o n s t a tu s : opt imal s o l u t i o n found

13 ob j e c t i v e va lue : 0

14 i 0 1000 ( obj : 0 )

15 i 1 500 ( obj : 0 )

16

Listing 3.4: Another CSP with an undefined variable in a constraint.

This experiment has demonstrated that the specified range of undeclared variables

in SCIP, which are equivalent to uncontrollable or redundant statements, matches

the observed one. As a consequence of this default setting, the resulting value

of these variables may be unsound as the default range is unlikely to match the

actual range declared in the program.

3.2 Path Construction Using Best-First Search

3.2.1 Path Coverage Complexity

For a constraint solver to generate test vectors for a path all the defining con-

straints of the path must be included. Adding constraints manually is normally

unmanageably complex. Let alone, the path explosion because of the combina-

torics of path coverage. To provide insight about the complexities of the former,

some works on MBTA [17] contend that the number of paths increase exponen-

tially with the software size. Notwithstanding, the path explosion combinatorics

is more studied by Bang et al. [53].

The conclusion of this work is shown in Figure 3.4. The path explosion is gener-

ally exponential in a sequence (K) of conditional structures, a sequence of loops

and nested loops. The only exception, is when we have a sequence of nested con-
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Figure 3.4: Path complexity depending on the underlying program structure.
Source [53, Table 2]. K denotes either the number of elements in a sequence or
the depth of nesting, n designates the depth bound and b is a constant number
which depends on K.

ditional statements in which case the path explosion is linear. Yet, if we examine

the third case with a sequence of loops and K as a constant and changing n -

the depth of the loop bounds - the path explosion would endure a polynomial

explosion. Bearing in mind these restriction the modelling of path coverage is

generally intractable and therefore challenging.

3.2.2 Best-First Search

So far we have a program slicing technique to collect the constraints. By reading

this information and building a graph we need a way to systematically derive

constraints which represents a path. There are three challenges to consider here.

1. To define a search strategy to build path constraints.

2. To be aware that in most cases path coverage can’t be achieved and a partial

path coverage is sought.

3. To give confidence that the search provides with the most promising paths

first to meet the efficiency objective of the industry.
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4. To evaluate the accuracy of the guidance i.e., cost, to evaluate the confidence

of point 3.

The objective of identifying the paths leading to the largest execution time trades-

off with our requirement of devising a portable approach since we are appealing

to software for such a calculation. For this reason, the entire CBTG most prob-

ably give good results when the execution time is aligned with the guidance of

the search strategy which is often hard to do by looking at the software only.

Nevertheless, some evaluation is provided in this respect at subsection 3.2.4.

After reviewing search strategies theory [27] and graph exploration algorithms

[47], BFS [27] emerges as a promising strategy since it seeks to explore the as-

sumed most promising paths of an arbitrary graph in the first place. At the core,

BFS is based upon holding a priority queue where the nodes are inserted consid-

ering a cost estimation function, f(n), of the cost of exploring candidate nodes.

The values of this function are also called optimality hypothesis [47]. Since the

priority queue order depends on f(n) it is instrumental that f(n) computes either

lower or upper bounds depending on the problem at hand. If the f(n) results

are inconsistent the search may be misdirected. Popular search algorithms like

A* or Dijkstra [27] are based on BFS but unlike this problem their objective is

to minimize the cost. BFS is often called Branch and Bound search [47] but its

working principles are the same. This algorithm is depicted in Algorithm 3.

In Algorithm 3 the priority queue is named frontier. The front node of the queue

is explored first and in the event that it is a final node, the search is concluded

(lines 12 to 14). Otherwise, more children nodes are explored as long as they

are not explored yet and they are not in the priority queue (lines 16 to 18). The

estimated bounds may be updated as the search progresses (lines 19 to 21) for

the sake of accuracy. With time the algorithm inserts and deletes node in frontier

whereas the set of explored nodes is filled up rendering less nodes to explore.

To give an example about the execution consider Figure 3.5. On the left side a

standard CG derived from an arbitrary SUT is displayed. Constraints are en-

coded with B+ and NB+. Each branch has a node with an attached cost but
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Algorithm 3 Best First Algorithm. Source [27]

1: function Best First Search(problem)
2: node ← {problem.Initial State, Path Cost = 0}
3: frontier ← ∅
4: frontier.push(node) .Priority queue ordered by f(n)
5: explored ← ∅ .Set of the explored nodes
6: while true do
7: if frontier = ∅ then .Queue is empty
8: return failure
9: end if

10: node ← frontier.top()
11: frontier.pop() .Remove the front of the queue
12: if Goal Achieved(node) then
13: return node;
14: end if
15: explored.push(node)
16: for all child ∈ node do
17: if child /∈ {explored ∪ frontier} then
18: frontier.push(child)
19: else if child ∈ frontier and Child.Path Cost is greater than
20: the estimated in the queue then
21: frontier.update cost(child) .Update the estimated cost with

the actual cost
22: end if
23: end for
24: end while
25: end function

B1 and NB1, which are assumed to be 0 for the sake of simplicity. On the right

side, the maximum accumulated cost of each branch is computed. B1 cost re-

sults from B1.1 + NB1.2 = 17 + 7 = 24 whereas NB1 is B1.3 + NB1.4 = 10

+ 10 = 20. On the first stage, the search would pick up B1 so the path to test

would hold π = {B1}. On the second stage it would take B1.1 since NB1.1

offers only an accumulated cost of 22 in contrast to 24 offered by B1. So now

π = {B1, B1.1}. The same comparison would be computed between B1.2 and

NB1.2 selecting again the nodes leading to the greatest cost. Since NB1.2 is the

most costly node and happens to be a leave i.e., goal node, the search would be

concluded composing the path to test as π = {B1, B1.1, NB1.2}.
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Figure 3.5: BB search guided by the costs of the constraints.

The core of this search strategy is the cost assignment of the constraints. Next

section discusses this decision.
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3.2.3 Constraint Cost Assignment

Ideally, the cost assigned to constraints should be proportional to the actual

execution time which would entail to figure out how the idiosyncrasies of the

compiled code as well as the clock cycles taken by each instruction. Let alone

the impact of potential hardware performance acceleration units. Unfortunately,

this relationship is hard to predict, if at all possible, by reading source code only.

By assuming that a wide array of test vectors can be generated as a result of a

great number of feasible paths, the accuracy of costs would result, to some extent

not that important.

For the sake of providing with the simplest solution the cost is decided by count-

ing the statements plus some overhead - typically 0.5 - of previous evaluation of

the decisions if that is the case of the constraints at hand. It is important to

remark that this cost assignment is applied when the default program is analyzed

event though its final representation may be sliced. Therefore, the cost assign-

ment is not impacted by program slicing.

In the case of function calls some overhead can be added on account of the in-

structions involved in the execution. 0.5 was added as well in the case studies.

When it comes to loops the number of iterations can be really useful to determine

their costs. In this respect STA works on counting loop statements [7, 14] are

really useful but restrict the loops analysis to those which meet the Presburger

arithmetic requirements. Such a requirement is one of the assumption of our

contributions.

Lastly, it is worth noting that the proposed heuristic-driven path composition are

independent of the way costs are assigned to constraints. In other words, this

constraint-assignment decisions can subject to future improvement and both test

generation and path construction delivered by BFS would still work.
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3.2.4 Accuracy Evaluation of the Cost Function

This final subsection is dedicated to assess the precision of the cost function. To

achieve this, the hypothesis the cost derived from counting the statements gen-

erates statistically similar execution times across different programs is established.

To evaluate this hypothesis we have used the execution time in clock cycles as a

metric because it provides a great accuracy of the intended observed effect. Three

types of benchmarks are employed because they arguably represent the three kind

of programs we may find in the real world [91]. Programs containing arithmetic

(Arith.) operations such as sums, subtraction and multiplication, load and store

(L/S) such as assignment to variables or arrays and input output (I/O) to dif-

ferent modules such as watchdog timer or communications. It is worth saying

that sometimes I/O operations are memory mapped [91] i.e., the system address

space is shared. So the internal implementation of the L/S operations may be

very similar to the I/O ones.

These benchmarks provide fair and representative examples of operations of Real-

Time Systems as their statements were picked directly from the Real-Time soft-

ware of the case studies. They are composed by a single block of code containing

statements from the same above-mentioned operations. The number of state-

ments for each benchmark is [2, 4, 6, 8, 10] (which would match the same cost) as

this is a reasonable range observed in these benchmarks. Additionally, as the ex-

ecution time may be influenced by the input we establish an additional category

for the benchmarks.

As for hardware platform the STM32F429 board equipped with STM32F429 mi-

crocontroller with 64-Mbit SDRAM with 1024 bytes of instruction cache memory

and 128 bytes for a data cache. The processor installed in the microcontroller

is a single-core ARM Cortex M4 [92]. In other words, it is a relatively simple

and time predictable hardware with the burden of small cache for the WCET

analysis. Memory-mapped I/O is implemented in the chip.
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The benchmarks were run on top of a Spark/Ada run-time for ARM-based micro-

controllers [93]. The availability of this free run-time motivated the choice of the

board. Moreover, the decision of running the benchmarks on an actual hardware

instead of a simulator is to provide a realistic setting to the experiments.

Regarding the results for the constant input, they are depicted in Figures 3.6

and 3.7. Figure 3.6 starts with a small difference of around 2.8 times between

I/O and L/S in the cost 2 case. The difference becomes more significant from cost

4 to cost 10 where it reaches a maximum of 14 times greater again between I/O

and L/S. This is because of the inclusion of more expensive I/O operations related

to the communication modules e.g., Universal Asynchronous Receiver Transmit-

ter (UART). An interesting feature of the constant-input benchmarks is the fact

that the execution time shows no variability in each case which evidences the

time-determinism of the hardware platform.
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Figure 3.6: Block-based benchmarks ranging from from 2 to 6 with constant
input.

Figure 3.7: Block-based benchmarks ranging from from 10 to 8 with constant
input.
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On the other hand, the benchmarks which were provided a random test vector for

each of their statements are depicted in Figures 3.8 and 3.9. In this case, the cost

2 case shows at slightly smaller greatest difference of approximately 2.63 times.

Whereas, at the end of the experiments on cost 10 this difference is around 13.16

times greater.

Figure 3.8: Block-based benchmarks ranging from from 2 to 6 with random input.

61



Figure 3.9: Block-based benchmarks ranging from from 10 to 8 with random
input.

Perhaps the most interesting data analysis of this experiment is to evaluate the

statistical significance of the Friedmann test. The reason for using this test is

its ability to evaluate the degree of similarity or difference i.e., statistical signif-

icance, of all the empirical samples. This test is used to detect differences in

treatments across multiple test attempts. The procedure involves ranking each

row (or block) together, then considering the values of ranks by columns. E.g., n

wine judges each rate k different wines. Are any of the k wines ranked consistently

higher or lower than the others?.

The results of Friedmann test applied to the resulting data of the three type of

benchmark are displayed on Table 3.1. In all the cases statistical significance is

shown, meaning that the estimated cost and the actual execution time is signifi-

cantly different. In conclusion, in light of the data of the block-based benchmarks

the formulated hypothesis at the beginning of this section is false.

Lastly, it is important to discuss the threats to validity of the conclusion. In this

62



Cost 2 4 6 8 10
Random Input Yes Yes Yes Yes Yes
Constant Input Yes Yes Yes Yes Yes

Table 3.1: Friedmann test. Statistically significant with α = 0.05.

work we consider two threats of validity inspired by some similar works on test

generation [63].

• Threats to internal validity argues about potential bias in the design of

the experiments. An example of such a bias comes from the kind of bench-

marks employed which are restricted to the category of operations above

described. In practice, some real-time benchmarks e.g., control systems

[94], show a mix of the above operations. Another source of bias may come

from the fact a Random Test Generator was employed whereas the cost is

advocated to be used for the CBTG. The reason for this choice is to have

a more realistic observation of execution time.

• Threats to external validity is deemed as arguing about how the con-

clusions can be extrapolated to more general cases i.e., different embedded

architecture and different SUT. The most obvious threat is the computer

architecture employed which is relatively time predictable one with mem-

ory mapped I/O. As we have extensively discussed, the execution time is

highly sensitive to the computer architecture the software runs on. Hence,

this conclusion may or may not be applicable to similar benchmarks run-

ning on another microcontrollers. Moreover, because we have not included

benchmarks with branches and loops we could not observe how the execu-

tion time behaves in these cases. Nevertheless, the benchmarks presented

in this thesis include such a data.

3.3 GenI Test Generation Framework

So far, the main theory of program slicing and path building by BFS has been

outlined. To give some compelling evidence about the proposed CBTG an im-

plementation was carried out in a tool named GenI. This framework’s objective

63



is the cross comparison of different test generators for MBTA.

Figure 3.10: GenI code-driven test generator framework overview.

To begin with, Figure 3.10 displays an overview of the different components of

GenI. Red color indicates the components of the CBTG, yellow component refers

to the SBTG and blue to the random one. Additionally, green components de-

notes the elements interacting with the embedded target. The main input for the

framework is a source code or SUT. As these test generators read only the source

code and not a specification, this type of test generation is often called code-driven

[95]. The first step consists of analyzing the SUT seeking the subprogram to test.

This information is specified by the developer. Next, the static analyzer reads

the structure of the subprogram SUT to gather constraints using the program

slicing algorithms described in Section 3.1. Once this process is completed, all

the relevant information is backed up into an XML file which contains the results

of the program slicing.

For some programs where at least one of the required constraints is subject to

values computed at run time, this static analyzer won’t be able to collect all the

required information to produce the constraints. That’s why in a concrete value

runner, which consists of an equivalent SUT, is executed in the host with random

test vector as input. This feature will be tackled on the next chapter.
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When all constraints are properly collected, along with data of their level of

nesting a CG is built. The algorithms describing this process are outlined in

Subsection 3.3.4. Then this CG is transformed in a tree from which the BFS is

launched. The latter process is detailed in Subsection 3.3.5. Finally the encoded

constraints of the path are processed and transformed to some understandable

constraints by the constraint solver. Such an encoding and processing is explained

in Subsection 3.3.2.

Regarding the constraint solver SCIP [90] was used. The underlying reason for

using this constraint solver is that it is one of the most popular constraint solvers,

it is free for academic purposes, it provides functionality to analyze a wide array

of constraints: linear, logical, polynomials, etc... and it is easy to interface with

our test generator framework. Finally, if the path is feasible a test vector is gen-

erated and executed on-target and thus an execution time is measured.

3.3.1 Applying BFS to our Problem Domain

Though the theory provided in the books may look simple the matter of the fact

is that the implementation of BFS is certainly challenging [47]. In addition we

must consider the specifics of our problem. For example, some heuristic problems

using BFS finishes when a goal node is found. Notwithstanding more paths need

to be analyzed to further new searches must be launched. Particularly, when

integrating and implementing the theory in our problem domain the following

problems become apparent.

1. To define a constraint notation.

2. Build a CG from a program description.

3. Build a path tree from previous CG.

4. Deciding an upper bound to drive the search: f(n).
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5. Handle cost consistency and node constructions when adding or deleting

nodes.

Next section deals with problem 1. Problem 2 is tackled in Section 3.3.4 which is

preceded by Section 3.3.3 explaining the involved data structures and addresses

problem 5. Problem 3 and 4 are addressed in Section 3.3.5. Section 3.3.6 outlines

how build a path by running BFS. Finally, Section 3.3.7 offers the details of the

SBTG and RTG.

3.3.2 Constraint Encoding Notation

In order to compose a consistent CG from the description of the SUT not only

the definitions of the constraints are needed but also the nesting level and the

cost. To meet this demand a Path Constraints Notation (PCN) must be

established Since the decision of cost has already been argued, the information

regarding the structure of the code, including the level of nesting is tackled.

A Constraint ID has a single B to denote the first predicate of a structure. EB is

employed to denote a predicate between the first and last decision of that struc-

ture, or NB to denote the last decision of such a structure (often related to else or

default tokens in switch statements). Along with the alphabetical part, a number

is used to denote its order with respect the root function and its nesting level.

Assuming that root function has a 0 nesting level each constraint ID belonging

to the first nesting level would be assigned to a natural number. If a nesting level

is greater than 1 the dots notation often used in text processors is embraced.

A problem with the proposed notation becomes apparent when several elsif or

switch-case in the code as all of them would be named EBX.Y. For this reason

a number before the alphabetical part is included. So the first elsif would be

1EBX.Y the second, 2EBX.Y and so on and so forth.

Once a path π is selected and is encoded as a sequence of constraint IDs, there

are two more decisions to carry out: a) replace those IDs by the proper con-

straints and occasionally b) to process those constraints to be supplied in the

proper way for a constraint solver. For instance, assume a path is encoded as
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π = {NB1, B1.1, B1.2, } = {Present 6= Target,Present < Target,Present >

10}. To be able to hit NB1 we need to negate B1 constraint. This requirement

demands that the test generator implements a negation function of the operators

that most programming languages exhibit.

Operator / Boolean Expression Negated Operator / Expression
= 6=
< ≥
> ≤
x ¬x

x ∧ y x̄ ∨ ȳ
x ∨ y x̄ ∧ ȳ
x⊕ y x ≡ y
x ≡ y x⊕ y

Table 3.2: Table of operators and boolean expressions often found in programming
languages. ⊕ denotes XOR operation and ≡ XAND one. Some combinations
omitted for simplicity.

Perhaps the simplest way to do that is just to look up a negation table like the

one displayed at Table 3.2. Depending on the length of the conditional structure

it may require to negate several constraints in the list. After having a negation

function we show a simple algorithm to transform a path of IDs to a path of a list

of constraints. Such an algorithm is displayed in Algorithm 4. The simplest case

happens when the ID to transform is the first decision in a conditional structure

since there is no further negation to consider in that structure. In this case, we

only need to load the corresponding constraints of that branch. In the algorithm

this is decided in line 4. The other cases are a bit more elaborated since they

have to not only load the constraints of its decision in particular but also the

negation of the previous decisions of the same conditional structure. In the latter

case a list of constraints is returned. This is described from line 6 onwards. The

function negate takes into account Table 3.2 definitions.

Lastly, regarding this processing to transform a path to a CSP, unless the SUT

is quite simple we normally would encounter definitions of variables in the code.

These intermediate variables are not input data nor constraints in the branches
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Algorithm 4 Algorithm to transform a path defined as a list of IDs to a path
of constraints. ⊕ stands for concatenation.

1: function convert ID to constraints(ID, ID list)
2:

3:

4: if (ID starts with B(ID)) then
5: return get constraints(ID);
6: else
7:

8: constraint list ← get constraints(ID)
9: previous IDs ← get previous IDs(ID, ID list)

10:

11: for each ID’ ∈ previous IDs do
12: constraint list ← constraint list ⊕
13: negate(get constraints(ID’ ))
14: end for
15:

16: return constraint list;
17: end if
18:

19: end function

and would be unrecognized by the solver. If the SUT is controllable they should

depend on the input data. For this reason their definitions are collected. To be

able to adapt the path constraint to a CSP one of the following two solutions

must be given: a) Process the constraints so that all the variables that appear

in the constraints depend upon the input variables or b) If the solver provides

the proper functionality, these temporary variables can be added as some extra

variables but when the constraints are solved there must be a way to filter the

temporary variables from the input ones. Solution b) is probably the simplest

and the best one as the other would entail a more elaborate programming.

3.3.3 Data Structures and Bounds Consistency

In order to understand the algorithm of the path composition we must define the

data structures employed. The decision of choosing these data structures and

their final state is founded on two objectives: 1) To access relevant nodes first
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i.e., most costly 2) Manage easily the deletion or addition of leaves so as to keep

consistency of the overall cost estimation.

Figure 3.11: Simplified structure to implement BFS search

Figure 3.11 contains a diagram of the main structures implemented in the building

of the path tree. To start with, CostNodeStruct holds a sorted vector containing

the nodes data i.e., cost tree node (CTN). The fields of CTN will be explained in

detail later. Each CostNodeStruct also holds a reference to a specific CTN that

is supposed to be its father. Likewise, each node points to its proper children

implemented in a CostNodeStruct. A codified and more extended definition of

these structures is depicted in Algorithm 5.

The smallest data structures from which the CG or search tree is derived con-

sists of the following. First one is cost tree node (CTN) structure, which holds a

single constraint ID along with its cost, children max cost, parents max cost and

accumulated cost that are numeric and null by default. Cost field corresponds to

the constraint cost. This data structure is embedded in a vector which in turn

is contained in CostNodeStruct (CNS) structure. Such a vector must remain

sorted to facilitate the access to the most costly nodes so the insertion operation

must meet this requirement. Each of the parameters of CTN are mathematically

defined as follows.

Be CostNodeStructi in a level i of a tree, a structure be Ai the set contain-

ing the CNS ancestors of CostNodeStructi and ai the set of CTN ancestors to
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Algorithm 5 Main data structures used for BB search

1: procedure Tree Nodes Data Types
2:

3: Structure cost tree node
4: ID ← ∅ .String type. It denotes the ID of the node
5: parent max cost, cost, children max cost, accumulated cost ← 0.0
6: bb father, bfs child ← ∅ .Reference to CostNodeStruct
7: cg child vector ← ∅ .vector of references to CostNodeStruct
8: end Structure
9:

10: Structure CostNodeStruct
11: node vector ← ∅ .vector of cost tree node
12: father ref ← ∅ .Reference to cost tree node containing the father
13: nodes to update ← ∅ .vector of NodesToUpdateStruct
14: end Structure
15:

16: Structure NodesToUpdateStruct
17: father node ← ∅ .reference to father node
18: ID ← ∅ .ID of the father
19: cfg to build node ← ∅ .reference to the node in the CG from which to

build BB tree
20: end Structure
21:

22: Structure NodeFatherToPick .Structure used in the main priority
queue of the BB algorithm

23: ID ← ∅
24: accumulated code ← 0.0 .data to assign priority in the queue
25: cost node ref ← ∅ .Reference to CostNodeStruct
26: end Structure
27: end procedure

CostNodeStructi, parents max cost is defined as follows:

parents max costi =
1∑

j=i−1

max({n ∈ CostNodeStructj}) ; ∀j ∈ Ai ∧ ∀n ∈ ai

Be Sk the set of successors of an arbitrary non-empty CTN k stored in CostNodeStructi

and be m the depth of the tree.
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children max costk =
m∑

j=i+1

max({n ∈ CostNodeStructj}) ; ∀j ∈ Sk

From these definitions we have that an arbitrary CTN k with a local cost (costk)

has an accumulated cost k:

accumulated costk = children max costk + costk + parents max costi

The data for the corner cases are parents max cost0 = 0 since that is parents cost

of the root and children max costl = 0 of any arbitrary leave l <= m denoting

the cost of non-existent children.

Resuming the structure description in Algorithm 5, apart from the cost data in

CTN structure we also encounter an ID of the constraint in question, a reference

to a CNS both for father and child along with a vector of children pointing to

the relevant children to build from the CG. Aside node vector, CNS contains fa-

ther ref which is a reference to the CTN father and nodes to update. Last one

is a vector composed by the last structure in Algorithm 5. This vector is quite

relevant when keeping the cost consistency when the a single or specific fathers

need to be updated rather than all available in the node vector of the father.

This case may be deemed especial or pathological.

Figure 3.12: Pathological nesting case in a CG.
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An example of such a pathological pattern is illustrated in Figure 3.12. In such

a figure when structure d is added as a successor of c it needs to update all the

nodes in c and b but when it reaches node a it only needs to update NB1.7. In

reality, the reason why NB1.7 would only be updated is that nodes in b and c

would only be reached if NB1.7 is triggered e.g., nested conditional. On the other

hand, when structure d is assigned as a child of B1.7 it only needs to update this

CTN in particular. In summary, nodes to update is used when we need to update

a single father node rather than the entire CNS.

NodesToUpdateStruct structure is dedicated to hold information of the only fa-

ther to update as well as a reference in the last statement to build children if it

was needed. NodeFatherToPick has a similar structure to NodesToUpdateStruct

but it has a copy of the accumulated cost that is used for the priority queue order.

Regarding the algorithm to keep costs updated, it is listed in Algorithm 6. An

important requirement to run this algorithm is that it should only be called from

the leaves once these are added or deleted. This is because the update procedure

runs from the leaves to the root. This procedure ought to access to the data in

the CNS holding the leaves. First part of the algorithm spanning from line 3 to 8

discriminates whether the father of the node we are analyzing is the root or not

since the root doesn’t have parents whose cost to add. If it is not the case of a

root (else from line 9 to 35) the algorithm discriminates whether that node has

to update a single CTN by asking whether nodes to update is empty or not (line

9).

Finally, if it must update the entire father CNS, the else from lines 25 to 32 is

taken. On account of the update in the accumulated cost it may occur that the

sorted vector of the father is inconsistent, therefore a sort routine is called (line

33). This routine may trigger further updates of the nodes in the tree when the

cost of the first element is different from the one before the sort was executed.
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Algorithm 6 Algorithm to update costs. → denotes access to a data of the
structure.

1: procedure update accumulated cost(new cost)
2: calling node→node vector.begin().ID .Must exists a way to access

node vector and its links
3: if father node 6= ∅ then
4: if father node→ID = root then
5: father node→children max cost ← new cost
6: father node→accumulated cost ← father node→cost +
7: father node→children max cost
8: else
9: if nodes to update 6= ∅ then

10: for all item ∈ nodes to update do
11: if item.father node = father node then
12: if item.ID 6= ∅ then
13: for all jt ∈ father node→node vector do
14: jt.children max cost ← new cost
15: jt.accumulated cost ← jt.parents max cost +
16: jt.cost + jt.children max cost
17: if item.cg to build node 6= ∅ then
18: jt.cg child vector.push back(item.cg to build node)
19: end if
20: end for
21: end if
22: end if
23: end for
24: else
25: for all jt ∈ father node→node vector do
26: if father node→ID = jt.ID then
27: jt.children max cost ← new cost
28: jt.accumulated cost ← jt.parents max cost + jt.cost +

jt.children max cost
29: end if
30: end for
31: end if
32: sort node vector(father node) .sort node vector of the father to

pick best node first
33: end if
34: end if

73



35: end procedure

3.3.4 From SUT description to CG

Bearing in mind that our final objective is to build a tree to apply BFS search we

need some algorithms to transforms the description of the SUT into such a tree.

The reason why a CG per se is not a proper graph to explore stems from when

we consider the nesting level of the SUT and the path building as a search. This

issue is portrayed in Figures 3.13 and 3.14.

Figure 3.13: Path building preserv-
ing the nesting level of the code. Figure 3.14: Path building as a

search tree.

In the representation of Figure 3.13, the nesting level of the original code is pre-

served so a path composition algorithm must pick two nodes of the same tree

level. Second representation on Figure 3.14 represents search tree where the pos-

sibility of picking each node from B2 is expanded in each B1 node. However

second one increases one level of nesting. Second representation is more suitable

to deliver a BFS search but we need a way to transform left one to right one

when building the tree structure. With respect to building a path tree we need

to solve to transform the SUT description into a CG and then to convert the CG

into a tree.

The first issue is addressed in this section. Before declaring the algorithm we

need to be familiar with the global variables used in Algorithm 7.

In the first place, cg root stands for the root of the CG. Secondly, NodeStructMap

consists of a hash table that will help us to build the links between the nodes in

different procedure calls. Hash tables last number map and prev last number map
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Algorithm 7 Global data structures used in Algorithm 8.

1: procedure BFS Global Data Types
2:

3: cg root ← CostNodeStruct(cost tree node(root, 0.0)) .Build the root of
the CG

4:

5: NodeStructMap .HashMapVector whose key is an unsigned integer and
the value a reference to CostNodeStruct;

6:

7: last number map, prev last number map .HashMap whose key is an
unsigned and the value a string

8: to paste node ← ∅ .Reference to CostNodeStruct
9:

10: father ref map ← ∅ .Hash table whose key in an unsigned and the value
is a references to cost tree node

11: end procedure

are maps that help processing the numeric part of the constraint ID so as to

infer nesting transition. To paste node is a reference holding an entire path tree

structure from a constraint ID starting 1 level below the root. The purpose of

this reference is to update the leaves of previous conditionals in level 1 of the

tree. Eventually, father ref map stores references of parents node that are used

to link the structure properly.

After initializing the input variables, Algorithm 8 implements a solution to trans-

form a SUT description to a CG. In other words, given a description like the one

displayed in Figure 3.13, Algorithm 8 transforms it to a structure similar to the

one displayed in Figure 3.14.

This procedure is called every time a new constraint is added. Push Back Constraint()

receives three input parameters, namely, branch pair containing the ID of the

branch along with its cost, transition which indicates whether the flow of the con-

straints goes down the graph, remains in the same level or goes up. New CID in root

indicates when a new conditional structure has been added to the root. This event

is relevant because all leaves of previous level will need to build this subgraph

when deploying BFS search. The first two variables defined in lines 3 and 4 are
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Algorithm 8 Algorithm to make build a CG from SUT constraints description.

1: procedure push back constraint(branch pair, nesting level, transition,
new CID in root)

2:

3: next level ← nesting level + 1
4: prev level ← nesting level - 1
5: last node ref ← ∅ .Static variable saving the last node added
6: last number ← get last number(branch pair.ID) .Gets the numerical

part of a constraint ID
7: different last number ← false
8: last number map[nesting level] ← last number
9:

10: if exists key in map(prev last number map, nesting level) or
11: last number map[nesting level] 6= prev last number map[nesting level]

then
12: different last number ← true
13: end if
14:

15: prev last number map[nesting level] ← last number
16:

17: if new conditional structure in root then
18: add to root ← false
19: if to paste node 6= ∅ then
20: join paste node to leaves(cg root)
21: end if
22: end if

employed to describe adjacent levels. Last node ref is a static variable saving

the reference of the last node added. Last number stores the numeric part of

the constraint ID e.g., 1.1.2 from the constraint ID B1.1.2. Different last number

indicates whether last number e.g., 2 in previous example, has changed to detect

a transition. Finally, last number map and prev last number map are hash tables

used to infer these shifts in the numeration. This is done in decision at line 12 in

Algorithm 8.
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Algorithm 9 Algorithm to paste new branch structure in root to previous leaves

1: procedure join paste node to leaves(refToCostNodeStruct block ref)
2: for all elem ∈ block ref→node vector do
3: temp block← to paste node→node vector.begin()→cg child vector.end()
4: if elem→has child cg() and
5: elem ← block ref→node vector.begin() then
6: for all child ref ∈ elem→cg child vector do
7: join paste node to leaves (child ref)
8: end for
9: else if not elem→has child cg() and block ref 6= temp block then

10: .actual assignment:
11: elem→cg child vector.push back(temp block)
12: end if
13: end for
14: end procedure

Figure 3.15: Example of
the resulting CG after
applying Algorithm 9.
B2 in the root is linked
to the leaves of previous
structure B1.

The next decisions declared in line 20 holds a statement

that calls to procedure join paste node- to leaves().

This procedure is in charge of linking, when we have

more than one constraint structure in the first level,

to the leaves so as to facilitate a consistent search.

Algorithm 9 describes a procedure in order to paste

to paste node to the leaves in the form of a reference

from which to build the proper subgraph. Such an al-

gorithm implements a standard preorder tree traverse

[96]. An example of the effect of this algorithm is dis-

played in Figure 3.15.

Resuming push back constraint algorithm we observe that the first decision de-

picted from line 24 until 45 implements the decisions when traverse goes down.

The decisions from line 24 to 39 discriminate when the assignment of the proper

links must be done including the cases where links must be established in the root

of the tree. After such a control flow in lines from 41 to 43 the proper father node

i.e., CTN, along with a reference is assigned in NodeStructMap so that we may

access later.

The next and last part of the algorithm implements actions when the transition

77



23: if transition = going down then
24: if new conditional structure in root then
25: father node ← to paste node
26: father ref ← to paste node→node vector.begin()
27: to paste node→node vector.begin()
28: →cg child vector.push back(NodeStructMap[1].end())
29: else if nesting level = 1 and add to root then
30: father node ← cg root
31: father ref ← cg root→node vector.begin()
32: cg root→node vector.begin()
33: →cg child vector.push back(NodeStructMap[1].end())
34: else if nesting level > 1 then
35: father node ← NodeStructMap[prev level].begin()
36: father ref ← last node it
37: NodeStructMap[nesting level].end()→father ref
38: →cg child vector.push back(NodeStructMap[nesting level].end())
39: end if
40:

41: NodeStructMap[nesting level].begin()→father node ← father node
42: NodeStructMap[nesting level].begin()→father ref ← father ref
43: father ref map[nesting level] ← father ref

goes down or same level. This is deployed in the branch between 44 and 58. A

new CNS is constructed from which proper father references are assigned. Last

decision depicted on line 60 removes the next level so as to keep a consistent Node-

StructMap when exploring the path tree supplied. Finally last node ref definition

in line 65 holds the record for the next hypothetical call to the procedure.

78



44: else if transition = same level or transition = going up then
45: if different last number then .New Branch sequence in the
46: same level e.g., NB1.1 .. B1.2
47: nodeStruct ← ∅ .new CostNodeStruct
48: nodeStruct→father node ← NodeStructMap[prev level].begin()
49: nodeStruct→father ref ← father ref map[nesting level]
50: NodeStructMap[nesting level].push back(nodeStruct)
51: nodeStruct→father ref ← father ref map[nesting level]
52: NodeStructMap[nesting level].push back(nodeStruct)
53: end if
54: father ref map[nesting level].cg child vector.push back
55: (NodeStructMap[nesting level].end())
56: end if
57:

58: if transition = going up and exists next level(NodeStructMap, next level)
then

59: NodeStructMap.clear(next level) .Erase key entry and all values
60: end if
61: last node ref ← NodeStructMap[nesting level].end()→push back
62: (cost tree node(branch pair.ID, branch pair.cost));
63: end procedure

3.3.5 From a CG to a BFS Tree

Figure 3.16: Tree structure
changing the original nest-
ing level where it’s easier to
apply BFS.

By definition, a tree is particular case of a graph

which doesn’t contain any cycles and each node

can’t have more than one father excluding the root

[96]. Our notion of a BFS consists of a stan-

dard tree where each node contains the necessary

cost data to successfully carry out a BFS search.

Once an initial CG has been built and subsequent

branches in level 1 references have been pasted to

the leaves, one more function must be executed.

A function must transform the plausible multiple

children of the CG into a BFS tree. This shift in

the structure is displayed in Figure 3.16 that would

be the result of applying such a transformation in Figure 3.15. Figure 3.16 repre-
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sents proper nesting level and a tree structure where BFS can be easily applied.

Algorithm 10 Algorithm that builds a subtree from the CG references

1: function build sub tree (itr ref, father cost, father ID, recursive call,
RefTo leave nodes to call cost update)

2: build children from cg← itr ref→node vector.begin().cg child vector 6= ∅
3: cg refs to build ← ∅ .Vector of references to CostNodeStruct
4: prio queue ← ∅ .Priority queue composed by

NodeFatherToPick structure. The criterion for the order of the queue is the
comparison of the accumulated cost

5: sub level created ← update nodes different level ← false
6: first queue item added ← false
7:

8: if build children from cg then
9: if itr ref→node vector.begin().apply construction with filter then

10: return father ptr ← build sub bfs tree with filter (itr ref,
11: father cost, father ID)
12: return return father ref;
13: end if
14: if recursive call > 0 then
15: for all node ∈ itr ref→node vector do
16: if node.ID = father ID then
17: cg refs to build ← node.cg child vector
18: break
19: end if
20: end for
21: else
22: cg refs to build ← itr ref→node vector.begin().cg child vector
23: end if

The Algorithm 10 implements the building function of nodes when BFS search

prescribes so. Build sub tree function returns a reference of the node from which

a subtree has been built. It takes 4 input parameters, namely, itr ref is a ref-

erence of the node that needs to be built, father cost is the accumulated cost

of the father node, father ID is the constraint ID of the father, recursive call is

a counter to know the recursion level, RefTo leave nodes to call cost update is a

reference to a priority queue that is later used to update the costs of the tree.
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With respect to local variables implemented from lines 2 to 4 we get that:

build children from cg is a boolean variable that corroborates that a children

needs to be built, cg refs to build is a vector of references of nodes that are going

to be copied for the building, prio queue is a priority queue that are going to be

later used to write nodes to update in a sensible order. After that some boolean

variables are defined to be later used. The decision between lines 8 and 12 calls

to build sub tree with filter() an equivalent function that we will investigate later.

Next control flow stated between lines 14 and 22 initializes the vector of refer-

ences to CG whose child are going to copied and explored.

24: for all cg children vector ref ∈ cg refs to build do
25: level d ← copy node (cg child ref) .Building new node
26: return father ref ← level d
27: if update nodes different level then
28: item ← prio queue.top()
29: level d→father node ← item.cost node ref;

The main loop, which is expanded from line 24 line 77, explores the children. In

this loop a copy of the node is created from the reference of the CG (line 25).

Conditional from line 27 to 49 is executed when a created node needs to be aware

of the fact it must update only specific nodes of its father. In this code section

the content of the prio queue is backed up in while loop in line 34, giving priority

to those parents with the greatest accumulated cost to keep consistency of the

accumulated cost along the tree. If there is no need to update nodes specific

nodes proper links are assigned in line 50 after the construction. Prio queue is

cleared before being written in line 52.
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30: for all node ∈ level d→node vector do
31: node.bfs father ← item.cost node ref
32: end for
33: first queue item added ← false
34: while prio queue 6= ∅ do
35: node update ← ∅
36: if not first queue item added then
37: node update ← {prio queue.top().cost node ref,
38: prio queue.top(), ID, ∅}
39: else
40: node update ← {prio queue.top().cost node ref,
41: prio queue.top(), ID, cg child ref}
42: end if
43: level d→nodes to update.push back(node update)
44: prio queue.pop()
45: first queue item added ← true
46: end while
47: update nodes different level ← false
48: assign child(level d→father node, level d, cg child ref)
49: else
50: assign father and children (level d, father ref)
51: end if
52: prio queue ← ∅

After a new node is created (level d) the children references are explored in loop

spanning from line 53 to 75. The first part of the loop between 55 and 61 is

dedicated to update the costs. Line 65 interrogates whether the iterating node

has a child in the CG but it does not have in the BFS tree. In such a case it needs

to be built by delivering a recursive call to another function. Line 74 adds the

new NodeFatherToPick created. A key data in the initialization is the presence

or absence of the father ID (∅ or jt.ID respectively). This data later is used to

tell whether all father nodes or some specific ones must be updated as the reader

may observe in line 12 in Algorithm 6.

Line 76 updates proper link. Finally, if the last node is a leaf (not sub level created)

this is added in the priority queue leave nodes to call cost update to launch the

update later. Should build sub tree is called the first time we need to build the
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53: for all node ∈ level d→node vector do
54: sub level create ← false .Updating costs
55: if cg child ref = cg refs to build.begin() then
56: node.parents max cost ← father cost
57: else
58: node.parents max cost← node.bb father→begin().parents max cost
59: + node.bfs father→node vector.front().cost
60: end if
61: node.accumulated cost ← node.cost + node.parents max cost
62: build children from cg ← node.cg child vector 6= ∅
63: no bfs children ← not node.has child bfs()
64: new node ← ∅ .new NodeFatherToPick created
65: if no bfs children and build children from cg then
66: sub level create ← update nodes different level ← true
67: father ref ← build sub tree (level d, .Recursive call
68: node.accumulated cost, node.ID, recursive call + 1)
69: new node ← {∅,
70: father ref→ node vector.begin().accumulated cost, father ref}
71: else
72: new node ← {jt.ID, jt.accumulated cost, level d}
73: end if
74: prio queue.push(new node)
75: end for
76: father ref ← level d
77: end for
78: end if
79:

80: if not sub level created then
81: leave nodes to call cost update→push(return father ref)
82: end if
83:

84: return return father ref
85:

86: end function

tree, it often occurs that we need to partially build the tree as a consequence

of the deletion of nodes. So for example, in Figure 3.12 assuming that π′ is

the same subpath and we build two paths π1 = {π′ ∪ {NB1.1.2, B1.8}} and

π2 = {π′ ∪ {NB1.1.2, NB1.8}} we would delete {NB1.1.2, B1.8, NB1.8} however
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we would like to form combinations with B1.1.2 for which we would need to build

again {B1.8, NB1.8}. In this case we would need to search for node B1.1.2 and

build from there on. For this reason build sub tree with filter is implemented.

Algorithm 11 Global variables used by build sub bfs tree with filter

1: node ID sought ← ∅
2: apply filter ← false

Before explaining build sub tree with filter it is worth presenting the two main

global variables used in this algorithm displayed in Algorithm 11. Node ID sought

is indeed the ID of the node after which to build a subtree. Apply filter will be

used to trigger building actions.

Algorithm 12 Algorithm that builds a subtree when the search has been par-
tially built but it needs additional building because of a deletion

1: function build sub bfs tree with filter(itr ref, father cost, father ID,
initialize data ← true, actual father ← ∅)

2: father ref ← itr ref
3: return father ref ← temp father ptr ← ∅
4: vector to iterate ← ∅ .Vector of references to CostNodeStruct
5: prio queue ← ∅ .same use build build sub tree

The header and implementation are very similar to build sub tree. The three first

parameters has the same meaning of build sub tree. Initialize data is initialized

by default to true and triggers action to initialize search data. Actual father is a

reference to CostNodeStruct. From the three local variables defined in the body

of the function vector to iterate consists of a vector of references to be explored

later. The first decision spanning from line 8 to 19 initializes search data when

appropriate or just initialized the the vector to iterate the constraint ID of the

father matches.

Likewise lines from 20 to 25 initializes search data. The main decision of the

algorithm is satisfied when there is a need to build by comparing with the CG

structure. This decision is implemented between lines 27 and 92. The main loop
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6: update nodes different level ← first queue item added
7: ← children explored recursively ← false
8: if initialize data then
9: node ID sought ← itr ptr←node vector.begin().cg child vector.end()

10: actual father ← father ref
11: itr ref← cg root→node vector.end().cg child vector.begin().cg child vector
12: vector to iterate ← itr ref←node vector.begin().cg child vector
13: else
14: for all it ∈ itr ref→node vector do
15: if it.ID = father ID then
16: vector to iterate → it.cg child vector
17: end if
18: end for
19: end if
20: if vector to iterate 6= ∅ then
21: vector to iterate ← itr ref→node vector.begin().cg child vector
22: end if
23: if not initialize data and actual father 6= ∅ then
24: father ref ← actual father
25: end if
26:

27: build children from cg← itr ref→node vector.begin().cg child vector 6= ∅
28: if build children from cg then
29: for all cg child ref ∈ vector to iterate do
30: children explored recursively ← true
31: if apply filter then
32: if cg child ref→node vector.begin().ID = node ID sought then
33: apply filter ← false
34: end if
35: build children from cg ← cg child ref→node vector.begin()
36: cg child vector 6= ∅
37: if temp father ref 6= ∅ then
38: father ref ← temp father ref
39: end if
40: children explored recursively ← true
41: end if
42: if not apply filter and not children explored recursively then
43: level d←copy node(cg child ref) .Actual construction
44: return father ref ← level d
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explore the children from line 29 to 94. The first decision from line 31 to 40 pre-

pares the links and variables when the sought ID is found in line 32. The actual

construction is delivered in line 42. The conditional updates nodes different level

and the rest of the algorithm is equivalent to build sub tree from line 44 to the end.

45: if update nodes different level then
46: item ← prio queue.top();
47: level d←father node ← item.cost node ref
48: for all it ∈ level d→node vector do
49: it.bfs father ← item.cost node ref
50: end for
51: first queue item added ← false
52: while prio queue 6= ∅ do
53: if not first queue item added then
54: level d→nodes to update.push back({
55: prio queue.top().cost node ref,
56: prio queue.top.ID, ∅ })
57: else
58: level d→nodes to update.push back({
59: prio queue.top().cost node ref,
60: prio queue.top.ID, cg child ref})
61: end if
62: prio queue.pop() .Remove last element
63: first queue item added ← true
64: end while
65: assign bfs child(father ref, level d, cg child ref)
66: else
67: assign father and children (level d, father ref,
68: father ID)
69: end if
70: prio queue ← ∅
71: for all jt ∈ level d→node vector do
72: if cg child ref = vector to iterate.begin() then
73: jt.parents max cost = father cost
74: else
75: jt.parents max cost =
76: jt.bfs father→node vector.begin().parents max cost
77: + jt.bfs father→node vector.begin().cost
78: end if
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79: jt.accumulated cost ← jt.cost + jt.parents max cost
80: build children from cg ← jt.cg child vector 6= ∅
81: if build children from cg then
82: father ref ← build sub bfs tree with filter (
83: level d, jt.accumulated cost, jt.ID, false, ∅)
84: update nodes different level ← true
85: prio queue.push(∅,
86: father ref→node vector.begin().accumulated cost,
87: father ref)
88: else
89:

90: prio queue.push(jt.ID , jt. accumulated cost, level d)
91: end if
92: end for
93: father ref ← level d
94: end if
95: end for
96: end if
97: if initialize data then
98: apply filter ← false;
99: leave nodes to call cost update.push(return father ref)
100: end if
101: return return father ref
102: end function
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3.3.6 Path Composition

So far we have described algorithms advocated to give a consistent cost bound

as well as how build CG and BFS tree. The last bit to build encoded constraint

paths is to declare our BFS algorithm that will compose the paths leading to the

greatest cost. Such an algorithm is described in Algorithm 13.

Algorithm 13 Algorithm that builds a search tree from CG and run a BFS. It
returns a vector with all paths after running this search

1: function Best First Search Search(limit ← 20000)
2:

3: bfs graph root ← copy node (cg root);
4: level 1← copy node (cg root→node vector.begin().cg child vector.end())
5: assign father and children (level 1, bfs graph) .Assign proper references
6: itr ref ← bfs graph.node vector.begin().bfs child
7: has potential bfs children ← false
8: path vector ← ∅ .vector containing the paths computed
9: leave nodes to call cost update ← ∅ .queue of references to

CostNodeStruct

Firstly, this algorithm accepts a limit of the path vector in case a complete search

could not be achieved. The limit by default is set to 20000. There is no ratio-

nale behind this decision other that a “finger in the air” number that emerged

during experimentation. This is approximately the numbers of paths that could

be checked in two hours. Regarding the body of the algorithm the first 3 state-

ments between line 3 and 5 build a copy of the CG graph root into a BFS tree

root (bfs graph root) starting from the root and building the first level. Itr ref is

the key reference that is going to be used to explore the constructed path tree.

After that, in lines 7 and 8, has potential bfs children boolean variable is defined

to indicate whether a node must build some children from the data of the CG.

Path vector in line 8 is a vector containing all paths to be constructed. In line

9 leave nodes to call cost update consists of a queue of nodes that to update the

costs of the entire tree. Such a variable also appears in former algorithms.
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10:

11: do
12: is bfs leaf ← has potential bfs children ← false
13: itr ref ← bfs graph.node vector.begin().bfs child
14:

15: if itr ref 6= ∅ or itr ref→node vector 6= ∅ then
16: finished bfs search ← true
17: bfs graph ← ∅
18: else
19: finished bfs search ← false
20: end if
21:

22: path ← ∅
23:

24: while not is bfs leaf and limit > 0 and not finished bfs search do
25:

26: if itr ref→node vector 6= ∅ then
27: is bfs leaf ← has potential bfs children ← true
28: else
29: has potential bfs children ← not itr ref→node vector.begin().
30: cg child vector.empty()
31: end if
32: .

⊕
denotes concatenation

33: path ← path
⊕

itr ref→node vector.begin().ID
34:

35: if is bfs leaf and not has potential bfs children then
36: if not itr ref→node vector 6= ∅ then
37: .last costs statements
38: itr ref→delete node()
39: end if

Inside the main do while, spanning from line 11 to 58, we have some others ini-

tialization including is bfs leave in charge of telling when the node explored is a

leaf and thus a necessary condition to build new nodes would be met. The con-

ditional structure from line 15 to 20 determines when the BFS is concluded and

if so, the structure of the root is cleared. Path in line 22 is an important string

variable that will store each constraint ID and thus conforming the encoded path.
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40: else
41: if not itr ref→node vector.begin().has child bfs()
42: and has potential bfs children then
43: build sub bfs tree (itr ref, itr ref→node vector.begin().cost,
44: itr ref→node vector.begin().ID,
45: ref to(leave nodes to call cost update))
46:

47: Update Cost From Leaves (ref to(leave nodes to call cost update))
48: end if
49: if itr ref 6= ∅ then
50: itr ref ← itr ref→node vector.begin().bfs child
51: end if
52: end if
53: end while
54: if path 6= ∅ then
55: path vector.push back(path)
56: limit ← limit - 1;
57: end if
58: while limit > 0 and not finished bfs search
59:

60: return path vector
61:

62: end function

The most relevant loop within Algorithm 13 is the while loop deployed between

line 24 and 53. The path variable in line 33 adds a new constraint ID in each

iteration. The two main decisions in such a loop are defined in decisions 35 and

40. First one is able to identify when a leaf of a tree is reached. That leaf node is

deleted from the tree and thus cost must be updated. The latter is done in delete()

procedure. The if structure from line 41 to 48 takes over when BFS search needs

to build a new node. As explained earlier build sub bb tree function assigns mem-

ory and constructs subsequent nodes. Next procedure Update Cost From Leaves

delivers proper calling from the leaf nodes to keep consistency of the cost in the

tree. This procedure will be explained later. The reference itr ref is updated to

the next element to explore in line 48. Lastly, the path is added to the path vector

in line 55.
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Algorithm 14 Algorithm to trigger the costs update in the tree

1: procedure Update Cost From Leaves (leave nodes to call cost update
.reference input data)

2: while leave nodes to call cost update 6= ∅ do
3: if not leave nodes to call cost update.begin()→node vector.begin()
4: .has child bfs() then
5: .Start with the node with the greatest accumulated cost
6: leave cost ← leave nodes to call cost update.node vector.begin()
7: leave nodes to call cost update.begin()→update accumulated cost
8: (leave cost)
9: end if

10: leave nodes to call cost update.pop()
11: end while
12: end procedure

Lastly, Update Cost From Leaves in Algorithm 14 just backs up the queue and

call update accumulated cost from leaves so as modify the cost of the entire tree

and thus undertake a consistent search.

So far the most relevant algorithms of the CBTG of GenI are outlined. Next,

SBTG and RTG implementation are addressed.

3.3.7 Search-Based and Random Test Generator

The objective of the SBTG implementation is to reproduce Law and Bate imple-

mentation [18] as it represents the state-of-the art in SBT for MBPTA. In this

work they implemented the Simulated Annealing and focus on those fitness func-

tions that target execution time. Nonetheless, the actual Simulated Annealing

algorithm version was taken from [27, Figure 4.5] as the branches implemented

in this version enable us to discern whether a solution is an actual improvement,

whether it is accepted randomly or if it is rejected. This data is quite relevant

for the verification of the algorithm.

Because of our assumption of the absence of the instrumentation tool only two

fitness functions are implementable from Law and Bate work [18]. The first one
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is FitnessET is advocated to identify the largest execution times:

FitnessET =
Current T ime− Previous T ime− 1

Previous T ime
(3.4)

Each new observed execution time (Current T ime) is compared to Previous T ime,

which in turn is defined as the observed HWM [18] up to that point in the ex-

ecution. Current T ime is indeed the observed execution time in the concrete

iteration where the fitness function is called. The function is normalized by us-

ing the observed HWM. In summary, this heuristic is advocated to find greater

execution time each time. Because of the arithmetics of this fitness function, a

negative feedback is returned in the event of Previous T ime ≥ Current T ime

and thus that solution would be either accepted randomly or rejected. FitnessET

gave good results despite its simplicity [18].

The other optimization function named Unique Execution Times targets trigger-

ing different paths by observing changes in the execution time. Unfortunately

this function did not perform well in the case studies presented in [18] and that’s

why it is omitted.

Temperature of the Simulated Annealing ranges from [0.1, 0.01]. These and the

rest of Simulated Annealing data are decided following Law and Bate prescrip-

tions [18]. Furthermore, the cooling temperature function is described in Al-

gorithm 15 (implemented from the specification of the paper [18] and internal

communications). This function records the temperature every time there is an

improvement in the fitness function i.e., first decision. In the event of rejecting

more than 200 test vectors the temperature is reheated so as to avoid a premature

stagnation of the search [18] . After that, the new cooled temperature spanning

from line 8 to 14 is calculated by using a linear equation. The slope is defined

in line 11 and the intercept in the next line. The slope takes into account the

maximum number of iterations of the SA that is equivalent to the number of test

vectors generated. Such a limit is set to 10000 which allegedly suffices to analyze

jet engine controller software [18]. Finally, in reference to the stop criterion the

Simulated Annealing stops if more than 1000 solutions are rejected, the temper-
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ature is less than 0.01 or watchdog timer alerts of spending more than 12 hours

of execution.

Algorithm 15 Algorithm to trigger the costs update in the tree

1: function Calculate New Temperature(iteration, temperature,
no solutions accepted)

2: if no solutions accepted = 0 then
3: last temperature ← temperature .static variable
4: end if
5:

6: if no solutions accepted ≥ 200 then
7: temperature ← last temperature
8: else
9: .maximum test vectors generated

10: maximum number iterations ← 10000
11: m ← -0.09 / (maximum number iteration × 0.9999)
12: n ← 0.1001
13: temperature ← iteration × m + n;
14: end if
15: return temperature;
16: end function

Eventually, RTG is included and it has a trivial implementation. The purpose

of this test generator is to have a random basis against which to compare the

results to test statistical significance. Both SBTG and RTG were implemented

pseudorandomly. This means that both of these TG algorithms are deterministic

in their output but they look random [54]. The different output in each trial

stems from using a deterministic random value test generator that takes differ-

ent seeds as input. The motivation of this decision is to fulfil repeatability and

reproducibility requirements demanded by certification authorities [19].
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3.4 Evaluation and Case Studies

To reiterate, the purpose of the evaluation described is to assess Contribution 5

from Section 2.5. The empirical evaluation of the test generators implemented in

GenI encompasses different research questions. Research questions 1 and 3 are

mainly concerned with the central hypothesis of this work.

• Research Question 1 - Effect of the test generators on the HWM.

What is the test generation method that achieves the global HWM? This is

measured by comparing the HWMs as this data is instrumental for MBTA.

This data is measured in clock cycles in the target architecture as this

measure is very accurate and best records the effect under study. In the

next equation, j and i denote different test generators.

Relative HWM(%) = 100× HWMi −HWMj

HWMi

; ∀j 6= i

• Research Question 2 - Effect of the test generators on the execu-

tion time distribution. Based upon the resulting execution time distri-

butions, which test generator provide significantly different results? This is

measured by the statistical tests described below.

• Research Question 3 - Effect of the test generators on the wall

time. When the HWM is observed during test generators execution? This

metric considers the time taken for test generation and initialization of

the test vector on-target, the execution on the SUT and the collection of

execution time. Despite the fact that results are contributed by these three

factors, this metric is advocated to measure the effect of the test generation

time since the rest is virtually the same as they are independent modules.

• Research Question 4 - Effect of the test generators on the effi-

ciency (η) which is deemed the number of test vectors during the wall

time. How many test vectors are generated per time unit? This metric is

advocated to measure how quick each test generator produce test vectors.

Because the on-target testing time is similar across different test generator

this difference will come from the test generation time mainly.
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η =
#Test V ectors

Wall T ime
=

#Execution T imes

Wall T ime

Relative Efficiency(%) = η∆ = 100× ηi − ηj
ηi

; ∀j 6= i

• Research Question 5 - Effect of the test generators on RAM mem-

ory usage. How much RAM memory each test generator uses? The aim of

this metric is to observe the differences of the static processing of the differ-

ent test generators since CBTG delivers a greater static analysis in contrast

to SBTG or RTG each time. As part of the framework, the Working Set

Size of the test generator process is sampled every time a test vector was

generated. A working set of a process is “the set of pages in the virtual ad-

dress space of the process that are currently resident in physical memory”

[97]. The sampled data is expressed in bytes [98] so it will be converted

to megabytes in the results. Relative RAM use has a similar definition to

HWM.

• Research Question 6 - Effects of the slicing of the CBTG on the

run-time. What is the difference in the run-time between running a pro-

gram with and without slicing? The run-time of the application of the

BFS is measured in the host computer in seconds as this metric effectively

records the intended effect in the performance. Again, 100 run-times were

collected to have a good statistical power. The host computer is equipped

with an Intel Core i5-7200U processor running at 2.5GHz. The calculation

of the percentage of slice removal is calculated comparing the size of the list

of constraints and definitions resulting from the program with and without

slicing. This comparison is advocated to show the difference in the slicing

effect.

• Research Question 7 - Accuracy of the cost in the resulting ex-

ecution time. How representative is the derived cost w.r.t the actual

execution time? Even though, experiments in Subsection 3.2.4 concluded

that the cost is not accurate, some data about a larger scale application of
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the cost and the actual execution time is shown. This metric is designed

to assess our contribution on BFS as a way to build paths. This approach

uses the notion of cost.

When the resulting evidence is collected, it is normally checked using statistical

significance tests so as to enhance the confidence of the conclusions. These tests

are applied evaluating the empirical data and they are non-parametric. The

actual reason for using them was because they were used by Law and Bate [18]

in a similar evaluation.

1. Friedmann test as described in Subsection 3.2.4.

2. Wilcoxon-Nemenyi-McDonald-Thompson Test (WNMT) compares

every possible combination of the results of the different methods to figure

out where the differences come from.

It is worthy of mention that these tests require the same number of observations

as input. This is certainly an issue bearing in mind the idiosyncrasies of each test

generator. For these reasons these tests were applied only from the first observa-

tion until minimum size of the sample of each testing session.

To recap, the tests generators employed are the ones implemented in GenI.

• Constraint-Based Test Generator implementing the program slicing,

BFS algorithm to build paths and a constraint solver [90] to solve the path

constraints. This method represents our contribution.

• Search-Based Test Generator implementing the Simulated Annealing

described in the former section whose fitness function maximizes the exe-

cution time. This method is advocated to be representative of the state-of-

the-art in MBTA [18].

• Random Test Generator which aims for providing random evidence

against which to verify the significance of the results.
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For the sake of confidence each test session was repeated 15 times changing the

seeds. SBTG was provided with the stop criterion described above for a fair com-

parison. The time spent at the test generation for the test generation is set by the

run time of the SBTG. Nonetheless, CBTG automatically stops if path coverage

is achieved or a limit of 20000 paths is surpassed. This limit is set taking into

accounts that the program may run out of memory as a consequence of paths

explosion. Sometimes I am using the term trial to refer to a test session.

Unless another specification is stated, the hardware platform and drivers library

are the same one used in Subsection 3.2.4. The reason for choosing this setting

is their availability of the drivers for our Ada-Run Time as well the ARM archi-

tecture is often used in real-time embedded systems.

Eventually, the current section shows four case studies by using four benchmarks.

They aim to provide examples of Real-Time software and have different charac-

teristics such as the domain they are applied or their inner software structure.

More details about these programs can be found in each individual case study.

(a) The first one consists of the pathological example for SBT as displayed in

Listing 3.1.

(b) Second one consists of a more complex example extracted from an Spark

book [15] and implements an autopilot navigation system. The aim of

selecting this example is to have a representative Real-Time benchmark

employing a variety of programming constructs.

(c) Third example, Certyflie [99] consists of a stabilizer control loop function

implementing a PID control system. Unlike, autopilot, this is part of soft-

ware that has actually been applied for a drone control. Again, the aim is

to have another example of Real-Time benchmark implementing a control

system for an aerospace system.

(d) Fourth example, RC Car [100] benchmark implements a controller of a radio

controlled car. The purpose of this benchmark is to have an example from

a car, another type of vehicle using Real-Time software.

97



It is worth remembering that apart from the features discussed the above, all

these benchmarks have constraints that can be collected statically and path cov-

erage can be achieved. In the next chapter, we will be looking at relaxing these

assumptions. The latest subsection is concerned with discussing the threats to

validity.

3.4.1 Needle in a Haystack

Given that the peculiarities of this benchmark were laid out at the beginning of

this chapter, the current subsection is restricted to display and discuss the results

of the GenI framework.

Figure 3.17: Resulting HWM boxplot. Figure 3.18: Test vectors per second
generated in each test generator.

Figure 3.17 displays the HWM in boxplot format of each test generator as is ad-

vocated to respond research question 1. The results gave two execution times 580

and 60 (89.65% difference) corresponding to the only two paths this benchmark

contains. Since there are only two paths the HWM could be the WCET or be

really close to it. Only CBTG is able to hit the relevant branch and thus to trig-

ger the HWM of all test generators. By contrast, the SBTG does not hit main

branch in all of its test sessions which is aligned with the reported limitation

of SBT [29]. In reference to research question 3 about the efficiency, which is

illustrated in Figure 3.18, as it could be expected CBTG provides the lowest one
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in comparison to SBTG (around −5.65 times) and RTG. RTG exhibits the best

efficiency given the simplicity of its code but such an efficiency is not that distant

from SBTG.

Figure 3.19: Chronogram of the analysis of Listing 3.1. WT denotes Wall Time
measured in seconds.

Figure 3.20: Boxplot of the observed largest execution times of the chronogram.
Numbers in the parenthesis stand for the number of observations in each boxplot.

99



Figure 3.19 displays a chronogram, whose purpose is to depict the results of

research question 3. Each symbol denotes the HWM in each trial by each test

generator. The horizontal grey line represents the absolute HWM or the greatest

observed execution time of all trials. Results show that although RTG and SBTG

hit their HWM very soon they are very far from the observed HWM.

Alongside the chronogram, Figure 3.20 depicts the wall time of when the HWM

was hit (on the left) and when the rest of largest execution time of a specific ses-

sion was hit (on the right). Because the HWM data unveiled by the Constraint

method and the other two generators differs so much a statistical comparison

of wall times would not make much sense an that is why we decided to skip it.

Regarding HWM and efficiency given the number of execution time data as a

result of the simplicity of the benchmark we decided not to apply any further

statistical tests. Admittedly, this case study was rather simple but shows some

key differences amongst different test generators. However, the static processing

of this benchmark is trivial.

3.4.2 Autopilot Case Study

This case study employs an open-source benchmark implementing a navigation

system of a plane where the input is provided by some sensors in the cockpit.

The simulated output are the actuators of the ailerons of the airplane. The orig-

inal benchmark was modified to meet our needs regarding the compatibility of

the static analyzer as well as focusing on those parts that may be of interest

for a MBTA case study. The original root functions call two control procedures,

namely, one dedicated to control the altitude and the other dedicated to control

the heading. After inspecting visually the structure of the altitude control pro-

cedure, it was deemed to be more interesting for our analysis and that’s why it

was sliced for our benchmark. This resulting benchmark holds an array of states

to deliver a control function.

To make the SUT controllable the writing of this array was enabled from the
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test harness. Unfortunately, after all these changes the benchmark was still not

fit for timing analysis after observing its timing profile. The main reason is that

the cardinality of the set of execution times was really low regardless of the test

generator used. To solve this issue an additional branch triggering a loop was

implemented. The satisfaction of this predicate tries to simulate another time

of fault accommodation code decision when comparing the difference of three

input signals measuring the same magnitude. This modification was inspired

on Triple Modular Redundancy software management often found in avionics

systems [94]. After this change the resulting execution time profile was more

interesting whereby a timing analysis case study was performed. These signals

were added as input data.

In a nutshell this benchmark has 1 array composed by 10 integers, 8 integers

variables and 2 enumerates. GenI tool reported that this benchmark has 4052

paths from which only 293 are feasible (7.231 %). This latter data could only be

reported thanks to the CBTG. In reference to the results these are displayed next.

Figure 3.21: HWM Boxplot Compari-
son

Figure 3.22: Comparison of the differ-
ence in HWM distribution of previous
plot. Green plot indicates statistical
significance from the WNMT test and
red color the contrary.

Figure 3.21 shows a boxplot of the HWM of each trial and each test generator. It
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is dedicated to show evidence for research question 1. This figure portrays that

CBTG’s HWM are pretty much the same and hit the absolute HWM. SBTG ex-

hibits more deviated data than CBTG but closer to the HWM than RTG. RTG

offers some dispersed execution times. On the right side, Figure 3.22 displays the

relative and the statistical significance tests w.r.t the HWM distributions show-

ing that both CBTG and SBTG are statistically significant with respect RTG

techniques. CBTG vs SBTG results were not claimed to be significant due to

the fact that most HWM of the SBTG are the absolute HWM. On average, the

difference across the unveiled HWM is close to 0%.

Figure 3.23: HWM Comparison Figure 3.24: Friedmann and WNMT
Test results.

Figure 3.23 shows the exact comparison of HWM across different trials and test

generators. CBTG method always beats RTG, it beats SBTG in 6 out 15 cases

(40%) and draws in the rest. Likewise, SBTG outperforms RTG in 10 out 15

cases (66.67%), it draws in 4 and is underperformed in one single case.

On the right side, in Figure 3.24 displays the significance tests statistical tests

applied to initial execution times. This graph targets research question 2. The

Friedmann test contends that the three test generators results are different. By

analyzing pair-wise distributions the vast majority are different between each

other (3 last columns on the right). CBTG vs RTG and CBTG vs SBTG are

always concluded to be different methods. SBTG vs RTG are different in 9 cases
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(60%) and the same in the rest. This could be explained since SA behaves “more

randomly” in the beginning due to the big temperature.

Figure 3.25: Chronogram. Wall time expressed in seconds. Stripped vertical lines
denote the first observations of the largest execution times of each test generator.

Figure 3.25 displays a chronogram of the autopilot benchmark where the prompt-

ness of reaching the largest execution times of each test generator is exhibited.

CBTG collects the HWM the first one in around 3 seconds and never underesti-

mates this data. The second performing best is SBTG whose earliest collection

of HWM is after 12 minutes and 30 seconds approximately. Lastly, RTG never

actually hits the HWM.

Aside chronogram, boxplots in Figure 3.26 shows when the HWM is reached on

the left and the rest of the largest execution times on the right. All these graphs

show evidence for research question 3. As results testify, CBT approach rapidly

reaches the HWM in contrast to SBTG. Additionally, SBTG only hits the HWM

in 9 cases. In most cases, it takes on average around 3800 seconds (around 1

hour and 3 minutes). As unveiled in the chronogram, RTG never hits the HWM

but the average of hitting its own largest execution time is close to 2000 seconds

(around 33 minutes).

Because the described statistical tests require the same number of samples, this
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Figure 3.26: Boxplot of the observed largest execution times of the chronogram.
Numbers in the parenthesis stand for the number of observations in each boxplot.

Figure 3.27: WNMT test applied to the wall time distributions.

separation is problematic for these tests. Despite so, integrating the 15 data of

each trial WNMT test was applied and is depicted in Figure 3.27. The wall time

of CBTG is always significant whereas the SBTG vs RTG is not. This difference

between CBTG and SBTG is on average close to −500 times different. This

difference is even greater (around −750 times between CBTG and RTG. By con-

trast, the difference between SBTG and RTG is close to 0% in the scale of the

boxplot

When it comes to the efficiency, which is tackled in research question 4, Fig-

ure 3.28 exhibits the test vector generated per time unit. As expected, CBTG
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Figure 3.28: Efficiency results.

Figure 3.29: Comparison of the differ-
ence in efficiency distribution of previ-
ous plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

gives a low efficiency in comparison to SBTG and RTG. RTG results in the best

performance which is not surprising. In spite of the fact that SBTG and RTG

may have a similar efficiency in Figure 3.28, all methods show statistical signifi-

cance in every combination according to the results displayed in Figure 3.29. On

average, CBTG is −3.75 times smaller than RTG and around −3.3 times lower

than SBTG. Conversely, the efficiency between RTG and SBTG is close to 0%

with the scale of Figure 3.29.

The graphs depicted in Figures 3.30 and 3.31 display the data of the RAM us-

age. They aim to respond to research question 5. As expected, CBTG is more

memory-consuming than the rest of test generators. In particular, it uses around

65% more memory than RTG and 55% more than SBTG. This is not surprising

considering the amount of static processing both for path analysis and constraint

solver. Again given its simplicity memory footprint RTG is the lowest one fol-

lowed relatively closed by SBTG. All tests conclude that RAM usage are signifi-

cant across test generators as reported in Figure 3.31.

When applying the program slicing the sliced version was 7% smaller than the
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Figure 3.30: RAM usage.

Figure 3.31: Comparison of the differ-
ence in RAM usage distribution of pre-
vious plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

Figure 3.32: Slicing effect in the run-time of the CBTG

default one. The resulting execution time after running the described BFS is

displayed in Figure 3.32, which aims for replying research question 6. On aver-

age, the difference of the execution time was around 55% smaller in the sliced

version. Friedmann tests showed statistical significance for α = 0.05. It is worth

remembering here that our version of BFS performs a full of exploration of the
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paths, unlike other versions of the same algorithm which stops after finding an

optimal solution traversing one path.

Figure 3.33: Cost and Execution Time. Each colour and shape denote a different
trial.

Finally, the results of the cost and execution time, which are mentioned in re-

search question 7, are displayed in Figure 3.33. This graph sets out to portray

the degree of accuracy of the estimated cost w.r.t the actual execution time. A

strongly correlated function of the cost would display a monotonically decreasing

function with no overlap.

In this case the computed cost data displays some overlap in the middle area

and, based on the data, this benchmark does not seem to offer a large number of

different execution times. To evaluate the correlation more accurately we applied

the Pearson correlation coefficient whose values are between −1 and 1. These

values indicate, -1 anti-correlation, 0 no correlation and 1 correlation.

In the case of the Figure 3.33, the value of this coefficient is only 0.17. Therefore,

it is not safe conclude that the cost function accurately estimates the execution
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time.

3.4.3 Certyflie

The third case study examines a flight controller from a software called Certyflie

[99] which is applied actually to the drone on Figure 3.34. This software was

picked as it is a representative benchmark for a flight control software and its

technical aspects such as board libraries and programming language was compat-

ible with GenI. Despite so, some similar changes to previous case study were made

to the software to achieve full compatibility with our framework and contribute

to the validity of the experiment.

Figure 3.34: Crazyflie drone running Certyflie software. Source [101]

The SUT consists of PID (Proportional Integral Derivate) controller with 4 in-

puts: Pitch, Roll, Yaw and Thrust [94] to control the flight. GenI reported that

this benchmark 2594 paths from which only 197 were feasible (7.59%). The reader

can map the rest of the graphs presented in this and the others case studies to

research questions from the mapping in previous case study.

108



Figure 3.35: HWM Boxplot Compari-
son

Figure 3.36: Comparison of the differ-
ence in HWM distribution of previous
plot. Green plot indicates statistical
significance from the WNMT test and
red color the contrary.

The firsts results are displayed in Figures 3.35 and 3.36. Figure 3.35 illustrates

how the HWM is only achieved by the RTG which shows a similar performance

to the SBTG. This idea is later confirmed by the WNMT test showing no sta-

tistical significance between SBTG and RTG. By contrast, CBTG did not spot

the HWM. In spite of the fact that the error of the difference in the HWMs is

relatively small according to Figure 3.36 the statistical test argues that there is

a significant difference between the CBTG and the other two.

After inspecting the code along with the execution time results we drew the con-

clusion that the reason why CBTG did not perform as well as the other two

generators is because there was some arithmetic code for the output of the mo-

tors to which mere coverage test vector did not suffice to unveil its local HWM.

By contrast, SBTG and RTG generated more convenient test vectors which in

turn generated operands that maximized the execution time of these code more

successfully.
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Figure 3.37: HWM Comparison

Figure 3.38: Friedmann and WNMT
Test results.

Figure 3.37 displays the data comparison of the HWM where only SBTG and

RTG methods unveiled some different HWMs. Statistical tests on Figure 3.38

concludes that the three methods were different according the Friedmann test.

WNMT test contends that the CBTG results are normally significant different

for RTG and SBTG. However it also estimates that in 10 out 15 cases results of

the SBTG and RTG are similar and thus not statistically significant.

Figure 3.39: Chronogram. Wall time expressed in seconds. Stripped vertical lines
denote the first observations of the largest execution times of each test generator.
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Figure 3.40: WNMT test applied to the wall time distributions

Another interesting feature of this case study is the result of the wall time, which

are depicted on Figures 3.39 and 3.40. The HWM unveiled only for the RTG is

attained at the latest time, around 4 hours and 24 minutes. The local HWM of

the SBTG was only 0.0358% smaller than the one unveiled by the RTG and it

was spotted around 3 hours and 16 minutes. The local HWM was spotted around

4 seconds and is 0.39% smaller than the global HWM.

Figure 3.41: Efficiency results.

Figure 3.42: Comparison of the differ-
ence in efficiency distribution of previ-
ous plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

111



Figures 3.41 and 3.42 are concerned with showing data for the efficiency. In

summary, the efficiency of the SBTG and RTG are similar to the extent of not

showing statistical significance on Figure 3.42. As expected, CBTG exhibits a

significantly worse efficiency with respect the other two TGs but this difference is

smaller in comparison to the previous case study. An explanation for this observa-

tion could be the computational load as a result of the constraints and input data.

Figure 3.43: RAM usage.

Figure 3.44: Comparison of the differ-
ence in RAM usage distribution of pre-
vious plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

Figures 3.43 and 3.44 displays data of the wall time. The results are as expected.

CBTG shows a statistically significant usage of RAM memory on account the

static analysis in place whereas SBTG and RTG show an equivalent consumption

which is not concluded to be statistically significant.
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Figure 3.45: Slicing effect in the run-time of the CBTG.

Figure 3.45 displays the effect of the slicing on the run time. In this case, the

effect of the slicing removed around 22% which statements that had to do with

code interfacing with hardware units. It had an impact of around 62% in the run-

time. Friedmann test concluded that such a difference was statistically significant.

Figure 3.46 depicts the data of the cost and actual execution time. This time the

first and greatest cost did not match the local HWM achieved by the TG. Data

shows how the same cost triggered different execution time. However there is a

slight trend of proportionality between the cost and the execution time.

Pearson correlation coefficient returned a value of 0.28 which concludes there is

a poor correlation in the data.
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Figure 3.46: Cost and Execution Time. Each colour and shape denote a different
trial.

3.4.4 RC Car

The fourth and last example of this chapter tackles a Real-Time software applied

to control a Radio Controlled (RC) car which is depicted on Figure 3.47. The

reason for choosing this software is to evaluate a representative Real-Time soft-

ware applied in a car vehicle.

Figure 3.47: RC Car running Robotics With Ada Software. Source [102].
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This vehicle implemented a Robotics With Ada library which can be found at

[100]. From this software, we analyzed a control function which accepts control

commands, it checks for a collision detection and performs the appropriate control

actions. This benchmark contained 6 input data from which 5 were enumerates

indicating states and 1 integer indicating the speed. GenI reported this bench-

mark contained 109 paths from which 21 were feasible (19.26%).

Figure 3.48: HWM Boxplot Compari-
son

Figure 3.49: Comparison of the differ-
ence in HWM distribution of previous
plot. Green plot indicates statistical
significance from the WNMT test and
red color the contrary.

When it comes to the HWM results, these are depicted in Figures 3.48, 3.49 and

3.50. The HWM spotted is the same in all TGs and cases rendering no statisti-

cal significance as a consequence according to the statistical results in Figure 3.49.

Perhaps the most interesting results are displayed in Figure 3.51 where the meth-

ods are claimed to be significantly different in 9 out 15 cases according to Fried-

mann test. However, CBTG is mostly claimed not to be significantly different to

RTG in 13 out 15 trials and similarly to SBTG in 11 cases. Similarly, SBTG and

RTG are only concluded to give significantly different results in 7 cases.
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Figure 3.50: HWM Comparison

Figure 3.51: Friedmann and WNMT
Test results.

Figure 3.52: Chronogram. Wall time expressed in seconds. Stripped vertical lines
denote the first observations of the largest execution times of each test generator.

Regarding the wall time, results are depicted in the Figure 3.52, where the first

HWM is spotted by the CBTG at only 2.38 seconds followed by SBTG which

spotted it at 4.52 in the best case. RTG took a minute and 7 seconds to achieve

the same results. The resulting distributions of the wall time are displayed in

Figure 3.53. Results show how CBTG performed the best. The wall times gener-

ated by the CBTG were concluded to be statistically significant by the WNMT
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Figure 3.53: Wall time distribution. Figure 3.54: WNMT Test results to
wall time.

test. However, the same data was not claimed to be significantly different for the

SBTG and RTG.

Figure 3.55: Efficiency results.

Figure 3.56: Comparison of the differ-
ence in efficiency distribution of previ-
ous plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

Results of the efficiency are depicted in Figures 3.55 and 3.56. CBTG showed a

significantly worse efficiency - around 2 times worse - than SBTG and RTG. By

contrast, SBTG and RTG which exhibited a similar efficiency with around −7%

difference.
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Figure 3.57: RAM usage.

Figure 3.58: Comparison of the differ-
ence in RAM usage distribution of pre-
vious plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

Figures 3.57 and 3.58 depicts the RAM memory usage. Once more, CBTG em-

ployed the greatest amount of RAM memory because of the static analysis. How-

ever this time, SBTG and RTG showed a significantly different memory usage.

We believe the underlying motivation for this result was some sort of inactivation

to free the space of the dynamic memory as SBTG and RTG may have had some

memory dependencies between their successive execution.
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Figure 3.59: Slicing effect in the run-time of the CBTG

Figure 3.60 depicts the results of the slicing. This time only 5.8% of the slicing was

removed which incurred in reducing the execution time around a 33%. Friedmann

test concluded that this reduction was statistically significant.

Figure 3.60: Cost and Execution Time. Each colour and shape denote a different
trial.
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Lastly, Figure 3.60 portrays the cost and execution time relationship. Whereas,

the first two estimation of the cost were relatively reasonable the data show an

asymmetric and inaccurate pattern.

Still, the Pearson correlation coefficient returned a 0.6 value suggesting that there

is a slight correlation despite the apparent dispersion of points in the Figure 3.60.

3.4.5 Threats to validity

Threats to validity normally become apparent in any empirical study and the one

presented is not an exception to the rule. Two strands of threats can be laid out

[63]:

• Threats to internal validity: One potential bias comes from the repro-

duction of the state-of-the art in SBT. In the case of the Needle-in-Haystack,

there exists some existing work in SBT [58] which could arguably trigger

branches like the one presented by using testability transformations. The

programming language employed in this work impose severe restrictions in

the compilation check which may render the testability transformations not

applicable. These testability transformation also violates the principle “the

system you analyze is the system you deploy” [19] often used Safety-Critical

Systems. Nonetheless, based on the efficiency results in [58] we would argue

that the conclusions of the efficiency would hold.

The second threat comes from measuring the run-time of program slicing

in the host computer. As the execution time is highly influenced by the

hardware, we believe that taking into account the hardware architecture of

the host computer with several levels of cache may add a substantial mea-

surement noise to the run-time results. Particularly, when the effects to be

measured has a run-time close to 0.

The third threat comes from the features of the statistical tests which re-

quire the same number of observation for the evaluation. This is a con-

flictive requirement as the CBTG normally generates a lower number of
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observations. As a consequence, a small number of observations can be

analyzed which negatively impacts the confidence of the conclusions for re-

search question 2.

Lastly, a threat stems from a potential dependence at preserving data in

memory when running sequentially the SBTG and RTG. Such a effect be-

comes apparent at evaluating the impact of memory RAM usage as argued

in RC Car case study.

• Threats to external validity to other embedded targets or benchmarks

include:

One threat comes from the benchmarks employed which are open source.

Despite the fact industrial benchmark are representative examples of Real-

Time Systems, their availability is highly restricted. Their complexity and

features may differ from the examples provided. As a consequence, caution

is advised when extrapolating these conclusions.

Aside that, the assumption of achieving path coverage as a way to compen-

sate for the deficiencies of the BFS heuristic on account of the inaccurate

cost function, may not be applicable in all cases because a) we cannot

always achieve path coverage and b) we may have other sources for under-

estimation. The latest include arithmetic operations as discussed in Cer-

tyflie case study or hardware features such as caches which create some

dependencies about how the paths are executed.

The second threat comes from the embedded architecture employed. While

the one used is a relatively simple and time-predictable, industry is mov-

ing toward multicore chips which places a significant challenge for timing

analysis. The cost function as defined here is most likely not comparable

as the source code does not contain information on events such as bus in-
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terferences which could inflate the HWM very significantly [103].

A hard to spot limitation of our approach stem from the way the path

constraints are built. Programs containing functions with multiple return

statements may incur in a inconsistent path constraints. Having a single

return statement is a reasonable assumption for Spark programs [15] but

not necessarily for C programs. In addition, input data such a pointers,

or elaborate data structures are not claimed to be compatible with our ap-

proach.

Lastly, an existing threat comes from the programming language used in

the benchmarks i.e., Spark and Ada. A striking feature of this language is

the frequent declaration of tailored data types for the implementation. As

a result, the range of the user-defined data types is frequently smaller than

primitive data types. This feature gives a competitive advantage to SBT

and RT as the search space is frequently reduced. In other words, the results

of the evaluation may not be applicable to other C-based benchmarks often

used in embedded systems as they often use data types with a larger range.

However, the CBTG methods described here could be perfectly applicable.

3.5 Summary

This chapter was advocated to introduce some contributions in the realm of CBT

and evaluate their impact. The first contribution consisted of an optimal pro-

gram slicing. The objective of this process is to synthesize only the parts of the

program that can be tested and maximize the chance of obtaining a useful test

vector i.e., maximizing the effectiveness of the CBTG, produced by a constraint

solver. Unlike state-of-the-art approaches, constraint solvers are not involved at

selecting the statements to be sliced and some heuristics are used.

The proposed heuristics map the input data and the controlling predicates of the

flow constructs in order to determine which statements to collect. In the event
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of not using this slicing and include all the statements of the default program

the effectiveness of the CBTG would be damaged and their effects would be a)

reducing the number of test vectors produced as a consequence of the infeasibility

and b) inexistent variables of the test vector would be produced with a plausible

unsound value steming from the default range of variables of the solver.

The resulting graph representation of the sliced program is later traversed by a

tailored BFS algorithm. Unlike state-of-the art approaches, this algorithm tar-

gets, in the first place, what is assumed to be the most promising paths so as

to trigger the largest execution times leading to the HWM. This prioritization of

paths targets the efficiency of the overall approach as ideally the HWM - which

is the key data of interest for the WCET - would be collected sooner than state-

of-the-art approaches.

The price to pay to implement this heuristic is the inclusion of the notion of cost.

In essence, this cost is calculated by counting the number of statements of the

original program. The evaluation of the accuracy of this cost consisted of simple

block-based benchmarks having different operations of load/store, input/output

and arithmetic and yet the same estimated cost. The results of the experiments

has led to the conclusion that the cost function is inaccurate.

As the program slicing argues about the efficiency of the resulting graph ex-

ploration, the effects of the run-time using the sliced and default program are

included as part of the case studies. The results show how the slicing typically

removed 7%, 22% and 5.8% of the uncontrollable or redundant statements. This

removal corresponded to code that read data from hardware units or consisted

of internal arrays which stored states for control functions. The effect on the

run-time had a statistically significant impact of 55%, 62% and 33% on average

respectively. Such results are generated after applying the BFS to generate the

path constraints. These results show how even small amount of slicing can have

a significant impact in the overall search efficiency.

The latest part of the chapter was concerned with the comparison of the resulting
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techniques w.r.t state-of-the-art SBT and RT. Four case studies were addressed.

All of them exhibited statically collectible constraints and path coverage could

be achieved. In addition, the last three were more advocated to be representative

examples of Real-Time System including a navigation system of an autopilot, a

PID controller of a drone and a control function of a radio controlled-car. Their

most striking results could be synthesized as:

1. Needle in a Haystack case study has shown how a pathological case for

SBTG and RTG can be easily handled by CBTG which has given the best

results at unveiling the global HWM. However some existing techniques

for SBTG i.e., testability transformations, might provide better results by

creating a more convenient guidance for these cases.

2. The Autopilot case study has not exhibited much difference in terms of

the HWM but it has shown the benefits in the wall time of our CBTG,

which obtained the results the earliest. The low proportion of feasible

paths i.e., around 7% of all paths, has reduced the number of testable

paths. In addition, the predicates of the branches were reachable by every

test generator.

3. Certyflie case study shows how only RTG and SBTG unveiled the HWM.

The interesting bit is how the success of attaining HWM may also depend

upon arithmetic operation inside some blocks of code to which the CBTG

is oblivious and consequently fails to generate operands that trigger larger

execution times for these blocks of code.

4. RC Car case study has demonstrated how all test generators are able to

produce the same HWM. However, the interesting result is that our CBTG

was able to achieve this data earlier i.e., wall-time, than the other two

counterparts. Unlike SBTG - which normally needs several iterations to

reach the objective - the CBTG does not need an iterative process and it

makes the most of the accuracy of constraint solvers.

In the last two cases the cost function was not shown to be very accurate yet this

hypothesis was already falsified.
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Lastly, the threats to validity argue, amongst other things, about: the partial

reproduction of the state-of-the-art in SBTG, the limitation of the experiments to

open-source benchmarks, the relatively simple embedded architecture employed

and the competitive advantage of SBTG and RTG as a result of the programming

language employed which normally uses a reduced data types range.
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Chapter 4

Dynamic Constraints Analysis

and Infeasible Path Detection

Along with facing path explosion, one of the greatest challenges to embrace CBT

is obtaining the constraints from the SUT. A limitation of the program slicing

described in the former chapter is its inability to attain constraint values which

are generated dynamically by reading the source code. Collecting these values

would entail either parsing the source code, running the program or applying

elaborate static analysis techniques.

The other assumption in the former chapter is the achievement of path coverage as

part of the testing process which is not normally true. This chapter is concerned

with reviewing and including dynamic constraint collection as well evaluating the

performance of the CBTG when path coverage can not be generally achieved.

With respect to the evaluation, our goal is to examine the behaviour of the CBTG

when dynamic variables are to be collected and a path explosion occurs. To meet

this objective three Mälardalen benchmarks [104] - which are popular benchmarks

for WCET analysis - are taken as case studies. Apart from sorting algorithms,

search algorithms also showed some interesting features for the WCET analysis

and they have been also employed in similar research works [16]. For this reason,

linear search and binary search were included. An additional constraint has been
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imposed so that the element to be found must be in the search space. The reason

for that is that normally search algorithms reveal their worst-case performance

when the element to be searched is not in the search space.

Additionally, a hash-function benchmark was also included as it is a relevant

problem in symbolic execution.

Coincidentally, the benchmarks of the previous chapters have integer and enu-

merates as input data whereas these benchmarks have fixed point and integers.

Some of these benchmarks - particularly the sort routines - write on the test vec-

tor by swapping the elements which create a mismatch between the constraints

added as global input to and the ones collected in the constraints. This chapter

discusses the solution applied in GenI for this problem.

Another upside of the proposed CBT approach is that some good side effects

become apparent when applying it. In particular I) the potential reduction of

pessimism in path-based estimations of CWCET that are not equipped with fea-

sible path detection and II) To gain some observability as part of matching the

constraints solved with the branches or loops in the code.

In a nutshell the contributions of this chapter are:

(a) Contribution 3 from Section 2.5 on showing the cost and execution time

relationship.

(b) Contribution 4 from Section 2.5 on evaluating the effects of the slicing in

the run-time in those cases where it is possible.

(c) Contribution from Section 2.5 on assessing the TGs in general and CBTG in

particular when path coverage can not necessarily be achieved, and dynamic

constraints need to be collected.

(d) Contribution 5 from Section 2.5 on detecting infeasible paths of CWCET

to reduce the pessimism.

(e) To provide a case study of the former contribution.
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The rest of the chapter is organized as follows. Section 4.1 discusses the chal-

lenges of non-static constraints. Section 4.2 provides 6 case studies advocated to

show contribution (a), (b) and (c) Section 4.3 outlines contributions (d) and (e)

chronologically. Finally, Section 4.4 summarizes the content of this chapter.

4.1 Constraint Collection of Dynamic Values

In order to understand the challenge of applying CBT to programs with dynamic

constraints consider Listing 4.1.

1 f o r I in A’ F i r s t + 1 . . A’ Last loop

2

3 Value := A ( I ) ;

4

5 J := I − 1 ;

6

7 whi le J >= A’ F i r s t and then A (J ) > Value loop

8

9 A (J + 1) := A (J ) ;

10

11 J := J − 1 ;

12

13 end loop ;

14

15 A (J + 1) := Value ;

16

17 end loop ;

Listing 4.1: Insertion Sort benchmark with Ada syntax.

Listing 4.1 displays the central loop of the Insertion Sort procedure from Mälardalen

benchmarks [104]. According to the premises of our testing protocol the inner-

most loop should be exercised so the only controllable branch must be collected

i.e., A(J) > A(I) after replacing Value. Unfortunately, the indexes of the array

is subject to values that change on each iteration.

According to the literature surveyed in Chapter 2, there exists some Static Anal-

ysis techniques to derive variables whose value is dynamic:
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• Pure Abstract Interpretation [42] which may only offer approximate values.

• Enhanced abstract interpretation like the method developed by Lokuciejew-

ski et al. [11] which also uses Ehrhart polynomial to calculate loop indexes.

The latter offer more precision and efficiency than the first one.

• Static Symbolic Execution [95] which has shown its limitation when the

constraints to analyze are beyond the theory of the constraint solver.

As an alternative, Dynamic Symbolic Execution [30] - also called Concolic Test-

ing [61] or - have gained momentum because of its ability to collect the required

values from the actual executions. Another variant is known as Directed Auto-

mated Random Testing which combines model checking methods so as to test all

feasible paths. However, this approach struggles with scalability due its handling

path explosion [95].

Concrete Value Execution is often used as part of Dynamic Symbolic Execution

[95] so as to collect concrete values of a constraint rather than symbolic values

since the last ones can be imprecise. To record these values the SUT is normally

instrument and a random test vector is provided to start with. By embracing

this technique hard-to-analyze functions, such as hash functions, are treated as a

black box [30] increasing the effectiveness of the CBTG.

In our framework, concrete value execution has been embraced for the sake of

simplicity. However, it is worth noting that the actual execution is done in the

host computer and not on-target. The other difference with Dynamic Symbolic

Execution is that we are not using symbolic execution as we are not using sym-

bols to replace input data. Instead, we are using concrete values collected from

the instrumentation. The path construction is not necessarily built by negating

path constraints but applying BFS strategy described in the previous chapter.

Hence, in our framework we manually insert instrumentation points in a equiv-

alent program of the SUT to collect the required data. An obvious downside
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of this approach is that in the absence of automatic code translator we have to

find a way to integrate the concrete value execution with GenI framework. This

entails to rewrite the code.

4.1.1 Keeping Consistency in the Test Vector

The other troublesome aspect from Listing 4.1 is the fact that the test vector is

not only read but also written. This may cause inconsistencies when reading the

constraints of the test vector after being written since the collected index may

refer to another index in the original test vector. To solve this issue we need a

trace mechanism that is able to compute sound values and is called every time

a value in the test vector is swapped. The following algorithms analyzes swap

function used in quick sort and insertion sort.

Algorithm 16 Global Variables.

1: input variable written set ← ∅ .empty set
2: input writing history ← ∅ .Vector of hash maps

Algorithm 16 displays global variables used for these algorithms. First one con-

sists of a set which indicates what indexes were recorded. The reason for having

this check is to cover the corner case when asking for an index that has not been

written and thus the collected index is correct. In addition, input writing history

holds a map of all the records of index swapping.

Algorithm 17 records the index of the variables swapped in a temporary map.

Next, this map is added to the written set of variables and the history map. This

algorithm must be called every time a swap is executed and is not claimed to

work beyond the scope of swapping elements of a test vector.

Finally, Algorithm 18 seeks in the record history the initial and correct value of

the index variable to withdraw a sound variable. If it happens that the variable

is not written in the history (first if statement) the same index is returned. This
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Algorithm 17 Procedure to record the swapping of the input vector.

1: procedure record new definition in test vector(index1, index2)
2:

3: if index1 6= index2 then
4: index map ← ∅ .map of indexes of vector
5: index map[index1] ← index2
6: index map[index2] ← index1
7: input variable written set ← input variable written set ∪ index1
8: ∪ index2
9: input writing history.push back (index map)

10: end if
11: end procedure

Algorithm 18 to get sound indexes when a constraint data is recorded.

1: function get actual index(recorded index)
2: if recorded index /∈ input variable written set then
3: return recorded index
4: else
5: sought index ← recorded index
6: for all map ∈ input writing history do
7: if map.key = sought index then
8: sought index ← map[sought index] .Entry of the sought index
9: end if

10: end for
11: return sought index
12: end if
13: end function

function is called every time a constraint is added or read, in a instrumentation

point and contains at least one dynamic variable that can be subject to exchange.

In summary, as a result of the swap, the indexes of the test vector and their

contents are exchanged rendering the initial declaration of global and unsound

input. The Algorithm 17 holds the history of the swaps whereas Algorithm 18

provides the sound indices by looking at the record of the previous algorithm in

order to be added to the constraints.
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4.2 Evaluation and Case Studies

This section is dedicated to present 6 case studies with the same research ques-

tions as Section 3.4. The case studies are advocated to provide a broad subset of

examples often used in WCET analysis and their internal structure and type of

dynamic constraints vary.

Three case studies are from the Mälardalen benchmarks which were chosen by

Law and Bate [18] to show the advantages of the SBT. From the benchmarks

presented in [18] only qurt is omitted. The reason for that exclusion is that

such a benchmark would entail adding polynomials constraints. Even though

[90] constraint solver is able to cope with them, our GenI framework only sup-

ports linear constraints. Adding polynomial constraints would entail adding a

switch functionality between linear and polynomial which in turn would entail

more time-consuming software development for our GenI framework.

An advantage of using these benchmarks is that it is claimed that the test vector

provided triggers the WCET path. In order to evaluate how our test generators

can maximize the HWM in comparison with the assumed test vector achieving

so, the following research question is considered.

• Research Question 8 - Effect of the test vector from the Mälardalen

benchmarks in the HWM. Is the default test vector from the Mälardalen

benchmarks able to hit the global HWM? This effect is compared against

the HWMs triggered by the other test generators.

Along with sorting, which are considered in the above benchmarks, search al-

gorithms are instrumental in computer science. For these reason two popular

algorithms are included in the cases studies. These algorithms have also being

used in similar test generation works for WCET [16]. The requirement that the

element to be searched is in the search space because has been imposed since,

intuitively speaking, search algorithms normally hit the WCET when they have

exhausted the search space or reached the stop criterion [27].
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Lastly, hash functions [95] set an example of problematic functions where Dy-

namic Symbolic Execution has made a positive impact by treating them as a

black box [30]. They can be considered another example where dynamic con-

straints are necessary and our approach could deal with them.

Because the SUT was translated and instrumented statically for the collection

of dynamic values, the harvest of constraints can only be performed as long as

the test vector reaches the instrumentation point. Thus, different path trees may

have different costs. To maximize the coverage and maximize the chance of gen-

erating different path trees random test vectors were fed in the concrete execution

every x iterations.

The benchmarks employed are:

1. Select k largest, picks the number of an unsorted numeric vector that is

kth if it were sorted. It contains three levels of loop nesting and the number

of iterations is defined within certain decisions inside the loops.

2. Quick Sort is a popular sort algorithm that exhibits the worst-case time

complexity when the test vector is already sorted [96]. There exists iterative

and recursive versions. We used the recursive one as is the only example of

this type in this work. In addition, to our knowledge, C-written real-time

systems support recursion even though its behaviour should be bounded to

enable WCET analysis [10].

3. Insertion Sort sorts the test vector in an iterative fashion rather than

using recursion.

4. Linear Search aims for identifying an element in an array by analyzing

every element from beginning to end.

5. Binary Search has the same objective as the search before but it subse-

quently halves the search space by assuming that the array is sorted.

6. Hash Function implements an example of this modular function which is

often used in command parser or language processors [30].
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The test vector size of the first 5 benchmarks has a direct impact on the path

explosion. For this reason, its original size was reduced to the maximum accepted

by the CBTG. The default test vectors size were adapted accordingly, though in

the Select k Largest an experiment was carried out with the actual size of the

benchmark. Given that originally the Mälardalen were executed in the sliced

version and hit the memory limit because of the exponential complexity of the

BFS, the non-sliced default version could no be included. By contrast, in the last

three benchmarks the effect of the slicing in the run-time is included.

4.2.1 Select K Largest

The first one of the case studies is perhaps the most challenging given the control

flow it exhibits. Controllable parts of the code are only encountered inside the

loop. In particular, only the nested branches and the third most nested loop are

controllable. To add more difficulty, it contains a great deal of infeasible paths

e.g., it has two consecutive branches with the decisions: j ≤ k, j ≥ k.

To assess research question 8 we employed SBTG or RTG for comparison. To do

so, the actual size of the test vector (20 items plus k variable) was preserved and

the benchmark was translated to Ada. As expected, due to the path explosion of

BFS that had to be stored in the CBTG this program ended up out of memory

for a test vector of this size. Hence, CBTG could not be considered for the default

test vector size. That’s why only SBTG and RTG took part in this experiment.

Results are illustrated in Figure 4.1. In this figure, we can observe that SBTG

identifies a test vector that slightly outperform the one provided by the Mälardalen

benchmark and sets an example about how difficult to predict execution time is

alluding to the code only. The underestimation is only around −0.53%. In con-

clusion, given that SBTG outperforms the HWM generated by the default test

vector, it can be claimed that this input data does not guarantee to trigger nei-

ther the WCET nor the global HWM.

To make the benchmark analyzable for the CBTG the size of the test vector
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Figure 4.1: Execution time profile of Select K Largest benchmark tested by SBTG
and RTG with its original test vector size. M’HWM stands for the execution time
generated by the reportedly test vector triggering the WCET path.

was reduced to 9 elements plus k one. The execution time profile expressed as

exceedance probability is portrayed in Figure 4.2. Unfortunately, even RTG out-

performs CBTG in terms of HWM. This extreme data is only attained by SBTG.
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Figure 4.2: Execution time profile of last trial in Select K Largest after applying
different test generators

The differences in terms of HWM are better expressed in Figures 4.3 with its

attached statistical significance in Figure 4.4. As depicted in Figure 4.3 only

SBTG hits the HWM followed by RTG performing the best. By looking at the

relative error comparison and statistical significance in Figure 4.4, we see that

CBTG underestimates on average around −17.5% the local HWM of the RTG

and an average around −21%. The local HWMs of the SBTG are around 3%

greater than the ones unveiled by the RTG. Statistical tests conclude that only

the combination SBTG vs RTG is equivalent in terms HWM results.
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Figure 4.3: HWM of each TG and trial.
Stripped line stands for the HWM.

Figure 4.4: Comparison of the differ-
ence in HWM distribution of previous
plot. Green plot indicates statistical
significance from the WNMT test and
red color the opposite

Figure 4.5: Statistical and HWM re-
sults summary.

Figure 4.6: Results of the statistical
significance delivered by WNMT test.

By looking more specifically at the comparison of the HWMs in Figure 4.5 we get

that CBTG results are always upper-bounded by its counterparts whereas SBTG

brings about the best results that are only surpassed by RTG in one trial.

When it comes to the statistical significance of the overall execution times, re-

sults are depicted in Figure 4.6. All three methods are significantly different in

all cases according to the Friedmann and WNTM test.
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Figure 4.7: Test vectors generated per
time unit

Figure 4.8: Comparison of the differ-
ence in efficiency distribution of previ-
ous plot.

Results of the efficiency are illustrated in Figure 4.7. This time, the CBTG is not

concluded to have a significantly different efficiency but is comparable to the ones

from RTG and SBTG. The reason for that is that is that the path tree contained

a wide number of feasible paths.

Figure 4.9: Memory usage.
Figure 4.10: Comparison of the differ-
ence in RAM use distribution of previ-
ous plot.

RAM memory use results are displayed in Figure 4.9. Again, as expected CBTG

uses a lot more memory than the rest of the TGs. The relative error presents a
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huge difference of around 2 times of the RAM consumption amongst CBTG and

the other two testing methods. Statistical significance results are presented in

Figure 4.10 where the SBTG and RTG are concluded to use a relatively similar

amount of RAM.

Figure 4.11: Chronogram

To have a better overview about the optimality of this case study a chronogram

is depicted in Figure 4.11. SBTG hits the HWM in less that 13 minutes. RTG

spots its local HWM around 1 hour and 40 minutes, a very large time comparison

with the other TGs.

The wall time results are illustrated in Figure 4.12. In only one session of the

SBTG the HWM is observed whereas the rest of the sessions and test generators

are unable to observe such a data.
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Figure 4.12: Wall Time

Figure 4.13: Cost and execution times. Each colour and shape denote a different
trial.

Lastly, the cost and actual execution time relation is depicted in Figure 4.13.

Clearly, the cloud of points suggests that the cost estimation is not accurate.
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This was later corroborated by the Pearson correlation coefficient which returned

a value of 0.06, the lowest correlation of all case studies. Presumably, the two

split cluster of data with a different trend contributed to such a low score.

4.2.2 Quick Sort

The second of the case studies implements the popular sort algorithm quick sort

in its recursive version. This algorithm exhibits a O(n log2(n)) algorithmic com-

plexity when sorting an unsorted test vector and O(n2) otherwise [96]. The test

vector of this benchmark was reduced to 9 elements to allow the CBTG execution.

Figure 4.14: Execution time profile each trial corresponding to a different color.
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Firstly, in terms of execution time profile the empirical exceedance probability is

portrayed in Figure 4.14. All test generators succeed at finding the HWM and

the test vector provided in its original Mälardalen benchmark hits the HWM as

well. Thus, responding to our research question 8 we can conclude that the test

vector from Mälardalen benchmark gives sound results.

Figure 4.15: HWM boxplot

Figure 4.16: Comparison of the differ-
ence in the HWM distribution of pre-
vious plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the opposite.

More accurately, HWM results are displayed in Figures 4.15 and 4.16. By all

accounts, the CBTG always hit the HWM whereas SBTG does so in most cases

and RTG in not-many. In terms of a statistical significance, WNMT test results

in Figure 4.16 demonstrate that only the results of HWM of CBTG vs SBTG

are not significant. On average, the HWMs of the CBTG and SBTG are around

a 7% greater than RTG and RTG whereas SBTG is close to 0% greater than RTG.

By looking at the comparison of the HWM in Figure 4.17 we get that RTG is

normally outperformed by CBTG and SBTG. There are only 2 cases where the

HWM of the RTG is greater than the SBTG. CBTG method and SBTG draw

in 9 out 15 cases as they collect the same HWM whereas in 6 session CBTG

outperforms SBTG. Figure 4.18 displays results the statistical significance of the
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Figure 4.17: HWM Comparison

Figure 4.18: Comparison of the differ-
ence in efficiency distribution of previ-
ous plot.

difference of the execution times. In the first column, the three methods are con-

cluded to be different according to the Friedmann test. As for the rest of them,

only in 2 out of 15 trials, the comparison of SBTG vs RTG are claimed to be

similar.

Figure 4.19: Efficiency results
Figure 4.20: Comparison of the differ-
ence in efficiency distribution of previ-
ous plot.

When it comes to the results of the efficiency, these are portrayed in Figure 4.19
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and its statistical significance in Figure 4.20. Results shows the common pat-

tern so far where RTG is the most efficient followed closely by SBTG and lastly

CBTG. Perhaps the only subtlety that becomes apparent is the extreme low ef-

ficiency of the CBTG. The underlying reason is the great number of infeasible

paths in the SUT. Regarding the significant difference and relative error of the

efficiency all plausible pairs of TGs are concluded to be different according to the

results in Figure 4.20. Unlike, previous case study the efficiency of the CBTG is

around −7.5 times smaller than the RTG and around −7.25 times smaller than

the SBTG. The difference in efficiency of SBTG and RTG are close to 0% yet it

is claimed to be significant by the WNMT test.

Figure 4.21: Memory usage.
Figure 4.22: Comparison of the differ-
ence in RAM usage distribution of pre-
vious plot.

Resulting data on RAM usage are depicted in Figures 4.21 and 4.22. They clearly

show that CBTG uses far more RAM than the other two TGs. In significance

terms - as showed in Figure 4.22 - only SBTG and RTG are claimed to have a

similar consumption of RAM with an average around 15%. Similar to previous

case study, the RAM usage is around 2 times greater for CBTG with respect

SBTG and RTG.
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Figure 4.23: Chronogram

Figure 4.24: Wall Time Boxplot.

Chronogram data is depicted in Figure 4.23. The HWM is first hit by CBTG

in 5.17 seconds the earliest followed by SBTG which collects in 2 minutes and

4.75 seconds. RTG perform generally the worst but it reaches the HWM in two

occasion the first one takes around 12 minutes and 51 seconds. Last but not least,
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the wall time when the HWM and local HWM is hit is depicted in Figure 4.24.

All the trials of the CBTG hit the HWM and the earliest whereas 9 out of 15

trials of SBTG with a relatively low average close to 8 minutes and 20 seconds

(500 seconds) of wall time. RTG only reaches the HWM in 2 out 15 trials in

around 41 minutes (close to 2500 seconds).

Figure 4.25: Cost and execution time.

Finally, Figure 4.25 displays the relation between the cost and execution time.

Starting from the top left, we can see how the cost function estimates well the

greatest cost for the HWM. However, toward the middle we can contemplate a

great degree of overlap in the cost estimation - particularly 72 and 68 - which

generated a wide array of execution times. The cost function seems to be slightly

correlated between 84 and 68 because of the relative decreasing pattern. Yet, the

last 64 estimation seems to break this trend.

To evaluate the data more objectively, the Pearson correlation coefficient com-

puted a value of 0.31 for this data which suggests a low degree of correlation.
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4.2.3 Insertion Sort

Figure 4.26: Execution time profile each trial corresponding to a different color.

In this case study, insertion sort benchmark is analyzed. As its name suggests,

it is another sort algorithm whose complexity is O(n2) when the test vector is

reversely sorted. The size of the test vector was set to 15 elements because of the

memory constraints. Figure 4.26 illustrates the execution time profile of all the

sessions and TGs. As it can be observed CBTG beats the other two TGs and

presumably always hit the HWM.
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It is worth saying that with the test vector provided in the original original

Mälardalen benchmark only an execution of 4904 was attained (−8.4% underes-

timation). Hence, the same conclusion to Select K Largest is arrived in this case

study: TGs finds test vectors that trigger the global HWM rather than the test

vector to trigger the WCET path.

Figure 4.27: HWM results boxplot.

Figure 4.28: Comparison of the differ-
ence in HWM distribution of the HWM
plot. Green plot indicates statistical
significance from the WNMT test and
red color the opposite.

The HWM results in Figure 4.27 unveil the difference between CBTG and the

other two more clearly. According to this boxplot, CBTG is unsurpassed in terms

of HWM by the other two. Additionally, the graph suggests that SBTG and RTG

achieve some local HWMs that are in the same range. As for the statistical signif-

icance and relative error in Figure 4.28 all TGs’ HWM are claimed to be different.

The HWMs triggered by the CBTG are on average around 14% greater than the

ones from RTG, and around 8% greater than the ones from SBTG. SBTG method

identifies HWMs around 5% greater than its RTG counterpart.
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Figure 4.29: HWM comparison.

Figure 4.30: Results of the statisti-
cal significance delivered by Friedmann
and WNMT test.

By comparing the HWM more accurately we get that in Figure 4.29 CBTG al-

ways beat SBTG and RTG which has already become apparent in Figure 4.27.

SBTG and RTG only draw in one trial and SBTG generally beats RTG. With

respect the statistical significance of the methods, Friedmann test contends that

the three methods are different in 14 out 15 cases in Figure 4.30. Relatively, the

same conclusions are drawn by WNMT test comparing pairwise the TGs. CBTG

and RTG methods are claimed to be the same in 2 out 15 cases and only 1 in the

case SBTG vs RTG. The rest of them WNMT test reports the TGs methods are

significantly different.

Results of the efficiency are displayed in Figure 4.31 with its attached signifi-

cance 4.32. Even though the efficiency results of the boxplots show the general

pattern of escalation of the efficiency it is observed that the difference between

CBTG and the other counterparts is reduced since CBTG shows a relative good

performance. This motivated by the fact this SUT exhibits a greater number

of feasible paths. Despite the fact that efficiency results are close to each other

there are still statistical difference in each pairwise combination as depicted in Fig-

ure 4.32. In this example, the efficiency of the CBTG is on average around −17%

smaller than RTG and approximately −7.5% on average smaller than SBTG. The
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Figure 4.31: Efficiency results.
Figure 4.32: Comparison of the differ-
ence in efficiency distribution of previ-
ous plot.

difference of the efficiency between SBTG and RTG is just around 4% on average.

Figure 4.33: Memory usage.
Figure 4.34: Comparison of the differ-
ence in RAM use distribution of previ-
ous plot.

In terms of RAM use as portrayed in Figures 4.33 and 4.34, CBTG again con-

sumes the greatest amount of RAM memory. The interesting feature of this case

study is that CBTG does not use as much dynamic memory as the other two

cases. We can not actually figure out why this happens but according to the test-

ing delivered the test vector size of this benchmark is as big as it can cope with.
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On the other hand, SBTG and RTG show a similar memory use and close to 0%

on average of the relative error. So much so, that this combination is the only

not-significant combination as shown in Figure 4.34. The relative error indicates

that the RAM usage of CBTG is on average around 75% larger for the than RTG

and SBTG.

Figure 4.35: Chronogram.

The chronogram displayed in Figure 4.35 outlines when the HWM was collected.

CBTG hits the HWM in less than a second. After that, SBTG emerges as the

best one in terms of effectiveness and promptness though it never actually meet

its objectives. Approximately, half of the RTG seems to unveil its local HWM

later than SBTG. By looking at the wall time on the boxplots in Figure 4.36 we

can again observe that the CBTG is the only which hits the HWM and does so

the fastest. SBTG only hits their local HWM on average in 43 minutes in the

SBTG and around 1 hour and 40 minutes in the case of RTG.
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Figure 4.36: Wall time boxplot.

Figure 4.37: Cost and execution times. Each colour and shape denote a different
trial.

Perhaps the main reason why this benchmark was so successful for our CBTG is

its intrinsic testability in the sense of containing a great deal of feasible paths.

Figure 4.37 displays the correlation between cost and execution time. Similarly

to Quick Sort, the heuristic manages to calculate the greatest cost for the HWM.

In addition, the cost function is also able to calculate a wider array of different

costs. The pattern displayed shows a strong correlation with a relative constant
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overlap around cost 80. There are two main contributing factors to explain the

results of this graph a) the above mentioned large number of feasible paths which

led to create a greater number of different costs and b) the accuracy of the cost

function as a result of calculating the innermost loop iterations, which was easily

calculated by reading the indexes.

The Pearson correlation coefficient estimated a value of 0.81, the highest value of

all case studies, and indicates a strong correlation.

4.2.4 Linear Search

This case study is concerned with search algorithms, in particular, linear search.

This algorithm explores an array which may be unsorted or can contain more

than one repetition of the element searched. Its algorithmic complexity is O(n).

It analyzes 20 integers and one of them is compelled to be the one found, which

is controlled by an additional index variable.

Figure 4.38: HWM Boxplot Compari-
son

Figure 4.39: Comparison of the differ-
ence in HWM distribution of previous
plot. Green plot indicates statistical
significance from the WNMT test and
red color the contrary.
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Results of the HWM are depicted in Figures 4.38 and 4.39. CBTG spotted the

greatest HWM. SBTG and RTG provided equivalent results. Nonetheless, from

the statistical significance point of view - as illustrated in Figure 4.39 - none of

the techniques were concluded to unveil a significantly different HWMs.

Figure 4.40: HWM Comparison

Figure 4.41: Friedmann and WNMT
Test results.

The comparison of the HWMs is displayed in 4.40. The new data showed in here

is the fact that SBTG unveiled the same HWM as RTG in all cases. Friedmann

and WNMT tests on Figure 4.41 concludes that all the methods are mainly differ-

ent with the only exception in 3 out 15 cases in the CBTG and RTG combination

where it was claimed to be similar methods.
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Figure 4.42: Chronogram. Wall time expressed in seconds. Stripped vertical lines
denote the first observations of the largest execution times of each test generator.

Figure 4.43: WNMT test applied to the wall time distributions

Figures 4.42 and 4.43 are concerned with displaying the wall time data. The

CBTG takes the longer the unveil the global HWM in around 5 minutes and

25 seconds the soonest. By contrast the other two TGs did not hit the global

HWM. RTG achieves its HWM on average around 2 minutes whereas SBTG takes

around 7 minutes.
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Figure 4.44: Efficiency results.

Figure 4.45: Comparison of the differ-
ence in efficiency distribution of previ-
ous plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

When it comes to the efficiency results these are portrayed in Figures 4.44 and

4.45. Interestingly, all of them exhibited a similar efficiency as the statistical tests

on Figure 4.45 conclude not statistically significant in all cases.

Figure 4.46: RAM usage.

Figure 4.47: Comparison of the differ-
ence in RAM usage distribution of pre-
vious plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.
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RAM memory results portrayed in Figures 4.46 and 4.47 shows the expected an

usual results. CBTG consumes more memory than the other other two TGs. Sta-

tistical tests on Figure 4.47 conclude that this data is statistically significant in

CBTG vs SBTG and CBTG vs RTG. Their difference was around 2 times greater

the consumption for CBTG. Nevertheless, SBTG and RTG display a similar not

statistically significant RAM memory usage.

Figure 4.48: Slicing effect in the run-time of the CBTG

The effects of the slicing in the run-time are shown in 4.48 where an slicing of

around 11% generated around 16.7% run-time reduction in the path tree traver-

sal. Not such a big impact like other case studies. Friedmann test concluded that

this difference in the slicing was statistically significant.
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Figure 4.49: Cost and execution time. Each colour and shape denote a different
trial.

Lastly, Figure 4.49 displays the estimated cost and the resulting execution time.

Unlike other graphs we see two distinguishable decreasing patterns. This is be-

cause the random input data supplied which generated different path trees and

costs. In addition, the HWM is only achieved in the second one where the cost is

not the greatest. The second striking feature is that at higher costs correlation

becomes stronger. This is because the characteristics of the benchmark which

targets hitting the same decision in the loop and thus the greatest cost is added

several times. However, because of the way the addition of cost is defined, it

produces a lot of similar cost computations when the different combinations of

the rest of the branches are considered. That is why a greater dispersion is found

for smaller costs.

The Pearson correlation coefficient reported a value of 0.41 which shows a weak

correlation. Presumably, the two differentiated cluster of data in the Figure 4.49

negatively impacted the correlation assessment.
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4.2.5 Binary Search

The other search presented as case study is known as binary search. It is another

popular search algorithm which assumes that the array is sorted to skip some

parts. As a consequence the efficiency is O(log(n)). It analyzes a test vector with

20 elements plus the index indicating which the element to be found is.

Figure 4.50: HWM Boxplot Compari-
son

Figure 4.51: Comparison of the differ-
ence in HWM distribution of previous
plot. Green plot indicates statistical
significance from the WNMT test and
red color the contrary.
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Figure 4.52: HWM Comparison

Figure 4.53: Friedmann and WNMT
Test results.

Results of the HWM displayed in Figures 4.50, 4.51 and 4.52 are self-explanatory,

in all cases all the HWMs are the same and there is no statistical significance as a

consequence. However, in terms of the execution time, as depicted in Figure 4.53,

all methods are claimed to be significantly w.r.t the resulting execution time.

Figure 4.54: Chronogram. Wall time expressed in seconds. Stripped vertical lines
denote the first observations of the largest execution times of each test generator.
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Figure 4.55: Wall time distribution. Figure 4.56: WNMT Test results to
wall time.

The wall time is depicted in Figures 4.54, 4.55 and 4.56. Unfortunately, the

chronogram in Figure 4.54 exhibits some overlapping of the results which are

hard to read. On the other hand, Figure 4.55 shows the same data more clearly.

By comparing this graph with the chronogram we could infer that CBTG takes

around 20 seconds to spot the HWM. However, the average for SBTG is around 3

minutes whereas RTG would be slightly less than SBTG. Statistical significance

of the wall time is shown in Figure 4.56 where the wall time of CBTG is sig-

nificantly different than the other two counterparts. Yet, the wall time was not

concluded to be significantly different between RTG and SBTG.

As in previous case the efficiency results - which are depicted in Figures 4.57 and

4.58 - are concluded to be similar according to the statistical tests results depicted

on the right-hand side figure. The interesting feature here is that it is the first

case where the average of the CBTG is higher than the SBTG. By analyzing the

features of the experiment we concluded this was due to the low depth of the

path tree traversed along with the great number of feasible paths which did not

generate many constraints.
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Figure 4.57: Efficiency results.

Figure 4.58: Comparison of the differ-
ence in efficiency distribution of previ-
ous plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

Figure 4.59: RAM usage.

Figure 4.60: Comparison of the differ-
ence in RAM usage distribution of pre-
vious plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

RAM results depicted in Figures 4.59 and 4.60 shows the expected results. CBTG

has more memory usage than the other two TGs. This is corroborated by the

statistical tests in Figure 4.60. By contrast, RAM usage was not claimed to be

statistically significant in the SBTG vs RTG case.
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Figure 4.61: Slicing effect in the run-time of the CBTG

Figure 4.61 shows the effects of the slicing in the run-time of the CBTG. The

slicing removed around 50% of the unnecessary statements which generated a

reduction of approximately 68% improvement of the run-time when applying the

BFS to generate the path constraints. Friedmann test concluded that this differ-

ence was statistically significant.

Lastly, Figure 4.62 shows the estimated cost and the actual execution times. The

cloud of points indicates once more that the cost is not accurate as the same

execution time was attached to different costs.

Pearson correlation coefficient provided a 0.68 value which demonstrates a good

correlation, despite the apparent dispersion in the cluster of data. Once more, this

case study shows similarities with the RC Car in the pattern of the Figure 4.62

as well as in the former coefficient (which was 0.6 in the RC Car case study).
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Figure 4.62: Cost and Execution Time. Each colour and shape denote a different
trial.

4.2.6 Hash Function

The last case study is inspired by the pathological example for Static Symbolic

Execution announced by Godefroid [30, 95]. Hash functions e.g., x == hash(y),

are often employed in command parser and text processors [30]. However, these

modular equations are beyond the functionality of constraint solvers such as SCIP

[90]. Yet, this does not necessarily mean that these functions cannot be tested.

The same author proposes a technique [30] by which this kind of functions are

treated as a black box. Starting with a random input for the above predicate, the

returned value of hash(y) is collected by means of instrumentation. In the next

iteration, the same value for y is preserved and x is matched to that collected

returned value using a constraint solver so as to trigger the branch. The same

technique is applied in our framework.

Our benchmark implemented two hash functions with 4 input integer variables

which were distributed between the two hash functions with the if,else-if,else

structure. The hash function comparison took place in the first two decisions.
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Since we do not have a coverage tool, each of these branches included a sleep

function with different parameter to generate different execution times.

Figure 4.63: HWM Boxplot Compari-
son

Figure 4.64: Comparison of the differ-
ence in HWM distribution of previous
plot. Green plot indicates statistical
significance from the WNMT test and
red color the contrary.

Figures 4.63 and 4.64 display the resulting HWM of the experiments with only

CBTG achieving the global HWM and thus the maximum degree of coverage.

Statistical significance tests on Figure 4.64 concludes that the HWM unveiled by

the CBTG is significantly higher than the other two counterparts. The HWMs

from SBTG and RTG did not show a significant difference.
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Figure 4.65: HWM Comparison

Figure 4.66: Friedmann and WNMT
Test results.

Results of the HWM comparison are displayed in Figures 4.65 which shows how

SBTG and RTG always found the same HWM yet its HWM always upper bound

them. Friedmann and WNMT concluded that all the methods did not generate

sufficient difference in the execution time data to argue that they are different

methods.

Figure 4.67: Chronogram. Wall time expressed in seconds. Stripped vertical lines
denote the first observations of the largest execution times of each test generator.

Figures 4.67 and 4.68 depict the data concerning the wall time. CBTG achieves

the HWM in around 3.25 seconds on average whereas SBTG and RTG achieves

their local HWM in less than a second.
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Figure 4.68: WNMT test applied to the wall time distributions

Figure 4.69: Efficiency results.

Figure 4.70: Comparison of the differ-
ence in efficiency distribution of previ-
ous plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

Regarding the efficiency - which is shown in Figures 4.69 and 4.70 - data shows

the expected results. CBTG has a significant lower efficiency than SBTG and

RTG as pointed out by the statistical tests in Figure 4.70. By contrast, SBTG

and RTG did not show a significant difference in the efficiency.
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Figure 4.71: RAM usage.

Figure 4.72: Comparison of the differ-
ence in RAM usage distribution of pre-
vious plot. Green plot indicates statis-
tical significance from the WNMT test
and red color the contrary.

When it comes to RAM usage, results are illustrated in Figures 4.71 and 4.72.

Unlike other case studies, the RAM consumption was claimed to be significantly

different in all cases.

Figure 4.73: Slicing effect in the run-time of the CBTG
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Figure 4.73 shows the effect of the slicing on the run-time of the CBTG. The

slicing removed 25% of the statements i.e., sleep functions, which had an impact

of around 67% reduction in the run-time. Friedmann test concluded that this

difference was significant.

Figure 4.74: Cost and Execution Time. Each colour and shape denote a different
trial.

Finally, the calculated cost and execution time relation is depicted in Figure 4.74.

Results show how the cost is not generally accurate and how the cost function

estimated the sleep statement with the same estimation regardless of the sleeping

time argument.

The result from Pearson correlation coefficient was 0.35 which entails a poor

correlation. It is worth noting that in this case only 3 significant points were

achieved for the cost and execution time relation. This fact negatively impacts

the confidence of the coefficient result.

169



4.2.7 Threats to Validity

This section discusses the threats to validity. Firstly, the experiments presented

share most of the threats discussed in Subsection 3.4.5. In addition, we would

argue the following threats.

• Threats to internal validity includes the kind of benchmarks employed

to evaluate the dynamic constraint collection as they have analyzed popu-

lar algorithms in computer science. There exists other dynamic constraints

that may become apparent when using Operating Systems and using func-

tion calls to which the source code is not available [30]. These cases have

not been contemplated because the restrictive access to proprietary soft-

ware and the technical limitations of our tools.

Another threat comes from the data in the Hash function case study in

which the resulting HWM is influenced by the manual addition of the sleep

function rather than an pre-existing code. This may cause a bias in the

HWM data to which statistical tests may only lead to questionable con-

clusions. In addition, research question 2 concerned with assessing the

similitude of the methods based on the execution time is also negatively

impacted because of the low number of execution times as a result of the

benchmark. Last but not least, it also has the similarity of the equality

predicate as equivalent to Needle-in-haystack case study so maybe some

existing techniques in SBT could achieve better results [58].

Another threat comes from the fact that the number of iterations could be

calculated easily for insertion sort which could explain why the cost and

execution time was relatively easy. This could be a potential bias in the

experiment as this feature is not necessarily available for all loop constructs.

Lastly, the way the path tree can only be partially constructed when adding

dynamic constraints in these experiments, lead to the fact of not observing

all the resulting costs that would have been observed if the full path tree
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were constructed.

Even though, Select k Largest has shown bad results for our approach, its

internal flow structure violates the guidelines to write real-time analyzable

software [10]. Thus we have some doubts that such a software is a repre-

sentative piece of software for industrial real-time systems.

• Threats to external validity to other embedded targets or benchmarks

may come from the fact that the cost function is mostly inaccurate and for

large-scale programs only a subset of paths can be built based upon this

potentially misleading guidance. As a result, the CBTG can target paths

which may not actually hit a high-confidence HWM and leave out other

paths which could achieve this objective.

Because of the potentially misleading effect of the BFS algorithm as a re-

sult of the cost inaccuracy, the counting of statements may not be adequate.

This effect is well illustrated in Subsection 3.2.4 where even for relatively

simple benchmarks the cost estimation failed at giving similar results as

results ranged from around 15% in the best case to around 13 times differ-

ence in the worst case. Thus, a more accurate path cost definition i.e., that

the cost is representative to the actual execution time, is required in order

to improve the confidence of the resulting HWM and the wall time of the

proposed CBTG methods

However, most of the experiments in this chapter epitomize a path explosion

effect and the resulting HWM from the CBTG has only underestimated the

global HWM in 1 out 6 cases.

Moreover, by instrumenting and collecting the constraints on the host may

create a side effect known as divergences [30] between the features of the

host computer and the embedded platform. For example, divergences in the
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precision in fixed point and floating point numbers. In practice it would

be more convenient to collect values from the an actual execution of SUT

rather than similar one on the host computer.

4.3 Coverage Observability and Infeasible Paths

Detection

An instrumental argument to argue about the confidence of any testing process for

MBTA is the degree of code coverage achieved [18]. To give confidence that these

objectives are met, we need way to know how the coverage is traversed. However,

software is not observable per se. The observability of testing is achieved in the

embedded industry thanks either by instrumenting the SUT [49, 35] or by using

complex hardware debugging units [32].

In reference to TGs for MBTA, a downside of the SBTG and RTG is that so far,

it is not possible to quantify the degree of underestimation [21] unless the above

mentioned observability mechanisms are available. Nevertheless, when embracing

CBT a record of the traversed branches or paths can be stored as a result of the

tight coupling between the SUT and the test generator. This statement holds

water under two assumptions: I) the parsed source code is representative of the

resulting object code and II) the test vector is actually run on-target. Regard-

ing first assumption it can be deemed reasonable as CRTES often use qualified

compilers [19] so as to guarantee the compiler’s output does not jeopardize safety.

As a result, by holding three sets namely, all constraints ACC which is initialized

when the constraints are added with two additional sets initially empty: non-

covered constraints, NCC and the covered constraints CC. Next, CC adds the

constraint traversed every time a path to test is feasible and thus a test vector is

generated. At the end of the test session CC will be initialized and the degree of

coverage can be computed with the cardinal of ACC and CC ( #CC
#ACC

) whereas the

non-covered branches can be computed by the disjoint union NCC = CCtACC.

It is worth mentioning that given that our CBTG is concerned with the notion
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of paths, in each feasible analysis of the path the constraints covered indicates

which path in the code has been traversed. This function is not possible with

state-of-the art CBT approaches for MBTA [40] as they are not equipped with

the notion of path.

4.3.1 Reduction of Pessimism in CWCET derived in Hy-

brid Approaches

Aside the observability record when traversing the constraints, the feasibility

analysis of the paths can be really useful to reduce the pessimism of hybrid ap-

proaches. This objective is tackled in the realm of STA where state-of-the-art

approaches aims for analyzing at instruction level and thus it analyzes a lot of

redundant information rendering an inefficient analysis [34]. Further, not all can

be analyzed with this approach because some states could not be concatenated

and time calculation explosion. However, to carry out this optimization a com-

plex analysis of the data flow must be done which is not the case when using path

composition techniques of Hybrid approaches [50]. Yet, this kind of analysis is de-

livered in the CBTG we have undertaken as we need to decide the input variables.

In order to compute a CWCET, hybrid approaches focus on gathering execu-

tion time stamps in strategic points along the SUT by means of instrumentation

or some other tracing mechanisms. When these time stamps are processed, the

structure of the SUT they are inserted in is considered so as to derive sound

estimations of the CWCET. The so-called timing schema derive a CWCET by

representing the structure of the SUT in a tree where transition of instrumenta-

tions points correspond to the leaves of the tree [50].

The parent nodes in the tree contain some labels which indicate which pattern

to apply to compute a sound CWCET. These patterns are: sequence (block of

code), selection (decisions) and loop. Such patterns in turn use abstract operators

to compute a CWCET in a tree fashion where the root holds the CWCET at the

end of the process. These abstract operators have different definitions depending

upon the data gathered at the instrumentation points. Particularly, ⊗ stands
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for standard addition when the data is a single execution time and convolution

when an execution time profile is gathered. Later on, same authors included the

notion of copulas [77] to replace convolution since it assumes the distributions

are independent. Moreover, � denotes multiplication and power operator in the

execution-time profile case. The abstract operators are used along with code pat-

terns to conform a CWCET. They can be defined as:

• Sequence {i, j, k}: Ci,k = Ci,j ⊗ Cj,k

• Alternative Ci,j outside the alternative and π . . .m the execution time of

alternative paths: Ci,j = max(Cπ
i,j, . . . , C

m
j,k)

• Loop assuming i and k are outside the loop and n the maximum number

of iterations: Ci,k = Ci,j ⊗ (Cj,j � n)⊗ Cj,k

A striking feature of this approach is that the composition of the CWCET is done

with regard the structure of the SUT and not the data flow. As a consequence,

a CWCET may be the result of an infeasible path that can potentially increase

the pessimism of this bound. Still, because of the data analysis and infeasible

path detection delivered by the proposed path-based CBT this information can

be supplied and thus reduce the pessimism. Next section offers a case study about

this advantage.

4.3.2 Landing Gear State Machine Case Study

To give a more realistic example we present a benchmark advocated to enhance

the importance of detecting infeasible paths to reduce the pessimism. This bench-

mark was translated to Ada from one of the demos of the industrial hybrid timing

analysis tool RapiTime [35] includes.

In this benchmark the user must supply annotations manually of infeasible paths

to reduce the CWCET by RapiTime. The benchmark in question consists of a

sequence of 4 main branches that in turn contain others decisions inside. Each

of these branches discern different output depending upon 3 operating mode the
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undercarriage is in. Only two of these branches have the same state. Because

of the syntax of the structure the CWCET composition assumes that all these

branches are feasible. When analyzed this benchmark by GenI, the tool reported

that the benchmark contains 81 paths and only 8 are feasible (9.87%). A test

vector was created for each feasible path and reported 2 times branch and path

coverage. When it comes to timing analysis - which is the bulk of this experiment

- the code was manually instrumented and tested on-target using GenI framework.

By using the above mentioned timing schema on a selection structure along with

the test vectors from GenI, a theoretical path-based CWCET would be 368 clock

cycles whereas the high confidence HWM is only 250 after running all the tests

and achieving full path coverage. This entails a reduction of 47.2% pessimism if

infeasible paths are not detected.

The obvious threats of validity here is the number of case studies. In addition,

this benchmark is fully controllable.

4.4 Summary

This chapter has relaxed two hypotheses of the former chapter and has estab-

lished that: I) Partial path coverage can normally be achieved and II) dynamic

constraints need to be collected. As for II) we have used concrete value execution

and running the code statically. The underlying motivation was the good results

in the realm of Dynamic Symbolic Execution [95] and just to embrace a simple

solution. When examining the selected benchmarks we also noticed that a) some

of the test vectors were equipped with fixed point input data and b) for the sort

algorithms the test vector was read after being written during the execution. The

latter fact compelled us to describe a tracing algorithm based upon sets and hash

maps so as to provide sound constraints for the constraint solver.

The evaluation has included 6 different benchmarks. The most remarkable con-

clusions of each case study is described as follows:
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1. Select K Largest has shown how CBTG has neither met its objectives

on maximizing the HWM nor it has achieved the best wall time. The fact

that our approach struggles with infeasible paths leaves some gaps to be

addressed as part of future work at constructing paths for CBTG.

2. Quick Sort has demonstrated how CBTG has succeeded at identifying

the global HWM and doing so the soonest. Thus, its objectives have been

met. Perhaps the main obstacle in this evaluation stems from the fact that

a relatively small search space was generated due to the path explosion

effect.

3. Insertion Sort has been positive at meeting the objectives of our CBTG

as it could trigger the HWM and achieve the best wall time.

4. Linear Search has exhibited how our CBTG was the only one unveiling

the global HWM. However, this data was not statistically significant w.r.t

any of the other two test generators.

5. Binary Search has shown similar results to RC Car case study. There is

no difference in the HWM but our CBTG exhibited the smallest wall time.

The similarity of the HWMs was due to the fact that the worst-case exit

condition of the main loop was relatively easy to achieve by a large number

of test vectors.

6. Hash Function has demonstrated how our approach is able to handle hash

functions by applying some black box techniques which consists of collecting

the value of the hash function and match the other input data to this value.

Results have shown how only CBTG was able to achieve the global HWM.

Again, this was due to the accuracy of the constraint solver.

The experiments of this chapter have demonstrated how those loops which have

a single exit decision are more compatible with our approach since maximizing

the loop iterations can be more easily controlled by suitable constraints. Whereas

those loops exhibiting a more unstructured flow with several exit decisions dis-

tributed in the body loop e.g., Select k largest, have been more problematic and
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our approach has achieved poorer results. These observations match the prereq-

uisites to apply static timing analysis techniques [7].

The effects of the slicing have been statistically significant in the cases where

attaining this data was possible be leaving some memory margin to build a larger

non-sliced path tree. A removal of 11%, 50% and 25% produced a 16.7%, 68%,

67% execution time reduction. On the other hand, the cost function has been

normally inaccurate.

The evaluation has also assessed the accuracy of the test vector provided in the

Mälardalen benchmarks. The results of the case studies has shown that the de-

fault test vector only gave sound results in Quick Sort and it was upper bounded

by the TGs in Select K Largest and Insertion Sort.

The threats of validity have argued some potential bias in the Hash function case

study because the manual addition of sleep functions. In addition, insertion sort,

whose loop cost estimation has been simple, could give the impression the cost

estimation is accurate. Additionally, it has contended that the inaccuracy of the

cost estimation and the fact that partial path coverage is often required may pro-

duce a significant underestimation of the HWM. Further, some divergences may

occur as a result of constraint collection and test generation in the host computer

and the actual embedded hardware platform. For example, due to the precision

of floating points numbers.

The other part of the chapter has described how the CBTG process is able to pro-

vide more knowledge than SBT and RT on whether constraints were covered by

the test vector. Last but not least, thanks to the use of a constraint solver and the

data collection from the SUT, this process may help at reducing the pessimism

of the CWCET in those path-based approaches that collect execution time data

from branches and then a CWCET is composed by looking at the structure of the

code. The landing gear state machine case study - whose benchmark is provided

by a commercial instrumentation tool [35] - has shown how our approach reduces

the pessimism of the CWCET considerably. Its threats to validity have argued
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that it is only a single case study. However, this contribution is more secondary.

So far, the cross comparison of the HWMs by the multiple TGs have shown, in

some cases, different levels of uncertainty. In the following chapter a new form of

probabilistic analysis is investigated. This upper-bounding method is advocated

fill this gap by using the tail of statistical distributions.
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Chapter 5

MBPTA with Distributions in

Maximum Domains of Attraction

of GEV Distributions

The bulk of this work so far has been to devise a test generation process that

maximizes the HWM. However, it is generally hard to tell how close to the actual

WCET the HWM is and thus a safety margin is sought. Since the WCET is

generally unknown we need to appeal to the notion of confidence. In this respect,

probabilistic approaches take the tack that the upper-bounding can be achieved

with a probabilistic argument.

From the literature survey, two main methods of probabilistic analysis have been

developed:

• Copulas are to some extent, similar to convolution. They are suitable to

compose ETPs from instrumentation points to derive a global CWCET.

Still, to the best of our knowledge, they are only useful in path-based ap-

proaches to compose CWCETs [77].

• EVT is a modern field of statistics advocated to predict extreme unobserved

magnitudes. It has become increasingly popular, yet in the recent years a

number of issues have become apparent [84, 72]. In our view, the most

relevant issues are I) the lack of automation derived from the selection of
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maxima which may hinder its exploitation by the industry [23]. And II) the

way exceedance probabilities are calculated which damages the confidence

of the pWCET.

In the 2000s some research works devise tail tests [88, 24] which consists of GoF

tests for the tail of some parametric distributions. With this analysis the tails

of parametric distribution are equipped with predictive power of extreme events.

To do so, EVT is used underneath to compare the tail results against them. A

key advantage of this approach is the full automation. In addition, this approach

may be used as a way to compensate for the uncertainty between the HWM and

the WCET when applying MBTA by considering the asymptotic properties of

the parametric distributions.

Some other works have focused on fitting methods and have embraced meta-

heuristics [75, 89] to maximize the confidence of the fit of the distribution. Such

methods can be used to meet the requisites of the tail tests.

The objective of this chapter is to make a contribution toward using probabilistic

analysis to give a confident upper-bound in those testing scenarios with unknown

uncertainty of the WCET. To do so we are using the known uncertainty i.e,

the gap between the local HWM of a TG and the global HWM to determine

reasonable exceedance probabilities. To achieve this goal, the current chapter

is concerned with describing, integrating and evaluating this novel tail tests for

MBPTA as we believe it has some advantages w.r.t EVT. Therefore, the contri-

butions of this chapter are:

(a) Contribution 7 from Section 2.5 on describing the theory of tail tests that

enable automation of the analysis and sounder pWCET estimates.

(b) Contribution 8 from Section 2.5 on providing with an evaluation of the

resulting data of the case studies and an industrial case. The goal is to

investigate whether the new analysis can be applied in order to calculate

confident exceedance probabilities as a measure of uncertainty which may

be later used to calculate a confident pWCET using such tail tests.
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(c) Contribution 9 from Section 2.5 on including SBF in a attempt to increase

the number of cases where tail tests can be applied and thus obtain more

data of exceedance probabilities.

The rest of the chapter is organized as follows: Section 5.1 outlines a critique

the application of EVT to MBPTA with the purpose of understanding the weak-

nesses and how the proposed approach may alleviate some of them. Section 5.2

introduces the theory behind tail tests so as to comprehend its fundamentals

and provide with Contribution (a). Section 5.3 tackles the evaluation of the pro-

posed analysis and therefore describes Contributions (b) and (c). Eventually,

Section 5.4 summarizes the content of this chapter.

5.1 Critique of EVT-Based MBPTA

The application of EVT-Based MBPTA underpins three assumptions:

1. The WCET is not observed in the testing process and thus there exists

some uncertainty from the testing process to be upper-bounded by the

tail.

2. EVT can be applied which entails certain shape of the empirical distri-

bution plus more verification steps according to the prescription of EVT

analysis [84].

3. The derived pWCET using exceedance probabilities upper bounds the

WCET.

As for the first assumption a perfect TG would not yield any uncertainty and thus

the main motivation upholding EVT would vanish. Paradoxically, the contribu-

tion of TG was not studied when MBPTA was propelled [1, 105]. In most cases,

because the complexity of path and state coverage, some form of uncertainty will

normally rise in MBTA.

The following subsection tackles the second the assumption and third assumption

in the last ones.
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5.1.1 Execution Time Profiles and Probability Distribu-

tions

The second assumption for the application of EVT hinges on the execution time

data and results more elaborate. Common practice in statistics dictate to supply

representative data for the analysis [23]. The notion of representative in this con-

text would entail to test the systems as if deployed which is often called statistical

testing [36]. Actually, there is seldom a single distribution that is representative

given that different users or contexts normally generate different ETPs. Let

alone, the effect on the physical environment in the circuits of the hardware. If

performance testing was delivered using statistical testing, the resulting distribu-

tion may not still be EVT friendly i.e., to satisfy GoF tests, due to the intrinsic

structure of the software and hardware it runs on. To give an example consider

Figure 5.1.

Figure 5.1 epitomizes the difference between the ETP from a industrial controller

and the insertion sort tested by the RTG. The first benchmark exhibits a multi-

modal distribution with two main lumps plus some imperceptible few execution

times on the right of the second one. A similar profile was depicted for the

MBPTA projects [1]. However, it is hard to predict what selection of maxima

will be delivered and thus where the EVT distribution would be located. Most

statisticians would agree that the second distribution is easier to analyze with a

parametric distribution given its bell shape which resembles to Normal distribu-

tion. The root of the problem is the resulting data of the performance testing

process.

State-of-the-art works have proposed two main solutions to derive EVT friendly

distributions regardless of the testing process.

• To randomize the execution time in order to reduce the discreteness

of the ETP. The main issue with the randomized execution time is the

controllability of the process plus the objective of achieving state coverage.

• To pad the empirical distribution [68] and thus modifying the frequen-
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Figure 5.1: Execution time profile of an industrial benchmark and a aca-
demic benchmark of a sort routine. Some details of the upper benchmark are
anonymized because of non-disclosure agreements.

cies. The downside of this method is that it may alter the asymptotic

properties of the resulting EVT distribution.

The first approach aims for changing the technology to which critical systems are

reluctant to [19] because of the attached risk and the cost-benefit analysis. Apart

from that, Lima et al. [84] work concludes that randomization is not sufficient

to guarantee EVT application and time-deterministic architectures may allow its

application in certain cases.

Lastly, these argument of the integration of ETPs and probabilistic distribution

can be extrapolated to our novel tail tests for MBPTA.
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5.1.2 Exceedance Probability

The last assumption of EVT-based MBPTA consists of believing that the pWCET

upper bounds the WCET. Admittedly, this hypothesis is hard to verify if we at-

tempt to know the WCET. Especially in complex modern architectures equipped

with multicore and multiple level of caches as state coverage is unmanageably

complex. Thus, EVT can only be useful as long as it is the only way to justify a

safety margin.

Nevertheless, by looking more carefully into EVT analysis we note that regardless

of how the distribution is expressed, namely, density, cumulative or exceedance

probability it will always tell us a value of probability, y, given a value of the

random value variable being modeled, x, or the other way round. Because we

intend to calculate a pWCET from the Complementary Cumulative Distribution

Function (CCDF) (x) we need inexorably a value of exceedance probability (y).

Most works on probability analysis have applied a general way to compute an

exceedance probability. For instance, Cucu-Grosjean et al. [26] calculated the

‘tail extension’ by taking the Safety-Integrity Level of the task being analyzed as

well as its period (T).

p ≥ 1

3600
× SIL

T
× failure

activation
(5.1)

With Equation 5.1 they were able to compute the some values what were up-

per bounded by 10−15 by taking the most critical Safety-Integrity Level (10−9

faults
hour of operation

[19]) and the greatest period found in embedded avionics systems.

It is worth remembering that in this work only Gumbel distribution was believed

to be appropriate for the fitting of the analysis. The parameters employed in the

tail extension equation are independent of the performance testing and thus dis-

regard the uncertainty. Admittedly, the data used in these case studies resulted

from manual testing [26]. This point is important because as we saw in the former

chapters, different uncertainties arose in different TGs and case studies.

Furthermore, the calculation of exceedance probability in Equation 5.1 encom-
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passes the system as a whole and dismisses the effects of the selection of extremal

data when the EVT distribution is fit. Next subsection reviews this issue.

5.1.3 Selection of Maxima

Any EVT distribution is only concerned with the distribution of the maxima

observed. Therefore, it ignores a great deal of data of the sample. This decision

also impacts the exceedance probability of the resulting EVT distribution as

identified by Lima [87]. In a seminar, Lima deduces an equation based on the

work of Coles [70] to transform the exceedance probabilities of the complete

sample (p) to the exceedance of the extremal data (p′) using the number of BM

or PoT (b).

p′ = 1− (1− p)
1
b (5.2)

To contemplate the consequences of this equation in a visual fashion, consider

Figure 5.2.

Figure 5.2: Exceedance probability for the extremal distribution for an ex-
ceedance of the overall system p = 10−4.

After interpreting the Equation 5.2 along with its plot in Figure 5.2 we can con-

clude that the exceedance probability of the maximal observations diminishes
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when the number of extremal data increases.

Deciding what observations are deemed extremes to later fit an EVT distribution

is one of the main issues with EVT analysis [71, 69]. Moreover, this decision

is relative and hard to automate [72, 23]. In a survey from 2012 on threshold

estimation for EVT [73] the authors poll and synthesize several methods to figure

out this selection of maxima. These methods comprise:

1. Model Diagnostics: They consists of inspecting the data visually with

plotting instruments such as mean residual life, threshold stability plots or

quantile plots [106]. Threshold stability for instance fit an EVT distri-

bution iteratively changing the number of exceedances and the parameters

variability is investigated. After analyzing the plots the maximum threshold

up until which stability is held is chosen. The downside of these approaches

is that they are hard to automate, they are subjective and require experts

to analyze the data.

Some of these instruments are also useful to investigate the asymptotic

properties of the empirical observations and thus gain some insight a priori

about what EVT distribution could be best fit to it.

2. Fixed Thresholds and Rules of Thumb apply either constants or arith-

metic rules that can be really simple and automatic to apply. In the case of

applying fixed threshold by means of constants, it can only be carried out

on those problem domains where thresholds have certain meaning. Aside

that, some rules of thumb are often applied such as k = log(n) or k =
√
n

where n is the size of raw data and k the number of excesses. The downside

of this approach is that for certain data the fitted EVT distribution may

vary substantially i.e., shape parameter, if changing slightly the threshold

or the block maxima size.

3. Computational Approaches resort to simulations to generate a greater

number of observations so as to give confidence in the analysis. Occasion-

ally, for some of these models to be effective prior manual analysis must
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be done. Apart from simulation, there exists some heuristic methods ori-

entated to minimize errors of the estimators. Allegedly, these methods

impouse some restrictive assumptions that hinder a wider application.

5.1.4 Asymptotic Analysis of EVT distributions

Along with the choice of extreme observed data, the intrinsic asymptotic be-

haviour of the tail of the distribution produces a great variability depending upon

how far we extrapolate on the tail. In fact, Fedotova et al. [86] gives evidence on

how the pWCET varies around 766 times greater when using either Gumbel or

Frechet for an extrapolation of 10−9.

The analysis of the tails is studied using model diagnostics. To name a few

of these tools orientated to study the asymptotic behaviour: mean excess func-

tion [71], coefficient of variation [85], or typical Quantiles Plots (QQ Plots) [71].

Amongst them, perhaps the most popular and simple to understand is the QQ

plots which plots the quantiles of specific distribution diagonally and on top of

data observations are plot to check whether they share the same asymptotic prop-

erties. Occasionally, this also serves to check the GoF by checking how aligned

both distributions are.

To become aware of the importance and features of the asymptotic behaviour of

the EVT distributions consider Figure 5.3. In this figure, the exponential dis-

tribution is taken as a reference and is plotted along with all GEV and GPD

distributions. From the asymptotic analysis point of view, they are worth cate-

gorizing so as to distinguish how much its CCDF approach to 0 as the tail tends

to infinity.

Painted with blue and purple colours we can notice light-tail distributions which

are characterized with a negative shape parameter (ξ < 0). Their tails of CCDF

are the ones which decays more rapidly to 0. Their tail are proved to have a finite

endpoint [85, 71]. Amongst GEV distribution, the Weibull one has a light-tail.

Next, exponential-tail distributions are displayed diagonally. They are identified
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Figure 5.3: Asymptotic behaviour of EVT distributions plus the exponential one.

by shape parameter equals to zero (ξ = 0). Our aforementioned Gumbel distri-

bution falls into this type of tail. Distributions exhibiting exponential behaviour

are said to reach 0 at infinity [85, 71]. Last but not least there exists a category

with the so-called heavy-tails whose shape parameter is positive (ξ > 0). These

distributions converge to 0 even slower than the exponential ones. Frechet distri-

bution is the distribution exhibiting a heavy tail amongst those integrating GEV

distributions.

5.2 Goodness of Fit Tests for the Upper Tails

of the Distributions

Apart from a strict application of EVT, some other authors have attempted to

combine EVT with others distributions [73]. Chief amongst them is the work on

tail tests [88, 24]. The motivation for this work stems from a structural relia-

bility problem where confident predictions about the robustness of bridges were

required. Due to the economic costs of destroying such a structure they had to
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predict to what extent the structure would stand the large stress by observing

small stress data.

This approach is certainly unusual since the vast majority of the GoF tests are

focused on the central part of the distribution. Notwithstanding, in our problem

domain we aim for getting confidence in the part of the tail of the distribution

where no observations are available. Yet, the tail of the distributions is of interest

as it contains the extreme predictions. This part of the tail has been named the

extreme upper quantile which is usually greater than the maximum observations

[24].

Definition 5.2.1. Be n the number of observations of the sample, be pn ≤ 1
n

and

be F̄ the CCDF. An extreme upper quantile xpn is the quantile (1− pn) such that

F̄ (xpn) = pn.

Unlike EVT, which fits the aforementioned semiparametric distributions, tail tests

use parametric distributions and thus it uses the entire sample. This difference

is particularly relevant on those problem domains where a few number of obser-

vations are available or the parameters of the distributions are meaningful for

scientists [107]. As a consequence a probabilistic analysis based upon tail tests

does not require as much data as EVT.

Traditionally, GoF tests have compared empirical data against the analytical

results of the distribution. By contrast, the goal of tail tests is deliver a GoF but

with having no observations to compare against. To achieve this tail tests resort

to EVT and compares the predictions of F̄ against the ones from EVT. To give

confidence on this conclusion tail tests require to validate two hypotheses for F̄

[88].

1. That usual GoF tests like Anderson-Darling or Cramér-von Mises check

whether central part of the distribution provides with an acceptably good

GoF (usually at the standard confidence level α = 0.05).

2. That F̄ belongs to a so-called Maximum Domain of Attraction (MDA).
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The second hypotheses may sound more unfamiliar and is detailed as follows

[71, 24].

Definition 5.2.2. Be Xn the largest observation of the ordered sample {X1, . . . , Xn}.
The Cumulative Distribution Function, F , is said to belong to a MDA if there

exists two deterministic sequences tn and sn > 0 such that (Xn− tn)/sn converges

in distribution as n→∞ to a nondegenerate random variable.

More precisely, the conditions that tell whether a distribution belongs to a MDA

can be found in [71]. Luckily, some distributions have already been proven to

belong to some MDA [71, 24]. From the tail tests perspective two domain of

attractions are of relevance. Firstly, the Gumbel MDA and secondly, Frechet and

Weibull.

• Distributions belonging to Gumbel MDA: Exponential, Weibull, Nor-

mal, Log-Normal and Gamma.

• Distribution belonging to Frechet or Weibull MDA: Pareto, Cauchy,

Burr, Log-Gamma, Beta, Student and Khi2.

With respect to tail test, there exists two versions. Namely, ETT [88, 107] which

is applied when F is in Gumbel MDA and was devised first and the Generalized

Pareto Distribution Test (GPDT) [24] when F belongs to any of the other GEV

domains.

The core of the tail test lies on the comparison of two parameters, x̂param ob-

tained from the parametric distribution, F , and x̂ET or x̂GPD which is calculated

from the empirical data. The smaller the difference between x̂param and the cor-

responding estimator the greater the confidence of the predictions of the tail is.

By tail we refer to the tail of F̄ , denoted from now on as Fθ̂n .

Unfortunately, given that these estimators employ EVT underneath, they do not

get rid of the issue of selecting the maximal observations by using PoT method.

Fortunately, because of the fact that parametric distributions are used, a com-

puter data generation can be performed and thus this analysis can be delivered
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automatically. The outcome of such a computational approach is a lookup table

like the one depicted in Table 1 in [24]. These tables indicate for a certain dis-

tribution and certain sample size, n, how many observations to take, kn, beyond

the selected threshold, un. The parameters of the tail test are defined as follows:

x̂param = F−1

θ̂n
(1− pn) (5.3)

x̂ET = Xn−kn + σ̂n ln(
kn
npn

) (5.4)

Equation 5.4 defines the ETT-based estimator. Inside this equation Xn−kn stands

for (n − kn)th observation from the ordered sample {X1, . . . , Xn}. It is worth

noting that un = Xn−kn . Lastly, σ̂n is the average of excesses defined as σ̂n =
1
kn

∑kn
i=1(Xi − un) ∀Xi > un.

x̂GPD = Xn−kn +
σ̂n
γ̂n

[( kn
npn

)γ̂n
− 1
]

(5.5)

On the other hand, in Equation 5.5 the same definitions hold. The only exception

are the parameters σ̂n and γ̂n which corresponds to scale and shape parameters

of a fitted GPD.

5.2.1 Tail Tests

Having described the estimators and the principles integrating the tail tests it is

appropriate to enumerate and define the different types of tail tests. These tests

examine the null hypothesis, H0, which is defined as: the tail of the parametric

distribution, Fθ̂n provide with reliable extreme predictions compared to EVT [24].

By contrast the alternative H1 concludes that these predictions are not confident.

To arrive to this conclusion tail tests compares the difference of the parametric

and semiparametric extreme upper quantiles: x̂param − x̂T (Note x̂T is a generic

term for either x̂GPD or x̂ET ). This difference is then checked whether it belongs

to a Confidence Interval (CI) with a certain significance level α, CIα. If this is

the case H0 is accepted. Otherwise, the hypothesis is rejected. There exists 3

different versions of the tail test and they trade-off accuracy and computational
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complexity [88, 24]. In a scale from more accurate and greatest computational

complexity to the least accurate with the least complexity we get: Full Paramet-

ric Bootstrap (FPB), Simplified Parametric Bootstrap (SPB) and the Asymptotic

version. Reportedly, the asymptotic version is said to be disappointing [24] in

finite sample situations. By contrast, Full Parametric Bootstrap was deemed the

best one but concerns were raised w.r.t to the tractability of the approach.

Bearing in mind that these works were done in the early 2000s and thus com-

puter hardware was not as fast as it is nowadays we believe that Full Parametric

Bootstrap could be useful for our experimental setting. After testing the version

we found that it was feasible to include this version of the test.

The essence of this test is to create a confidence interbal based on an empirical

evaluation with data generated by Monte Carlo simulation. By assuming H0 we

generate N samples of n size from the parametric distribution. Then from each

of these N samples a estimator of the x̂∗T and x̂∗param are calculated followed by

the computation of its difference δ∗n = x̂∗T ;n − x̂∗param;n. The resulting vector of δ∗n

is sorted and then [Nα/2] greatest and smallest are removed. As usual α denotes

the confidence level. Thus the confidence is defined as:

FPB.CIα;n = [δ∗Nα/2,N , δ
∗
N(1−α/2),N ] (5.6)

This leads to the next check:

H0 is accepted with a confidence level α if x̂T ;n − x̂param;n ∈ FPB.CIα;n

These definitions conform the tail test that are based in Parametric Bootstrap

evaluation.
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5.2.2 Asymptotic Analysis of Parametric Distributions in

GEV MDA

According to the premises in Section 5.1.4 the asymptotic behaviour of the para-

metric distribution belonging to a MDA deserve being analyzed asymptotically.

That is why we aim for computing a sound exceedance probabilities that are later

used to represent the level of uncertainty.

In our experimental setting we attempted to include all the reasonable distribu-

tions we were aware of which met the requirements of the tail tests. Unfortunately,

due to technical problems we couldn’t include Burr, Student and Khi2 and for

this reason we skipped them in the asymptotic analysis.

Figure 5.4: Asymptotic behaviour of some distributions in either Frechet or
Weibull DA. Exponential distributions included just by reference.

Figure 5.4 displays the asymptotic behaviour of the distribution whose appropri-

ate test to apply is GPDT. The only distribution exhibiting a light-tail is Beta.

The other three all exhibit a heavy-tail distribution.
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Figure 5.5: Asymptotic behaviour of some distributions in Gumbel DA.

Additionally, the distributions corresponding to the ETT are displayed in Fig-

ure 5.5. Normal distribution is the only one endowed with a light-tail. It’s not

surprising that the exponential distribution has an exponential tail. By contrast,

Log-Normal distribution has a heavy tail. The unusual feature of this plot is

the asymptotic behaviour of Gamma which can be light or exponential and the

Weibull distribution which can be any. This certainly may hamper our TT-based

MBPTA if these distribution are chosen as good fit of the data. In such a case

we should study the asymptotic behaviour of these distributions with the fit-

ted parameters and then check whether we could add up together exceedance

probability data.

5.2.3 Search-Based Fitting

An open discussion in the realm of EVT is what the best fitting method is [72].

After fitting of the parameters, the checker of the fit is the well-known GoF tests.

As described in the literature survey, in the particular case of EVT, we need ex-

tremal data to verify the results of the tails. A prediction of an arbitrary CCDF

of say 10−4 needs 104 observations from the fitted data to check the results. Non-
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visual GoF tests normally return a p-value from which to check the hypothesis

whether the distribution is a good fit for the data or not.

Along with GoF, there exists some score rules [75] advocated to measure the

error of extreme predictions i.e, difference between an analytical and empirical

data . This process of trial and error can be contemplated from a search perspec-

tive where the objective is to minimize the difference between the analytical and

empirical model by finding optimal fitting parameters. So much so, that some

authors have named Maximum Goodness of Fit [89]. Aside that, others works

centered in EVT fitting [75] have used a Simulated Annealing whose objective

was to optimize score metrics. They concluded that this SBF gave the best result

although it did not change much the shape parameter of the GEV distributions.

The gap to be filled here is to combine tail tests theory with SBF so as to maxi-

mize the number of times tail tests are passed and thus have a reliable predictive

power thanks to the tail of the distribution. Obviously, for SBF be effective

proper guidance must be supplied. This guidance must synthesize the objectives

and requirements of the tail test.

A plausible objective function to be minimized is displayed in Algorithm 19. Con-

sidering the vicissitudes of the tail tests a first requirement would be to identify

fitting parameters that achieve an acceptably good p-value in the GoF of the

central distribution. This is computed in Line 3 of Algorithm 19. After that, the

result is checked, if it happens it is not significant a feedback is returned bearing

in mind that: 1) our objective is typically the p.value ≥ 0.05, 2) the fact that

it is a function to minimized and 3) this feedback must be substantially greater

than the feedback of the tail test.

Next, in lines 8 and 9 the parameters of the tail test are computed. For the sake of

simplicity we didn’t differ from ETT and GPDT but in practice it is compulsory

to do so. The decision in line 10 is the best case scenario as the tail test and its

assumptions would be satisfied. In this case, just the feedback of the difference of

the extreme upper quantiles is returned. In case TTs fails the absolute value of
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Algorithm 19 Objective function to pass TT

1: function Tail Tests Objective Function(X, θ, α)
2: .X is the data, θ the distribution and parameters, α sig. level
3: central GoF p.value ← Anderson Darling GoF(X, θ, α)
4:

5: if central GoF p.value < α then .Bad GoF
6: feedback ← (1 - central GoF p.value) × 104

7: else
8: ∆x← x̂T − x̂param
9: FPB.CI ← Compute FPB(X, θ, α)

10: if ∆x ∈ FPB.CI then
11: feedback ← |∆x|
12: else
13: .SCI and ICI denotes the upper and lower bound of the FPB.CI
14: feedback ← |∆x|+ |FPB.SCI − FPB.ICI|
15: end if
16: end if
17: return feedback;
18: end function

the difference of the CI interval is added to the difference of the main parameters.

The reason why applying absolute values is because this objective function is to

be minimized and ∆x and CI may be negative whereas the global minimum is

∆x = 0.

5.3 Evaluation and Case Studies

On the one hand, we have obtained execution time data from the evaluation of

different TGs in a time-deterministic architecture. After comparing them some

known uncertainty has become apparent. Neither test generation nor the archi-

tecture were orientated to meet probabilistic analysis demands which gives us

unbiased data. Coincidentally, maximizing the HWM is useful to verify the pre-

diction of extreme events using scoring rules [75].

On the other hand, this chapter has described the theory behind tail tests as well

as proposing a new fitting for this new probabilistic analysis. The objective of
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this section is to integrate both parts so as to tackle contributions (b) and (c)

from the introduction of this chapter. Additionally, given our critique on how

the exceedance probabilities are estimated in EVT-based MBPTA, we aim for

calculating reasonable exceedance probabilities depending upon the distribution,

based on known uncertainty of the data. Finally, the experiments should shed

light on how this exceedance varies by changing the number of observations in

each sample.

The two cases where tail test-based MBPTA can not be applied are those where

local HWM matches the HWM or when statistical tests fail either the central

GoF or the tail test. In order to check what probability distribution gives the

best fit, all the distribution discussed in Section 5.2.2 are tested.

An R script [108] is implemented to automate the statistical analysis. For the

central GoF we chose Anderson-Darling test which is one of the advised tests for

TTs [88, 24]. When it comes to meeting the requirements of the tail tests, there

exists 4 plausible outcomes:

1. That the central GoF test is passed and the tail test. This is the most

favourable result.

2. That the central GoF is not passed and TT would not be valid regardless

of the result.

3. That the central GoF is passed but not the TT.

4. Neither of them are passed.

In those cases where the tail tests requirements fail a SBF method aims at bailing

out the MBPTA by computing valid fit parameters. To achieve that, the Simu-

lated Annealing from package [109] was used with its default parameters and a

time limit of 40 seconds per optimization. In reference to the guidance function

the function employed was outlined in Algorithm 19.

Regarding the tail tests the Full Parametric Bootstrap version was performed

with N = 200 samples following the guidelines from [24]. Unfortunately, the
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number of excesses of the look-up table of the tail tests work [88, 24] do not in-

clude the size sample we are using. Despite so, this decision was taken with rule

of thumb k = log(n) as embraced by Diebolt et al. [110]. Experiments suggest

that this rule works well given the great number of samples ( > 1000) [110].

The number of synthetic observations of the parametric distribution (n) is set to

the length of the empirical sample. The actual sample size is varied in a iterative

fashion and is increased around 10% in each iteration. The sampling of the real

data is done randomly enabling repetition of the data. The reason for doing so

is because during several experiments we witnessed how the p-values of the GoF

tests often change substantially by varying the number of observations.
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5.3.1 Insertion Sort

The first of the case studies analyzes the traces of the insertion sort case study

whose ETP was depicted in Figure 4.26. From that figure it seems there is no

uncertainty for CBTG so its observations were skipped. The first samples to be

analyzed are the ones given by the RTG.

Figure 5.6: Normal distribution fit to 7000 observations from RTG. The test trial
is the number 8.

Figure 5.6 displays the fit of a Normal distribution that passes both central GoF

test and ETT. The dark blue stands for the location of the HWM whereas the

light blue locates the local HWM. The known uncertainty region at the bottom

right displays the gap to be filled by the tail of the Normal distribution. The

HWM is located for 2 · 10−6 exceedance probability for that tail in particular.

A more general view of the statistical analysis results is depicted in Figure 5.7. To

start with all the cases have some form of known uncertainty. For the sample of

1000, only in 4 cases all the tests were passed. The Simulated Annealing allowed

to include 1 out 4 successful cases for the analysis that would have been rejected
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Figure 5.7: Summary of Results of TT-Based MBPTA for RTG.

otherwise. 2000 and 3000 samples distributions achieve 2/3 of successful fitting.

After that, an average of 7.4 (49.3%) trials are successful for the appplication of

the new tail test-based MBPTA. In these samples the 19.35% of the cases the fit

was performed thanks to SBF.

Figures 5.8, 5.9 and 5.10 contain the calculation of the exceedance probabilities in

a boxplot format. In Figure 5.8 we can observe the overlapping of the Normal and

Weibull distribution. Moreover, we can display the difference in the exceedance

probability since they are different probability distributions and probably the tail

of each exhibits different asymptotic behaviour. Figures 5.9 and 5.10 display only

the Normal distribution as the best distribution to fit the sample. The interest-

ing feature is the fact that the average of all exceedance probability distribution

but the one with 1000 observations range between 10−7 and 2 · 10−7. Specula-

tive speaking, this observation suggests that this form of MBPTA could more

independent of the number of observations than the EVT counterpart.
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Figure 5.8: Exceedance probabilities calculation for RTG with samples ranging
from 1000 to 3000

Figure 5.9: Exceedance probabilities calculation for RTG with samples ranging
from 4000 to 6000

201



Figure 5.10: Exceedance probabilities calculation for RTG with samples ranging
from 7000 to 9000

Figure 5.11: Summary of Results of TT-Based MBPTA for SBTG.
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On the other hand, the execution times of the SBTG were also analyzed and its

results are displayed in Figure 5.11. The vast majority of theses cases did not

perform the required statistical tests. More accurately, 11 out of 15 cases for the

1000 observations sample, 14 for the 2000 and all of them for the 3000. In the

1000 case, the data allowed the fitting of 4 distributions and one of them was

boosted by SBF. In the 2000 sample only 1 distribution could be fitted using the

standard fitting method. From 3000 till 9000 the statistical conditions were not

met.

Figure 5.12: Exceedance probabilities calculation for SBTG

In terms of exceedance probabilities of the SBTG the data are depicted in Fig-

ure 5.12. This time Normal, Gamma and Log-Gamma distributions were found

appropriate for fitting. Apparently, Normal distribution collected the most ob-

servations according to the boxplot. The 1000 observations case fitted all of these

three distributions whereas in the 2000 one only the Log-Gamma could be fitted.

The variability of the exceedances is greater than the previous case since in this

case it ranges around 3 · 10−5 and 2 · 10−5. Unfortunately, not many distributions

generated by CBTG in this case study could be fit and hence we could not witness

the change in calculation of exceedances as the sample varies.
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This evaluation has shown how the proposed tail test-based could help at filling

the gaps of the uncertainty and how SBF could remarkably contribute to meet

the conditions of this statistical analysis. RTG has clearly been more suitable to

generate friendly for distributions tail tests -based probabilistic analysis.

5.3.2 Quick Sort

In this second case study the results from the quick sort benchmark are analyzed.

The ETP in the form of empirical CCDF is illustrated in Figure 4.14. Again, the

CBTG left not known uncertainty to be covered by a distribution.

Figure 5.13: Summary of Results of TT-Based MBPTA for RTG.

Figure 5.13 displays the results for the RTG. In only 2 cases the HWM is hit

and thus tail test-based MBPTA is irrelevant considering the available data of

uncertainty. The first sample with 1000 observations achieves the greatest num-

ber of successes for the new MBPTA since in 9 cases a distribution is successfully

fit. Next, the number of trials whose statistical conditions are satisfied decreases

rapidly. In only 1 trial a distribution is fitted thanks to SBF. From 3000 obser-

vations onward tail test-based MBPTA was not possible to apply.
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Figure 5.14: Summary of Results of tail test-Based MBPTA for RTG.

Figure 5.14 depicts the uncertainty estimates in the form of exceedance proba-

bilities. Unlike previous case study which used mainly Normal distribution for

the RTG, Log-Gamma distribution was found appropriate as a model to predict

extremes. Reportedly, the estimations of the exceedances are in the order of 10−5

with this distribution in comparison to the order of 10−7 of previous case study

and Normal distribution.

Figure 5.15: Summary of Results of tail test-Based MBPTA for SBTG.
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Figure 5.15 displays the results for SBTG. The results show that only 6 samples

from the trials did not attain the HWM and thus they were candidates to apply

probabilistic analysis. In the 1000 data sample, only 1 could be fitted by the

SBF. The cases of 2000 and 3000 only a distribution could be fitted using the

standard method. The number of trials was different in this cases from the one

fitted using SBF. This implies that the random sampling contributed in passing

GoF tests by adding more data. These results are the opposite of rest of the

results shown so far since the trend was generally that the more observations we

add the harder the conditions are to apply tail tests result.

Figure 5.16: Summary of Results of TT-Based MBPTA for SBTG.

Figure 5.16 displays the data of the exceedance probability derived by using a

Log-Gamma and Gamma distribution. They clearly show a great deal of variabil-

ity between the Log-Gamma for the 1000 observations case and the Gamma for

the rest. This is due to the fact the data came from different trials, the distribu-

tion is different and the fact that the asymptotic behaviour of these distributions

is different.

Unlike previous case study, the data from quick sort benchmark often had no

known uncertainty to motivate this new form of MBPTA. In this assessment,

RTG still showed to provide with friendly data for probabilistic analysis in 10

out of 14 cases (71.42% of up to 2000 observation trial). For this data, SBF made
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a difference in half of these 10 cases. On the other side, SBTG generated even less

uncertainty to be covered by means of EVT and in only 3 cases out 18 (16.67%

for up to 3000 data) tail tests could be applied. When it comes to exceedance

probabilities calculation, Log-Gamma was deemed the best distribution from the

fitting point of view.

5.3.3 Averse ETP for tail tests-Based MBPTA Applica-

tion

Along with those cases which tick all the boxes for tail tests there exists some

others where this new MBPTA could not be applied. Experimental results from

Lima et al. [84] confirm what most statistician have guessed by looking at the

empirical distribution: The level of discreteness of data and the dispersion of data

clearly anticipates whether common bell-shaped distributions can be fit on top.

Such an assumption was not the case for the few execution times of our Needle-

in Haystack case study in Section 3.4.1 and Hash Function in Section 4.2.6. A

similar conclusion is arrived Landing Gear case study in Section which does not

even contain loops. Autopilot program could be a candidate for tail test-Based

MBPTA. However, after inspecting its ETP in Figure 1 (See Appendix B) there

is no bell shape as it looks more like a stairs. Moreover, a considerable level

of discreteness becomes apparent. The HWM was not very hard to attain and

only two cycles separated the HWM of the CBTG and the closes HWM of the

competitors. Similar conclusion can be deduced for the rest of the case studies

presented in this thesis. Some of their ETP are also available in Appendix B.
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Lastly, and industrial data was plotted and analyzed. This data came from an

industrial benchmark running on an equivalent hardware to the one used for

the experiments. This benchmark was tested using SBT with different fitness

functions [18]. Its exceedance probability is displayed in Figure 5.17. Given its

irregular shape and the challenging multimodal distribution these distributions

could not be analyzed since central GoF tests would fail. Though this method is

not entirely correct, we tried to analyze the second lump as a single distribution

but still GoF tests did not accept any distribution.

Figure 5.17: Execution time profile. Each trial corresponds to a different color.

Perhaps the middle point case between an stair type distribution and a bell shape

was showed by Select k Largest and Linear Search case study. Select K largest

execution time profile was depicted in Figure 4.2 and SBTG and RTG shows an

CCDF close to a straight line. Unfortunately, none of these distribution met the

requirements for tail test either. Linear Search shares some similarities with this

ETP in Figure 3 but in this case CBTG shows a staircase pattern and RTG a

relative straight line.

5.3.4 Threats to validity

As for threats to internal validity we would argue that even though the test gen-

eration from the cases studies did not target to be compatible with our approach,

some papers have argued that the required data for MBPTA should come from
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the system when deployed [23]. This may impact the confidence of the evaluation.

However, we believe that RTG could give to some extent, a representative sample.

The other source of threat of internal validity comes from applying the rule of

thumb to select the maximal data. This decision to the select observed extreme

data for fitting is still contested by statisticians working with EVT [70, 68].

When it comes to threats to external validity we would point out, based on

the example of the industrial software along with the few cases where the pro-

posed probabilistic analysis could be applied, that this approach is not likely

applicable to similar time-deterministic computer architectures. This is due to

the divergence between the compatible histograms of probability distribution and

the discrete and often shapeless ETPs of real-time software.

5.4 Summary

The aim of this chapter was to calculate more confident exceedance probabilities

with the known uncertainty from case studies. This data may in turn be used as

part of future work to derive a more confident pWCET.

To meet this objective a new form of probabilistic analysis has been proposed as

a result of a critique to state-of-the-art EVT analysis. The main arguments of

such a critique are:

• Real-world data may exhibit an ETP that may be hard to analyze using ei-

ther parametric distribution e.g., Normal distributions, or (semiparametric)

EVT distributions [24].

• Irrespective of the TGs approach, the implementation of the randomization

may be unacceptable for safety and business reasons whereas the padding-

based approaches to make an EVT friendly distribution may supply biased

data to the EVT analysis.

• If pWCETs are derived using the CCDF then sound values of exceedance
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probabilities must be calculated. Current approaches are oblivious to the

impact of the selection of maxima and the asymptotic properties of the EVT

distributions on the calculation of exceedance probabilities when in reality

these two factors do matter [86]. Some works [87, 85] along with a brief

evaluation have shown that both issues have a bearing on the estimation of

this crucial data.

The novel tail tests for MBPTA display the following differences with respect

EVT:

• Using parametric distributions such as Normal or Exponential distributions

which are in any of the MDA of a GEV distribution.

• These distributions must pass a standard GoF in the central part of the

distribution i.e., where there are observations.

• All the data is used for fitting and thus less data are required for the analysis.

• Though it uses EVT for the calculation of the tail tests, its selection of the

maxima can be automated by performing computer simulation beforehand.

• SBF is used as a fitting method which helps at identifying fit parameters

but an objective function must be defined.

The evaluation has checked the applicability of this new MBPTA to calculate

exceedance probabilities. SBF is integrated to facilitate such application.

Results show that only in 2 out 10 cases where all TGs were applied, tail tests

can be employed which reinforces the assumption that probabilistic approaches

may not be suitable for our problem domain [80]. SBF fitted 26.5% of the cases

of successful application of tail tests. In none of the cases CBTG provided with

an ETP that met the requirements to be analyzed by tail tests using the distri-

butions tail tests dictate. By contrast, SBTG and RTG showed some friendly

ETP for the sort algorithms. Unfortunately, the samples between 2000 and 4000

observations generally set the limit of the application of this form of analysis as

the addition of more observations generally damaged the central GoF test. The
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satisfaction of this test is a necessary condition to apply tail tests.

The estimated exceedance probabilities ranged between [10−7, 7 · 10−5] and re-

sulted from Normal, Weibull, Gamma and Log-Gamma distributions. The known

uncertainty gap and the asymptotic behaviour of the parametric distribution had

the greatest impact on the exceedance probabilities estimation.

Likewise, the ETP from vast majority of the case studies where all TGs took

part was not suitable for our new MBPTA. The industrial benchmark displayed

a multimodal distribution which made infeasible the fitting of the parametric dis-

tributions. A similar issue happened when Select K Largest and Linear Search

were analyzed. Some of their empirical CCDF resemble to a diagonal line more

than a bell-shaped distribution.

Lastly, threats of validity have argued that execution time data does not come

the system when deployed, the debatical selection of extremes for the analysis

and its low likelihood of the proposed analysis to be extrapolated to similar time-

deterministic architectures.
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Chapter 6

Conclusions and Future Work

The timing requirements of Real-Time Systems can only be verified as long as

the necessary time data is available. The WCET of software tasks is arguably

the most challenging time data to give confidence that these timing requirements

are met. Because of the complexity of path and state coverage the WCET is

normally unknown.

When it comes to the approaches to tackle this problem, STA has the basic dis-

advantage of portability to other hardware architectures as it requires hardware

modelling. For this reason, MBTA, which collects execution time empirically,

has been of our interest. This strand is only reliable as long as test vectors are

provided for the performance testing. Unfortunately, these test vectors are often

generated manually and have a considerable economic cost [16]. That is why

automatic test generation techniques have become increasingly important.

SBT and CBT have been the main methods to decide test data. Both approaches

were reviewed Chapter 2 as part of the literature survey and present the following

weaknesses:

Z Depending on the SBT implementation, this approach may struggle at trig-

gering branches like equalities which depends on very specific data from the

search space [29]. Even the most accurate approaches require a few thou-

sands iterations to hit this kind of branches [58].

Z Current approaches on CBT consists of an extrapolation of coverage criteria
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of functional testing but they are restricted to branch coverage [40]. There

is no CBT which takes into account WCET analysis requirements such as

creating test vectors for promising WCET paths.

Z The heuristics employed to derive constraints for CBT do not target to

identify the most promising goals in the first place. In reality, attaining the

required results as soon as possible is relevant for the industry [18].

Z Current program slicing for CBT collects unnecessary data from the SUT to

apply CBT yielding a more inefficient performance when search strategies

are applied.

Our contributions address these weaknesses and we have put forward, firstly, an

optimal program slicing to apply CBT that eliminates the inefficiencies of the

current approaches. An evaluation of effects of the slicing have been provided.

Secondly, BFS has been embraced as a method to build constraints for paths to

try to identify the paths leading to the largest execution times in the first place.

This method uses the notion of cost to discriminate paths. Another contribution

has evaluated the accuracy of the cost estimation. Thirdly, an evaluation has

been provided to observe the difference in terms of performance amongst the pro-

posed CBTG, and a representative state-of-the-art of SBTG applied in MBPTA.

In addition a RTG has been included as a way to evaluate the statistical signifi-

cance.

Probabilistic approaches have become increasingly popular in the recent years in

order to define a safety margin for MBTA. Chief amongst them is EVT. EVT-

based MBPTA was surveyed in Chapter 2 as well. The following issues were

identified [72, 23].

Z Automation of any statistical analysis is an important objective for the in-

dustry. Unfortunately, a step in the EVT analysis hinders this automation.

Z The calculation of a pWCET must be delivered using the notion of ex-

ceedance probabilities. Yet, current analysis dismiss important issues on

this calculation such as the asymptotic behaviour of the EVT distribution.
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Other works on probability theory have defined tail tests [24] which can lead to

similar results to EVT. However, automation can be achieved. Additionally, SBF

contemplates fitting any distribution as an optimization problem. This sort of

fitting may be helpful to meet tail tests requisites.

Our last contribution has integrated this new form of MBPTA with the results

from TGs with the objective of examining whether this approach could be applied

and whether this approach is useful to calculate exceedance probabilities that can

be used in the future to cover the resulting uncertainties of the TGs. If the latter

is plausible, then a more confident pWCET can be estimated.

By including the automation of the protocol and observing the differences in

the calculation of exceedance probabilities between our approach and EVT an

improvement with respect the state-of-the-art arises. Next section revisits each

contribution in detail.

6.1 Review of the Research Contributions

To recap the contributions, they are listed along the following subsections.

6.1.1 Constraint-Based Test Generation

1. To deliver a path composition algorithm based upon BFS that builds paths

to be analyzed by using a CBTG. These paths not only lead to the largest

execution times but these are computed first.

The description of the path composition algorithm was provided in Chapter 3.

This approach implements a form of BFS which is guided by the notion of cost.

This path construction targets paths with the greatest cost in the first place and

is different from state-of-the-art approaches which some of them use constraint

solver [38] to remove irrelevant constraints whereas others negate constraints [30]

to maximize code coverage. Our approach is, to the best of our knowledge, the

first one targeting paths which can be relevant for a WCET analysis based upon
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MBTA.

A downside of BFS is its implementation. In our problem domain it was not

enough to unveil the goal path but to also build a wide array of them to gen-

erate multiple test vectors. Moreover, not only we had to compute the required

bound but also update it consistently when a path is built and checked. Lastly,

handling the construction and deletion of new nodes to conform new paths has

also a daunting implementation.

2. To evaluate the accuracy of the guidance given to the BFS in the form of

cost.

The former heuristic is only applicable as long as some guidance is provided

in the form of cost. These estimates are calculated considering the number of

statements. An initial and relatively simple evaluation was delivered in Subsec-

tion 3.2.4 and it has strongly concluded that this estimation is not precise even for

the relatively time-predictable architecture employed. In each case study where

BFS and CBTG was used, the relation between cost and execution time has been

portrayed. In the light of the data, we can conclude that this heuristic is not

accurate.

Despite this burden, the real objective is to maximize the HWM as soon as possi-

ble. Even though the cost is not accurate, the systematic exploration of the path

tree has mitigated this effect and the resulting HWMs do not generally underes-

timate the global HWM.

3. To devise an optimal program slicing for MBTA which eliminates the inef-

ficiencies of current approaches reducing the number of paths to analyze.

This contribution was also given in Chapter 3. The optimal program slicing be-

comes apparent with respect state-of-the-art [40] when the SUT contains some

statements or predicates which do not impact the flow of the program or these
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can not be controlled with the input data. The result is our notion of CG i.e., a

graph which stores the minimum data to apply CBT.

4. To evaluate the effects of the slicing in the run-time of a CBTG and discuss

the impact on the test generation.

A discussion and small evaluation about the effect at generating test vectors for

the CBTG is contemplated is Subsection 3.1.4. In a nutshell by not applying the

slicing a CBTG would generate less test vector as a result of unsound constraints

or the test vector could include unsound input data with an unsound range.

The effects on the run-time is a more extensive problem. Results along case stud-

ies have shown that even a small percentage of slice removal has always had a

statistically significant reduction on the run-time of the BFS. This is because the

iterative and tree exploration process of the paths construction. However, it is

worth noting the measurement noise as a result of the complex hardware architec-

ture of the host computer. Particularly, results with a low run-time i.e., less than

one second. However, our priority in terms of contributions is to maximize the

HWM on the embedded target and not necessarily achieve the best performance

of the test oracle process running on the host.

5. To show how this test process can be used to reduce the pessimism if an

hypothetical CWCET is composed by infeasible paths by detecting such

paths.

The fourth contribution was addressed in Chapter 4. The surveyed instrumentation-

based Hybrid approaches [35] builds a CWCET by looking at the structure of the

code and not the flow of data. This implies the presence of pessimism in the

CWCET as a consequence of the infeasible paths. Its detection is left to the de-

veloper who is in charge of writing annotations. Because of our data flow analysis

and the use of a constraint solver our approach can detect these infeasible paths

and reduce the pessimism of the CWCET. A case study using of the examples
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of an industrial tool [35] was used. According to our estimation the pessimism

of the CWCET was reduced a 47.2% with this optimization. Nevertheless, more

case studies are needed in this respect and effects such as uncontrollable branch

removal may turn this approach infeasible.

6.1.2 Comparison of Test Generators

Perhaps the most significant contribution is:

6. To evaluate the results and performance of the proposed CBTG process

against state-of-the-art SBTG and a Random Test Generator (RTG) where

the main objectives are to maximize the HWM and attain results promptly.

Later on, this contribution has been refined into the following questions, which

were applied to 10 case studies from which 9 were equipped with statistically

significant tests.

• Research Question 1 - Effect of the test generators on the HWM.

Experiments on Chapter 3 has shown that our CBTG provides, in most of

the cases, a HWM that matches the global HWM. However, Certyflie case

study concluded that this is not the cases because of a statistically signif-

icant underestimation of the HWM. The reason for this behaviour is that

our CBTG is unable to generate operands for some arithmetic operations

so as to inflate the execution time of some blocks of code. This is due to

the fact that the constraints representing SUT does not encompass all the

aspects impacting the execution time.

Aside that, experiments on Chapter 4 have demonstrated how the HWM

unveiled by the CBTG matches the global HWM with the exception of Se-

lect K Largest. Still, threats to validity have argued how this benchmark

may not be representative of Real-Time software.
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A different question is how CBTG performed in relation to the other two

TGs and most importantly SBTG. Firstly, there is a threat to validity be-

cause of the partial reproduction of state-of-the-art works in SBT. Our aim

was to reproduce a representative state-of-the-art SBT in the context of

MBTA and we argued how we would not need instrumentation for test

generation. On the contrary, the programming language employed on the

benchmark may have contributed to give good results to SBTG and RTG

on account of the reduced range of variables.

Aside that, results have concluded that the HWMs unveiled by CBTG are

only statistically significant greater w.r.t SBTG in Insertion Sort and Hash

Function case studies. Hash function results were also matter of discus-

sion in threats to validity. Reversely, the same number of case studies

i.e., Certyflie and Select K largest, the SBTG beat CBTG. In the middle

ground, the results of the HWM were not claimed to significantly different

in 3 case studies. The low percentage of feasible paths which reduced the

search space, along with the fact that in Binary Search case multiple test

vectors could achieve the global HWM, have contributed to the collection

of similar HWMs. In conclusion, there is no strong evidence to argue that

one approach is generally more effective than the other at maximizing the

HWM.

• Research Question 2 - Effect of the test generators on the execu-

tion time distribution. The case studies have shown how in general the

effect on the execution of each test generation is generally significant. In

RC Car and Hash function however this was not the case most probably

because the low cardinality of the set of execution times of the benchmarks.

Threats to validity have argued how the requirements of this test removed

a good chunk of evidence from SBTG and RTG.

• Research Question 3 - Effect of the test generators on the wall

time or when the HWM is observed during test generators execution.
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Results shown in the case studies have demonstrated how in all the 5 cases

where the global HWM was achieved by the CBTG and one of the other

two TGs, CBTG has always spotted it in the first place and arguably in all

the trials thanks to its determinism. As a consequence, we believe it is safe

to conclude that our CBTG provides the best wall time.

• Research Question 4 - Effect of the test generators on the effi-

ciency (η) which is expressed as number of test vectors produced per time

unit.

The evidence of the case studies has demonstrated that in 6 cases the effi-

ciency of the CBTG was significantly lower than the other two counterparts.

SBTG and RTG normally exhibited a similar efficiency. Therefore, we con-

cluded that the efficiency of the CBTG is generally lower than the ones

from SBTG and RTG.

• Research Question 5 - Effect of the test generators on RAM mem-

ory usage. The data exhibited in 8 case studies have concluded that the

RAM usage of the CBTG is statistically significant with respect to the

other two TGs. Furthermore, SBTG and RTG are concluded to have an

equivalent RAM usage according the statistical tests.

• Research Question 8 - Effect of the test vector from the Mälardalen

benchmarks in the HWM. The 3 case studies provided have illustrated

how in only one of them the test vector provided generated a sound HWM.

These results epitomize why it is very difficult to anticipate the actual ex-

ecution time by alluding to the code only.

6.1.3 Probabilistic Analysis

The contributions on MBPTA are listed below.

7. To formulate a novel tail tests-based MBPTA advocated to provide full

automation and calculate tighter pWCETs.
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8. To evaluate the applicability of such an analysis for the resulting unbiased

execution time data from different TGs as well as figuring out what are rea-

sonable exceedance probabilities using the HWM data representing known

uncertainty.

9. To assess how search-based fitting may help at the application of tail tests

based MBPTA.

The former contributions were tackled in Chapter 5. After observing the ETP

of the case studies we noticed that some form of known uncertainty emerged.

This notion of known uncertainty is understood as the difference between the

local HWM of an arbitrary TGs and the global HWM. In order to contribute on

how this gap could be covered probabilistically and evaluate the application of

alternative analysis, we tried to employ a new way of MBPTA based upon tail

tests. Our experiments targeted the calculation of exceedance probabilities to be

used as part of future work when there is unknown uncertainty and try to give

more confident estimates of the pWCET.

As for the probabilistic evaluation a central debate is the whether the properties

of the empirical real-world distributions (or part of it) are friendly with either

parametric or EVT distribution. Moreover, even though this data is prone to pass

GoF tests, there exists further statistical conditions to be met e.g., independence.

Without studying some representative industrial data sets, it is hard to provide

with a probabilistic-based solution. Assuming that such a solution there exists.

By using tail tests, only a subset of parametric distributions can be used as their

extremes converge to some EVT distribution. Once these distributions are chosen

they must pass a standard GoF test in the central part i.e, where observations

are available. Next, tail tests are in charge of arguing about the confidence in

the part of the right tail where no observations are available by comparing these

results with an hypothetical EVT tail.

A core difference between tail tests-based MBPTA and EVT is the use of data.

On the one hand, tail tests use the entire sample which leads to make the assump-
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tion that the ETPs must fit candidate distributions. In truth, this restriction may

be excessive for real-world execution time data. By using the complete sample,

less data are required to perform extreme events predictions. However, in our

problem domain is relatively easy to generate execution time data. On the other

hand, EVT is only interested in the extreme observed data and only the ETP of

this data must fit any of the EVT distributions. In our view, this imposes a less

restrictive assumption on the entire sample than our tail tests analysis.

In terms of evaluation results, only a subset of the trials of the SBTG and RTG

met all the conditions to apply tail tests and they happen to be the ones from the

sort algorithms. Such conditions consist of the existence of known uncertainty

and the conditions of the tail tests outlined in Chapter 5. SBF found distribu-

tion parameters that met the tail tests statistical conditions and added a 26.25%

of successful cases that otherwise would not have been possible using standard

fitting methods. Normal and Log-Gamma were the most common distributions

successfully fitted. The estimated exceedance probabilities varied depending on

the uncertainty and the asymptotic properties of the parametric distributions.

To give a range they were between [10−7, 7 · 10−5]. These probabilities are far

from the others employed in EVT in a fixed way such as 10−15 [26] or 10−9 [86].

Our new MBPTA could only be applied to 2 out the 10 case studies we provided.

In addition it could not analyze the industrial benchmark because of their dissim-

ilarity between the resulting execution time data and the bell-shape distributions

used by the tail tests.

Despite the fact that not many ETP could be analyzed by this approach, this does

not necessarily mean that the introduced tail test-based MBPTA is not useful as

there are some options as part of future work discussed in the last section.
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6.2 Discussion about our CBTG

As stated in Chapter 3, our CBTG approach is mainly concerned with software in

general and the notion of path in particular because of the portability argument.

However, this is not the only contributing factor of the execution time as the

hardware states may also have a big impact. This impact would entail having, to

a greater or lesser extent, underestimations of the WCET as a result of achieving

an optimistic HWM, which results from ignoring such hardware features.

Issues caused by the hardware, and thus impacting the execution time include:

• Caches or scratchpads could cause significant underestimations because

even apparent simple and short paths could cause a large number of evic-

tions and thus large execution times [44]. However, in our experimental

setting, which included an embedded target with an instruction and data

cache, we have not experienced any significant issues related to caches. Even

though a number of test generators were used for a long time the relative

exhaustive testing. Our approach could only handle the impact of these

hardware units if there was a way to map the objective to the path cost.

This could be defined somehow by the number of evictions, and thus our

CBTG could target paths that maximize the evictions rather than having

some code-related quantification.

• Resource contention such as main memory access buses in multi-

core systems. It is probably the source of underestimation that could have

the largest impact on the execution time because of the concurrent access

to shared resources [103]. This is an ongoing problem in research and in the

industry but this issue is beyond the scope of our work. To our knowledge,

our CBTG could contribute to targeting different pieces of code running on

different cores that theoretically are advocated to generate contention. This

would allow the observations of large execution times. However, this would

entail a careful analysis of the computer architecture and the availability of

the appropriate code to generate this contention.

• Arithmetic operations. It may be the source causing the least significant
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underestimation according to the evidence collected in the thesis. From the

case studies - particularly Certyflie - this difference was around 0.35% be-

tween the HWM of the CBTG and the global HWM. However, this piece of

code did not contain a large number of operations. By contrast, other pieces

of code like the one presented in Appendix A probably would cause larger

differences. These arithmetic operations encountered in blocks of code have

unveiled how our CBTG is oblivious to these operations. As a consequence,

it is unable to generate test vectors which generate operands which in turn

trigger the largest execution times.

In this respect, the only way we can come up with for our approach is for

example by adding constraints to avoid values of 0 and 1 in the test vector.

This could cause larger execution times in some arithmetic operations [54].

When it comes to exercising the performance enhancement units, SBTG tech-

niques may be more convenient as they can target some performance counters

[31] which monitor for instance, the number of cache misses. Fitness functions

employed in Khan and Bate work [31] using these counters have demonstrated

the benefits at maximizing the resulting HWM taking into account certain prop-

erties of the program.

Nevertheless, taking into account the experiments performed in the thesis, the

issue of caches has not represented a significant burden when switching between

SBTG and CBTG which have generated the same HWM in most of the cases.

Yet, those cases where the CBTG underestimated the results of the SBTG it has

not been caused, to our understanding, to cache related effects but code structure

related issues and the above described mathematical operations of the code.

The limitations of our approach become apparent in terms of scalability i.e.,

when facing a large number of paths. The first issue is motivated by the fact that

a path tree with exponential complexity [27] is to be modelled and the intrinsic

complexity of our BFS implementation. The program slicing presented here has
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made a significant reduction in this respect by reducing this tree complexity as

the data of the run-time mirrors. However, this reduction was still facing an

unavoidable path explosion. Infeasible paths hinder the testability of a piece of

software. In our framework, the number of test vectors is the same as the feasi-

ble paths analyzed. However, our heuristic does not check or prioritize feasible

paths when building the path tree. As a consequence, it may struggle to generate

test vectors in cases where the resulting path tree contains a greater number of

infeasible paths.

Lastly, as BFS is guided by the cost of the path, which was concluded to be inac-

curate even for the time predictable architecture we employed, this could mislead

the search. As discussed in threats to validity in Chapter 4, this may cause the

test generation to focus on a subset of paths that may not lead to the global

HWM and to damage the confidence of the resulting HWM.

Regarding the sort of programs our approach can handle, two distinction are

made:

• On the abstract side (some of these features are discussed in threats

to validity in Chapter 3) programs exhibiting multiple returns in the func-

tions cannot be analyzed successfully because of the way path constraints

are concatenated. Having a single return point is a sound assumption for

programs written in Spark [15] but not necessarily for the rest of the pro-

gramming languages used in critical real-time embedded systems [19] i.e.,

C, C++, Ada and assembly.

As reported in the summary of Chapter 4, our experiments have demon-

strated how those loops having multiple exit decisions distributed in several

points in the loop body damages the results of the CBTG. That is why the

objective of maximizing the loop iterations by controlling the exit decision

can be problematic. An equivalent assumption for loops is established in

Static Timing Analysis works [7].
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Programs whose input data are not enumerates, integers, floating/fixed

point or arrays are not claimed to work with our approach.

Lastly, since the program slicing removes parts of the code that may not be

relevant to the flow, the removal may contain some blocks of code contain-

ing operations whose largest execution time is sensitive to some operands.

This was the case of Certyflie. Therefore, our CBTG may cause underesti-

mations in those benchmarks containing a significant number of arithmetic

operations not impacting the flow of the program.

• On the technical side, GenI is only compatible with a subset of pro-

gramming constructs for Spark [15]. Extending the compatibility to other

programming languages is warned to be an incredibly difficult and challeng-

ing task. As a starting a point a repository of representative SUT is required

to test any static analyzer. Getting hold of these representative benchmarks

is significantly difficult, if at all possible, because of intellectual property

clauses for some of these proprietary and representative benchmarks. As

stated in Chapter 4, according to the current version, it can only handle

linear constraints even though the constraint solver SCIP [90] can handle a

wide array of constraints e.g., polynomial.
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6.3 Hypothesis Check

Returning to the central hypothesis of this work:

The proposed Constraint-Based Testing process provides the

best test generation process in terms of increasing the largest

observed execution time and collecting this result earlier than

state-of-the-art approaches. The novel probabilistic analysis is

able to derive safety margin with an automatic process and its

results are more confident than standard approaches.

The first line on test generators is mapped to research question 1 and 3 and were

discussed in Subsection 6.1.2. In conclusion, the evidence provided indicates that

our approach does not generally underestimate the global HWM. However, there

is not enough evidential support to conclude that it achieves this better than state-

of-the-art approaches. On the contrary, the evidence regarding research question

3 suggests that our approach collects, when it succeeds, the global HWM earlier

than state-of-the-art techniques.

As for probabilistic analysis, experiments in Chapter 5 show that the proposed

tail tests for MBPTA can only decide a safety margin in a few cases. Again, it

is worthy of mention that neither the hardware, the benchmarks or the TGs had

the objective to apply any form probabilistic data. Therefore the test generation

did not target to be friendly with our probabilistic approach. Thus, unbiased

data were analyzed to give relatively trustworthy results.

Nevertheless, our novel MBPTA enable the full automation thanks to the as-

sumption it makes on the distributions which consider the entire sample. By

using computer simulations on these distributions the number of excesses can be

determined and stored in look-up tables. Then when executing our probabilistic
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protocol this data is read enabling full automation.

The way exceedance probabilities are calculated gives confidence in the pWCET

results. Data from the Insertion Sort and RTG, which allows tail tests for a wide

variety of sample size, suggests that our approach is more independent to how

the number of excesses is calculated than EVT. Thereby this condition allows a

more accurate exceedance probabilities calculation. The second contributing fac-

tor impacting the exceedance probabilities is the asymptotic behaviour of the tail

of the distribution. That is why we have categorized different exceedance proba-

bilities depending upon the distribution. The last contributing factor consists of

approaching where the WCET might be. We have done this by using the HWM

that is used to derive the attached exceedance probability. As a consequence, this

entire protocol is advocated to estimate confident exceedance probabilities that

are expected to be used as training data in the future to derive pWCET having

unknown uncertainty.

6.4 Future Work

From the work outlined in this document there are two main topics worth looking

at.

• Test Generators: From the limitations of our method, an important ob-

jective is to improve the scalability. More accurately, how to elaborate

more efficient graph structures and explorations bearing in mind the often

intractability of path coverage. The heuristic may also assume that the

SUT contains a wide array of infeasible paths and it may focus on spotting

the feasible ones as well. In addition, a more accurate definition of the cost

is desirable so as to target more successfully promising paths for the WCET.

Additionally, the collection of constraints is, in our experience, the most

challenging task to apply CBT. Future work could investigate whether the

sort of constraints found in real-time software can be generated statically
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avoiding the need of instrumentation. A promising alternative to instru-

mentation is use powerful debuggers like the one employed in [25], which

are equipped with a significant tracing functionality. According to our ex-

perience, this sort of hardware is often employed in the embedded industry.

Perhaps the most stimulating goal would be to integrate SBT and CBT. In

this respect, some existing works have already paved the path integrating

symbolic execution and SBT [63, 62]. Baars et al. [63] for instance, have

merged the generated knowledge by symbolic execution with fitness func-

tions in order to enhance them. In the light of the results, this enhancement

improved the efficiency of the approach and slightly optimized the coverage

achieved.

Galeotti et al. [62] have also combined both approaches but their approach

switches between SBT and symbolic execution dynamically. Results show

how this hybridization had a positive statistical significance impact on the

branch coverage. However, new problems emerge when applying these tech-

niques together such as the specifics about how and for how long we should

apply each of them.

To our knowledge, in the realm of MBTA this integration has not been that

explored. The only known work is delivered by Bünte et al. [25] in which,

after a test vector is generated by CBT initially, the SBTG takes over to

maximize local HWM to compose later a CWCET.

Speculative speaking, we believe that an optimal test generation target-

ing both maximization of coverage and efficiency would integrate CBT and

SBT by making the most of their strengths. A different question is how

this hybridization could make a difference at timing analysis depending on

the embedded architecture the SUT runs on.
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• Probabilistic Analysis: In our estimation, the central challenge if prob-

abilistic approaches aims for being used is firstly, to calculate the level of

uncertainty of a particular TG in a predictable way. The controversial point

is that, if we achieve this objective to argue whether probabilistic analysis is

needed at all. Then, assuming there is a way, link this notion of uncertainty

with a exceedance probability. Eventually, if the data passes the required

checks of the probabilistic analysis protocol, a distribution can fill this gap

and derive more confident results. SBF may help to achieve this objective.

Additionally, TGs techniques may have the objective of building statisti-

cally friendly distributions whenever this can be possible considering the

idiosyncrasies of the benchmark and the hardware platform.
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Appendix A

1 /∗∗ Composition ( mu l t i p l i c a t i o n ) o f two r o t a t i on matr i ce s .

2 ∗ m a2c = m a2b comp m b2c , aka m a2c = m b2c ∗ m a2b

3 ∗/

4 void f loat rmat comp ( s t r u c t FloatRMat ∗m a2c ,

5 s t r u c t FloatRMat ∗m a2b , s t r u c t FloatRMat ∗m b2c )

6 {

7

8 m a2c−>m[ 0 ] = m b2c−>m[ 0 ] ∗ m a2b−>m[ 0 ] +

9 m b2c−>m[ 1 ] ∗ m a2b−>m[ 3 ] + m b2c−>m[ 2 ] ∗ m a2b−>m[ 6 ] ;

10

11 m a2c−>m[ 1 ] = m b2c−>m[ 0 ] ∗ m a2b−>m[ 1 ] +

12 m b2c−>m[ 1 ] ∗ m a2b−>m[ 4 ] + m b2c−>m[ 2 ] ∗ m a2b−>m[ 7 ] ;

13

14 m a2c−>m[ 2 ] = m b2c−>m[ 0 ] ∗ m a2b−>m[ 2 ] +

15 m b2c−>m[ 1 ] ∗ m a2b−>m[ 5 ] + m b2c−>m[ 2 ] ∗ m a2b−>m[ 8 ] ;

16

17 m a2c−>m[ 3 ] = m b2c−>m[ 3 ] ∗ m a2b−>m[ 0 ] +

18 m b2c−>m[ 4 ] ∗ m a2b−>m[ 3 ] + m b2c−>m[ 5 ] ∗ m a2b−>m[ 6 ] ;

19

20 m a2c−>m[ 4 ] = m b2c−>m[ 3 ] ∗ m a2b−>m[ 1 ] +

21 m b2c−>m[ 4 ] ∗ m a2b−>m[ 4 ] + m b2c−>m[ 5 ] ∗ m a2b−>m[ 7 ] ;
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22

23 m a2c−>m[ 5 ] = m b2c−>m[ 3 ] ∗ m a2b−>m[ 2 ] +

24 m b2c−>m[ 4 ] ∗ m a2b−>m[ 5 ] + m b2c−>m[ 5 ] ∗ m a2b−>m[ 8 ] ;

25

26 m a2c−>m[ 6 ] = m b2c−>m[ 6 ] ∗ m a2b−>m[ 0 ] +

27 m b2c−>m[ 7 ] ∗ m a2b−>m[ 3 ] + m b2c−>m[ 8 ] ∗ m a2b−>m[ 6 ] ;

28

29 m a2c−>m[ 7 ] = m b2c−>m[ 6 ] ∗ m a2b−>m[ 1 ] +

30 m b2c−>m[ 7 ] ∗ m a2b−>m[ 4 ] + m b2c−>m[ 8 ] ∗ m a2b−>m[ 7 ] ;

31

32 m a2c−>m[ 8 ] = m b2c−>m[ 6 ] ∗ m a2b−>m[ 2 ] +

33 m b2c−>m[ 7 ] ∗ m a2b−>m[ 5 ] + m b2c−>m[ 8 ] ∗ m a2b−>m[ 8 ] ;

34

35 }

Listing 1: Example of a piece of software where the execution is not driven by

code coverage metrics. It corresponds to navigation system software listing from

an open source code for Unmanned Aerial Vehicles (UAV) [111].
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Appendix B

Figure 1: Execution time profile. Each trial corresponds to a different color.
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Figure 2: Execution time profile. Each trial corresponds to a different color.
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Figure 3: Execution time profile. Each trial corresponds to a different color.
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Figure 4: Execution time profile. Each trial corresponds to a different color.
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