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Abstract This paper investigates an optimal day-ahead

dynamic pricing problem in an electricity market with

one electricity retailer and multiple customers. The main

objective of this paper is to support the retailer to make

the best day-ahead dynamic pricing decision, which

maximizes its profit under the realistic assumption that

mixed types of customers coexist in the electricity

market where some customers have installed smart

meters with the embedded home energy management

system in their home whereas other customers have not

installed smart meters. To this end, we propose a hybrid

demand modelling framework which firstly uses an

optimal energy management algorithm with bill mini-

mization to model the behavior of customers with smart

meters and secondly use a data-driven demand modelling

method to model the behavior of customers without

smart meters. Such a hybrid demand model can not only

schedule usages of home appliances to the interests of

customers with smart meters but also be used to

understand electricity usage behaviors of customers

without smart meters. Based on the established hybrid

demand model for all customers, a profit maximization

algorithm is developed to achieve optimal prices for the

retailer under relevant market constraints. Under the

condition of no growth of the revenue (i.e. no increase of

total bill from all customers), simulation results indicate

our optimization algorithm can improve the profit for

around 5% on average.

Keywords Demand response management, Day-ahead

dynamic pricing optimization, Demand modelling

1 Introduction

Demand response programs which are designed to re-

shape customers’ electricity usage patterns to enhance the

reliability and efficiency of the grid [1]. Demand response

programmes are generally divided into two main categories

which are incentive-based programmes [2–4] and price-

based programmes [5–8]. Dynamic pricing tariff has been

commonly considered as one of the most efficient and

economic price-based programmes [9], in which the elec-

tricity price varies between time-periods in a day, and is

usually released one hour-ahead or one day-ahead (DAP).

In this paper, we consider DAP where prices for the

24 hours of the following day are announced on the eve-

ning before. Such tariff has been used in utility companies

in the USA [10, 11]. Furthermore, a dedicated review of

dynamic electricity pricing can be found in [12].

Most existing research on dynamic pricing based

demand response optimization assume that customers are

installed with smart meters and home energy management

systems (HEMS), i.e. there is an optimization software

which is able to help customers schedule their home
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appliances usages explicitly to maximize customers’ utility

such as minimizing their payment bills [13–16].

On the other hand, for customers without smart meters,

utility functions are usually adopted to represent cus-

tomers’ electricity use behaviors and preferences [17–19].

It is assumed that customers will maximize the defined

utility functions and the retailer knows the exact utility

functions of customers. However, in reality, customers’

utility functions may not be able to be represented in a

mathematical form such as those in [17–19] simply

because customers usually use their energy heuristically

and their behavior patterns could change with time. Fur-

thermore, the retailer might not be able to know the utility

function information due to data privacy issues.

Without knowing the exact utility functions of cus-

tomers, modelling customers’ responses to time-varying

prices becomes important. Schweppe et al. [20] developed

the concept of spot pricing of electricity where they

envisaged a system wherein the spot prices change in real

time, and customers can adjust their demand depending on

the spot prices. Three responsive load models, namely,

linear, exponential and potential demand functions are

proposed. [21] indicated that the assumption that cus-

tomers can reduce their loads indefinitely is unrealistic;

instead, customers will attempt to shift their consumption

to other periods. Therefore, the concept of the price-elas-

ticity of demand is important for modelling responses. The

influence of demand elasticity on the shape of the load

curve has been addressed in the past works including the

concepts of self-elasticity (the relation between demand

and price in one time interval) and cross-elasticity (the

relation between demand and price in different time

intervals) [22–25]. For instance, in [22], demand models

were formulated as linear models, and the matrix of elas-

ticities which includes all self-elasticities and cross-elas-

ticities was evaluated. A demand responsive model was

proposed in [23] based on price self-elasticity, which

consists of four different demand functions, namely, lin-

ear, exponential, logarithmic and potential functions. An

economic model for the demand response which can

explain the change and cross-period shift in consumption

pattern of customers is proposed in [25]. However, the

above price elasticity based demand models are not ready

for use in the pricing optimization problem. This is mainly

due to the lack of market behavior constraints between the

elasticities, which can lead to incorrect demand modelling

where higher market prices lead to higher usages. Moti-

vated by the above analysis, in this paper, we adopt a

realistic demand model based on price elasticity including

relevant market behavior constraints to be use in the

pricing optimization model.

Although the above and other unlisted studies have

provided valuable insights on how to model customers’

demand patterns in the context of dynamic pricing, they

only consider one type of customers (either customers

with smart meters or customers without smart meters).

However, there are real situations where two different

types of customers coexist in the same electricity market.

Unfortunately, no existing literature have studied this

problem. As a result, in this paper we take the initiate to

investigate such a demand response problem with mixed

types of customers where the retailer needs to make best

dynamic pricing decisions by taking into account different

customers’ responses at the same time. To this end, we

firstly develop a hybrid demand modelling framework to

capture electricity use behaviors of mixed types of cus-

tomers. Secondly, the pricing optimization problem is

formulated for the retailer to maximize its profit. The

main contributions of this paper can be summarized as

follows:

1) We develop a hybrid demand modelling framework

for mixed types of customers including customers

without smart meters and customers with smart meters

based on our previous work [16] [26]. In particular, the

present demand model for customers without smart

meters extends [26] by a detailed analysis of cus-

tomers’ usage behaviors in response to time varying

electricity prices through price elasticity matrix

evaluations.

2) A profit maximization based optimal dynamic pricing

is formulated for the retailer in such a realistic and

meaningful electricity market scenario where two

types of customers coexist.

3) A comprehensive simulation study is conducted by

evaluating the proposed demand model and the pricing

optimization model.

The rest of this paper is organized as follows: a hybrid

demand modelling for both types of customers is presented

in Section 2. The profit maximization model for the retailer

is presented in Section 3. Simulations studies are con-

ducted in Section 4 and the paper is concluded in

Section 5.

2 Hybrid demand modelling for customers

The hybrid demand modelling at each hour h 2
H , 1; 2; . . .;Hf g for the mixed customer pool can be

achieved by aggregating the demand of each type of cus-

tomers for that hour where the demand modelling of cus-

tomers without/with smart meters are presented in

subsection 2.1 and subsection 2.2 respectively.
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2.1 Demand model of customers without smart

meter

In this subsection, we consider that at the end of each

day, the retailer announces electricity prices for the next

24 hours; then, based on the announced prices, customers

determine and consume electricity based on their prefer-

ences. We also assume that the retailer does not have

demand information from customers because of the

unavailability of (mathematical or analytical) utility func-

tions for customers. To solve this problem, our proposed

solution is building hourly demand models (i.e., hourly

reaction functions to the announced prices) from historical

data in terms of varying prices over the next 24 hours.

Throughout this paper, we assume that the price and

demand information for the last N days are available.

Based on such information, our objective is to decide the

prices on day N þ 1 to achieve the maximum profit for the

retailer. We denote the prices of electricity on day n 2
@ , 1; 2; . . .;Nf g as P nð Þ ¼ p1 nð Þ; p2 nð Þ; . . .; ph nð Þ; . . .;½
pH nð Þ� where ph nð Þ represents the price at hour h 2
H, 1; 2; . . .;Hf g on day n 2 @ and H represents the

pricing horizon; in this study, H ¼ 24. We also denote

the demand for electricity from all customers on day

n 2 @ as D nð Þ ¼ d1 nð Þ; d2 nð Þ; . . .; dh nð Þ; . . .; dH nð Þ½ � where
dh nð Þ is the load demand from customers at hour h 2 H on

day n.

The usage of electricity of customers during each hour

depends not only on the price of electricity at that hour but

also prices of other hours [22]. As a result, we consider the

price- reaction function from all customers at each hour as:

yh ¼ Rh p1; p2; . . .; pHð Þ ð1Þ

where yh is the amount of electricity demanded by

customers at hour h 2 H. As aforementioned, the retailer

cannot know Rh p1; p2; . . .; pHð Þ, and we need to find an

estimated reaction function R̂h p1; p2; . . .; pHð Þ that is as

close to Rh p1; p2; . . .; pHð Þ as possible. This requirement

can be expressed as:

min
X

h2H
R̂h � Rh

� �2 ð2Þ

In this paper, we use linear model to express the

estimated reaction function [26] for each hour h 2 H:

R̂h p1; p2; . . .; pHð Þ ¼ ah þ bh;1p1 þ � � � þ bh;HpH ð3Þ

where parameter bh;h is direct elasticity and parameter bh;c
(h 6¼ c) is cross-price elasticity [22–24].

The self-elasticity measures the responsiveness of the

demand for electricity at hour h 2 H to its own priceph.

When the price at hour h increases but prices of the other

hours remain unchanged, the demand at hourh will

decrease. Therefore, the self-elasticity bh;h is always neg-

ative. That is, the following inequality holds:

bh;h\0 ð4Þ

The cross elasticity measures the responsiveness of the

demand for electricity at hour h 2 H to changes in price at

some other hourc 2 H. When the price of electricity at

hour c (i.e. pc) increases but prices at other hours remain

unchanged, some demand at hour c may be switched from

hour c to hour h due to the price increase at hour c. As a

result, cross elasticity bh;c is always positive [22]. That is:

bh;c [ 0 if h 6¼ c ð5Þ

In addition, the necessary and sufficient condition that

the electricity is a demand-consistent product in the

considered retail market is also considered. That is, for

each h; c 2 H, the following inequality holds:

bh;h þ
XN

c¼1;c 6¼h

bc;h\0 ð6Þ

The detailed proof of necessary and sufficient of (6) can

be found in our previously published paper [26]. Finally the

demand estimation model is given by (2)–(6).

2.2 Demand model for customers with smart meter

For customers with smart meters, they are assumed to

respond to dynamic electricity prices to minimize their

electricity bill payments. It is assumed that home energy

management systems (HEMS) are embedded in the smart

meter where there is a two-way communication and control

infrastructure between the smart meter control center and

each home appliance. Such an HEMS can schedule the

electricity consumptions of each appliance on behalf of

customer. The resulted electricity consumption scheduling

problem aims to determine when and how much electricity

to consume in each time period for each home appliance

within the scheduling window to minimize customer’s

electricity bills. Throughout the rest of this paper, we

denote K as the set of customers who have installed smart

meters at their homes where K, Kj j.
The home appliances are divided into three different

categories: non-shiftable appliances (e.g., lights),

shiftable appliances (e.g. washing machines), and curtail-

able appliances (e.g. air-conditioners) [16].

For each customer k 2 K , 1; 2; . . .;Kf g, we denote Ak

as the set of appliances in household k. In addition, we

define relevant sets of shiftable and non-shiftable appli-

ancesSk. The reason why we can use the same model to

model all shiftable and non-shiftable appliance is that non-

shiftable appliances can be treated as one special type of

shiftable appliances for which the amount of electricity that
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can be shifted is zero. We also define the set of curtailable

appliancesCk. Therefore, we haveAk ¼ Sk [ Ck, and

Sk \ Ck ¼ ;. As a result, the bill payment minimization

problem of each customer k is divided into two sub-prob-

lems because the appliances sets are non-overlapping.

1) Shiftable and non-shiftable appliances

For each customer k 2 K and each appliance s 2 Sk, we

define an electricity consumption scheduling vector:

xk;s ¼ x1k;s; . . .; x
h
k;s; . . .x

H
k;s

h i
ð7Þ

where xhk;s represents the electricity consumption of appli-

ance s at hour h for k-th customer.

Each customer needs to set a scheduling window

Hk;s , qk;s; . . .; rk;s
� �

for each shiftable appliance s 2 Sk,

in which qk;s indicates the earliest possible beginning time

of the scheduling window, and rk;s is the last accept-

able ending time of the scheduling window.

In the scheduling window Hk;s; the electricity con-

sumption of appliance s can be shifted from periods with

high electricity prices to periods with low electricity prices.

However, the total electricity consumption needed to finish

all the operations for appliance s is fixed and defined as

Ek;s. Therefore, we have:

Xrk;s

h¼qk;s

xhk;s ¼ Ek;s ð8Þ

xhk;s ¼ 0 8h 2 H=Hk;s ð9Þ

For each shiftable appliance s 2 Sk, we also define the

minimum electricity consumption level during each hour as

cmin
k;s and the maximum electricity consumption level during

each hour as cmax
k;s . Therefore, we have:

cmin
k;s \ xhk;s \ cmax

k;s 8h 2 Hk;s ð10Þ

The minimum electricity consumption level cmin
k;s can be

considered an electricity consumption of the appliance in

the standby mode while cmax
k;s is the maximum electricity

consumption level and usually stands for the rated

electricity consumption level.

Finally, for each customer k 2 K, the electricity bill

minimization problem for shiftable and non-shiftable ap-

pliances can be modelled as follows, which a linear pro-

gramming problem and can be solved easily using existing

solvers.

minFSk ¼ min
xh
k;s

X

s2Sk

Xrk;s

h¼qk;s

phx
h
k;s

s.t.

Xrk;s

h¼qk;s

xhk;s ¼ Ek;s ð11Þ

xhk;s ¼ 0 8h 2 H=Hk;s

cmin
k;s \xhk;s\cmax

k;s 8h 2 Hk;s

2) Curtailable appliances

For each customer k 2 K and for each curtailable

appliance c 2 Ck, we define an electricity consumption

scheduling vector as follows:

xk;c ¼ x1k;c; . . .; x
h
k;c; . . .x

H
k;c

h i
ð12Þ

Similar to shiftable and non-shiftable appliances, for

each appliance c 2 Ck, we assume that each customer

needs to set a scheduling window Hk;c , qk;c; . . .; rk;c
� �

, in

which qk;c indicates the earliest beginning time of the

scheduling window, and rk;c represents the latest ending

time of the scheduling window.

For each curtailable appliance c 2 Ck, we define the

minimum electricity consumption level during each hour as

cmin
k;c and the maximum electricity consumption level during

each hour as cmax
k;c . Therefore, we have:

cmin
k;c \xhk;c\cmax

k;c 8h 2 Hk;c ð13Þ

xhk;c ¼ 0 8h 2 H=Hk;c ð14Þ

Furthermore, the electricity usage of curtailable

appliance c 2 Ck of each customer k 2 K at each hour h 2
Hk;c is modelled as a linear function of electricity price:

fk;c phð Þ ¼ ak;cph þ bk;c. As a result, the electricity bill

minimization problem for curtailable appliances for each

customer can be modelled as follows:

min FCk
¼ min

xh
k;c

X

s2Ck

Xrk;c

h¼qk;c

phx
h
k;c

s.t.

cmin
k;c \xhk;c\cmax

k;c 8h 2 Hk;c ð15Þ

xhk;c ¼ fk;c phð Þ ¼ ak;cph þ bk;c 8h 2 Hk;c

Finally, for each customerk 2 K, 1; 2; . . .;Kf g, the

optimal electricity consumption scheduling problem for

the whole household with smart meter can be modelled as:

min FCk
þ FSkð Þ ð16Þ
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3 Profit maximization model for the retailer

The profit modelled in our problem is defined by rev-

enue minus electricity cost which includes wholesale cost

of electricity, services costs, and etc.

In the real world, many factors exist that can affect the

procurement cost of electricity for a retailer. For simplicity,

a cost function Ch Lhð Þ is defined and used to represent such

a cost of providing electricity at each hour h 2
H, 1; 2; . . .;Hf g where Lh represents the total amount of

electricity provided to all customers in the retail electricity

market at each hour. We assume that the cost function

Ch Lhð Þ is convex, increasing in Lh for each hour h [16, 18].

We design the cost functions as follows:

Ch Lhð Þ ¼ ahL
2
h þ bhLh þ ch ð17Þ

whereah [ 0, and bh � 0, ch � 0 for each hour h 2 H.In

this paper, we consider two pricing optimization formula-

tions for the retailer: � a market only containing customers

without smart meters; ` a market containing mixed cus-

tomers (customers with smart meters and customers with-

out smart meters).

3.1 Pricing optimization for market only containing

customers without smart meters

For each hourh 2 H, we define the minimal and maxi-

mum price that the retailer can offer to its customers as

pmin
h � ph � pmax

h ð18Þ

where pmin
h and pmax

h are usually set based on factors such as

the cost of wholesale electricity, customers’ willingness

and affordability to pay, and political pressure. For

instance, usually to avoid a loss, the retail price should be

higher than the corresponding wholesale price. On the

other hand, an upper bound of the retail price is often

needed to create a reasonable long-term price image to

withhold market share from competitors. Further, govern-

ment policy and customers’ acceptability also force prices

to be upper bounded.

We also set a maximum supply capacity for each

hourh 2 H, which is denoted as Emax
h . Therefore, we have

R̂h p1; p2; . . .; pHð Þ�Emax
h 8h 2 H ð19Þ

Furthermore, a constraint on the total revenue should

exist due to pressure from government policy and

customers’ acceptability. Thus, we have the constraint
X

h2H
ph ah þ bh;1p1 þ . . .þ bh;HpH
� �

�Rmax ð20Þ

It should be noted that, the above revenue constraint is

critically important in practice from the profit

maximization perspective due to that electricity is a basic

necessity and therefore less elastic. Based on our

experiment, without such a constraint, the optimal prices

will always increase to the upper price bounds because

such maximum prices usually represent greatest

profitability.

In addition, minimizing the peak-to-average ratio (PAR)

is another request that retailers should consider and is

commonly achieved by shifting the use of high-power

household appliances from peak hours to off-peak hours. In

this paper, we consider there is a maximum PAR constraint

imposed on the retailer. By denoting the daily peak and

average load levels as Lpeak ¼ max
h2H

Lh and Lavg ¼

P
h2H

Lh

H
, the

PAR is formulated as
Lpeak
Lavg

by definition. Since the total load

across all customers at each hour h 2 H in our considered

problem is R̂h p1; p2; . . .; pHð Þ, the PAR can then be defined

as
max
h2H

R̂h p1;p2;...;pHð ÞP
h2H

R̂h p1;p2;...;pHð Þ=H Therefore, we have the following PAR

constraint immediately.

max
h2H

R̂h p1; p2; . . .; pHð Þ
P
h2H

R̂h p1; p2; . . .; pHð Þ=H
�PARmax

The above constraint with max function in the left hand

side can then be reformulated to (21) to improve the

mathematical tractability.

HR̂h p1; p2; . . .; pHð Þ
P
h2H

R̂h p1; p2; . . .; pHð Þ
�PARmax 8h 2 H ð21Þ

Finally, the pricing optimization problem for the retailer

can be expressed as the following quadratic programming

with quadratic constraints problem (QPQCP), which can be

solved using the SCIP solver in OPTI TOOLBOX [27].

max
X

h2H
ph � chð ÞR̂h p1; p2; . . .; pHð Þ

� �
ð22Þ

s.t. (18)–(21)

3.2 Pricing optimization for market containing

mixed customers with and without smart meters

We first rewrite the maximum supply capacity constraint

of (19) in the previous subsection to consider both types of

customers. As a result, we have:
X

k2K

X

a2Ak

xhk;a þ R̂h p1; p2; . . .; pHð Þ�Emax
h 8h 2 H ð23Þ

Furthermore, by rewriting the total revenue constraint of

(20) in the previous subsection, we have:
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X

h2H
ph

X

k2K

X

a2Ak

xhk;a

 !
þ ahþbh;1p1þ . . .þbh;HpH
� �

 ! !

�Revenuemax

ð24Þ

Finally, the profit maximization for the retailer can be

modelled as (25). As (25) is a nonlinear and non-convex

problem and difficult to solve using conventional nonlinear

programming methods, we use genetic algorithm (GA) in

this study to solve the above profit maximization problem

for the retailer.

max
X

h2H
ph

X

k2K

X

a2Ak

xhk;a

 !
þ ah þ bh;1p1 þ . . .þ bh;HpH
� �

 ! !
�

(

X

h2H
Ch

X

k2K

X

a2Ak

xhk;a

 !
þ ah þ bh;1p1 þ . . .þ bh;HpH
� �

 ! !)

ð25Þ

s.t. (18), (23) and (24)

4 Results and analysis

In this section, we first evaluate the demand modelling

and pricing optimization in the electricity market only

containing customers without smart meters. Second, the

pricing optimization model for the electricity market

including both types of customers will be evaluated.

4.1 Result and evaluation of demand modelling

and pricing optimization in electricity market

only containing customers without smart meters

1) Results and evaluation of demand modelling

As aforementioned, our demand model can not only be

used to predict short-term demand accurately, but also be

used to analyse customer’s behaviour of using electricity

based on varying prices. Since the capability of short term

demand forecasting of our demand model has been com-

prehensively evaluated in our previous paper [26], in this

section, we will focus on analyzing all elasticity coeffi-

cients and the elasticity matrix to obtain a better under-

standing of the demand behaviors. The dataset being used

to build the demand model for the evaluation is from the

PJM and includes the day-ahead electricity prices and

demand information between 01/01/2011 and 22/08/2012

(600 days) for a set of residential customers. The dataset is

available to the public online at [28].

For a 24-hour scheduling period, the cross elasticity

coefficients can be arranged in a 24-by-24 matrix as fol-

lows [24]:

b1;1
b2;1

b1;2
b2;2

� � � b1;H
� � � b2;H

..

. ..
.

. .
. ..

.

bH;1 bH;2 � � � bH;H

2
66664

3
77775

Figure 1 shows that the absolute values of bh;h during

the period around midnight (11 pm to 6 am) and during

working hours (9 am to 3 pm) are much higher than other

periods. This phenomenon indicates that the usage of

electricity is more relaxed during these two typical periods.

Therefore, people are more willing to shift their usage of

electricity from these hours to other hours if the price is

excessive. However, during the heavy consumption hours

between 7 to 8 am, as previously mentioned, people are

waking up and preparing for work, and nearly all electricity

consumption during this period is necessary and not easy to

shift. In addition, during the hours between 4 to 10 pm

when people are coming home from work, the usage of

electricity for tasks such as cooking for dinner and

watching TV and common usage of lighting are time

constrained and difficult to shift.

The elasticity matrix is illustrated as Fig. 2 and is based

on the visualization of the evaluation of the elasticity

matrix in [22]. We can see that, generally, for an hour c that

is closer to h, the absolute values of bh;c (h 6¼ c) is much

greater than the absolute values of bh;c (h 6¼ c) when hour

c is farther away from hour h. This phenomenon indicates

that, although some usage of electricity during a specific

hour is shiftable, customers are more willing to shift this

electricity consumption to an hour that is closer to this

specific hour. This is because they do not want to wait too

long, especially during the daytime (approximately 7 am to

8 pm); thus, the nonzero elements are clustered around the

Fig. 1 Average bh;hs of a day computed for the period between

01/01/2011 and 22/08/2012 (600 days)
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diagonal, which indicates that customers’ flexibility is

limited, namely, they only can tolerate postponing or

advancing the use of electricity for one or two hours.

However, during off-peak hours (i.e., the period around

midnight), especially between 11 pm and 2 am, the non-

zero elements are spread widely over the column, which

indicates that consumers are more willing to reschedule

their usages over a longer period as the usage of electricity

during this period is not as urgent.

2) Results and evaluation of pricing optimization

Our pricing optimization model was evaluated using the

following methods: first, we identify the demand models

from the data between 01/01/2011 and 22/08/2012

(600 days), and based on the identified demand models,

we use our pricing optimization model to generate the

optimal prices of 24 hours for the 601st day (23/08/2012).

We will then perform a comparison between our optimized

prices X ¼ p1; p2; . . .; pH½ � and the original prices X0 ¼

p
0
1; p

0
2; . . .; p

0
H

� �
in the dataset to determine how great of an

improvement can be achieved. This can be expressed as:

IMPV ¼

P
h2H

ph � chð ÞR̂h Xð Þ
� �

�
P
h2H

p
0

h � ch
� �

R̂h X
0� �� �

P
h2H

ðp0
h � chÞR̂h X

0ð Þ
� �

The parameter setting for our experiment is showed in

Table 1. Figure 3 shows a comparison of original prices

and optimized prices on 601st day, and Fig. 4 shows a

comparison between optimized and original profit based on

similar revenue of 601st day. From these two figures, we

found that the optimized prices generated from our

optimization model are more sensible, and could achieve

higher profits on the 601st day (approximately 4.6%) even

though the revenue does not increase. The above findings

are further confirmed by Fig. 5 which shows a comparison

between optimized and original profit based on same

revenue setting between the 601st day and the 614st day.

Fig. 2 Average estimated price elasticities (all bs) computed for the

period between 01/01/2011 and 22/08/2012 (600 days)

Table 1 Parameters setting for pricing optimization

Parameters Description

ch This experiment is based on the real data, so that we assume that the retailer has exact value of cost of electricity. Therefore, we use

constant for cost of electricity instead of cost function. The cost of electricity is set as the original prices in the current day minus

a constant, in our experiment, the constant is 2.

pmin
h

To guarantee the retail price is higher than wholesale price. the minimal bound of price is set as ch

pmax
h The maximum bound of the retail price is set as the original maximum price on the next day from datasetð Þ � 110%

Emax
h The maximum amount of electricity consumed on the next day from dataset

Emax
h The minimum amount of electricity consumed on the next day from dataset

Rmax In order to facilitate comparison of profit, the bound of Revenue is set as the same as the revenue achieve on the next day from

original data.

PARmax Same as the PAR on the next day from dataset

Fig. 3 Comparison between original prices and optimized prices on

the 601st day
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4.2 Result and evaluation of pricing optimization

in mixed electricity market containing

customers with and without smart meters

In this experiment, we simulate an electricity market with

1000 households (including some households with/without

smart meters), all of whom are served by one electricity

retailer. For evaluation, we first set parameters and generate

data for both types of customers (both with and without

smart meters) separately. Second, we implement the opti-

mization method proposed in Sect. 3.2 (which treats the two

types of customers differently) on the dataset. Third, we

implement the optimization method proposed in Sect. 3.1

(build the demand model for all customers, which includes

both types of customers, as the customers without smart

meters in order to provide a comparison case) on the same

dataset. Fourth, we compare the results generated from both

optimization methods to find out whether the retailer can

obtain any improvement on the profit maximization using

the detailed utility function from all or part of its customers

(from the implementation of optimization proposed earlier

in this section).

For customers with smart meters, we assume each cus-

tomer has eight appliances (including shiftable, non-

shiftable and curtailable appliances) at home. The

scheduling horizon is set to 24 hours, from 8 am on one

day to 8 am the next day. The parameter settings for each

category of appliances for each customer with smart meter

are listed in Tables 2, 3 and 4.

For customers without smart meters, we use the dataset

from the PJM that includes both day-ahead electricity prices

and demand information between 01/01/2012 and 30/11/

Fig. 4 Comparison between optimized and original revenue and

profit of 601st day

Fig. 5 Comparison between optimized and profit between 601st day

and 614st day

Table 2 Parameters setting of shiftable appliances for each

household

Appliance

name

Ek;s kWhð Þ qk;s � rk;s cmin
k;s kWhð Þ cmax

k;s kWhð Þ

Dish washer 1.44 12 am–16

pm

0.1 1

Washing

machine

1.94 3 am–5 am 0.2 1

Dryer 2.5 5 am–9 am 0.25 2.0

PHEV 9.9 13 pm–24

pm

0.3 3.3

Battery charger 2 5 am–10

am

0.1 1

Other 1 0.8 13 pm–16

pm

0.25 0.5

Other 2 3 9 pm–15

pm

0.1 1

Other 3 1 1 am–5 am 0.1 1

Table 3 Parameters setting of non-shiftable appliances for each

household

Appliance

name

Ek;s

kWhð Þ
qk;s � rk;s cmin

k;s

kWhð Þ
cmax
k;s

kWhð Þ

Refrigerator-

freezer

1.32 8 am–8 pm 0 0.55

Oven 2 10 am–15 pm 0 1.5

Table 4 Parameters setting of curtailable appliances for each

household

Appliance name qk;s � rk;s cmin
k;c kWhð Þ cmax

k;c kWhð Þ

Space heater 9 am–12 am 0 0.55

Air conditioner 6 pm–11 pm 0 1.5
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2013 for a set of residential customers. The dataset is avail-

able to the public online at [28]. Before applying demand

modelling to the dataset, we normalize the dataset to the

demand from around 500 households (to ensure that the total

demand from customers without smart meters is similar to

the total demand from customers with smart meters).

As mentioned, we choose a quadric cost function:

Ch Lhð Þ ¼ ahL
2
h þ bhLh þ ch to model the cost of electricity

for the retailer, where Lh represents the amount of elec-

tricity consumed by all existing customers in the market at

each hour of the day. For simplicity, we set bh ¼ 0 and

ch ¼ 0 for each hourh 2 H. Also we set ah ¼ 5:5� 10�4

cents during the hours from 8 am to 12 am and ah ¼
4:0� 10�4 cents during the hours from 12 am to 8 am the

next day.

In our experiment, we design three test cases in which

the proportions of households with/without smart meters

are different as shown in Table 5.
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Fig. 6 Comparison of optimal prices obtained from proposed method

from subsection 3.1 and subsection 3.2 (Case 1)
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Fig. 7 Comparison of optimal profit obtained from proposed method

from subsection 3.1 and subsection 3.2 (Case 1) (3.2% Improvement)

Table 5 Parameters setting of curtailable appliances for each

household

Case No. Households without

smart meters

Households with

smart meters

1 750 250

2 500 500

3 250 750
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Fig. 8 Comparison of optimal prices obtained from proposed method

subsection 3.1 and subsection 3.2 (Case 2)
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Fig. 9 Comparison of optimal profit obtained from proposed method

from subsection 3.1 and subsection 3.2 (Case 2). (3.2% Improvement)
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The detailed results from the experiments on these three

cases are shown in Figs. 6, 7, 8, 9, 10 and 11, in which

Figs. 6, 8 and 10 show comparisons between the optimal

prices obtained from the price optimization model pro-

posed in subsection 3.2 and the model proposed in sub-

section 3.1 whereas Figs. 7, 9 and 11 show comparisons

between the optimal profits obtained from the above two

mentioned pricing optimization models. More precisely, as

shown in Figs. 7, 9 and 11, the retailer under the model

proposed in subsection 3.2 (including both types of cus-

tomers) receives more accurate information from cus-

tomers who have smart meters installed (the detailed

customers’ utility functions) and therefore can gain more

profit when compared with that under the model in

subsection 3.1 (with only customer without smart meters).

It is worth noting that with the proportion of smart meter

installed households increases, the model in subsection 3.2

can gain further profits for the retailer (i.e. a 3.2%

improvement for Case 1, a 4.9% improvement for Case 2

and a 6.2% improvement for Case 3).

5 Conclusion

In this paper, we study the dynamic pricing optimization

problem to support the retailer to make the best day-ahead

dynamic pricing decision to maximize its profit under a

realistic scenario that mixed types of customers coexist in

the electricity market where some customers are installed

with smart meters in their home whereas other customers

have not. To this end, we firstly propose a hybrid demand

model to capture the demand behaviors of both types of

customers. Secondly, a profit maximization algorithm is

developed based on the established hybrid demand model

to obtain optimal prices for the retailer under realistic

market constraints. The simulation results show that the

retailer can achieve a 5% profit improvement by using our

proposed pricing model.
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