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Abstract—Autonomous/unmanned driving has the capability
to provide numerous benefits such as better traffic management,
increased safety, reduced emission, and enhanced transportation
network. Once autonomous ground vehicles (AGVs) are deployed,
they will have to interact with other such vehicles. Interaction
between multiple AGVs is an important area of research where
analysis on the performance of algorithms/control schemes of
AGYVs is carried out. Performing real-world experiments with
teams of autonomous vehicles is a challenging task due to cost and
complexity. On the other hand, a simulation can emulate reality
and provide an inexpensive and less time-consuming development
process compared to the real world robots’ testing. Therefore,
a simulation tool is developed for multi-robot navigation. This
simulator is based on open-source Robot Operating Systems
(ROS) and natively supported robotics simulator Gazebo.

Index Terms—autonomous robots, platoon formation, laser
scanning, simulation

I. INTRODUCTION

Autonomous driving is state-of-the-art technology in the
transportation industry. Many companies are working towards
developing fully autonomous vehicles by achieving the fifth
level of autonomy [1], [2]. As AGVs are being developed, the
problem of collaboration between these vehicles needs to be
studied. Vehicle platooning or formation control is a part of the
collaboration problem. In this paper, a vehicle platooning using
only laser sensor is addressed by proposing a platoon control
algorithm. A vehicle platooning is a well-observed scenario
of everyday transport networks. Human operated vehicles
usually follow another vehicle while maintaining safe speed
and distance hence forming a platoon formation. The aim of
the platoon formation control is to confirm that all vehicles in
a platoon move at the same speed while maintaining a desired
formation shape or geometry, which is stated by a desired
inter-vehicle spacing strategy [3].

The developed algorithms or controllers require a simulation
platform to evaluate the performance of AGVs and their
algorithms. A simulator is a useful tool to test robot hardware
configuration, software integration and the interaction with
other robots and the environment. Furthermore, simulation
provides an idea of the robots’ behaviour on implemented
algorithms and is crucial to rapidly reproduce experiments.
Several packages [4]-[8] were considered before finalising
ROS and Gazebo platform. ROS is an open-source system
and well adopted by the research community, whereas Gazebo
is also an open-source simulator and offering the ability to

accurately and efficiently simulate populations of robots in
complex indoor and outdoor environments.

The contribution of this paper is threefold. First, it presents
a multi-robot simulator detailing virtual robot and world
development using ROS-Gazebo framework. Second, it pro-
poses a simple vehicle platoon formation algorithm capable
of handling multiple AGVs based on laser scanner. Third,
the proposed algorithm does not require any communication
between AGVs thus, capable of guiding AGVs in an un-
certain situation such as sudden loss of communication or
time-varying communication delay. The application of this
algorithm is not only limited to work discussed in this paper.
This algorithm can be useful to guide warehouse mobile robots
for goods transportation as well as to study the robot behaviour
of follower robots in the laboratory-based environment.

The remainder of this paper is organised as follow, Section
IT presents the literature review on robotics simulators and
platoon algorithms, Section III discusses a package description
detailing simulation world, robot development and tools used
to design proposed simulator, Section IV presents algorithms
for proposed vehicle platoon control, Section V discusses the
experimental results and section VI is a conclusion and future
works.

II. RELATED WORK

Several simulators are developed using Gazebo, Stage,
Webots and Morse simulation packages for multi-robot op-
erations. With a goal to assist elderly people through mobile
robots, a simulator was developed capable of performing 3D
mapping and autonomous navigation using ROS and Gazebo
[9]. In this work, two robots were designed for the indoor
simulation and experiments were carried out using the same
software, developed for simulation, on physical robots. An-
other study developed a multi-robot simulator for underwater
monitoring operations using ROS and Gazebo by contributing
several plugins, underwater vehicles and simulation world to
enable underwater applications [10].

A multi-robot simulator was developed using ROS and
Stage for benchmarking algorithms for robot patrolling task
[11]. In this work, algorithm testing was performed on both
simulation and physical experiments, and the developed al-
gorithm was able to work with other simulation packages.
Another research developed multi-robot simulator using ROS
and Morse to validate, benchmark and compare different
algorithms [12]. To compute benchmarking process, several



parameters were considered, such as exploration time, cost,
safety and efficiency, and map completeness and quality.

A couple of studies have used Webots simulator for testing
algorithms. Using Webots simulator, a distributed controller
was proposed for the multi-lane heterogeneous vehicles by
incorporating lateral controller for vehicles to stay in the lane
and longitudinal controller for desired inter-vehicle distance
[13]. The proposed controller was able to adapt to the shape
of the curvilinear road shape. Another study presented a dis-
tributed and dynamic graph-based formation control approach
for vehicles to join, leave, or change lanes without affecting the
stability of the convoy. Here, the particle swarm optimization
algorithm was implemented to optimize the parameters of
the control law (lane keeping and obstacle avoidance) and to
reduce the overall formation control errors [14]. In this paper,
a vision sensor was used for the lane keeping, and LIDAR
was used for obstacle avoidance.

A number of studies are carried out for vehicle formation
control by proposing distributed and decentralized controllers
[15]. An active vision-based adaptive leader-follower forma-
tion control was achieved in the absence of communication
[16]. In this study, a follower robot was tracking the features of
a leader robot through a camera by developing two controllers,
a formation controller to maintain formation and a camera
controller to provide visual measurements. Furthermore, a
vision-based leader-follower formation control was achieved
by developing a neural-dynamic optimization-based non-linear
model predictive control (MPC) [17]. In this study, a camera
on a follower robot was employed to track the features and to
measure state and velocity of the leader robot.

The development of autonomous following lateral control
techniques without inter-vehicle communication was proposed
for follower vehicle by measuring the relative position of
the preceding vehicle using laser range sensor [18]. Here,
the longitudinal distance was assumed to be constant, and
relative displacement and yaw angle were used to derive the
proposed controller. Similar work was carried out in [19]
where control algorithm was derived by measuring the relative
position of the ego-vehicle with respect to its preceding vehicle
using a laser sensor. Another work used onboard sensors
for trajectory generation method in which follower robot’s
accurately replicate the leader robot’s path in both on-road
and off-road environments [20]. In this work, the trajectory
for a follower robot was generated using sequential quadratic
programming.

Several theoretical and real-world robot experiments are per-
formed for leader-follower formation problem and several sim-
ulators are developed for multi-robot applications. Number of
papers have addressed multi-robot navigation problem through
simulation whereas few papers targets formation control prob-
lem using only sensors. The signification of this work is the
combination of above discussed works. In this paper, a multi-
robot simulator is proposed by implementing a platoon forma-
tion algorithm using laser sensors.

III. PACKAGE DESCRIPTION

The architecture of the multi-robot simulator includes three
parts: a gazebo version-7 simulator, application specific robot
controllers and ROS kinetic middleware. This architecture is
flexible meaning that a user can develop or edit the existing
world, different algorithms can be analysed, and new robots
can be developed and deployed. Figure 1 shows the system
overview.
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Figure 1. System Overview

A. Robot Operating Systems

Several robotics frameworks are developed [4], [5], [8]
but ROS has proved to be a reliable and popular framework
amongst research communities and has become the standard
for the robotics research and development. The primary goal of
ROS is to provide support for code reuse in robotics research.
It should be noted that ROS is not a real-time framework but
can be integrated with real-time code.

The main services provided by ROS are hardware abstrac-
tion, low-level device control, implementation of commonly-
used functionalities, message-passing between processes and
package management. It also provides tools and libraries
for obtaining, building, writing, and running code across
multiple computers. Furthermore, ROS offers modularity that
uncouples the control software from the drivers of the robot
body, allowing to use exactly the same control software in
simulations and in real robot experiments. The goal of the
ROS framework can be described as:

+ Sharing: Ability to share processes by grouping them into
packages and stacks

* Collaboration: ROS supports a federated system of code
repositories that enable collaboration to be distributed

* Thin: Code written for ROS can be used with other robot
software frameworks

* ROS-agnostic libraries: The preferred development model
is to write libraries with clean functional interfaces

+* Language independence: Ability to use Python, C++,
Java, Matlab and LISP programming languages

* Easy testing: Built-in test framework called rostest makes
it easy to bring up and tear down test fixtures

* Scaling: Ability to handle large runtime systems and large
development processes
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Figure 2. Robot Development

B. Gazebo Simulation Package

Gazebo is an open source 3D dynamic simulator with the
ability to accurately and efficiently simulate populations of
robots in complex indoor and outdoor environments while
offering a higher degree of fidelity, a suite of sensors, and
interfaces for both users and programs. This effective, scalable
and simple tool can be used to test robotics algorithms, de-
signing robots and performing regression testing with realistic
scenarios.

Gazebo supports four different physics engine, ODE, Bullet,
Simbody and DART, which makes Gazebo capable of rigid-
body dynamics simulation. Out of these four physics engines,
one engine must be defined within the world model descrip-
tion. Moreover, Gazebo offers a rich library of models such
as robots, sensors, actuators and arbitrary objects. For these
models, Gazebo maintains a simple API and the necessary
hooks for interaction with client programs. A layer below
this API resides the third party libraries that handle both the
physics simulation and visualization.

C. Robot Development

For simulation, a robot model is developed using Unified
Robot Description Format (URDF) which is an XML format
for representing a robot model. Here, XML format describes
robot’s joints, visualisation, appearance and integration of
various controllers and their parameters. Figure 2 shows the
developed robot in RVIZ (ROS Visualisation) software. This
URDF file is then converted into the XACRO (XML Macros)
format. The benefit of using XACRO is that it produces a more
readable and shorter version of XML files. Furthermore, RVIZ
is a 3D visualiser for displaying sensor data and state infor-
mation from ROS. RVIZ also provide a chance to visualise

the robot’s joint, how they move/rotate and their connections
to each other.

This robot has a differential steering locomotion system
meaning that the robot movement changes by varying the
speed of the two rear wheels individually. A caster wheel
is placed in the front which balances and supports the robot
movement. The wheels are controlled by the plugin called
libgazebo_ros_diff.so and their parameters are application
dependent and need to be defined in XACRO file. The robot
design is inspired by the EMoRo Robot' developed by Inovatic
ICT.

D. Laser Sensor

A laser sensor plugin used in this experiments is called
libgazebo_ros_laser.so and is based on hokuyo UTM-30LX
sensor. For a leader robot, the scanning range for this sensor
is set between [-90°, 90°] or 720 samples and the measurement
range is set between [0.30m, 3.0m]. For follower robots, the
scanning range is [-11.5°, 11.5°] or 720 samples and the mea-
surement range is [0.30m, 1.0m]. The reason behind setting
a lower scanning range for follower robots compared to the
leader robot is because follower robots only measure the range
between the preceding robot and robot itself. Furthermore,
setting a lower measurement range for follower robots ensures
that the distance between leader and follower do not exceed
more than one meter.

E. Differential Drive Controller

In this experiment, an inbuilt differential drive controller
plugin called libgazebo_ros_diff_drive.so is used to control
the rear wheels of the robot. This controller accepts velocity
command and sent on the two wheels of a differential drive

Uhttp://www.emoro.eu/



wheelbase. The controller extracts the x component of the
linear velocity and z components of angular velocity while
ignoring the velocities of other components.

F. World Development

A simulation world is used to analyse the robots’ movement.
The world created for this study includes several features such
as double lanes, two-way traffic lanes and intersections. This
world is reconfigurable, depending on the test requirement.
After developing the world, ten robots were deployed in the
environment, as shown in Figure 3. In this work, the simulation
world is made as simple as possible using resources available
though Gazebo. However, numerous models are available in
Gazebo model library and can be added to this world such as
buildings, sign-posts, barriers, and tree.

Figure 3. Simulation World with Robots

IV. THE PROPOSED APPROACH

Figure 4 shows the predecessor following topology. For
sensor-based platoon formation, it is a better choice compared
to other topologies presented in [15] because each robot’s
sensory measurement is derived by scanning the preceding
robot as discussed in this approach. Moreover, this form of
topology is usually created under communication loss between
vehicles.

00 000
Figure 4. Predecessor Following Topology

A. Leader Robot Algorithm

The algorithm for a leader robot’s navigation is based on
simple if-else conditions. Based on the laser sensor’s reading,
actuators output relative linear and angular velocity. The leader
robot tries to stay in the right lane and turns left when near to
obstacle or wall. The laser sensor has samples range of 720
and is divided into five regions. The sample range between
[0:143] is called right region, [144:287] is called front right
region (fright in algorithm), [288:431] is called front region,
[432:575] is called front left region (fleft in algorithm) and

[576:719] is called left region. Based on these regions, relative
linear velocity and angular velocity is applied to the leader.

Algorithm 1: Leader Robot

Input : Laser Data in Sample Ranges 0 to 719

Output: Motor Actuation

/+ Decide a region and move,
Distance/Range is in meter and
velocity is in meter/second

Determine region in which leader robot is located

if Front > I and Fleft > 1 and Fright > 0.5 then

linearVel = 0.1

angularVel = 0

*/

end

else if Front < 2 and Fleft < 3 and Fright > 0.5 then
linearVel = 0.1

angularVel = 0

o e N N B W N =

end

10 else if Front < I and Fleft < I and Fright < I then
11 linearVel = 0

12 angularVel = -0.1

13 end

14 else if Front < I and Fleft > 1 and Fright < I then
15 linearVel = 0

16 angularVel = -0.1

17 end

18 else if Fright > 0.7 and Front > 1 and Fleft > 1 then
19 linearVel = 0

20 angularVel = 0.1

21 end

22 else if Fright < 0.5 and Front > I and Fleft > I then
23 linearVel = 0

24 angularVel = -0.1

25 end

26 else

27 linearVel = 0

28 angularVel = 0

29 end

B. Follower Robot Algorithm

The follower robots receive information about preceding
robots via a laser sensor. In this algorithm, the scanning range
of follower robots is set between [-11.5°, 11.5°], therefore they
only scan robot in front of them. For this algorithm, ranges
are stored for polar coordinate analysis. These coordinates are
used to calculate the width of the preceding robot. The next
step is to calculate the distance between the follower robot
and preceding robot for longitudinal control. If the distance
between these robots is sufficient, linear velocity and angular
velocity are calculated and applied to follower robots.

V. EXPERIMENTAL RESULTS

The proposed controller is implemented using Python lan-
guage. As shown in Figure 5, readings from laser sensors drive
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Algorithm 2: Follower Robots
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Input : Laser Data in Sample Range 0 to 719
Output: Motor Actuation
/+ Determine the leader’s position =*/
for : = 010 719 do
if sampleRange[i+1] - sampleRange[i] > 0.5 then
| Store the index i in diff
end
end
for i = 0 to len(diff) do
x1Coord = laser(diff)xcos(diff)
ylCoord = laser(diff)*sin(diff)
x2Coord = laser(diff+1)xcos(diff+1)
y2Coord = laser(diff+1)xsin(diff+1)
dist = d((x1Coord, ylCoord), (x2Coord, y2Coord))
if dist > 0.5m then
x1 = x1Coord, x2 = x2Coord
yl = ylCoord, y2 = y2Coord
end

end
xclose = (x1[i+1] + x2[i+2]) / 2
yclose = (yl[i+1] + y2[i+2]) /2
distClose = d(xclose, yclose)
if distClose > 0.1m then
theta = atan2(yclose/xclose)
angvel = theta - 90
r = distclose / (2 * sin(theta/2))
linvel = r % theta
end

the robots around the simulation world. For this experiment,
five robots were deployed to test the developed controller. A
leader robot has a predefined path, and its associated controller
is /moveLeader based on leader robot’s algorithm whereas fol-
lower robots’ associated controllers are (/moveFollower_one
to /moveFollower_four) based on follower robot’s algorithm.
All five robots are subscribed to their laser scan topics (/scan0
to /scan4). Here, a simulation world (/gazebo) provides laser
readings from robots (/scan0 to /scan4) to the developed
robot controllers and the controllers issue relevant velocity
(/rbt_Isr_0/cmd_vel to /rbt_lsr_4/cmd_vel) to the robots in the
simulation world (/gazebo).

Figure 6 shows the simulated scenario containing five
mobile robots. While moving through the environment, this
platoon stays in the right lane and turns without collision
at the end of the lane. Here, the follower robots follow
the trajectories of preceding robots and leader robot plans
the trajectory based on the sensor’s reading. Moreover, both
linear and angular velocity are calculated and applied. For this
experiment, the velocity for a leader robot is set at minimum
to achieve accurate results from the algorithm. While trying
the higher velocity, follower robots were not able to track the
leader robot.

It is possible to add more robots for this experiment.
However, adding more robots increases the simulation time
and drops the frame rate of the simulator due to the limited
computing power. Furthermore, having a platoon formation of
a maximum of five vehicles is sufficient when considering a
real-world scenario and the second platoon can be formed for
the next five vehicles.

VI. CONCLUSION AND FUTURE WORK

In this paper, a multi-robot simulator is developed and used
to simulate formation control algorithm. A laser scanner based
platoon formation algorithm is presented and simulated using



Figure 6. Platoon Navigation

predecessor following topology. The proposed approach could
be useful for vehicle platoon formation during communication
loss between connected vehicles. The experiment performed
in this paper shows the ability to maintain platoon formation
through linear and angular velocity.

The major outcome of this work is the ability to simulate
platoon formation using laser sensor. In future, this algorithm
will be made adaptable to a higher speed by considering
the local properties of the road, dynamic obstacle will be
simulated and their effects will be studied, and multiple
platoons will be simulated to study the interaction between
multiple vehicles and platoons. Moreover, this simulator will
be made open-source.
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