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Generalized Reed-Muller Codes
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Abstract

Z-complementary code set (ZCCS), an extension of perfect complementary codes (CCs), refers

to a set of two-dimensional matrices having zero correlation zone properties. ZCCS can be used in

various multi-channel systems to support, for example, quasi-synchronous interference-free multicarrier

code-division multiple access communication and optimal channel estimation in multiple-input multiple-

output systems. Traditional constructions of ZCCS heavily rely on a series of sequence operations

which may not be feasible for rapid hardware generation particularly for long ZCCSs. In this paper, we

propose a direct construction of ZCCS using second-order Reed-Muller codes with efficient graphical

representation. Our proposed construction, valid for any number of isolated vertices present in the graph,

is capable of generating optimal ZCCS meeting the set size upper bound.
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I. INTRODUCTION

Code-division multiple-access (CDMA) technology is an important multiuser communication

scheme where spreading sequences play a fundamental role in determining the system perfor-

mance. Traditional spreading sequences, such as Walsh-Hadamard sequences, pseudo-random

sequences (e.g., Gold sequences, Kasami sequences, optimal Z4 sequences), constant amplitude

zero auto-correlation (CAZAC) sequences, generally exhibit nonzero cross-correlation properties

over asynchronous transmission channels. Because of this, their corresponding CDMA systems

may suffer from severe “near-far effect” whereby the desired signals could be overwhelmed by

multiple-access interference (MAI). In legacy CDMA systems (e.g., 3G), tedious power control

is applied to suppress the near-far effect. In this paper, we are focused on Z-complementary code

set (ZCCS) which is capable of supporting interference-free multicarrier CDMA (MC-CDMA)

in quasi-synchronous channels (without the need of power control) [1].

In [2], M. J. E. Golay proposed a pair of sequences, known as Golay complementary pair

(GCP), with the property that the sum of their aperiodic auto-correlation function (AACF) is zero

everywhere except at the zero-shift position. Either sequence in a GCP is called a Golay sequence.

In [3], Tseng and Liu extended the idea of GCP to complementary code (CC) each consisting of

two or more constituent sequences with the same AACF property. Davis and Jedwab proposed a

direct construction of GCP from generalized Boolean function (GBF) to reduce the peak-to-mean

envelope power ratio (PMEPR) of orthogonal frequency division multiplexing (OFDM) system

[4]–[6]. As a generalization of the Davis-Jedwab construction, Paterson proposed a construction

of CC in [7] by associating each CC with a graph1. In [7, Th. 24], it is found that after applying

deletion operation to several vertices of certain graphs, if the resulting graph consists of a

path and one isolated vertex, then the code corresponding to the graph is a CC. Paterson’s

idea was further extended by Rathinakumar and Chaturvedi [9] for mutually orthogonal Golay

complementary sets (MOGCS) which are also called complete complementary codes (CCCs) in

this paper. Formally, CCC refers to a collection of CCs where each CC is a two-dimensional

matrix (called a complementary matrix) and any two distinct CCs have zero aperiodic cross-

correlation sums. The Rathinakumar-Chaturvedi construction, however, gives little information

on the code generation when some isolated vertices are present (after deletion operation) in the

1Although Paterson’s construction is limited to second-order generalized Reed-Muller (RM) codes, generalization to higher-

order ones can be found in [8].
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associated graph. Recently, a new class of CCC has been introduced in [10] for multi-carrier

code division multiple access (MC-CDMA) with column sequence PMEPR of at most 2. This is

achieved by properly designing CCs (complementary matrices) such that every column sequence

of a complementary matrix is a Golay sequence. The application of CCC has been extended to

interference-free MC-CDMA communication by designing a fractional-delay resilient receiver

[11].

A drawback of CCC is that the set size is limited by the number of row sequences in each

complementary matrix [10]–[13]. This problem can be fixed by ZCCS whose aperiodic auto-

and cross-correlation functions display zero correlation zone (ZCZ) properties and whose set

size is several times of that of CCC [14]. The ZCZ properties of ZCCS allow MAI mitigation

provided that all the received multiuser signals are roughly synchronous within the ZCZ width

[15]. In the literature, binary ZCCSs were first introduced by Fan et al. [16] and later were

extended to generalized pairwise ZCCSs by Feng et al. [17] for power efficient quadrature carrier

modems. There are another type set of codes, introduced in [18], [19], known as inter-group

complementary code set which can be derived as special case of ZCCS. In addition to their

applications in MC-CDMA [18], ZCCS have also been employed as optimal training sequences

in multiple-input multiple-output (MIMO) communications [20], [21].

In this paper, we propose a direct construction of optimal ZCCS from second-order cosets

of the q-ary generalization of the first-order RM codes through a graphical representation.

Specifically, we first construct a set of 2k+p codes, each containing 2k+1 constituent sequences

of length 2m. These codes are characterized by a graph (consisting of m vertices in total) with

the property that deleting k vertices and their associated edges, the entire graph reduces to a

path over m− k − p vertices (where all the relevant edges have identical weight of q/2) and p

isolated vertices. Then, we construct another set of codes by reversing and taking conjugate of

the first set of codes. It is interesting to note that the cross-correlation between any two codes

from different sets is zero everywhere and the union of these two sets gives a ZCCS of size

2k+p+1. Our proposed construction is flexible in that the ZCZ width and set size of the proposed

ZCCS can be varied by freely changing the number of isolated vertices (i.e., p) in the graph. It

is shown that the CCC in [9] is a special case of our proposed construction when the number of

isolated vertices is set to zero, i.e., p = 0. It is noted that our proposed construction generates

ZCCS directly based on GBF and does not rely on any recursive sequence operations. Hence,

the proposed construction is suitable for rapid hardware generation particularly for long ZCCSs.
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An efficient hardware generator (based on logic AND gates, selectors, and adders) for 16-QAM

almost-complementary sequences can be found in [22, Example 1]. We also point out that the

CCC in [10], similar to [9], are characterized by a graph which after deleting some vertices and

their associated edges, constitutes one path but with no isolated vertex. This is a major difference

with our proposed construction for ZCCS in graph representation.

The remainder of the paper is organized as follows. In Section II, some useful notations

and definitions are given. In Section III, a construction of ZCCS is presented and its optimal

condition is derived. Later, the proposed ZCCS construction is illustrated by an example. Finally,

concluding remarks are drawn in Section IV.

II. PRELIMINARY

A. Definitions of Correlations and Sequences

Let a = (a0, a1, · · · , aL−1) and b = (b0, b1, · · · , bL−1) be two complex-valued sequences of

equal length L. For an integer τ , define

C(a,b)(τ) =


∑L−1−τ

i=0 ai+τb
∗
i , 0 ≤ τ < L,∑L+τ−1

l=0 aib
∗
i−τ , −L < τ < 0,

0, otherwise,

(1)

and A(b)(τ) = C(b,b)(τ). These functions are called aperiodic CCF (ACCF) between a and b

and the AACF of b, respectively. Let C = {C0, C1, · · · , CK−1} be a set of K matrices (codes),

each having order M × L as follows.

Cµ =


aµ0
aµ1
...

aµM−1


M×L

, (2)

where aµν (0 ≤ ν ≤ M − 1, 0 ≤ µ ≤ K − 1) is the ν-th row sequence or ν-th constituent

sequence of Cµ. Let Cµ1 , Cµ2 ∈ C (0 ≤ µ1, µ2 ≤ K − 1) be any two matrices in C. The ACCF

of Cµ1 and Cµ2 is defined by

C(Cµ1 , Cµ2)(τ) =
M−1∑
ν=0

C(aµ1ν , a
µ2
ν )(τ). (3)

DRAFT June 3, 2019



5

Definition 1: Code set C is said to be a set of CCC if K = M and

C(Cµ1 , Cµ2)(τ) =


LK, τ = 0, µ1 = µ2;

0, 0 < |τ | < L, µ1 = µ2;

0, |τ | < L, µ1 6= µ2.

(4)

In the above definition, each code Cµ (0 ≤ µ ≤ K − 1), is said to be a CC. When M = 2, Cµ

reduces to a GCP and either sequence of the pair is called a Golay sequence.

Definition 2: Code set C is called a ZCCS denoted by (K,Z)-ZCCSLM if

C(Cµ1 , Cµ2)(τ) =


LM, τ = 0, µ1 = µ2,

0, 0 < |τ | < Z, µ1 = µ2,

0, |τ | < Z, µ1 6= µ2,

(5)

where Z is called ZCZ width.

B. Generalized Boolean Functions

Let f be a function of m variables x0, x1, · · · , xm−1 over Zq. A monomial of degree k is

defined as the product of any k distinct variables among x0, x1 · · ·xm−1. There are 2m distinct

monomials over m variables listed below:

1, x0, x1, · · · , xm−1, x0x1, x0x2, · · · , xm−2xm−1, · · · ,

x0x1 · · ·xm−1.
(6)

A function f is said to be a GBF if it can uniquely be expressed as a linear combination of

these 2m monomials, where the coefficient of each monomial is drawn from Zq. Corresponding

to each GBF f , we define a complex valued sequence ψ(f) of length 2m by defining ψ(f) =

(ωf0 , ωf1 , · · · , ωf2m−1), where fi = f(i0, i1, · · · , im−1), ω = exp(2π
√
−1/q) (q is a positive

integer no less than 2) and (i0, i1, · · · , im−1) is the binary vector representation of integer i (i =∑m−1
j=0 ij2

j). We denote by x̄ = 1− x the binary complement of x ∈ {0, 1}. For any given GBF

f in m variables, we denote the function f(1−x0, 1−x1, · · · , 1−xm−1) or f(x̄0, x̄1, · · · , x̄m−1)

by f̃ . For a complex-valued sequence a, let ã denote the sequence obtained by reversing a and

a∗ its complex conjugate.
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C. Some Families of Codes

A linear code over Zq of length L is closed under linear combinations of sequences (called

codewords). Corresponding to any such code ζ there is a generator matrix G. Linear combinations

of the rows of G generate the code. For any fixed sequence a of length L, a + ζ denotes a coset

of ζ and a is said to be a coset representative of ζ . RMq(r,m) is said to be the rth order

RM code whose codewords are Zq-valued sequences identified with GBFs of degree at most r

in x0, x1, · · · , xm−1. The rows of generator matrix G for RMq(r,m) are Zq-valued sequences

corresponding to distinct monomials of degree at most r over the variables x0, x1, · · · , xm−1.

The reader is referred to [7] for more details.

Example 1: Consider RM2(2, 3), generated by vectors corresponding to the monomials of

degree at most 2 in variables x0, x1 and x2. The generator matrix G of RM2(2, 3) is given as

follows. 

11111111

01010101

00110011

00001111

00010001

00000101

00000011



1

x0

x1

x2

x0x1

x0x2

x1x2

D. Quadratic Forms and Graphs of GBFs

In this subsection, we introduce some lemmas and notations which will be used for our

proposed constructions in the next section.

Definition 3: Let f be a GBF of m variables x0, x1, · · · , xm−1 over Zq. Consider a list of

k (0 ≤ k < m) indices 0 ≤ j0 < j1 < · · · jk < m and write x = (xj0 , xj1 , · · · , xjk−1
). Also,

consider c = (c0, c1, · · · , ck−1) which is a fixed binary sequence. Define ψ(f |x=c) as a complex-

valued sequence with ωf(i0,i1,··· ,im−1) as ith component if ijα = cα for each 0 ≤ α < k and equal

to zero otherwise, where ω is a (complex-valued) qth root of unity. For k = 0, ψ(f |x=c) reduces

to the sequence ψ(f) which has been defined in Subsection II-B.

Let Q be the quadratic form of f . Then, the GBF f can be expressed as [9]

f = Q+
m−1∑
i=0

gixi + g′, (7)
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where g′, gi ∈ Zq are arbitrary.

For a quadratic GBF f , let G(f) denote the graph of f which is obtained by joining the

vertices xi and xj by an edge if there is a term qi,jxixj (0 ≤ i < j ≤ m − 1) in the GBF f

with qi,j 6= 0 (qi,j ∈ Zq). Consider the function f |xj=c, obtained by substituting xj = c in f . It

follows that the graph of f |xj=c is equal to the graph obtained by deleting vertex j from G(f).

Similarly the graph of f |x=c is obtained by deleting vertices xj0 , xj1 , · · · , xjk−1
from G(f). The

final graph is independent of the choice of c. That is, for any c, the quadratic part of the function

f |x=c is completely described by the graph which is obtained from G(f) by deleting vertices

xj0 , xj1 , · · · , xjk−1
. Note that the quadratic forms in the functions f and f̃ are the same and

therefore, they have the same associated graph.

Example 2: Let f be a GBF of 3 variables over Z2, as follows

f(x0, x1, x2) = x0x2 + x2x1 + x1 + x2.

Let x = (x0, x2) and c = (0, 1). Then, the complex-valued vector corresponding to f |x=c can be

written as follows.

ψ(f |x=c) = (0, 0, 0, 0,−, 0,−, 0).

E. Truncated Restricted Vectors

Let ψ(f) = (F0, F1, · · · , FL−1) be a complex-valued vector of length L and ψ(f |x=c) be a

restriction of it. Also, let ic and īc be the first and last nonzero entries in the restricted vector

ψ(f |x=c), we have

ψ(f |x=c) = (0, · · · , 0, Fic , Fic+1, · · · , Fīc−1, Fīc , 0, · · · , 0),

where the entries Fi for ic < i < īc, may not necessarily be nonzero. Then, the truncated vector

is obtained by truncating the leading and trailing zeros of the restricted vector which is denoted

as follows.

[ψ(f |x=c)] = (Fic , Fic+1, · · · , Fīc−1, Fīc). (8)

Lemma 1: [7] Let f, g be GBFs of m variables. Consider 0 ≤ j0 < j1 < · · · < jk−1 < m,

which is a list of k indices and c = (c0c1 · · · ck−1) and d = (d0d1 · · · dk−1) are two binary

June 3, 2019 DRAFT
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vectors. Write x = (xj0xj1 · · ·xjk−1
) and consider 0 ≤ i0 < i1 < · · · < il−1 < m, which is a set

of indices which has no intersection with {j0, j1, · · · , jk−1}. Let y = (xi0xi1 · · ·xil−1
), then

C (ψ(f |x=c), ψ(g|x=d)) (τ)

=
∑
c1,c2

C (ψ(f |xy=cc1), ψ(g|xy=dc2)) (τ).
(9)

Lemma 2: ( [23, Lemma. 1.20]) Let f , g be GBFs of m variables and ψ(f |x=c1), ψ(g|x=c2) be

the corresponding vectors restricting variables x to c1 and c2 for f and g, respectively. Consider

icj which is the index of the first nonzero entry in the vector ψ(.|x=cj), j = 1 or 2, and nx

the length of nonzero pattern. Then, the cross-correlation of the restricted vectors is given by a

shifted cross-correlation of the truncated vectors as follows.

C (ψ(f |x=c1), ψ(g|x=c2)) (τ)

=


C ([ψ(f |x=c1)], [ψ(g|x=c2)]) (τ − (ic1 − ic2)),

if (ic1 − ic2)−(nx − 1) ≤ τ ≤ (ic1 − ic2)+(nx − 1);

0, otherwise.

(10)

In particular, when f = g and c1 = c2 = c,

A (ψ(f |x=c)) (τ)

=

A([ψ(f |x=c)])(τ), −(nx − 1) ≤ τ ≤ (nx − 1),

0, otherwise.

Lemma 2 will be used in the proof of Lemma 5.

Example 3: Let f and g be GBFs of 4 variables over Z2, as follows.

f(x0, x1, x2, x3) = x0x1 + x2x3 + x0,

g(x0, x1, x2, x3) = x0x2 + x1x3.

Let x = x0x2, c1 = (0, 1) and c2 = (1, 0). Then, the restricted vectors of f and g at x = c1 and

x = c2 are

ψ(f |x=c1) = (0, 0, 0, 0,+, 0,+, 0, 0, 0, 0, 0,−, 0,−, 0),

ψ(g|x=c2) = (0,+, 0,+, 0, 0, 0, 0, 0,+, 0,−, 0, 0, 0, 0).
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The length of the nonzero pattern nx = īcj − icj + 1, where icj and īcj are the indices of the

first and last nonzero entries in the vector ψ(f |x=cj) (j = 1, 2). Therefore ic1 = 4, ic2 = 1 and

nx = 11. Now, we have

(C (ψ(f |x=c1), ψ(g|x=c2))(τ))15
τ=−15

= (08,−1, 03, 1, 03, 2, 0, 2, 05,−1, 0,−2, 0,−1, 02),
(11)

where 0m denotes m consecutive zeros.

Therefore

C (ψ(f |x=c1), ψ(g|x=c2)) (τ)

=

C([ψ(f |x=c1)], [ψ(g|x=c2)])(τ + 3), −7 ≤ τ ≤ 13,

0, otherwise.

(12)

Lemma 3: (Construction of CCC [9])

Let f be a GBF of m variables and f̃ be its reversal. Suppose G(f) contains a set of k distinct

vertices labeled j0, j1, · · · , jk−1 with the property that deleting those k vertices and all their edges

results in a path with q/2 being the weight of every edge of the path. Let (t0, t1, · · · , tk−1) be

the binary representation of the integer t. Define the complementary code Ct to be{
f+

q

2

(
k−1∑
α=0

dαxjα+
k−1∑
α=0

tαxjα+dxγ

)
: d, dα ∈ {0, 1}

}
, (13)

and the counterpart CC C̄2k+t to be{
f̃+

q

2

(
k−1∑
α=0

dαx̄jα+
k−1∑
α=0

tαx̄jα+d̄xγ

)
: d, dα ∈ {0, 1}

}
, (14)

where γ be the label of either end vertex in the path. Then

{ψ(Ct) : 0 ≤ t < 2k} ∪ {ψ∗(C̄2k+t) : 0 ≤ t < 2k} (15)

generate a set of CCC, where ψ∗(·) denotes the complex conjugate of ψ(·).

Lemma 3 will be used in Theorem 2 to show that the construction of CCC in [9] is a special

case of our construction.

Lemma 4: ( [14]) For any ZCCS with the parameters K, M , L and Z, the theoretical bound

is given by

K ≤MbL/Zc, (16)

where Z is the ZCZ width, K is the number of Z-complementary codes, M is the number

of constituent sequences in a Z-complementary code and L is the length of each constituent

sequence. We call a ZCCS optimal if the equality in (16) is achieved.
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Fig. 1: The graph of the quadratic form Q.

III. PROPOSED CONSTRUCTION OF Z-COMPLEMENTARY CODE SET

In this section, we present a direct construction of ZCCS over Zq using a generic graph as

shown in Fig. 1. Specifically, Fig. 1 contains m vertices denoted by set XI = {x0, x1, · · · , xm−1}.

These m vertices are divided into three disjoint sets: XP = {xl0 , xl1 , · · · , xlm−k−p−1
} represents

the vertices of a path whose edges have identical weight of q/2, XJ = {xj0 , xj1 , · · · , xjk−1
},

and XS = {xi1 , xi2 , · · · , xip}. a′i,α’s denote the weights of the edges between vertices from XP

and XJ , e′α,β’s denote the weights of the edges between vertices from XJ and XS , and b′α1,α2
’s

denote the weights of edges between any two vertices from XJ . From the graph, it is clear that

after deleting all the vertices from the set XJ , the resulting graph contains a path of vertices in

the set XP and p isolated vertices of the set XS . The quadratic part of the GBF corresponding

to the above graph can be expressed as follows.

Q =
q

2

m−k−p−2∑
i=0

xlixli+1
+

m−k−p−1∑
i=0

k−1∑
α=0

a′i,αxlixjα

+
k−1∑
α=0

p∑
β=1

e′α,βxjαxiβ +
∑

0≤α1<α2<k

b′α1,α2
xjα1xjα2 ,

(17)

DRAFT June 3, 2019



11

where a′i,α, b′α1,α2
and e′α,β ∈ Zq. We also need to define the following vectors which will be

used throughout in our construction:

• x = (xj0 , xj1 , · · · , xjk−1
) ∈ Zk2,

x′ = (xi1 , xi1 , · · · , xip) ∈ Zp2.

• c = (c0, c1, · · · , ck−1), ci = (ci,0, ci,1, · · · , ci,k−1) ∈ Zk2.

• c′ = (c′1, c
′
2, · · · , c′p), c′′ = (c′′1, c

′′
1, · · · , c′′p)

and c′j = (c′j,1, c
′
j,2, · · · , c′j,p) ∈ Zp2.

• d′ = (d′1, d
′
2, · · · , d′p), d′′ = (d′′1, d

′′
2, · · · , d′′p) ∈ Zp2.

• Γ = (gi1 , gi2 , · · · , gip) ∈ Zpq .

For ease of presentation, whenever the context is clear, we sometimes use C(f, g)(τ) to denote

C(ψ(f), ψ(g))(τ) for any two GBFs f and g. Similar changes will be applied to restricted

Boolean functions also.

Furthermore, we need to define the following sets before presenting Theorem 1. Let

Tc′1−c′2 = (c′1 − c′2) · (2i1 , 2i2 , · · · , 2ip), (18)

and

Rτi = {(c′1, c
′
2) : Tc′1−c′2 = τi, c′1 6= c′2, c

′
1, c
′
2 ∈ Zp2}. (19)

Here Tc′1−c′2 represents nonzero time-shift for a binary pair of vectors (c′1, c′2). Rτi is a set which

contains all pairs (c′1, c′2) such that Tc′1−c′2 = τi. From (18) and (19), it is observed that the

number of such distinct τi is at most 3p − 1.

Example 4: Let p = 2, i1 = 2 and i2 = 3. Then, we have Tc′1−c′2 = (c′1 − c′2) · (22, 23) whose

values are taken from the set {±4,±8,±12} depending on c′1, c′2. Rτi = {(c′1, c′2) : Tc′1−c′2 =

τi, c′1 6= c′2, c′1, c′2 ∈ Z2
2} for τi = 4,−4, 8,−8, 12,−12 are given below.

R4 = {((0, 1), (1, 0)), ((1, 1), (0, 1)), ((1, 0), (0, 0))},

R−4 = {((0, 0), (1, 0)), ((0, 1), (1, 1)), ((1, 0), (0, 1))},

R8 = {((0, 1), (0, 0)), ((1, 1), (1, 0))},

R−8 = {((0, 0), (0, 1)), ((1, 0), (1, 1))},

R12 = {((1, 1), (0, 0))},

R−12 = {((0, 0), (1, 1))}.
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A. Construction of Z-complementary Code Set

In the above context, we are ready to present a construction of ZCCS over Zq. Let f be a

GBF with m variables and Q be the quadratic part of f . For 0 ≤ t ≤ 2k+p− 1, define the order

set St, as follows. {
Q+

m−1∑
i=0

gixi + g′ +
q

2

(
k−1∑
α=0

dαxjα +
k−1∑
α=0

bαxjα

+

p∑
α=1

d′αxiα + dxγ

)
: d, dα ∈ Z2

}
,

(20)

where t =
k−1∑
α=0

bα2α +

k+p−1∑
α=k

d′α−k+12α.

Let d = (d0, d1, · · · , dk−1), b = (b0, b1, · · · bk−1), b′ = (b′0, b
′
1, · · · , b′k−1) (bi, b′i, di ∈ {0, 1},

i = 0, 1, · · · , k − 1) be binary vectors and bd′ = (b0, b1, · · · , bk−1, d
′
1, d
′
2, · · · , d′p), b′d′′ =

(b′0, b
′
1, · · · , b′k−1, d

′′
1, d
′′
2, · · · , d′′p) are binary representations of t, t′ (0 ≤ t, t′ ≤ 2k+p − 1)

respectively, where t′ =
k−1∑
α=0

b′α2α+

k+p−1∑
α=k

d′′α−k+12α. In (20), g0, g1, · · · , gm−1 are the coefficients

of x0, x1, · · · , xm−1. In the beginning of this Section, we have defined Γ = (gi1 , gi2 , · · · , gip)

(p < m), where i1, i2, · · · , ip all are distinct and belong to the set {0, 1, · · · ,m− 1}. In another

words, we can say that gi1 , gi2 , · · · , gip are the coefficients of xi1 , xi2 , · · · , xip . Therefore, the

term
m−1∑
i=0

gixi presented in (20), can be expressed as

m−1∑
i=0

gixi =
∑

i∈{0,1,···,m−1}\{i1,i2,···,ip}

gixi + (gi1xi1 + gi2xi2

+ · · ·+ gipxip
)

=
∑

i∈{0,1,···,m−1}\{i1,i2,···,ip}

gixi + x′ · Γ,

(21)

where x′ · Γ = gi1xi1 + gi2xi2 + · · ·+ gipxip .

Theorem 1: Suppose G(f) satisfies the property that deleting k vertices specified in XJ and

all their associated edges results in a path and p isolates vertices in XS . Let γ be the label of

either end vertex in the path. Then for any choice of g′, gi ∈ Zq, the auto-correlation function

of the code ψ(St) and the cross-correlation function between two codes ψ(St) and ψ(St′) are

as follows.
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1) For b′ = b,d′ = d′′

A(ψ(St))(τ)

=



2m+k+1, τ = 0,

2m−p+1
∑

(c′,c′′)∈Rτ

(−1)d′·(c′+c′′)ω(c′−c′′)·Γ

×
∑

c ω
gcc′−gcc′′ , τ = τi, i = 1, 2, · · · , r,

0, otherwise.

(22)

2)

C(ψ(St), ψ(St′))(τ)

=



2m−p+1
∑

(c′,c′′)∈Rτ

(−1)d′·c′+d′′·c′′ω(c′−c′′)·Γ

×

(∑
c

ωgcc′−gcc′′ (−1)(b+b′)·c

)
, τ=τi, i=1, 2, · · · , r,

0, otherwise,

(23)

where 0 ≤ r ≤ 3p − 1, gcc′ =
∑k−1

α=0

∑p
β=1 e

′
α,βcαc

′
β and gcc′′ =

∑k−1
α=0

∑p
β=1 e

′
α,βcαc

′′
β .

Proof: See Appendix A.

Corollary 1: In the context of Theorem 1, consider m−p,m−p+ 1, · · · ,m−1, as the labels

of p isolated vertices. Then {ψ(St) : 0 ≤ t ≤ 2k+p − 1} is a (2k+p, 2m−p)-ZCCS2m

2k+1 .

Proof: Let s = min{|τi| : i = 1, 2, · · · , r}, where

τi = (c′1 − c′2) · (2m−p, 2m−p+1, · · · , 2m−1).

To find s, we start with

|τi| =
∣∣(c′1 − c′2) · (2m−p, 2m−p+1, · · · , 2m−1)

∣∣
=

∣∣∣∣∣
p∑
j=1

(c′1,j − c′2,j)2m−p+j−1

∣∣∣∣∣
= 2m−p

∣∣∣{(c′1,1 − c′2,1) + (c′1,2 − c′2,2)2 + · · ·

+ (c′1,p − c′2,p)2p−1}
∣∣∣

≥ 2m−p, for c1 6= c2.

(24)

Therefore, |τi| ≥ 2m−p ∀i = 1, 2, · · · , r, where the equality is met if c′1,j = c′2,j for all j, except

for j = 1. Hence,

s = min{|τi| : i = 1, 2, · · · , r} = 2m−p. (25)
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From Theorem 1 and (25), it is asserted that for any t, t′ (0 ≤ t, t′ ≤ 2k+p − 1)

C(ψ(St), ψ(St′))(τ) =

0, 0 < |τ | < 2m−p, t = t′,

0, |τ | ≤ 2m−p, t 6= t′.
(26)

Therefore the set {ψ(St) : 0 ≤ t ≤ 2k+p − 1} is a (2k+p, 2m−p)-ZCCS2m

2k+1 .

For each 0 ≤ t ≤ 2k+p − 1, define the order set S̄t as follows.{
f̃ +

q

2

(
k−1∑
α=0

dαx̄jα +
k−1∑
α=0

bαx̄jα+

p−1∑
α=0

d′αx̄iα + d̄xγ

)
: d, dα ∈ {0, 1}

}
.

(27)

Corollary 2: In the context of Theorem 1, consider m−p,m−p+ 1, · · · ,m−1, as the labels

of p isolated vertices. Then {ψ(S̄t) : 0 ≤ t ≤ 2k+p − 1} is a (2k+p, 2m−p)-ZCCS2m

2k+1 .

The proof of Corollary 2 follows directly from the proofs of Theorem 1 and Corollary 1.

Theorem 2: Consider {ψ(St)} and {ψ(S̄t}) in Corollary 1 and Corollary 2, respectively. Then,

{ψ(St) : 0 ≤ t ≤ 2k+p − 1} ∪ {ψ∗(S̄t) : 0 ≤ t ≤ 2k+p − 1},

form (2k+p+1, 2m−p)-ZCCS2m

2k+1 .

Proof: See Appendix B.

It is noted that our proposed ZCCS is optimal with respect to the theoretical bound in Lemma

4. Also, when p = 0, our proposed construction in Theorem 2 reduces to that in [9, Th. 3.6].

Remark 1: From Theorem 2 and Fig. 1, it is observed that at least

(m− p)!
2(k!)

(q − 1)k(m−k−p)qkp+
k(k−1)

2
+m+1

distinct optimal ZCCSs can be constructed from our proposed construction.

Proof: See Appendix C.

B. EXAMPLE

In this subsection, we provide an example to illustrate our proposed ZCCS construction.

Example 5: Let f be a GBF of 5 variables over Z4, where the associated graph G(f) is given

in Fig. 2. Note that G(f) is a graph of five vertices satisfying the property that deleting x0, the

entire graph reduces to a path consisting of vertices labeled 2, 3, 1 and an isolated vertex labeled

4. This graph leads to an optimal ZCCS as follows. Let

Q = 2(x2x3 + x3x1 + x0x2 + x0x3 + x0x1 + x0x4),
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Fig. 2: The graph of the quadratic Boolean function x2x3 + x3x1 + x0x2 + x0x3 + x0x1 + x0x4.

TABLE I: Optimal ZCCS over the alphabet Z4.

(8, 16)-ZCCS324
C0 C1

01320330031223320330013201102130 03300132011021300132033003122332

03300132011021300132033003122332 01320330031223320330013201102130

01100312033023100312011001322112 03120110013221120110031203302310

03120110013221120110031203302310 01100312033023100312011001322112

C2 C3

01320330031223322112231023320312 03300132011021302310211221300110

03300132011021302310211221300110 01320330031223322112231023320312

01100312033023102130233223100330 03120110013221122332213021120132

03120110013221122332213021120132 01100312033023102130233223100330

C4 C5

01100312211201322130233201322112 21302332013221120110031221120132

21302332013221120110031221120132 01100312211201322130233201322112

01320330213001102112231001102130 21122310011021300132033021300110

21122310011021300132033021300110 01320330213001102112231001102130

C6 C7

23322130033023102130233201322112 03120110231003300110031221120132

03120110231003300110031221120132 23322130033023102130233201322112

23102112031223322112231001102130 03300132233203120132033021300110

03300132233203120132033021300110 23102112031223322112231001102130

and

f(x0, x1, x2, x3, x4) = Q+ x0 + 3x1.

Also, let

St={f+2(d0x0+b0x0+d′0x4+dx1) :d, d0∈Z2} , 0 ≤ t≤ 3, (28)

and

S̄t=
{
f̃+2(d0x̄0+b0x̄0+d′0x̄4+d̄x1) :d, d0∈Z2

}
, 0 ≤ t≤ 3, (29)

where t = b020 + d′021 (b0, d
′
0 ∈ Z2). Consider Ct = ψ(St) and C22+t = ψ∗(S̄t), given in Table

I. The correlation properties of the ZCCS in Table I are illustrated in Fig. 3. Specifically, Fig.

3-a presents the absolute value of AACF sum of each code Cx from {C0, C1, · · · , C7}, Fig. 3-b
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Fig. 3: Correlation plots of (8, 16)-ZCCS32
4 in Table I.

shows absolute value of ACCF sum between any two distinct codes Cx and Cy (x = b020 +d′021,

y = b′020 + d′′021 or, x = 22 + b020 + d′021, y = 22 + b′020 + d′′021) from {C0, C1, C2, C3} (or from

{C4, C5, C6, C7}) with the condition b0 6= b′0. Fig. 3-c presents the absolute value of ACCF sum

between any two distinct codes Cx and Cy with the following senarios:

1) The codes are drawn from {C0, C1, C2, C3} (or from {C4, C5, C6, C7}) with the condition

b0 = b′0.

2) One code is drawn from {C0, C1, C2, C3} and the other code from {C4, C5, C6, C7}.

It is seen that the ZCZ width is 16. Hence, the ZCCS satisfies the equality of (16) as K = 8,

M = 4, Z = 16 and N = 32 and therefore, the ZCCS in Table I is optimal.

IV. CONCLUSION

In this paper, we have proposed a direct construction of ZCCS using graphical representation

of second-order RM codes. The proposed construction valids for any number of isolated vertices

present in the graph, is capable of generating optimal ZCCS with respect to the set size upper

bound in Lemma 4. It is noted that the construction of CCCs in [9] is a special case of our work
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work when the number of isolated vertices is set to zero. Flexible ZCZ width and set size can

be obtained by varying the number of isolated vertices.

APPENDIX A

PROOF OF Theorem 1

Before proving the Theorem 1, we present Lemma 5 and Lemma 6 where Lemma 5 will be

used in the proof of Theorem 1 and Lemma 6 will be used in the proof of both Theorem 1 and

Theorem 2.

Lemma 5: Let f and f ′ be two GBFs of m variables x0, x1, · · · , xm−1 (m ≥ 2), such that for

some k (0 ≤ k ≤ m− p− 2, p ≥ 0), f |x=c and f ′|x=c are given by

f |x=c = P + L+ gi1xi1 + gi2xi2 + · · ·+ gipxip + g′,

f ′|x=c = f |x=c +
q

2
xγ,

where

P =
q

2

m−k−p−2∑
α=0

xlαxlα+1 ,

L =

m−k−p−1∑
α=0

glαxlα ,

glα , g
′ ∈ Zq, α = 0, 1, · · · ,m − k − p − 1 and γ is the label of either end vertex of the path

G(P ). Then for fixed c and d′ 6= d′′, we have

C (f |xx′=cd′ , f |xx′=cd′′) (τ) + C (f ′|xx′=cd′ , f
′|xx′=cd′′) (τ)

=


ω(d′1−d′′1 )gi1 + · · ·+ (d′p − d′′p)gip2m−(k+p)+1,

τ = (d′1 − d′′1)2i1 + · · ·+ (d′p − d′′p)2ip ,

0, otherwise.

(30)

Proof: Using Lemma 2, in terms of the truncated vectors, the sum of cross-correlations of

the hypothesis becomes

C ([f |xx′=cd′ ], [f |xx′=cd′′ ]) (τ − (u1 − u2))

+C ([f ′|xx′=cd′ ], [f
′|xx′=cd′′ ]) (τ − (u1 − u2)),

(u1 − u2)− (nx − 1) ≤ τ ≤ (u1 − u2) + (nx − 1),

where u1 is the index of the first nonzero entry in the vector ψ((.)|xx′=cd′) and u2 that in

ψ((.)|xx′=cd′′). For τ outside of this range, each cross-correlation is zero by the Lemma 2, so the
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sum is zero too. For convenience write τ ′ = τ − (u1 − u2) and thus we consider the sum as

follows.

C ([f |xx′=cd′ ], [f |xx′=cd′′ ]) (τ ′)

+C ([f ′|xx′=cd′ ], [f
′|xx′=cd′′ ]) (τ ′),−(nx − 1) ≤τ ′≤ (nx − 1).

(31)

Next we note that

f |xx′=cd′ = f |xx′=cd′′ + (d′1 − d′′1)gi1 + · · ·+ (d′p − d′′p)gip , (32)

which means that the nonzero values in the vector ψ(f |xx′=cd′) are ω(d′1−d′′1 )gi1+···+(d′p−d′′p )gip times

those in the vector ψ(f |xx′=cd′′), only shifted relative to each other. For truncated vectors we

have

[ψ(f |xx′=cd′)] = ω(d′1−d′′1 )gi1+···+(d′p−d′′p )gip [ψ(f |xx′=cd′′)]. (33)

Substituting (33) and its equivalent expression for ψ(f ′|xx′=cd′) into (31), we have for all τ ′,

C([f |xx′=cd′ ], [f |xx′=cd′′ ])(τ
′)

+ C([f ′|xx′=cd′ ], [f
′|xx′=cd′′ ])(τ

′)

= C(ω(d′1−d′′1 )gi1+···+(d′p−d′′p )gip [f |xx′=cd′′ ], [f |xx′=cd′′ ])(τ
′)

+ C(ω(d′1−d′′1 )gi1+···+(d′p−d′′p )gip [f ′|xx′=cd′′ ], [f
′|xx′=cd′′ ])(τ

′)

= ω(d′1−d′′1 )gi1+···+(d′p−d′′p )gip (C([f |xx′=cd′′ ], [f |xx′=cd′′ ])(τ
′)

+C([f ′|xx′=cd′′ ], [f
′|xx′=cd′′ ])(τ

′))

= ω(d′1−d′′1 )gi1+···+(d′p−d′′p )gip (A([f |xx′=cd′′ ])(τ
′)

+A([f ′|xx′=cd′′ ])(τ
′)) .

(34)

Note that the truncated vectors [ψ(f |xx′=cd′′)] and [ψ(f ′|xx′=cd′′)] form a GCP. Therefore

A([f |xx′=cd′′ ])(τ
′) + A([f ′|xx′=cd′′ ])(τ

′)

=

2m−(k+p)+1, τ ′ = 0,

0, otherwise.

(35)

Substituting the value of auto-correlation sum into (34), we have

C([f |xx′=cd′ ], [f |xx′=cd′′ ])(τ
′)

+ C([f ′|xx′=cd′ ], [f
′|xx′=cd′′ ])(τ

′)

=

ω
(d′1−d′′1 )gi1+···+(d′p−d′′p )gip2m−(k+p)+1, τ ′ = 0,

0, otherwise.

(36)
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The above cross-correlation sum is only nonzero at τ ′ = 0 i.e., when τ = u1 − u2, where u2

and u1 are determined by x, x′, c,d′ and d′′, as follows.

u1 =
k−1∑
α=0

cα2jα + d′12i1 + · · ·+ d′p2
ip ,

u2 =
k−1∑
α=0

cα2jα + d′′12i1 + · · ·+ d′′p2
ip ,

where c = (c0, c1, · · · , ck−1). Hence u1 − u2 = (d′1 − d′′1)2i1 + · · ·+ (d′p − d′′p)2ip . Therefore the

cross-correlation sum is nonzero only at τ = (d′1 − d′′1)2i1 + · · ·+ (d′p − d′′p)2ip , where the value

is ω(d′1−d′′1 )gi1+···+(d′p−d′′p )gip2m−(k+p)+1, and thus Lemma 5 is proved.

To illustrate Lemma 5, let us recall Rτi which is defined in (19). Consider the GBFs f and f ′

of 5 variables over Z4, as follows

f(x0, x1, x2, x3, x4) = 2(x2x3 + x3x1 + x0x3 + x0x1

+ x0x2 + x0x4),

f ′(x0, x1, x2, x3, x4) = 2(x2x3 + x3x1 + x0x3 + x0x1

+ x0x2 + x0x4 + x1).

(37)

Both G(f |x0=c) and G(f ′|x0=c) (c ∈ Z2) contain a path with x1 as one of the end vertices and

x4 as isolated vertex. Therefore p = 1 and i1 = 4. Hence the possible nonzero time-shifts are

τ0 = (1 − 0) · 24 = 16, τ1 = (0 − 1) · 24 = −16, and the corresponding set of vectors are

R16 = {(1, 0)}, R−16 = {(0, 1)}, respectively. By using Lemma 5, we show below that Rτi’s are
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useful in the calculation of cross-correlation sum.∑
c′ 6=c′′

[C(f |x0x4=cc′ , f |x0x4=cc′′)

+C(f ′|x0x4=cc′ , f
′|x0x4=cc′′)]

=
∑

(c′,c′′)∈R16

[C(f |x0x4=cc′ , f |x0x4=cc′′)

+C(f ′|x0x4=cc′ , f
′|x0x4=cc′′)]

+
∑

(c′,c′′)∈R−16

[C(f |x0x4=cc′ , f |x0x4=cc′′)

+C(f ′|x0x4=cc′ , f
′|x0x4=cc′′)]

= C(f |x0x4=c1, f |x0x4=c0) + C(f ′|x0x4=c1, f
′|x0x4=c0)

+ C(f |x0x4=c0, f |x0x4=c1) + C(f ′|x0x4=c0, f
′|x0x4=c1)

=

16, τ = ±16,

0, otherwise.

Lemma 6: [9] Let d, c1, c2 ∈ {0, 1}k. If c1 6= c2,
∑

d

(−1)d·(c1+c2) = 0.

In the sequel, we provide the proof of Theorem 1.

Proof: Let f = Q +
m−1∑
i=0

gixi + g′ and the cross-correlation between ψ(St), ψ(St′) can be

written as

C(ψ(St), ψ(St′))(τ)

=
∑

dd

C
(
f +

q

2
((d + b) · x + d′ · x′ + dxγ) ,

f +
q

2
((d + b′) · x + d′′ · x′ + dxγ)

)
(τ)

= S1 + S2,

where

S1 =
∑

dd

∑
c1 6=c2

C
(
f +

q

2
((d + b) · x + d′ · x′ + dxγ) |x=c1 ,

f +
q

2
((d + b′) · x + d′′ · x′ + dxγ) |x=c2

)
(τ),

(38)

and

S2 =
∑

dd

∑
c

C
(
f +

q

2
((d + b) · x + d′ · x′ + dxγ) |x=c,

f +
q

2
((d + b′) · x + d′′ · x′ + dxγ) |x=c

)
(τ).

(39)
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To find S1, we start with

∑
d

C
(
f +

q

2
((d + b) · x + d′ · x′ + dxγ) |x=c1 ,

f +
q

2
((d + b′) · x + d′′ · x′ + dxγ) |x=c2

)
(τ)

= (−1)b·c1+b′·c2C
(
f +

q

2
(d′ · x′ + dxγ) |x=c1 ,

f +
q

2
(d′′ · x′ + dxγ) |x=c2

)
(τ)
∑

d

(−1)d·(c1+c2).

(40)
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By Lemma 6 we have
∑

d

(−1)d·(c1+c2) = 0 for c1 6= c2, therefore S1 vanishes for all values of

τ . Similarly, to simplify S2 we start with∑
d

C
(
f +

q

2
((d + b) · x + d′ · x′ + dxγ) |x=c,

f +
q

2
((d + b′) · x + d′′ · x′ + dxγ) |x=c

)
(τ)

= (−1)b·c+b′·cC
(
f +

q

2
(d′ · x′ + dxγ) |x=c,

f +
q

2
(d′′ · x′ + dxγ) |x=c

)
(τ)
∑

d

(−1)d·(c+c)

= (−1)b·c+b′·c2kC
(
f +

q

2
(d′ · x′ + dxγ) |x=c,

f +
q

2
(d′′ · x′ + dxγ) |x=c

)
(τ)

= (−1)b·c+b′·c2k
∑
c′c′′

C
(
f +

q

2
(d′ · x′ + dxγ) |xx′=cc′ ,

f +
q

2
(d′′ · x′ + dxγ) |xx′=cc′′

)
(τ)

= (−1)b·c+b′·c2k
∑
c′c′′

(−1)d′·c′+d′′·c′′C
(
f +

q

2
dxγ|xx′=cc′ ,

f +
q

2
dxγ|xx′=cc′′

)
(τ)

=(−1)b·c+b′·c2k

(∑
c′=c′′

(−1)d′·c′+d′′·c′′ C
(
f+
q

2
dxγ|xx′=cc′ ,

f +
q

2
dxγ|xx′=cc′′

)
(τ)

+
∑
c′ 6=c′′

(−1)d′·c′+d′′·c′′ C
(
f +

q

2
dxγ|xx′=cc′ ,

f +
q

2
dxγ|xx′=cc′′

)
(τ)
)

=(−1)b·c+b′·c2k

(∑
c′=c′′

(−1)(d′·+d′′)·c′A
(
f+
q

2
dxγ|xx′=cc′

)
(τ)

+
∑
c′ 6=c′′

(−1)d′·c′+d′′·c′′ C
(
f +

q

2
dxγ|xx′=cc′ ,

f +
q

2
dxγ|xx′=cc′′

)
(τ)
)

= (−1)b·c+b′·c2k(L1 + L2),

(41)

where

L1 =
∑
c′=c′′

(−1)(d′+d′′)·c′A
(
f +

q

2
dxγ|xx′=cc′

)
(τ), (42)
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and

L2 =
∑
c′ 6=c′′

(−1)d′·c′+d′′·c′′C
(
f +

q

2
dxγ|xx′=cc′ ,

f +
q

2
dxγ|xx′=cc′′

)
(τ).

(43)

Since G(f |xx′=cc′) is a path over m− k − p ( p is the number of isolated vertices) vertices,

∑
d

A
(
f +

q

2
dxγ|xx′=cc′

)
(τ) =

2m−(k+p)+1, τ = 0,

0, otherwise.
(44)

Now from (42) and (44) we have

∑
d

L1 =


2m−(k+p)+1

∑
c′=c′′

(−1)(d′+d′′)·c′ , τ = 0,

0, otherwise.

(45)

Therefore,

∑
d

L1 =


2m−k+1, τ = 0,d′ = d′′,

0, τ = 0,d′ 6= d′′,

0, otherwise.

(46)

To find simplified value of L2, we start with

{(c′, c′′) : c′, c′′ ∈ Zq and c′ 6= c′′} = ∪ri=1Rτi .

Therefore

L2 =
∑
c′ 6=c′′

(−1)d′·c′+d′′·c′′C
(
f +

q

2
dxγ|xx′=cc′ ,

f +
q

2
dxγ|xx′=cc′′

)
(τ)

=
∑

(c′,c′′)∈∪ri=1Rτi

(−1)d′·c′+d′′·c′′C
(
f +

q

2
dxγ|xx′=cc′ ,

f +
q

2
dxγ|xx′=cc′′

)
(τ)

=
r∑
i=1

∑
(c′,c′′)∈Rτi

(−1)d′·c′+d′′·c′′C
(
f +

q

2
dxγ|xx′=cc′ ,

f +
q

2
dxγ|xx′=cc′′

)
(τ).

(47)
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Since the vertices xi1 , xi2 , · · ·xip are isolated by the deletion operations, in the function f the

only quadratic terms involving variables xiβ ’s are those with the variables of the deleted vertices.

Thus the only quadratic terms in xiβ ’s in f can be expressed as follows.
k−1∑
α=0

p∑
β=1

e′α,βxjαxiβ , (48)

where e′α,β are the weights of the edges between the deleted vertices and the isolated vertices.

Now the term
(
f + q

2
dxγ
)
|xx′=cc′ can be written as(

f +
q

2
dxγ

)
|xx′=cc′

=

(
f ′ +

k−1∑
α=0

(
p∑

β=1

e′α,βxjαxiβ

)
+
q

2
dxγ

)
|xx′=cc′

=

(
f ′ +

k−1∑
α=0

(
p∑

β=1

e′α,βcαc
′
β

)
+
q

2
dxγ

)
|xx′=cc′

=ωgcc′
(
f ′+

q

2
dxγ

)
|xx′=cc′(where gcc′ ,

k−1∑
α=0

p∑
β=1

e′α,βcαc
′
β).

Similarly (
f +

q

2
dxγ

)
|xx′′=cc′′

=ωgcc′′
(
f ′+

q

2
dxγ

)
|xx′′=cc′′(where gcc′′,

k−1∑
α=0

p∑
β=1

e′α,βcαc
′′
β).

(49)

Therefore, the term C
(
f+q

2
dxγ|xx′=cc′ , f+

q
2
dxγ|xx′=cc′′

)
(τ) can be simplified to

C
(
f +

q

2
dxγ|xx′=cc′ , f +

q

2
dxγ|xx′=cc′′

)
(τ)

= ωgcc′−gcc′′C
(
f ′ +

q

2
dxγ|xx′=cc′ , f

′ +
q

2
dxγ|xx′=cc′′

)
(τ).

(50)

By Lemma 5, we have∑
d

C
(
f ′ +

q

2
dxγ|xx′=cc′ , f

′ +
q

2
dxγ|xx′=cc′′

)
(τ)

=


2m−(k+p)+1ω(c′1−c′′1 )gi1+···+(c′p−c′′p )gip ,

τ = (c′1 − c′′1)2i1 + · · ·+ (c′p − c′′p)2ip ,

0, otherwise.

=

2m−(k+p)+1ω(c′−c′′)·Γ , τ = T(c′−c′′),

0, otherwise.

(51)
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Now from (47) and (51) we have,

∑
d

L2

=
r∑
i=1

∑
(c′,c′′)∈Rτi

(−1)d′·c′+d′′·c′′
∑
d

C
(
f +

q

2
dxγ|xx′=cc′ ,

f +
q

2
dxγ|xx′=cc′′

)
(τ)

=



2m−(k+p)+1

×
∑

(c′,c′′)∈Rτ

ωgcc′−gcc′′ (−1)d′·c′+d′′·c′′ω(c′−c′′)·Γ ,

τ = τi, i = 1, 2, · · · , r,

0, otherwise.

(52)

For d′ = d′′, from (46) and (52) we have

∑
d

(L1 + L2)

=



2m−k+1, τ = 0,

2m−(k+p)+1

×
∑

(c′,c′′)∈Rτ

ωgcc′−gcc′′ (−1)d′·(c′+c′′)ω(c′−c′′)·Γ ,

τ = τi, i = 1, 2, · · · , r,

0, otherwise.

(53)

If d′ 6= d′′, from (46) and (52) we have

∑
d

(L1 + L2)

=



2m−(k+p)+1

×
∑

(c′,c′′)∈Rτ

ωgcc′−gcc′′ (−1)d′·c′+d′′·c′′ω(c′−c′′)·Γ ,

τ = τi, i = 1, 2, · · · , r,

0, otherwise.

(54)
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For d′ = d′′, from (41), (53) we have

∑
d,d

C
(
f +

q

2
((d+b) · x + d′ · x′ + dxγ) |x=c,

f +
q

2
((d + b′) · x + d′′ · x′ + dxγ) |x=c

)
(τ)

= (−1)b·c+b′·c2k
∑
d

(L1 + L2)

=



2m+1(−1)b·c+b′·c, τ = 0,

2m−p+1(−1)b·c+b′·c

×
∑

(c′,c′′)∈Rτ

ωgcc′−gcc′′ (−1)d′·(c′+c′′)ω(c′−c′′)·Γ ,

τ = τi, i = 1, 2, · · · , r,

0, otherwise.

(55)

For d′ 6= d′′, from (41) and (52) we have

∑
d,d

C
(
f +

q

2
((d+b) · x + d′ · x′ + dxγ) |x=c,

f +
q

2
((d + b′) · x + d′′ · x′ + dxγ) |x=c

)
(τ)

= (−1)b·c+b′·c2k
∑
d

(L1 + L2)

=



2m−p+1(−1)b·c+b′·c

×
∑

(c′,c′′)∈Rτ

ωgcc′−gcc′′ (−1)d′·c′+d′′·c′′ω(c′−c′′)·Γ ,

τ = τi, i = 1, 2, · · · , r,

0, otherwise.

(56)
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For d′ = d′′, b = b′, from (38), (55) and using Lemma 5 we have

S2 =
∑

dd

∑
c

C
(
f+

q

2
((d+b)·x + d′ ·x′ + dxγ) |x=c,

f +
q

2
((d + b′)·x + d′′ ·x′ + dxγ) |x=c

)
(τ)

=



2m+1
∑

c

(−1)b·c+b′·c, τ = 0,

2m−p+1
∑

(c′,c′′)∈Rτ

(−1)d′·(c′+c′′)ω(c′−c′′)·Γ

×
∑

c

ωgcc′−gcc′′ (−1)b·c+b′·c, τ = τi, i = 1, 2, · · · , r,

0, otherwise.

(57)

=



2m+k+1, τ = 0,

2m−p+1
∑

(c′,c′′)∈Rτ

(−1)d′·(c′+c′′)ω(c′−c′′)·Γ

×
∑

c

ωgcc′−gcc′′ , τ = τi, i = 1, 2, · · · , r,

0, otherwise.

For d′ 6= d′′, b = b′, from (38), (56) and using Lemma 5 we have

S2 =
∑

dd

∑
c

C
(
f +

q

2
((d+b)·x + d′ ·x′ + dxγ) |x=c,

f +
q

2
((d + b′)·x + d′′ ·x′ + dxγ) |x=c

)
(τ)

=



2m−p+1
∑

(c′,c′′)∈Rτ

(−1)d′·c′+d′′·c′′ω(c′−c′′)·Γ

×
∑

c

ωgcc′−gcc′′ (−1)b·c+b′·c, τ = τi, i = 1, 2, · · · , r,

0, otherwise.

=



2m−p+1
∑

(c′,c′′)∈Rτ

(−1)d′·c′+d′′·c′′ω(c′−c′′)·Γ

×
∑

c ω
gcc′−gcc′′ , τ = τi, i = 1, 2, · · · , r,

0, otherwise.

(58)
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For d′ = d′′, b 6= b′, from (57) and Lemma 5 we have

S2 =
∑

dd

∑
c

C
(
f +

q

2
((d+b)·x + d′ ·x′ + dxγ) |x=c,

f +
q

2
((d + b′)·x + d′′ · x′ + dxγ) |x=c

)
(τ)

=



2m+1
∑

c

(−1)b·c+b′·c, τ = 0,

2m−p+1
∑

(c′,c′′)∈Rτ

(−1)d′·(c′+c′′)ω(c′−c′′)·Γ

∑
c

ωgcc′−gcc′′ (−1)b·c+b′·c, τ = τi, i = 1, 2, · · · , r,

0, otherwise.

=



2m−p+1
∑

(c′,c′′)∈Rτ

(−1)d′.(c′+c′′)ω(c′−c′′)·Γ

×
∑

c

ωgcc′−gcc′′ (−1)b·c+b′·c, τ=τi, i=1, 2, · · · , r,

0, otherwise.

(59)

For d′ 6= d′′, b 6= b′, from (58) and using Lemma 5 we have

S2 =
∑

dd

∑
c

C
(
f +

q

2
((d+b)·x + d′ ·x′ + dxγ) |x=c,

f +
q

2
((d + b′)·x + d′′ · x′ + dxγ) |x=c

)
(τ)

=



2m−p+1
∑

(c′,c′′)∈Rτ

(−1)d′·c′+d′′·c′′ω(c′−c′′)·Γ

×
∑

c

ωgcc′−gcc′′ (−1)b·c+b′·c, τ = τi, i = 1, 2, · · · , r,

0, otherwise.

(60)

The result in (57) proves the hypothesis 1 given in (22).

(58), (59) and (60) prove the hypothesis 2 given in (23).

APPENDIX B

PROOF OF Theorem 2

Proof: Let t′ =
k−1∑
α=0

b′α2α +

k+p−1∑
α=k

d′α2α and t′′ =
k−1∑
α=0

b′′α2α +

k+p−1∑
α=k

d′′α2α (b′α, b
′′
α, d

′
α, d

′′
α ∈

Z2 and 0 ≤ t′, t′′ ≤ 2k+p − 1). Since the labels of the isolated vertices are m − p,m − p +
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1, · · · ,m− 1, we consider x′ = (xm−p, xm−p+1, · · · , xm−1) and Γ = (gm−p, gm−p+1, · · · , gm−1).

To prove Theorem 2, we only need to show

C(ψ(S ′t), ψ
∗(S̄t′′)) = 0, |τ | ≤ 2m−p.

Let us start with

C(ψ(St′), ψ
∗(S̄t′′))(τ)

=
∑

d

C
(
f +

q

2
((d + b′) · x + d′ · x′ + xγ) ,

f̃ ∗ +
q

2
((d + b′′) · x̄ + d′′ · x̄′)

)
(τ)

+
∑

d

C
(
f +

q

2
((d + b′) · x + d′ · x′) ,

f̃ ∗ +
q

2
((d + b′′) · x̄ + d′′ · x̄′ + xγ)

)
(τ)

= K1 +K2,

(61)

where

K1 =
∑

d

C
(
f +

q

2
((d + b′) · x + d′ · x′ + xγ) ,

f̃ ∗ +
q

2
((d + b′′) · x̄ + d′′ · x̄′)

)
(τ),

(62)

and

K2 =
∑

d

C
(
f +

q

2
((d + b′) · x + d′ · x′) ,

f̃ ∗ +
q

2
((d + b′′) · x̄ + d′′ · x̄′ + xγ)

)
(τ).

(63)

The cross-correlation term at RHS of (62) can be further reduced to

C
(
f +

q

2
((d + b′) · x + d′ · x′ + xγ) ,

f̃ ∗ +
q

2
((d + b′′) · x̄ + d′′ · x̄′)

)
(τ)

=
∑
c1,c2

C
(
f +

q

2
((d + b′) · x + d′ · x′ + xγ) |x=c1 ,

f̃ ∗ +
q

2
((d + b′′) · x̄ + d′′ · x̄′) |x=c2

)
(τ)

=
∑
c1,c2

(−1)(b′·c1)+(b′′· ¯c2)(−1)d·(c1+c̄2)

×
(
C
(
f +

q

2
(d′ · x′ + xγ) |x=c1 ,

f̃ ∗ +
q

2
d′′ · x̄′|x=c2

)
(τ)
)
.
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Therefore (62) is simplified to

K1 =
∑

d

C
(
f +

q

2
((d + b′) · x + d′ · x′ + xγ) ,

f̃ ∗ +
q

2
((d + b′′) · x̄ + d′′ · x̄′)

)
(τ)

=
∑

d

∑
c1,c2

(−1)(b′·c1)+(b′′·c̄2)(−1)d·(c1+c̄2)

×
(
C
(
f +

q

2
(d′ · x′ + xγ) |x=c1 ,

f̃ ∗ +
q

2
d′′ · x̄′|x=c2

)
(τ)
)

=
∑
c1,c2

(−1)(b′·c1)+(b′′·c̄2)C
(
f+
q

2
(d′ · x′+xγ) |x=c1 ,

f̃ ∗ +
q

2
d′′ · x̄′|x=c2

)
(τ)
∑

d

(−1)d·(c1+c̄2).

(64)

By applying Lemma 6, the above can be express as

K1 =
∑
c1,c2

c1−c2=1

2k(−1)(b′·c1)+(b′′·c̄2)

×
(
C
(
f +

q

2
(d′ · x′ + xγ) |x=c1 ,

f̃ ∗ +
q

2
d′′ · x̄′|x=c2

)
(τ)
)
.

(65)

The cross-correlation term in (65) can be simplified to

C
(
f +

q

2
(d′ · x′ + xγ) |x=c1 , f̃

∗ +
q

2
d′′ · x̄′|x=c2

)
(τ)

=
1∑
i=0

1∑
j=0

C
(
f +

q

2
(d′ · x′ + xγ) |xxγ=c1i,

f̃ ∗ +
q

2
d′′ · x̄′|xxγ=c2j

)
(τ)

=
1∑
i=0

1∑
j=0

(−1)iC
(
f +

q

2
d′ · x′|xxγ=c1i,

f̃ ∗ +
q

2
d′′ · x̄′|xxγ=c2j

)
(τ).

(66)
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Therefore the final expression of (62) can be expressed as

K1 =
∑
c1,c2

c1−c2=1

2k(−1)(b′·c1)+(b′′·c̄2)C
(
f+
q

2
(d′ · x′+xγ) |x=c1 ,

f̃ ∗ +
q

2
d′′ · x̄′|x=c2

)
(τ)

=
∑
c1,c2

c1−c2=1

2k(−1)(b′·c1)+(b′′·c̄2)

{
1∑
i=0

1∑
j=0

(−1)i

×
(
C
(
f +

q

2
d′ · x′|xxγ=c1i,

f̃ ∗ +
q

2
d′′ · x̄′|xxγ=c2j

)
(τ)
)}

.

(67)

Similarly, (63) can be simplified to

K2 =
∑
c1,c2

c1−c2=1

2k(−1)(b′·c1)+(b′′·c̄2)C
(
f+
q

2
d′ · x′|x=c1 ,

f̃ ∗ +
q

2
(d′′ · x̄′ + xγ) |x=c2

)
(τ)

=
∑
c1,c2

c1−c2=1

2k(−1)(b′·c1)+(b′′·c̄2)

{
1∑
i=0

1∑
j=0

(−1)j

×
(
C
(
f +

q

2
d′ · x′|xxγ=c1i,

f̃ ∗ +
q

2
d′′ · x̄′|xxγ=c2j

)
(τ)
)}

.

(68)

June 3, 2019 DRAFT



32

Therefore, (61) can be expressed as

C(ψ(St′), ψ
∗(S̄t′′))(τ)

= K1 +K2

=
∑
c1,c2

c1−c2=1

2k+1(−1)(b′·c1)+(b′′·c̄2)
{
C
(
f+
q

2
d′ · x′|xxγ=c10,

f̃ ∗ +
q

2
d′′ · x̄′|xxγ=c20

)
(τ)

− C
(
f+
q

2
d′ · x′|xxγ=c11, f̃ ∗+

q

2
d′′ · x̄′|xxγ=c21

)
(τ)
}

=
∑

c

2k+1(−1)(b′·c1)+(b′′·c̄2)
{
C
(
f +

q

2
d′ · x′|xxγ=c0,

f̃ ∗ +
q

2
d′′ · x̄′|xxγ=c+10

)
(τ)

− C
(
f +

q

2
d′ · x′|xxγ=c1, f̃ ∗ +

q

2
d′′ · x̄′|xxγ=c+11

)
(τ)
}

=
∑

c

2k+1(−1)(b′·c1)+(b′′·c̄2)

×

∑
c′1,c
′
2

(
C
(
f +

q

2
d′ · x′|xxγx′=c0c′1 ,

f̃ ∗ +
q

2
d′′ · x̄′|xxγx′=c+10c′2

)
(τ)

− C
(
f +

q

2
d′ · x′|xxγx′=c1c′1 ,

f̃ ∗ +
q

2
d′′ · x̄′|xxγx′=c+11c′2

)
(τ)
)}

=
∑

c

2k+1(−1)(b′·c1)+(b′′·c̄2)

∑
c′1,c
′
2

(−1)(d′·c′1)+(d′′·c̄′′2 )

×
(
C
(
f |xxγx′=c0c′1 , f̃

∗|xxγx′=c+10c′2

)
(τ)

− C
(
f |xxγx′=c1c′1 , f̃

∗|xxγx′=c+11c′2

)
(τ)
)}

.

Since G(f |x=c) contains a path over m − k − p vertices and p isolated vertices, the Boolean

function f |x=c can be expressed as

f |x=c =
q

2

m−k−p−2∑
α=0

xlαxlα+1 +

m−k−p−1∑
α=0

glαxlα

+

p∑
j=1

gm−p−1+jxm−p−1+j + g′.

DRAFT June 3, 2019



33

Let h1 denotes the function obtained from f by substituting x = c, x′ = c′1 and xγ = 1 for

some binary vectors c and c′1 and let h2 be the corresponding function when x = c, x′ = c′1 and

xγ = 0. Further we assume that γ = lm−k−p−1 without loss of generality. Then the function h1

and h2 can be expressed as

h1 =
q

2

m−k−p−3∑
α=0

xlαxlα+1 +

m−k−p−2∑
α=0

glαxlα + Γ · c′1

+
q

2
xlm−k−p−2

+ glm−k−p−1
+ g′,

h2 =
q

2

m−k−p−3∑
α=0

xlαxlα+1 +

m−k−p−2∑
α=0

glαxlα + Γ · c′1 + g′.

Similarly, the nonzero components of the complex vectors a = ψ(f |xxγx′=c1c′1) and b = ψ(f |xxγx′=c0c′1)

are given by the functions h1 and h2 respectively. Let c and d be two complex vectors whose

nonzero components are obtained from the functions h1 − Γ · c′1 and h2 − Γ · c′1. Therefore,

a = ωΓ ·c
′
1c and b = ωΓ ·c

′
1d.

Similarly, the nonzero components of the vectors a1 = ψ∗(f̃ |xxγx′=c+10c′2) and b1 = ψ∗(f̃ |xxγx′=c+11c′2)

are obtained by the functions

h3 =
q

2

m−k−p−3∑
α=0

(1−xlα)(1−xlα+1)+

m−k−p−2∑
α=0

glα(1− xlα)

+ Γ · c̄′2 +
q

2
(1− xlm−k−p−2

) + glm−k−p−1
+ g′

=h̃1 − Γ · (c̄′1) + Γ · c̄′2,

h4 =
q

2

m−k−p−3∑
α=0

(1−xlα)(1−xlα+1)+

m−k−p−2∑
α=0

glα(1−xlα)

+ Γ · c̄′2 + g′

=h̃2 − Γ · (c̄′1) + Γ · c̄′2.

Therefore a1 = ωΓ ·c̄
′
2 c̃∗ and b1 = ωΓ ·c̄

′
2d̃∗.

Now, the difference of cross-correlation terms of (69) can be simplified to

C
(
f |xxγx′=c0c′1 , f̃

∗|xxγx′=c+10c′2

)
(τ)

− C
(
f |xxγx′=c1c′1 , f̃

∗|xxγx′=c+11c′2

)
(τ)

=C(b, a1)(τ)− C(a,b1)(τ)

=ωΓ ·c
′
1ω̄Γ ·c̄

′
2

(
C(d, c̃∗)(τ)− C(c, d̃∗)(τ)

)
.

(69)
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For any two complex sequences c and d, recall the identity

C(c, d̃∗)(τ) = C(d̃, c∗)(−τ) = C(d, c̃∗)(τ).

Therefore, substituting (69) in (69) and using the above identity we have K1 + K2 = 0, thus

completing the proof.

APPENDIX C

PROOF OF Remark 1

Proof: In Fig. 1, if we fix the set XS = {xi1 , xi2 , · · · , xip} in {xm−p, xm−p+1, · · · , xm−1},

then a GBF corresponding to Fig. 1 produces an optimal ZCCS. Our task is to find out the

number of such distinct GBFs. After fixing XS = {xm−p, xm−p+1, · · · , xm−1}, the set XJ =

{xj0 , xj1 , · · · , xjk−1
} can be chosen in

(
m−p
k

)
ways. For each choice of XJ , the set XP can

be chosen in only one way. The quadratic form Q given in (17), can be expressed as Q =

Q1 +Q2 +Q3 +Q4 where

Q1 =
q

2

m−k−p−2∑
i=0

xlixli+1
,

Q2 =

m−k−p−1∑
i=0

k−1∑
α=0

a′i,αxlixjα ,

Q3 =
k−1∑
α=0

p∑
β=1

e′α,βxjαxiβ ,

Q4 =
∑

0≤α1<α2<k

b′α1,α2
xjα1xjα2 .

(70)

For each choice of
(
m−p
k

)
, we get (m−k−p)!

2
distinct Q1, (q − 1)k(m−k−p) distinct Q2, qkp distinct

Q3, and q
k(k−1)

2 distinct Q4. Finally, we get at least

(m− p)!
2(k!)

(q − 1)k(m−k−p)qkp+
k(k−1)

2 (71)

distinct quadratic forms. Corresponding to each quadratic form Q, we get qm+1 distinct GBFs.

Therefore there exist at least (m−p)!
2(k!)

(q − 1)k(m−k−p)qkp+
k(k−1)

2
+m+1 distinct GBFs corresponding

to which we get the same number of distinct optimal ZCCSs. In the above enumeration, we

have taken a′i,α ∈ Zq \ { q2}, otherwise sometimes we can get some ZCCSs more than once.

DRAFT June 3, 2019



35

REFERENCES

[1] H.-H. Chen, The Next Generation CDMA Technologies. Wiley, 2007.

[2] M. Golay, “Complementary series,” IRE Trans. Inf. Theory, vol. 7, no. 2, pp. 82–87, Apr. 1961.

[3] C.-C. Tseng and C. Liu, “Complementary sets of sequences,” IEEE Trans. Inf. Theory, vol. 18, no. 5, pp. 644–652, Sep.

1972.

[4] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller

codes,” IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2397–2417, Nov. 1999.

[5] Y. Li, “A construction of general QAM Golay complementary sequences,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp.

5765–5771, Nov. 2010.

[6] Z. Liu, Y. Li, and Y. L. Guan, “New constructions of general QAM Golay complementary sequences,” IEEE Trans. Inf.

Theory, vol. 59, no. 11, pp. 7684–7692, Nov. 2013.

[7] K. G. Paterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE Trans. Inf. Theory,

vol. 46, no. 1, pp. 104–120, Jan. 2000.

[8] K. U. Schmidt, “Complementary sets, generalized Reed-Muller codes, and power control for OFDM,” IEEE Trans. Inf.

Theory, vol. 53, no. 2, pp. 808–814, Feb. 2007.

[9] A. Rathinakumar and A. K. Chaturvedi, “Complete mutually orthogonal Golay complementary sets from Reed-Muller

codes,” IEEE Trans. Inf. Theory, vol. 54, no. 3, pp. 1339–1346, Mar. 2008.

[10] Z. Liu, Y. L. Guan, and U. Parampalli, “New complete complementary codes for peak-to-mean power control in multi-

carrier CDMA,” IEEE Trans. Commun., vol. 62, no. 3, pp. 1105–1113, Mar. 2014.

[11] Z. Liu, Y. L. Guan, and H.-H. Chen, “Fractional-delay-resilient receiver design for interference-free MC-CDMA

communications based on complete complementary codes,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1226–

1236, Mar. 2015.
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