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Abstract 

Over recent decades salt marshes have been restored as a cost-effective response to coastal 

biodiversity loss and flood management. Previous research on established sites has 

demonstrated that restored marshes have significantly different sediment properties than 

natural marshes which appears to broadly impact ecosystem function.  

A study was conducted to examine the differences in natural and realigned salt marshes in 

terms of plant biodiversity, sediment characteristics (bulk density, water content, pH and 

nutrients) and microbial communities in Colchester Essex, UK. We studied three pairs of 

natural and realigned salt marshes of different ages, 13, 62, 118 years since breaching of the 

sea wall. Furthermore, we studied monthly changes of sediment characteristics of a newly 

realigned site from breach to 14 months of tidal inundation. In addition to monthly sediment 

changes, we placed invertebrate exclusion chambers in the newly realigned marsh to 

examine the effect of bioturbation in changing sediment characteristics and microbial 

communities.   

Sediment characteristics of our realigned marshes were significantly different than those of 

the natural marshes. In addition, natural marshes displayed higher variability and 

heterogeneity in nutrient and water content than our realigned marshes. Within our newly 

realigned salt marsh we observed that despite the different starting sediment characteristics, 

14 months after inundation our realigned site was broadly similar to the natural marsh but 

only on the top 5cm of sediment, indicating the presence of a relic agricultural layer which 

can affect the hydrology and development of the system. Macro-invertebrate colonization 

has shown that it can influence the geochemical characteristic and microbial communities of 

sediment in a newly realigned salt marsh. Microbial communities’ composition and 

abundances within a newly realigned marsh are significantly different from natural marshes 

14 months post inundation.   
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Chapter 1. General introduction 

Saltmarshes are coastal ecosystems with herbaceous vegetation that colonize the upper 

coastal intertidal zone and are regularly flooded by tides. Saltmarshes occur worldwide, 

particularly in middle to high latitudes and are usually restricted to relatively sheltered 

locations. Communities of saltmarshes often exhibit zonation, typically linked to salinity and 

inundation time. The species composition of saltmarshes varies from site to site as well as 

regionally (Fischer et al., 2000). Saltmarsh environments can be highly dynamic, prone to 

erosion but can also rapidly colonize new sediments. Their distribution is not only influenced 

by, but also influences, local physical processes and geomorphology including topography 

and creek patterns (Adam, 1990). Recent estimates of global area of saltmarshes was 5.5Mha 

(Mcowen et al., 2017) with some estimates ranging from 2.2 to 40Mha (Pendleton et al., 

2012).  

1.1. Ecosystem services  

Salt marshes provide important ecosystem services, from support of coastal and terrestrial 

food chains to coastal protection (Beaumont et al., 2008; Hughes and Paramor, 2004; 

Millenium Ecosystem Assessment, 2005). Salt marshes provide protection to coastal areas 

by dissipating wave and tidal energy reducing the possibility of sea walls being breached, 

overtopped or undermined (Möller et al., 2014, 1999; Möller and Spencer, 2002). An 

estimated 2000km of UK coastline is protected by saltmarshes (Doody, 1992). The cost 

savings salt marshes provide through natural coastal protection is between £17 and £32 

billion per annum, where the maintenance cost and construction of coastal defenses is £0.3 

billion per annum (Beaumont et al., 2008). Thus a decline in saltmarsh habitat is believed to 

have a significant economic cost in terms of requirement of artificial coastal flood defenses 

(Hughes and Paramor, 2004). 
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Vegetated coastal ecosystems, such as mangroves, salt marshes and seagrasses, play an 

important role in sequestering carbon (C) that would otherwise remain as atmospheric CO2 

(Chmura et al., 2003); this C has been termed “blue carbon”. Vegetated coastal ecosystems 

reside over rich organic sediments several meters in depth that lock up carbon due to the 

low oxygen conditions that inhibit decomposition of matter at depth (Pendleton et al., 2012). 

Carbon stores of coastal ecosystems can exceed those of terrestrial ones by several times 

(mangroves: 830 – 1218 Mg C ha-1; savannas: 156 – 203 Mg C ha-1; upland forests: 375 – 437 

Mg C ha-1) (Donato et al., 2012). When these ecosystems are degraded or converted the 

carbon in the sediment is destabilized and microbial activity is increased releasing 

greenhouse gases (GHG) (Pendleton et al., 2012). Salt marsh sediments globally are 

estimated to bury between 5 teragrams (Tg) and 87 Tg C yr-1 (McLeod et al., 2011). Arriola 

and Cable (2017) found that high carbon burial at a Florida natural marsh was associated 

with low sediment accumulation in the low marsh, and low carbon burial was associated with 

high sediment accumulation in the high marsh. These variations in carbon burial imply that 

the highest carbon burial zone of that marsh occurs in the most vulnerable to erosion area.  

Salt marshes can function as either sources or sinks of nitrogen, depending on their 

vegetation and morphology (Huang and Pant, 2009; Whiting et al., 1989). Salt marsh plants 

function as nutrient buffers for nitrogen and/or phosphorus, where their biomass production 

contributes to cycling of nutrients into estuarine systems (Lillebø et al., 2004; Sousa et al., 

2010). However, marsh stability can be affected by chronic eutrophication and increased 

salinity. Alldred et al. (2017) found that belowground plant biomass in high-nitrogen marshes 

was reduced by 60-70% and enhanced by as much as 70% in high salinity salt marshes.  

1.2. Nitrogen cycle in salt marshes 

Nitrogen from the atmosphere (N2) must be fixed into available (mineral) nitrogen by 

microbial processes in the sediment before it can be taken up by plants and used for 



17 
 

metabolic reactions (Francis et al., 2007). Nitrogen is an essential element of all the amino 

acids in plant structures. It is important in the growth and development of vital plant tissues 

and cells like the cell membranes and rubisco, making it essential for photosynthesis. 

A major source of nitrogen in the form of NO3
-/NO2

- and NH4
+ into saltmarshes is bulk 

precipitation (Jordan et al., 1983) (Figure 1.1 A). Excess nitrogen enters salt marshes from 

fertilizer runoff, acid precipitation and sewage waste (Seitzinger et al., 2005). The amount of 

nitrogen removed or recycled by coastal wetland varies with the different types of processes 

as well as seasons. Nitrogen can be remineralized to NH4
+ and recycled into the water column 

and sediment. It can be removed from the system as N2 gas through the process of 

denitrification and it can also be immobilized by microbes, or buried as soil organic nitrogen 

(Velinsky et al., 2017) (Figure 1.1 B,C,F). 

Nitrogen in the form of ammonia (NH4
+) is released in the sediment during organic matter 

decomposition by ammonifying bacteria and fungi in a process called ammonification (Figure 

1.1 D). NH4
+ is oxidized to nitrate and nitrite (NO3

-, NO2
-) by nitrifying bacteria (e.g. 

Nitrosomonas, Nitrobacter) and archaea in the sediment under aerobic conditions. This is a 

two-step process where ammonia-oxidizing archaea (AOA) and bacteria (AOB) reduce 

Figure 1.1. Diagram of nitrogen cycle in salt marshes. Taken from Hopkinson and Giblin (2008). 

(A) 

(D) 

(E) 

(C) 

(B) 
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NH3/NH4
+ to NO2

- and then nitrate-oxidizing bacteria (NOB) oxidize NO2
- to NO3

- (Francis et 

al., 2007; Gruber and Galloway, 2008). Nitrogen loss from marine sediments is via 

denitrification. Denitrification, the reduction of nitrate back to nitrogen gas is an obligate 

anaerobic process (Figure 1.1 B). Anaerobic ammonium-oxidation (anammox) uses NO2 as 

an electron acceptor to convert nitrate to nitrogen gas (N2) (Strous et al., 2006). The nitrate 

reducing potential of salt marsh sediments is relatively high (Nedwell, 1982), however the 

reduction process is limited by availability of nitrate. 

Aziz and Nedwell (1986) examined the relative concentration of nitrate in the water column 

during the tidal cycle and found that nitrate concentration decreased from the water while 

it covered the marsh. Furthermore, when examining nitrogen fixation in vegetated and 

unvegetated areas of a salt marsh, they found that the greatest rates of N fixation were in 

mud pans populated with a layer of cyanobacteria (Vegetated marsh: 0.1 – 3.8 mmol N m-

2yr-1; creek without cyanobacteria: 2.1 mmol N m-2yr-1, pan with cyanobacteria: 8.8 mmol N 

m-2yr-1).  

Nitrogen concentration in saltmarsh sediments exhibits seasonality. Denitrification in 

estuarine sediment and salt marshes is regulated by temperature (Kaplan et al., 1977) as well 

as available NO3
- and organic carbon (Sherr and Payne, 1978). Studies have found that with 

an increase of NO3
- input from rivers along with an increase in organic carbon and warmer 

temperatures increases denitrification rates in estuarine sediment (Jensen et al., 1988). 

Thompson et al. (1995) found that nitrification rates where highest in June-September when 

the temperature was highest and lower in December to March when the temperature 

dropped.  

1.3. Salt marsh realignment 

Over the last two decades there has been an accelerated global decline in the extent of 

saltmarsh systems (Millenium Ecosystem Assessment, 2005). Climate change threatens 
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coastal habitats by increased storm frequency and sea-level rise (IPCC, 2007). Vegetated 

coastal ecosystems are estimated to be declining ~ 0.5 - 3% (~8000km2) annually (Costanza 

et al., 1997). At this current rate 30 – 40% of tidal marshes and seagrasses will be lost in the 

next 100 years (IPCC, 2007). The human response to these challenges is greater installation 

of sea defences, which further constricts coastal shore-line habitat development and the 

natural expansion/development of salt marshes. These actions, in combination, have been 

described as coastal-squeeze (Boorman, 2003). Historically, and globally, saltmarshes have 

been reclaimed for either agricultural land or urban development (Adam, 1990). By their 

nature, these reclaimed agricultural lands started near sea level and when combined with 

the compaction and erosion of soil that often accompanies agricultural practice, has led to a 

reduction of elevation within these lands, enhancing local flood risks. Maintaining sea 

defenses in order to protect these low lying agricultural lands has become increasingly costly 

and interest is developing in converting some of these lands back into saltmarshes (Foster et 

al., 2013; French, 2006; Hazelden and Boorman, 2001). Managed realignment aims to restore 

saltmarshes by constructing new sea walls further inland and deliberately breaching existing 

fore-shore walls thus allowing tidal inundation of low-lying agricultural land (French, 2006).  

The European Union Habitat Directive (adopted in UK legislation in 1992) maintains a no-net-

loss policy that has led to the current strategy of managing coastal marsh areas and the 

creation of managed realigned saltmarshes. Efforts have been made in England and Wales 

to identify suitable areas for managed realignment, to estimate the cost of each realignment, 

and to monitor realignments (DEFRA, 2002; Environment Agency, 2017). The remaining 

saltmarsh coverage in the UK (as of 2008) is approximately 45,500 hectares, mainly in eastern 

England (Beaumont et al., 2008).  

Andrews et al. (2006) compared the economic value of restoring marshes for flood defense 

which showed that they are most cost effective when viewed on a more than 25-year time 
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scale due to the initial costs of the restoration projects. In addition, they concluded that 

managed realignments are economically efficient for habitat creation, carbon sequestration 

and reduction of flood defense maintenance costs when viewed over a 50-year timescale. 

Realigned marshes may have a positive economic effect by increasing the annual sink of 

organic C, N and particulate phosphate in the estuary by 150%, 83% and 50% respectively 

(Andrews et al., 2006). Burden et al. (2013) found that it would take approximately 100 years 

for a restored site to have accumulated the same amount of carbon currently stored in a 

natural marsh. However, they have observed that the nitrogen mineralization rates of 

realigned marshes are similar to those of natural saltmarshes within 15 years since 

realignment. 

1.3.1 Natural vs. realigned saltmarshes 

Studies have shown that, even decades after installation, realigned saltmarshes have 

different plant communities and distributions than natural marshes (e.g. Garbutt & Wolters 

2008, Davy et al. 2011, Mossman et al. 2012a).The species and community differences in 

natural versus realigned marshes may be partly explained through hydrogeological 

differences (Tempest et al., 2015). Previous land use of realigned sites (agriculture and 

drainage) results in long term changes to the subsurface sediment structure, including 

collapse of pore space, which leads to poor, or less, rapid marsh drainage (Spencer et al., 

2008; Tempest et al., 2015, Cai et al., submitted). Furthermore, Tempest et al. (2015) found 

that realigned saltmarshes have two distinct sediment layers, relic and altered agricultural 

soil, overlain by newly deposited marine sediment. These two layers have different physical 

properties and are hence likely to have different hydrological characteristics in terms of 

water storage and movement. 

Environmental data on sediment moisture, redox potential and organic matter show that 

restored marshes are less oxygenated with lower redox potential at lower elevations (Davy 
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et al., 2011). Furthermore, when comparing denitrification rates between natural and 

restored marshes they observed that the restored marsh denitrification rates half that of 

than the natural marsh. Thompson et al. (1995) hypothesized that the lower denitrification 

rates observed in restored marshes were due to physical limitation of the sediment. 

Sediment size of restored marshes was mostly coarse which provided less surface area for 

microbial populations, responsible for denitrification, to populate. Higher elevations in 

managed saltmarshes have been shown to have more oxygenated sediments that are drier 

and contain less organic matter relative to natural marshes of the same elevation (Mossman 

et al. 2012a). These sediment characteristics have substantial influence over plant 

community dynamics (Davy et al. 2011, Mossman et al. 2012b), which may explain the long-

term trends reported by Garbutt & Wolters (2008) and Mossman et al. (2012a). 

1.4. Bioturbation  

Bioturbation is the mixing of sediment through biological processes from the action of 

infauna, epifauna, fish and mammals resulting in particle movement (Cadée, 2001). Benthic 

invertebrates have a significant impact on benthic sedimentary properties (Queirós et al., 

2013), through their burrowing, feeding and foraging activities they influence the mixing of 

sediments and particulate materials as well as enhance pore water and solute advection 

through burrow ventilation (Volkenborn et al., 2010). Bioturbation of sediments through 

these activities can influence the oxygen, pH and redox gradient of sediments (Biles et al., 

2002; Pischedda et al., 2008); as well as metal cycling (Teal et al., 2009); bacterial activity and 

composition (Gilbertson et al., 2012) and the carbon and nitrogen cycling of the system 

(Kristensen, 2001). 

Furthermore, studies have shown that burrowing activities of invertebrates increases above 

ground plant production and diversity by increasing soil drainage, decreasing the amount of 

toxic compounds and increasing the anaerobic respiration of plant’s roots (Bertness, 1985; 
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Montague, 1982). Daleo et al. (2007) found that burrowing activities increase the supply of 

nutrient to Arbuscular mycorrhizal fungi which in turn increase production of the salt marsh 

plant Spartina alterniflora, thus concluding that salt marsh productivity and success is highly 

depended on mutualisms between colonizing species and microorganisms. 

Macrofauna community composition can also affect nutrient availability in the sediment as 

well as the water column. Biles et al. (2002) concluded that ammonia release into water 

column was influenced by infaunal community composition and is mediated by the extent of 

bioturbation affecting sediment particle resuspension and turnover. However, colonization 

of saltmarsh creeks by Hediste diversicolor had been found to affect the rate of erosion, by 

decreasing production and survival of Salicornia seedlings, as the plant roots would stabilize 

the sediments (Paramor and Hughes, 2004).  

1.5. Success of salt marsh restoration 

Realigned salt marshes are created in order to restore a set functionality (i.e. coastal 

protection, biodiversity increase, bird habitat), and success is normally measured against 

these parameters (Neckles et al., 2002; Strange et al., 2002). Many of the valued services 

provided by saltmarshes require managed realigned sites to return to a “natural” condition 

in order to provide the same desirable outcomes. This suggests that for a realigned site to 

function at the desired capacity it will need to be sufficiently similar to natural conditions at 

either sediment or plant biodiversity level or both. Ford et al. (2016) found that increased 

plant biodiversity within marshes enhances soil stability and erosion protection. However, 

studies have found that for realigned salt marshes to reach natural plant biodiversity it will 

take over 130 years (Garbutt and Wolters, 2008). In addition, restored marshes have been 

found to have poorer hydrology and topography compared to natural marshes (Lawrence et 

al., 2018; Spencer et al., 2017, 2008; Tempest et al., 2015). 
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Protocols have been set to assess and monitor recovery and functionality of these restored 

ecosystems, from above and below ground biodiversity, soil development to bird feeding 

and fish abundances (Neckles et al., 2002; Strange et al., 2002). For each realignment, 

recovery and functionality goals are set which determine success of the realignment. 

However, short-term recoveries and set goals may not imply long term sustainability (Zedler 

et al., 2001). Even when species densities within realigned marshes match those of natural 

marshes, functional measures often reveal a significant lag of ecological processes recovery, 

such as nutrient cycling, that are necessary for full functionality of a marsh. 

1.6. Synthesis 

Saltmarshes are important coastal ecosystems providing many ecosystem services 

(Beaumont et al., 2008; Hughes and Paramor, 2004; Millenium Ecosystem Assessment, 

2005). Due to accelerated decline in natural salt marshes there has been an increased desire 

to re-create these habitats to return these services. With increased development and 

creation of salt marshes a greater understanding of the functionality of these new systems 

is required.  

A limited number of studies have focused on sediment characteristics over time in realigned 

saltmarshes (e.g. Spencer et al. 2008, Tempest et al. 2015). Of these, most focus on the 

changes that have occurred several years after restoration. Spencer et al. (2008) and 

Tempest et al. (2015) examined the same saltmarsh 8 and 18 years post breach for changes 

in sediment characteristics and differences with an adjacent natural marsh; however, both 

studies examined the marsh at one timepoint. Changes on short-term time scales, or 

immediately after breach (e.g. Kadiri et al. (2011) who sampled 6 months post breach for 12 

months) are often overlooked even though biotic and abiotic factors that are likely to affect 

sediment development and vegetation colonization (including seed availability, sediment 

pH, salinity, nutrient availability and anoxia (Garbutt et al. 2006, Garbutt & Wolters 2008, 
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Mossman et al. 2012a,b, Zhou et al. 2016)) are likely to be heavily influenced by initial 

conditions set within the first year of marsh re-establishment.  

In the early stages of a saltmarsh realignment we can expect sediment conditions (nutrient 

availability, anoxia and sediment deposition) to be the most important factors affecting 

development of the marsh. Davy et al. (2011), Mossman et al. (2012a), Thompson et al. 

(1995) all found that realigned marsh sediment is more anoxic with lower nutrient 

concentrations, conditions which directly affect plant communities in a saltmarsh. These 

physical limitations of the marsh are directly related to the sediment and hydrology of the 

system (Spencer et al., 2017; Tempest et al., 2015; Thompson et al., 1995). Seed availability 

can affect the communities present in a marsh however marsh plant seeds require suitable 

sediment to anchor and develop (Wolters et al., 2005a). 

This study aims to quantify differences between pairs of natural and realigned saltmarshes 

in south-east England and elucidate the mechanisms driving those differences. The following 

aims and hypothesis were tested: 

➢ The aim of Chapter 2 was to examine if realigned marshes normalize 

(physiochemically and biologically) over time. We compared regions of varying 

dominant surface vegetation with physiochemical sediment characteristics between 

three pairs of natural and realigned saltmarshes of different ages (13, 62 and 118) in 

Essex, UK. We hypothesized that older realigned marshes will exhibit sediment 

conditions more consistent with natural marshes. The greatest difference in 

sediment characteristics and vegetation is predicted to be between the youngest site 

(13 years) and its paired natural marsh. The oldest realigned marsh (118 years) is 

expected to be showing more similar characteristics to natural conditions than the 

other realigned marshes.  
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➢ The aim of Chapter 3 was to quantify how total sediment accumulation affects early 

changes in sediment after flooding, and the effect of previous land use (arable and 

pasture) on saltmarsh realignment. We examined monthly sediment characteristic 

changes of a newly realigned saltmarsh in Essex UK during the first-year post 

inundation.  

➢ In Chapter 4 we aimed to examine the effect of invertebrate bioturbators (organisms 

bigger than 250µm) in the development of sediment characteristics during the 1st 

year of marsh realignment between two different previous land uses (arable and 

pasture). We compare sediment changes in areas of invertebrate exclusion and 

invertebrate colonization between arable and pasture realigned fields and 

monitored invertebrate colonization in the newly realigned saltmarsh within the 1st 

year post inundation. We hypothesized that areas with invertebrate colonization and 

hence bioturbation would be more homogeneous across all depths than areas with 

no invertebrate colonization by the final sampling. 

➢ The aim of Chapter 5 was to examine microbial communities of a newly realigned 

marsh within the 1st year of inundation. We compared the effect of bioturbation on 

microbial communities in a newly realigned salt marsh and examined the effect of 

previous land use (arable and pasture) as well as differences in sediment 

characteristic on microbial communities of the realigned salt marsh compared to 

paired natural marsh. We predicted that areas with invertebrate colonization would 

have more similar microbial communities with the natural marsh than areas of no 

invertebrate colonization. 
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Chapter 2. Differences between natural and realigned salt marshes 

over time, comparing plant diversity and sediment characteristics  

 Introduction: 

Over the last two decades there has been an accelerated global decline in the extent of 

saltmarsh systems (Millenium Ecosystem Assessment, 2005) and efforts have been initiated 

to conserve existing marshes and to develop new coastal marsh habitats (realigned or 

managed saltmarshes). Saltmarshes provide important ecosystem services, from coastal 

protection to support for coastal and terrestrial food chains (Beaumont et al., 2008; Hughes 

and Paramor, 2004; Millenium Ecosystem Assessment, 2005). Saltmarshes provide 

protection to coastal areas by dissipating wave and tidal energy reducing the possibility of 

sea walls being breached, overtopped or undermined (Möller et al., 1999; Möller and 

Spencer, 2002). Due to the accelerated decline of natural saltmarshes more realigned 

marshes are being created to return these services (coastal protection, biodiversity, habitat 

creation, etc.).  

With increased development and creation of saltmarshes, a greater understanding of the 

functionality of these new ecosystems is required. Many of the valued services provided by 

saltmarshes require managed realigned sites to return to a “natural” condition in order for 

these marshes to provide the same desirable outcomes. This suggests that for a realigned 

site to function at the desired capacity it will need to be sufficiently similar to natural 

conditions at either sediment or plant biodiversity level or both. The rate at which realigned 

saltmarshes return to a “natural” state appears to be quite slow, with evidence that it takes 

over 130 years (Garbutt and Wolters, 2008) for realigned marshes to match natural plant 

biodiversity (albeit with a different plant community composition).  
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The species and community differences in natural versus realigned marshes may be partly 

explained through hydrogeological differences (Tempest et al., 2015). Previous land use of 

realigned sites (agriculture and drainage) results in long term changes to the subsurface 

sediment structure, including collapse of pore space, which leads to poor or less rapid marsh 

drainage (Spencer et al., 2008; Tempest et al., 2015, Cai et al., submitted). Furthermore, 

Tempest et al. (2015) found that realigned salt marshes (i.e. realigned marshes created by 

breaching of the sea wall and allowed to regenerate naturally) have two distinct sediment 

layers, relic and altered agricultural soil, overlain by newly deposited marine sediment. These 

two layers have different physical properties and are likely to have different hydrological 

characteristics in terms of water storage and movement. Examining a newly realigned site 

during the first year of breach we found that physical characteristics of sediments (bulk 

density and water content) were similar to natural mashes only in the top 5cm (which 

consisted of newly accreted marine sediment) after 14 months post inundation, however 

depths below newly accreted sediments remained more dense and drier (Cai et al., 

submitted). 

We might also predict that nutrient profiles will also vary between natural and realigned 

sites, and that this will be influenced by the composition of the vegetation. Nitrogen inputs 

from precipitation and run-off can be recycled either abiotically through chemical 

transformation, immobilized by microbes or recycled through uptake in vegetation.  

Vegetation in a saltmarsh can enhance sediment deposition by capturing particles on leaves 

and stems (Mudd et al., 2010, 2009). Marsh vegetation slows the rate of water flow resulting 

in decreased turbulence and increased particle settling velocities, which in turn increases 

mineral deposition and thus increases rates of elevation (Leonard and Croft, 2006; Moller, 

2006; Mudd et al., 2009). Mechanisms that increase elevation in salt marshes (mineral 

deposition and below ground biomass accumulation) are positively correlated with plant 
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biomass (Li and Yang, 2009). Thus, differences in plant vegetation of marshes could affect 

elevation as well as the sediment type being trapped. 

Nitrogen concentration in saltmarsh sediments exhibits seasonality. Denitrification in salt 

marshes is regulated by temperature (Kaplan et al., 1977) as well as available NO3
- and 

organic carbon (Sherr and Payne, 1978). Cartaxana et al. (1999) found a clear pattern of net 

nitrogen mineralization rate with season in saltmarsh sediments. They found increased 

inorganic nitrogen (NH4
+, NO3

-, NO2
-) availability during summer months. In addition, 

Cartaxana et al. (1999) observed that nitrogen mineralization rate during summer were 

linked to an increase in above-ground plant biomass thus indicating the importance of these 

parameters to net nitrogen cycling, not only in how they limit inorganic nitrogen pool 

capacity but also how it affects microbial and plant growth. Seasonality and temperature 

cannot be effectively separated, as Thompson et al. (1995) found that nitrification rates 

where highest in June-September when the temperature was highest and lower in December 

to March when the temperature dropped. 

The aim of this study was to compare regions of varying dominant surface vegetation (areas 

with Atriplex portulacoides, Limonium vulgare, Puccinellia maritima, mud pans) with 

physiochemical sediment characteristics (bulk density, water content, sediment grain size, 

sediment pH and nutrients (NH4
+ & NO2

-/NO3
-) between three pairs of natural and realigned 

saltmarshes in Essex, UK. Each salt marsh pair consisted of different realignment age, 

including 13, 62 and 118 years since realignment. We hypothesized that older realigned 

marshes will exhibit sediment conditions more consistent with natural marshes. We 

predicted the greatest difference in sediment characteristics and vegetation diversity to be 

between the youngest marsh (13 years) with its natural saltmarsh pair. The oldest marsh 

(118 years) is expected to have the most similar characteristic in both sediment and 

vegetation with its natural pair. 
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 Methods: 

 Study sites 

Three pairs of natural and realigned saltmarshes were sampled in the Colne and Blackwater 

Estuary, in south-east England (Figure 2.1). Realigned sites examined were created over old 

agricultural fields by breaching of the sea wall and allowing the flooded land to regenerate 

to saltmarsh through ongoing seawater inundation. Reference natural marshes are located 

adjacent to the realigned sites studied. The youngest site, Abbotts Hall (AH) (51°47'11.3"N 

0°51'38.4"E, 13 years since breach/realignment at the time of sampling), was a managed de-

embankment, meaning that the sea wall was breached through human activity. The older 

sites, Mersea Island (MI) (51°47'48.9"N 0°55'18.4"E, 62 years at the time of sampling) and 

Fingringhoe Range (FR) (51°49'46.8"N 0°57'01.1"E, 118 years) were natural de-

embankments, where storm surges have broken through the sea walls historically and were 

never repaired. All natural and realigned site pairings were at matching elevations, within 

20cm. 

Figure 2.1. Map of the three sampling locations on 

the Blackwater Estuary and Colne River, UK. 

Distance between saltmarshes is: AH to MI 4280m, 

MI to FR 5100m and AH to FR 8880m. 
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 Abbotts Hall 

 Abbotts Hall natural and realigned saltmarshes are supplied by the Blackwater estuary. The 

natural marsh sampled is more exposed to wave energy than the realigned marsh (Figure 

2.2). The realigned marsh is more sheltered as it is situated behind a natural marsh and the 

old sea wall is still present with the only inflow of water in the realigned marsh through the 

breach in the old sea wall. This also suggest that sediment transport to the realigned site 

could be limited as the creek system of the natural marsh located in front of the realignment 

can act as a settling tank for particles.  The distance between the natural and realigned marsh 

at Abbotts Hall site is 350m. 

 

Figure 2.2. Maps of each saltmarsh sampled marked with the locations of each natural and realigned 

marsh. Map of sampling sites (top left) is the same area as the map in figure 2.1 (source: google earth) 
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 Mersea Island 

Mersea Island is located between the Blackwater river/estuary and the Colne river and due 

to its location is supplied by both (Figure 2.1). Both marshes have similar exposure to wave 

energy since the area has a well-developed creek system for both natural and realigned study 

marshes (Figure 2.2). The distance between the natural and realigned marsh which was 

sampled at Mersea Island is 70m.  

 Fingringhoe Range 

The saltmarshes studied at Fingringhoe Range are supplied by the Colne river (Figure 2.1). 

The sampling location for the realigned marsh was further inshore than the other two 

marshes with a distance to the natural marsh of 1300m (Figure 2.2). The realigned site is 

quite well sheltered from wave energy by natural marshes located in front of it. The location 

of the realigned site could have affected its supply of sediment as the preceding natural 

marsh vegetation could have trapped the bigger heavier sediment grains.   

 Sampling  

Three representative mid-marsh plant communities (dominated by Atriplex portulacoides, 

Limonium vulgare, Puccinellia maritima) and mud pans were sampled seasonally for plant 

community composition and soil characteristics. Three replicates per condition were 

sampled in each salt marsh in areas of either complete cover of the targeted plant species 

within our sampling area (0.07m2) or where that was not possible, in an area with the highest 

percentage of the targeted species. Plant biodiversity was determined using a 1m2 quadrat 

centred over the sediment sampling areas (0.07m2) as well as placements 1m North, South, 

East and West of the sampling areas. Soil cores, (4.2 cm inner diameter and ≥20 cm length) 

which were used for bulk density, water content, sediment grain size, nutrients (NH4
+ and 

NO2
-/NO3

-) and pH analysis, were collected from within each sampling area. The volume of 
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the core at each depth was adjusted for compression during collection using the difference 

in depth on the inside and outside of the core before extraction; linear compression was 

assumed. 

 Core processing 

Samples were taken from the 5-10cm and 10-15cm depths of each core. The top 5cm from 

each core were discarded because the dense roots made sediment separation difficult. Bulk 

density and water content samples were taken from the centre (2cm sub-sections) of each 

5cm (5-10, 10-15 cm) depth core section. Bulk density was determined by drying the central 

disk at 70oC for 7 days and dividing residual weight by initial (corrected) soil volume.  

Percentage water content was determined from each bulk density sample through measured 

water loss and is shown as [%water content = (g of water/g of soil) * 100]. Subsamples from 

dried bulk density disks were taken for grain size analysis. Sediment grain size samples were 

ground to a homogenized powder and treated with hydrogen peroxide, H2O2 (30% 

concentration) to volatilize organic matter. Residual sediment was resuspended in 20ml of 

deionized water and stored at room temperature until analysis. Grain size analysis was 

performed with a Malvern Mastersizer 2000 laser particle size analyser (Malvern Panalytical, 

Malvern, UK).  

The freshly obtained remnants of each sub-section (i.e. 5-6.5cm and 8.5-10cm) were 

homogenised for nutrient and pH analyses. Soil samples for nutrient analysis were prepared 

according to Houba et al. (1995); 3.0g of soil with 1M of KCl, shaken at 200rpm for 60 

minutes, centrifuged (2000rpm for 5 minutes) and the supernatant filtered. The filtrate was 

then stored at -20oC until analysis. Analysis for NH4
+ and NO2

-/NO3
- was performed using a 

Seal Analytical AutoAnalyzer3 (SEAL analytical Ltd, Southampton, UK). KCl blanks were run 

to correct for contamination and/or drifts in extract as well as known concentration 

standards (0, 0.5, 1.0, 1.5, 2.0 mg/L) to ensure the equipment was calibrated and measuring 
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correct concentrations. Standards were run every 10 samples. The remaining solid phase 

from the nutrient samples was used for pH analysis, after in-house analyses demonstrated 

that pH was consistent between freshly prepared samples and post-extraction samples. In 

post extraction samples a further 15ml of 1M KCl solution was added, the samples were 

placed on a rocker (60rpm) for 60 minutes and analysed using a standard pH probe (meter: 

Jenway 3310, probe: VWR 662-1797). Similar to nutrient analysis, standards were used to 

calibrate the probe before each analysis as well as every 10 samples to ensure no drifts were 

occurring during analysis.  

 Statistical analysis 

Statistical analyses were conducted using the R statistical language (R Core Team, 2018) 

implemented in RStudio (Version 1.1.423). pH was transformed out of log scale for statistical 

analysis. Nutrient concentrations had 1x10-6 mg/Kg added to all values to avoid zero value 

discontinuity and were log transformed for normality distribution. Bulk density and water 

content were bimodally distributed therefore required no further transformations. ANOVAs 

were performed for all sediment analyses and Spearman’s rank-order correlation was 

performed for comparing mean sediment grain size with bulk density. Sample depth was not 

significant for any parameters apart from pH and nutrients during FR realigned autumn (pH 

and NH4
+) and AH realigned winter (NOx

-) thus depth was not used as a factor during analyses 

(Figure 2.3). 
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 Results: 

 Bulk density and water content 

Bulk density was significantly different between natural and realigned sites at the youngest 

(AH) and oldest (FR) saltmarshes (Figure 2.4). AH realigned saltmarsh sediments were 

significantly more dense than the paired natural marsh sediments (F1,182=2490, p<0.001) and 

FR realigned marsh sediments were less dense than those in the paired natural marsh 

(F1,178=86.6, p<0.001). The bulk density of natural and realigned marsh sediments was 

significantly different and the combined natural marsh data was significantly different from 

combined realigned sites data (F2,544=1203, p<0.001). There was no significant difference 

between the MI natural and realigned marsh sediment bulk densities. 

Water content showed similar, but inverse, patterns to those of bulk density in all 

saltmarshes (Figure 2.5). Water content of AH realigned saltmarsh sediment was significantly 

lower than the water content in the paired natural marsh (F1,180=2134, p<0.001). FR realigned 

marsh water content was significantly higher than that of the paired natural marsh 

Figure 2.3. Average sediment characteristics measurements of 3 Atriplex portulacoides sediment cores 

collected from each salt marsh sampled (natural & realigned) for both depth ranges measured (5-10cm 

& 10-15cm) during the Spring sampling time. Error bars (± SE). 
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(F1,178=78.8, p<0.001). Water content of realigned saltmarshes was significantly different 

from each other (F2,266=2700, p<0.001) and AH natural marsh had significantly higher water 

content than MI natural marsh. Similar to bulk density, water content between MI natural 

and realigned marshes is not significantly different.  

 

Water content in MI realigned marsh sediments varied with season (F3,90=4.77, p=0.003); 

water content of sediments in autumn was lower than those in summer (p=0.01) and winter 

(p<0.001) (Table A.1). There did not appear to be any significant effect of season on bulk 

density or water content in any of the natural marshes. 

Figure 2.4. Average bulk density (g/cm3) on all paired saltmarshes for all 

conditions and seasons, heavy line indicating median. AH 13 years: 

n=94/90; MI 62 years: n=92/94; FR 118 years: n=93/87 
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Physical sediment status was correlated with dominant vegetation, primarily in that 

unvegetated sediments were more dense than vegetated sediments (AH: F3,176=7.07 

p<0.001; MI: F3,178=9.96, p<0.001; FR: F3,172=9.43 p<0.001). In AH natural saltmarsh the mud 

pan sediments were significantly more dense than sediments under vegetated conditions 

(Atriplex p=0.037, Limonium p<0.001, Puccinellia p=0.001). FR natural saltmarsh mud pan 

sediments were also more dense than FR vegetation-covered sediments (Atriplex p<0.001, 

Limonium p<0.001, Puccinellia p<0.001). Other significant sediment bulk density differences 

included; AH realigned Limonium sediments were significantly less dense than AH realigned 

Atriplex (p=0.017) and MI realigned mud was more dense than MI realigned Limonium 

(p<0.001) (Table A.2).  

Similarly, water content in natural marshes was correlated with vegetation conditions: 

unvegetated sediments retained less water than vegetated sediments (AH: F3,174=12.86 

p<0.001; MI: F3,178=13.41 p<0.001; FR: F3,172=19.3 p<0.001). AH natural mud pans had 

significantly less percentage water than vegetated conditions (Atriplex p<0.001, Limonium 

p<0.001, Puccinellia p<0.001). MI natural Limonium had more water content than Atriplex 

Figure 2.5. Average water content (%) on all paired saltmarshes for all 

conditions and seasons, heavy line indicating median. AH 13 years: 

n=94/90; MI 62 years: n=92/94; FR 118 years: n=93/87 
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(p=0.06), mud pans (p=0.034) and Puccinellia (p=0.034). FR natural mud pans had less water 

content than Atriplex (p<0.001), Limonium (p<0.001) and Puccinellia (p<0.001). MI realigned 

mud pans had less water content than Limonium (p<0.001) and FR realigned Limonium had 

more water content than Atriplex (p=0.035) (Table A.1). 

 Sediment grain size 

Bulk density was significantly and negatively associated with mean grain size in all marshes 

(Figure 2.6). On a marsh-by-marsh basis FR exhibited the strongest, most significant negative 

correlation according to Spearman’s rank order correlation (p<0.001, r2=-0.688) while bulk 

density had less explanatory power, but retained its significance, in explaining sediment grain 

sizes in MI (p=0.001, r2=-0.234), and in AH (p<0.001, r2=-0.434) (Figure 2.6). When natural 

and realigned sites were compared separately we found that grain size in natural marshes 

was more likely to describe bulk density behaviour than in realigned sites (FRNat p<0.001 

r2=-0.823, FRReal p<0.001 r2=0.358; AHNat p<0.001 r2=-0.500, AHReal p=0.037 r2=0.220; 

Figure 2.6. Mean grain size of sediment (μm) against bulk density (g/cm3) at each 

salt marsh for all depths and seasons. FR: p<0.001, r2=-0.688; MI: p=0.001, r2=-

0.234; AH: p<0.001, r2=-0.434 
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MINat p=0.001 r2=-0.328, MIReal p=0.212 r2=-0.130) (Figure 2.7). Sediment grain size in MI 

appears to be skewed towards smaller, tightly selected grain size particles than other 

marshes (Table 2.1) (Figure 2.8b). In addition, it appears to be the only pair where both 

natural and realigned marshes have similar size distribution and sorting. AH natural marsh is 

less sorted and is more skewed towards finer sediment than its realigned pair (Figure 2.8a), 

although average grain size in the AH realigned sediments is lower than in the natural 

sediments. In contrast, FR realigned sediment grain size is greater than that of the natural 

Figure 2.7. Mean sediment grain size (μm) against bulk density (g/cm3) for each salt 

marsh (A) Natural and (B) Realigned for all seasons and depths. FRNat p<0.001 r2=-

0.823, FRReal p<0.001 r2=0.358; AHNat p<0.001 r2=-0.500, AHReal p=0.037 

r2=0.220; MINat p=0.001 r2=-0.328, MIReal p=0.212 r2=-0.130 
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site sediments, however realigned sediments are less sorted and are somewhat more 

skewed towards finer sediments than in FR natural (Table 2.1) (Figure 2.8c). 

 

Table 2.1. Average sediment grain size measurements and average bulk density (BD) at each 

sampling depth. Sorting is grain size variation within samples (0.00-0.35=very well sorted, 

0.35-0.50=well sorted, 0.50-0.71=moderately well sorted, 0.71-1.00=moderately sorted, 

1.00-2.00=poorly sorted, 2.00-4.00= very poorly sorted). Skewness measures the degree to 

which a cumulative curve approaches symmetry (positive numbers = more coarse, negative 

values = finer; scale from +1 to -1). Kurtosis measures the “peakedness” in a curve (if the 

sample curve is better sorted in the tails than in the central portion, the curve is flat peaked 

or platykurtic. For normal curves = 1.00, leptokurtic curves have >1.00, and platykurtic curves 

have <1.00) 

 

Sediment 
grain size 

Abbotts Hall  Mersea Island Fingringhoe Range 

Natural Realigned Natural Realigned Natural Realigned 

 5 – 10 cm depth 

Mean (μm) 18.2 ± 0.9 14.2 ± 0.3 10.4 ± 0.4 10.5 ± 0.3 13.3 ± 0.7 17.3 ± 1.0 

Sorting (φ) 2.00 ± 0.05 1.67 ± 0.02 1.62 ± 0.04 1.65 ± 0.03 1.77 ± 0.05 2.11 ± 0.05 

Skewness  -0.48 ± 0.03 0.07 ± 0.02 -0.73 ± 0.04 -0.75 ± 0.04 -0.53 ± 0.04 -0.66 ± 0.04 

Kurtosis 2.60 ± 0.06 2.15 ± 0.04 3.51 ± 0.12 3.45 ± 0.09 2.97 ± 0.10 2.80 ± 0.11 

BD (g/cm3) 0.27 ± 0.02 1.34 ± 0.02 0.423 ± 0.01 0.43 ± 0.02 0.34 ± 0.02 0.18 ± 0.01 

 10 – 15 cm depth 

Mean (μm) 18.4 ± 1.1 14.0 ± 0.4 10.3 ± 0.5 11.2 ± 0.4 13.0 ± 0.8 17.0 ± 0.7 

Sorting (φ) 1.93 ± 0.04 1.65 ± 0.02 1.62 ± 0.04 1.68 ± 0.04 1.69 ± 0.05 2.03 ± 0.05 

Skewness  -0.40 ± 0.04 0.11 ± 0.02 -0.71 ± 0.05 -0.68 ± 0.05 -0.50 ± 0.04 -0.66 ± 0.03 

Kurtosis 2.60 ± 0.06 2.08 ± 0.02 3.48 ± 0.12 3.27 ± 0.10 2.88 ± 0.06 2.82 ± 0.10 

BD (g/cm3) 0.29 ± 0.02 1.30 ± 0.02 0.40 ± 0.01 0.43 ± 0.02 0.34 ± 0.02 0.20 ± 0.01 
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Figure 2.8. Average frequency of sediment grain size of (a) Abbotts Hall, (b) 

Mersea Island and (c) Fingringoe Range, ploted on a log scale. Error bars +/- SE 
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 Sediment pH 

Realigned sites varied in sediment pH while natural sites were statistically similar. The FR 

realigned site pH was significantly lower than MI and AH realigned sites (F2,272=34.75, 

p<0.001). Comparing sediment pH between natural and realigned saltmarsh pairs we found 

that only in FR was the natural site significantly different than the realigned site, with the 

realigned site having lower pH (F1,183=19.05, p<0.001) (Figure 2.9). The only observed 

differences in sediment pH between dominant vegetation types was found between AH 

natural marsh mud pans and other AH vegetated conditions, where AH mud pan sediments 

were lower in pH (F3,177=7.584 p<0.001, post-hoc: Atriplex p=0.002, Limonium p=0.002, 

Puccinellia p=0.002) (Table A.3). Mud pans in general showed greater variation in pH (ranging 

from 2.6 to 6.8). Seasonality had no apparent effect on sediment pH (Figure 2.10). Sediment 

pH was found to be negatively correlated with water content (p<0.001, rs=-0.23) (Figure 

2.11a), such that higher water content sediments were more acidic. When the correlation 

was run for each individual marsh, we found that AH and FR were also negatively correlated 

Figure 2.9. Average pH on all paired saltmarshes for all conditions 

and seasons. AH 13 years: n=94/90; MI 62 years: n=92/94; FR 118 

years: n=93/87 
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(AH: p=0.021 rs =-0.17; FR: p<0.001 rs =-0.25). When natural and realigned marshes were 

separated, we found that only FR realigned pH was significantly correlated with water 

content (p=0.008, rs =-0.28) (Figure 2.11). 

 

 

 

 

 

 

(a) 

(c) 

(b) 

Figure 2.10. Average pH of each salt marsh (a) Abbotts Hall, (b) Mersea Island, (c) Fingringhoe 

Range, at each season for all conditions together.  
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 Nutrients 

Sediment nutrient content changed with management status, location, seasonality and 

dominant vegetation. Ammonium (NH4
+) concentration in the sediment was significantly 

different between the natural marshes and realigned but also between the natural marshes 

themselves and between the realigned marshes (F2,543=24.36, p<0.001). NH4
+ concentration 

of AH natural was significantly higher than MI natural (F2,543=24.36, p<0.001), and AH 

realigned marsh concentrations were significantly lower than those in FR and MI realigned 

marshes (F2,543=24.36, p<0.001) (Figure 2.12). When comparing paired natural and realigned 

marshes only in AH natural was NH4
+ content significantly higher than in the AH realigned 

marsh (p<0.001).  

 

(a) 

(c) (d) 

(b) 

Figure 2.11. (a) pH against water content for all site and marshes. (b) pH against water content for 

each marsh for all seasons and depths. (c) pH against water content for all natural marshes. (d) pH 

against water content for all realigned marshes 
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Variation between sampling seasons was observed in all sites, both natural and realigned 

(F6,525=5.82, p<0.001). NH4
+ concentration in AH natural marsh in spring was significantly 

higher than all the other seasons (p<0.001) and in AH realigned marsh spring sediment NH4
+ 

concentrations were significantly higher when compared to autumn and summer (p<0.001, 

p=0.008) (Figure 2.13). In MI saltmarsh both natural and realigned sites behaved similarly 

with spring NH4
+ concentrations being significantly higher than other seasons (p<0.001) while 

autumn concentrations were also significantly higher than those of summer and winter 

(p<0.001) (Figure 2.13). FR natural and realigned marshes behaved similarly, but differently 

to the other marshes, with spring NH4
+ significantly lower concentration than the other 

seasons (p<0.001). NH4
+ concentrations in FR natural in autumn were significantly lower than 

summer and winter (p<0.001), FR realigned in autumn was significantly lower than winter 

(p=0.014) and FR natural in summer concentration was significantly higher than FR summer 

realigned (p<0.001) (Figure 2.13). Additionally, NH4
+ concentration was positively correlated 

with water content (p<0.001, rs=0.36) and weakly correlated with nitrate/nitrite 

concentration (p=0.016, rs=0.10). 

Figure 2.12. Average ammonium (NH4
+) concentration in sediment (mg/kg) 

on all paired saltmarshes for all conditions and seasons. AH 13 years: 

n=94/90; MI 62 years: n=92/94; FR 118 years: n=93/87 
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Nitrate/nitrite (NO2
-/NO3

-) concentration in sediment was significantly different between AH 

and MI paired natural and realigned marshes (F1,183=8.18 p<0.001; F1,184=12.36 p<0.001) with 

both realigned marshes having lower concentrations than the natural marshes (Figure 2.14). 

NO2
-/NO3

-concentrations did not vary with season at any site.  

Surface vegetation appears to impact sediment nutrient status. Sediments under Atriplex 

and Puccinellia had higher concentrations of NO2
-/NO3

- relative to other conditions. In AH 

natural marsh Atriplex and Puccinellia sediments NOx concentrations were significantly 

higher than in Limonium sediments (F3,91=5.21; p=0.002, p=0.021), and in MI natural marsh  

Figure 2.13. Average NH4
+ concentration in sediment for each 

season for each saltmarsh and natural/realigned site. n=24, error 

bars ± SE 
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Atriplex and Puccinellia sediment NOx was significantly higher than in mud pans (F3,88=5.39; 

p=0.021, p=0.001) (Figure 2.15). No statistical significance was found between different 

vegetation conditions in FR, however we can see that Atriplex sediments had higher NOx 

concentrations than other (non)vegetated sediments for both natural and realigned marshes 

(Figure 2.15).  

 

Figure 2.14. Average nitrate/nitrite (NO2
-/NO3

-) concentration in the sediment 

(mg/Kg) at each natural and realigned site 
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 Plant biodiversity 

Plant diversity was greater for all natural marshes when compared to their paired realigned 

marshes. We observed significantly higher α-biodiversity index (Shannon’s, accounts for 

both abundance and evenness of species present) in the natural marshes (Table A.4; AH 

p<0.001, MI p=0.007, FR=0.002). Plant α-diversity in realigned marshes was variable, MI 

realigned had a significantly higher diversity than AH realigned (p=0.01). β-diversity (Bray-

Curtis, a measure of species turnover and relative abundance) also showed significant 

difference between paired natural and realigned marshes with lower plant β-diversity in 

Figure 2.15.  Average nitrate/nitrite (NO2-/NO3-) concentration 

in sediment at all marshes for each condition. Error bars +/- SE 
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realigned marshes (AH p<0.001, MI p<0.001, FR<0.001) (Table A.4). Variability among the 

natural marshes was significantly different when described by β-diversity (p<0.001), and 

realigned marshes were also significantly different from each other (p<0.001). AH natural 

marsh had the greatest species richness relative to MI and FR natural marshes, whereas the 

MI realigned marsh had the greatest species richness compared to FR and AH. AH realigned 

site had the least diversity, as defined by β-diversity, relative to all sites studied (Table A.4).  

 Discussion  

Natural and realigned marshes showed similar sediment characteristics as other managed 

and natural marshes studied in south east England; with previous studies reporting bulk 

densities of natural marshes ranging from 0.5 to 0.8g/cm3, realigned bulk densities of 0.8 to 

1.5g/cm3, and pH of natural marshes ranging 6.6 to 7.7 and realigned marsh pH of 7.2 to 8.2 

(e.g. Kadiri et al., 2011; Spencer et al., 2008; Tempest et al., 2015). There are indications of 

gradual shifts in physical sediment characteristics that develop over time within the 

realigned sites. Abbotts Hall, the youngest realigned marsh, showed the most significant 

difference from its paired natural marsh for sediment characteristics measured (bulk density, 

water content, nutrients). The high bulk density and low water content of the realigned AH 

marsh is an indication of a relic agricultural sediment which is purported to remain mostly 

unchanged post inundation (Cai et al., submitted; Tempest et al., 2015). This unchanged relic 

layer in realigned salt marshes has been observed by Tempest et al. (2015) at the Orplands 

Farm site (Blackwater Estuary, SE England) which showed that the relic agricultural layer 

remained unchanged with marine sediment deposited on top post sea wall breach and 

inundation.  

While we did not see any substantive difference between the depths that we observed, this 

does not reflect the relic layer in MI and FR as we did not penetrate to that depth in any of 
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our sampling across any of these sites. AH realigned sediment sampled even to the 10-15cm 

depth was visually different from any other sample collected from realigned sites. Cores 

collected at AH realigned marsh were comprised of red clay, whereas in MI and FR it 

appeared that we were sampling marine sediment deposited over the years in these sites.  

Alternatively, the difference in development of our sites, especially with MI being more 

similar to its natural pair than FR, may be explained by relative spatial location, both to each 

other and within the Colne/Blackwater estuary. Marshes are regionally unique, with 

different wave energy, exposure and sediment delivery (Figure 2.1, 2.2) which may explain 

more of the observed differences than time from realignment. Lawrence et al. (2018) 

examined topographic variability between natural and realigned saltmarshes and found that 

there was no relationship between age of restoration and any topographic variables. They 

state that restored saltmarshes are not on a trajectory to become topographically similar to 

natural marshes over time, although within their sampled marshes, a few restored marshes 

overlapped topographically with their referenced natural marsh. Within our sampling sites 

we observed that MI realigned marsh was more similar to its natural pair than FR which is 

older. This difference can also be seen in the extensive creek formation of MI realigned 

compared to FR realigned (Figure 2.2). 

The AH realigned site is a steeply sloped, low lying old agricultural field which is more 

sheltered from wave exposure than FR and MI realigned (see Figure 2.2), and this could have 

affected sediment deposition and inundation of the site through the years. FR is also an old 

agricultural field which is within a sheltered region with an extensive natural marsh between 

the realigned marsh and the regional coastal mudflats. In contrast, while the MI realigned 

marsh was more exposed and surrounded by creeks which might allow better drainage of 

the site, both MI natural and realigned marshes are found within a protected, bridged 

tributary. This effect can be seen with our sediment grain size distribution which showed MI 
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paired marshes being more similar but also show contrast between the other natural and 

realigned marshes sediment grain size sorting.  

Lawrence et al. (2018) found that realigned marshes have different topography to natural 

marshes, they have an enhanced potential for water accumulation (higher topographic 

wetness index) and have lower creek densities. Realigned salt marshes are topographically 

more similar to the agricultural landscapes they originate from than natural marshes 

(Lawrence et al., 2018). This can affect the development of the marsh’s vegetation and 

drainage which in turn can affect the sediment structure. It may be that passage of time, and 

time since inundation, alone does not predict return to a “natural” state. Instead location, 

topography, exposure and previous land use may be the determining factors in salt marsh 

restoration.  

Furthermore, natural marshes show greater variability and heterogeneity in nutrient 

concentrations and sediment pore water content than realigned marshes. This was seen 

both though the variance observed during each sampling period between the different 

vegetation conditions (spatial) and also seasonal variation (temporal). Only the oldest 

realigned site (FR) showed greater variability in a sediment characteristic (pH; ranges from 

2.5 to 7.9) relative to its paired natural marsh, while the younger sites (AH, MI) showed less 

variability in all other conditions compared to the reference natural marshes. The younger 

realigned marshes (AH, MI) showed little fluctuation in sediment characteristics over the four 

season sampling period. These data suggest that natural marshes are more heterogeneous 

than realigned marshes. When we compared nutrient concentration between the 

natural/realigned paired we observed that AH natural marsh had a higher concentration of 

NH4
+ than realigned which could be attributed to the lower water content in the realigned 

marsh, facilitating nitrification of NH4
+ to NO3

-/NO2
-, an aerobic process. In addition, we 

observed higher concentrations of NH4
+ in our Atriplex conditions which previous studies 
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have shown they are associated with nitrogen fixing endophytes (Tahtamouni et al., 2016; 

Zahran, 1999). Heterogeneity of a natural saltmarsh in terms of nutrient concentrations in 

comparison with realigned saltmarshes may be explain by the differences in plant 

biodiversity and microbial communities which drive these processes 

(nitrification/ammonification). 

Heterogeneity of sediment characteristics of realigned marshes and the presence of a 

relative dense subsurface layer could affect creek development (Hazelden and Boorman, 

2001) and the topographical development of the realigned marsh (Lawrence et al., 2018), 

which in turn can affect the biogeochemical process of the marsh as well as plant 

development (Mossman et al., 2012b). Differences in plant community composition and 

diversity of realigned marshes can reduce their biogeochemical functions (i.e. carbon storing 

(Moreno-Mateos et al., 2012)) and are very likely to have knock on effects on other plant-

influenced ecosystem functions such as sediment erosion (Ford et al., 2016) and wave 

attenuation (Möller and Spencer, 2002). Elevation is also a key determinant of vegetation 

colonization of restored salt marshes since saltmarsh plants have clear elevation niches 

(Masselink et al., 2017; Sullivan et al., 2017). In order to minimize any observed differences 

due to elevation zonation all sampling was performed at similar elevation (within 20cm), thus 

allowing us to conclude that any variances observed between natural and realigned plant 

biodiversity was due to other underlying factors (i.e. sediment characteristics) rather than 

elevation differences. 

Plant biodiversity in realigned marshes was found to be lower than in natural sites. Despite 

our study sampling at specific plant dominant locations within consistent, set elevations 

(mid-marsh) our results match previous natural/realigned comparisons of saltmarsh 

biodiversity (e.g. Garbutt and Wolters, 2008; Mossman et al., 2012). However, α-biodiversity 

of our oldest realigned site (FR) was not significantly different from the youngest (AH) but 
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was significantly different from MI which re-emphasizes the idea that re-establishment of a 

marsh is complex and age of a realigned marsh (years from initial inundation) does not 

adequately predict return of a “natural-state” marsh. Topography (i.e. slope and creek 

formation) and hydrogeology of a marsh could be a more determining factor of realigned 

salt marsh plant development than age. In addition, changes on short-term scales, or 

immediately after breach are often overlooked even though biotic and abiotic factors that 

are likely to affect sediment development could be heavily influence by initial conditions set 

within the first year of salt marsh re-establishment.  

Overall, our natural and realigned pairs have not behaved as predicted that the most similar 

pair would be the oldest. Plant biodiversity of realigned marshes was significantly lower than 

natural for all our sampled pairs. However, for sediment characteristics MI was the only pair 

that had no significant difference. The youngest site (AH) did behave as expected with the 

greatest variability between the pairs. With the observed differences between the FR pair 

we can confidently conclude that age of a realigned marsh alone cannot determine or predict 

the success of a marsh returning to “natural” conditions. 
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Chapter 3.  Changes in sediment characteristics in the first year of a 

UK realigned salt marsh  

 Introduction 

Saltmarshes are coastal habitats that provide important ecosystem services, from support 

for coastal and terrestrial food chains to coastal protection (Beaumont et al., 2008; Hughes 

and Paramor, 2004; Millenium Ecosystem Assessment, 2005). Tidal marshes are predicted to 

bury carbon and it is estimated that this burial of carbon in saltmarsh sediments globally is 

between 5 teragrams (Tg) and 87 Tg C yr-1 (McLeod et al., 2011). Saltmarshes provide 

protection to coastal areas by dissipating wave and tidal energy, reducing the possibility of 

sea walls being breached, overtopped or undermined (Möller et al., 1999; Möller and 

Spencer, 2002). An estimated 2000km of UK coastline is protected by saltmarshes (Doody, 

1992). Saltmarsh coverage in the UK (as of 2008) is approximately 45,500 hectares, mainly in 

eastern England (Beaumont et al., 2008) 

Climate change threatens coastal habitats by increased storm frequency and sea-level rise 

(IPCC, 2007). The human response to these challenges is greater installation of sea defences, 

which further constricts coastal shore-line habitat development and the natural 

expansion/development of salt marshes. These actions in combination, have been described 

as coastal-squeeze (Boorman, 2003). Over the last two decades there has been an 

accelerated global decline in the extent of saltmarsh systems (Millenium Ecosystem 

Assessment, 2005) and efforts have been initiated to conserve existing marshes and to 

develop new coastal marsh habitats (realigned or managed saltmarshes). The European 

Union Habitat Directive (adopted in UK legislation in 1992) maintains a no-net-loss policy 

that has led to the current strategy of managing coastal marsh areas and the creation of 

managed realigned saltmarshes. Efforts have been made in England and Wales to identify 

suitable areas for managed realignment, to estimate the cost of each realignment, and to 
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monitor realignments (DEFRA, 2002; Environment Agency, 2017). Management plants for 

restoring or enhancing saltmarshes include: i) gathering information on the present status of 

the saltmarsh, ii) identifying any problems, iii) assessing the financial, environmental and 

social consequences of not intervening, iv) identifying suitable management option relative 

to efficiency and cost and v) gathering further data to monitor the effectiveness of any 

scheme (Adnitt et al., 2007). There are five mandatory attributes and targets for restoring 

salt marshes; habitat extent, physical structure (creeks and pans), vegetation zonation and 

structure, vegetation composition and other negative indicators (e.g. no signs of pollution). 

When a target is not applicable for a particular site it is excluded (Adnitt et al., 2007). 

Historically, and globally, saltmarshes have been reclaimed for either agricultural land or 

urban development  (Adam, 1990). By their nature, these reclaimed agricultural lands started 

near sea level and when combined with the compaction and erosion of soil that often 

accompanies agricultural practice, has led to a reduction of elevation within these lands to 

below sea level. Maintaining sea defenses in order to protect these low lying agricultural 

lands has become increasingly costly and protocols are being tested in converting some of 

these lands back into saltmarshes (Foster et al., 2013; French, 2006; Hazelden and Boorman, 

2001). Managed realignment aims to restore saltmarshes by reconstructing new sea walls 

further inland and deliberately breaching existing fore-shore walls thus allowing tidal 

inundation of low-lying agricultural land (French, 2006).  

Studies have shown that, even decades after installation, realigned saltmarshes have 

different plant communities and distributions than natural marshes (e.g. Garbutt & Wolters 

2008, Davy et al. 2011, Mossman et al. 2012a). Some studies have found that previous land 

use of realigned sites (agriculture and drainage) results in long term changes to the 

subsurface sediment structure, including collapse of pore space, which leads to poor or less 

rapid marsh drainage (Spencer et al., 2008; Tempest et al., 2015). These changes are not 
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readily reversed once the land is flooded with saline water and seawater inundation may 

result in further downwash of fine particles into the subsurface thus further reducing 

porosity at depth (Macphail et al., 2010). Furthermore, Tempest et al. (2015) found that de-

embarked saltmarshes (i.e. realigned marshes created by breaching of the sea wall and 

allowed to regenerate naturally) have two distinct sediment layers, relic and altered 

agricultural soil, overlain by newly deposited marine sediment. These two layers have 

different physical properties and are hence likely to have different hydrological 

characteristics in terms of water storage and movement. 

Environmental data on sediment moisture, redox potential and organic matter show that 

restored marshes are less oxygenated with lower redox potential at lower elevations relative 

to sea level (Davy et al., 2011). Higher elevations in managed saltmarshes have been shown 

to have more oxygenated sediments that are drier and contain less organic matter relative 

to natural marshes of the same elevation (Mossman et al. 2012a). These sediment 

characteristics have substantial influence on plant community dynamics (Davy et al. 2011, 

Mossman et al. 2012b), which may explain the long-term trends reported by Garbutt & 

Wolters (2008) and Mossman et al. (2012a). Garbutt and Walters (2008) observed that, even 

after a century of re-establishment, plant communities in realigned marshes were 

significantly different. Realigned marshes had lower percentage cover of targeted species 

than natural marshes. Garbutt and Wolters (2008) concluded that realigned marshes could 

take up to 137 years to reach the same species richness as natural marshes however not 

necessarily with the same species. Mossman et al. (2012a) found similar results when 

comparing plant communities of restored versus natural (reference) marshes. In this case 

the restored marshes had overall similar plant community composition, but individual 

quadrats had more exposed bare ground than natural marshes.   
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We know that when we consider aboveground plant diversity natural and realigned marshes 

are different, however these changes are linked to, and possibly driven by, below ground 

processes. We therefore need to know what those processes are. Nitrogen from the 

atmosphere is taken up by plants as well as available organic nitrogen from the sediments 

and used for metabolic reactions (protein formation and chlorophyll production thus linked 

to photosynthetic rate of plants (Evans, 1989)). The major source of nitrogen in the form of 

NO3
-/NO2

- and NH4
+ into saltmarshes is bulk precipitation (Jordan et al., 1983). Excess 

nitrogen enters salt marshes from fertilizer runoff, acid precipitation and sewage waste 

(Seitzinger et al., 2005). The amount of nitrogen removed or recycled by coastal wetland 

varies with the different types of processes (i.e. nitrification/denitrification) and their rates 

as well as seasons. For instance, N can be remineralized to NH4
+ and recycled into the water 

column and sediment. It can be removed from the system as N2 gas through the process of 

denitrification and it can also be immobilized by microbes, or buried as soil organic nitrogen  

(Velinsky et al., 2017).  

Nitrogen in the form of ammonia (NH4
+) is released in the sediment during organic matter 

decomposition by ammonifying bacteria and fungi in a process called ammonification. NH4
+ 

is oxidized to nitrate and nitrite (NO3
-, NO2

-) by nitrifying bacteria and archaea in the 

sediment under aerobic conditions. Nitrogen is lost from marine sediments via 

denitrification. Denitrification, the reduction of nitrate back to nitrogen gas, is an obligate 

anaerobic process. The nitrate reducing potential of salt marsh sediments is relatively high 

(Nedwell, 1982), however the reduction process is limited by availability of nitrate. 

Nitrogen in an ecosystem can also be affected by external factors such as fertilization and 

animal grazing (Bazely and Jefferies, 1985; Davis et al., 2017; Ma et al., 2007). Areas where 

animals are grazing (e.g. pasture field) often have an increase in ammonium concentration 

in the sediment as well as localized “hot spots” due to animal excrements (Bazely and 
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Jefferies, 1985; Ma et al., 2007). These hot spots could potentially have an impact on the 

development of sediment and plant biodiversity of a salt marsh as nitrogen availability can 

affect plant biomass (Cartaxana et al., 1999), which in turn can affect sediment stabilization 

(Ford et al., 2016). 

A limited number of studies have focused on sediment characteristics over time in realigned 

saltmarshes (e.g. Spencer et al. 2008, Tempest et al. 2015). Of these, most focus on the 

changes that have occurred several years after restoration. Spencer et al. (2008) and 

Tempest et al. (2015) examined the same saltmarsh 8 and 18 years post breach for changes 

in sediment characteristics and differences with an adjacent natural marsh. However, both 

studies examined the marsh at one timepoint. Changes on short-term time scales, or 

immediately after breach (e.g. Kadiri et al. (2011) who sampled 6 months post breach for 12 

months) are often overlooked even though biotic and abiotic factors that are likely to affect 

sediment development and vegetation colonization (including seed availability, sediment 

pH, salinity, nutrient availability and anoxia (Garbutt et al. 2006, Garbutt & Wolters 2008, 

Mossman et al. 2012a,b, Zhou et al. 2016) are likely to be heavily influenced by initial 

conditions set within the first year of marsh re- establishment.  

This study explores these early-stage sediment realignment processes in a south eastern UK 

saltmarsh established on an agricultural system. The objective of the study was to quantify 

how total sediment accumulation affects early changes in physical and chemical sediment 

status after flooding, and the effect of previous land use (arable and pasture) on newly 

realigned saltmarsh in Essex UK during the first-year post inundation. We hypothesized that 

the pasture field will have a higher load of nutrients than the arable field months after 

inundation due to the increased residual biomass prior to flooding.  
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 Methods: 

 Study site 

Fingringhoe Wick Nature Reserve (48.6 ha) is located in Essex, southeast England on the west 

border of the Colne River. The managed realignment site (22 ha) (51°50'25.77"N, 

0°58'27.80"E) was previously used for two main purposes, growing wheat and barley in 

rotation in the southern field, while the northern field was held as pasture for grazing by 

sheep. The pasture field soils were covered by a thick grass with dense root structure to 8cm 

in depth. The arable field was sparsely planted (every 10cm) with short wheat stubble left 

after the final harvest before the breach and with relatively limited root density in the top 

5cm. Three locations formed the sampling areas for this study, realigned arable field (A), 

realigned pasture field (B) and adjacent natural mash (C) (mud pans and creeks only). The 

two locations (arable, A & pasture, B) (10m x 8m) in the realigned site were selected prior to 

breaching to be at the same elevation. The sampled natural marsh sediments (see map for 

relative location) are elevated relative to the realigned marshes due to soil erosion and 

compaction over time in the agricultural fields. The old sea wall was doubly breached to allow 

tidal inundation of the site from September 2015 (Figure 3.1).  

 

Figure 3.1. Map of location and outline of new realigned site and natural marsh sampling 

locations within the Colne Estuary, UK. 
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 Sampling 

A fixed vertical quadrat (60 cm height x 100 cm length) was placed in each field during 

November 2015, 2 months after breach, on the western edge of the sampling areas to 

measure sediment accretion rate. Rate of accretion was measured monthly thereafter and 

determined by the difference in the distance from the sediment surface to the top of the 

vertical quadrat. 

Post-breach sediment samples were collected on a monthly basis from October 2015 to 

November 2016 (excluding December 2015). Samples were also collected prior-to-breach in 

March and August 2015. No significant differences were found between the two prior-to-

breach months, thus both samplings were collated and used as a single time point zero 

reference. Four sediment cores (4.5 cm inner diameter and ≥20 cm depth) were collected 

from each location on each sampling date. Core samples were separated into 0-5, 5-10 and 

10-15cm depth sections and used to determine bulk density, sediment water content, 

sediment nutrient concentration (NH4
+ and NO2

-/NO3
-) and pH. The volume of the core at 

each depth was adjusted for compression during collection using the difference in depth on 

the inside and outside of the core before extraction; linear compression was assumed. Cores 

were stored at 4°C and processed within 72 hours from collection time.  

During the sampling period, no vegetation grew within the sampling areas. Salicornia sp. and 

Suaeda sp. colonized higher elevation areas within the realigned site but abundance and 

biomass were not recorded as they were outside (>5m) our designated sampling areas.  

 Core processing 

Bulk density and water content samples were taken from the centre (2cm sub-sections) of 

each 5cm (0-5, 5-10, 10-15 cm) section. The top and bottom of each section (e.g. 0-1.5cm 

and 3.5-5cm) were combined and homogenised for nutrient and pH analyses. Bulk density 
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was determined by drying the central disk at 70oC for 7 days and calculated by dividing 

remaining weight by initial (corrected) soil volume.  Percent water content was determined 

from each bulk density sample through measured water loss and is shown as [%water 

content = (g of water/g of fresh soil) * 100]. 

Soil samples for nutrient analysis were prepared according to Houba et al. (1995); 3.0g of soil 

with 30mls of 1M KCl, shaken at 200rpm for 60 minutes, centrifuged (2000rpm for 5 minutes) 

and the supernatant filtered. The filtrate was then stored at -20oC until analysis. Analysis for 

NH4
+ and NO2

-/NO3
- was performed using a Seal Analytical AutoAnalyzer3. KCl blanks were 

run to correct for contamination and/or drifts in extract as well as known concentration 

standards to ensure the equipment was calibrated and measuring correct concentrations. 

Standards were run every 10 samples. The remaining solid phase from the nutrient samples 

was used for pH analysis, after in-house analyses demonstrated that pH was consistent 

between freshly prepared samples and post-extraction samples. In post extraction samples 

a further 15ml of 1M KCl solution was added, the samples were placed on a rocker (60rpm) 

for 60 minutes and analysed using a standard pH probe (meter: Jenway 3310, probe: VWR 

662-1797). Similar to nutrient analysis standards were used to calibrate the probe before 

each analysis as well as every 10 samples to ensure no drifts were occurring during analysis. 

 Statistical analysis 

Statistical analyses were conducted using the R statistical language implemented in RStudio 

(Version 1.1.423). A linear mixed effect model (lmer) (Bates et al., 2015) was used to 

compare the different sediment characteristics with time (months from breach) between 

the two realigned sites (arable, pasture) and with the natural marsh. In the mixed effect 

model sediment accretion was set as a random variable. pH was transformed out of log scale 

for statistical analysis. In addition, a time lag analysis was performed to examine whether 

water content and pH of previous months affected the concentration of ammonium 
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observed in the sediment. The analysis was performed using a linear mixed effect model 

(lmer) with accretion set as a random variable for each depth and each field individually; the 

lag analysis only examines significance up to 8 months prior to allow for sufficient temporal 

replicates. 

 Results: 

Sediment accretion varied between the two realigned fields with the arable location showing 

more accretion than the pasture. Total sediment accretion at the last sampling (14 months 

post-breach, Nov 2016) was 6.4cm for the arable field and 2.2cm for the pasture (Figure 3.2). 

Figure 3.2. Cumulative sediment accretion in the realigned 

fields over time. Error bars denote standard error within 10 

measurements per time point.  

 Bulk density and water content 

Bulk density of the top sediments (0-5 cm) within the realigned saltmarsh decreased 

significantly over 14 months in the arable (from 1.15 to 0.59g/cm3; p<0.001) and pasture 

fields (from 0.58 to 0.28g/cm3; p<0.001) (Figure 3.3a). In the 5-10cm depth range the bulk 

density between the two fields is significantly different (p<0.001), with the density of the 

arable field decreasing over time whereas in the pasture it remained very similar over time. 
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There was no significant change in bulk density within the 10-15 cm depth range in either 

field (Figure 3.3a).  

Bulk density is significantly lower in the natural marsh but over time the top 10cm within 

realigned marsh sites eventually approached a similar density. However, the deeper 

sediments of the realigned sites (>10cm) remained significantly more dense than those in 

natural sediments (Figure 3.3a). Water content showed similar, but inverse, patterns to 

those of bulk density patterns in all three fields (Figure 3.3b). Water content of the top 

sediments (0-5cm) within the realigned saltmarsh increased over time in both fields (arable: 

from 27 to 60%, pasture: from 38 to 68%, p<0.001) matching natural conditions by the final 

sampling month. In sediments at 5-10cm depths water content was significantly different 

over time in both fields (p<0.001), increasing towards but not matching natural marsh 

sediment water content. In sediments at the 10-15cm depths no significant change occurred 

within the realigned fields which remained at ~30% throughout the sampling period; 

realigned fields were significantly lower in water content than the natural marsh (~60%) 

(p=0.02) (Figure 3.3b).  
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Figure 3.3. (a) Bulk density (g/cm3) and (b) Water content (%) over time at each depth in the 

natural and realigned fields. Breach of sea wall (dotted line) was in Sept’15. Error bars are 

±SE, n=4 

 Sediment pH 

The pH of realigned saltmarsh sediments shifted from weakly acidic (between 5.8 and 6) to 

weakly alkaline (between 7 and 8.2) (Figure 3.4), in both fields which was significantly 

different over time in the 0-5cm and 5-10cm depth ranges (p<0.001). However, there were 

no significant difference in those depth ranges between the two fields as they behaved 

similarly over time. In the 10-15cm depth range however, there was a significant difference 

between the two sites over time (p<0.001) with the arable site remaining more acidic than 

the pasture. 

Natural marsh sediments also transitioned from weakly acidic to weakly alkaline over this 

time frame, although the pH of natural marsh sediments was more variable than realigned 
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sediment during several sampling dates (Jan, May, June, July). pH readings for natural marsh 

sediments ranged between 2.95 and 8.30.   

Figure 3.4. Sediment pH over time at each depth in 

the natural and realigned fields. Breach of sea wall 

(dotted line) was in Sept`15. Error bars are ±SE, n=4 

 

 Nutrients 

Ammonium (NH4
+) concentrations in realigned arable sediments increased dramatically after 

initial inundation (~150mg/Kg in arable and ~200mg/kg in pasture) at all depths and then 

decreased over time at all depths, with the greatest decrease (~150mg/kg at both fields) 

occurring within 2 months of the post-breach maximum (Nov to Jan) in the 5-10cm and 10-

15cm depths  (Figure 3.5a). In the pasture field at the 0-5cm depth however NH4
+ 

concentration continued to increase for 6 months post breach before it began to decrease 
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(Figure 3.5a). At the 0-5cm depth, NH4
+ was significantly different between each site 

(p<0.001) and over time (p<0.001). At all depths the pasture field had greater concentrations 

of ammonium than the arable field, which is likely due to the dense decomposing root mass 

(Jordan et al., 1989). Natural marsh NH4
+ concentrations showed similar patterns to 

realigned sites in fluctuations over time but often with substantially greater variation within 

site, especially during the May and July sampling periods with readings ranging between 30 

and 1470mg/kg in May and 20 and 850mg/kg in July. 

Nitrate/nitrite (NO3
-/NO2

-) concentrations in the sediment were fully depleted by the fourth 

month after breaching in both fields (Figure 3.5b). Only in the 5-10cm depth was there a 

significant difference between the fields (natural and realigned) over time (p<0.001). Spikes 

of NO3
-/NO2

- concentration which may have been due to bird excrement (Figure 3.5b; (Bazely 

and Jefferies, 1985)) (48mg/kg) was observed in one of our samples of the arable field at the 

0-5cm depth with the other samples being <0.2mg/kg).  

 Lagged environmental drivers for NH4
+ concentrations  

Change in environmental drivers may cause responses that don’t occur until sometime after 

initial perturbation. Stockdale (2012) found that fluxes in CH4 from a blanket bog showed 

delayed response to water table being lowered, soil temperature and solar radiation. Thus, 

we examined the potential delayed response of NH4
+ concentrations to changes in pH, bulk 

density and water content at the two realigned fields. Overall ammonia concentration 

appeared to be driven by water content and sediment pH (more alkaline led to lower NH4
+), 

however the delay period leading to maximum concentrations varied with depth and with 

site. 
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Figure 3.5.  (a) Ammonium, NH4
+ and (b) Nitrate/nitrite, NO2

-/NO3
-, concentration in sediment 

(mg/kg) over time at each depth in the natural and realigned fields. (Note the difference in 

scales for NH4
+ and NOx and the difference in scale in the 0-5cm depth). Breach of sea wall 

(dotted line) was in Sept`15. Error bars are ±SE, n=4 

For the arable field, within the 0-5cm depth range the ammonia concentrations appear to be 

driven by pH and water content four months prior to sampling (pH, p=0.014 r2=0.556; %H2O, 

p<0.001 r2=0.469). While still showing positive correlations with pH and water content, the 

5-10cm depth ammonia content appeared to be most influenced by pH from the same 

sampling campaign (p<0.001 r2=0.879) and water content 8 months prior to sampling 

(p=0.045 r2=0.672). The 10-15cm depth ammonia concentrations also showed significant 

correlations with pH and water content, although these were most significant three months 

(pH; p=0.002 r2=0.583) and one month prior to sampling (%H2O; p<0.001 r2=0.647).  

Within the pasture field, the 0-5cm depth ammonia concentration of sediments was more 

significantly affected by the sediment pH 3 months prior to sampling (p<0.001 r2=0.458) and 

water one month prior (p<0.001 r2=0.701). In the 5-10cm depth the ammonia concentration 
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was most strongly correlated best with pH of the same sampling campaign and water content 

from the previous month (pH, p<0.001 r2=0.864; H2O, p=0.012 r2=0.873). The 10-15cm depth 

ammonia concentrations were best explained by pH and water content of the same sampling 

campaign (pH, p=0.024 r2=0.877; H2O, p=0.002 r2=0.919). 

When the lag analysis was run without depth separation, pH of the same sampling campaign 

in both fields was most significant (arable, p<0.001 r2=0.610; pasture, p<0.001 r2=0.350) 

(Figure 3.6). Both arable and pasture fields show two distinct time points which were 

significant for water content influence on sediment ammonia concentration. For the arable 

field, of the same sampling campaign and 8 months prior (0, p=0.023 r2=0.505; -8, p=0.018 

the same sampling campaign and 1 month prior (0, p<0.001 r2=0.693; -1, p<0.001 r2=0.740) 

(Figure 3.7). 

 

Figure 3.6. Average ammonium (NH4
+) concentration in sediment with 

pH of sediment for the same sampling time point, all depths are collated 

together. Error bars +/- SE 
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 Discussion 

 Differences between arable and pasture fields 

The difference between the two fields’ bulk density at the start of inundation may be 

primarily attributed to prior use, specifically the pasture field’s dense root mass which 

penetrates down to 8cm depth. The substantial root presence in the pasture field is likely to 

be the driving factor for the lower bulk density in the 0-5cm depth prior to the breach in 

contrast to the dense compact sediment of the arable field. Angers & Caron (1998) found 

that plants influence soil structure and stability, with their penetrating roots favouring fluid 

transport down the sediment column. Within the pasture field the extensive root structure 

may have allowed for more water infiltration to lower sediment depths post breach. Root 

mediated infiltration may explain the higher water content observed at the 0-5cm and 5-

10cm depths post breach in pasture sediments.  

Figure 3.7. Average NH4
+ (mg/Kg) concentration in sediment with water content (%). (a) arable field 

for same sampling time point, (b) arable field with water content of 8 months prior, (c) pasture field 

with same sampling time point, (d) pasture field with water content of 1 month prior. Error bars +/- 

SE 
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The cores were sampled and analysed to a maximum depth of 15cm, however due to 

sediment accretion we did not sample the same location within the original sediment profile 

over time (Figure 3.8). The sediment profile changed as sediment accreted in both fields, 

resulting in the original sediment surface being shifted lower in depth over time (Figure 3.8). 

Thus, when sediments from consistent depths within the prior-use agricultural sediments 

are compared, we can say that the pre-breach agricultural sediments did not substantially 

change over time and changes observed are generally from the new sediment accumulating 

on site. This can more clearly be seen in our arable field, on August 2015 (prior-to-breach) 

bulk density within the 0-5cm depth was 0.99g/cm3, and by November 2016 (final sampling) 

we had 6.4cm of sediment accreted and bulk density of the 0-5cm depth sediments was 

0.59g/cm3 whereas the 5-10cm depth sediments retained a bulk density of 0.91g/cm3 (Figure 

3.3). The difference in accretion rates between the two sites may be explained by non-

uniform erosion of the double breach (north breach less developed than south) which lead 

to less sediment transported to, and deposited on, the northern field (pasture). The 0-5cm 

depth sediments in the November 2016 arable field is representative of the marine accreted 

sediment and does not represent a change of the agricultural relic layer. This effect is more 

obvious when we look at the bulk density and water content of sediments found at lower 

depths (5-10cm & 10-15cm) within both fields which did not chance significantly over the 14 

months of inundation.  
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The two fields had different starting nutrient concentrations, with the pasture field having 

higher NH4
+ concentration and the arable higher NO2

-/NO3
- concentration. These differences 

could be attributed to their previous land use, where the pasture field was used for grazing 

by sheep and their excretions increasing the available NH4
+ within the site (Ma et al., 2007). 

Post breach, both fields behaved similarly with a rapid decrease of NH4
+ concentration within 

the first 2 months, which could be a signal of rapid decomposition of available organic 

matter, and by November 2016 (final sampling) nutrient concentrations were the same for 

both field types. Despite the early differences in nutrient concentrations, pH of sediment 

Figure 3.8. Diagram of the 15cm sediment profile collected before breach and after 14 

months in each site. a) Pasture b) Arable. This shows the difference of the profile that was 

collected at the two time-points. Diagonal dotted lines indicate where each horizon has 

remained 
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within the two fields was similar pre and post breach, with both managed sites starting 

slightly acidic and becoming more alkaline with saline inundation.  

NH4
+ and NO2

-/NO3
- concentrations in sediment are driven by similar natural factors (i.e. 

water content and pH) and appear to have similar inundation responses. Higher 

concentrations of reduction compounds such as ammonia may be indicative of a lower redox 

potential (Velinsky et al., 2017). We observed that with inundation and higher water content 

(proxy over time for an anoxic environment) there was an increase in ammonium 

concentration in the sediment and with the formation of ammonia, pH of the sediment 

increased to more alkaline.  

 Natural vs. realigned marsh 

Physical aspects of the realigned sediments, including bulk density and water content 

matched those of the natural marsh within 14 months post-preach in the 0-5cm depth range, 

however the lower depth sediments within realigned sites remained more dense and drier 

when compared to natural marsh sediments. Similar results were observed by Spencer et al. 

(2008) and Tempest et al. (2015) at Orplands Farm site (Blackwater Estuary, SE England), 

where an unchanged old agricultural relic layer was observed with marine sediment 

deposited on top years post sea wall breach and inundation.  

Chemical properties of the realigned sediments, including nutrient content and pH matched 

those of the natural marsh within 14 months post-breach throughout the sediment profile. 

While the pH of realigned sites sediments became more alkaline over time, matching natural 

marsh sediments, natural marsh sediment pH was more variable (range = 2.95 – 8.69) when 

compared against the more homogeneous realigned site sediments pH (range = 5.68 – 8.49). 

Nutrients (particularly ammonium) behaved consistently in the realigned site sediments, in 

that they followed similar patterns across the field over time; but within the natural marsh 
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we observed spikes of very high concentrations (1470 mg/Kg) and very low (40 mg/Kg) during 

the same sampling time. Burden et al. (2013) also suggested that within the managed 

realigned saltmarsh they examined (Tollesbury, UK) nutrient mineralization rates were 

shifting toward natural marsh rate, however they also concluded that despite the nitrogen 

mineralization rates converting towards natural rates the C/N rations remained lower than 

those in natural sediments thus decreasing the recovery rate of the realigned marsh. 

The homogeneity of realigned sites might contribute to the differences observed in plant 

diversity and composition over time (Garbutt & Wolters 2008). Salt marsh plant species 

distribution is a balance between tolerance and competition (Gray and Benham, 1990), and 

within realigned sites it appears that this has not yet been achieved. This may be due to 

greater abundance of one pioneer species more tolerant to the hard substrate and thus not 

allowing other species to colonize (Garbutt and Wolters, 2008). Some plant species such as 

Spartina anglica can drastically alter the sediment hydrogeology (i.e. draining) of its 

surrounding thus creating waterlogged and anoxic sediments (Doody, 1984). 

Density and moisture of lower sediment depths in the realigned site may also play a role 

since they did not change significantly, which affects the hydrology of the managed marshes. 

Tempest et al. (2013) found that in realigned sites the agricultural relic soils remained the 

same over time, constricting water movement within the sites. In our realigned sites, the top 

5cm of sediment and subsequently the newly deposited marine sediment, was where all the 

conditions match those of the natural marsh, whereas lower depth sediments, especially the 

deepest depth range of 10-15cm, showed little change over time.  

Through our study but also other studies have shown that realigned marshes are showing 

differences both between each other but also with natural referenced marshes (Garbutt and 

Wolters, 2008; Garbutt et al., 2006; Lawrence et al., 2018; Mossman et al., 2012b, 2012a; 

Sullivan et al., 2017; Tempest et al., 2015; Wolters et al., 2005b). These differences could be 
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attributed to physicochemical properties of the sediment; such as soil drainage (due to 

denser lower sediments) (Burden et al., 2013; Spencer et al., 2008; Tempest et al., 2015), 

nutrient cycling (Burden et al., 2013) and seed availability (Wolters et al., 2005a), and 

previous land use (Garbutt et al., 2006; Spencer et al., 2017). 

 Summary 

14 months after inundation the two realigned sites were broadly similar despite their 

different starting points. Pasture field had more nutrients (mostly NH4
+) than the arable field 

post inundation which could potentially influence development of vegetation, invertebrate 

and microbial communities (Chapter 4). Greater additions of N available in salt marshes can 

result in greater growth for below ground biomass which in turn can lead to an increased 

sediment capture, and increase in elevation, due to enhancement of above ground biomass 

and stem density (Fox et al., 2012). Furthermore, our realigned site closely matches the 

natural marsh conditions for nutrients and pH at all depths, but bulk density and water 

content only in the 0-5cm depth, where marine sediments are accreting. This unchanged 

agricultural layer, as seen also by Tempest et al., (2015), can affect the hydrogeology of the 

realigned marsh which could attribute to our observations that although the realigned site 

matched natural conditions by November 2016 the natural marsh remained more 

heterogeneous than the realigned site.  
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Chapter 4. Effect of bioturbators on the sediment characteristics in 

the first year of a realigned salt marsh 

 Introduction 

Bioturbation is the mixing of sediment through biological processes from the action of 

infauna, epifauna, fish and mammals resulting in particle movement (Cadée, 2001). Studies 

have shown that bioturbation of soft sediments by benthic invertebrates has a significant 

influence on benthic sedimentary geochemical properties (Queirós et al., 2013). Through 

their burrowing, feeding and foraging activities benthic invertebrates influence the mixing of 

sediments and particulate materials as well as enhancing the pore water and solute 

advection during burrow ventilation (Volkenborn et al., 2010). Bioturbation of sediments 

through these activities can influence the oxygen, pH and redox gradient of sediments (Biles 

et al., 2002; Pischedda et al., 2008); as well as the metal cycling (Teal et al., 2009); bacterial 

activity and composition (Gilbertson et al., 2012) and the carbon and nitrogen cycling of the 

system (Kristensen, 2001).  

Moreover, studies have shown that burrowing activities of invertebrates increase above 

ground plant production and diversity by increasing soil drainage, decreasing the amount of 

toxic compounds and increasing the anaerobic respiration of plant roots (Bertness, 1985; 

Montague, 1982). Daleo et al. (2007) found that burrowing activities increase the supply of 

nutrient to Arbuscular mycorrhizal fungi which in turn increase production of the salt marsh 

plant Spartina alterniflora, thus concluding that salt marsh productivity and success is highly 

dependent on mutualisms between colonizing species and microorganisms. 

Macrofauna community composition can also affect nutrient availability in the sediment as 

well as the water column. Biles et al. (2002) concluded that ammonia release into water 

column was influenced by infaunal community composition and is mediated by the extent of 
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bioturbation effecting sediment particle resuspension and turnover. However, colonization 

of saltmarsh creeks by Hediste diversicolor can affect the rate of erosion, and decrease 

production and survival of Salicornia seedlings (Paramor and Hughes, 2004).  

Saltmarshes provide important ecosystem services, including support for coastal and 

terrestrial food chains and coastal protection (Beaumont et al., 2008; Hughes and Paramor, 

2004; Millenium Ecosystem Assessment, 2005). Saltmarshes provide protection to coastal 

areas by dissipating wave and tidal energy reducing the possibility of sea walls being 

breached, overtopped or undermined (Möller et al., 1999; Möller and Spencer, 2002). Over 

the last two decades there has been an accelerated global decline in the extent of saltmarsh 

systems (Millenium Ecosystem Assessment, 2005) and efforts have been initiated to 

conserve existing marshes and to develop new coastal marsh habitats (realigned or managed 

saltmarshes). 

This study aims to examine the effect of invertebrate bioturbators (organisms bigger than 

250µm) in the development of sediment characteristics during the 1st year of marsh 

realignment between two different previous land uses (arable and pasture). The primary 

objectives of the study were to (1) compare sediment changes in areas of invertebrate 

exclusion and invertebrate colonization between arable and pasture realigned fields and (2) 

monitor invertebrate colonization in the newly realigned saltmarsh within the 1st year post 

inundation. We hypothesized that areas with invertebrate colonization and hence 

bioturbation to be more homogeneous across all depths than areas with no invertebrate 

colonization by the final sampling.  
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 Methods 

 Study site 

Fingringhoe Wick Nature Reserve (48.6 ha) is located in Essex, southeast England on the west 

border of the Colne River. The managed realignment site (22 ha) (51°50'25.77"N, 

0°58'27.80"E) was previously under two contrasting land uses, an arable wheat/barley 

rotation in the southern field, while the northern field was held as pastureland grass. These 

two prior conditions within the realigned site where selected as the sample sites for this 

study, realigned arable field (A) and realigned pasture field (B). The two regions (10m x 8m) 

in the realigned site were selected prior to breaching to be at the same elevation. The old 

sea wall was breached at two locations to allow for tidal inundation of the site in September 

2015 (Figure 4.1). 

 Experimental design  

64 invertebrate exclusion chambers were placed in the realigned marsh, 32 in the pasture 

field and 32 in the arable field. The chambers were 20cm in diameter and 30cm in height, 

constructed from PVC pipes with eight windows cut from their sides to allow horizontal water 

flow. A 250µm aperture length mesh was placed over the windows. Half the chambers had 

Figure 4.1. Map of location and outline of new realigned site sampling locations and sea wall 

breach within the Colne Estuary, UK. 
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mesh at the top and bottom to fully exclude invertebrates (Full Exclusion chambers). The 

remaining chambers only had mesh at the windows, allowing free invertebrate access from 

the top and the bottom of the chamber (Exclusion Control chambers) (Figure 4.2). 

Undisturbed Control areas, without exclusion chambers, that allowed full invertebrate 

access were allowed to establish and develop naturally within the realigned marsh were 

sampled with soil cores (20cm diameter and ≥20cm depth). Exclusion control chambers were 

used as controls that addressed effects on sediment composition and structure by chamber 

installation.  

 

Figure 4.2. Invertebrate exclusion chambers, 

Exclusion control chamber (left) and Full 

exclusion chamber (right). 

Preliminary sampling of the two fields in March 2015 showed discrete, but different, 

sediment profiles between the two fields. The pasture field had a dense root mass down to 

8cm in depth thus it was crucial when placing the chambers in the site prior to breaching to 

maintain the sediment profile. The arable field was more homogeneous across sampling 

depths with only sparsely planted wheat stubble (left after harvest) and minimal root 

structures. For both fields, relative positioning of plant biomass, root structure, and deeper 

soils were maintained when installing chambers. The chambers were buried 26 days prior to 



78 
 

initial flooding, to a depth of 25cm in the ground with 5cm above ground to allow for 

sediment accretion over the sampling period (Figure 4.3). Chambers were randomly placed 

in a plot design within the two fields (Figure 4.4) and were sampled 4 times between 

placement to 14 months post breach.  

 

 

 

 

 

(A) 

(D) (C) 

(B) 

Figure 4.3. Chamber placement before breaching of the sea wall. (A) shows how 

the top and lower sediments were separated during placement of the 

chambers. (B) Full exclusion chamber in the pasture field with 5cm over ground 

to allow for sediment deposition. (C) Full exclusion chamber in the arable field. 

(D) Exclusion control chamber in the pasture field. 
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Figure 4.4. Random plot design for placing chambers in the realigned sites. First 

letter refers to type of chamber (U=Undisturbed control, C=Control exclusion, 

F=Full exclusion). Second letter refers to sampling season (W=Winter, 

SP=Spring, S=Summer, A=Autumn) 

 

 Core processing 

The chambers were subdivided into 5cm intervals to provide a depth profile for the 

measured soil parameters and invertebrate counts. Bulk density was determined by drying 

and weighing disks of known volume, collected from the central section of each 5cm section. 

Bulk density disks were dried in an oven at 70oC for 7 days. Percent water content was 

determined from each bulk density sample through measured water loss and is shown as 

[%water content = (g of water/g of soil) * 100]. 

Soil samples for nutrient analysis were prepared according to Houba et al. (1995); 3.0g of soil 

with 30mls of 1M KCl, shaken at 200rpm for 60 minutes, centrifuged (2000rpm for 5 minutes) 

and the supernatant filtered. The filtrate was then stored at -20oC until analysis. Analysis for 

NH4
+ and NO2

-/NO3
- was performed using a Seal Analytical AutoAnalyzer3. KCl blanks were 
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run to correct for contamination and/or drifts in extract as well as known concentration 

standards to ensure the equipment was calibrated and measuring correct concentrations. 

Standards were run every 10 samples. The remaining solid phase from the nutrient samples 

was used for pH analysis, after in-house analyses demonstrated that pH was consistent 

between freshly prepared samples and post-extraction samples. In post extraction samples 

a further 15ml of 1M KCl solution was added, the samples were placed on a rocker (60rpm) 

for 60 minutes and analysed using a standard pH probe (meter: Jenway 3310, probe: VWR 

662-1797). Standards were used to calibrate the probe before each analysis and between 

every 10 samples to ensure no drifts were occurring during analysis.  

 Benthic macro-invertebrate collection 

Remaining sediment from each 5cm depth section was stored at 5oC until organisms were 

collected by sieving thought a 250µm sieve mesh. Organisms were placed in 10% formalin 

solution and stored at 5oC until identification and counting. Organisms were identified to 

species level using the Hayward and Ryland (2009) identification handbook under a 

dissecting microscope. Only samples from February’16 (initial) and November’16 (final) were 

processed for invertebrate abundance. Abundance was measured as individuals per m2 in 

5cm depth zones.  

 Statistical analysis 

Statistical analyses were conducted using the R statistical language implemented in RStudio 

(Version 1.1.423). Nested ANOVAs were used to compare the different sediment 

characteristics with each treatment (Half, Full exclusion chambers and Controls); depth was 

nested within treatment and treatment nested within field (arable/pasture). pH was 

transformed out of the log scale for statistical analysis. Nutrient concentrations had 1x10-6 

mg/Kg added to all values to avoid zero value discontinuity and were log transformed to 
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obtain normal distribution. Due to the low species count of invertebrates (≤4 species total) 

biodiversity analyses were not performed. 

 Results 

 Field observations  

During sampling campaigns, we observed worm burrows within the sampling area. Although 

these were not quantified, they were a clear indication of burrowing activity by macro-

organisms within the newly realigned mash. In addition, burrowing holes with clear layers of 

oxygenated and anoxic sediment were observed during extraction of chambers inside as well 

as outside of the chambers (Figure 4.5). In addition, we observed that the full exclusion 

chambers retained more water on the top layer. During sampling when the top mesh was 

removed, the full exclusion chambers had water sitting on the top with an orange/brown tint 

indicating iron rich sediment and water (Figure 4.6). Furthermore, the pasture field had a 

layer of macro algae in it covering all chambers and undisturbed areas sampled (Figure 4.7). 



82 
 

 

(A) (B) 

(D) (C) 

Burrows 

Figure 4.6. (A) image of worm burrows after chamber is being removed from the 

marsh. (B) Macro-organisms burrow holes visible in the realigned marsh prior to 

sampling. (C) worm in its burrow within a chamber sampled, image taken in the 

lab. (C) worm burrow also visible within an exclusion control chamber in the lab. 

Figure 4.5. Full exclusion chamber with water 

sitting on the top and orange/brown colouration of 

sediment and water. Adjacent to the bamboo stick 

is the lid of the chamber that was removed. 
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 Bulk density and water content 

Bulk density in the arable field was significantly different between depths and treatments 

across the four months (F(18,108)=2.45, p=0.002) (Figure 4.8a). Post-hoc analysis shows that 

undisturbed chambers are more dense at all depths over time than the other conditions 

(exclusion control and full), however undisturbed sediment samples had significantly lower 

bulk density within the 0-5cm depth zone (p<0.001). Exclusion control chambers have lower 

bulk density across all depths and all sampling months compared to undisturbed and full 

chambers (Figure 4.8a). Nested ANOVA for the pasture field showed no significant difference 

(F(18,108)=0.95, p=0.520); however, there appears to be variation between the different 

conditions at the 5-10cm and 10-15cm depth zones with a general downwards trend (Figure 

4.8b).  

Figure 4.7. Photos of undisturbed chambers in the pasture field covered in macro algae 

(Ulva sp.) and P.ulvae snails 
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Water content in the arable field was significantly different with depth and treatment and 

with sampling time (F(18,108)=2.45 ,p=0.002) (Figure 4.9a). Full chambers had less water 

content than exclusion control and undisturbed chambers in the 0-5cm depth zone across all 

sampling months (p<0.001). Exclusion control chambers in the arable field have consistently 

greater water content than other treatments (p=0.01). Similar to bulk density, water content 

in the pasture field showed no significant difference (F(18,108)=1.03, p=0.434) but variations 

were observed in the 5-10cm and 10-15cm depth zones (Figure 4.9b).  

Overall, arable and pasture fields showed similar decreases in bulk density and increases in 

water content over time as observed in Chapter 3 (bulk density decreased from 1.15 to 

0.59g/cm3 and water content increased from 30 to 60% during the monthly sampling in 

Chapter 3 at the 0-5cm depth). With lower depths, especially 10-15cm, showing no change 

over time and the greatest observed changes in 0-5cm depths. 

Figure 4.8. Bulk density (g/cm3) at each depth, month and treatment for (a) Arable 

field and (b) Pasture field. Error bars +/- SE, n=4 per month per treatment 
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 Sediment pH 

Sediment pH of the arable field was significantly different with depth and treatment across 

the sampling months (F(18,108)=2.30, p=0.004) (Figure 4.10a). pH in the 5-10cm and 10-15cm 

depths of the arable field became more alkaline from February to November for all 

treatments with the exclusion control chambers being more alkaline than full and 

undisturbed chambers. Sediment pH of the pasture field was not significant different with 

depth or treatment across the sampling months (F(18,108)=0.80, p=0.692) (Figure 4.10b).  

 

 

 

Figure 4.9. Water content (%) at each depth, month and treatment for (a) Arable field 

and (b) Pasture field. Error bars +/- SE, n=4 per month per treatment 
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 Sediment nutrients 

Ammonium (NH4
+) concentration in the sediment of both arable and pasture fields differed 

significantly with depth and treatment across the sampling months (Arable: F(18,108)=2.26 

p=0.005, Pasture: F(18,108)=2.98 p<0.001). In the arable field NH4
+ concertation decreases 

within all depths for all treatments, with the greatest decrease observed in the 0-5cm zone 

(from 70 to 24mg/kg; p<0.001). In the arable field concentration of NH4+ increased from 

February to May by ~30mg/kg before it decreased by ~70mg/kg by November, leading to an 

overall reduction in ammonia concentrations over time (Figure 4.11a). Exclusion control and 

undisturbed treatments have higher ammonium concentrations than full exclusion 

treatments in the arable field (Undisturbed: 88±13 mg/kg, Exclusion control: 125±9 mg/kg, 

Full exclusion: 37±4 mg/kg in May) and overall the pasture field sediments had higher 

Figure 4.10. Sediment pH at each depth, month and treatment for (a) Arable field 

and (b) Pasture field. Error bars +/- SE, n=4 per month per treatment 



87 
 

concentrations of ammonium than those in the arable field (arable: ~70±6 mg/kg, pasture: 

~160±20 mg/kg; Figure 4.11b). NH4
+ concentration in the pasture field sediments decreases 

at all depths, with the greatest decrease happening in the 0-5cm depth zone (from 197 to 22 

mg/kg; F(18,108)=2.98 p<0.001) (as also observed in Chapter 3). In the 5-10cm depth zone 

undisturbed and full exclusion treatments behave similarly whereas exclusion control 

chambers start at a higher concentration and by the last sampling point they have similar, 

low concentrations relative to other chamber types. Concentration of nitrate/nitrite (NO3
-

/NO2
-) in the sediment was lower than 10 mg/kg and no significant difference was found 

between depth, treatment or field type (data not shown, Arable F(18,108)=1.39 p=0.154, 

Pasture F(18,108)=0.52 p=0.946). 

Figure 4.11. Ammonium (NH4
+) concentration (mg/kg) in sediment at each depth, 

month and treatment for (a) Arable field and (b) Pasture field. Error bars +/- SE, n=4 

per month per treatment 
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 Benthic macro-invertebrates 

Four species of marine invertebrates were found in the realigned sites for February and 

November (Figure 4.12, Table A.5). Gastropod Peringia ulvae (mud snail), polychaete Hediste 

diversicolor (ragworm) and the bivalves Limecola balthica (Baltic tellin) and Cerastoderma 

edule (Common cockle). The greatest abundance across both fields and months was of 

P.ulvae, which was found in all conditions and depths. No biodiversity assay could be 

performed on the abundance of invertebrates due the low species number. 

Although some invertebrates were found within our full exclusion chambers the numbers 

are significantly lower than those in undisturbed or exclusion control chambers. As P.ulvae 

were found only in the 0-5cm in the full exclusion chambers, the observed abundances may 

be due to an artefact of the extraction procedure. The pasture field has a greater abundance 

of P.ulvae (F(2,138)=5.66 p=0.018), especially in exclusion control chambers (F(2,69)=5.79 

p=0.003; Table A.5). 
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Figure 4.12 Bar chart with average density of invertebrates (m3 per 5cm depth zone). Und Con = Undisturbed Control, Exc. Con = Exclusion Control, 

Full Exc. = Full Exclusion. +/- = SE 
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 Discussion 1293 

 Bulk density and water content 1294 

Bulk density of the realigned fields for all treatments showed the same downward trend as 1295 

observed from monthly cores taken concurrently at these sites (Chapter 3). Exclusion control 1296 

chambers in the arable field have a lower bulk density at all depths compared to the 1297 

undisturbed and full exclusion chambers. Although our undisturbed chambers have a lower 1298 

bulk density in the 0-5cm depth zone than in the lower depths (5-10cm & 10-15cm) they are 1299 

more dense than the full exclusion and exclusion control chambers. In the pasture field, no 1300 

change in bulk density is observed in the 0-5cm zone, however we observe fluctuation of 1301 

density in the lower depths for all treatments. Similar to the arable field, undisturbed is more 1302 

dense in the lower depths (5-10cm & 10-15cm) compared to full exclusion and exclusion 1303 

control, with exclusion control chambers having lower density than the others. 1304 

Water content in the arable and pasture fields showed an increase over time at all depths 1305 

but mostly in the top 10cm. In the 0-5cm depth zone undisturbed chambers have a greater 1306 

water content compared to exclusion control and full exclusion chambers especially in the 1307 

arable field. In the 5-10cm depth zone however we observed that the exclusion control 1308 

chambers have more water content although by November all chambers have a similar water 1309 

content. Invertebrate abundance was higher in the 0-5cm depth zone thus higher water 1310 

content in the exclusion control chambers in the 5-10cm depth zone could be attributed to 1311 

gaps created in the sediment profile during chamber installation allowing for water 1312 

penetration deeper into the sediment profile rather than bioturbation from invertebrates. 1313 

When we compare the change in bulk density and water content of invertebrate exclusion 1314 

and invertebrate control chambers, we can see that chambers with invertebrate colonization 1315 

(invertebrate control) have lower bulk densities and higher water content, especially in the 1316 
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top 10 cm depth. This difference can be attributed to the biological mixing (burrowing) 1317 

occurring by invertebrates over time rather than just the physical disturbance of installing 1318 

the chambers prior to flooding. Both chambers were treated equally during installation with 1319 

similar gaps created in the sediment profile thus the differences observed can be linked to 1320 

the presence of invertebrates. 1321 

 Sediment pH 1322 

Our arable and pasture fields behaved differently over time and with treatment. In our arable 1323 

field we saw a change from a slightly acidic to a slightly alkaline sediment at all depths and 1324 

conditions. In the top 5cm the control and exclusion control chambers behaved identically 1325 

with the full exclusion chambers showing slight fluctuation over time. In the lower depths 1326 

we see that the exclusion control chambers have a higher pH than the other treatments. In 1327 

our pasture field sediment pH follows a similar trend of becoming more alkaline over time 1328 

however not for all treatments and depths. pH of seawater is within the range of 7.2 ≤ pHT ≤ 1329 

8.1 (Yang et al., 2014); which could account for the increasing alkalinity of the top sediment 1330 

through inundation and saturation of sediment with seawater. Variations observed in the 1331 

pasture field may be explained by the dense root mass which affects water movement 1332 

(Angers and Caron, 1998) as was also observed in our monthly core collection in Chapter 3. 1333 

pH range observed in our realigned site is similar to other studies (Ford et al., 2016; Spencer 1334 

et al., 2008; Velinsky et al., 2017; Wolaver et al., 1986). Within those studies natural marshes 1335 

have a pH lower than 7 whereas realigned marshes tended to have a higher pH (over 7).  1336 

 Sediment nutrients 1337 

Ammonium (NH4
+) concentration in both fields decreased over time for all treatments. 1338 

Pasture field initially has higher concentration of NH4
+ than arable field but by November 1339 

they both have similar concentrations in the sediment. In the arable field we can see a clear 1340 
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effect of the treatment in the 0-5cm depth as the concentrations between the treatment 1341 

from February until August are significantly different with the exclusion control chambers 1342 

being higher and the lower concentration in the full exclusion chambers. In addition, in the 1343 

lower sampled depth 10-15cm of the arable field the undisturbed chambers have a higher 1344 

concentration of NH4
+ which is also increasing over time. This is also observed in the pasture 1345 

lower depths, however in the 0-5cm depth zone undisturbed chambers have a higher 1346 

concentration than the other treatments. Nutrient concentrations in the sediment are 1347 

affected by the microbial communities of the sediment, responsible for breakdown of 1348 

organic matter (litter decomposition), nitrification and ammonification of available N 1349 

(Francis et al., 2007; Gruber and Galloway, 2008; Nedwell, 1982; Strous et al., 2006). Overall, 1350 

nutrient concentration in the realigned sites is higher in the exclusion control and 1351 

undisturbed chambers than the full exclusion chambers. Biles et al. (2002) found that 1352 

sediment disturbance, from bioturbation (organisms or water flow) can affect nutrient 1353 

availability in the sediment as well as their released into the water column. This matches our 1354 

results of higher nutrient concentration in the exclusion control and undisturbed chambers, 1355 

where we have higher abundance of invertebrate colonization, than the full exclusion 1356 

chambers. 1357 

 Benthic macro-invertebrates 1358 

Macro-organisms found within our realigned sites are typical of natural and realigned 1359 

saltmarshes in east England (e.g. Garbutt et al., 2006; Jackson et al., 1985) and recreated 1360 

intertidal mud flats in the UK (e.g. Evans et al., 1998). Our realigned sites had similar 1361 

abundances of P.ulvae as other studies however abundance of bivalves and ragworms was 1362 

lower in our realigned site over the post-inundation period studies for the same period post-1363 

breach. Within our treatments we observed a higher abundance of organisms in our 1364 

exclusion control chambers than the undisturbed areas. This might be due, not only to the 1365 
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open access (no top mesh) for organisms to colonize but also to the breakdown of the relic 1366 

sediment layer that occurred during installation of the chambers, as well as gaps created 1367 

during placing of the chambers which allowed organisms to penetrate/fall further down the 1368 

sediment column to depths that otherwise would be lethal (>10cm) (Chandrasekara and Frid, 1369 

1998; Huxham et al., 1995). Furthermore, Craft (2000) found that development of 1370 

communities of benthic invertebrates in realigned salt marshes depended on wetland 1371 

sediment formation and development. We observed that exclusion control chambers 1372 

behaved differently from the undisturbed chambers, having lower bulk density in the top 1373 

5cm as well as higher water content, which might have allowed the formation of more ideal 1374 

sediment conditions for macro-invertebrate colonization. The development of the 1375 

invertebrate community is dependent on the formation of an organic rich surface later to 1376 

support the detritus feeding organisms (Craft, 2000) which can explain the increase in 1377 

community numbers in our site from February to November.  1378 

Benthic macro-invertebrates are an important component of salt marsh establishment and 1379 

function as they are involved in sediment bioturbation (Bertness, 1985), biogeochemical 1380 

cycling (Alkemade et al., 1992) and are a source of food for higher invertebrates, fishes and 1381 

birds (Adam, 1990). However, in early establishment of marshes Paramor and Hughes (2004) 1382 

found that ragworm, Hediste diversicolour¸ can inhibit the development of plants as it feeds 1383 

on plant seedlings. Thus, macro-invertebrate colonization of realigned saltmarshes can have 1384 

a diverging impact on marsh development. Invertebrates on newly realigned marshes could 1385 

help develop the sediment characteristics through their burrowing activities (i.e. increasing 1386 

sediment aeration/water drainage and nutrient movement) but also may inhibit through 1387 

active feeding on plant seedings and not allowing plant colonization. During our study period 1388 

(14 months since breach) there was no vegetation colonization within our sampling area, 1389 

thus we cannot conclude whether ragworm colonization within this realigned site has a 1390 

detrimental or beneficial effect.  1391 



94 
 

 Summary 1392 

Our invertebrate exclusion experiment has shown that disturbance of the sediment can 1393 

influence its geochemical characteristics in newly realigned saltmarsh. Macro-invertebrate 1394 

colonization of a newly realigned site could create that disturbance (bioturbation) and 1395 

influence the geochemical characteristics, as we observed by the differences in geochemical 1396 

properties of invertebrate colonization chambers. In our experiment invertebrate 1397 

colonization did not affect the homogeneity across all depths as both colonized and 1398 

uncolonized sediments were very similar by the last sampling. Despite all experimental 1399 

chambers reaching the same (or very similar) geochemical state by the end of the sampling 1400 

campaign (14 months post breach) the rate of change occurring in our invertebrate 1401 

colonization chambers is greater than the full exclusion chamber. 1402 

In addition, that disturbance of the relic agricultural layer prior to flooding of the site can 1403 

also affect those changes similarly and on occasion have greater effect, as seen in our 1404 

exclusion control chambers. This active breakdown of the relic layer occurred during the 1405 

installation of the exclusion chambers (especially exclusion control chambers), simulating a 1406 

more active mixing of the sediment profile allowing for water movement further down the 1407 

sediment post flooding. A combination of active breaking of relic layer (e.g. plowing) and 1408 

colonization of invertebrates can potentially accelerate shift of geochemical characteristics 1409 

of newly realigned marshes from terrestrial to marine. Disturbance of the sediment prior to 1410 

flooding may also enhance plant colonization through not only more favorable sediment 1411 

characteristics but also by creating a more suitable surface for saltmarsh plant seeds to 1412 

anchor, increasing their changes of germinating (Garbutt et al., 2006).   1413 

Chemical characteristics of sediments however are also influenced by microbial communities 1414 

present. Microbes in the sediments are responsible for the breakdown of organic matter 1415 

releasing readily available nutrients into the sediment for plant absorption. These 1416 
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communities present could be drivers for the success of plant colonization and geochemical 1417 

changes observed in the sediment.  1418 
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Chapter 5. Microbial community changes during the first year of a 1419 

newly realigned salt marsh and effect of bioturbation on them 1420 

 Introduction 1421 

Salt marshes are among the most productive ecosystems on the planet and harbor diverse 1422 

biological communities (Teal and Howes, 2002). It is estimated that marine sediments harbor 1423 

~1031 microbial cells with a biomass rivaling those of plants making them Earth’s largest 1424 

microbial habitat (Whitman et al., 1998). Over the last two decades there has been an 1425 

accelerated global decline in the extent of saltmarsh systems (Millenium Ecosystem 1426 

Assessment, 2005) and efforts have been initiated to conserve existing marshes and to 1427 

develop new coastal marsh habitats (realigned or managed saltmarshes). With increased 1428 

development and creation of salt marshes a greater understanding of the functionality of 1429 

these new systems is required. Easily observable biodiversity such as vegetation and animal 1430 

diversity of realigned marshes has been extensively assessed (e.g. Davy et al., 2011; 1431 

Environment Agency, 2017; Garbutt and Wolters, 2008; Mossman et al., 2012; Wolters et al., 1432 

2008, 2005). Realigned saltmarshes have been found to be different than natural marshes in 1433 

terms of plant biodiversity, sediment characteristics and hydrogeology (e.g. Garbutt and 1434 

Wolters, 2008; Lawrence et al., 2018; Spencer et al., 2008; Tempest et al., 2015; Wolters et 1435 

al., 2005); where these differences can persist after years of inundation and plant 1436 

colonization. Microbial communities, which affect and are affected by above ground 1437 

biodiversity have been harder to measure and quantify precisely until recently (Derocles et 1438 

al., 2018).  1439 

Microbial communities in salt marshes are, among other processes, responsible for organic 1440 

matter decomposition from plant litter, transform pollutants (Benoit et al., 2003; Lillebø et 1441 

al., 1999; Smith and Hollibaugh, 1993) and affect the availability of heavy metals (Stolz and 1442 

Oremland, 1999). Understanding these communities and their interactions with other taxa 1443 
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within salt marshes is essential for developing effective restoration and mitigation strategies 1444 

for theses vulnerable ecosystems, as well as maintaining genetic resources for future need.  1445 

Sediment characteristics, such as pH and bulk density, have been shown to affect microbial 1446 

communities composition and abundance (Li et al., 2002; Yamada et al., 2007). Bioturbation 1447 

of soft sediments by benthic invertebrates can also have a significant influence on microbial 1448 

communities either directly through predation (Graça et al., 2000) and indirectly through 1449 

modification of benthic sedimentary geochemical properties (Queirós et al., 2013). 1450 

Furthermore, Daleo et al. (2007) found that burrowing activities of crabs increase the supply 1451 

of nutrients and oxygen to arbuscular mycorrhizal fungi which in turn increased biomass 1452 

production by the salt marsh plant Spartina alterniflora. Lillebø et al. (1999) found that 1453 

microbial activity was responsible for 67% of litter decomposition in salt marshes, however 1454 

additions of macrofauna and meiofauna increased the degradation process.  1455 

Previous land use of realigned marshes can affect the hydrogeology of the site (Lawrence et 1456 

al., 2018; Spencer et al., 2008; Tempest et al., 2015) which in turn can affect sediment 1457 

characteristics of a realigned marsh (Chapter 3). And these in turn could affect microbial 1458 

communities of the sediment. Studies have shown that microbial communities are 1459 

significantly affected by land use change (Bossio et al., 1998; Johnson et al., 2003; 1460 

Steenwerth et al., 2002). Lauber et al. (2008) has also shown that land use and change not 1461 

only affects community structure but also relative abundance of bacterial and fungal species 1462 

within communities.  1463 

Our study aims to examine microbial communities of a newly realigned marsh within the 1st 1464 

year of inundation. The object of the study was to (1) compare the effect of bioturbation on 1465 

microbial communities in a newly realigned salt marsh and (2) examine the effect of previous 1466 

land use (arable and pasture) as well as differences in sediment characteristic on microbial 1467 

communities of the realigned salt marsh. We expected to find areas with bioturbation to 1468 
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have more similar microbial communities with the natural marsh than areas of no 1469 

bioturbation. 1470 

 Methods 1471 

 Study site 1472 

Fingringhoe Wick Nature Reserve (48.6 ha) is located in Essex, southeast England on the west 1473 

border of the Colne River. The two fields within the managed realignment site (22 ha) 1474 

(51°50'25.77"N, 0°58'27.80"E) were previously used for growing wheat and barley in rotation 1475 

(southern field), and pastureland grass (northern field). Two locations within the realigned 1476 

site and one local natural location, formed the sample sites for this study, realigned arable 1477 

field (A), realigned pasture field (B) and the adjacent natural marsh (C). The two regions (10m 1478 

x 8m) in the realigned site were selected prior to the breach to be at the same elevation, and 1479 

mud pans and creeks were sampled in the natural marsh. The realigned fields are 1480 

substantially lower in elevation relative to the local natural marsh but are expected to gain 1481 

elevation over time until they are similar in the relative sea level elevation. The old sea wall 1482 

was breached at two locations to allow for tidal inundation of the site in September 2015 1483 

(Figure 5.1). 1484 

Figure 5.1. Map of location and outline of new realigned site and natural marsh sampling 1485 

locations within the Colne Estuary, UK. 1486 
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 Experimental design 1487 

Invertebrate exclusion chambers were placed in the two locations of the realigned site prior 1488 

to the sea wall breach. There were three chamber conditions; i) Full exclusion- where there 1489 

was a 250µm mesh sealing the chambers from both vertical and horizontal penetration of 1490 

invertebrates but allowing water movement, ii) Exclusion control- where the mesh only 1491 

covered the sides of the chambers (as a control over chamber placement) and allowed 1492 

invertebrates to come in at the top and bottom, and iii) Undisturbed - regions that were left 1493 

undisturbed to regenerate naturally. Chambers and undisturbed regions were sampled 1494 

seasonally. Reference samples were also taken from an adjacent natural saltmarsh (mud 1495 

pans and creeks) to compare sediment microbes between natural and realigned 1496 

communities. Microbial sampling of realigned and natural marsh sediments was performed 1497 

during the winter (February ‘16) and autumn (November ’16) sampling campaigns for both 1498 

realigned field (arable and pasture) and natural marsh sediments. The two months were 1499 

chosen to represent the early beginning and end of our sampling campaign as limited funds 1500 

prevented us from performing microbial analysis on all seasons sampled. Chambers were 1501 

processed in 5cm intervals down to 15cm to provide a depth profile of the microbial 1502 

communities. 5cm depth intervals were chosen to allow for substantial sediment for all 1503 

analyses (dense roots, present in the top 5cm, hinder extraction of only sediments) as well 1504 

as to maintain comparable depth profiles with the previous study (Chapters 2-3). Chambers 1505 

were concurrently analysed for sediment characteristics, as described in Chapter 4. 1506 

 DNA sampling 1507 

Sediment samples (~5g) from each chamber and depth were subsampled from the core using 1508 

aseptic technique (80% ethanol cleaned knives) from the centre of the core and flash frozen 1509 

in liquid nitrogen and stored in -20oC until extraction. DNA was extracted from 0.25g of 1510 
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sediment using DNeasy® PowerSoil® Kit (QIAGEN, Germany) following the manufacturer’s 1511 

protocol and stored at −20°C until PCR amplification.  1512 

 PCR amplification and sequencing preparation 1513 

DNA samples were amplified using three sets of primers which targeted, bacteria (545FY-ill 1514 

& 806rmod-ill) (Apprill et al., 2015; Parada et al., 2016), archaea (ARCH349F-ill & ARCH806R-1515 

ill) (Takai and Horikoshi, 2000) and eukaryotes (TAReuk454FWD1-ill & TAReukREV3-ill) 1516 

(Stoeck et al., 2010). The “-ill” suffix of the primers indicates illumina sequencing tags were 1517 

incorporated into the primer. The forward primer additionally incorporated two random 1518 

bases for cluster definition. The 25µl amplification reaction for all primers consisted of 0.5µl 1519 

of each forward and reverse primer (10 µM), 0.125 µl Taq Polymerase, 5 µl GoTaq G2 Flexi 1520 

buffer, 2 µl MgCl2, 0.5 µl of 10 mM dNTP mixture, 15.875 µl molecular grade H2O and 0.5 µl 1521 

DNA template. PCR reaction conditions for bacteria were initial denaturation at 94°C for 5 1522 

minutes, 30 cycles consisting of denaturation at 94°C for 1 minute, annealing at 53°C for 45 1523 

sec and extension at 72°C for 1 minute and final extension at 72°C for 7 minutes. Archaeal 1524 

and eukaryote reactions were initiated by denaturation at 94°C for 5 minutes, followed by 1525 

40 cycles of denaturation (94°C, 30 sec), annealing (53°C, 45 sec) and extension (72°C, 1 min 1526 

30 sec), terminated by final extension at 72°C for 5 minutes.  1527 

The size of PCR products was confirmed by agarose gel electrophoresis (Bac: 350bp, Arch: 1528 

540bp, Euk: 450bp). Products were purified using Agencourt AMPure XP magnetic beads 1529 

(Beckman Coulter) at a 1:0.8 DNA/PCR to bead mix, washed twice with 80% (v/v) ethanol 1530 

and eluted with 20µl of molecular grade water. Cleaned PCR products were quantified using 1531 

Quant-iT™ dsDNA Assay fluorescence kit (Invitrogen, Life Technologies, Carlsbad, CA, USA). 1532 

PCR products were diluted to 5ng and primers from each sample were pooled together 1533 

(Bac:Euk:Arch, 2:5:6 ratio) for Illumina Miseq sequencing (Illumina Inc., San Diego, CA, USA) 1534 

at the University of York, UK. 1535 
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 Sequencing processing 1536 

Downstream sequence processing was carried out in PuTTY/Unix using QIIME v.1.9.1 1537 

(Caporaso et al., 2010). The full pipeline for processing sequences ready for diversity analysis 1538 

is detailed in Table 5.1. The databases used for the amplicons were 16S for bacteria and 1539 

archaea and 18S for eukaryote from SILVA database (Glöckner et al., 2017; Quast et al., 2012; 1540 

Yilmaz et al., 2014).  1541 

 Statistical analysis  1542 

Statistical analyses were conducted using the R statistical language implemented in RStudio 1543 

(Version 1.1.423). Bray-Curtis diversity index was used to compare β-diversity between the 1544 

microbial communities of the natural and realigned sites and also to compare between 1545 

different treatments. R packages “vegan” (Oksanen et al., 2018) and “pairwiseAdonis” 1546 

(Arbizu, 2017) were used to perform diversity and Permutational Multivariate Analysis of 1547 

Variance (PERMANOVA) on microbial communities. Detrended correspondence analysis 1548 

(DCA) was employed to visualize and characterize ordination of each community and their 1549 

relationship with environmental variables. 1550 

.1551 
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Table 5.1. Pipeline for down streaming of sequences and producing OTU tables using QIIME 1552 

 Action Function Description 

1 Merge R1 & R2 files usearch -fastq_mergepairs *R1*.fastq -fastqout 

merged.fq -relabel @  

Merges R1 & R2 reads (forward and reverse reads) and puts 

all reads into 1 file and renames R1& R2 merged sequences 

with original R1 name 

2 Strip off first 13 bases cutadapt -g CCAGCASCYGCGGTAATTCC -a 

ACTTTCGTTCTTGATYRA --overlap 10 -o left-

trimmed.fastq --discard-untrimmed merged.fq 

Trims first 13 bases from read sequence (randomised bases 

added to the sequences used in amplicon sequencing so that 

sequences can be distinguished) then separates reads by 

primer sequence (primer sequence used in command) 

#This sequence is for TarEuk primer 

3 Asses read quality for 

filtering further on 

usearch -fastq_eestats2 left-trimmed.fastq -output 

eestats2.txt -length_cutoffs 50,550,50 

Assess read quality to be able to pick quality filtering 

stringency in next step  

4 Filter reads usearch -fastq_filter left-trimmed.reads.fq -

fastq_maxee 1.0 -fastq_trunclen 270 -fastaout 

We use maxee score from previous step and trim reads to 

required length. The maxEE parameter sets the maximum 

number of “expected errors” allowed in a read to better 
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filtered_reads.fna filter the output and speed up downstream analysis. 

-Bacteria trimmed to 270bp; Archaea trimmed to 390bp; 

Eukaryotes trimmed to 280bp 

5 Rename headers in files sed 's/^>/>barcodelabel=/' filtered_reads.fna > 

filtered_reads_new.fna  

 

sed 's/\./;/g' filtered_reads_new.fna 

>filtered_reads_new2.fna 

Rename headers, stripes everything before “>” and replaces 

it with “>barcodelabel=” 

 

2nd command replaces “.” with ‘,” 

6 Merge identical reads vsearch -derep_fulllength filtered_reads.fna -output 

derep.fna -sizeout 

Merges identical reads to minimize effect on clustering in 

later steps and helps create a list of unique OTUs  

7 Sort by size and remove 

singletons (rare 

samples) 

usearch  -sortbysize derep.fna -fastaout 

derep_Sort_output.fasta -minsize 2 

Sorts OTUs by the size of clusters and excludes singletons. 

This removes very rare samples which become problematic 

for normalisation techniques and can skew the data.  

8 Create RepSet usearch -cluster_otus derep_Sort_output.fasta -otus 

otus.fna  -minsize 2 

Creates list of OTUs with at least 2 instances of any particular 

sequence 



104 
 

9 Remove chimeras from 

OTU list 

Usearch8 -uchime_ref 9_otus.fna -db 

silva_132_97_18S.fasta -strand plus -nonchimeras 

RepSet_No_Chimeras.fasta 

Removes chimers from OTU list using the sequencing 

database from SILVA. 16S database used for bacteria and 

archaea and 18S for eukaryotes. 

-uses usearch v.8 

10 Re-numbers OTU 

clusters  

python fasta_number.py RepSet_No_Chimeras.fasta 

OUT_ > RepSet_num.fasta 

Re-numbers the OTU clusters in the RepSet with new 

numbers in order 1,2,3,..etc. this helps further on for sorting 

and BLAST 

11 Adding read count on 

RepSet 

Usearch8 -usearch_global Output_from_step_5.fasta -

db RepSet_num.fasta -strand plus -id 0.97 -uc map.uc 

Maps read counts onto filtered, no chimeras, RepSet file 

with file with renamed headers  

-uses usearch v.8 

12 Convert map to text file python uc2otutab.py map.uc > otu_table.txt Converts the mapped OUT.uc file into text files so that the 

information can be visualised and extracted for the next step 

13 Export RepSet cp repset_num.fasta repset_num.csv   Converting the RepSet file from fasta format to a .csv file. 
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At this point, the RepSet and read counts files need to be manually merged in Excel  

14 Assign taxonomy assign_taxonomy.py -i RepSet_num.fasta -o Tax_out -r 

silva_132_97_18S.fasta -t 18STax97_132.txt 

Assign taxonomy to 97% using SILVA db (ref fasta & 

taxonomy text files), onto RepSet    

15 Create Excel file with RepSet sequences, OTU numbers, OTU counts for each samples and taxonomic assignment. Export the file into text 

16 Measuring alpha 

diversity 

usearch -alpha_div tax_otu_table.txt -output 

alpha_tax_otutab.txt 

Use alpha diversity scripts to calculate reads per sample. This 

is used to inform normalisation in the next step 

17 Normalizing samples usearch -otutab_norm tax_otu_table.txt -sample_size 

10000 -output norm_otu_tax_table.txt 

Normalizes the abundance data across samples which can 

remove and excess amount of data. 

 During assigning taxonomy some OTUs would have been “unassigned” as the databases are limited and may be unassigned sequences that need to 

be removed. Sequences are checked using NCBI BlastN database to assign taxonomy manually. The step 15 taxonomy file is also updated and re-

imported for diversity analyses. 

New taxonomy file is created and OTUs and counts are collapsed by taxon in Rstudio.   

 1553 
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 Results 1554 

Operational taxonomic unit (OTU) tables were generated from the bacteria, archaea and 1555 

eukaryote amplified regions. Initial sequence reads after primer sequences were stripped 1556 

(step 2, Table 5.1) were 7097571 sequences for bacteria amplicon, 3691543 sequences for 1557 

archaea and 3406765 sequences for eukaryotes. Post filtering, exclusion of singletons and 1558 

clustering of replicated reads, amplicon sequences totaled 450682 for bacteria, 188365 for 1559 

archaea and 188615 for eukaryotes. This corresponded to 23796 OTUs for bacteria, 1560 

decreasing to 23630 after removal of chimeras and to 2444 after taxonomic assignment 1561 

(including collapsing of similar taxa) and removal of archaea sequences. Archaea sequences 1562 

corresponded to 12603 OTUs which decreased to 12275 after chimera removals and down 1563 

to 128 post taxonomic assignment and removal of bacteria sequences. Amplicon sequences 1564 

for eukaryotes corresponded to 7045 OTUs, decreasing to 6920 after chimera removals and 1565 

to 1093 post taxonomic assignment and collapsing of similar taxa. Unassigned sequences 1566 

post-BLAST taxonomy assignment were removed and updated OTU table collapse by taxon. 1567 

Final curated sequences corresponded to 1716 OTUs for bacteria, 119 OTUs for archaea and 1568 

565 OTUs for eukaryotes which were used for further analysis. 1569 

 Community diversity  1570 

A nested PERMANOVA was performed to assess differences between sites and treatments. 1571 

Depth was nested within treatment and treatment nested with field. Community diversity of 1572 

bacteria was found to be significantly different within our nested treatment (PERMANOVA, 1573 

F(9,126)=0.05, p<0.001). Natural marsh sediments had lower species richness than both 1574 

realigned sites. Diversity was higher in the 0-5cm depth zone relative to the 5-10 and 10-1575 

15cm depth zones for all sites. Also, exclusion control chambers had higher bacterial diversity 1576 

than undisturbed sediments and full exclusion chambers for both arable and pasture fields. 1577 
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Similarly, eukaryote community diversity was significantly different with depth, treatment, 1578 

field and month (PERMANOVA, F(9,126)=0.06, p<0.001). The top 5cm sediment depth had 1579 

higher eukaryote diversity than lower depths for all fields. The natural marsh sediments had 1580 

higher species richness in the top 5cm than realigned site sediments, however in the lower 1581 

depths (5-10 and 10-5cm) realigned sites have a higher diversity than natural. Community 1582 

abundance in the exclusion control chambers is higher than the other treatments for both 1583 

arable and pasture fields. 1584 

Field type (arable/pasture) was found to have no significant effect on archaea communities 1585 

in realigned sediments but they varied significantly with depth, treatment and month 1586 

(PERMANOVA, F(9,126)=0.47, p<0.001). While archaeal communities within realigned (arable 1587 

and pasture) sediments are similar, they are different from the natural marsh community 1588 

(Figure 5.2). Similar to bacterial and eukaryote communities, the surface (0-5cm depth) 1589 

sediments had higher diversity than lower depths sediments and the exclusion control 1590 

chambers also had a higher diversity than undisturbed sediments and the full exclusion 1591 

chamber sediments.   1592 

Communities were collapsed to Order level (or Phylum when order was not possible (Randle-1593 

Boggis et al., 2016)) and the relative abundance of the top 10 orders/phyla were plotted 1594 

relative to field and month. We observed that microbial communities and abundances within 1595 

the realigned sites are different to those of the natural marsh. The archaea Nitrosophaerales, 1596 

which is an ammonia oxidizing archaea (Tourna et al., 2011) is dominant in our realigned 1597 

sites but almost completely absent in the natural  (Figure 5.2). In addition, the order 1598 

Thermoplamata, an acidophile, is mostly dominant in our natural marsh as is the archaea 1599 

Bathyarchaeia, with their communities in the realigned site increasing over time.  1600 

The bacteria Chthoniobacterales were present in high abundance in our realigned sites but 1601 

were completely absent in natural sediments (Figure 5.3). Chthoniobacterales is a generalist 1602 
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aerobic plant carbohydrate degrader whose presence in our realigned site is likely indicative 1603 

of the rich resources within the agricultural field being degraded. Thus, we might expect 1604 

Chthoniobacterales numbers to decline over time, as plant carbon resources within the 1605 

sediments decrease and salinity and anaerobic conditions of the sediment increase. 1606 

Furthermore, the top 10 orders of bacteria cover up to 50% of relative abundance, compared 1607 

to archaea (80%) and eukaryotes (60%) indicating greater diversity than non-bacterial 1608 

communities.  1609 

 1610 

Natural marshes have a higher abundance of Dinoflagellata, mostly comprised of marine 1611 

plankton, than realigned sites even after 14 months post inundation (Figure 5.4). Pasture 1612 

field in February has the highest abundance of Charophyta, a green alga, compared to arable 1613 

and natural fields, with their abundance decreasing by November.  1614 

 1615 

Figure 5.2. Order level archaea community comparison between sites and 

month. Only the 11 most abundant orders are shown. 
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 1616 

Figure 5.3. Order level bacteria community comparison between sites and month. 

Only the 10 most abundant orders are shown 

Figure 5.4. Phylum level eukaryote community comparison between sites and 

month. Only the 10 most abundant orders are shown 
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 Detrended correspondence analysis (DCA) 1617 

Following DCA of communities with fitted environmental parameters we found that bulk 1618 

density, water content and pH of sediment affect community abundances for bacteria 1619 

(p<0.001), archaea (p<0.001) and eukaryotes (p<0.001) in newly realigned salt marsh 1620 

sediments (Figures 5.5-5.7). 1621 

Examining the DCA axis 1 scores for bacteria we observed that arable and pasture field have 1622 

overlapping communities however some organisms are higher scoring in one field over the 1623 

other, whereas the natural field has different composition of highest scoring organisms 1624 

compared to the realigned sites. Score indicates the effect of the environmental condition 1625 

on each species/community; higher score showed more effect and affect. For the archaea, 1626 

Methanomicrobia and Methanobacteria are amongst the highest scoring in the arable field, 1627 

Figure 5.5. Detrended correspondence analysis (DCA) ordination plots of bacteria data. 

Percentage values on the aces represent variation in bacteria taxa abundance matrix explained 

by each axis. Arrows represent effect of each sediment variable of community 
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whereas Thermoplamata and Halobacteria are dominant in the pasture field. In the natural 1628 

marsh both for archaea and eukaryotes, the highest scoring organisms are a mixture of the 1629 

ones found in the realigned sites (arable and pasture). The eukaryote organisms with the 1630 

highest scores in the arable field are Rhizaria and Nuclemycea, whereas in the pasture it is 1631 

Holozoa and Alveolata.  1632 

Figure 5.6. Detrended correspondence analysis (DCA) ordination plots of archaea data. 

Percentage values on the aces represent variation in archaea taxa abundance matrix 

explained by each axis. Arrows represent effect of each sediment variable of community 

bulk. 
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 1633 

 1634 

 Discussion  1635 

Microbial communities between natural and realigned sites were significantly different, as 1636 

well as between the arable and pasture realigned sites (Figures 5.2-5.4). Land use has been 1637 

found to affect microbial communities in terrestrial ecosystems (Fraterrigo et al., 2006; 1638 

Lauber et al., 2008; Mathew et al., 2012) similar to what our study has shown. While land 1639 

use and land use change are often associated with changes in microbial communities it is the 1640 

changes in soil properties that drive the changes in communities. pH, water content and bulk 1641 

density of the sediments were found to be significant drivers of the communities present. 1642 

Figure 5.7. Detrended correspondence analysis (DCA) ordination plots of eukaryotes data. 

Percentage values on the aces represent variation in eukaryotes taxa abundance matrix 

explained by each axis. Arrows represent effect of each sediment variable of community 
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Similar effect of sediment characteristic on microbial communities were observed on 1643 

saltmarsh sediments (Li et al., 2002). 1644 

Allison and Martiny (2009) have demonstrated that environmental factors can affect the 1645 

abundance and taxa of microbial communities which could be responsible for ecosystem 1646 

processes and affect their resilience and resistance to disturbance. Increased soil compaction 1647 

(i.e. higher bulk density) leads to decreased soil aeration and reduced nutrient availability 1648 

(Jusoff, 1991). Li et al. (2002) found that higher bulk density leads to decrease of 26-39% in 1649 

numbers of bacteria, fungi and actinomycetes.  1650 

Bacteria community variances are correlated with water temperature, pH and dissolved in 1651 

freshwater, intertidal and also marine sediments (Wang et al., 2012; Xiong et al., 2012). pH 1652 

could be the best predictor for bacterial communities composition in sediments and water 1653 

(Liu et al., 2015; Xiong et al., 2012). Tripathi et al. (2013) also found that pH is the dominant 1654 

driver for variation in bacteria and archaeal communities in tropical soils. Numerous studies 1655 

have demonstrated that pH is one of the most important factors influencing microbial 1656 

communities, as pH has a direct effect on enzyme activity thus affecting physiology, growth 1657 

and energy respiration (Yanagawa et al., 2013). In addition, pH could be a proxy for other 1658 

changes occurring in the sediment (e.g. nutrient availability) which also influence presence 1659 

and functionality of microbes (Liu et al., 2015). 1660 

Bioturbation has been found to affect microbial communities by allowing predation (Graça 1661 

et al., 2000), as well as changing sediment characteristics (Queirós et al., 2013). Our study 1662 

has shown that bioturbation treatment and depth had an effect on community abundance, 1663 

with exclusion control chambers having higher species richness than other conditions. Areas 1664 

of bioturbation and greater disturbance of the sediment profile had a higher species richness 1665 

than undisturbed areas. Furthermore, over time there is a community abundance shift with 1666 

some orders becoming less abundant (e.g. Nucletmycea and Charophyla in realigned sites) 1667 
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whilst others increased (e.g. Nitroscophareles and Bathyacrcaheia in realigned sites) (Figures 1668 

5.2-5.4).  1669 

Hutchings et al. (2019) observed that iron-rich ponds had a higher percentage of bioturbation 1670 

than sulfide-rich ponds in natural salt marshes. They suggest that the process of bioturbation 1671 

introduces pathways for oxic water to penetrate further into otherwise anoxic sediment 1672 

providing more suited redox conditions for bacterial iron reduction. In addition, they suggest 1673 

that lack of bioturbation leads to more anoxic sediments where microbial sulfate reduction 1674 

would become the dominant reduction pathway creating sulfide-rich ponds. Changes in the 1675 

oxygenation of sediment by bioturbation creates a shift of redox conditions leading to a shift 1676 

in microbial communities more suited to the changing environment.  1677 

Overall, we found that our natural marsh has different organism abundances and 1678 

composition compared to the realigned marsh. Even 14 months post inundation many 1679 

communities are not approaching similar abundances to the natural marsh and are 1680 

comprised of different communities which can affect the functionality of the system and its 1681 

ability to regenerate to natural marsh condition. Furthermore, previous land use and soil 1682 

management can affect long term community composition of an ecosystem and in turn its 1683 

functionality (Fraterrigo et al., 2006; Mathew et al., 2012). As observed in other systems, 1684 

restoration is a complex process and to understand it we need to observe them in a more 1685 

holistic manner, above and below ground biodiversity needs to be taken into account to 1686 

assess system functionality and recovery (Holden et al., 2019). 1687 

  1688 
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Chapter 6. General Discussion 1689 

The primary aim of these studies was to investigate the differences, and their drivers, 1690 

between natural and realigned salt marshes, in terms of sediment characteristics and 1691 

biodiversity. To examine if realigned marshes normalize (physiochemically and biologically) 1692 

over time we quantified underlying sediment characteristics with above ground biodiversity 1693 

across three paired natural/realigned sites of different ages (13, 62, 118 years) since 1694 

realignment in Essex UK (Chapter 2). We predicted that the oldest marsh (118 years) would 1695 

be more similar both physiochemically and biologically (plant diversity) to its natural paired 1696 

marsh than the younger realignments. The results of Chapter 2 demonstrated that realigned 1697 

marsh sediments and biodiversity behave differently than those in natural marshes, likely 1698 

due to hydrogeographic constraints. Natural marshes exhibited a heterogeneity and 1699 

variability within sediments that was absent from realigned marshes. The high bulk density 1700 

and low water content of the realigned AH marsh is an indication of a relic agricultural 1701 

sediment which is purported to remain mostly unchanged post inundation (Cai et al., 1702 

submitted; Tempest et al., 2015). This unchanged relic layer in realigned salt marshes has 1703 

been observed by Tempest et al. (2015) at the Orplands Farm site (Blackwater Estuary, SE 1704 

England) which showed that the relic agricultural layer remained unchanged with marine 1705 

sediment deposited on top post sea wall breach and inundation. However, we observed that 1706 

the oldest marsh (FR, 118 years) was also significantly different to its natural pair, whereas 1707 

Mersea Island (62 years) was matching sediment characteristics of a natural marsh. This 1708 

difference in our developing sites could be explained by relative spatial location, both to each 1709 

other and within the Colne/ Blackwater estuary. AH realigned marsh is a sheltered, steep 1710 

sloped, low lying agricultural field which could have affected sediment deposition and 1711 

inundation of the site throughout the years. In contrast, MI realigned marsh is more exposed 1712 

and surrounded by creeks which allows better drainage of the site, thus facilitating a more 1713 
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natural development of the marsh. Topography of salt marshes can affect drainage of a 1714 

marsh, sediment structure and in turn development of plant vegetation. Realigned marsh 1715 

topography is different to natural, as they have an enhanced potential for water 1716 

accumulation and lower creek densities (Lawrence et al., 2018).  1717 

Plant biodiversity in realigned marshes was found to be lower than in natural sites. Despite 1718 

our study sampling at specific plant dominant locations within consistent, set elevations 1719 

(mid-marsh) our results match previous natural/realigned comparisons of saltmarsh 1720 

biodiversity (e.g. Garbutt and Wolters, 2008; Mossman et al., 2012). However, α-biodiversity 1721 

of our oldest realigned site (FR) was not significantly different from the youngest (AH) but 1722 

was significantly different from MI which re-emphasizes the idea that re-establishment of a 1723 

marsh is complex and age of a realigned marsh (years from initial inundation) does not 1724 

adequately predict return of a “natural-state” marsh. Topography (i.e. slope and creek 1725 

formation) and hydrogeology of a marsh could be a more determining factor of realigned 1726 

salt marsh plant development than age. In addition, changes on short-term scales, or 1727 

immediately after breach are often overlooked even though biotic and abiotic factors that 1728 

are likely to affect sediment development could be heavily influence by initial conditions set 1729 

within the first year of salt marsh re-establishment. 1730 

To explore how initial conditions could affect sediment development of a realigned saltmarsh 1731 

we examined the effect of total sediment deposition and previous land use on a newly 1732 

realigned saltmarsh during the first-year post inundation (Chapter 3). 14 months after 1733 

inundation the two realigned sites were broadly similar despite their different starting 1734 

conditions. Pasture field had more nutrients (mostly NH4
+) than the arable field post 1735 

inundation which could potentially influence development of vegetation, invertebrate and 1736 

microbial communities. Furthermore, our realigned site closely matches the natural marsh 1737 

conditions for nutrients and pH for all depths to 20cm below the surface, but bulk density 1738 
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and water content only matched natural marsh sediments in the 0-5cm depth, where marine 1739 

sediments had accreted during the 14 months inundation period (Figure 3.8). Although the 1740 

realigned site surface sediments matched natural conditions by November 2016 the natural 1741 

marsh remained more heterogeneous than the realigned site, similar to our older marshes 1742 

sampled in Chapter 2. 1743 

The homogeneity of realigned sites might contribute to the differences observed in plant 1744 

diversity and composition over time (Garbutt & Wolters 2008). Differences between natural 1745 

and realigned sediments density and moisture at lower depths in the realigned site may also 1746 

play a role since they did not change significantly in the 14 months post induction, which 1747 

affects the hydrology of the managed marshes. Tempest et al. (2013) found that in realigned 1748 

sites the agricultural relic soils remained the same over time, constricting water movement 1749 

within the sites. In our realigned sites, the top 5cm of sediment and subsequently the newly 1750 

deposited marine sediment, was where all the conditions match those of the natural marsh, 1751 

whereas lower depth sediments, especially the deepest depth range of 10-15cm, showed 1752 

little change over time.  1753 

Furthermore, we aimed to examine the effect of bioturbators (organisms bigger than 250µm) 1754 

in the development of sediment characteristics during the 1st year of marsh realignment 1755 

between two different previous land uses (arable and pasture). We compared sediment 1756 

changes (physiochemical) in areas of invertebrate exclusion and invertebrate colonization 1757 

between arable and pasture realigned fields and monitored invertebrate colonization in the 1758 

newly realigned saltmarsh within the 1st year post inundation (Chapter 4). The realigned site 1759 

was successfully colonized by macro-invertebrates within 5 months of inundation and 1760 

species numbers increased by the final sampling (14 months post inundation). Organisms 1761 

found within our realigned sites are typical of natural and realigned saltmarshes in east 1762 

England (e.g. Garbutt et al., 2006; Jackson et al., 1985) and recreated intertidal mud flats in 1763 
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the UK (e.g. Evans et al., 1998). Our realigned sites had similar abundances of P.ulvae as other 1764 

studies however abundance of bivalves and ragworms was lower in our realigned site over 1765 

the post-inundation period studies. Within our treatments we observed a higher abundance 1766 

of organisms in our exclusion control chambers than undisturbed areas. This might be due 1767 

to the breakdown of the relic sediment layer that occurred during installation of the 1768 

chambers, as well as gaps created during placing of the chambers which allowed organisms 1769 

to penetrate/fall further down the sediment column to depths that otherwise would be sub-1770 

optimal (>10cm) (Chandrasekara and Frid, 1998; Huxham et al., 1995). Furthermore, Craft 1771 

(2000) found that development of communities of benthic invertebrates in realigned salt 1772 

marshes depended on wetland sediment formation and development. We observed that 1773 

exclusion control chambers behaved differently from the undisturbed chambers, having 1774 

lower bulk density in the top 5cm as well as higher water content, which might have allowed 1775 

the formation of more ideal sediment conditions for macro-invertebrate colonization. The 1776 

development of the invertebrate community is dependent on the formation of an organic 1777 

rich surface later to support the detritus feeding organisms (Craft, 2000) which can explain 1778 

the increase in community numbers in our site from February to November.  1779 

Benthic macro-invertebrates are an important component of salt marsh establishment and 1780 

function as they are involved in sediment bioturbation (Bertness, 1985), biogeochemical 1781 

cycling (Alkemade et al., 1992) and are a source of food for higher invertebrates, fishes and 1782 

birds (Adam, 1990). However, in early establishment of marshes Paramor and Hughes (2004) 1783 

found that ragworm, Hediste diversicolour¸ can inhibit the development of plants as it feeds 1784 

on plant seedlings. Thus, macro-invertebrate colonization of realigned saltmarshes can have 1785 

a diverging impact on marsh development. Invertebrates within newly realigned marshes 1786 

could help develop the sediment characteristics through their burrowing activities (i.e. 1787 

increasing sediment aeration/water drainage and nutrient movement) but also may inhibit 1788 

through active feeding on plant seedings and delaying plant colonization.  1789 
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Our invertebrate exclusion experiment has shown that mechanical disturbance of the 1790 

sediment can influence its geochemical characteristics in newly realigned saltmarsh (Chapter 1791 

4). Macro-invertebrate colonization of a newly realigned site can also create disturbance 1792 

(bioturbation) and influence geochemical characteristics, as we observed by the differences 1793 

in geochemical properties of invertebrate colonization chambers. Mechanical disturbance of 1794 

the relic agricultural layer prior to flooding of the site can also affect those changes similarly 1795 

and on occasion have greater effect (faster recovery time) as seen in our exclusion control 1796 

chambers. This active breakdown of the relic layer occurred during the installation of the 1797 

exclusion chambers (especially exclusion control chambers), stimulating a more active 1798 

mixing of the sediment profile, which allowed for deeper penetration of water within the 1799 

sediment post flooding. A combination of active disruption of the relic layer (e.g. plowing) 1800 

and colonization of invertebrates may accelerate the necessary shift of sediment 1801 

geochemical characteristics of newly realigned marshes from terrestrial to marine. 1802 

In addition to the macro-invertebrates’ effect on sediment characteristics, we examined 1803 

their impact on microbial communities (Chapter 5). Microbial communities between the 1804 

studied natural and realigned sites were significantly different, with natural marsh having, in 1805 

general, higher species abundance. Significant differences were observed as well between 1806 

the arable and pasture realigned sites. pH, water content and bulk density of the sediments 1807 

were found to be significant drivers of the communities present. Unsurprisingly, microbial 1808 

communities appeared to be more affected in the exclusion control chambers than the full 1809 

exclusion and undisturbed controls, in line with our observations of sediment characteristics. 1810 

Overall, we found that the studied natural marsh microbial community had different 1811 

organism abundances and composition compared to the realigned marshes. Within 1812 

realigned sediments, even 14 months post inundation, many communities do not have 1813 

similar abundances to natural marsh sediments and are comprised of different communities 1814 

which could affect the functionality of the system and its ability to regenerate to natural 1815 
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marsh condition. Microbial communities are responsible for nutrient cycling in the sediment 1816 

(Li et al., 2002; Lillebø et al., 1999; Yamada et al., 2007) which in turn can affect plant 1817 

productivity/composition thus affecting the regeneration of a realigned marsh into a more 1818 

natural community. 1819 

 Conclusion 1820 

Overall, this study has shown the realigned marshes behave differently to natural marshes 1821 

in respect to sediment characteristics, plant biodiversity and microbial communities. The 1822 

presence of the relic agricultural sediment layer is evident in our realigned sites particularly 1823 

in our youngest sites. This layer affects the hydrology of the system and consecutively the 1824 

development of plant biodiversity and microbial communities similar to natural marshes. 1825 

Pre-restoration land-use can affect the structure of restored salt marshes with implications 1826 

for functioning and delivering of ecosystem services (Spencer et al., 2017). Hydrogeology of 1827 

saltmarshes influences fluxes of nutrients in the system by affecting water movement. Water 1828 

movement in sediment is linked not only to sediment compaction (bulk density) but also to 1829 

vegetation composition (root structure and architecture) as well as biological bioturbation. 1830 

Invertebrate presence and composition affect the rate and magnitude of biological 1831 

bioturbation which in turn affects the microstructure of sediment. Changes in sediment 1832 

microstructure alters both the physical space (creation of oxic or anoxic sediments) and 1833 

substrate availability for microbial communities. Since microbial communities are the drivers 1834 

of bulk carbon fixation, nutrient concentrations and GHG emissions, their diversity and 1835 

presence can determine the development of sediment characteristics of a realigned marsh. 1836 

Success of restoration is measured in the ability of the site to provide the desired ecosystem 1837 

services, (i.e. biodiversity, coastal protection, habitat creation) (Strange et al., 2002). Short-1838 

term recoveries and set goals may not imply long term sustainability (Zedler et al., 2001). 1839 
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Even when species densities within realigned marshes match those of natural marshes, 1840 

functional measures often reveal a significant lag of ecological processes recovery, such as 1841 

nutrient cycling, and microbial communities (Chapter 5) that are necessary for full 1842 

functionality of a marsh.  1843 

Through our study (as well as other studies) we have shown that realigned marshes are 1844 

showing differences both between each other but also with natural referenced marshes 1845 

(Garbutt and Wolters, 2008; Garbutt et al., 2006; Lawrence et al., 2018; Mossman et al., 1846 

2012b, 2012a; Sullivan et al., 2017; Tempest et al., 2015; Wolters et al., 2005b). These 1847 

differences could be attributed to physicochemical properties of the sediment; such as soil 1848 

drainage (due to denser lower sediments) (Burden et al., 2013; Spencer et al., 2008; Tempest 1849 

et al., 2015), nutrient cycling (Burden et al., 2013) seed availability (Wolters et al., 2005a), 1850 

and previous land use (Garbutt et al., 2006; Spencer et al., 2017). 1851 

Further studies of realigned sites are required to fully access how spatial variation (location 1852 

and exposure), previous land use and active disturbance of the site pre-flooding, can affect 1853 

the rate of marsh development and delivery of those services. Our study showed an impact 1854 

of sediment disturbance prior to flooding on recovery of sediment characteristics. However, 1855 

further studying of this effect is required over a longer period to fully access its influence on 1856 

development and functionality of the realigned marsh.   1857 
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Appendix A Supplementary tables 1858 

 1859 

 1860 

 1861 

 1862 

 1863 

 1864 

 1865 

 1866 

 1867 

Table A. 1. Average water content (%) (± SE) for all saltmarshes at each condition and season 

Water 
content (%) 

Abbotts Hall Mersea Island Fingringhoe Range 

Natural Realigned Natural Realigned Natural Realigned 

Atriplex 73.4 ± 1.8 22.0 ± 0.7 59.5 ± 1.5 58.2 ± 0.9 70.4 ± 2.2 75.5 ± 1.0 

Limonium 77.9 ± 0.4 23.2 ± 0.4 68.1 ± 0.9 63.4 ± 0.5 73.4 ± 1.4 80.5 ± 0.4 

Mud 63.0 ± 2.2 23.0 ± 0.6 60.5 ± 0.7 55.8 ± 2.3 56.6 ± 1.3 77.7 ± 0.9 

Puccinellia 75.0 ± 1.7 22.0 ± 0.7 60.6 ± 1.6 59.3 ± 0.9 69.4 ± 1.2 78.3 ± 0.8 

       

Summer 70.2 ± 2.2 21.6 ± 0.5 60.1 ± 1.5 60.1 ± 0.8 70.8 ± 2.3 76.4 ± 1.0 

Autumn 72.4 ± 2.2 23.0 ± 0.7 60.4 ± 1.3 55.1 ± 1.8 63.8 ± 2.1 79.7 ± 0.6 

Winter 73.6 ± 1.6 23.6 ± 0.4 64.6 ± 1.5 62.2 ± 0.7 68.1 ± 1.8 77.6 ± 0.8 

Spring 73.5 ± 1.9 22.1 ± 0.6 62.9 ± 1.2 59.1 ± 1.8 68.5 ± 2.0 77.9 ± 0.9 

Bulk density 
(g/cm3) 

Abbotts Hall Mersea Island Fingringhoe Range 

Natural Realigned Natural Realigned Natural Realigned 

Atriplex 0.27 ± 0.03 1.38 ± 0.03 0.44 ± 0.02 0.46 ± 0.02 0.31 ± 0.03 0.23 ± 0.02 

Limonium 0.22 ± 0.01 1.24 ± 0.03 0.34 ± 0.01 0.35 ± 0.01 0.28 ± 0.02 0.17 ± 0.01 

Mud 0.38 ± 0.04 1.32 ± 0.03 0.43 ± 0.02 0.51 ± 0.05 0.47 ± 0.02 0.18 ± 0.01 

Puccinellia 0.24 ± 0.02 1.32 ± 0.03 0.42 ± 0.02 0.42 ± 0.02 0.31 ± 0.02 0.18 ± 0.01 

       

Summer 0.27 ± 0.03 1.26 ± 0.03 0.42 ± 0.02 0.38 ± 0.01 0.29 ± 0.03 0.20 ± 0.02 

Autumn 0.29 ± 0.03 1.32 ± 0.03 0.38 ±0.02 0.45 ± 0.03 0.40 ± 0.03 0.16 ± 0.01 

Winter 0.29 ± 0.03 1.34 ± 0.03 0.39 ± 0.02 0.39 ± 0.01 0.33 ± 0.02 0.19 ± 0.01 

Spring 0.26 ± 0.03 1.36 ± 0.03 0.45 ± 0.02 0.51 ± 0.05 0.33 ± 0.03 0.21 ± 0.01 

Table A. 2. Average bulk density (g/cm3) (± SE) for all saltmarshes at each condition and season 
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 1868 

 1869 

 1870 

 1871 

 1872 

Table A. 4. Average percentage cover of above ground biomass at each natural and realigned 1873 

saltmarsh (SE) 1874 

 1875 

Table A. 3. Average pH (± SE) for all saltmarshes at each condition and season 

pH 
Abbotts Hall Mersea Island Fingringhoe Range 

Natural Realigned Natural Realigned Natural Realigned 

Atriplex 6.47 ± 0.06 6.56 ± 0.03 7.08 ± 0.06 7.54 ± 0.05 6.43 ± 0.23 5.30 ± 0.36 

Limonium 6.49 ± 0.05 6.57 ± 0.05 6.82 ± 0.08 7.36 ± 0.02 6.08 ± 0.25 5.10 ± 0.35 

Mud 4.87 ± 0.31 6.63 ± 0.07 6.56 ± 0.33 6.77 ± 0.33 6.41 ± 0.37 4.99 ± 0.46 

Puccinellia 6.37 ± 0.08 6.54 ± 0.06 7.08 ± 0.07 7.53 ± 0.06 6.33 ± 0.23 4.29 ± 0.31 

       

Summer 6.28 ± 0.19 6.61 ± 0.02 6.91 ± 0.18 7.43 ± 0.15 6.44 ± 0.11 5.60 ± 0.35 

Autumn 5.93 ± 0.23 6.54 ± 0.03 6.99 ± 0.11 7.44 ± 0.04 6.27 ± 0.34 3.91 ± 0.32 

Winter 5.96 ± 0.25 6.63 ± 0.03 6.92 ± 0.20 7.19 ± 0.24 5.95 ± 0.32 4.83 ± 0.42 

Spring 6.01 ± 0.20 6.53 ± 0.09 6.75 ± 0.20 7.13 ± 0.23 6.59 ± 0.22 5.24 ± 0.34 

Percentage cover (%) 
Abbots Hall Mersea Island Fingringhoe Range 

Natural Realigned Natural Realigned Natural Realigned 

Bare Soil 23.6 (3.8) 4.8 (0.8) 15.7 (3.0) 10.7 (1.4) 16.7 (3.2) 14.4 (3.1) 

Armeria maritima 9.6 (1.1) 0 (0) 0 (0) 0.2 (0.2) 2.4 (0.7) 0 (0) 

Aster tripolium 2.0 (0.4) 0.8 (0.3) 6.8 (1.0) 3.8 (0.5) 5.0 (0.7) 2.9 (0.4) 

Atriplex portilacoides 15.3 (2.2) 51.3 (2.3) 18.9 (1.5) 7.9 (1.0) 18.1 (1.6) 7.3 (1.0) 

Colchlearia anglica 0.2 (0.1) 2.0 (1.0) 4.6 (0.8) 0.2 (0.1) 1.6 (0.4) 0.5 (0.2) 

Festuca rubra 0 (0) 0.8 (0.3) 0 (0) 0 (0) 0 (0) 0 (0) 

Juncus spp 1.4 (0.6) 0 (0) 0 (0) 0 (0) 2.6 (0.8) 0.1 (0.1) 

Limonium vulgare 27.5 (2.8) 4.1 (0.8) 4.5 (1.3) 2.7 (0.8) 6.9 (1.4) 6.0 (0.7) 

Plantago maritima 3.1 (1.0) 0 (0) 0.7 (0.3) 0 (0) 0.7 (0.6) 0.1 (0.1) 

Puccinellia maritima 39.2 (2.7) 38.5 (2.7) 54.0 (2.2) 66.1 (1.8) 51.0 (3.4) 62.4 (2.7) 

Salicornia europaea 7.3 (1.2) 0.3 (0.1) 1.6 (0.3) 0.3 (0.1) 5.8 (1.3) 1.0 (0.2) 

Sarcoconia perennis 0.9 (0.4) 0.1 (0.1) 0.6 (0.3) 0.1 (0.1) 0 (0) 0 (0) 

Spartina anglica 1.2 (0.4) 0 (0) 3.4 (1.2) 11.9 (1.3) 3.4 (1.1) 18.0 (1.9) 

Spergularia media 1.6 (0.2) 2.2 (0.3) 3.1 (0.8) 0.8 (0.6) 0.1 (0.1) 0.1 (0.1) 

Suadea maritima 1.8 (0.4) 1.4 (0.5) 9.2 (1.1) 8.5 (1.0) 7.3 (2.4) 2.4 (0.4) 

Triglochin maritima 0.8 (0.2) 0 (0) 0.3 (0.2) 0.4 (0.3) 2.2 (0.6) 0 (0) 
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Table A. 5 . Density of invertebrates in m3 per 5cm depth zone for February and November. No organisms were detected in the arable field Full chamber for February. 

“ND” = Not Detected. ± SE 

 February November 

 Arable Pasture Arable Pasture 

0-5cm Depth Undisturbed Exc. Control Undisturbed Exc. Control Full Undisturbed Exc. Control Full Undisturbed Exc. Control Full 

Peringia ulvae 2800 ± 700 4400 ± 1600 2300 ± 700 7400 ± 740 150 ± 150 18000 ± 2900 12000 ± 3800 340 ± 120 32000 ± 800 42000 ± 9100 420 ± 300 

Hediste diversicolor 370 ± 80 260 ± 150 150 ± 60 230 ± 100 ND 70 ± 20 35 ± 35 ND 50 ± 20 70 ± 20 ND 

Limecola balthica ND ND ND ND ND 890 ± 140 730 ± 130 ND 580 ± 250 640 ± 350 ND 

Cerastoderma edule ND ND ND ND ND 40 ± 10 50 ± 30 ND 27 ± 27 36 ± 20 ND 

5-10cm Depth 

Peringia ulvae 260 ± 130 1100 ± 100 270 ± 230 7600 ± 1400 ND 110 ± 10 990 ± 570 ND 320 ± 90 7000 ± 6600 44 ± 22 

Hediste diversicolor 10 ± 10 88 ± 50 ND 30 ± 10 ND 27 ± 17 80 ± 40 ND 20 ± 10 340 ± 300 ND 

Limecola balthica ND ND ND ND ND 10 ± 10 ND ND ND 80 ± 80 ND 

Cerastoderma edule ND ND ND ND ND 27 ± 17 ND ND ND 10 ± 10 ND 

10-15cm Depth 

Peringia ulvae 27 ± 27 260 ± 40 ND 4100 ± 740 ND 40 ± 30 270 ± 180 27 ± 17 27 ± 27 1700 ± 1600 100 ± 90 

Hediste diversicolor ND 50 ± 30 ND 18 ± 18 ND ND 40 ± 20 ND ND ND ND 

Limecola balthica ND ND ND ND ND ND ND ND ND ND ND 

Cerastoderma edule ND ND ND ND ND ND ND ND ND ND ND 
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