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Abstract

This paper considers trial-offer markets where consumer preferences are modeled by a multi-
nomial logit with social influence and position bias. The social signal for a product is given
by its current market share raised to power r (or equivalently the number of purchases raised
to the power of r). The paper shows that, when r is strictly between 0 and 1, and a static
position assignment (e.g., a quality ranking) is used, the market converges to a unique equi-
librium where the market shares depend only on product quality, not their initial appeals or
the early dynamics. When r is greater than 1, the market becomes unpredictable. In many
cases, the market goes to a monopoly for some product: Which product becomes a monopoly
depends on the initial conditions of the market. These theoretical results are complemented by
an agent-based simulation which indicates that convergence is fast when r is between 0 and 1,
and that the quality ranking dominates the well-known popularity ranking in terms of market
efficiency. These results shed a new light on the role of social influence which is often blamed
for unpredictability, inequalities, and inefficiencies in markets. In contrast, this paper shows
that, with a proper social signal and position assignment for the products, the market becomes
predictable, and inequalities and inefficiencies can be controlled appropriately.

Keywords. System dynamics, social influence, stochastic dynamics, Robbins-Monro algorithms,
popularity signals, ranking policies.

1 Introduction
The impact of social influence and product visibilities on consumer behaviour in Trial-Offer (T-
O) markets1 has been explored in a variety of settings (e.g., [26, 30, 33]). Social influence can
be dispensed through different types of social signals: A market place may report the number of
past purchases of a product, its consumer ratings, and/or its consumer recommendations. Recent
studies [13, 33] however came to the conclusion that the popularity signal (i.e., the number of past
purchases or the market share) has a much stronger impact on consumer behaviour than the average
consumer rating signal.2 These two experimental studies were conducted in very different settings,
using the Android application platform in one case and hotel selection in the other. Consumer
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1A trial-offer market is a setting where consumers can try products before deciding whether to buy them or not.
2The music market iTunes shows the normalised market share of each song of an album.
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preferences are also influenced by product visibilities, a phenomenon that has been widely observed
in internet advertisement (e.g., [11]), in online stores such as Expedia, Amazon, and iTunes, as
well as physical retail stores (see, e.g., [20]).

Despite its widespread use in online settings (including for songs, albums, movies, hotels, and
cell phones to name only a few), there is considerable debate in the scientific community about
the benefits of social influence. Many researchers have pointed out the potential negative effects
of social influence. The seminal work of Salganik et al. [26] on the MusicLab experimental
market demonstrated that social influence can introduce significant unpredictability, inequality,
and inefficiency in T-O markets. These results were reproduced by many researchers (e.g., [23,
27, 28, 31]). More recently, Hu et al. [15] studied a newsvendor problem with two substitutable
products with the same quality in which consumer preferences are affected by past purchases. The
authors showed that the market is unpredictable but can become less so if one of products has
an initial advantage. Altszyler et al. [5] has recently studied the impact of product appeal and
product quality in a trial-offer market model with social influence under a finite time horizon. The
authors showed that there exists a logarithmic tradeoff between the two: the final product market
share remains constant if a decrease in product quality is followed by an exponential increase in
the product appeal. Other researchers have focused on understanding when these undesirable side-
effects arise and where they come from. Ceyhan et al. [8] studied a market specified by a logit
model where a constant J captures the strength of the social signal. They showed that the market
behaviour (e.g., whether it is predictable) depends on the strength of the social signal. Their
results did not consider product visibilities, which is another important aspect of T-O markets.
Indeed, various researchers (e.g., [1, 3, 4, 19, 32]) indicated that unpredictability and inefficiencies
often depend on how products are displayed in the market. In particular, Abeliuk et al. [1] show
that social influence is always beneficial in expectation when the products are ordered by the
performance ranking that maximises the purchases greedily at each step. This result was obtained
using the generalised multinomial logit model proposed by Krumme et al. [17] to reproduce the
MusicLab experiments. Van Hentenryck et al. [32] proves a similar result for the quality ranking
that assigns the highest quality products to the most visible positions. In addition, they show that
the market converges to a monopoly for the highest quality product. These results contrast with
the MusicLab experiments which relied on the popularity ranking that dynamically assigns the
most popular products to the most visible positions.

This paper seeks to expand our understanding of social influence in T-O markets and explores
the role of the social signal in conjunction with product visibilities. Our starting point is the
generalised multinomial logic model of Krumme et al. [17], which we extend to vary the strength
of the social signal. More precisely, this paper considers a T-O market where the probability of
purchasing product i at time t is given by

pi(φt) =
vσ(i)qi(φti)r∑n
j=1 vσ(j)qj(φtj)r

(1)

where σ is a bijection from n products to n positions, vk ∈ R is the visibility of position k, qi ∈ R
is the inherent quality of product i, φti is the market share of product i at time t, and r > 0 is
the strength of the social signal. As should be clear from the discussion above, prior work on T-O
markets with product visibilities (e.g., [1, 3, 19, 32]) focused on the case of a linear social signal
(r = 1). The primary objective of this paper is to understand what happens to the T-O market
when r < 1.
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The paper contains both theoretical and simulation results and its contributions can be sum-
marised as follows:

1. When r < 1 and a static ranking is used, the market converges to a unique equilibrium,
which we characterise analytically. In the equilibrium, the market shares depend only on the
product qualities qi and no monopoly occurs. Moreover, a product of higher quality receives
a larger market share than a product of lower quality, introducing a notion of fairness in the
market and reducing the inequalities introduced by a linear social signal.

2. When r > 1 and a static ranking is used, the equilibria can be characterised similarly. How-
ever, contrary to the case r < 1, the equilibria that are not monopolies can be shown to be
unstable under certain conditions. As a result, the market will typically go to a monopoly for
some product: Which product wins the entire market share depends on the initial condition
and the early dynamics.

3. Agent-based simulations show that the market converges quickly towards an equilibrium
when using sublinear social signals and the quality ranking. They also show that the quality
ranking outperforms the popularity ranking in maximising the efficiency of the market. The
popularity ranking is also shown to have some significant drawbacks in some settings.

These theoretical results indicate that, when the social influence signal is a sublinear function of
the market share and a static ranking of the products (e.g., the quality ranking) is used, the market
is entirely predictable, depends only on the product quality, and does not lead to a monopoly. This
contrasts with the case of r = 1 where the market is entirely predictable but goes to a monopoly
for the product of highest quality (assuming the quality ranking) [32] and the case of r > 1 where
the market becomes unpredictable (even with a static ranking). As a result, sublinear social signals
provide a way to balance market efficiency and the inequalities introduced by social influence. In
particular, with sublinear social signals and a static ranking, markets do not exhibit a Matthew
effect where the winner takes all, and remain predictable.

The remaining of this paper is organised as follows. Section 2 describes the related work. Section
3 introduces T-O markets and the generalised multinomial logit model for consumer preferences
considered here. Section 4 reviews some necessary mathematical preliminaries, including the fact
that T-O markets can be modeled as Robbins-Monro algorithms. Section 5 derives the equilibria
for the market as a function of the social signal and also presents the convergence results. Section
6 reports the results from the agent-based simulation. Section 7 discusses some additional results
on sublinear signals. Section 8 discusses the results and concludes the paper.

2 Related Work
The research presented in this paper was motivated by the seminal work of Salganik et al. [26].
They study an experimental market called the MusicLab, where participants were presented a list
of unknown songs from unknown bands, each song being described by its name and band. The
participants were partitioned into two groups exposed to two different experimental conditions: the
independent condition and the social influence condition. In the independent group, participants
were shown the songs in a random order and they were allowed to listen to a song and then to
download it if they so wish. In the second group (social influence condition), participants were
shown the songs in popularity order, i.e., by assigning the most popular songs to the most visible
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positions. Moreover, these participants were also shown a social signal given by the number of times
each song was downloaded. In order to investigate the impact of social influence, participants in the
second group were distributed in eight “worlds” evolving completely independently. In particular,
participants in one world had no visibility about the downloads and the rankings in the other worlds.
The MusicLab exemplifies a T-O market where each song represents a product, and listening and
downloading a song represent trying and purchasing a product respectively. The results in [26] show
that different worlds evolve differently from one another, and significantly so, providing evidence
that social influence may introduce unpredictability, inequalities, and inefficiency in the market.

The results in [26] were reproduced by numerous researchers (e.g., [23, 27, 28, 31]) and, in
particular, by Krumme et al. [17] who model the MusicLab experiment with a generalised multi-
nomial logit where product utilities depend on the song appeal, quality, visibility, and a social
influence signal representing past purchases. The T-O market studied in this paper generalises the
model proposed by Krumme et al., exploring various strengths for the social signal as indicated in
Equation 1. The case of a linear signal (r = 1) has been given significant attention. Abeliuk et al
[1] proposed the performance ranking which orders the products optimally at each time t given the
appeals, qualities, visibilities, and market shares. They show that, when the performance ranking
is used, the market always benefits from social influence in expectation. Van Hentenryck et al. [32]
study the quality ranking which ranks the products by quality: They show that the quality ranking
and, more generally, any static ranking, always benefits from social influence in expectation. They
also prove that the market converges almost surely to a monopoly for the highest-quality product,
indicating that the quality ranking is both optimal and predictable asymptotically. These results
extend well-known theorems on Pólya urns and their generalisations (e.g., [9, 22, 24]). Abeliuk et
al. [3] also show that the performance ranking converges to a monopoly for the highest-quality
product when a linear social signal is used.

Ceyhan et al. [8] study a general choice probability CJi (φt), where J represents the strength
of the social signal, and prove some general convergence results under some assumptions. In
particular, they use the ODE method [21] and a Lyapunov function (e.g., [18]) to prove that the
market converges to an equilibrium when the Jacobian of CJi is symmetric (which is not the case
when product visibilities are present). They also study in detail the case where the market follows
a logit model of the form

CJi (φ) = eJφi+qi∑
j e

Jφj+qj

where J is a constant capturing the strength of the social influence signal. They show that there
exists a parameter J∗ such that the market converges toward a unique equilibrium when J < J∗

and to a monopoly when J ≥ J∗. No analytical characterisation of the equilibrium when J < J∗

is presented.
It is interesting to contrast these and our results. Observe first that the proof technique used in

[8] relies on the fact that the Jacobian of CJi is symmetric, which is not the case for T-O markets
with product visibilities. Our paper studies such T-O markets and show that, when 0 < r < 1
and a static ranking is used, the market converges to an inner equilibrium, which we characterise
analytically. When r = 1, the T-O market converges to a monopoly for the product with the
highest value vσ(i)qi [1]. When r > 1, we show that the equilibria of the T-O market are given
by monopolies for each product and other type of equilibria (e.g, a market share consisting on a
distribution 60%, 40%, 0% for a market with 3 products). We prove that, when r > 1, the equilibria
that are not monopolies are unstable (under certain conditions). As a result, the market will likely
converge to a monopoly for some product.
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It is also useful to mention that different, theoretical and experimental, approaches to the use of
social influence are present in the literature. For instance, Yuan and Hwarng [35] describe a demand-
based pricing model under social influence and capture its behaviour with a dynamical system that
evolve to some stable or chaotic equilibria depending on the strength of the social signal. Stummer
et al [29] introduces an agent-based model for repeat purchase decisions addressing different types
of innovation diffusion and their perceived attributes; They also applied this methodology to an
application concerned with second-generation biofuel.

3 The Trial-Offer Model
The paper builds on the work by Krumme et al. [17] who propose a framework in which consumer
choices are captured by a multinomial logit model whose product utilities depend on the product
appeal, position bias, and a social influence signal representing past purchases. A marketplace
consists of a set N of n items. Each item i ∈ N is characterised by two values:

1. its appeal ai > 0 which represents the inherent preference of trying item i;

2. its quality qi > 0 which represents the conditional probability of purchasing item i given that
it was tried.

This paper assumes that the appeals and the qualities are known. Abeliuk et al. [1] have shown that
these values can be recovered accurately and quickly, either before or during the market execution
using the approximation suggested by Krumme et al.:

ai ∼
si∑
j sj

and
qi ∼

di
si

where si and di are the samplings and purchases of product i at some point in time.
The objective of the firm running this market is to maximise the total expected number of

purchases. To achieve this, the key managerial decision of the firm is what is known as the ranking
policy [1], which consists in deciding how to display the products in the market (e.g., where to
display a product on a web page). Here we assume that, at the beginning of the market, the firm
decides upon a ranking for the items, i.e., an assignment of items to positions in the marketplace.
Each position j has a visibility vj which represents the inherent probability of trying an item in
position j. A ranking σ is a permutation of the items and σ(i) = j means that item i is placed in
position j (j ∈ N). When a customer enters the market, she observes all the items and their social
signals based on the values of the previous purchases dt = (dt1, . . . , dtn).

The vector φt of market shares at time t is computed in terms of the vector dt, i.e.,

φti = dti∑n
j=1 d

t
j

.

and
φt ∈ ∆n−1 = {x = (x1, . . . , xn) ∈ Rn | 0 ≤ xi ≤ 1 and

n∑
i=1

xi = 1}.
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The consumer then selects an item to try. The probability that the customer tries item i is given
by Pi(σ, φt) where

Pi(σ, φ) =
vσ(i)f(φi)∑n
j=1 vσ(j)f(φj)

(2)

and f is a continuous, positive, and nondecreasing function. This probability generalises the multi-
nomial logit model of Krumme et al. [17] who define two sets of probabilities, pSIi,t and pIi , that
capture the probability of trying product i with and without social influence. These probabilities
are defined as:

pSIi,t =
vσ(i)(αai + dti)∑n
j=1 vσ(j)(αaj + dtj)

, pIi =
vσ(i)ai∑n
j=1 vσ(j)aj

, (3)

where α is a parameter to calibrate the strength of the social signal (e.g., α = 200 for the MusicLab
experiments). Equation (2) allows us to recover the formulae (3) via some linear transformation of
the identity function: f(φi) = βφi + αai, with β = ∑

j dj or β = 0 for each case.
After having tried product i, a customer decides whether to buy the sampled item and the

probability that she purchases item i is given by qi. If item i is purchased at time t, then the
purchase vector becomes

dt+1
j =

{
dtj + 1 if j = i;
dtj otherwise.

For simplicity, the vector d0 is initialised with the product appeals3, i.e., d0
i = ai. This condition

can be relaxed and the results presented in this paper continue to hold but the notations are heavier
(See Appendix C for the details). To analyse this process, we divide time into discrete periods such
that each new period begins when a product has been purchased. Hence, the length of each time
period is not constant.4

In this paper, we are interested in characterising how the market shares {φt}t>0 evolve over
time for various functions f given a static ranking σ. We are particularly interested in study the
asymptotic behaviour of {φt}t>0 for the cases where f(x) = xr with r > 0. For instance, when
r = 0.5, the social signal displays the square root of the number of past purchases. For notational
simplicity, we assume that the ranking is fixed and is the identity function σ(i) = i and omit it
from the formulas. If the qualities and visibilities also satisfy q1 ≥ . . . ≥ qn and v1 ≥ . . . ≥ vn, we
obtain the quality ranking proposed in [32] but our results hold for any static ranking.

The following lemma, whose proof is in Appendix B, relates the two phases of the T-O market
and characterises the probability that the next purchase is item i. It generalises a result in [32].

Lemma 3.1. If f : [0, 1]→ R is a positive function, then the probability pi(φ) that the next purchase
is the product i given the market share vector φ is given by

pi(φ) = viqif(φi)∑n
j=1 vjqjf(φj)

. (4)

We finish this section with an important equivalence that arises when f(x) = xr, r > 0. Under
such condition, if one writes down Equation (4) in terms of the number of purchases di that product
i has so far obtained instead of using the market shares, we get exactly the same expression. Indeed,

3The initialisation can be justified by viewing the discrete dynamic process as an urn and balls process, where the
appeals are the initial sets of balls.

4In Section 6, we modify the notion of time period to analyse the efficiency of trial-offer markets.
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pi(φ) = viqi(φi)r∑
j vjqj(φj)r

=
viqi( di∑

k
dk

)r∑
j vjqj(

dj∑
k
dk

)r
= viqi(di)r∑

j vjqj(dj)r
. (5)

Thus, when the social signal function f is given by f(x) = xr, r > 0, it is possible to interpret
our model either using the concept of market share (as we describe in Section 3) or simply using
the current number of purchases.

4 Trial-Offer Markets as Robbins-Monro Algorithms
This section establish some basic definitions and concepts that are useful in the rest of the paper.
In particular, it shows that T-O markets can be modeled as Robbins-Monro algorithms and states
some useful results. The results in this section are well-known in stochastic approximation. The
section starts with a brief introduction of Ordinary Differential Equations (ODE) and some stability
criteria (e.g., see [14, 16]).

Differential Equations: Consider the following differential equation

dy

dt
= F (y) (6)

where F is some vector field. The concept of equilibrium is central in the study of asymptotic
behaviour for this type of equation.

Definition 4.1. A vector y∗ ∈ Rn is an equilibrium for differential equation (6) if F (y∗) = 0.

We are interested in equilibria that satisfy (at least) certain stability criteria.

Definition 4.2. An equilibrium y∗ is said to be stable for Equation (6) if, given ε > 0, there exists
δ > 0 such that ‖y(t)− y∗‖ < ε for all t > 0 and for all y such that ‖y − y∗‖ < δ. We say that y∗
is asymptotically stable if it also satisfies

lim
t→∞

y(t) = y∗.

Remark 4.3. When an equilibrium y∗ is not stable, we say that y∗ is unstable.
The asymptotic stability of an equilibrium y∗ can be characterised in terms of the Jacobian matrix
JF (y∗) = (∂Fi(y∗)

∂yj
)i,j (i, j ∈ N) as stated by the following Theorem (see, for instance, [16] p. 440).

Theorem 4.4. Let y∗ be an equilibrium for the differential equation (6). If the eigenvalues of the
Jacobian matrix JF (y∗) all have negative real part, then y∗ is asymptotically stable. If, on the
other hand, JF (y∗) has at least one eigenvalue with a positive real part, then y∗ is unstable.

A well-known result from linear algebra (see, for example, [25] p. 296) establishes the connection
between the trace of a square matrix and its eigenvalues. In the following, we use tr(A) = ∑n

i aii
to denote the trace of matrix A where aii are the diagonal entries of matrix A.

Theorem 4.5. Let A be a n× n matrix, and λ1, ..., λn its eigenvalues. Then tr(A) = ∑n
i=1 λi.

We now show that the discrete stochastic process {φt}t≥0 can be modeled as a Robbins-Monro
Algorithm (RMA) [12, 18].
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Definition 4.6 (Robbins-Monro Algorithm). A Robbins-Monro Algorithm (RMA) is a discrete
time stochastic processes {xt}t≥0 whose general structure is specified by

xk+1 − xk = γk+1[F (xk) + Uk+1], (7)

where

• xk takes its values in some Euclidean space (e.g., Rn);

• γk is deterministic and satisfies γk > 0, ∑t≥1 γ
t =∞, and limt→∞ γ

t = 0 with probability 1;

• F : Rn → Rn is a deterministic continuous vector field;

• E[Uk+1|Fk] = 0, where Fk is the natural filtration of the entire process.5.

A RMA {xt}t≥0 where xt has n coordinates is said to be n-dimensional. Recall that the probability
that the next purchase is item i at time k is given by pi(φk) and denote by ek the random unit
vector whose jth entry is 1 if item j is the next purchase and 0 otherwise. The market share at
time k + 1 is given by

φk+1 = Dkφk

Dk + 1 + ek

Dk + 1
where Dk = ∑k

t=0
∑n
i=1 d

t
i = k + k0,where k0 = ∑n

i=1 ai. It follows that

φk+1 = (Dk + 1)φk
Dk + 1 − φk

Dk + 1 + ek

Dk + 1
= φk + 1

Dk + 1(ek − φk)

= φk + 1
Dk + 1(E[ek|Fk]− φk + ek − E[ek|Fk])

= φk + 1
Dk + 1(p(φk)− φk + ek − E[ek|Fk]).

This last equality can be reformulated as

φk+1 = φk + γk+1(F (φk) + Uk+1) (8)

where γk+1 = 1
Dk+1 , F (φ) = p(φ)−φ, and Uk+1 = ek−E[ek|Fk]. Note that the function F captures

the difference between the probabilities of purchasing the items (given the market shares) and the
market shares at each time step. Recall that φk ∈ ∆n−1 for all k ≥ 0, which is a compact, convex
subset of Rn (and hence connected). We can now prove that the discrete dynamic process {φt}t≥0
can be modeled as a Robbins-Monro algorithm.

Theorem 4.7. The discrete stochastic dynamic process {φk}k≥0 can be modeled as the Robbins-
Monro algorithm.

Proof. The above derivation showed that {φk}k≥0 can be expressed through Equation (8), i.e.,

φk+1 = φk + γk+1(F (φk) + Uk+1)

where γk+1 = 1
Dk+1 = 1

k+k0+1 , F (φ) = p(φ) − φ, and Uk+1 = ek − E[ek|Fk]. It is easy to see that
γk > 0, ∑k≥1 γ

k =∞, limk→∞ γ
k = 0, and that E[Uk+1|Fk] is equal to zero.

5Fk, the natural filtration, is the σ-field generated by the history {xl : l ≤ k}
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Robbins-Monro algorithms are particularly interesting because, under certain conditions on xk, γk,
and Uk+1, their asymptotic behaviour, i.e., the values of xk when k →∞, is closely related to the
asymptotic behaviour of the following continuous dynamic process:

dxt

dt
= F (xt), xt ∈ ∆n−1. (9)

This idea, called the ODE Method, was introduced by [21] and has been extensively studied (e.g.,
[7, 12, 18]). Consider again the RMA {xk}k≥0 defined in (7) and the following hypotheses:
H1: sup

k
E[‖Uk+1‖2] <∞;

H2:
∑
k

(γk)2 <∞;

H3: sup
k
‖xk‖ <∞.

We will now present a theorem establishing the connection between the discrete stochastic process
(7) and the continuous process defined by (9). This connection requires the concept of Internally
Chain Transitivity (ICT) sets. These ICT sets include equilibria, periodic orbits of (9), and possibly
more complicated sets.

To define ICT sets formally for the purpose of this paper, we use Proposition 5.3 in [6] that proves
that the concepts of internally chain recurrent and internally chain transitive set are equivalent when
the set over which F is defined is connected, which is obviously the case here.
Definition 4.8 ((ε, T )-Chains [10]). Consider ε > 0, T > 0, a set A ⊂ Rn, and two points x, y ∈ A.
There is an (ε, T )-chain of length k in A between x and y if there exist k solutions {y1, ..., yk} of
(9) and their associated times {t1, ..., tk} with ti > T such that

1. yti ∈ A for all t ∈ [0, ti] and for all i ∈ {1, ..., k};

2. ‖ytii − y0
i+1‖ < ε for all i ∈ {1, ..., k − 1};

3. ‖y0
1 − x‖ < ε and ‖ytkk − y‖ < ε.

We are now in a position to define ICT sets, which is derived from the definition of Internally Chain
Recurrent sets introduced by Conley (1978) [10].
Definition 4.9 (ICT Sets). A closed set A is said Internally Chain Transitive (ICT) for the
dynamics (9) if it is compact, connected, and for all ε > 0, T > 0 and x, y ∈ A, there exists an
(ε, T )-chain in A between x and y.
The following theorem, due to [6] and whose proof is in Appendix B, links the behaviour of the
limit set L{xk}k≥0 of any sample path {xk}k≥0 for Equation (7) and the limit sets of the solution
to Equation (9).
Theorem 4.10 ([6]). Let {xk}k≥0 be a Robbins-Monro algorithm (7) satisfying hypotheses H1−H3
where F is a bounded locally Lipschitz vector field (e.g., a bounded C1 function). Then, with
probability 1, the limit set L{xk}k≥0 is internally chain transitive for Equation (9).
Note that Theorem 4.10 is valid for very general functions F (x) = p(x)−x, as the only requirement
is to be locally Lipschitz. Since hypotheses H1, H2, and H3 are all satisfied by the discrete stochastic
dynamic process {φt}t≥0, it remains to study the structure of the ICT set of Equation (9). This
paper focuses on the cases where the social signal f(x) is given by f(x) = xr, with r > 0. We will
show that the ICT set of Equation (9) only consists of equilibria.
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5 Equilibria of Trial-Offer Markets
This section characterises the equilibria and the asymptotic behaviour of the continuous dynamics

dφt

dt
= p(φt)− φt, (φt ∈ ∆n−1), (10)

which is associated with the RMA (8). For simplicity, we remove the visibilities by stating qj = vjqj .
We are interested in the case where f(x) = xr with (r > 0, r 6= 1), since the case r = 1 has been
settled in earlier work. Let Q be the set of positive market shares, this is, Q = {i ∈ N : φi 6= 0},
clearly Q 6= ∅ since ∑n

i=1 φi = 1.

Theorem 5.1. Let f(x) = xr, r > 0, and r 6= 1. Any equilibria φ for Equation (10) has coordinates

φi = q
1

1−r

i∑
j∈Q q

1
1−r

j

if i ∈ Q

and zero otherwise (i.e., if i ∈ N \Q).

Proof. An equilibrium to (10) must satisfy pi(φ) = φi, i.e.,

qi(φi)r∑n
j=0 qj(φj)r

= φi.

For i ∈ Q, we have
qi(φi)r−1 =

∑
j∈Q

qj(φj)r

and, for all i, k ∈ Q, we also have

qi(φi)r−1 =
∑
j∈Q

qj(φj)r = qk(φk)r−1

which is equivalent to

qi(φi)r−1 = qk(φk)r−1 ⇔ φi =
(
qk
qi

) 1
r−1

φk. (11)

By summing for all i ∈ Q, we obtain

1 =
∑
i∈Q

φi = φk

q
1/(1−r)
k

∑
i∈Q

q
1/(1−r)
i

and hence

φk = q
1/(1−r)
k∑

i∈Q q
1/(1−r)
i

.

It remains to prove φ is indeed an equilibrium, i.e., p(φ) = φ. This is equivalent to prove that
pi(φ) = φi for all i ∈ {1, . . . , n}. The result is obvious if i ∈ N \Q (φi = 0⇒ pi(φ) = 0). If i ∈ Q,

10



then

pi(φ) = qi(φi)r∑
j∈Q qj(φj)r

= qi(q
1/(1−r)
i )r∑

j∈Q qj(q
1/(1−r)
j )r

∗

(∑
j∈Q q

1/(1−r)
j

)r(∑
j∈Q q

1/(1−r)
j

)r
= q

[1+r/(1−r)]
i∑

j∈Q q
[1+r/(1−r)]
j

= q
1/(1−r)
i∑

j∈Q q
1/(1−r)
j

= φi.

Note that, when |Q| = n, the equilibrium lives in the interior of the simplex int(∆n−1) (all its
coordinates are strictly positive). We use φ∗ to denote this equilibrium. When |Q| = 1, then the
equilibrium is one of the vertices of the simplex. Finally, the cases 1 < |Q| < n cover the other
possible equilibria (for example φ = (3/4, 1/4, 0, . . . , 0)).

Observe also that the equilibrium φ∗ ∈ int(∆n−1) for the case 0 < r < 1 has some very inter-
esting properties: It is unique, which means that the market is completely predictable. Moreover,
if qi ≥ qj , then φ∗i ≥ φ∗j , which endows the market with a basic notion of fairness. Finally, the
market is not a monopoly: All the market shares are strictly positive for the equilibrium φ∗.

Our next result characterises the ICT of the continuous dynamics. We start with a useful lemma
which indicates that submarkets can also be modeled as RMAs.

Lemma 5.2. Consider a T-O market defined by n items and the submarket obtained by considering
only n− 1 items. Then this submarket can also be modeled by an RMA.

Proof. Let Φt = [φt1, φt2, · · · , φtn] be the market share for the n-item T-O market at stage t. Consider
a new process {Ψt}t≥0 consisting of n − 1 products only. We show that this process can also be
modeled as a RMA. The key is to prove that the probability of purchasing product j in stage t
follows Equation (4). Consider any item i ∈ {1, .., n} such that φti 6= 1. Without loss of generality,
assume that i = n, define

ψti = φti
1− φtn

, (i < n),

and consider the following events:

• A = {product n is not purchased at stage t}

• B = {product j 6= n is purchased at stage t}.

Since B ⊆ A, Pr[B ∩A] = Pr[B] =
qj(φtj)r∑n
i=1 qi(φti)r

. On the other hand

Pr[A] = 1− qn(φtn)r∑n
i=1 qi(φti)r

=
∑n−1
j=1 qj(φtj)r∑n
i=1 qi(φti)r

,

11



and therefore

Pr[B|A] = Pr[B ∩A]
Pr[A] =

qj(φtj)r∑n−1
i=1 qi(φti)r

· (1− φtn)r
(1− φtn)r =

qj(ψtj)r∑n−1
i=1 qi(ψti)r

.

Since ψti ≥ 0 and ∑n−1
i=1 ψ

t
i = ∑n−1

i=1
φt

i
1−φt

n
= 1

1−φt
n

∑n−1
i=1 φ

t
i = 1, the ψti are well-defined market

shares. Since the evolution of ψt depends on the probability Pr[B|A], one can obtain a similar
formula to (8). Indeed, observe that on the event A, we have that for every i = 1, . . . , n − 1,
ψk+1
i = (Dk+1)ψk

i

Dk+1 − ψk
i

Dk+1 + êk
i

Dk+1 , with E[êk|Fk] = Pr[B|A]. Hence, {ψt}t≥0 can be modeled as an
n− 1 dimensional RMA.

We are now in position to prove the main result of this paper. The theorem considers the case
where φ0 ∈ int(∆n), which is the case when the product appeals are strictly positive. It proves
that, under this condition, the ICT set of the RMA {φt}t>0 consists of a single equilibrium φ∗.

Theorem 5.3. Under the social signal f(x) = xr, 0 < r < 1 with φ0 ∈ int(∆n), the RMA {φt}t>0
converges to φ∗ almost surely.

Proof. The proof studies the asymptotic behaviour of the solutions of the following ODE:

dφt

dt
= p(φt)− φt. (12)

Equation (12) is equivalent to

dφti
dt

= qi(φti)r∑
j qj(φtj)r

− φti, i ∈ {1, · · · , n}; 0 < t <∞.

Hence, we have

qi(φti)r∑
j qj(φtj)r

= dφti
dt

+ φti,

1∑
j qj(φtj)r

= 1
qi(φti)r

[dφ
t
i

dt
+ φti]

1
qi(φti)r

[dφ
t
i

dt
+ φti] = 1

qj(φtj)r
[
dφtj
dt

+ φtj ] ∀i, j ∈ {1, · · · , n},

q−1
i (φti)−r[

dφti
dt

+ φti] = q−1
j (φtj)−r[

dφtj
dt

+ φtj ],

q−1
i [(φti)−r

dφti
dt

+ (φti)1−r] = q−1
j [(φtj)−r

dφtj
dt

+ (φtj)1−r],

e(1−r)t(1− r)q−1
i [(φti)−r

dφti
dt

+ (φti)1−r] = e(1−r)t(1− r)q−1
j [(φtj)−r

dφtj
dt

+ (φtj)1−r],
d

dt

[
e(1−r)tq−1

i (φti)1−r
]

= d

dt

[
e(1−r)tq−1

j (φtj)1−r
]

where the fourth equivalence is obtained by multiplying both sides with µ(t) = (1−r)e(1−r)t. Notice
also that as φ0

i > 0, then for any finite time t > 0, φti > 0. Taking the integral
∫ t

0 dt of the last
expression gives

e(1−r)tq−1
i (φti)1−r − q−1

i (φ0
i )1−r = e(1−r)tq−1

j (φtj)1−r − q−1
j (φ0

j )1−r (13)

12



and hence
(φti)1−r

qi
−

(φtj)1−r

qj
= e(r−1)t

[
(φ0
i )1−r

qi
−

(φ0
j )1−r

qj

]
. (14)

Consider Equation (14):

• if, for some i 6= j,
(φ0
i )1−r

qi
=

(φ0
j )1−r

qj
, then (φti)1−r

qi
=

(φtj)1−r

qj
, for all t;

• if (φ0
i )1−r

qi
6=

(φ0
j )1−r

qj
, then the right-hand side of Equation (14) goes to zero as t → ∞

(because r < 1) and hence the left-hand side of (14) also goes to zero:

lim
t→∞

(φti)1−r

qi
−

(φtj)1−r

qj
= 0. (15)

We now prove by induction that the limits for the market shares exist. Consider first the case
of 2 products. Since φt2 = (1 − φt1), the market is completely characterised by the value of φt1
and hence we can use a one-dimensional RMA and, by Theorem 1 in [24], the RMA converges
since F (x) = p(x) − x is a continuous function and φt1 is bounded. Assume now that a RMA
with k − 1 products converges and consider a market with k products. By Lemma 5.2, given a
k-dimensional RMA Φt = [φt1, φt2, · · · , φtk], we can create a k − 1 dimensional RMA {Ψt}t≥0 given
by ψti = φt

i

1−φt
k

(i < k). By induction hypothesis, ψi = limt→∞ ψ
t
i exists for all i < k and therefore

Equation (14) is equivalent to

(φtk)1−r

qk(1− φtk)1−r −
(ψti)1−r

qi
= e(r−1)t

(1− φtk)1−r

[
(φ0
k)1−r

qk
− (φ0

i )1−r

qi

]
. (16)

Observe that, if limt→∞ φ
t
k = 1, then limt→∞ φ

t
j = 0 for all j 6= k, and the market shares converge

to one of the possible equilibria (i.e., a monopoly of the product k). Otherwise, the right-hand side

of (16) goes to 0 when t→∞ and lim
t→∞

(ψti)1−r

qi
exists. Hence lim

t→∞

(φtk)1−r

qk(1− φtk)1−r also exists.

Now denote by φj the limit of φtj for all j ∈ {1, · · · , n}. Using Equation (15), the following
equation holds for all i, j ∈ {1, · · · , n}:

φ1−r
i

qi
=
φ1−r
j

qj
. (17)

Observe that, if there exists l ∈ {1, · · · , n} such that φl = 0, Equation (17) implies that φi = 0
for all i which is impossible since they add up to 1. Hence the limit process has strictly positive
components and Equation (17) is equivalent to

φi = φj

q
1/(1−r)
j

q
1/(1−r)
i (18)

which is the equation that defines φ∗ in Theorem 5.1 (see Equation (11)). As a result, when
φ0 ∈ int(∆n−1), the only ICT set for the ODE (12) is the equilibrium φ∗ and, by Theorem 4.10,
the RMA converges almost surely to φ∗.
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Consider now the case r > 1 for which Theorem 5.1 still characterises the equilibria. In this case,
the dynamic behaviour is completely different due to the strength of the social signal. It is however
possible to prove that the ICT set of the RMA {φt}t>0 consists only of equilibria.

Theorem 5.4. Consider the social signal f(x) = xr with r > 1. The RMA {φt}t≥0 converges
almost surely to one of the equilibria φ ∈ ZF := {x ∈ ∆n−1 : p(x)− x = 0}.

Proof. The analysis of the ODE is the same as in Theorem 5.3 since the only restriction in the
proof is r 6= 1. However, the interpretation of Equation (14) changes when r > 1.

We define Hi,0 := (φ0
i )1−r

qi
for all 1 ≤ i ≤ n, and order the products in decreasing order of Hi,0. Let

h : {1, .., n} → {1, .., n} be the permutation that defines this order and denotes by h−1 its inverse
function, i.e., h−1(i) = j means that product j is in the i-th position in permutation h. We have
that Hh−1(1),0 ≥ · · · ≥ Hh−1(n),0. Define the following sets:

• Q0 = {i ∈ {1, .., n− 1} : Hh−1(i),0 = Hh−1(i+1),0},

• Q1 = {i ∈ {1, .., n− 1} : Hh−1(i),0 > Hh−1(i+1),0},

and consider the following case analysis:

i) If |Q0| = n − 1, then Hh−1(i),0 = Hh−1(i+1),0 for all 1 ≤ i ≤ n − 1. By Equation (14),
(φth−1(i))1−r

qh−1(i)
=

(φth−1(i+1))1−r

qh−1(i+1)
, for all t > 0 and for all 1 ≤ i ≤ n− 1, which leads again to the

inner equilibrium φ∗.

ii) If 0 < |Q0| < n− 1, select i /∈ Q0. Equation (14) implies that

lim
t→∞

(φth−1(i))1−r

qh−1(i)
−

(φth−1(i+1))1−r

qh−1(i+1)
=∞,

because r > 1 and hence e(r−1)t → ∞ when t → ∞. It follows that lim
t→∞

φth−1(i) = 0 and the
RMA necessarily converges to one of the equilibria that live in the boundary of the simplex,
but they are not monopolies (see Theorem 5.1).

iii) If |Q0| = 0 then |Q1| = n − 1, Using a similar reasoning as in case ii), it follows that
lim
t→∞

φth−1(i) = 0 for all 1 ≤ i ≤ n− 1 and, since φt ∈ ∆n−1 for all t, lim
t→∞

φth−1(n) = 1.

As a result, the only ICT for the differential equation (12) are equilibria and, by Theorem 4.10, the
RMA {φt}t≥0 converges almost surely to one of them.

It is important to observe that, in the case r > 1, the initial conditions, i.e., the initial appeals and
how the market evolves early on, affect the entire dynamics. This is in contrast with the case r < 1
for which the long-term behaviour only depends of the product qualities. This has fundamental
consequences for the predictability and efficiency of the market. We will show that, when r > 1,
the inner equilibrium φ∗ is always unstable. The result will follow as corollary of the following
theorem.
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Theorem 5.5. Consider the equilibria given by

φi = q
1

1−r

i∑
j∈Q q

1
1−r

j

if i ∈ Q and φi = 0 if i ∈ N \Q

with Q = {i ∈ N : φi 6= 0}. The trace of the Jacobian matrix, tr(JF (φ)), is given by

tr(JF (φ)) = 2r[|Q| − 1]− n.

Proof. Consider the trace of the Jacobian at φ, i.e.,

tr(JF (φ)) =
n∑
i=1

∂Fi(φ)
∂φi

Observe that, for k 6= i, ∂φk

∂φi
= −1, since ∑j φj = 1 and thus φk = 1−∑j 6=k φj . We have

∂Fi(φ)
∂φi

= ∂

∂φi

[
qif(φi)∑
k qkf(φk)

− φi
]

(φ)

= qif
′(φi)∑

k qkf(φk)
− qif(φi)∑

k qkf(φk)︸ ︷︷ ︸
pi(φ)

qif
′(φi)−

∑
k 6=i qkf

′(φk)∑
k qkf(φk)

− 1

= 1∑
k qkf(φk)

qif ′(φi) + φi

−qif ′(φi) +
∑
k 6=i

qkf
′(φk)

− 1

= 1∑
k qkf(φk)

(1− φi)qif ′(φi) + φi

∑
k 6=i

qkf
′(φk)

− 1

where we used that pi(φ) = φi (since φ is an equilibrium) to move from the second to the third
equality. Now, when f(x) = xr for r > 1, f ′(x) = rxr−1 and we have

∂Fi(φ)
∂φi

= 1∑
k qk(φk)r

(1− φi)qir(φi)r−1 + φi

∑
k 6=i

qkr(φk)r−1

− 1. (19)

If i ∈ N \Q, then φi = 0 and ∂Fi(φ)
∂φi

= −1. If i ∈ Q, it follows that

∂Fi(φ)
∂φi

= r

∑
k∈Q qk

 q
1

1−r
k∑

j∈Q
q

1
1−r
j

r
(1− φi)qi

 q
1

1−r

i∑
j∈Q q

1
1−r

j


r−1

+ φi

 ∑
k∈Q\{i}

qk

 q
1

1−r

k∑
j∈Q q

1
1−r

j


r−1

− 1

= r∑
k∈Q qk

q
r

1−r
k∑

j∈Q
q

1
1−r
j

(1− φi)qiq−1
i + φi

 ∑
k∈Q\{i}

qkq
−1
k

− 1.
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Since∑k∈Q qk
q

r
1−r
k∑

j∈Q
q

1
1−r
j

= 1, we have ∂Fi(φ)
∂φi

= r
[
1− φi + φi(|Q| − 1)

]
−1 = r[1+(|Q|−2)φi]−1.

As a result, the trace of the Jacobian at φ is given by

tr(JF (φ)) =
n∑
i=1

∂Fi(φ)
∂φi

=
∑
i∈Q

(r[1 + (|Q| − 2)φi]− 1) +
∑

i∈N\Q
(−1)

= r[|Q|+ (|Q| − 2)
∑
i∈Q

φi]− |Q| − (|N | − |Q|)

= 2r[|Q| − 1]− n.

Corollary 5.6. Under a social signal f(x) = xr, r > 1, the inner equilibrium φ∗ is unstable.

Proof. By Theorem (5.5), we have that tr(JF (φ∗)) = 2r[|Q| − 1] − n. Since φ∗ has n non-zero
market shares, it follows that tr(JF (φ∗)) = 2r[n − 1] − n = (r − 1)n + r(n − 2) > 0, since r > 1
and n ≥ 2. As a result, there exists an eigenvalue λ = λ(φ) satisfying Re(λ) > 0. By Theorems
(4.4) and (4.5), φ∗ is unstable.

Remark 5.7. Theorem (5.5) can also be used to show that many other equilibria are unstable:
They simply need to have enough non-zero market shares to satisfy 2r[|Q| − 1] > n. Moreover, the
theorem can also be used to show that, for any equilibrium φ that is not a monopoly, there exists
r > 1 that makes φ unstable. It suffices to choose r > n

2(|Q|−1) . For instance, for n = 4, all the
equilibria but the monopolies are unstable as soon as r > 2.

6 Agent-Based Simulation Results
We now report results from an agent-based simulation to highlight and complement the theoretical
analysis. The agent-based simulation uses the setting from [1], which used a dataset to emulate an
environment similar to the MusicLab. The setting consists of 50 songs with the values of qualities
and appeals specified in Appendix D. As mentioned in the introduction, the MusicLab is a trial-
offer market where participants can try a song and then decide to download it. The generative
model of the MusicLab [17] uses the consumer choice preferences described in Section 3.

From this section and onwards, we assume that, it each period, a new customer arrives and
may or may not buy a product based on the probability (quality) of the product tried. (Note that,
in the earlier sections, each new period began when a product was purchased). The reason for
this change is our interest in quantifying the expected number of purchases per period, and how
it changes depending on different ranking policies. We use the expected number of purchases per
period as way to measure the market efficiency. This view obviously does not change any result
from the previous sections.

The Simulation Setting The agent-based simulation aims at emulating the MusicLab: Each
simulation consists of L iterations (L simulated users ) and, at each iteration t : 0 < t < L,

1. the simulator randomly selects a song i according to the probabilities Pi(σ, φ), where σ is the
ranking proposed by the policy under evaluation and φ represents the market shares;
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Figure 1: The visibility vp (y-axis) of position p in the song list (x-axis) where p = 1 is the top position and
p = 50 is the bottom position of the list which is displayed in a single column.

Figure 2: The quality qi (grey) and appeal ai (red and blue) of song i in the two settings. The settings only
differ in the appeal of songs, and not in the quality of songs. In the first setting, the quality and the appeal
for the songs were chosen independently according to a Gaussian distribution normalised to fit between 0
and 1. The second setting explores an extreme case where the appeal is anti-correlated with the quality used
in setting 1. In this second setting, the appeal and quality of each song sum to 1.

2. the simulator randomly determines, with probability qi, whether selected song i is downloaded.
In the case of a download, the simulator increases the number of downloads of song i, i.e.,
dt+1
i = dti + 1, changing the market shares. Otherwise, dt+1

i = dti.

Every t > 0 iterations, a new list σ may be recomputed if the ranking policy is dynamic (e.g., the
popularity ranking). In this paper, the simulation setting focuses mostly on two policies for ranking
the songs:

• The quality ranking (Q-rank) that assigns the songs in decreasing order of quality to the
positions in decreasing order of visibility (i.e., the highest quality song is assigned to the
position with the highest visibility and so on);
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• The popularity ranking (D-rank) that assigns the songs in decreasing order of popularity (i.e.,
dti) to the positions in decreasing order of visibility (i.e., the most popular song is assigned to
the position with the highest visibility and so on);

Note that the popularity ranking was used in the original MusicLab, while the quality ranking
is a static policy: the ranking remains the same for the entire simulation. The simulation setting,
which aims at being close to the MusicLab experiments, considers 50 songs and simulations with
L=105 iterations unless stated otherwise. The songs are displayed in a single column. The analysis
in [17] indicated that participants are more likely to try songs higher in the list. More precisely,
the visibility decreases with the list position, except for a slight increase at the bottom positions.
Figure 1 depicts the visibility profile based on these guidelines, which is used in all computational
experiments. The paper also uses two settings for the quality and appeal of each song, which are
depicted in Figure 2. In the first setting, the quality and the appeal were chosen independently
according to a Gaussian distribution normalised to fit between 0 and 1. The second setting explores
an extreme case where the appeal is anti-correlated with quality: The quality is the same as in the
first setting but the appeal is chosen such that the sum of appeal and quality is 1.

6.1 Convergence

We first illustrate the convergence of the market for various popularity signals (r < 1) using the
quality ranking. In order to visualise the results, we focus on only 5 songs, where the qualities,
appeals, and visibilities are given by

q = [ 0.80, 0.72, 0.68, 0.65, 0.60 ]
a = [ 0.38, 0.35, 0.46, 0.27, 0.62 ]
v = [ 0.80, 0.75, 0.69, 0.62, 0.58 ].

The simulation is run for 105 iterations for the social signals f(x) = xr(r ∈ {0.1, 0.25, 0.5, 0.75})
and Figure 3 depicts the simulation results. Observe that the equilibrium φ∗ (dashed lines) changes
because it depends of the value of r. Interestingly, for social signals with r ≤ 0.5, the convergence
of the process seems to occur around 104 time steps (iterations) even when they start with a
strong initial distortion due to the appeals of the songs. The simulations show clear differences in
behaviour depending on r and, when r moves closer to 1, the market tends to exhibit a monopolistic
behaviour for the song with the best quality (confirming the results obtained in [32]).

Figure 4 shows how the market is distributed in the equilibrium among 6 songs. The qualities,
appeals, and visibilities are given by

q = [0.80, 0.72, 0.65, 0.57, 0.52, 0.49]
a = [0.38, 0.36, 0.27, 0.60, 0.77, 0.78]
v = [0.80, 0.75, 0.62, 0.48, 0.40, 0.35]

and the social signals are of the form f(x) = xr (r ∈ {0.1, 0.25, 0.5, 0.75}). Each stacked bar
represents the proportion of the market for the 6 songs for a given social signal. Songs with better
qualities (i.e., the top 2 songs represented in red and yellow respectively) have larger market shares
and their market shares increase with r. In contrast, the market shares of the lower-quality songs
(i.e., cyan and purple respectively) decrease when r increases. These results indicate that social
influence has a beneficial effect on the market: it drives customers towards the better products,
while not going to a monopoly as long as r < 1.
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Figure 3: Evolution of market shares of 5 songs using a social signal f(x) = xr, r ∈ {0.1, 0.25, 0.5, 0.75}.
Dashed lines are the values of the equilibrium for each song.

Figure 4: Market shares of 6 songs and their qualities, using a social signal f(x) = xr, r ∈
{0.1, 0.25, 0.5, 0.75}.
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Figure 5: Distribution of downloads versus the qualities, using social signals f(x) = xr, r ∈
{0.5, 0.75, 1, 1.25}. The results are for the first setting where the quality and appeal of each song are chosen
independently. The songs are ordered by increasing quality along the x-axis. The y-axis is the number of
downloads.

6.2 Market Predictability

This section depicts the predictability of the market for various values of r and the number of
downloads per song as a function of its quality. Figures 5 and 6 depict the results for the two
quality/appeal settings discussed previously. The figures display the results of 40 experiments for
each setting with 1 million arrivals. Each experiment contributes 50 data points, i.e., the number
of downloads for each song, and all the data points for the 40 experiments are displayed in the
figures.

In the plots, the x-axis represents the song qualities and the y-axis the number of downloads.
A dot at location (q, d) indicates that the song with quality q had d downloads in an experiment.
Obviously, there can be several dots at the same location. For r ∈ {0.5, 0.75, 1}, the market is highly
predictable and there is little variation in the song downloads. For r = 1, the market converges to a
monopoly for the song of highest quality, confirming the results from [1, 32]. Finally, for r = 1.25,
the market exhibits significant unpredictability, as suggested by the theoretical results. In this case,
the equilibria are monopolies for various songs but it is hard to predict which song will dominate
the market.

Note also that the unpredictability of the market increases significantly for r = 1.25 when the
appeal and quality of the songs are anti-correlated. This is not the case for r ∈ {0.5, 0.75}. To
evaluate the statistical significance of these results, we measure the market unpredictability as
suggested by Salganik et al. [26]. The unpredictability ui for product i is defined as the average
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Figure 6: Distribution of downloads versus the qualities, using social signals f(x) = xr, r ∈
{0.5, 0.75, 1, 1.25}. The results are for the first setting where the quality and appeal of each song are
anti-correlated. The songs are ordered by increasing quality along the x-axis. The y-axis is the number of
downloads.

difference in market share for that product over the 40 experiments:

ui = 1(
40
2

) 40∑
w=1

40∑
w∗=w+1

|φi,w − φi,w∗ |,

where φi,w is the final market share of product i in experiment w. We then computed the overall

unpredictability for each social signal r ∈ {0.5, 0.75, 1, 1.25}: U =
∑n
j=1 uj

n
.

Figure 7 shows the average unpredictability U and the standard deviation for the different
social signals, using the same data as in Figures 5 and 6 (Figure 7 a and Figure 7 b respectively).
We also performed Mann-Whitney U tests, comparing the values of U for pairs of social signals.
In all cases, a social signal r < 1 is significantly more predictable than the signal r = 1.25 (p-
value<0.05). Comparisons between r = 0.5 and r = 0.75 and r = 0.75 and r = 1 also show
statistically significant differences in unpredictability. For instance, for the anti-correlated setting,
the p-values for the various pairwise comparisons (first column is less unpredictable than second
column) are given in Table 1
For the independent setting, Table 2 shows the pairwise comparisons that are also statistically
significant in that case:
Figure 8 compares the predictability of Q-rank and D-rank for the first setting of Quality/Appeal.
For each ranking, two different social signals were used (r = 0.5 and r = 1) and the figure displays
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social signal social signal p-value
0.5 0.75 0.0029
0.5 1 8.73e-07
0.5 1.25 4.24e-10
0.75 1 0.0003
0.75 1.25 2.10e-07
1 1.25 0.0022

Table 1: p-values of the hypothesis: first column is less predictable than second column. Case ai, qi anti-
correlated.

social signal social signal p-value
0.5 1 0.0414
0.5 1.25 0.0034
0.75 1.25 0.0266

Table 2: p-values of the hypothesis: first column is less predictable than second column. Case ai, qi

independent.

Figure 7: Average unpredictability (grey bars), using social signals f(x) = xr, r ∈ {0.5, 0.75, 1, 25}. a)
shows the results for the independent setting, and b) for the anti-correlated setting. Both cases consist of 40
experiments with 1 million iterations each. Blue lines represent the respective standard deviations.

the result of 50 experiments, consisting in 1 million iterations. Two phenomena can be observed.
First, sublinear signals seem to help the D-rank, making the outcome less chaotic (first column).
Second, Q-rank clearly performs better than D-rank and exhibits much less unpredictability.

6.3 Performance of the Market

Figures 9 and 10 report results about the performance of the markets as a function of the social
influence signals. The figures report the average number of downloads over time among 50 experi-
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Figure 8: Distribution of purchases versus product qualities for 50 experiments with 1 million users. Figures
(a) and (b) use a social signal f(x) = x0.5, Figure (a) shows the results for the popularity ranking and Figure
(b) for the quality ranking. Figures (c) and (d) use the social signal f(x) = x, Figure (c) shows the results
for the popularity ranking and Figure (d) for the quality ranking.

ments, for the quality and popularity rankings as a function of the social signals. There are a few
observations that deserve mention.

1. For the quality ranking, the expected number of downloads increases with the strength of the
social signal as r approaches 1. The equilibrium when r = 1 is optimal asymptotically and
assigns the entire market share to the song of highest quality. When r = 2, the situation is
more complicated. The figure shows that the market efficiency can further improve if r = 2.
However, when the simulation is run for more iterations (a result not shown in the figure), the
market efficiency decreases slightly compared to r = 1, which is consistent with the theory
since there is no guarantee that the monopoly for r > 1 is for the song of highest quality.

2. The popularity ranking is always dominated by the quality ranking and the benefits of the
quality ranking increase as r approaches 1 from below.

3. The popularity ranking in the second setting when r = 2, obtains nearly a third of the
expected downloads than the quality ranking.
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Figure 9: The Average Number of Downloads over Time for the Quality and Popularity Rankings for Various
Social Signals in the First Setting for Song Appeal and Quality.
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Figure 10: The Average Number of Downloads over Time for the Quality and Popularity Rankings for
Various Social Signals in the Second Setting for Song Appeal and Quality.
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7 Additional Observations on Sublinear Social Signals
The Benefits of Social Influence A linear social signal has been shown to be beneficial to
the market efficiency, i.e. it maximises the expected number of downloads. This result was proved
by [1] for the performance ranking and by [32] for any static ranking such as the quality ranking.
Unfortunately, sublinear social signals are not always beneficial to the market in that sense, as one
can see in Example 7.1. Consider, once again, the quality ranking and assume that q1 ≥ . . . ≥ qn.
When there is no social signal, by following the idea in Equation (3) and taking f(φi) = βφi +αai,
with β = 0, the probability of trying product i is given by

pIi = viai∑n
j=1 vjaj

.

In this case, the expected number of purchases per period is
n∑
i=1

pIi qi.

On the other hand, with a social signal, the probability of trying product i at time t is

Pi(φt) = vif(φti)∑n
j=1 vjf(φtj)

and the expected number of purchases per period at the equilibrium is given by
n∑
i=1

Pi(φ∗)qi =
n∑
i=1

viqif(φ∗i )∑n
j=1 vjf(φ∗j )

.

The following example shows that, under a sublinear social signal, the expected number of purchases
(per period) at equilibrium, i.e.,∑n

i=1 Pi(φ∗)qi, can be lower than the expected number of purchases
when no social signal is used, i.e., ∑n

i=1 p
I
i qi.

Example 7.1. Consider a 2-dimensional T-O market with social signal f(x) = x0.5, where the
qualities, visibilities, and appeals are given by

• q1 = 1, q2 = 0.4,

• v1 = 1, v2 = 1,

• a1 = 1, a2 = 0.3.

The expected number of purchases at equilibrium for the case with social signal is given by

v1q1(φ∗1)r + v2q2(φ∗2)r
v1(φ∗1)r + v2(φ∗2)r = v1q1(v1q1)r/(1−r) + v2q2(v2q2)r/(1−r)

v1(v1q1)r/(1−r) + v2(v2q2)r/(1−r) = 1 + (0.4)2

1 + 0.4 ∼ 0.83,

while, for the case without social signal, it is given by

v1q1a1 + v2q2a2
v1a1 + v2a2

= 1 + 0.3(0.4)
1 + 0.3 ∼ 0.86.
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This simple example, in which the qualities and appeals are positively correlated, shows that
if customers follow a sublinear social influence signal (r = 0.5), the market efficiency gets reduced
by around 3 percent (with respect to not showing them the social signal). In contrast, when
r = 1, social influence drives the market towards a monopoly, which leads to an asymptotically
optimal market that assigns the entire market share to the highest quality product (which may
be undesirable in practice). Note that, once the qualities and appeals have been recovered (using,
say, Bernoulli sampling as suggested in [1]), one could potentially decide whether to use the social
influence (in case it is sublinear r < 1): Simply compare the expected number of purchases in both
settings, using the equilibrium for the social influence case and the formula for the case with no
social signal.

Optimality of the Quality Ranking When r = 1, it has been shown that the quality ranking
is optimal asymptotically: It maximises the expected number of purchases [32]. If another static
ordering is used, the market will converge to the product that has the highest quality when scaled
by its visibility. However, when 0 < r < 1, the quality ranking is no longer guaranteed to be
optimal asymptotically.

Example 7.2. Consider a 3-dimensional T-O market with a social signal f(x) = xr, r = 0.3, and
the following values for qualities and visibilities:

• q1 = 1, q2 = 0.261, q3 = 0.002

• v1 = 1, v2 = 0.720, v3 = 0.229

then, using quality ranking we would end up with an expected number of purchases at equilibrium,
given by

n∑
i=1

Pi(φ∗)qi = v1q1(v1q1)r/(1−r) + v2q2(v2q2)r/(1−r) + v3q3(v3q3)r/(1−r)

v1(viqi)r/(1−r) + v2(v2q2)r/(1−r) + v3(v3q3)r/(1−r)

= 1 + (0.720 ∗ 0.261)10/7 + (0.229 ∗ 0.002)10/7

1 + 0.720(0.720 ∗ 0.261)3/7 + 0.229(0.229 ∗ 0.002)3/7 ∼ 0.8026,

on the other hand, if we decide to place the third product (quality q3 = 0.002) in the second
position, and the second product (quality q2 = 0.261) in the third position of the ranking, we get

n∑
i=1

Pσi(φ∗)qi = v1q1(v1q1)r/(1−r) + v2q3(v2q3)r/(1−r) + v3q2(v3q2)r/(1−r)

v1(viqi)r/(1−r) + v2(v2q3)r/(1−r) + v3(v3q2)r/(1−r)

= 1 + (0.720 ∗ 0.002)10/7 + (0.229 ∗ 0.261)10/7

1 + 0.720(0.720 ∗ 0.002)3/7 + 0.229(0.229 ∗ 0.261)3/7 ∼ 0.9154.

The intuition behind the previous example is that if there exists a product which is much better
than the rest, the best decision is to exhibit it in the first position and place, in the second position,
the lowest quality product to make the first product is even more appealing. It is an open problem
to determine whether there is a polynomial-time algorithm to find an optimal ranking.
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8 Discussion and Conclusion
This paper studied the role of social influence in trial-offer markets where customer preferences are
modeled by a generalisation of a multinomial logit. In this model, both position bias and social
influence impact the products tried by consumers.

The main result of the paper is to show that trial-offer markets, when the ranking of the
products is fixed, converge to a unique equilibrium for sublinear social signals of the form φri , where
φi represents the cumulative market share of product i. Of particular interest is the fact that the
equilibrium does not depend on the initial conditions, e.g., the product appeals, but only depends
on the product qualities. Moreover, when the products are ranked by quality, i.e., the best products
are assigned the highest visibilities, the equilibrium is such that the better products receive the
largest market shares, which increase as r increases for the best products (as long as r < 1). The
equilibrium for a sublinear social signal contrasts with the case with r = 1, where the market
goes to a monopoly for the highest quality product (under the quality ranking). In the sublinear
case, the market shares reflect product quality but no product becomes a monopoly. The paper
also shows that, when r > 1, the market becomes more unpredictable. In particular, the inner
equilibrium, which assigns a positive market share to all products, is unstable and the market is
likely to converge to a monopoly for some product. However, which product becomes the monopoly
depends on the initial conditions.

Simulation results on a setting close to the original MusicLab complemented the theoretical
results. They show that the market converges quickly to the equilibrium for a sublinear social
signal and that the convergence speed depends on the social signal strength. The simulation results
also illustrate how the market shares of the highest (resp. lowest) quality products increase (resp.
decrease) with r. As expected, when r ≤ 1, the market is shown to be highly predictable, while it
exhibits a lot of randomness when r > 1. The simulation results also show the benefits of social
influence for market efficiency, and demonstrate that the quality ranking once again outperforms
the popularity ranking.

Overall, these results shed a new light on the role of social influence in trial-offer markets
and provide a comprehensive overview of the choices and tradeoffs available to firms interested in
optimising their markets with social influence. In particular, they show that social influence does
not necessarily make markets unpredictable and is typically beneficial when the social signal is not
too strong. Moreover, ranking the products by quality appears to be a much more effective policy
than ranking products by popularity which may induce unpredictability and market inefficiency.
The results also show that sublinear social signals give decision makers the ability to trade market
efficiency for more balanced market shares.

Perhaps, the main contribution of this paper is to show that markets under social influence are
very sensitive to various design choices. The findings in [26] used the popularity ranking, which
significantly affected their conclusions about market unpredictability and efficiency. The theoretical
and simulation results of this paper, together with those in [1, 32] for the case r = 1, show that
the market is highly predictable when using any static ranking and r ≤ 1. Moreover, the quality
ranking is optimal asymptotically when r = 1 and dominates the popularity ranking in all our
simulations which were modeled after the MusicLab. This does not diminish the value of the
results by Salganik et al. [26] who isolated potential pathologies linked to social influence. But
this paper shows that these pathologies are not inherent to the market but are a consequence of
specific design choices in the experiment: The strength of the social signal and the ranking policy.
Interestingly, it is only for a linear social signal that social influence can be shown to be always
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beneficial in expectation. Fortunately, for sublinear social signals, we can determine a priori if
social influence is beneficial, given the analytic form of the equilibrium.

There are at least two potential research directions following this paper that worth investigat-
ing. First, it would be extremely valuable to construct large-scale cultural market experiment,
varying the strengths of the social signal to complement our simulation results. Second, it would
be interesting to extend our results to other settings including assortment problems (where the firm
can select not only how to rank products but also which ones should be shown) [2] and to classical
cascade models with a social signal [34].
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A Key Results from Benaïm (1999) [6]
Consider the set of solutions of the differential equation (9), we say that Υ = (Υt)t∈R is the flow
induced by the vector field F , where Υt are the local unique solutions of (9) with x0 = x0 ∈ ∆n−1.
Benaïm defines the following useful concept: A continuous function X : R+ → Rn is an Asymptotic
pseudo-trajectory for Υ if for any T > 0

lim
t→∞

sup
0≤h≤T

dist(X(t+ h),Υh(X(t))) = 0.

Recall now that our Robbins-Monro Algorithm (8) is defined by

φk+1 = φk + γk+1(F (φk) + Uk+1).

Let τk = ∑k
i=1 γ

i, τ0 = 0 and define the affine interpolated process Z(t):

Z(t) = φk + [t− τk]
φk+1 − φk

γk+1 , τk ≥ t ≥ τk+1. (20)

Consider also the map m : R+ → N defined by m(t) = sup{k ≥ 0 : t ≥ τk}.

Proposition A.1 (Proposition 4.1 in [6]). Let F be a bounded locally Lipschitz vector field. Assume
that

A1.1 For all T > 0,

lim
l→∞

sup{‖
k−1∑
i=n

γi+1U i+1‖ : k = n+ 1, ...,m(τl + T )} = 0.

A1.2 sup
k
‖φk‖ <∞.

Then the interpolated process Z(t) is an asymptotic pseudotrajectory of the flow induced by F .

Proposition A.2 (Proposition 4.2 in [6]). Let φk be the Robbins-Monro Algorithm (8). Suppose
that, for some q ≥ 2,

sup
k

E(‖Uk+1‖q) <∞,

and ∑
k

[γk]1+q/2 <∞.

Then assumption A1.1 of Proposition A.1 holds with probability 1.

Let X : R+ → M be an asymptotic pseudotrajectory of an induced flow Φ, with M some metric
space. The limit set L(X) of X is the set of limits of convergent sequences X(tk), tk →∞.

Theorem A.3 (Theorem 5.7 i) in [6]). Let X be a precompact asymptotic pseudotrajectory of Φ.
Then L(X) is Internally Chain Transitive.
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B Proofs
Proof of Lemma 3.1. The probability that item i is purchased in the first step is given by

p1st
i (φ) = vif(φi)

n∑
j=1

vjf(φj)
qi.

The probability that item i is purchased in the second step and no item was purchased in the first
step is given by

p2nd
i (φ) =


n∑
j=1

vjf(φj)(1− qj)
n∑
j=1

vjf(φj)

 vif(φi)
n∑
j=1

vjf(φj)
qi.

More generally, the probability that item i is purchased in step m while no item was purchased in
earlier steps is given by

pmthi (φ) =


n∑
j=1

vjf(φj)(1− qj)
n∑
j=1

vjf(φj)


m−1

vif(φi)
n∑
j=1

vjf(φj)
qi. (21)

Let a = (
n∑
j=1

vjf(φj)qj)/(
n∑
j=1

vjf(φj)). Observe that, if qmax = maxi∈{1,...,n} qi, then 0 < a ≤ qmax ≤

1. Equation (21) becomes

pmthi (φ) =
(

1− a
)m−1 vif(φi)

n∑
j=1

vjf(φj)
qi.

Hence the probability that the next purchase is item i is given by

pi(φ) =
∞∑
m=0

(
1− a

)m vif(φi)
n∑
j=1

vjf(φj)
qi.

Since |1− a| < 1, we use the geometric series
∞∑
m=0

(
1− a

)m
= 1
a
,

and then, the probability that the next purchase is item i is given by

pi(φ) = viqif(φi)
n∑
j=1

vjqjf(φj)
.

Proof Theorem 4.10. Thanks toH1−H2, Proposition A.2 holds for q = 2. As a result, we can apply
Proposition A.1 and Z(t) from Equation (20) is almost surely an asymptotic pseudo-trajectory for
the flow induced by F . As xt ∈ ∆n−1, then Z(t) is precompact. Finally, using Theorem A.3, the
limit set L{xt}t≥0 is an ICT for Equation (9).
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C Market Shares Versus Purchases
The condition d0

i = ai can be relaxed and the results still hold but the notations become more
complicated. Indeed, define the variables µki = ai+dk

i∑
j
aj+dk

j

, with d0
i = 0, consider â = ∑n

j=1 ai

the cumulative appeal, and a,dk the vectors of appeals and purchases respectively. By definition∑n
j=1 d

k
j = k, then we can define the probability function p(µk) by

pi(µk) = viqif(µki )∑n
j=1 vjqjf(µkj )

, i ∈ {1, ..., n}

and recover a recurrence for µ as follows:

µk+1 = a + dk

â+ k + 1 + ek

â+ k + 1

= a + dk

â+ k

â+ k

â+ k + 1 + ek

â+ k + 1

= µk
â+ k

â+ k + 1 + ek

â+ k + 1

= µk
â+ k + 1
â+ k + 1 −

µk

â+ k + 1 + ek

â+ k + 1
= µk + 1

â+ k + 1(p(µk)− µk + ek − E[ek|Fk])

= µk + γ̂k+1[F̂ (µk) + Ûk+1].

In consequence, all the results from this paper can be translated from the φ domain to the µ domain.
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D Dataset
Table 3 shows the values of the qualities and appeals for the independent setting (obtained from
[1]). Table 4 shows the values of the visibilities for each position j ∈ {1, . . . , n}.

Product Quality Appeal Product Quality Appeal
1 0.8 0.18581654 26 0.278009 0.35136515
2 0.72 0.28594501 27 0.2673 0.78687609
3 0.68 0.52073051 28 0.26083 0.7369193
4 0.65 0.81398644 29 0.2512 0.75227893
5 0.60 0.45868017 30 0.24396 0.32580804
6 0.57 0.15955483 31 0.23941 0.30674759
7 0.55 0.43715743 32 0.23622 0.91103217
8 0.52005 0.38484972 33 0.22629 0.76236248
9 0.52 0.63739211 34 0.2214 0.11459921
10 0.4887 0.78174105 35 0.22013 0.7581713
11 0.48224 0.52983037 36 0.20418 0.76994571
12 0.4586 0.6382574 37 0.20389 0.67408264
13 0.45837 0.80597 38 0.19535 0.41759683
14 0.432 0.2520265 39 0.1947 0.68898008
15 0.43067 0.37266718 40 0.18248 0.82117398
16 0.38623 0.79358615 41 0.17444 0.33890645
17 0.36792 0.19972853 42 0.16867 0.63497574
18 0.35492 0.32368825 43 0.16638 0.16224351
19 0.35374 0.94736709 44 0.15374 0.47778872
20 0.32799 0.50704873 45 0.14542 0.23702317
21 0.32589 0.7105828 46 0.1387 0.49406539
22 0.30411 0.92616787 47 0.12764 0.45956048
23 0.30352 0.64768258 48 0.12217 0.75210134
24 0.29988 0.51815068 49 0.11418 0.66488509
25 0.2905 0.47170285 50 0.08636 0.80257928

Table 3: Values of quality and appeal for the products in the independent case. Recall that the
values of the appeal in the anti-correlated setting are given by ai = 1− qi.
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Position Visibility Position Visibility
1 0.83 25 0.16583292
2 0.75 26 0.15370582
3 0.69 27 0.13640378
4 0.62 28 0.13084858
5 0.58 29 0.12666812
6 0.48 30 0.12429217
7 0.44 31 0.12362827
8 0.4 32 0.11847651
9 0.37 33 0.10675012
10 0.35 34 0.1001895
11 0.338 35 0.10377821
12 0.321 36 0.10192779
13 0.317 37 0.10484361
14 0.31063943 38 0.10609265
15 0.2750814 39 0.11420125
16 0.25493054 40 0.1260095
17 0.25148059 41 0.13163135
18 0.23254506 42 0.14843575
19 0.22517471 43 0.15040223
20 0.22429915 44 0.15529018
21 0.21502087 45 0.1699023,
22 0.19038769 46 0.17265442
23 0.18407585 47 0.17825863
24 0.18185429 48 0.18851792
25 0.17013229 50 0.22057129

Table 4: Values of the visibilities for each position j ∈ {1, . . . , n}.
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