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ABSTRACT
Summary: A new inspection technique for complexmechanical struc-
tures is proposed in this paper,where a fuzzy inference systemcarries
out structural inspection. The inputs to the fuzzy inference systemare
the elements of a fault signature, an array of numbers prepared with
use of below 5 kHz resonance frequencies of faultless and a number
of faulty specimens.

Advantage: Below 5 kHz resonance frequencies are easier and less
expensive to obtain compared to higher frequency ones.

Limit: Due tohighexpensesof experiments, reliable finite element
models were alternatively used to obtain resonance frequencies of
the faulty specimens.

Results: The developed fuzzy inference system in this research
accurately located an under-surface fault in an engine cylinder block.
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1. Introduction

Structural inspection [1], structural damage detection [2] or structural health monitoring
[3] are roughly equivalent terms used for fault diagnosis of mechanical structures. Struc-
tural inspection ideally answers the following three questions: (i) Is there any faults? i.e.
fault detection, (ii) where is (are) the fault(s)? i.e. fault isolation or localisation, (iii) how is the
fault? (e.g. in terms of size and shape) i.e. fault identification [4–6]. Two approaches may
be used in structural inspection or, in a wider view, fault diagnosis: (i) local or signal-based
approach, and (ii) global or model-based approach.

In the first approach, the behaviour/information of the faultless system is obvious.
For example, a metal part with no internal void space permits an ultrasonic wave to
pass at a certain speed. Due to this evident response of the faultless system, only the
response/information (in this example, the ultrasonic wave speed) of the faulty system is
employed in fault diagnosis [7]. Such methods are called ‘signal-based’ methods [6, 8].
All signal-based techniques of structural inspection should be used in the locality of the
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fault [9]; hence, in the literature of structural inspection, local and signal-based approaches
are equivalent [10]. Some other examples of local approach for structural inspection are
radiography [11], CT scanning [12], magnetic field [13] and eddy-current [14] methods.

In global or model-based methods, a model or some behavioural information of the
faultless system is needed for inspection. Vibration-based structural inspection methods
belong to this approach [5, 15]. Vibration-based inspection techniques usemodal/dynamic
properties of the ‘whole’ system. In other words, vibration-based methods do not depend
on the data collected from the fault locality; therefore, vibration-basedmethods are global.
In general, terms ‘global’ and ‘model-based’ are practically exchangeable in the literature
of structural inspection [5].

Vibration-based methods, as global methods for structural inspection, have the evident
advantage of not being in need to access the locality of the fault. These methods can ide-
ally provide informationondamageexistence (fault detection), location (fault isolation) and
size (fault identification) for a mechanical structure [16]. NASA, in the late 1980s, employed
vibration-basedmethods to inspect its shuttle instead of established signal-basedmethods
[17]. However, some researchdisappointingly concluded that only higher frequencymodes
(e.g. with resonance frequencies over 30 kHz) are sensitive enough to local damages [9];
while, the measurement frequency of common acceleration sensors is up to 10 kHz; that is,
modeswith a resonance frequency up to 5 kHz canbe capturedwith these sensors [18]. This
conclusion would mean that only expensive vibration sensors with demanding operation
could collect meaningful vibrational information for structural inspection. This disappoint-
ing conclusion faded the initial hopes to widespread use of vibration-based methods in
quality control of manufactured metal parts [9].

However, this paper shows thatwell-developed fuzzy inference systems can successfully
extract vivid structural inspection results out of low frequency vibrational information of a
complex mechanical part, an engine block cylinder. Vibration-based structural inspection
generally uses dynamic/modal properties of mechanical structures such as resonance fre-
quencies, mode shapes and damping ratios [8, 16, 19–22]. This research employs the most
easily obtainable dynamic properties, resonance frequencies at a fairly low frequency range
(below 5 kHz) for structural inspection.

2. Problem Statement and Steps of Solution

This research aims to develop an algorithm including a fuzzy inference system (FIS). The
inputs to the algorithm are below 5 kHz resonance frequencies of a faulty engine block
cylinder (as a complex mechanical structure). The output of the algorithm is the fault
location (extendible to other fault information in future research).

The investigated cylinder block, shown in Figure 1, belongs to a 1332 cm3 engine of Saba
car made by Saipa company based in Iran. Some simplifications have been considered in
this study: only a single fault of a particular typehasbeenassumed tohappen in the cylinder
block, a spherical void with the diameter of 1 cm, located 2.5 cm above the bottom surface,
a common size and depth for casting faults [23]. This removes four potential outputs of the
fault diagnosis algorithm: number, shape, size and depth of the fault(s), only two potential
outputs, two dimensions of the fault location, remain to be estimated. It is also assumed
that a fault may only happen on a line. Thus, only a single dimension of the fault location
remains as the sole output of the algorithm. However, as detailed in section 6 of the paper,
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Figure 1. A computer model of the cylinder block.

successful development of an algorithm to identify one property of a fault in a complex
structure paves the way to develop full scale structural inspection algorithms e.g. with six
outputs.

3. Steps of Solution

Three following steps shouldbe taken todevelop theproposed fault isolation (or in general,
structural inspection) algorithm:

(1) Finding below 5 kHz resonance frequencies of the faultless specimen and a number of
specimens with a fault, detailed in section 4.

(2) Initial process of information collected at step 1 to produce a ‘fault signature’ associ-
ated with each fault location (in general, a signature for any faulty specimen). Section
5 details this step.

(3) Development of a fuzzy inference system (FIS) to map the fault signatures, prepared in
step 2, to the fault locations (in general, all fault information will be the destination of
mapping). This step is presented in section 6.

4. Step 1 – Finding Resonance Frequencies

The resonance frequencies of the faultless specimen were found through experimental
modal analysis, as shown in Figure 2. A DJB single-axis integrated-electronics piezoelectric
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Figure 2. Upside down engine cylinder block during experimental modal analysis.

accelerometer of A/120/V type and an 8202B&K impact hammerwere used in experimental
modal analysis; the acceleration of a single measurement point on the cylinder block was
recorded, once the specimenwas hit with a hammer on one of 21 other points. A B&K 3560
analyser was utilised to extract modal properties of the faultless cylinder block, including
its resonance frequencies. Experimental modal analysis shows that the first 24 resonance
frequencies of the faultless specimen are below 5 kHz.

Due to experimentation limits, it was impossible to have many faulty specimens and
perform experimental analysis on each of them. Alternatively, a finite elementmodel (FEM)
of the faultless cylinder block was developed and experimentally validated. Then, for each
fault location, a fault was added to the validated FEM on the specified location, and a FEM
was developed for each faulty specimen. Then, resonance frequencies of faulty specimens
were calculated through numerical modal analysis using their FEMs.

The FEM of the cylinder-block has 2002793 nodes and 1179381 irregular tetrahedral
elements, constructed in ANSYS software package. In order to validate this model, the
resonance (or modal) frequencies calculated out of numerical modal analysis of the FEM
was compared to the ones obtained through experimental modal analysis, as presented in
Table 1, where

discrepancy% = |experimental resonance frequency − FEM resonance frequency|
experimental resonance frequency

× 100.

(1)
Twenty specimens (or FEMs) with a fault were used in this research. In Figure 3, circles

roughly present fault locations. With considering the filled circle 2.5 cm far from the edge,
as the origin, fault locations in cm can be listed as x = [1 2 3 4 5 6 7 8 9 10 13.5 14.5 15.5
16.5 17.5 18.5 19.5 20.5 21.5 22.5]. Numerical modal analysis of faulty specimens’ FEMs, for
each of afore-listed fault locations, results in a list of 24 below 5 kHz resonance frequencies.
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Table 1. Resonance frequencies resulting from experimental and FEMmodal analysis.

Mode number FEM resonance frequency (Hz) Exp. resonance frequency (Hz) Discrepancy %

1 1234.4 1239.7 0.4
2 1660.3 1653.6 0.4
3 2364.6 2375.9 0.5
4 2705 2698.4 0.2
5 3068.2 3071.4 0.1

Figure 3. Fault locations ona sectionof the cylinder block. Thefilled circle, close to the edge is theorigin.

5. Step 2 – Initial Process of Collected Resonance Frequencies

Experimental and numerical modal analysis, reported in section 4, result in 21 lists of 24
below 5 kHz resonance frequencies, one list for faultless part and 20 lists each associated
with a fault location. The elements of the latter 20 lists are presented as k fi. i refers to the
order of the vibrational mode associated with the resonance frequency, varying between 1
and 24; k refers to the fault location, varying between 1 and 20.

All k f i s were deducted from the resonance frequencies of the faultless specimen asso-
ciated with their own mode order fi. The result is an array of 24 numbers for each fault
location. This array is called the ‘signature of fault location’ or in short ‘fault signature’. kS i

in (2) is the ith element of the signature of kth fault location:

kSi = kfi − fi (2)

S with (20× 24= ) 480 elements, an array including 20 fault signatures with 24 elements
each, is the output of the initial process of resonance frequencies obtained in step 1.

6. Step 3 – Development of Fuzzy Inference System

At this step, a FIS was developed to map the signature of a fault location S̃ (as the input)
to its corresponding location x̃ (as the output). x̃ and S̃ may be kx, kth fault location in x
(presented in section4) and its corresponding fault signature kS, or theymaybeany another
fault location (not listed in x, but within or near to the range of x) and its fault signature.

A linear Sugeno-type FIS was used in this research [24]. These fuzzy systems have been
successfully used to tackle engineering problems in the areas of data-driven modelling
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[25], estimation [26] and virtual sensing [27] and can be converted into neuro-fuzzy net-
works [28].

Let us assume that the FIS has n rules, where n is yet to be identified. Each rule
receives all 24 elements of S̃ as inputs and has a membership function per input. The
output of each membership function is a membership grade. In this research, a Gaus-
sian membership function of (3) produces a membership grade,μij, for jth rule and ith
input (S̃i),

μij = exp

(
− (S̃i − Cij)

2

2�ij
2

)
. (3)

whereCij andΩij are the centre and thewidthof themembership function, respectively. The
product ofmembership grades of a rule was considered as theweight of the rule, a number
between zero and one, appearing in the denominator of (4). In addition, in linear Sugeno
fuzzy systems, the output of each rule is a linear combination of its inputs (S̃is, elements of
the signature of a fault location), as shown in the numerator of (4). The output of the whole
model (x̃, the fault location) is the weighted sum of rules outputs:

ˆ̃x =

n∑
j=1

⎛
⎜⎜⎜⎜⎜⎝

jth rule output︷ ︸︸ ︷(
24∑
i=1

Aij S̃i + Bj

)
24∏
i=1

μij

⎞
⎟⎟⎟⎟⎟⎠

n∑
j=1

24∏
i=1

μij︸ ︷︷ ︸
jth rule weight

. (4)

where ∧ stands for estimated. Model (4), if fully developed and validated, can estimate the
fault location (x̃) with use of fault signature (S̃). However, for this purpose, the values of n
(number of rules) and the elements of A, B, C and Ω should be identified.

Development of the FIS requires two steps:

• Model generation: finding the number of rules, n, and initial estimation ofmodel param-
eters or the elements of A, B, C and Ω

• Parameter identification: determining model parameters accurately. The developed FIS
should be cross-validated afterwards.

In this research, the FISwasdevelopedwith useof a data-driven approach. Therefore, the
data prepared in section 5 were utilised, composed of a list of 20 fault locations, x, and their
associated fault signatures. Three sets of datawere needed for this research,modelling data
(to be used in bothmodel generation and parameter identification), validationdata (to pre-
vent overfitting in parameter identification) and test data to cross-validate the developed
FIS. The fault location of 18.5 cm and its fault signatures form the test data; while the vali-
dation data includes the fault locations of 7, 10 and 20.5 cm and their fault signatures. The
rest of the prepared data are the modelling data.
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Model generationwas carried outwithmodelling data using subtractive clustering tech-
nique, as detailed in [29], with the following coefficients: Range of Influence = 0.5, Squash
Factor = 1.25, Accept Ratio = 0.1 and Reject Ratio = 0.15.

For parameter identification, first, the ‘modelling error’, Em, was defined to represent the
discrepancyof real fault location and theone estimatedby the FIS (with∧) for themodelling
data. (5) shows the general formula to find error for modelling (Em), validation (Ev) or tests
data (Et).

E =

∑
for a data set

(kx̂ − kx)
2

number of fault locations in the data set
. (5)

The parameters of the model were adjusted using an iterative algorithm [29] so as to
minimise the modelling error. First, the least square of error technique [30] adjusts the ele-
ments of A and B of the initial model (the output of subtractive clustering). Then, error
backpropagation with gradient decent method with a variable step size [31] adjusts C and
Ω elements. Afterwards, Ev was calculated. These three steps were performed iteratively,
till the validation error, Ev , at one iteration exceeds Ev of its previous iteration. This situa-
tion, Ev >previous Ev , is a sign of overfitting and signals to stop the iterative algorithm of
parameter identification [25]. If the algorithm did not stop in the case of overfitting, the
modelling error would further decrease at the cost of loss in generality of the FIS [32]. The
resultant FIS still needs to be cross-validated. Awidely accepted cross-validation criterion is
that the estimation output by themodel calculatedwith the test data (never used in param-
eter identification directly or indirectly) should be acceptable [33, 34]; that is, Etshould be
small enough. Here is a pseudocode for the development of the FIS:

• 10 Initial modelling through subtractive clustering with use of modelling data (n is
identified)

• Calculate Em and Ev
• While Ev is decreasing
o Adjust A and B elements so as to decrease Em through the method of least square of

errors
o Adjust C and Ω elements so as to decrease Em through backpropagation gradient

descent method with variable step size
o Determine Ev and Em

• Calculate Et (test error)
• If Et is unacceptable go to 10

7. Results and Discussion

In this research, subtractive clustering led to an FIS with 16 rules. The developed FIS esti-
mates the location of 18.5 cm as 17.47 cm. It is an acceptable result considering that the
data of this fault location have not been used in FIS development at all. That is, the FIS is
cross-validated in the operating area in which its modelling, validation and test data have
been collected.

The FIS has been developed using below 5 kHz resonance frequencies. That is, easy to
collect vibrational data can be effectively used for fault isolation in complex engine parts.
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Considering (3) and (4), and n = 16, A, C and Ω each has (24× 16= )384 elements each,
and B has 16 elements. Therefore, the FIS has 1168 parameters altogether, considerably
more than the elements of all data arrays, which are 500, composed of 480 elements of
S and 20 fault locations. This shows that the number of experiments or reliable numerical
simulations are fairly small, andmodal analysis of a larger number of faulty specimens could
result in a much higher accuracy. In the case of availability of results from experimental or
reliable numericalmodal analyses, it is theoretically possible to update the aforementioned
pseudocode/formulae to increase the number of FIS outputs or use parallel single output
FISs to estimate two or three dimensions of the fault location or even size and shape factors
of the fault(s). Six parallel FISs, similar to the one developed in this research, would roughly
have 7008parameters; one can expect that thousands ofmodal analyseswithdifferent fault
locations/sizes/numbers/shapes would be needed to develop an FIS (or a combination of
single output FISs) to carry out structural inspection in full. In total, the proposed method
requires the results of several modal analyses prior to FIS development; this seems to be
the major drawback of the method.

8. Conclusion

This paper presents a new method to structural inspection of complex mechanical parts,
based on development of a fuzzy inference system. The proposed method uses resonance
frequencies of below5 kHz,which aremucheasier to obtain compared to theones at higher
frequency ranges or other modal properties. Development of the fuzzy inference system
requires three steps, first, findingbelow5 kHz resonance frequenciesboth for faultless spec-
imen and for a number of faulty specimens. In this research, a fault was added to a validated
FEM, on a different location per FEM, and then numerical modal analysis was carried out
to find resonance frequencies. The second step is to process the obtained resonance fre-
quencies to form a signature (an array of numbers) for each fault location. Afterwards, at
the third and last step, a fuzzy inference was developed to map signatures to their associ-
ated fault locations. The developed fuzzy inference system in this research could locate an
under-surface fault accurately in an engine cylinder block.
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