
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/3634

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.



Parallel Markov Chain Monte Carlo

by

Jonathan Michael Robert Byrd

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Computer Science

JUNE 2010



Contents

List of Tables vi

List of Figures vii

Acknowledgments ix

Declarations x

Abstract xii

Abbreviations xiii

Nomenclature xiv

Chapter 1 Introduction and MCMC Theory 1
1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Parallel Processing . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Background and Motivational Research 12
2.1 Introduction to Parallel Processing . . . . . . . . . . . . . . . . . . . 13

2.1.1 Parallel Processing Architectures . . . . . . . . . . . . . . . . 14
2.1.2 Inter-process communication . . . . . . . . . . . . . . . . . . 16
2.1.3 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The Markov Chain Monte Carlo Method . . . . . . . . . . . . . . . . 20
2.2.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



2.2.2 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . 23
2.2.4 Bayesian Inference and the Metropolis-Hastings Method . . . 26
2.2.5 Delayed Rejection MCMC . . . . . . . . . . . . . . . . . . . . 29

2.3 Applications of MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Existing Parallel MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Multiple Chains . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Intra-move Parallelisation . . . . . . . . . . . . . . . . . . . . 35
2.4.3 Metropolis Coupled Markov Chain Monte Carlo . . . . . . . 35
2.4.4 Task Decomposition . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Motivational Research . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.1 Feature Boundary Recognition . . . . . . . . . . . . . . . . . 41
2.5.2 Circle Intensity Recognition . . . . . . . . . . . . . . . . . . . 52

2.6 Optimising the Implementation . . . . . . . . . . . . . . . . . . . . . 53
2.7 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 3 Parallelisation by Speculative Moves 57
3.1 The MCMC Program Cycle . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Speculative Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Comparison with Speculative Branching . . . . . . . . . . . . 61
3.2.2 Implementing Speculative Moves . . . . . . . . . . . . . . . . 63

3.3 Theoretical Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.6 Speculative Moves vs Intra-move Parallelisation . . . . . . . . . . . . 77
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 4 Parallelisation by Speculative Chains 81
4.1 Speculative Move Considerations . . . . . . . . . . . . . . . . . . . . 82
4.2 Improving Speculative Moves . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Speculative Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Theoretical Gains . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 5 Parallelisation by Partitioning 106
5.1 Parallelisation by Periodic Partitioning . . . . . . . . . . . . . . . . . 108

5.1.1 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

iii



5.2 Image Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3 Intelligent Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4 Aggressive Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4.1 Blind Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.2 Approximating the Initial Model . . . . . . . . . . . . . . . . 139

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Chapter 6 Conclusions and Future Work 141
6.1 Supplementing Existing Parallelisation . . . . . . . . . . . . . . . . . 141
6.2 Guidance for Implementers . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.4 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 148
6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Appendix A The pMCMC Framework 152
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.2 Component Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2.1 Defining the Simulation . . . . . . . . . . . . . . . . . . . . . 156
A.2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.2.3 The Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.3 Internal Design Considerations . . . . . . . . . . . . . . . . . . . . . 159
A.4 Using the Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.4.1 Jobs and Logs . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.4.2 Detailed Monitoring . . . . . . . . . . . . . . . . . . . . . . . 164
A.4.3 Frontend API . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.4.4 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Appendix B Example Implementation using pMCMC 169
B.1 AppSpecificSettings.def . . . . . . . . . . . . . . . . . . . . . . . 170
B.2 Cell.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.3 CellConfiguration.h . . . . . . . . . . . . . . . . . . . . . . . . . . 176
B.4 DrawableCell.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
B.5 MoveSetImpl.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

iv



Appendix C Example runtime use of pMCMC programs 180
C.1 cells.job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
C.2 Sample Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

v



List of Tables

3.1 Speculative moves breakeven point when pr = 0.75 . . . . . . . . . . 73
3.2 Speculative moves breakeven point when pr = 0.60 . . . . . . . . . . 73
3.3 Percent of speculative move potential attained . . . . . . . . . . . . 74

4.1 Realised potential of speculative chains on different architectures . . 100
4.2 Variation in relative move processing times across different architectures100

5.1 The relationship between image size and runtime . . . . . . . . . . . 125
5.2 Intelligent partitioning results . . . . . . . . . . . . . . . . . . . . . . 132
5.3 Blind partitioning results . . . . . . . . . . . . . . . . . . . . . . . . 138

vi



List of Figures

2.1 Existing parallel MCMC methods . . . . . . . . . . . . . . . . . . . . 33
2.2 Edge-detection circle recognition program . . . . . . . . . . . . . . . 42
2.3 The normal distribution, as used by φo . . . . . . . . . . . . . . . . . 46
2.4 The Poisson distribution, as used by ϕ . . . . . . . . . . . . . . . . . 46
2.5 Pixel-intensity circle recognition program . . . . . . . . . . . . . . . 52

3.1 The Markov Chain Monte Carlo program cycle . . . . . . . . . . . . 59
3.2 Speculative move program cycle . . . . . . . . . . . . . . . . . . . . . 60
3.3 Speculative move implementation . . . . . . . . . . . . . . . . . . . . 63
3.4 A caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Graph of theoretical results of speculative moves . . . . . . . . . . . 69
3.6 Speculative move runtimes on different architectures . . . . . . . . . 71
3.7 Relationship between speculative move runtime and iteration time . 72
3.8 Speculative move runtimes for different pr on Pentium-D . . . . . . . 75
3.9 Speculative move runtimes for different pr on Q6600 . . . . . . . . . 76
3.10 Speculative moves vs intra-move parallelisation . . . . . . . . . . . . 78

4.1 Impact of long running moves on speculative move runtime, τs = 5τf 84
4.2 Impact of long running moves on speculative move runtime, τs = 100τf 85
4.3 Speculative move implementations in the presence of Ms moves . . . 86
4.4 Speculative chain program cycle . . . . . . . . . . . . . . . . . . . . 90
4.5 Speculative chain implementation in the presence of Ms moves . . . 91
4.6 Impact of long running moves on speculative chain runtime, τs = 5τf 95
4.7 Impact of long running moves on speculative chain runtime, τs = 100τf 96
4.8 Comparison of speculative chains across architectures . . . . . . . . 99
4.9 Altering Ms move rejection probability . . . . . . . . . . . . . . . . . 102
4.10 Altering Ms move rejection probability . . . . . . . . . . . . . . . . . 103

5.1 The periodic parallelisation partitioning grid . . . . . . . . . . . . . 111
5.2 Predicted results for periodic parallelisation. τg = τl . . . . . . . . . 114

vii



5.3 Predicted results for periodic parallelisation supplemented with global
phase speculative moves. τg = τl, pgr = 0.75 . . . . . . . . . . . . . . 115

5.4 Predicted results for periodic parallelisation over a cluster, supple-
mented with global and local phase speculative moves. Threads are
used for speculative moves, whilst nodes are used for periodic paral-
lelisation. τg = τl, pgr = plr = 0.75. . . . . . . . . . . . . . . . . . . . 117

5.5 Periodic parallelisation: optimum cycling period . . . . . . . . . . . 119
5.6 Periodic parallelisation: runtime reduction on different architectures 120
5.7 Consequences of partitioning images . . . . . . . . . . . . . . . . . . 123
5.8 Intelligent partitioning in action . . . . . . . . . . . . . . . . . . . . . 131
5.9 Blind partitioning in action . . . . . . . . . . . . . . . . . . . . . . . 136

A.1 The pMCMC log file analyser . . . . . . . . . . . . . . . . . . . . . . 166

C.1 Example of pMCMC image processing . . . . . . . . . . . . . . . . . 181

viii



Acknowledgments

This work was funded by and conducted within the Department of Computer Science

at the University of Warwick.

I would like to thank all the staff at the Computer Science Department for

making this work possible. In particular I would like to express my gratitude to

my supervisor Professor Stephen Jarvis for his direction and guidance. Thanks are

also due to Professor Abhir Bhalerao for his assistance with the theoretical aspects

of the motivational research, and to Dr Elke Thönnes for providing a statisticians

point of view of this work . Finally, I would like thank my parents Mike and Gill

Byrd for their unwavering support and encouragement.

This thesis was typeset with LATEX 2ε∗ by the author.

∗LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark

of the American Mathematical Society.

ix



Declarations

This thesis is presented in accordance with the University of Warwick regulations

for the degree of Doctor of Philosophy. It has been written by myself and has not

been submitted in any previous applications for any degrees. The work described in

the thesis has been undertaken by myself except where otherwise stated. Portions

of this work have been published in the following papers:

• J. M. R. Byrd, S. A. Jarvis and A. H. Bhalerao. Reducing the Run-time of

MCMC Programs by Multithreading on SMP Architectures. 22nd IEEE In-

ternational Parallel & Distributed Processing Symposium (IPDPS’08). Miami,

Florida, USA, 18 April 2008.

• J. M. R. Byrd, A. Bhalerao, S. A. Jarvis. Speculative Moves: Multithread-

ing Markov Chain Monte Carlo Programs. High-Performance Medical Image

Computing and Computer Aided Intervention (HP-MICCAI 08). New York,

USA, 10 September 2008.

• J. M. R. Byrd, S. A. Jarvis and A. H. Bhalerao. On the Parallelisation of

MCMC-based Image Processing. 24th IEEE International Parallel & Dis-

tributed Processing Symposium (IPDPS’10), Atlanta, Georgia, USA, 19 April

2010.

• J. M. R. Byrd, S. A. Jarvis and A. H. Bhalerao. On the Parallelisation of

MCMC by Speculative Chain Execution. 24th IEEE International Parallel

x



& Distributed Processing Symposium (IPDPS’10), Atlanta, Georgia, USA, 23

April 2010.

xi



Abstract

The increasing availability of multi-core and multi-processor architectures provides

new opportunities for improving the performance of many computer simulations.

Markov Chain Monte Carlo (MCMC) simulations are widely used for approximate

counting problems, Bayesian inference and as a means for estimating very high-

dimensional integrals. As such MCMC has found a wide variety of applications in

fields including computational biology and physics, financial econometrics, machine

learning and image processing.

This thesis presents a number of new method for reducing the runtime of

Markov Chain Monte Carlo simulations by using SMP machines and/or clusters.

Two of the methods speculatively perform iterations in parallel, reducing the run-

time of MCMC programs whilst producing statistically identical results to conven-

tional sequential implementations. The other methods apply only to problem do-

mains that can be presented as an image, and involve using various means of dividing

the image into subimages that can be proceed with some degree of independence.

Where possible the thesis includes a theoretical analysis of the reduction in

runtime that may be achieved using our technique under perfect conditions, and

in all cases the methods are tested and compared on selection of multi-core and

multi-processor architectures. A framework is provided to allow easy construction

of MCMC application that implement these parallelisation methods.

Keywords: Parallel, MCMC, Markov Chain Monte Carlo, Speculative, Image

Processing

xii



Abbreviations

MC Markov Chain

MCMC Markov Chain Monte Carlo

MC3 Metropolis-Coupled Markov Chain Monte Carlo

RJ-MCMC Reversible Jump Markov Chain Monte Carlo

DR-MCMC Delayed-Rejection Markov Chain Monte Carlo

MH Metropolis-Hastings

MPI Message Passing Interface

SMP Symmetric MultiProcessing

xiii



Nomenclature

γ In the circle-finding algorithms of section 2.5, this is the exponent applied to

the posterior probability to control the ‘heat’ of the MCMC simulation (the

degree to which the transition kernel from section 2.2.4 accepts ‘bad’ moves).

First used on page 31.

λ The expected number of circles to be found in an image when using one of

the circle-finding algorithms from section 2.5. First used on page 28.

ω In the circle-finding algorithms of section 2.5, this is the exponent applied

to the likelihood term to allow the adjustment to the relative importance

between the likelihood and prior values. First used on page 31.

φo From the circle finding algorithms of section 2.5, this is the contribution to

the prior term obtained from evaluating the overlapping circles. It is a term

used to penalise circles in close proximity, to avoid the algorithm stacking

circles on top of one another. First used on page 29.

φp From the circle finding algorithms of section 2.5, this is the contribution to

the prior term obtained from evaluating the circle positions. It is a measure

of how well the location of the circles in the model match the expected

distribution of circles in the image. First used on page 29.

φr From the circle finding algorithms of section 2.5, this is the contribution to

the prior term obtained from evaluating the circle radii. It is a measure of

xiv



how well the radii of the circles in the model match the expected mean circle

radius (rµ). First used on page 29.

τ The mean processing time per MCMC move (considering all possible types of

move available to the simulation). This includes the time to create the move

and determine exactly what it will change, as well as to calculate the prior

and likelihood terms and apply the Metropolis-Hastings test to determine if

the move is to be accepted or rejected. First used on page 55.

τf The mean processing time per Mf move. First used on page 56.

τg The mean time required to propose, consider, and apply the Metropolis-

Hastings test to a move from the Mg set. First used on page 78.

τl The mean time required to propose, consider, and apply the Metropolis-

Hastings test to a move from the Ml set. First used on page 78.

τs The mean processing time per Ms move. First used on page 56.

Θsobel The edge orientation map obtained from Sobel filtering an image, eq. (2.11).

First used on page 28.

C A configuration (collection) of circles. Creating a configuration accurately

describing the circles in an image is the objective of the MCMC applications

in section 2.5. First used on page 26.

c A circle from a configuration (collection) of circles. These circles are the

‘features’ being identified in the MCMC applications presented in section 2.5.

The centre of circle c is located at coordinates (cx, cy) and has radius cr. First

used on page 26.

G? A Sobel filtered image, the subscript indicating which Sobel filter was applied:

Gh is the consequence of applying the horizontal Sobel filter, eq. (2.8), Gv

the vertical filter (eq. (2.9)). First used on page 26.

xv



I(x, y) The intensity (average colour value) of the pixel at coordinates (x, y) in a

bitmap image. First used on page 26.

K The number of sample points considered for each circle when determining

the likelihood of a configuration when using the first circle-finding algorithm

in section 2.5. First used on page 30.

M The set of all pixels in an image. First used on page 90.

Msobel The edge magnitude map obtained from Sobel filtering an image, eq. (2.10).

First used on page 26.

Mf A set of MCMC moves that can be processed rapidly, as oppose to moves

from set Ms. First used on page 56.

Mg A set of MCMC moves the acceptance of which impacts the likelihood and/or

prior contribution of of the features in the model, as opposed to moves from

the Ml set. First used on page 76.

Ml A set of MCMC moves the acceptance of which has a spatially localised

impact. Unlike Mg moves the impact on the model’s prior and likelihood is

limited to impacting only those features in very close proximity to the feature

being changed. First used on page 76.

Ms A set of MCMC moves that take significantly longer to process compared to

moves from an opposite set Mf . First used on page 56.

N The number of iterations to be performed by an MCMC program. First used

on page 44.

n The number of concurrent processes, precise nature of these processes de-

pends on the context in which n is used. First used on page 43.

pgr The probability that an arbitrary Mg move will be rejected by the Metropolis-

Hastings test. First used on page 79.

xvi



plr The probability that an arbitrary Ml move will be rejected by the Metropolis-

Hastings test. First used on page 79.

pr The probability of rejecting a proposed move in a MCMC simulation. First

used on page 43.

qf The probability that a arbitrary move proposal will be from the set Mf , thus

be a fast-processing move. First used on page 56.

qg The probability that an arbitrary MCMC move proposal will be of the Mg

set as oppose to being a member of Ml. First used on page 77.

rµ The expected radius of the circles to be found in an image when using one

of the circle-finding algorithms from section 2.5. First used on page 28.

rσ The expected standard deviation from the mean circle radii (rµ), when using

one of the circle-finding algorithms from section 2.5. First used on page 28.

xvii



Chapter 1

Introduction and MCMC

Theory

Markov Chain Monte Carlo (MCMC) is a computational intensive technique for

sampling from a (typically very large) probability distribution. Algorithms of this

class are most commonly applied to calculating estimates for multi-dimensional inte-

grals, and have numerous applications in Bayesian statistics, computational physics

and computational biology. Notable and varied examples include constructing phy-

logenetic trees and other bioinformatics applications [39, 44, 67], spectral modelling

of X-ray data from the Chandra X-ray satellite [7], and for calculating financial

econometrics [41].

MCMC using Bayesian inference is particularly suited to problems where

there is prior knowledge of certain aspects of the solution. For instance, when

counting tree crowns in satellite images where the trees will mostly be arranged in

a regular pattern [51]. By incorporating expected properties of the solution, the

stability of the simulation is improved and the chances of consistent false-positives

is reduced. Whilst it can be used to obtain a single model for a dataset in a manner

similar to Genetic Algorithms, its true power lies in its potential for evaluating

alternative interpretations of the same data. The primary weakness of the method

1



is the time it can take to perform such an analysis. By utilising parallel processing,

both on a single machine (multiprocessor, multicore) and by spreading computation

across a cluster we can reduce the real-time required to produce results and/or

improve the accuracy of the MCMC simulation.

As will be explained in section 2.2.2, Monte Carlo applications are generally

considered embarrassingly parallel [53], using two processors will allows samples

to be gathered twice as quickly. This also applies for Markov Chain Monte Carlo

(discussed in more detail in section 2.2.3, provided the chain(s) have had sufficient

time to converge. Unfortunately for high-dimensional problems for which MCMC is

best suited, the burn in time required for getting good samples can be considerable.

When dealing with very large state-spaces and/or complicated compound states

(such as searching for features in an image) it can take a long time for a MCMC

simulation to converge on a satisfactory model, both in terms of the number of

iterations required and the complexity of the calculations occurring in each iteration.

As an example, the mapping of vascular trees in retinal images as detailed in [21, 58]

took upwards of 4 hours to converge when run on a 2.8GHz Pentium 4, and takes

much longer to explore alternative modes (additional potential interpretations for

the input data). The practicality of such solutions (in real-time clinical diagnostics

for example) is therefore limited.

If there are multiple credible interpretations for the input data, and these

interpretations are not expected to be radically different, duplicating the simula-

tion will not substantially reduce runtime as the time required for convergence will

dominate over the time collecting samples. Statistical techniques already exist for

improving the rate of convergence, indeed most current optimisation and/or paral-

lelisation strategies take this approach. Whilst some such methods are explained in

section 2.4, they are not the focus of this document. The motivation for the work

presented in this thesis is to find methods of reducing the runtimes of MCMC appli-

cations by focusing on the implementation of on single MCMC chain rather than by

2



modifying the statistical algorithm to improve the rate of convergence. Attempting

to achieve parallelisation in this manner is non-trivial as the underlying structure of

this class of application - a Markov Chain - is inherently opposed to its calculations

proceeding concurrently; by definition the state of a Markov Chain depends only

on its preceding state, requiring state changes relating to a single chain to occur in

a strictly sequential order∗. Whilst some of these these new methods increase the

amount of work to be performed in absolute terms, the fact that much will be per-

formed concurrently results in a net reduction in runtime. Parallelisation to obtain

x times as many samples is trivial, parallelisation within each chain requires more

careful examination. Fortunately, since the intent is not to modify the theoretical

method by which MCMC works, the methods presented will generally complement

and not compete with statistical means of attaining runtime reductions.

1.1 Thesis Contributions

The contributions of this thesis are as follows:

• We propose two new methods (termed ‘speculative moves’ and ‘speculative

chains’) of implementing Markov Chain Monte Carlo algorithms to take ad-

vantage of multi-core and multi-processor machines. Being a purely imple-

mentational change the results are unaffected, whilst the runtime of typical

MCMC programs can be reduced by ∼ 40% using just two processes.

• We propose a new modification of Markov Chain Monte Carlo termed ‘periodic

partitioning’ that permits conditional parallel processing on a large scale with

a limited (and statistically acceptable) impact on the results.

• We propose a number of methods that can be applied to MCMC image process-
∗The aforementioned methods of (MC)3 and the ‘embarrassingly parallel’ nature of MCMC

both operate by running two (or more) chains in parallel, whereas this thesis seeks to perform

parallel processing on a single logical chain

3



ing problems that reduce the runtime by considering (temporarily or perma-

nently) portions of the image as independent images in their own right. Whilst

lacking the statical certainty accompanying the other parallelisation methods

presented, the potential runtime improvements are substantially higher whilst

giving results that will be reasonable for many applications.

• We fully implement these methods on a number of different machine archi-

tectures and demonstrate the suitability of these architectures for these new

approaches.

• We provide methods for predicting the runtime of MCMC programs using

our speculative moves, speculative chains and periodic partitioning methods,

and provide practical examples demonstrating typical runtime improvements

that can be expected from the others, therefore providing: (i) increased cer-

tainty in real-world MCMC applications, (ii) a means of comparing alternative

supporting architectures in terms of value for money and/or performance.

• Finally, we provide a programming framework that automates much of the con-

struction of MCMC programs. When using this framework the parallelisation

methods of speculative moves, speculative chains and periodic parallelisation

will be automatically made available with no extra work necessary from the

the implementer. The usage of this framework is described and demonstrated

in the appendices.

The parallelisation methods ‘speculative moves’ and ‘speculative chains’ may

be used alongside most existing parallelisation and optimisation techniques whilst

leaving the MCMC algorithm untouched, and so may safely be used without fear

of altering the results. These methods are designed to operate on the increasingly

available multiprocessor and multicore architectures. As the technology improves

(e.g. by increasing the number of processing cores that are placed onto a single die)

the speculative moves and speculative chains methods will yield greater runtime

4



reductions over a wider range of applications. Periodic parallelisation and other im-

age splitting/partitioning techniques are suitable for both multicore/multiprocessor

systems and for across a cluster of computers.

1.2 Thesis Outline

This introductory chapter describes the layout of this thesis, its primary contribu-

tions, and introduces the terminology that will be used throughout the document.

Chapter 2 presents the background research relevant to the contributions of this

thesis. This starts with an overview of parallel processing, the ideas and methods

underpinning Markov Chain Monte Carlo, followed by the MCMC method itself and

a discussion of how and where it may be applied. A summary of the existing meth-

ods of improving MCMC using parallel processing is presented with examples, along

with an explanation of the conventional means of parallelising the MCMC algorithm

and how these methods differ from the novel methods presented in this thesis. The

chapter goes on to establish a specific context for the work presented in the rest of

this thesis by describing in detail two MCMC applications for the segmentation of

circular formations in a bitmap image, and in doing so further explain the details

of the most general purpose form of the MCMC algorithm (the Metropolis-Hastings

transition kernel). Some simple non-parallel optimisations are also covered here for

the benefit of readers implementing their own MCMC application. The example

applications shown here also serve as the testbed for the parallelisation methods

presented later.

Having provided background and context to MCMC applications in chap-

ter 2, chapter 3 presents the first contribution of this thesis, the parallelisation

method ‘speculative moves’. Once the rational for this method and the revised

MCMC implementation have been explained, a formula for calculating the pre-

dicted runtime whilst using speculative moves is constructed. The speculative moves

method is then tested on the practical example programs presented in chapter 2 us-

5



ing a number of different hardware platforms, and these results are compared with

those predicted from the mathematical formula.

The logical development of speculative moves, termed ‘speculative chains’, is

dealt with in chapter 4. Since a mathematical formula describing the benefits of this

method would quickly become unmanageably complex when attempting to describe

anything but the simplest situations, a simulator is constructed and used to predict

the runtimes that can be obtained using speculative chains. As with speculative

moves, speculative chains is tested on the practical examples from chapter 2 using

a number of hardware platforms.

Periodic parallelisation and a variety of other image-splitting methods are

presented in chapter 5. Unlike speculative moves and chains, the methods presented

in chapter 5 modify the basic MCMC algorithm in ways that will not be appropriate

for all applications. However, with suitable applications, careful implementation and

thorough testing these parallelisation methods can produce a substantially larger

reduction in runtime that either speculative moves or chains would be capable of.

Chapter 6 concludes the research aspect of this thesis, the developmental

work being described in the appendices. The software developed for this thesis

consists of a framework with which to construct MCMC applications quickly and

efficiently, without the implementer needing to write repetitive boilerplate code.

Applications constructed with this framework (termed pMCMC) can implement the

three major and new parallelisation methods presented by this thesis with minimal

work from the application implementers. An overview of the pMCMC framework

and its benefits to any MCMC implementers occupies appendix A. To demonstrate

the ease by which fully-featured MCMC applications may be developed using this

new framework constructed for this thesis, appendix B contains an example im-

plementation using pMCMC on one of the circle-finding methods from section 2.5.

Finally the usability of the applications built with pMCMC is shown in appendix C,

where an example of how end-users interact with a pMCMC program at runtime is

6



provided.

1.3 Terminology

The remainder of this introductory chapter contains an explanation of the termi-

nology that will be used throughout this report. The terminology considered is

categorised as concerning parallel processing, the hardware that is available and

that relating to the image processing aspects of this work.

1.3.1 Parallel Processing

Thread A thread of execution is a sequence of instructions in a computer program

that will be carried out sequentially∗, but that may be performed concurrently

with other threads.

Multithreading The use of multiple threads in a computer program to perform

multiple operations simultaneously. Depending on the hardware and decisions

made by the operating system the multiple threads may genuinely be perform-

ing concurrent operations, or the appearance of simultaneous processing may

be created by interleaving the execution of the threads.

Mutex Safe communication between threads requires ensuring certain instructions

are carried out in a precise order, for instance one thread should not attempt

to read from a shared buffer until another thread has written valid data to said

buffer. A mutex is the primitive construct used to ensure this by declaring

certain blocks of code to be mutually exclusive. The first instruction in such

a code block is to obtain a ‘lock’ on a mutex, once the mutually exclusive code

has been completed the mutex lock is released. At most one thread may possess

a specific mutex-lock, any other attempts to obtain a locked mutex result in

a failure code, or require the thread to wait until the mutex-lock becomes
∗with the exception of any methods applied at the hardware level i.e. pipelining

7



available. The unnecessary use of mutexes is to be avoided as the acquisition

and releasing of a mutex lock is a comparatively expensive operation, not to

mention the time spent waiting for a mutex lock to become available.

Interleaving The process by which multiple threads may be executed concurrently

(at least from the point of view of the end-user) on a single-processor system.

Only one thread is actually being executed at any one time, the processor

rotates through all the threads that are present. Since each thread receives

processor time for only a fraction of a second at a time this creates the illusion

of simultaneous execution over human timescales. Unlike true parallel pro-

cessing, thread interleaving does not reduce the total time required to perform

the work placed on the threads, in fact the total required will be longer than

if each thread was run to competition sequentially (due to the overhead im-

posed by switching active threads). This interleaving of the instructions from

a number of threads must be used whenever there are insufficient processors

to run all the requested threads.

Overhead In this document, overhead will refer to the time added to the program’s

runtime in order to implement some parallel processing methodology. This in-

cludes the time to create/destroy any additional threads that may be needed

and (more importantly) the time used in communicating between threads, pri-

marily spent on synchronisation using mutexes but in the case where threads

are located on physical distinct components (i.e. multiprocessor architectures

or on different nodes in a cluster) the time to physically send a message be-

tween them may be significant.

1.3.2 Hardware

Before embarking on the detailed description of the MCMC method and the par-

allelisation mechanism that have been developed, let us examine the available re-

sources. Computers have long been capable of multitasking, appearing to perform

8



multiple actions at the same time by interleaving the instructions of two or more

processes. Over the years a number of methods have been devised to truly per-

form more than one action at a time ranging from the obvious (use more than

one computer) to the subtle (internally duplicate key processing components). In

this document we will consider only the following, widely available and economical

parallel processing architectures:

Multiprocessor A computer architecture where multiple CPUs access the same

shared main memory. Each processor is located on a separate die (or ‘chip’).

Multicore A more recent innovation, a multicore architecture is one where multiple

processing units (‘cores’) are located on the same die. The cores may share a

level of cache, but otherwise are equivalent to CPUs.

SMP Symmetric MultiProcessing is a computer architecture where two or more

identical processors or cores are connected to a single shared memory. In this

document it is used as a blanket term encompassing both multiprocessor and

multicore hardware.

Cluster Multiple computers (termed ‘nodes’) connected together by a local area

network. For the purposes of predicting and testing performance of paralleli-

sation methods, a homogeneous cluster is assumed.

Multicore machines will offer the fastest level of inter-process exchange of infor-

mation as the processing cores are on the same physical die, along with a shared

memory cache. Multiprocessor machine processors will take longer to exchange in-

formation as there is greater physical separation between the processors and they

must exchange information through slower forms of shared memory (on-board rather

than on-die cache, or possibly directly through main memory). Distance between

nodes is greatest in a cluster thus communicating between such nodes is the slowest,

compounded by the lack of naturally shared memory. The speed of communica-

9



tion within a cluster depends on the quality of the communication channel used to

connect the nodes.

1.3.3 Image Processing

While Image Processing is a large field, in this document we concern ourselves

only with those problems that can be solved by MCMC - primarily segmentation

problems.

Partitioning In this document ‘partitioning’ will be used to refer to the practise

of splitting a large image into smaller components upon which additional pro-

cessing will take place with some degree of independence.

Modes When analysing complex images it is frequently the case there are multiple

possible interpretations that maybe reached from a single set of input data.

A cluster of pixels may be interpreted as a single shape, or multiple overlap-

ping shapes, or a meaningless blob that should be ignored. These different

interpretations are refered to as multiple modes. The Markov Chain Monte

Carlo method is particularly good at identifying such modes, and in favourable

circumstances assigning relative probabilities to the accuracy of each mode.

Segmentation The partitioning of an image into multiple segments based on their

visual characteristics. For example identifying those pixels that comprise any

circular structure in an image, as is done in the case studies/motivational

research used in this document - see 2.5).

Statespace The statespace of a simulation is the set of all states it is possible for

that simulation to be in. It is frequently envisaged as a landscape, each unique

state representing a location on the ‘ground’, with the ground’s altitude rep-

resenting the likelihood or desirability of that state. Iterative methods explore

the statespace in search of the highest peaks in the landscape (representing

10



the target/most desirable states) whilst avoiding valleys (‘bad’ states that are

less favourable that those around them).

Mixing The ability of a statespace exploring algorithm to explore the entirety of the

statespace. A program that displays poor mixing will be unlikely to traverse

valleys in the statespace, thus tend to become stuck at local optima - the

low peaks of the statespace that serve as a distraction from the actual target

state(s), the highest peak(s). Even if it can be shown the whole statespace

will be explored given infinite time, a simulation with poor mixing will spend

excessive time in local optima states rather than exploring and locating the

globally optimal solution(s). Improving the mixing of an MCMC algorithm

has the practical effect of reducing the realtime required for it to converge on

a acceptable solution my allowing the chain to more rapidly escape low peaks

and traverse valleys in the statespace.

11



Chapter 2

Background and Motivational

Research

The purpose of this chapter is to impart an understanding of how the MCMC method

works, the significance of MCMC, and the challenges associated with trying to reduce

the runtime of MCMC applications through the use of parallel processing. This

chapter starts with a general introduction to the parallel processing, then explains

the mathematical methods upon when MCMC is based before describing the MCMC

method itself. The existing variants of MCMC that involve parallel processing are

then examined. Section 2.5 establishes a specific context for discussions throughout

the rest of the thesis by presenting two MCMC algorithms capable of identifying and

describing circular features in bitmap images. The two algorithms are distinguished

by the means of which a circle is identified, one uses an edge detection filter and

seeks to locate the thin band of pixels with the magnitude and orientation that

denote a circular edge, whilst the other seeks out grouped pixels of high intensity.

Both methods come with advantages and disadvantages that makes them suitable

for processing different types of image. They also have different memory access

profiles, though this did not appear to be significant effect.

12



2.1 Introduction to Parallel Processing

Parallel processing is a means of reducing the real-time needed to perform some job

by splitting that job into smaller tasks and performing at least some of those tasks

simultaneously. The total amount of work done will not have decreased, but instead

will have been shared over multiple processors. Parallel processing has two prereq-

uisites, the algorithm must contain tasks that can be safely performed concurrently,

and the appropriate computer hardware must be available to allow those tasks to be

done concurrently without the delays imposed by performing the parallel processing

overshadowing the real-time reduction achieved by the tasks running concurrently.

Some applications are very easy to parallelise (split into tasks that can safely

be performed in parallel). Consider searching through a large, rarely modified,

database for some unsorted, unindexed data. It is a simple matter to speed up

the search by halving the database and assigning a different processor to search

each half. Indeed, the database can be split into as many sections as there are

available processors with no complications. Each database section can be consid-

ered independantly, and there is no need for the processors working on separate

database sections to communicate. Applications that can be trivially parallelised to

an arbitrary extent in this manner are termed embarrassingly parallel.

Parallelisation is harder when there are dependencies between the tasks, as

then some tasks must then respect a strict ordering and communicate information

between themselves. The purpose of this thesis is to find ways of parallelising a

Markov Chain (see section 2.2.1 below), at first glance an impossible task as each

state in chain is dependant on its preceding state, leaving no room for parallel

processing. Latter chapters will demonstrate that this initial assessment is not

entirely correct, that there are some tasks that can be safely performed concurrently.

13



2.1.1 Parallel Processing Architectures

Assuming tasks that may be performed concurrently in an algorithm have been

identified, how is the concurrent execution of those tasks achieved? The type of

parallel processing architecture that is appropriate is determined by the frequency

with which the parallel processors will need to communicate and share their data.

Any form of inter-process communication will take time to perform, thus the im-

plementation of a parallelisation scheme will spend some time making the parallel

processing system work rather than working on the problem directly, this is termed

overhead. A parallelisation method will only provide net benefits if the reduction in

program runtime achieved by the concurrent execution is greater than the overhead

incurred in performing that parallel processing.

Since embarrassingly parallel problems can be divided into a great many

tasks that require little to no communication between them to execute, it is feasible

to distributed these tasks to remote computers and collect in the end results with

minimal concern for either the communication system used or specifications of the

computer(s) doing the work. An early pioneer of this was the SETI@home project

[66, 5], which used idle time on the computers of volunteers from around the world

to conduct a search through radio telescope data (downloaded via the internet)

for radio signals from extraterrestrial civilizations. More recently efforts have been

made to develop a more structured means of farming out loosely coupled parallel

processing tasks to available computers around the world, this is called GRID com-

puting. A number of middleware systems have been developed to facilitate GRID

computer, including the Globus Toolkit [25] and Berkeley Open Infrastructure for

Network Computing (BOINC) [4].

Parallel algorithms that are not embarrassingly parallel will require much

tighter coupling (i.e. more communication) between the tasks being performed,

To obtain a processing environment where communication between tasks/processes

is more reliable and prompt, a group of computers can be linked together by a

14



network connection and used as a single computing resource called a cluster. Each

constituent computer in a cluster is termed a node. Software tools such as Condor

[56] and MPI (see section 2.1.2 below) exist to support and automate many of the

details of maintaining and using a cluster. Note that entire clusters can also be

made available via GRID middleware, GRID is not restricted to to the farming out

of embarrassingly parallel applications.

For some applications even cluster computing imposes unacceptable com-

munication overheads. To eliminate the cost incurred in communicating between

cluster nodes, a computer can be constructed with multiple CPUs (central pro-

cessing units) using the same main memory and controlled by a single operating

system. Although the CPUs share main memory, each processor will maintain its

own internal cache. One step on from multiprocessor computers is to build a single

processor that contains multiple processing cores. With both cores on the same

die (integrated circuit/chip) they may share the same on-board memory cache and

communicate even faster than when the processors are on different chips. Both mul-

ticore and multiprocessor computers are referred to a Symmetric MultiProcessing

(SMP) systems.

Despite the reductions in inter-processor communication overhead in SMP

systems, clusters still have an advantage in that they can easily be extended by

the addition of more nodes (computers). An SMP system will generally have a

fixed number of processors/cores, and whilst off-the-shelf computers with 2 or 4

processors/cores are becoming the standard commercially available PC, SMP sys-

tems with a larger number of processors remain expensive. Clusters in contrast can

scale almost any size at a fraction of the cost (especially if discarded, budget, or

bulk-brought computers are used as the cluster’s nodes).

15



2.1.2 Inter-process communication

Communication between processes can take two forms. In one, all communication

is explicit: process A sends a message to process B, process B at some point waits

until a message from process A is received, etc. This is called ‘message passing’,

and is the natural form of communication between physically distinct computers

communicating over a network. The information communicated could be brief (just

the existence of the message) or carry some payload of data, and both the receiving

and sending of messages can be either synchronous (the process will wait until the

message is sent/received) or asynchronous∗ (the process will not wait, if a message

cannot be send/received immediately the process continues with other work). As one

would expect there are programming aids to automate much of this communication,

the standard being Message Passing Interface (MPI) [24], of which LAM/MPI [8, 55]

is but one implementation

The alternative to message passing is ‘shared memory’. All the processes

share a common memory that they can read and write to. Communication between

processors is implicit, taking the form of reads/writes of memory locations rather

than the explicit packaging and sending of information. In a shared memory scheme

care must be taken to ensure that processes do not destructively interfere with each

other’s work by making unexpected changes to memory in use another process, a

concept further explored in section 2.1.4. Multicore and multiprocessor systems

naturally implement this scheme as they both share access to the computer’s main

memory (though in practice each processor will still retain its own local cache to

speed up memory operations). Shared memory can also be simulated between dis-

tinct computers (i.e. across the nodes of a cluster) by the use of software such as

OpenMP [14, 26].

The practical tests used throughout this thesis were conducted primarily on
∗When asynchronous message passing is used (either by the sender or the receiver), a buffer is

needed to store the transmitted information until the other process is ready to accept it.

16



multicore and multiprocessor architectures, thus used the shared memory model. It

is nonetheless sometimes helpful to refer to the parallel algorithms using message

passing terminology to emphasise and clarify how and why the parallel processes

are interacting.

2.1.3 Threads

When implementing a parallel program in a multiprocessor or multicore system,

each linear sequence of instructions is referred to as a thread [13, 48]. A multi-

threaded program is one where there are several threads of execution proceeding in

parallel. The mapping of threads to physical processors is performed by the under-

lying operating system, which will try to balance the threads on the processors such

that all the processors are equally utilised. Threads run on separate processors (or

processor cores) will be truly executed simultaneously, however if there are more

threads than processors some processors may be assigned more than one thread. In

this case the computer must still give appearance of simultaneous execution even

if the actual time taken to perform tasks on both threads is not reduced. Multiple

threads on a single processor are therefore executed using time-slicing. Processor

time is divided into brief slices, and for each slice control of the processor is rotated

to a new thread. The instructions from each of the threads are interleaved in some

manner, provided this happens sufficiently frequently these threads will appear to

be executing simultaneously (albeit slower than if each thread was the only one on

its processor).

The parallelisation methods proposed throughout this thesis depend upon the

threads being mapped to separate processors, the parallelisation methods only work

if two threads do achieve twice as much work as one thread, in a set period of time.

For this reason, unless explicitly mentioned it will be assumed that the operating

system has assigned every thread to its own unique processor/processing core, the

term ‘thread’ may well be used interchangeably with ‘process’. Experimental results

17



will not be obtain for situations where there are more threads than processors.

2.1.4 Mutual Exclusion

Regardless of whether threads are interleaved or actual parallel processing is taking

place, interactions between threads need to be carefully controlled. Although each

individual thread will be performing a linear sequence of instructions, the exact order

in which instructions from several threads will be performed in is non-deterministic.

This is irrelevant if each threads actions will not impact any of the others, but crit-

ically important if the threads access some shared resource, i.e. multiple threads

attempt to read to/write from a single location in memory as a means of communica-

tion. Unless the order in which instructions on that memory location are performed

are strictly controlled, the end result will be unpredictable (one thread may read

data before, after, or even in the middle of another thread changing that data).

The interactions between threads is controlled by establishing synchronisa-

tion points (where threads wait for each other to reach a certain stage in their

instructions before either proceeds) and zones of mutual exclusion (blocks of code

that at most one thread may be executing at any one time). These are implemented

by an operating system primitive called a mutex [13, 49]. A mutex may be in one

of two states, locked or unlocked. A thread may attempt to obtain a lock on a

unlocked mutex, in which case the mutex is moved into the locked state until that

same thread explicitly releases the mutex lock. If a thread X attempts to obtain

a lock on a mutex that is already locked by a different thread Y, thread X will be

blocked (rendered inactive) until thread Y releases its lock on the mutex. Thread

X is then reactivated any will obtain mutex for itself before continuing.

The use of a mutex can cause code blocks on different threads to be mutually-

exclusive with one another, thus protecting a shared resources (such as a memory

location) against the consequences of unintended interleaving of instructions from

different threads. The price for this is that mutex operations are more expensive (in

18



terms of time) than many standard actions the thread can perform as the system

much check that no other threads are also to trying to access the mutex (mutex op-

erations are ‘atomic’, there is no possibility of a mutex being half-locked, of multiple

threads obtaining the same mutex lock at exactly the same time). In a ‘thread-safe’

program each thread will work using its own ‘local’ area of memory that only it

will read/write to. Any access to memory locations that multiple threads may use

needs to be protected via mutexes. It is safe to have multiple threads simultaneously

reading from the same block of memory, but any changes to that memory location

should be mutually exclusive with any other reads or writes.

A multithreading structure known as a condition variable [49, 48] enables

a thread to be kept blocked (inactive) until some condition is met. The classic

example of this is the ‘bounded buffer problem’. A producer thread wishes to

communicate information to a consumer thread, using some fixed capacity buffer

(memory location). Producer thread should not write further information to the

buffer if it is already full, whilst the consumer thread should not attempt to retrieve

information from a buffer that is empty. The threads need to block (wait) on a

condition (whether the buffer is empty or full) in addition to the buffer read/write

operations being mutually exclusive.

One of the potential dangers from using mutexes is that it is possible to have

a system where all threads are waiting for another thread to release a mutex lock,

thus no thread is able to proceed. Such a state is called a deadlock. Programmers of

multithreaded programs need to be very careful to structure threads interactions to

avoid the possibility of deadlocks. For this reason commands to terminate a thread

prematurely (rather than waiting for the thread to terminate itself i.e. by running

out of instructions to perform) are rarely used, if they are even supported by the

programming language/operating system. Forcibly terminating a thread will leave

any mutexes it had locked permanently stuck in a locked state. The ‘safe’ alternative

is to have the thread periodically check a ‘flag’ variable in memory. If the thread

19



is to terminate itself this flag will be set, in which case the thread can release any

mutex locks it has an self-terminate in an orderly fashion.

2.1.5 Pipelining

On an even smaller scale, the processors/processor cores in modern systems perform

instructions using a technique called pipelining [50, 23]. In a pipeline processor the

basic instructions the CPU can process are internally implemented as series of small

self-contained modules all of which can perform their task in the same, fixed, period

of time. A single CPU operation is then not processed all at once, but rather as

the cumulative effect of a sequence of modules: a pipeline. An operation to perform

is supplied to the module at the input end of the pipeline. At every clock tick

each module passes its result to the next module in the pipeline. Eventually the

end result of the original instruction is obtained at the far end of the pipeline.

Whilst a single operation may in fact take longer to pass through a pipeline that

it would to calculate directly on a non-pipelined processor, a pipeline processor has

the capability to achieve a much higher throughput (more operations performed per

unit time) as a new instruction can potentially be input (and the result from an

earlier instruction extracted) at every clock tick, corresponding to the time taken

by the slowest module in the pipeline.

2.2 The Markov Chain Monte Carlo Method

To understand the MCMC method one must first have knowledge of the two math-

ematical concepts upon which it is based, the idea of a Markov chain and the Monte

Carlo method of problem solving.

2.2.1 Markov Chains

A Markov Chain is a sequence of states describing a random walk through some

statespace, with the property that the next state in the sequence is dependant only

20



on the current state of the sequence, the preceding states being irrelevant. To put it

more formally, it is a discrete random process with the property that the probability

of the next state given its past history is the always the same as the probability of the

next state given only the current state (the next state is conditionally independent

of the past states). If X1, X2, X3 . . ., is a random sequence with the condition that

P (Xn+1 = x|X1 = x1, X2 = x2, X3 = x3, . . . Xn = xn) = P (Xn+1 = x|Xn = xn)

(2.1)

then this sequence is a Markov Chain [35]. The set of all possible values of X is

called the state space of the chain.

Since the determination of the next state of a Markov Chain is random, it

is not possible to predict the exact state of the chain in the future, however under

certain conditions it is possible to determine some long-term statistical properties

about the chain. Specifically, if probabilities governing the transitions between the

various states do not change with time (are time homogeneous) then a single matrix

P can be used to represent the probability of every possible state transition. If a

vector π exists such that its entries sum to 1 and

π = πP (2.2)

then π is termed the chain’s ‘stationary distribution’. Intuitively eq. (2.2) states

that if a Markov Chain is in the stationary distribution at step t then it will remain

in the stationary distribution at step t+ 1 (the application of transition as governed

by P does not change the distribution the chain is in). π is thus a probability

distribution representing the ‘steady state’ behaviour of the chain. Provided that

it is possible to reach any state in the statespace from any other state (the Markov

Chain is irreducible) and that the chain is aperiodic (does not contain any states

that can only reoccur at regular intervals), then the relative frequency of the states

occurring in the Markov Chain will tend towards this distribution irrespective of

its starting state, though it may take a large number of state transitions before

21



sampling from the chain does becomes representative of the stationary distribution

[47]. When there are sufficient states for this to occur the chain is said to have

reach equilibrium, or converged on its stationary/equilibrium distribution. Random

sampling from the states of a converged Markov Chain is equivalent to sampling

from its stationary distribution directly.

2.2.2 Monte Carlo Methods

The Monte Carlo method is a broad class of computational algorithm that generates

random samples and observes that some fraction of those samples obey some prop-

erty or properties [52]. Because of the random element, Monte Carlo algorithms are

typically employed to solve problems that are too complicated to solve analytically.

A good example (and one of the most common applications) of Monte Carlo is that

of Monte Carlo Integration. To integrate a function over some complicate domain

D random samples are taken from a simple domain D′ such that D′ is a superset of

D. Samples are tested for membership of D, and the area of D estimated to be the

area of D′ multiplied by the proportion of sample points that were within D.

Other Monte Carlo application operate in a similar way, using random sam-

ples from some simple distribution then applying some testing/processing to get

around the difficulty in sampling or directly analysing some complicated distribu-

tion. When using any such Monte Carlo method it is important to obtain a large

number of samples, as the more samples that are used the more accurate/detailed

the end result will be. Since samples are taken entirely independently of each other,

Monte Carlo simulation can be termed embarrassingly parallel [53, 17, 59]. It is en-

tirely possible to have multiple processors (threads, processors, or entire machines)

working independantly to produce samples. In most cases it will be possible to

conduct the bulk of the calculations combining the results of the sampling on these

separate processes, leaving the final merging of each process’s work a comparative

trivial operation. In this setup, the number of processes that can be performing

22



and analysing samples is almost limitless, with each additional processor increasing

accuracy or reducing the runtime (depending which is deemed more important).

2.2.3 Markov Chain Monte Carlo

When attempting to sample from a small target distribution within an extremely

large and complicated state space the basic Monte Carlo method is simply not prac-

tical. The state space is so large that (within any reasonable timescale) too few

samples will be found to be within the target distribution to perform any mean-

ingful analysis. This frequently occurs when a state have many degrees of freedom

(‘variables’ that may be altered), as each degree of freedom is equivalent to an addi-

tional dimension in the state space and thus responsible for an exponential increase

in the volume of the state space. For example, image analysis problems will often

suffer from this as each new ‘feature’ to identify in the image will have its own set

of variables characterising it (its x and y coordinates, size, shape etc.).

Fortunately in many such cases, having obtained one state from within the

target distribution it is often easy to obtain a second state by making a small change

to the first. Using this property we can construct a Markov Chain that performs

a random walk through the statespace, each state being a small modification of

its predecessor. By constructing the chain’s transition kernel such that its sta-

tionary distribution is equal to the desired target distribution then sampling from

the Markov Chain would be equivalent (long term) to sampling from that target

distribution, despite the correlation between consecutive states in the chain. For

a detailed examination of this Markov Chain Monte Carlo (MCMC) method the

reader is referred to the work of P. Green of the University of Bristol [32, 31] or

books such as [52, 29]. Here we provide a summary of what the algorithm does in

practice and why.

From the implementers perspective a program for sampling from such a chain

is an iterative simulation. At each iteration of the simulation a transition is proposed

23



to move the Markov Chain from state x to some state y by making some small

alterations to x. The probability of applying this proposed move is calculated by a

transition kernel constructed in such a way that the stationary distribution of the

Markov Chain is that of the target distribution. The construction of a suitable kernel

is often surprisingly easy, and is frequently done by applying Bayesian inference [33],

as described in the following section (section 2.2.4).

Over a (large) number of iterations the chain will conduct a random walk

across the statespace, eventually converging on the chain’s equilibrium/stationary

distribution (that we have arranged to be the same as the posterior distribution).

Following convergence, sampling from the Markov Chain will produce models with

a frequency proportional to the model’s relative posterior probability (the most

probable models for the input data and prior knowledge provided will be the most

frequently found amongst the samples). Although the chain will converge on the

stationary distribution irrespective of its initial state, this may take many iterations.

Once a Markov Chain is underway it must be left for a suitable ‘burn in’ period

before samples are taken from it, to allow the chain to converge. Premature sampling

will result in sub-optimal models being obtained. Determining how many iterations

will be required for convergence (how long the ‘burn-in period needs to be) is in

general an unsolved problem and beyond the scope of this thesis.

In some applications, typically those dealing with very complex high-dimensional

states such in image processing problems, a single near-optimal sample of the target

distribution may be all that is required. Even then, taking and comparing many

samples allows different ‘modes’ to be identified in the results - potential alternative

interpretations of the same data (e.g. does a particular mass of colour in an image

represent a single large blood cell or two blood cells that are overlapping). Un-

like most of the alternatives methods of image processing (Genetic Algorithms, and

less general-purpose deterministic methods), MCMC can not only identify various

possible interpretations for ambiguous data, but also give comparative probabili-

24



ties for those interpretations, determined by the frequency with which the modes

(interpretations) are sampled.

MCMC algorithms with complex and/or high dimensionality states and span-

ning large state spaces face three practical obstacles that must be overcome.

1. The long time it takes for a complex or large MCMC simulation to converge

to its equilibrium position, and then to explore enough of the statespace for

sampling to detect and assign probabilities to the alternative modes.

2. Determining when the simulation has reached equilibrium, thus when sampling

should start.

3. Determining how many samples will be required to fairly explore nearby

modes, once equilibrium has been reached (should more than one sample be

required).

Addressing the first obstacle is the purpose of this document. The remaining obsta-

cles are, in the general case, unsolved and beyond the scope of this thesis, though

in practise obstacle (3) can be answered ‘as long as you can afford’ (the more sam-

ples gathered the more accurate the final result). As for (2), there have been a

number of attempts at obtaining theoretical convergence bounds, though these are

often two broad to be of use. There are also a number of methods for detecting

convergence by apply diagnostic tools to the outputs of the samplers, though even

when using a combination of these is its not possible to say with certainty that a

finite sample from an MCMC algorithm is representative of an underlying stationary

distribution[15]. For practical applications with consistently similar or predictable

datasets the convergence point can simply be estimated from comparisons with es-

tablished solutions and the assumption of similarity amongst input datasets (i.e. it

took around z iterations for the last 10 datasets to converge, so the same will be

assumed for the 11th).

25



2.2.4 Bayesian Inference and the Metropolis-Hastings Method

The standard transition kernel (the algorithm for deciding the probability by which a

proposed state change is accepted and applied) used in MCMC is termed Metropolis-

Hastings and was proposed in 1970 in [37] as a development of an earlier technique

from [46]. To present this in a context that is consistent with that of later chapters

the algorithm will be summarised in the form used to perform Bayesian Inference

for the purposes of image processing; the construction of a model M to describe

target features in some bitmap image I. In other words, the MCMC algorithm will

be presented as it applies to selectively converting an image from a bitmap repre-

sentation I to a vector representation M containing only those image features of

interest. It should be noted that the construction of MCMC algorithms for perform-

ing specific tasks is a research topic in its own right, and beyond the focus of this

thesis. Readers are advised to consult the referenced articles for a complete under-

standing of the MCMC method and its variants. For the purposes of understanding

the parallelisation methods proposed in this thesis, only a knowledge of the mechan-

ical implementation and statistical constraints placed upon that implementation is

required.

Bayesian inferences is a means for deriving conclusions using observations

to establish or update the probability that a hypothesis is true. Bayes Theorem

expresses the relationship between a a conditional probability and its inverse. In

the context of finding a model M for image I, it shows how the probability model M

is correct given the image I can be expressed in terms of the probability of having

image I assuming it is a representation of M .

P (M |I) =
P (I|M)P (M)

P (I)
(2.3)

P (M |I) is the posterior probability, the probability a model is ‘correct’ for a given

image. P(M) is called the prior (or marginal probability, the probability of a model

being correct without knowing the specific image data. The prior term evaluates

26



how well the model compares to what logical data is ‘known’ or presumed about the

image, the expected number and distribution of features for instance. P (I|M) is

the likelihood of model M , the term that evaluates how well the data fits the model

(the probability of image given a specific model). This is not to be confused with

the posterior probability (the probability the model is correct given the actual input

data). The likelihood is implemented by considering only those features already in

the model and determines how likely it is that the features are present in the image

data as described by the model. P (I) is the prior probability of the image data, in

practical terms this just acts as a normalising constant∗.

Assuming suitable definitions for the prior and likelihood terms are chosen,

the ‘best’ model is one that maximises the posterior probability (the probability

of model M given image I). Determining the absolute probabilities is not possible

without already knowing the target model (which, if known, renders the matter

irrelevant) but it is often feasible to calculate a probability density, a measure of

the relative probability of a state but lacking the required normalisation constant

to turn this into a true probability. The Metropolis-Hastings method gets around

this by constructing a Markov Chain with a model as its state and its equilibrium

(stationary) distribution equal to the posterior distribution. The transition kernel

deciding the probability with which a transition to a new state M ′ from the current

state M is accepted is based on the ratio between the posterior probability of the

new state and old state so that the (unknown) normalising constant P (I) cancels

out:
P (M ′|I)
P (M |I)

=
P (I|M ′)P (M ′)

P (I)
P (I)

P (I|M)P (M)
=
P (I|M ′)P (M ′)
P (I|M)P (M)

(2.4)

The normalising constants in the prior and likelihood probability functions can also

be cancelled out, permitting these to be calculated on an arbitrary scale rather than
∗The use of the term ‘image’ here is merely for consistency with all the examples used throughout

this thesis, I may be any form of data for which we are attempted to describe by some model M .

27



requiring them as true probabilities:

prior(M ′)likelihood(M ′|I)
prior(M)likelihood(M)

(2.5)

The Metropolis-Hastings test actually utilised also requires the probability of propos-

ing the move transition M →M ′ and its inverse M ′ →M . Additionally if the move

involves a change in dimensionality (the number of possible variables that may be

changed, for instance if a move adds or removes a feature of the model rather than

simply altering it) the Reversible-Jump Metropolis-Hastings variant (proposed by

P. Green at the University of Bristol) must be employed, imposing some additional

constraints on the potential moves and inserting a Jacobian term into the acceptance

test to compensate for the change in dimension [32]. Taking all this into account,

given a proposed move generated from a move type chosen at random from a selec-

tion of move types (in our image example an instance of one of add, delete, move

or change a feature in the model) that would take the simulation’s state from M to

M ′, the probability that the move will be applied and M ′ be the next state is given

by:

min[1,
prior(M ′)
prior(M)

× likelihood(M ′|I)
likelihood(M |I)

× p(M ′,M)
p(M,M ′)

× J ] (2.6)

where p(M,M ′) is the probability of proposing the move from model M to model

M ′, and the Jacobian term (J ) is defined by how the dimensionality of the model

would change, see [32]. This kernel will produce the probability for advancing the

chain to state M ′ from M based on how well M ′ fits with the prior knowledge

(what properties the target configuration is expected to have) and the likelihood

of M considering the actual data available. Moves that appear to be favourable

compared to the current state of the chain have acceptance probabilities > 1 and

so are accepted unconditionally, whilst moves to apparently worse states will be

accepted with some reduced probability. Once the move/transition has been either

accepted (causing a state change) or rejected (leaving the chain’s state unchanged)

the next iteration begins and a new move is proposed.

28



Over a (typically large) number of iterations the chain will eventually con-

verge to its equilibrium distribution. As explained earlier, at this point, taking

samples from the chain is equivalent to sampling from the target distribution. The

probability of a certain state being sampled will be proportional to the posterior

probability of that state, thus samples can be expected to be clustered around the

models with the maximum (or at least, a locally maximum) chance of matching the

input image. When used in practice the time the chain is left to converge before

taking and using samples from it is called the burn-in time. Although there are a

number of method of determining how long this ‘burn-in period’ needs to be [15], in

the general case determining the required burn-in duration is an unsolved problem

beyond the scope of this thesis.

2.2.5 Delayed Rejection MCMC

One variation of MCMC is known as delayed-rejection MCMC (DR-MCMC). First

proposed by L. Tierney and A. Mira (University of Minnesota) [60] and then gen-

eralised by P. Green (of Bristol University) in [34]. DR-MCMC seeks to reduce the

probability of iterations that do not advance the state of the chain. If a move pro-

posal is at first rejected, a second-stage proposal is attempted that may optionally

depend upon the rejected move. This improves performance of the sampler, but

at the cost of increased computation per iteration (at least, those iterations that

initially reject a transition). Performance is improved by enhancing the efficiency of

the statistical algorithm by using rejected moves to improve the probability of the

next proposal being accepted.

Delayed-rejection MCMC does not have a natural synergy with the paralleli-

sation methods covered in chapters 3 and 4 as both techniques seek to reduce the

realtime ‘wasted’ by MCMC iterations that reject the proposed state change. DR-

MCMC sees rejected moves as an opportunity to inform and improve the next move

proposal that is made, whereas with speculative moves (the subject of chapter 3)

29



rejected moves are discarded in favour of any accepted speculative moves that were

considered in parallel with the rejected move. Whilst it is possible to apply the chap-

ters 3 and 4 parallelisation methods to delayed rejection moves (a single speculative

move would consist of both the first move and its second-stage calculations and

move proposal) the parallelisation would bring much reduced benefits compared to

parallelising normal MCMC as the presence of second stage moves would lower the

move-rejection rate (see section 3.3 for the consequences) and lengthening the time

per rejected move (see chapter 4 for the problems this may cause). DR-MCMC can

be used in conjunction with the parallelisation methods from chapter 5 without any

problem, as the parallelisation methods in that chapter are based on partitioning

the image/data, not paralellising on the level of individual moves.

2.3 Applications of MCMC

MCMC plays a key role in many important fields, particularly bioinformatics and

statistical physics . It lies at the heart of the tradition of ‘simulation physics’

To provide an understanding of the areas that may benefit from the paralleli-

sation methods proposed in this document this section will summarise a few of the

interesting and challenging MCMC applications that have been developed in recent

years.

Unlocking the full amount of information contained within the raw data ob-

tained by the Chandra X-ray telescope requires subtle statistical analysis. One goal

is to model the distribution of high energy photons from a particular astronomical

source. Although simpler algorithms were adequate for processing data from earlier

X-ray telescopes, D. A. van Dyk and H. Kang showed MCMC is more suited to

processing the richer data available from the Chandra telescope, as explained in

[61]. Chandra data is also open to alternative processing, in [7] M. Bonamente et

al describe how MCMC can be used to combine datasets (Chandra X-ray data and

Sunyaev-Zel’dovich effect data) to determine the distance to galaxy clusters in a

30



manner more computationally efficient than earlier methods.

At the Institute for Robotics and Intelligent Systems, Los Angeles, Zhao and

Nevatia developed a MCMC approach for segmenting individual humans in a high

density scene (such as a crowd) acquired from a static camera [69]. Their technique

allows for the partial occlusion of humans by other humans and has obvious uses for

video surveillance and event inference. A MCMC solution for a similar application

is covered (in considerably greater detail) by K. Smith at the EPFL, Switzerland

in Chapter 1 of [54]. Smith’s application places less emphasis on crowded images

and feature occlusion, but was developed for analysing video feeds instead of static

images. Whilst for the examples given in referenced papers runtimes are fast (∼ 15

seconds per frame for Zhao’s application and < 0.5 seconds for Smith’s, though

given the differences in circumstances and images, these times are not comparable)

they involved only a small number of people. Parallelisation will help in coping with

larger crowds, larger images and for taking less time per frame - for surveillance and

CCTV footage analysis real-time processing is desirable.

There are numerous examples of MCMC in medical imaging applications. For

instance, a MCMC algorithm for constructing a model for cells in an area of cartilage

growth viewed using confocal microscopy was developed by F. Al-Awadhi (from

Kuwait University), C. Jennison and M. Hurn (from the University of Bath) [2].

At the School of Mathematical Sciences, University of Nottingham and Department

of Statistics, University of Leeds, I. Dryden, R. Farnoosh and C. Tayor, developed

a method of segmenting images of muscle fibres using MCMC to describe them as

Voronoi polygons [19].

Though this thesis places an emphasis on image processing applications,

MCMC more often applies to non-image datasets. Whilst the parallelisation meth-

ods given in chapter 5 are predominantly restricted to datasets whose features are

spatially localised, the methods presented in chapters 3 and 4 can be applied to any

MCMC application. One significant example of a non-image application is its role in

31



bioinformatics, in particular the construction of phylogenetic trees from nucleotide

or amino acid sequences, as done by S. Li (at the Fred Hutchinson Research Center),

D. Pearl and H. Doss (at the University of Ohio) [44]. A phylogenetic tree (or evo-

lutionary tree) shows the evolutionary relationship between species or other entities

that have a common ancestor. Bayesian inference through MCMC is an important

way in which such trees can be constructed from available data, and a number of

programs are available with which to perform this operation, including MrBayes

[39] and BEAST [18]. MCMC also plays an essential role in statistics physics, lying

at the heart of the tradition of simulation physics: understanding phase transition

and other physical behaviour by constructing careful simulation experiments on the

computer [42].

2.4 Existing Parallel MCMC

This section briefly describes existing methods for applying parallel processing to

MCMC.

2.4.1 Multiple Chains

Despite the additional benefits and restrictions utilising Markov Chains brings,

MCMC is still a Monte Carlo algorithm. As such, the typical Monte Carlo paralleli-

sation method of using multiple chains on multiple computers (each with a separate

random number generator and initial state) still applies. Obtaining many samples

is embarrassingly parallel∗ as multiple chains can be run on multiple computers,

each using a different initial model but keeping all other factors the same. Samples

from all the chains can be simply grouped, not only reducing the time to obtain a

fixed number of samples but also reducing the chances that all the sample will occur

in local rather than global optima since the chains will be starting from different
∗An embarrassingly parallel can be easily split and spread out over multiple processors, see

section 2.1 for details.

32



a)

b)

c)

d)

potential (MC)3 chain state-swap

propose a new stateprior

likelihood acceptance test

potential state-change

Figure 2.1: Comparison of existing parallel MCMC methods. Each row represents

the sequence of actions performed by a single thread (read left to right, only the

ordering is important). Vertical lines represent synchronisation between threads.

a) Three iterations of normal MCMC. b) Multiple chains, using two threads (sec-

tion 2.4.1). c) Intra-move parallelisation (section 2.4.2). d) Metropolis-Coupled

MCMC, using four threads section 2.4.3)

33



positions in the state-space. This method is explained and considered in greater de-

tail in [53] by J. Rosenthal from University of Toronto. As explained by Rosenthal

the choice of the initial burn-in time is important but in general very difficult to

select. Running multiple independent chains does not change the average necessary

initial burn-in time for each individual chain (the time it takes for the chains to

move from their initial states to achieving equilibrium around the states of optimal

posterior probability), which for complicated and high-dimensional problems may

be considerable.

Unfortunately the reason MCMC is used at all is that the statespace to be

explored is generally extremely large. It may take a long time develop the chain’s

initial state into a state that suitably describes the input data. However, once the

chain has converged on a solution, any alternative interpretations for the image data

(alternative ‘modes’) are generally comparatively close in the statespace. For ex-

ample, consider the vascular tree segmentation program developed by E. Thonnes

et al.[57, 58] and implemented by D. Fan [21], both at the University of Warwick.

Here a MCMC algorithm was constructed to map out the pattern of blood vessels

seen in pictures of retina (the back of an eye). The model constructed here was

that of a forest of binary trees. Constructing a graph describing the branching is

a time-consuming undertaking (requiring several hours), but the alternative modes

we would like to consider will differ only in a few localised places where the branch-

ing structure is less clear∗. In such applications the vast majority of the processing

time will be spent converging on the area of the statespace containing the poten-

tial solutions. Gathering sufficient samples to observe the possible solution modes

need take only a fraction of the time since the distance between the modes in the

statespace is comparatively minor. Though massive parallelisation by using many
∗Should the modes differ to a major degree it is unlikely a single MCMC chain would deconstruct

an existing well-matching forest to make visiting the alternative mode possible. In such circum-

stance alternative modes are best found by starting many chains (not necessarily simultaneously)

with different initial states.

34



concurrently executing independent chains to gather samples is possible, it does

little to address the long burn-in time. Initial convergence is the time-consuming

factor and no matter how many chains are run the average time until convergence

will remain unchanged.

2.4.2 Intra-move Parallelisation

Depending on how long individual iterations take to execute, there may be opportu-

nities for parallelisation within each iteration. Since the likelihood and prior terms

can be calculated independently, the processing can be done in parallel on separate

processors, as shown in fig. 2.1 subfigure c). The value of doing this is dependant

on the prior and likelihood calculations taking a significant proportion of the itera-

tion’s processing time and the prior and likelihood terms taking roughly equal time

to execute. Under ideal conditions this will almost halve the time taken to evaluate

a proposed move, although will do nothing to change the time required to construct

the proposal in the first place.

For particularly large and complicated cases it may even be desirable to par-

allelise the actual calculations used to obtain the prior and/or likelihood term. All

such terms are expressed as products∗ over the features comprising the chain’s state,

and as such are highly parallelisable (calculate the likelihood/prior contribution of-

fered by each feature in parallel).

2.4.3 Metropolis Coupled Markov Chain Monte Carlo

The conventional approach to reducing the runtime of MCMC applications is to

improve the rate of convergence so that fewer iterations are required. MCMC oper-

ates by performing a random walk through the statespace, preferentially favouring

moves that shift the chain ‘uphill’ to the ‘peaks’ of high posterior probability density

whilst avoiding the ‘valleys’ of low posterior probability density. Whilst a properly
∗Though when coded will be implemented in the log domain, therefore as summations.

35



constructed Markov Chain will eventually explore the entire statespace, the proba-

bility of accepting a move down to a state of lower posterior probability will be low,

thus many moves may need to be attempted before traversing a valley is achieved.

To put this in context, ‘crossing a valley’ in the statespace involves performing a

number of moves that when considered individually appear ‘bad’, but in the longer

term allows new possibilities to be explored. For example, parts of a model may

need to be deleted to allow new, potentially superior, interpretations for the data

to be explored. In a ‘craggy’ statespace (containing many valleys and sub-optima

peaks) a normal MCMC simulation will likely become temporarily trapped at local

optima, the probability that the chain will descend a peak to possibly begin the

accent of a different (hopefully more optimal peak) is sufficiently low that it takes

a great many iterations to occur. Improving the ability of a chain to explore the

statespace by crossing valleys is termed improving the mixing of the chain.

The simplest method of improving the mixing is to reduce the penalty in-

curred by travelling down statespace valleys through the addition of an exponent

γ to the acceptance probability given by the Metropolis-Hastings transition kernel,

i.e.

min

[
1,
{

prior(R′)
prior(R)

× likelihood(R′|I)
likelihood(R|I)

× p(R′, R)
p(R,R′)

× J
}γ]

(2.7)

By setting γ < 1 the probability that an arbitrary move will be accepted is increased,

thus the number of moves (and time) required to explore the statespace is decreased.

This is termed heating the chain. The disadvantage of such ‘hot’ chains is that they

are less likely to stabilise on an optima (a ‘peak’ in the statespace). The exponent

must be tuned such that a balance is found between allowing the Markov Chain to

settle on areas of high probability, whilst allowing sufficient heat make the crossing

of valleys in the statespace a realistic possibility.

C. J. Geyer at the University of Minnesota proposed a technique known as

Metropolis-Coupled MCMC (termed (MC)3) that improves mixing by using multi-

ple MCMC chains with different stationary distributions [27]. One example, detailed

36



in [28], uses a series of chains of increasing temperature (increasingly likely to ac-

cept arbitrary moves). One chain is considered ‘cold’ and configured as normal, the

other chains are set to be at various higher temperatures. These ‘hot’ chains will

be more likely to accept apparently unfavourable moves thus will explore the state-

space faster than the cold chain. However, for the same reason they are less likely

to remain at near-optimal solutions. Whilst samples are only ever taken from the

cold chain, at intervals two chains are randomly chosen and their state’s swapped,

subject to a modified Metropolis-Hastings test. This allows the cold chain to make

the occasional large jump across the state-space whilst still converging on good

solutions.

Whilst in its original incarnation (MC)3 did not explicitly involve parallel

processing, the work of G. Altekar and S. Dwarkadas at the University of Rochester

[3], demonstrated that these MCMC chains can be efficiently performed in parallel,

with each chain on a different processor (as shown in fig. 2.1 subfigure d), where

the second and third chains are considered for being swapped). M. Harkness and

P. Green at the University of Bristol have also shown that parallel (MC)3 can also

be applied in conjunction with delayed-rejection MCMC to further improve the

convergence rate [36].

Altekar et al. proposed and implemented a parallel form of (MC)3 applied to

the problem of estimating phylogenetic trees using the parallel version of MrBayes

[38]. Since state information for phylogenies can be several megabytes, a key aspect

of their parallel (MC)3 algorithm is to swap chain heats rather than chain states

to keep communication costs minimal. Instead of each chain being assigned to a

fixed processor/machine and the chain states being transferred between them, the

evolving states remain on their host process and the ‘chains’ swap positions (the

parameters governing the behaviour of a chain being far smaller in size compared

to the chain’s state information). Near optimal speedups were demonstrated using

both message passing and shared memory implementations on both large and small

37



datasets.

(MC)3 differs from our work in the manner by which parallelisation is used

- (MC)3 increases the mixing of the chain, improving the chances of discovering

alternative solutions and helping avoid the simulation becoming stuck in local op-

tima. Essentially it reduces the number of iterations required for the simulation

to converge, whereas the new methods presented in this thesis (the subjects of

chapters 3 to 5) reduce the time required to perform a number of iterations. The

two approaches will complement each other, particularly since (MC)3 requires only

infrequent inter-chain synchronisation thus allowing its chains to be spread over

multiple computers connected by a comparatively low speed interconnects, whilst

the methods presented in chapters 3 and 4 of this document are best applied to a

chain on an SMP machine. A cluster of dual or quad core/processor machines would

be the ideal platform for such a setup.

2.4.4 Task Decomposition

In some applications it is possible to split the input dataset or identify traits that

can be considered and processed independently, as in the case of subsequence-level

parallelisation in the phylogenetic inference work done by X. Feng et al. at the

University of South Carolina [22]. One of the parallelisation methods considered

by Feng is the division of the data sequence amongst processors. As with (MC)3

this method of parallelisation is coarse enough to work over a network (indeed,

the two methods are used simultaneously in Feng’s analysis), however it is very

application specific. In the general case making such clean divisions in the input

data or internal representation is not possible. For instance when processing images,

naively bisecting the image and considering the two halves separately will lead to

anomalies near the subimage boundary, potential imbalances in the degree to which

each subimage converges, and a loss of the statistical principals underpinning the

MCMC methodology.

38



2.5 Motivational Research

One of the more challenging applications of MCMC is image processing. Consider

the task of identifying and describing an unknown number of features in an image.

For instance, the counting of tree crowns from satellite images [51], tracking people

in a crowd [70], mapping the paths of blood vessels in an image of a retina [58],

identifying organs boundaries (such as the Thalamus or prostate gland) in Magnetic

Resonance scales as sets of curves [20], or counting cells in a slide of a tissue sam-

ple (as in fig. 5.1). MCMC is well suited to such problems as the use of Bayesian

inference permits prior knowledge to temper and guide the processing of the image

data, and with reversible-jump MCMC allows for the uncertain dimensionality (the

number of dimensions a model has may vary, for instance the number of features

that may be found is not fixed but may change as the chain progresses). The con-

struction of suitable prior and likelihood terms is often surprisingly uncomplicated,

although the resulting simulation will require ‘tuning’ to efficiently, reliably and

rapidly converge on an acceptable range of solutions. The main obstacle to the

use of MCMC in such image processing applications is the long runtime required

to conduct a random walk through the huge statespace that exists when dealing

with non-trivially sized images containing any significant number of features. Image

processing reversible-jump MCMC is therefore a suitable context in which to frame

the analysis of MCMC parallelisation.

Consider a subset of the possible applications: counting tree crowns in from

satellite images, tracking heads in a crowd, or counting stained cells in slides of a

tissue sample can all be abstracted down to the task of recognising and counting

independent circular artifacts (circles) in an image. By focusing our attention on

parallelising this general case we avoid dealing with unnecessary application specific

detail and can concentrate on testing the effectiveness of the various parallelisation

methods. From the point of view of the parallel algorithms considered in this docu-

ment the key characteristics are that the features are independent (not consisting of

39



composite or interconnected structures, as the mapping of network of blood vessels

from retinal scans would be [58]) and small compared to the size of the image; be-

yond that features may be as simple or as complicated as is required. Throughout

this thesis circles are used as examples and in test applications for the sake of clarity

and ease of understanding/testing∗. Results using simple structures such as circles

are also the most generally applicable, as to provide performance improvements the

methods described in chapters 3 and 4 require each iteration to take a minimum

time dependant on the hardware employed. Demonstrating the methods from those

chapters work when using simple circles as features implies that performance bene-

fits will also be gained when applied to more complicated features that take longer

to process.

This section presents two Reversible-Jump MCMC algorithms for detecting

circles in an image. Whilst a detailed understanding of these algorithms is not re-

quired for an appreciation of the MCMC parallelisation methods that are the focus

of this thesis, the intention of this section is to provide an example context for

the aforementioned parallelisation schemes and to support future work by provid-

ing a starting point from which more complicated image processing applications

may be constructed. The implementation of these algorithms is used for testing all

the parallelisation methods described in subsequent chapters, and the comments on

optimisations for this implementation (section 2.6) may be of interest to potential

MCMC implementers. Note that the circle identification algorithms presented here

are not intended to directly compete with existing alternatives (i.e. genetic algo-

rithms [6], Hough transform [68], or fast-finding-and-fitting [16]), but rather serve
∗The parallel algorithms will work just as well if the features to track are polygons or irregularly

shaped blobs with a complex internal structure. Such complicated features would require more

elaborate expressions for the prior and likelihood, a larger set of potential moves to accommodate

the extra variables used to describe each feature, and substantially more work to ensure that

the simulation parameters such that the chain would converge promptly, all of which would be

superfluous for this thesis on parallelisation methods.

40



to demonstrate how MCMC may be employed and parallelised.

2.5.1 Feature Boundary Recognition

Consider the task of identifying (potentially hollow) circular structures/features of a

specified mean size in an image. Given a bitmap image I such as the top left image

in fig. 2.2, we wish to produce a configuration (collection) of circles C where each

circle c is represented by its radius cr and the coordinates of its centre (cx, cy). We

will use MCMC to shape an initial configuration of circles into suitable description

for image I. The prior term for a configuration will be determined by how well

it fits certain simple assumptions, such as the number, size, and distribution of

circles through the image. The likelihood term involves comparing the image to the

configuration, we will do this by identifying the probable circle boundaries in the

image by the use of a standard edge detection algorithm, the calculated boundaries

from the configuration of circles can then be compared with the actual boundaries

found in the image.

To identify and describe the edges in the image we will use the edge detection

method of Sobel filters [1]. First proposed in 1968, the Sobel filters determine the

gradient (the rate of change) of the image intensity at every pixel in the image -

they emphasise all the boundaries in an image. They operate as a pair, one for

detecting horizontal edges and one for vertical edges. Each filter produces two

values for each pixel in the input image: a magnitude value representing the rate

of change of pixel intensity across that filter’s direction, and an orientation value

indicating the direction of that change of intensity. The results from the two filters

are then combined to create two new images. The first is an ‘edge magnitude map’

(or just ‘edge map’) of the original image showing where the edges (pixels where

pixel-intensity is rapidly changing) are, as shown in the top right image of fig. 2.2.

The second is an edge orientation map, providing the direction of the greatest rate

of change in intensity for each pixel (i.e. describes the direction of the edges in the

41



Figure 2.2: Demonstration of the circles recognition program. Top left: The

initial image. Top right: The Sobel filtered image used by the MCMC simula-

tion. Bottom left: The initial randomly generated configuration overlaid on the

image. Bottom right: The configuration after 10 000 iterations (approx 4 seconds

processing time).

42



edge map).

The first step is to add a small amount of random uniform noise to the image,

to improve the stability for later steps in cases where there are large areas of little or

no natural variation in the image. Next we enhance the salient aspect of the features

to be identified by applying the Sobel filters to the image to extract directional

edge information. If the pixel intensity∗ values for the image data are given by the

function T (x, y), then the standard Sobel filters from [1] can be expressed as follows:

Gh =


+1 +2 +1

0 0 0

−1 −2 −1

 ∗ T (2.8)

Gv =


+1 0 −1

+2 0 −2

+1 0 −1

 ∗ T (2.9)

where Gh is the horizontal component of the intensity gradient of each pixel in

the image, Gv the vertical component of the intensity gradient, and ‘∗’ is the (two

dimensional) convolution operator[40]. From these, the total magnitude of the in-

tensity gradient for each pixel can be calculated as the length of the hypotenuse of

a triangle of height Gv(x, y) and length Gh(x, y):

Msobel(x, y) =
√
Gh(x, y)2 +Gv(x, y)2 (2.10)

Since we have the magnitude of both the horizontal and vertical components of the

gradient, we can obtain the direction of the gradient through basic trigonometry.

The edge orientation map (the direction of the intensity gradient for each pixel) is

therefore

Θsobel(x, y) = tan−1 Gv(x, y)
Gh(x, y)

(2.11)

Note that this pre-processing takes negligible time compared to the MCMC simu-

lation that follows.
∗For colour images the average of the pixel’s three colour values

43



A random configuration of circles is generated from the known prior knowl-

edge (information we may assume we know about the image, obtained from heuris-

tics and experience of similar images) and is used as the initial state of the Markov

Chain. A MCMC simulation using the Metropolis-Hastings kernel (eq. (2.6)) is

then applied to the configuration, magnitude and orientation maps to produce the

desired circle configuration. As described in section 2.2.4 such a kernel requires

three components: a prior term to evaluate what we ‘expect’ about the configura-

tion’s properties, a likelihood term to evaluate how the configuration fits with actual

image, and a set of moves that may alter the configuration.

The Prior Term

The prior ϕ of a configuration C of circles c1..c|C| will be constructed utilising

assumed knowledge of the following (note that these values will estimate what we

expect to find in the image, and need not be totally accurate):

• The number of circles in the image is ≈ λ

• The mean circle radii is ≈ rµ

• The standard deviation in circle radii is ≈ rσ

• The circles are uniformly distributed (were this not the case then an expected

probability density map or formula could be referenced to take into account

the distribution of circle locations)

• Overlapping circles are rare (we will assign an arbitrary value with which to

penalise overlapping circles)

The expression for the prior term must assign a high value to models that meet these

criteria, and a low value to those that do not. First, consider the prior probability

density of a single circle c, of radius cr centred at the coordinates (cx, cy). This will

be constructed from terms evaluating the circle’s radii, its position in the image,

44



and its overlap with any other circle. Once we have a probability density for each

circle we can construct the density for the complete configuration of circles, taking

into account the number of circles we expect to find (λ).

The probability density function for a single circle will consist of three terms,

one to rate its radius, one for its position and one for its overlap with other circles.

For the radii term φr we need an expression that will reward circles with a radius

close to rµ. For this we shall use the probability density function of the normal

distribution [64], with rµ as its mean value, and standard deviation rσ.

φr(c) =
1

rσ
√

2π
e
− (cr−rµ)2

2r2σ (2.12)

This will return the maximum value when the radius cr = λ and lower values as cr

moves away from λ, as illustrated by fig. 2.3. The position term φp is trivial in this

case as circles are assumed to be uniformly distributed throughout the image.

φp(c) = 1 (2.13)

Finally the term φo is used to penalise overlapping circles. Let V be the set of circles

v1 to v|V | that overlap with circle c, and A(c, v) be the area of overlap between circles

c and v which, from [63], is given by:

d =
√

(cx − vx)2 + (cy − vy)2 (2.14)

d1 =
d2 − c2r + v2

r

2d
(2.15)

d2 =
d2 + c2r − v2

r

2d
(2.16)

a(R,D) = R2 cos−1

(
D

R

)
−D

√
R2 −D2 (2.17)

A(c, v) = a(vr, d1) + a(cr, d2) (2.18)

To ensure that the prior term can be scaled to apply to both large and circles, φo

should not scale directly with the area overlapping with other circles, but take into

45



0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

(rµ − rσ) rµ (rµ + rσ)
cr (circle radius)

Figure 2.3: The normal distribution as it is used in φo. Given by eq. (2.12). In

this example rµ = 5, rσ = 0.8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 λ 30 40 50

Figure 2.4: The Poisson distribution as it is used in the prior term (ϕ). Given

by eq. (2.21). In this example λ = 25.

46



account the area of the circles with which it overlaps∗:

|V |∑
j=1

A(c, vj)

π

|V |∑
j=1

(vjr)2
(2.19)

(vjr is the radius of the circle vj). Additionally this term needs to evaluate to 1

when there are no overlapping circles, and provide an increasing penalty as the

overlapping area increases. Both these issues can be satisfied by using eq. (2.19) as

the exponent to a constant, such as e.

φo(c) = e

−β

26666666664

|V |∑
j=1

A(c, vj)

π

|V |∑
j=1

((vj)r)2

37777777775
(2.20)

β (> 0) is a control variable used to tune the magnitude of the φo term, thus the

prior’s tolerance for overlapping circles.

The probability density of a single circle will be given by φrφpφo. Now we

consider the probability density of the configuration as a unified entity. The only

global property we need consider is the size of the configuration (|C|). We shall

determine the probability density for this value by utilising a Poisson distribution

[65]. If the expected number of circles is λ then the Poisson distribution gives

probability that there are exactly |C| circles in the model as

λ|C|e−λ

|C|!
(2.21)

which is plotted in fig. 2.4. Combining this with the product of the probability

densities for each individual circle gives us the complete prior term:

π(C) =
λ|C|e−λ

|C|!

|C|∏
i=1

φr(ci)φo(ci) (2.22)

∗The area of a circle of radius r is πr2

47



The Likelihood Term

The likelihood assesses how good the image I is as an interpretation of the given

configuration C of circles c1..c|C|. To do this we first identify the edges in the image

I (the lines where the pixel colour/intensity is changing rapidly) using Sobel filters

as described on page 43. This gives us two maps of the original image I(x, y): an

edge magnitude map M(x, y) showing where the edges are, and a edge orientation

map θ(x, y) giving the direction in which each pixel’s intensity gradient is changing.

With these we can determine if image has the ‘correct’ edge and orientation at each

point where we ‘know’ that a circle should be∗.

The likelihood L(c|I) of single circle c is obtained by taking samples from the

edge and orientation maps at a number of sample points p1..pK spaced at regular

intervals on the circumference of c (sampling every pixel on the circumference will

in most cases be unnecessary and prohibitively time consuming, K can be set so

as to provide a good balance between efficiency and accuracy as determined by the

needs of the application). For a point p at (px, py) on the edge of a circle centred at

point (cx, cy), the orientation of that edge is given by

tan−1 py − cy
pix − cx

(2.23)

To compare this with the actual orientation of the corresponding pixel we take the

difference of the two angles and take cosine of the result:

cos

(
θ(pix, p

i
y)− tan−1

piy − cy
pix − cx

)
(2.24)

Orientations that match perfectly thus return a value of cos 0 = 1. To get the

likelihood of that point we take the product of the cosine of the differences in

orientation and the edge magnitude at that point (M(px, py)), and likelihood of

an entire circle c taken as being the product of the likelihood of every sample point
∗recall that the likelihood is the probability of the image I given model M

48



taken around c:

L(c|I) =
1
K

K∑
i=0

M(pix, p
i
y). cos

(
θ(pix, p

i
y)− tan−1

piy − cy
pix − cx

)
(2.25)

The number of sample points K is fixed for any one run of the program. Increasing

the value of K is an easy way of increasing the workload per iteration, which is

useful for testing the effectiveness of parallelisation methods in different conditions.

For this reason the likelihood term is normalised with respect to K so K may be

varied without altering the balance between the prior and likelihood terms in the

Metropolis-Hastings test (see section 2.5.1 for more information).

The likelihood of the whole configuration is taken as the product of the

likelihoods of each circle in the configuration:

L(C|I) =
∏
cεC

L(c|I) (2.26)

Recall that this cannot be an absolute probability, but it is proportional to the true

probability (see section 2.2.4). Note that if the magnitude of each pixel sampled

for a circle is 0 the likelihood contribution from that circle will be 0, as will the

likelihood of any configuration including that circle. A circle likelihood of 0 must

therefore be avoided, hence the addition of the minor random noise to the initial

image. A circle likelihood would only be 0 if the edge magnitude of every pixel

sampled was 0, the random noise ensures this will not be the case unless the circle

is placed entirely out of the bounds of the image (which will be forbidden by the

implementation of the available moves).

The Moves

If the total number of features to be found in an image is not known precisely, the

potential moves with which to modify a model (in this case a configuration of circles)

are birth, death, split, merge, alter position and alter radius. Birth moves insert

a circle with uniform random coordinates and a radius sampled from the normal

49



distribution using rµ and rσ. A death moves remove a random circle. A merge

move removes two circles reasonably close together and averages their positions and

radii to create a new circle. A split move does the opposite, replacing one circle

with two circles from the prior distribution that if merged would yield the original

circle. Alter radius and alter position moves select a random circle and choose a

new position/radius from a normal distribution centred on the old value and with

a preset variance. An alternative would be to resample the radius or position from

the prior distribution, but in this case the radius/position is adjusted rather than

re-sampled to give a higher acceptance rate to the alter moves, at the cost of slightly

poorer mixing.

Tuning The Metropolis-Hastings Test

As covered in section 2.2.4 the probably of accepting a statechange from configura-

tion C to C ′ is

α(C,C ′) = min
[
1,
ϕ(C ′)L(C ′|I)
ϕ(C)L(C|I)

p(C ′, C)
p(C,C ′)

J
]

(2.27)

To achieve a chain that does converge (and converges in a reasonable timescale)

additional variables need to be added. Exponents ωp and ωl are applied to the

prior and likelihood terms respectively to allow them to be balanced against each

other. Without these ω terms either the likelihood or the prior would receive undue

dominance in the results of the Metropolis-Hastings tests. A strongly dominant

prior term results in random circle placement as the image data is not given enough

weight. A strongly dominant likelihood leads to the creation of an excessive number

of circles as the likelihood places no limiting factor on the number of circles in

the model, potentially allowing an unlimited number of circles to be place on top

of each other. Correct balancing between the prior and likelihood terms prevents

these eventualities by favouring favouring models with close to the expected number

of circles (λ), penalising circles that overlap (φo), whilst also favouring circles that

match the image data (L(C|I)).

50



A general exponent γ is also needed to control the ‘heat’ of the chain - how

generally accepting the test is. ‘Heat’ in this context is a concept taken from simu-

lated annealing [43, 62], and refers to how easily the chain will shift states. ‘Heating’

a chain (by setting γ < 1) makes it more likely any arbitrary move will be accepted

by the Metropolis-Hastings test, thus a ‘hot’ chain will be more likely to escape

local optima, and more readily explore the statespace. ‘Cooling’ a chain (by setting

γ > 0) decreases the likelihood that an arbitrary move will be accepted, making

the chain’s state more stable from iteration to iteration and less likely to backtrack

into ‘inferior’ states, though this does increase the risk of becoming trapped in local

optima. Whilst simulated annealing uses the gradual cooling as the means to drive

the convergence to states with the maximum posterior probability, MCMC uses the

fact that the Markov Chain will eventually converge to its stationary distribution

as the means to find the maximum posterior probability. The heat term γ is used

to set a single constant ‘temperature’ for the MCMC simulation, too ‘cold’ and the

chain will rarely explore new states, whilst an excessively hot chain will not converge

on a sufficiently detailed model∗.

The final Metropolis-Hastings test used was

α(C,C ′) = min
[
1,
{(

ϕ(C ′)
ϕ(C)

)ωp (L(C ′|I)
L(C|I)

)ωl p(C ′, C)
p(C,C ′)

J
}γ]

(2.28)

Suitable values for γ, ωp, ωl, and β (the modifier controlling the tolerance for over-

lapping circles, see eq. (2.20)) were found by trial and error for each type of image

to analyse (images with substantially different characteristics required different val-

ues). The rate of convergence of the MCMC chain may be improved by the fine

tuning of these parameters (and the specifics of the prior and likelihood formula’s),

however determining how to obtain the optimum values for these variables (and in

turn how to achieve the optimum convergence rate) is beyond the scope of this the-

sis. The parallelisation methods covered in chapters 3 to 5 will operate regardless
∗Note that the Metropolis-Coupled Markov Chain Monte Carlo aka (MC)3 uses multiple chains

each set to a different temperature to improve the rate of convergence, see section 2.4.3

51



Figure 2.5: Demonstration of the pixel-intensity based feature recognition pro-

gram. Left: the initial image. Right: the configuration after 10,000 iterations

(approx 4 seconds processing time), having started from a random configuration.

of the rate of chain convergence.

2.5.2 Circle Intensity Recognition

The algorithm in section 2.5.1 is not necessarily the best approach to take, as the

use of the Sobel filters to extract edge data that is then used as the basis for the

likelihood term is not without its drawbacks. Though general purpose (in its ability

to detect many types of circle) and quick to calculate the likelihood (sampling a

relatively small number of pixels compared to the circle’s size), the fact that we are

searching for an edge (represented in the edge map as a thin line) poses difficulties.

To obtain a strong likelihood signal a circle must be placed almost directly on target

so there is little room for fine tuning by making a small move to incrementally nudge

a circle to a more favourable position. Rapid convergence is more likely if we can

impose some additional constraints on the original image. For example, consider

the practical problem of identifying or counting dyed biological cells in a tissue

sample, as in fig. 2.5. The easiest part of a cell to identify is its nucleus, as the

nuclei are the only large solid blocks of intense colour in the image. Whilst the edge

detection algorithm is serviceable, it would be better to search for blocks of high

colour intensity directly, rather than the thin lines obtained from the Sobel filters

(the blocks of colour intensity are a more reliable target than the thin lines in the

52



edge map). Should the image also contain regions of high colour intensity that were

not cell nuclei (a different shape say) the feature boundary detection method would

be preferable.

The formula for the prior term and the moves described in the previous

section can be reused for this new algorithm. The Sobel filters can be dropped

in favour of a simple hew-balancing operation that emphasises the specific hew we

expect the cell nuclei to be. For simplicity, in this case we will simply invert the

image colours and take each pixel’s average intensity. The likelihood contribution

for each circle will be changed to be the average intensity of all the pixels enclosed

inside that circle. Specifically, for a circle c with coordinates (cx, cy) and radius cr,

let P (c) be the set

{∀(x, y)ε(Z,Z) : (x− cx)2 + (y − cy)2 ≤ c2r}

and I(x, y) be the intensity (average of all colour values) of the pixel at (x, y).

L(c) =
1

|P (c)|
∑

(px,py)εP (c)

I(px, py) (2.29)

2.6 Optimising the Implementation

In both algorithms presented above, the likelihood is defined solely in terms of each

feature (considered in isolation) in the current chain’s state. The likelihood of the

chain is the product of the likelihood contributions from each of these features. The

contribution from each feature is localised, the ‘likelihood’ of a single feature (circle)

depends only on the value of pixels close to that feature yet is independent of the

location of any other feature. It is therefore unnecessary to recalculate the likelihood

from scratch using eq. (2.26) at each iteration. Instead the change in likelihood from

the previous state can be determined by obtaining the likelihood contribution from

all of the circles that are being added, removed or changed in that iteration. For a

move that adds the circle c to a configuration of likelihood L, the new likelihood L′

53



is given by multiplying c’s likelihood contribution to the existing likelihood:

L′ = L.L(c) (2.30)

The likelihood for moves that alters a circle in some way (be it its radius, position,

or both) can be quickly calculated by viewing the alteration as the deletion of the

original circle c and the simultaneous addition of a new circle c′ (representing the

‘altered’ state).

L′ = L.L(c′)
L(c)

(2.31)

Similarly the net likelihood term for a move that merges circles ca and cb into a

single circle c′ is the same as removing circles ca and cb then adding circle c′

L′ = L. L(c′)
L(ca)L(cb)

(2.32)

and for the reverse operation, the splitting of c into c′ and c′′ is

L′ = L.L(c′)L(c′′)
L(c)

(2.33)

It is possible to combine these formulae with the Metropolis-Hastings transition

kernel directly and cancel out L altogether as was done in [21], though in our imple-

mentation we leave L as a distinct entity to simplify the coding of the parallelisation

mechanisms discussed in following chapters.

Calculating the likelihood by determining how the likelihood used in the

previous MCMC iteration will change in reaction to a proposed move turns the

likelihood calculation from O(n) to O(1) (where n is the number of features in the

configuration) at the cost of slowly accumulated rounding errors (as each successive

likelihood value is derived from its predecessor) resulting in a drift of the likelihood

value over many iterations. This can be rectified by periodically forcing a full

recalculation of the likelihood. Since the likelihood calculations will typically be

performed in the log domain for numerical stability∗, the full recalculation of the
∗For efficiency reasons, the Metropolis-Hastings test should also be applied in the log domain,

the ‘exp’ operation is computationally expensive and its use should be avoided wherever possible.

54



likelihood need be performed so infrequently as to have negligible impact on the

program’s runtime. As an additional effect, the reduction in the number of memory

accesses required by the likelihood may result in a reduction in the percentage of

time taken in memory accesses compared to pure computation for each move. This

can equate to an additional saving in runtime when many threads are in operation

by reducing the load placed on the memory bottleneck.

In principal the prior term may also be calculated in the same manner,

but for the examples considered in this chapter all moves potentially modify either

‘global’ properties in the prior term (such as the expected number of features in the

image) and/or the contribution to the prior given by all other features due to the

overlap penaliser term φo, see section 2.5.1. The prior is therefore recalculated at

each iteration (a O(n2) operation (due to the overlap penaliser term φo testing each

circle against every other circle to identify overlaps). Depending on the algorithm

and the MCMC move employed, it may not always be necessary to recalculate the

prior. Consider a variant of the circle intensity algorithm where the colour of the

circles is also identified though a modified likelihood calculation, but no colour is

‘preferred’ or ‘expected’ on a global scale, so colour is not featured in the prior.

In such cases, the prior term need not be re-evaluated in moves that only modify

variables that are not involved in the global component of the prior term, in this

situation an alteration in a circle’s colour would not require a prior recalculation.

2.7 Hardware

The following systems have been used for testing:

• AMD Athlon 64 X2 4400+ (dual-core), Linux 2.6.22-2

• Intel Xeon Dual-Processor, Linux 2.6.9-55

• IBM xSeries 330 Dual-Pentium III Processor, Linux 2.6.24

55



• Intel Pentium-D (dual core), Linux 2.6.18-36

• Intel Core2 Quad Q6600 (2x dual-core dies) Linux 2.6.18-36

• 56 Itanium2 Processor SGI Altix, Linux 2.4-21-sgi306rp52∗

Note that the terms ‘dual core’ and ‘dual processor’ are not interchangeable. In

both cases two threads of execution may proceed simultaneously (as oppose to a

single processor machine which simulates simultaneous execution by interleaving the

instructions of the threads) however a ‘dual processor’ computer has two physically

distinct yet connected CPUs, whereas a ‘dual core’ refers to a CPU processor in

which most processing functionality is duplicated within the unit (i.e. on the same

die/integrated circuit). As the the processing cores of a dual-core machine are

located within the same CPU, they are capable of synchronising and communicating

(through on-board cache) much faster than the (physically separated) CPUs within

a dual-processor computer could. The ‘Intel Core2 Quad Q6600’ is not a genuine

quad-core, but a hybrid, it is a dual processor computer where each processor is

itself dual-core.

To ensure that the multithreading primates (mutex locks) were not, on their

own, causing substantial overhead, the multithreaded applications were constructed

so that they could be run in ‘sequential’ mode. In this mode they used only a single

thread, and performed only sequential MCMC, but they also established mutex

locks at the same points in the program cycle that the multithreaded application

would do. This test was deemed necessary after it was found that initial tests on an

dual-processor Opteron machine running an early 2.4 Linux kernel had the runtime

double just by the addition of the mutex locking and unlocking operations. For all

the systems used to generate results in this thesis, the addition of pthread locks

increased average sequential runtimes by less than 2%.

∗This computing facility was provided by the Centre for Scientific Computing of the University

of Warwick with support from a Science Research Investment Fund grant

56



Chapter 3

Parallelisation by Speculative

Moves

In the preceding chapter the theoretical principals of the Markov Chain Monte Carlo

method was described and the algorithm presented. MCMC is implemented as an

iterative simulation that conducts a random walk through a probability distribution

to find configurations with the highest posterior probability. Using the Metropolis-

Hastings method, at each iteration of the simulation a change in state is proposed

that is then accepted with some probability. This acceptance probability is obtained

by determining how a new state compares to the old in terms of what is expected

about the target solution and how it compares with the actual data available. If these

relative probabilities are set correctly (something that is surprising straightforward

to do) the successive state changes form a Markov Chain who stationary distribution

is approximately equal to the intended target solution - in other words taken across

a very large number of state changes, the most frequently visited states will be

those that best describe the input data. Most current methods for improving the

performance of MCMC algorithms aim to improve the rate of convergence - the

number of iterations required for the chain to reach equilibrium (to have reached

those states very close to the target state).

57



Observe that whilst a Markov Chain must perform state changes in a strictly

sequential order, those proposed state changes that are rejected have no impact on

the final state of the simulation. The fastest progressing Markov Chain is one where

all proposals are accepted, not through a relaxed transition kernel test but because

all proposed state changes progress to a preferable state. Whilst such a situation

is impossible (else why bother with the statistical framework at all), this chapter

shows that it is possible to compress a Markov Chain such that only those moves

that are accepted consume real time.

This is achieved by considering a ‘batch’ of possible state changes simulta-

neously but allowing at most one of those potential changes to be used to effect

an actual state change. The rejected iterations in each batch thus take negligible

real-time to consider. Depending on the size of each batch of state change proposals

the runtime required to perform a number of iterations may be reduced to (but not

below) that required to perform only those iterations that would have resulted in a

state change. Using the section 2.5 applications, reductions in runtime of 35 and 55

percent were obtained on SMP machines using two and four processors respectively.

3.1 The MCMC Program Cycle

As explained in section 2.2.3, a MCMC program starts with some initial state which

is then modified one small step at a time until it is a satisfactory description for the

supplied data. For each iteration a modification (a move) is proposed to transition

from the current state x to a new state x′. This move is considered using a transition

kernel (the function α in fig. 3.1) to give a probability for accepting the move (α′).

A random number generator rng() is used to determine whether to accept the move

to x′ (with probability α′). A move that is accepted is applied to the simulation’s

current state, a move that is rejected is discarded leaving the simulation unaltered.

The program cycle for this is shown in fig. 3.1. The creation of proposed moves

and the criteria of the transition kernel are such that the simulation’s state tends

58



Create x′

Calculate
α′ = α(x, x′)

rng() < α′

Let x be the current state

Apply x = x′

Yes

No

Figure 3.1: Conventional Markov Chain Monte Carlo Program Cycle - one

MCMC iteration is performed at each step of the cycle. rng() is a function that

returns a random number from a uniform distribution in the range 0 to 1.

towards a equilibrium distribution equal to the target distribution.

For this assertion on the eventual convergence of a simulation to hold, the

statistical properties of the Markov Chain Monte Carlo algorithm must remain in-

tact. Foremost is that the simulation is a Markov Chain, the ‘next’ state of the

simulation must depend only on its present state and the fixed rules governing state

progression. This appears to prohibit any form of parallel processing, as each new

state must be derived solely from its predecessor. Fortunately it is possible to work

around this rule and insert parallel processing that achieves substantial runtime re-

ductions without invalidating the Markov Chain nature of the simulation using a

method I have termed ‘speculative moves’.

59



Create x′

Calculate
α′ = α(x, x′)

rng() < α′

Let y = x′

Create x′′

Calculate
α′′ = α(x, x′′)

rng() < α′′

Let y = x′′

Create x′′′

Calculate
α′′′ = α(x, x′′′)

rng() < α′′′

Let y = x′′′

Apply x = y

Let x be the current state

Thread 1
Thread 2

Thread 3

Yes
Yes

Yes

No
No

No

Figure 3.2: Speculative move enabled program cycle. In this case three potential

moves are considered at each step of the program cycle. This translates to one,

two or three MCMC iterations being performed, depending on whether the first

and second potential moves are accepted or rejected.

3.2 Speculative Moves

Although by definition a Markov chain consists of a strictly sequential series of state

changes, each MCMC iteration will not necessary result in a state change. In each

iteration (see fig. 3.1) a state transition (move) is proposed but applied subject to

the Metropolis-Hastings transition kernel. Moves that fail this test do not modify

the chain’s state so, with hindsight, need not have been evaluated. Consider a move

to x′. It is not possible to determine whether x′ will be accepted without evaluating

its effect on the current state’s posterior probability, but we can assume it will be

rejected and consider a backup move to x′′ in a separate thread of execution whilst

waiting for x′ to be evaluated (see fig. 3.2). If x′ is accepted the backup move x′′

60



- whether accepted or rejected - must be discarded as it was based upon a now

supplanted chain state. If x′ is rejected control will pass to the thread considering

x′′, saving much of the real-time spent considering x′ had x′ and x′′ been evaluated

sequentially. Of course, we may have as many concurrent threads as desired, so we

may use x′′′ if x′′ is rejected, then x′′′′, x′′′′′, and so on. Obviously for there to be

any reduction in runtime each thread must be executed on a separate processor or

processor core. Interleaved threads will result in a net slowdown as the execution of

speculative moves (that may or may not count towards the chain’s iteration count)

will delay the execution of ‘normal’ moves (that certainly will count).

3.2.1 Comparison with Speculative Branching

The concept of speculative execution is already used to an extent in most modern

processors. The use of pipelining (see section 2.1.5) means that instructions writ-

ten by a programmer to be performed sequentially may be performed out of their

intended order and potentially in parallel with one another (though with various

safeguards to ensure these optimisations do not effect the end results). It is likely

that a pipeline processor will reach a conditional branching instruction (an instruc-

tion that, depending on some value, may alter the flow of control of the program),

such as an IF statement, before the value needed to decide which branch to take is

available (i.e. that result may still be being calculated, later in the pipeline). Rather

waiting (stalling) the pipeline until necessary results are available, it can be more

efficient to speculatively continue processing one (or both) of the branches until the

actual set of instructions to follow is determined. Once it is know which branch of

instructions the conditional should take the speculatively executed instructions can

either be confirmed as legitimate, or discarded, depending on whether the ‘correct’

branch was speculatively performed.

In both speculative branching and speculative moves, the speculative execu-

tion of code is used because of uncertainty over whether a certain set of actions need

61



to be performed. Pre-emptively performing those actions then undoing or discard-

ing them if it is later decided they should not be done can be more efficient that

standing idle until the decision on those actions is made. Though similar, the two

speculative methods are not identical. With speculative branching the speculative

execution begins once a conditional branch has been reached, and only one of the

branches will be the ‘correct’ path. In contrast, with speculative moves the specu-

lative execution is performed in anticipation of a future branch point (the validity

of the speculative move depending on whether the primary move will be rejected),

and it is possible for multiple speculative moves to be considered simultaneously

without any of them being discarded as ‘wasted’ computations∗.

A related distinction is that the ‘success rate’ (the proportion the of specu-

lative execution that does not get discarded) for speculative branching can be im-

proved through heuristics and good record keeping. If a particular branch is visited

multiple times in a program’s run, branch prediction can be employed to guess which

branch is the most like to be chosen, that is the branch that is then speculatively

performed. Such a system is obviously not relevant to speculative moves.

There is also the obvious difference in parallel methodology (the many stages

of a pipeline operating concurrently vs two or more distinct processors operating

alongside each other) and in the time-scales between speculative branching and

speculative moves. Speculative branching takes place inside a processor pipeline,

and only lasts as long as it takes for the solution to the branch conditional to be

produced. Speculative moves takes place over a much longer time-scale, the prior

and/or likelihood calculations can be complex and involve a great many operations

using all sorts of resources (different arithmetic operations, memory accesses etc.).

62



propose a new stateprior

likelihood acceptance test

potential state-change

Figure 3.3: Speculative moves implemented using four threads. Each row rep-

resents a thread, vertical lines indicate synchronisation points between threads,

shapes represent work being done. Time passes from left to right.

3.2.2 Implementing Speculative Moves

To be useful the speculative move must not compete with the initial move for proces-

sor cycles. In addition, the overhead for synchronising on the chain’s current state,

starting the speculative moves and obtaining the result must be small compared

to the processing time of each move. An SMP architecture is most likely to meet

these criteria, though a small cluster might be used if the average time to consider

a move is long enough. As many speculative moves may be considered as there are

processors/processing cores available, although there will be diminishing returns as

the probability of accepting the mth speculative move is (pr)m−1(1 − pr) where pr

is the probability of rejecting any one move proposal.

Figure fig. 3.3 shows how speculative moves would be applied on a quad-core

system. Each row represents the sequence of actions performed by a single thread

(read left to right). The vertical lines represent synchronisation points between

threads, and the shapes represent work being done. The top row is the primary

thread, the program’s initial thread and the one performing the non-speculative
∗Admittedly for this to be the case all bar the last move would need to fail their Metropolis-

Hastings test, the MCMC chain would experience at most one state change.

63



move. The remaining rows show the threads that will perform speculative moves.

Threads are not created or destroyed during MCMC processing, instead each of the

threads on which speculative moves are performed is kept idle when not needed by

waiting on a condition variable (see page 19). At the start of each iteration the

speculative threads are signalled to begin work. Each thread (including the primary

thread) then constructs and considers a considers a single move and determines the

move’s acceptance probability, reading the current state of the chain as stored in

shared memory and storing its results in a thread-specific memory location. Each

speculative move-performing thread performs a single speculative move then returns

to its idle state to await the next iteration. The primary thread waits until all spec-

ulative moves have completed, then tests each in turn (reading each thread’s results

from shared memory and comparing the output of a random number generator to

the thread’s move’s acceptance probability) until one move is accepted or all are

rejected. Only when all other threads are idle may the chain’s state be updated, if

one of the moves has been accepted.

Speculative moves effectively compresses the time it takes to perform a num-

ber of iterations (see fig. 3.4), without changing the results of those iterations.

The method will therefore complement existing parallelisation that involves multi-

ple chains to improve mixing or the rate of convergence (such as (MC)3 or simply

starting multiple chains with different initial models), provided sufficient processors

are available. As the other parallelisation methods have significantly fewer synchro-

nisation points than speculative moves (speculative moves synchronise at the end of

every step of the program cycle, (MC)3, many chains etc. all synchronise after long

periods of independent running) it is feasible for physically distinct computers to

work on different chains, whilst each chain makes use of multiple cores/processors

on its host computer for speculative moves.

When using sequential MCMC there are several methods for implementing

the proposal and testing of potential new chain-states, such as working on the actual

64



��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

(b)(a)

Figure 3.4: How speculative moves compress iterations into a smaller time period.

(a) is normal MCMC, (b) uses speculative moves. The shaded blocks represent

accepted moves, the white blocks rejected ones. The line indicates the moves in

the order they are ’seen’ by the MCMC algorithm.

chain’s state then rolling back the changes made if the move is rejected. When using

speculative moves the procedure for proposing and testing moves needs to operate

without changing the original datastructure (until the move has been accepted, at

least). Cloning the original chain state, making modifications, the calculating the

prior and likelihood terms for this modified state is one possibility, but prohibitively

expensive. What is needed are expressions for calculating what the prior and like-

lihood terms of a state will be after the application of a proposed change, without

actually making that change to the datastructure. Implementing the prior and like-

lihood calculations in this way means that speculative moves will be applicable even

when dealing with very large states (i.e. megabytes in size as in the case of phy-

logenies [3]), as the base state will reside in shared memory, and only the specific

changes that will be made to that state will be stored and analysed on the threads

performing the speculative computation.

65



3.3 Theoretical Gains

When using the speculative move mechanism with n moves considered simultane-

ously, each step of the program cycle (fig. 3.2) considers n distinct moves from the

current state. The moves are considered in sequence, once one move has been ac-

cepted all subsequent moves considered in that step must be discounted (as they

would not have taken place in a normal sequential implementation). Each step of

the speculative move program cycle therefore performs the equivalent of between

1 and n ‘conventional’ MCMC iterations, depending upon which (if any) of the

speculative moves was accepted.

What is the relationship between the number of steps of the speculative

moves program cycle performed and the number of conventional MCMC iterations

that occur? We will start by considering the different possible outcomes for each

step. Let Sn be the number of steps performed by a speculative move MCMC

program considering n moves per step, in which case S1 is simply the sequential

implementation of MCMC. Let SR be the number of step that are rejected and SA

the number of step that are accepted, in which case

S1 = SA + SR (3.1)

When we have two moves considered in parallel at each step there are four possi-

bilities: let SRA be the number of steps where the first move was rejected and the

second accepted, SRR the number of steps where both move proposals were rejected

etc. Continuing in this manner for S3 gives us

S2 =SRR + SRA + SAR + SAA

S3 =SRRR + SRRA + SRAR + SARR + SRAA + SARA + SAAR + SAAA

. . .

The number of iterations Nn performed by Sn steps is counted by summing the

number of move proposals considered up to and including the first accepted move in

66



each step. SRA steps therefore counts for two iterations, whilst SAR counts as one.

The number of iterations performed by a specified number of steps of each type is

therefore

N1 =SR + SA

N2 =2SRR + 2SRA + SAR + SAA

N3 =3SRRR + 3SRRA + 2SRAR + 2SRAA + SARR + SARA + SAAR + SAAA

. . .

Assuming the probability for rejecting any one move proposal is constant at pr and

substituting this probability in gives us:

N1 =S1(pr + (1− pr)) = S1

N2 =S2(2p2
r + 2pr(1− pr) + (1− pr)pr + (1− pr)2)

=S2(pr + 1)

N3 =S3(p2
r + pr + 1)

. . .

Which, rearranging and expressing in terms of a fixed N gives:

S1 =N

S2 =
N

pr + 1

S3 =
N

p2
r + pr + 1

. . .

More generally, given that the average probability of a single arbitrary move being

rejected is pr, the probability of the ith move in a step being accepted whilst all

preceding moves are rejected is pi−1
r (1 − pr). Such a step counts for i iterations.

Including the case where all moves in a step are rejected (occurring with probability

67



pnr , counting for n iterations), the number of iterations (N) performed by Sn steps

(where n is the number of moves considered in each step) can be expressed as

N = Sn

[
n∑
i=1

ipi−1
r (1− pr) + npnr

]
(3.2)

N = Sn

[
n∑
i=1

ipi−1
r −

(
n∑
i=1

ipir − npnr

)]
rearrange (3.3)

N = Sn

[
n−1∑
i=1

(i+ 1)pir + p0
r −

n−1∑
i=1

ipir

]
by

b∑
a=1

axa − bxb =
b−1∑
a=1

axa (3.4)

N = Sn

[
n−1∑
i=1

pir + 1

]
simplify (3.5)

N = Sn

[
pr − pnr
1− pr

+ 1

]
by

b−1∑
i=a

=
xa − xb

1− x
(3.6)

N = Sn
1− pnr
1− pr

simplify (3.7)

Rearranging for Sn

Sn = N
1− pr
1− pnr

(3.8)

which is plotted in fig. 3.5 for varying pr. Assuming the time taken to apply an ac-

cepted move and the overhead imposed by multithreading are both negligible com-

pared to the time required for move calculations, and that each iteration takes a

constant realtime duration to perform, the time per step≈ time per iteration. There-

fore fig. 3.5 also shows the limits of how the runtime could potentially be reduced.

For example, if 25% of moves in an MCMC simulation are accepted (pr = 0.75),

100 sequential iterations are equivalent to ≈ 57 steps for a two-threaded speculative

move implementation or ≈ 37 steps on a four-threaded implementation. Four thread

speculative moves could therefore at best reduce the runtime of a MCMC applica-

tion accepting 25% of its moves by about 63%, while the two threaded version could

achieve up to a 43% reduction.

In practice speedups of this order will not be achieved. Threads will not

receive constant utilisation (as they are synchronised twice for each iteration) so may

68



0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
St

ep
s

pr (move rejection probability)

Maxium (theoretical) benefits from speculative moves

2 processes
4 processes
8 processes

16 processes

Figure 3.5: The number of speculative move ‘steps’ required to perform 100

iterations using multiple processors. The serial implementation performs exactly

one iteration in each step, the number of steps will always be 100 irrespective of

pr.

not be consistently scheduled on separate processors by the operating system. For

rapidly executing iterations the overhead in locking/unlocking mutexes and waiting

for other threads may even cause a net increase in runtimes. In addition, proposing

and considering the moves may cause conflicts over shared resources, particularly if

the image data cannot fit entirely into cache. Figure 3.5 can only be used to estimate

the maximum possible speedup, actual improvements will fall short of this by an

amount determined by the hardware and characteristics of the MCMC simulation

to which speculative moves are applied.

69



3.4 Testing

For simplicity, and to allow a wide selection of input images to be used, we demon-

strate our findings using randomly generated test images. These are randomly

positioned white circles on a black background, with no other objects in the image.

The circles were generated with the parameters (number, radii mean and variance)

used by the prior calculations, with a check to avoid excessive overlapping of circles.

A slight Gaussian blur was added to the image to make the circles easier to locate.

More complex image processing examples have been studied, the reader is referred

to [21, 45, 51, 58] as the applications per se are not the main focus of this thesis.

For each of the following tests a large, fixed number of iterations was per-

formed (typically 10,000). Since the program execution time may vary due to the

random nature of the MCMC method, variations in input images and background

processes running on the test machines, each runtime value used in this thesis is

actually an average taken over no less than 20 runs of the program∗. Each run

processed a different randomly generated image, using a different initial model and

random number generator seeds. Since the effective MCMC algorithm in use has

not been modified, the same resultant models will be produced after a fixed number

of iterations irrespective of how many threads/speculative moves are used†. The

traditional difficulty of determining when a MCMC program has ‘converged’ or

completed its processing can therefore be ignored for the purposes of judging the

speculative move parallelisation method. Likewise the efficiency of the circle-finding

algorithm and the fine tuning of its various parameters is not relevant beyond the
∗A legitimate number of repetitions as actual variation in runtime was minimal. With test runs

typically taking tens of seconds to complete, short-term temporary delays/interruptions caused by

background processes etc. would not cause any significant distortion of the results.
†The sole exception being if a constant value is used to seed the random number generator(s), in

which case the presence of parallel processing may interleave access to a random number generator.

This exception is not relevant, as all random number generators are provided with a unique seed

based on the current time/date.

70



0

10

20

30

40

50

60

70

Athlon
X2 4400+

Xeon Pentium
D

Q6600 SGI Altix
(Italium2)

R
un

ti
m

e
(s

ec
on

ds
)

sequential
theoretical 2 threads

observed 2 threads
theoretical 4 threads

observed 4 threads
theoretical 8 threads

observed 8 threads

Figure 3.6: Speculative moves on different architectures, pr ≈ 0.65

program’s ability to maintain a stable feature count throughout its execution.

3.5 Results

Figure 3.6 show a comparison of runtimes across a number of hardware systems for

one set of tests (other tests carried out with different parameters provided similar

results.In this case the average move rejection rate was approximately 65%∗. Some

systems made more efficient use of the speculative moves method than others (due

to differing overheads) but in all cases the use of speculative moves reduced the

runtime to between 45 and 80% of that of the single threaded implementation.

Next we consider the effects of varying the time taken to perform each it-
∗In practical applications the move rejection rate is not fixed by the developer, but may vary

as the Markov Chain progresses. A detailed examination of this change in rejection rate and the

effect it has on the runtime is left for future research.

71



0

5

10

15

20

25

30

35

40

45

0 5e-05 0.0001 0.00015 0.0002 0.00025 0.0003

R
un

ti
m

e
(s

ec
on

ds
)

Time per iteration (seconds)

sequential
2 threads
4 threads

Figure 3.7: Runtime plotted against iteration time on the Q6600 (2x dual core).

Simulation parameters set so as to demonstrate the point where speculative moves

becomes beneficial. pr ≈ 0.75

eration (obtained from the runtime of a program using only sequential execution).

Two methods of varying the time-per-iteration can be used. The number of points

sampled around each circle when performing likelihood calculations sample points

can be increased so that the likelihood calculations for each circle take longer and

involve more memory accesses. Alternatively the number of circles in the image

can be increased, making the prior term take longer to process (most moves con-

sider only the change they have on the likelihood, whereas the prior term must be

recalculated in O(n2) for each move).

Figure 3.7 shows the runtimes using one, two and four threads on the quad

core Q6600. Unlike the real-world task set in fig. 3.6, the parameters for the ex-

periment show in fig. 3.7 were intentionally set to better determine the effect the

72



# Threads Iteration Iteration
Time (µs) Rate (s−1)

Xeon Dual-Processor 2 70 14 285
Pentium-D (dual core) 2 55 18 181
Q6600 (2x dual core) 2 75 13 333
Q6600 (2x dual core) 4 25 40 000

Table 3.1: Breakeven point when pr = 0.75

# Threads Iteration Iteration
Time (µs) Rate (s−1)

Xeon Dual-Processor 2 80 12 500
Pentium-D (dual core) 2 70 14 285
Q6600 (2x dual core) 2 130 7 692
Q6600 (2x dual core) 4 30 33 333

Table 3.2: Breakeven point when pr = 0.60

time spent on each iteration has on the benefits of speculative moves. Amongst

other changes the per-iteration duration was varied by increasing the workload of

the likelihood calculations, whilst number of circles in the model was kept constant

at 15 so that the time-per-iteration remained steady throughout the simulation. For

fast iterations the overhead involved in implementing speculative moves outweighs

the benefits from the parallelisation. The points where the lines cross the 1-thread

line represent how long each iteration must be before moves can be expected to start

providing a real benefit (the point where the use of speculative moves ‘breaks even’,

with the saving from considering moves simultaneously equalling the overhead re-

quired to implement that). These values are recorded for a number of alternative

architectures in table 3.1 and table 3.2.

As a point of reference, the circles program searching for 300 circles using

a modest 32 sample points performed around 2000 iterations per second (500µs

per iteration), whilst the vascular tree finding program from [21, 58] was generally

performing 20− 200 iterations per second (5− 50ms an iteration). The tree crown

73



# threads
Machine 2 4 8
Xeon Dual-Processor 53 - -
Pentium-D (dual core) 63 - -
Athlon X2 (dual core) 75 - -
Q6600 (2x dual core) 39 78 -
Altix (56 processor) 76 50 57

Table 3.3: The percentage of the theoretical reduction in runtime that was

achieved for a set of experiments where pr ≈ 0.78. Machines with higher val-

ues in the table are making more efficient use of their multiple processors.

finding program in [51] performed somewhere between ten to fifteen thousand itera-

tions a second for small (200x140) images, processing larger images would be slower.

We have found that many non-trivial MCMC applications will be well below the

above iterations per second values and can therefore expect significant real-time

savings by using speculative moves for real applications.

To determine the accuracy of the theoretical speedups as the move rejection

rate is varied, the program was modified to ignore the calculated Metropolis-Hastings

ratio and accept or reject moves based on a fixed pre-supplied probability. Moves

that added or removed features were disabled for this test, otherwise the uniformly

random acceptance of moves would cause the number of features in model to go

to extremes (thousands of features, or only a few) and distort the runtimes. By

fixing the model size each iteration will be sure to perform a ‘normal’ workload.

The results for several machines are plotted in figs. 3.8 and 3.9. The results for the

Pentium D are a good match for the theoretical results given that the theoretical

values assume ideal (and unachievable) conditions. The Q6600 results are more

mixed, whilst using four threads yields results reasonably close to the theoretical

bound, when using only two threads the results are substantially poorer.

This difference between architectures is further explored in table 3.3, where

the percentage of the maximum runtime reduction is displayed for the different

74



0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

R
un

ti
m

e
(s

ec
on

ds
)

pr

sequential
observed 2 threads

theoretical 2 threads

Figure 3.8: Runtime plotted against move rejection probability (pr) on the

Pentium-D

architectures∗. In the tests used to create this table pr was ∼ 0.78.

Considering all these results, the dual core machines (Pentium D and Athlon)

gain more (∼ 10%) from speculative moves than the dual processor Xeon due to

the increased overheads involved in communications between the Xeon’s two pro-

cessors. Compared to the Pentium-D the Athlon X2 achieves roughly 10% more

of the potential out of speculative moves. This is due to the differences in Intel

and AMD’s dual core designs, a detailed analysis of which is beyond the scope of

this thesis. For the Q6600 using only two threads (thus two cores) the breakeven

point is comparable to the dual processor Xeon, yet when using all four cores the
∗For example, consider a sequential program that takes 100s to run. If the theoretical maximum

benefit from speculative moves would reduce that to 65s, yet experimental results showed the

program ran in 75s, the proportion of the maximum runtime reduction would be 100−75
100−65

= 25
35

=

5
7

= 0.714... thus the table would show 71%

75



0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1

R
un

ti
m

e
(s

ec
on

ds
)

pr

sequential
observed 2 threads
observed 4 threads

theoretical 2 threads
theoretical 4 threads

Figure 3.9: Runtime plotted against move rejection probability (pr) on the Q6600

breakeven point and fulfilment of speculative move’s potential was the best of those

machines examined (25µs per iteration and 78% respectively). The difference in

results between using two and all four cores of the Q6600 is due to the Q6600’s

scheduler allocating the threads on to alternate dies (the Q6600 has two dual-core

dies), a sensible strategy when each thread belongs to a different program but in this

case counterproductive as frequent synchronisation between the threads is required

for speculative moves (synchronisation occurs at the end of every step through the

program cycle, see fig. 3.3). Whilst all threads are operating on the same die the

local on-die cache may be used, but when on separate processors the threads must

communicate through the slower shared memory. In addition, when our MCMC

program is using only two threads/cores, low priority processes would be scheduled

on the two unutilised cores using up some of the shared non-processor resources

that would otherwise have been used by the MCMC simulation (such as main mem-

76



ory). When all four cores were used such low priority processes were not getting

as much processor time and so making little use of main memory (or the shared

processor cache), allowing the greater performance benefits from the speculative

moves. Conversely, the Altix achieved most of the potential speedup when only two

threads were used (76%), but could only achieve 50-60% of the potential speedup

when using more threads. The greatest reduction in runtime was achieved by the

Altix using 8 threads (as in fig. 3.6), but this was not done as efficiently as in other

scenarios. The difference in efficiency for the Altix is due to the arrangement of its

56 Itanium 2 processors: its processors are arranged in pairs, each pair having its

own local cache. Information transfers between more than two threads must go via

main memory (since the threads do not all shared the same local cache) and are

therefore far less efficient.

3.6 Speculative Moves vs Intra-move Parallelisation

In section 2.4.2 it was suggested that the prior and likelihood calculations be con-

ducted in parallel, should they take approximately equal time to process and be a

significant proportion of the time-per-iteration. If this be the case, how does this

method compare to the use of speculative moves?

Assuming that the processing time for the prior and likelihood terms are

equal the potential benefit of performing intra-move parallelisation (when it is ap-

plicable) is slightly greater than that of performing a single speculative move each

iteration. The presence of a single speculative move while pr = 0.75 will typically

reduce the runtime by about 40%, whereas under optimum conditions (fig. 3.10a)

performing the prior and likelihood in parallel will reduce runtime of the prior/like-

lihood portion of the iteration by 50%. Unlike speculative moves intra-move paral-

lelisation does not parallelise the work of proposing new states or the conduction of

the acceptance test, but these are typically not expensive operations compared to

the prior and likelihood term calculation.

77



a)

b)

c)

propose a new stateprior

likelihood acceptance test

potential state-change

Figure 3.10: Comparison between speculative moves and intra-move parallelisa-

tion. Each row represents a thread, vertical lines indicate synchronisation points

between threads, shapes represent work being done. Time passes from left to right.

a) Intra-move parallelisation at optimum efficiency. b) Intra-move parallelisation

with substantial difference between prior and likelihood processing times. c) Spec-

ulative moves.

There will then be some situations where intra-move parallelisation outper-

forms speculative moves. However, in practical applications the likelihood and prior

terms are unlikely to take equal time to calculate thus intra-move parallelisation

may not be as competitive as first appears (as shown in fig. 3.10b). For example,

the case studies in chapter 2.5 are not suitable for this intra-move parallelisation

as the likelihood calculation has already been reduced to an O(1) order operation

compared to the prior’s O(n2) (achieved by taking advantage of the localised nature

of some of the potential moves, see section 2.6).The prior term is by far the most

computationally expensive operation, thus intra-move parallelisation would provide

little benefit. In comparison, speculative moves is unaffected by the relative pro-

cessing times of the prior and likelihood terms (fig. 3.10c). Additionally, intra-move

78



parallelisation does not scale above the use of two processors∗ whereas speculative

moves provides clear and predictable benefits for the use of four or more processors.

3.7 Summary

This chapter has shown how it is possible to consider multiple Markov Chain Monte

Carlo iterations in parallel without violating the definition of a Markov Chain. It-

erations of the MCMC program do not always result in a state change, and those

iterations that do not cause a change in state can overlap without consequence.

Since it cannot be determined in advance which iterations are state-changing we

presume (speculate) that none of them are and consider multiple iterations in par-

allel. When an iteration is found that does changes the simulation’s state, those

other iterations considered in parallel that presumed it would not be state changing

are invalidated and expunged. The more processors that are available the more

iterations that may be considered in parallel, thus the lower the chance of a ‘step’

(consisting of however many iterations may be considered simultaneously) occurring

in which no state change takes place. Though the addition of extra processors yields

diminishing returns, it moves the simulation closer to the optimum situation where

every step results in a statechange thus maximising the parallelisation possible with

this method. At this point further performance improvements would require a re-

duction in the number of MCMC statechanges required for the chain to converge -

this is the domain of statisticians and the writers of the state-change proposer, thus

is beyond the scope of this thesis.

So far we have considered each MCMC iteration to be of a fixed, constant

realtime duration. In the following chapter we consider the consequences of vari-

able realtime-duration iterations and present an extension to the speculative move
∗Strictly speaking the prior and/or likelihood terms may individually contain calculations that

can be conducted in parallel but this is not restricted to intra-move parallelisation, and can be just

as easily applied to speculative moves.

79



method to accommodate such circumstances.

80



Chapter 4

Parallelisation by Speculative

Chains

In the preceding chapter it was observed that whilst a Markov Chain must perform

state changes in a strictly sequential order, those proposed state changes that are

rejected have no impact on the final state of the simulation. A method called

speculative moves was presented to compress a Markov Chain such that only those

moves that were accepted consumed real time. This was achieved by considering a

‘batch’ of possible state changes simultaneously but allowing at most one of those

potential changes to be used to effect an actual state change. The rejected iterations

in each batch thus take negligible real-time to consider. Depending on the size of

each batch of state change proposals the runtime required to perform a number of

iterations may be reduced to (but not below) that required to perform only those

iterations that would have resulted in a state change. Given suitable hardware

this method can be effectively applied even when the time required to propose and

consider a statechange is very small (∼ 100µs, or 10 000 moves a second). The

effectiveness of this ‘speculative moves’ method is dependant on a high proportion

of proposed changes being rejected, fortunately in practical MCMC applications

a rejection rate of 75% is considered normal. Using the section 2.5 applications,

81



reductions in runtime of 35 and 55 percent were obtained on SMP machines using

two and four processors respectively.

In this chapter the speculative move concept is examined for applications

where the time spent proposing and considering state changes varies considerably

yet predictably. Naively applying speculative moves in such applications yields poor

results, possibly even prolonging the simulation’s beyond that of a simple sequential

implementation. This is addressed first by refining the speculative moves imple-

mentation so less time is unnecessarily consumed, and then by replacing speculative

moves with a speculative chain when one of the slow-processing state changes is pro-

posed. Compare this with speculative moves, where should one of the state change

proposals take a long time to process the entire batch would be delayed, with the

end result remaining as at most one state change being applied. Using speculative

chains, should the long-duration state change be rejected then the end-state of the

speculative chain would be used as the new state of the primary chain.

4.1 Speculative Move Considerations

The preceding chapter assumes that a single value for mean processing time per move

(τ) is adequate, and for the example simulations considered so far this is correct.

However, there are applications where there may be substantial yet predictable

variations in the time taken to process different types of move. Consider situations

where the model being constructed contains composite structures such as trees (for

example in the mapping of vascular trees as in [21, 57]). There may be moves that

operate on individual features over small areas of the image (such as fine tuning a

single node in the tree) and operations that modify large composite structures spread

across large portions of the image. Even without composite structures there may be

moves with effects that are highly localised (thus cheap to compute the change to

the likelihood and prior terms should the move be applied) and others that modify

variables with a non-localised effect forcing a (computationally expensive) complete

82



recalculation of the prior and likelihood terms.

Instead of a single mean move time τ for all moves, let us consider a situation

where we have a set Mf of moves that can be processed rapidly in time τf and a set

Ms that requires τs time to process, where τf � τs. For example, moves of set Mf

will cause small alterations whose effect on the prior and likelihood terms can easy

be calculated, whilst the moves of Ms result in more dramatic changes that require

extensive or complete recalculations of the prior and likelihood terms. When using

the speculative move mechanism as described in the preceding chapter the presence

of set Ms moves amongst Mf moves causes inefficient processor utilisation. Consider

one MCMC step with n threads. If at least one thread considers an Ms move, any

thread that considers a Mf move must wait idle for τs − τf whilst the Ms move

completes processing. If the probability of any single MCMC iteration being a Mf

move is qf then the probability of a speculative move step taking time τs is 1− qnf
thus each step will on average take

τfq
n
f + τs(1− qnf ) (4.1)

Combining this with equation eq. (3.8), the expected number of steps required, gives

us a new expression for the predicted runtime for N iterations.

T = N
(
τfq

n
f + τs(1− qnf )

) 1− pr
1− pnr

(4.2)

Figure 4.1 shows this plotted for varying qf with common values of n (1,2,4,8),

pr = 0.75, and each long moves taking five times the processing time of a typical

short move. The y-axis is the normalised runtime, such that ’1’ is the time taken for

the sequential program to complete a fixed number of iterations with no Ms moves

being proposed. The benefit of speculative moves (relative to equivalent sequential

runtime) is of course identical if all moves performed are from the same set (Mf

or Ms, corresponding to 1 − qf = 0 and 1 − qf = 1 respectively). For values of

qf in between, there will be steps where both Mf and Ms moves are considered

concurrently. In these steps, the thread(s) carrying out the Mf move(s) will be

83



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1

R
un

ti
m

e
as

m
ul

ti
pl

e
of
τ f

1− qf (probability of slow move)

Maximum (theoretical) benefits from speculative moves

sequential
2 threads
4 threads
8 threads

Figure 4.1: The impact of long running moves on speculative move runtime.

pr = 0.75, τs = 5τf

idle for time τs − τf as they wait for the Ms move(s) to complete before continuing

with the next set of speculative moves. The presence of this idle time means the

runtime-reducing effect of speculative moves is impaired, although (in this case) the

speculative move implementations do not become slower than the sequential version.

The benefit provided by multithreading is reduced, instead of providing a runtime

reduction of ≈ 43% the two threaded version only reduces runtime by ≈ 22% when

20% of moves are Ms. As Ms moves become the norm (qf → 0) the full benefit of

speculative moves is of course restored although always at a net increase in runtime.

In the more extreme case of fig. 4.2, where Ms moves take the time of 100

Mf moves, the benefits of speculative moves are lost though the presence of com-

paratively few Ms moves (note that the scale along the x-axis only goes up to a Ms

move proposal probability of 0.02). Obviously the presence of Ms moves is going

84



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.005 0.01 0.015 0.02

R
un

ti
m

e
as

m
ul

ti
pl

e
of
τ f

1− qf (probability of slow move)

Maximum (theoretical) benefits from speculative moves

sequential
2 threads
4 threads
8 threads

Figure 4.2: The impact of long running moves on speculative move runtime.

pr = 0.75, τs = 100τf .

to increase the runtime but when speculative moves are used the effect is dispro-

portionately large for even small values of qf . If just 1.5% of moves are of the long

duration variety, all benefits of four-thread speculative moves are lost, increasingly

Ms moves and speculative moves becomes a hindrance until at least 25% of moves

are from Ms.

4.2 Improving Speculative Moves

The presence of Ms moves has a detrimental effect when using speculative moves

because they impair thread utilisation, as shown in fig. 4.3 a). In each program

cycle involving a Ms move, threads performing a Mf move are left idle whilst they

wait for the slow move to complete. The naive implementation of speculative moves

85



a)

b)

potential state-changepropose a new state

prior

likelihood

acceptance test (rejected)
acceptance test (accepted)

Figure 4.3: Each row represents a thread, vertical lines indicate synchronisation

points between threads, shapes represent work being done. Time passes from left

to right. a) The presence of long-running moves reduces the benefits of the ‘naive’

speculative move implementation. b) By using threads only if they are not already

busy we mitigate the adverse effect of longer-than-normal moves.

presented earlier (fig. 3.2) guarantees that all speculative moves will be employed

at each loop round the program cycle by synchronising the threads (waiting for all

move calculations to complete) before starting the next set of move proposals. The

threads are always used for each step, delaying the next step if just one thread is busy

working (whether the results of that thread will be used or not). The alternative is

to use the threads lazily, a thread will only be used for a step of the program cycle

if that thread is available when it is needed.

Under this revised implementation if a proposed move is rejected we will

wait for the speculative move(s) to make decisions and act accordingly (as before).

However, when a proposed move is accepted any additional speculative move threads

that are active are flagged as cancelled, then the primary thread immediately begins

work on the follow-up move. When a new speculative move needs to be processed,

86



any threads that are flagged as ‘cancelled’ but have not yet ceased processing are

ignored and for that program cycle fewer speculative moves than normal are used.

Speculative moves are considered only if there is a thread ready and waiting to

be used, a speculative move will not be employed if it delays work on moves that

are guaranteed to count towards the total number of MCMC iterations performed.

Since the maximum number of speculative moves may not be utilised if one or more

threads are busy, the average number of ‘normal’ MCMC iterations performed in

each more steps (loops round the program cycle) is reduced. More steps will be

required to obtain the same number of MCMC iterations, however the average time

per step will be decreased as it will no longer be necessary to wait for invalidated

Ms moves to complete their (unnecessary) processing. The net result is a increased

number of normal MCMC iterations performed per unit time.

Figure fig. 4.3 b) shows lazy thread use in action. In the first step shown

the fourth thread is taking longer than normal to complete, either the move being

considered is from Ms or processing was delayed by resource conflicts (i.e. a back-

ground process was temporarily allocated control of a processor core). Since the

move considered on the third thread has been accepted, there is no need to wait

for the results of the fourth thread to complete, so it is flagged as cancelled. Once

the move from the third thread has been applied the next batch of moves is consid-

ered on the three available threads. When the fourth thread finally does complete

processing it discards its results (they are no longer relevant) and reverts to its idle

state to await and participate in the next batch of moves to be considered.

It would be preferable for the fourth thread to simply cease processing imme-

diately upon the determination that its results are irrelevant, that way all threads

would be available for the next step in the program cycle. Unfortunately this is not

always achievable. Killing and restarting a thread in order to stop work on a move

is not an option as it does not allow the thread to release any resources it was using,

potentially causing memory leaks and/or deadlocks (if the thread holds a mutex

87



lock that it has not yet released at the time of the threads demise). ‘Terminating’ a

cancelled move requires the ‘cancelled’ flag for that thread to be polled throughout

each move’s time-consuming calculations, skipping the remaining calculations if the

cancellation flag is set. Since this flag is shared between threads, access to it must be

synchronised (reads/writes controlled by a pthread mutex), adding overhead even

if the move is never cancelled. Frequent polling allows for a faster response to the

cancellation flag being set, at the expense of the increased overhead in repeatedly

checking the mutex-protected flag, and increased complexity in the move calcula-

tions in order to enable this polling to take place. The choice of whether it is

worth enabling the premature termination of cancelled moves needs to be made on

a case-by-case basis, taking into account the added difficulty of implementation, the

frequency with which moves will need to be terminated, and whether the move can

be terminated fast enough to make the added overhead worthwhile.

To assist in this decision, consider the case where no moves can be terminated

prematurely. It is possible for all threads performing speculative moves to become

‘occupied’ by cancelled Ms moves, leaving just the primary thread to perform work

and resulting in near-sequential runtime. This will only become an issue if Ms

moves are proposed faster than they can be cleared from the threads performing

speculative moves. A thread that is performing a Ms move will take the same time

as τs
τf

fast (Mf ) moves to complete the Ms move. For the remaining threads to be

kept clear of another Ms move whilst the first is still being processed, the next Ms

move should not be proposed for τs
τf

iterations (the time it takes a slow move to

process divided by the time it takes a fast move to process.). In other words the

probability of proposing a Ms on any of the n threads should be less than τf
τs

, giving

(1− qf )n <
τf
τs

qf > n

√
1−

τf
τs

(4.3)

where qf is the probability an arbitrary move belongs to Mf as oppose to Ms. This

88



means less than < 10% of moves can be slow (from Ms) when a slow move is 5

times the length of the fast one, or only < 0.5% of moves if slow moves take the

time of 100 fast moves. Implementers are therefore encouraged to accommodate

the early cessation of processing Ms moves as they design the move proposal and

prior/likelihood implementation.

4.3 Speculative Chains

In the preceding section we have reduced or eliminated the impact of invalid (can-

celled) Ms moves on the program runtime by not forcing the whole program cycle

to wait for threads that are temporarily unavailable/busy, and/or by causing the

Ms moves to stop processing early if and when they are made irrelevant by the ac-

ceptance of another move. We will now address the bottleneck caused by necessary

Ms moves by extending the speculative move philosophy. Let there be n threads

labelled 1 to n in order of priority, thread 1 being the primary thread and threads

2 to n performing speculative moves (in descending order of preference). If thread i

is considering a move from Ms, all threads > i that consider a Mf move will be idle

for τs− τf whilst they await a decision to be made on i’s move, as shown by fig. 4.5

a). If the i’th thread’s move is rejected this idle time is a waste. Should i’s move be

accepted it is irrelevant - their results will be discarded as the i’th thread will enact

a statechange invalidating any other speculative moves considered in that step.

To avoid unnecessary idle time whenever a thread i performs a Ms move

we perform a speculative chain on thread i + 1. Instead of using this thread to

propose and test a single move, we create a temporary clone of the current chain

state and use the speculative chain to perform multiple MCMC iterations on this

copy. If there are additional threads available this speculative chain can itself make

of speculative moves, using all threads > i+ 1, and potentially threads < i as well,

once those threads become idle after processing and rejecting the Ms’s predecessors

(were one of the predecessors accepted the Ms would of course be cancelled). This

89



Create δ1(x)

Calculate
α1 = α(x, δ1(x))

rng() < α1

Let y = δ1(x)

Create δ2(z)

Calculate
α2 = α(z, δ2(z))

rng() < α2

Let v = δ2(z)

Create δ3(z)

Calculate
α3 = α(z, δ3(z))

rng() < α3

Let v = δ3(z)

Apply x = y

Let x be the current state

Apply z = v

Let z be the current state of the chain Z

Let y = v

Let there be a chain Z of initial state x

Thread 1

Thread 2
Thread 3

Yes
Yes

Yes

No
No

No

Figure 4.4: Example program cycle using a speculative chain. This is the program

cycle that will occur when thread 1 performs a long duration (Ms) move.

90



a)

b)

c)

clone chain-state

potential state-change

propose a new state

prior

likelihood

acceptance test (rejected)
acceptance test (accepted)

Figure 4.5: Each row represents a thread, vertical lines indicate synchronisation

points between threads, shapes represent work being done. Time passes from left

to right. a) Even with lazy thread use, the presence of a long-running (Ms) move

can still cause idle time on processors. b) A speculative chain allows useful work to

be done on these processors by assuming the long-running move will be rejected.

c) The speculative chain is discarded if the long-running move is accepted.

91



is illustrated in fig. 4.4, where a single program cycle is shown for the case when the

first thread (1) conducts a Ms move. If thread i’s move is rejected (as in fig. 4.5b) the

state of the speculative chain will be used as the new state of the primary chain and

we can return to the normal speculative move program cycle until the next Ms move

is encountered. If thread i’s move is accepted (as in fig. 4.5c) the speculative chain

will be asynchronously messaged to terminate at the next opportunity whilst thread

i continues MCMC processing as normal (whether the > i threads are available for

participation in the next round of speculative moves depends on the speed of their

response to the termination signal).

To be more specific, consider the case where the speculative moves with

speculative chains is applied on a system with two available processors. Let qf be

the probability with which a Mf is proposed, and pr the probability that a move

(Ms or Mf ) will be rejected. For each step in the program cycle there are four

possible situations.

1. If the primary move is from Mf and accepted (occurring with probability

qf (1 − pr)) then the step takes only τf irrespective of whether a Ms or Mf

move is considered speculatively (assuming the overhead of aborting a move

is negligible). Either way, only one iteration is performed in that step.

2. If the primary move is from Mf and rejected (occurring with probability qfpr)

then the step time is dependant on the type of move considered speculatively.

On average the runtime will be τfqf + τs(1 − qf ). Whatever type of move is

chosen, two iterations will have been performed in that step.

3. A primary move from Ms that is accepted (occurring with probability (1 −

qf )(1−pr)) will naturally take τs time to perform the single MCMC iteration.

4. A rejected Ms primary move ((1− qf )pr) will still take τs time, but performs

the number of iterations expressed in equation (4.4) +1.

92



The use of a speculative chain is only needed when a Ms move is being con-

sidered in an earlier thread in the same step, and even then only if the expected time

that move will take (τs) is long enough to justify the potentially substantial overhead

involved in cloning the state of the primary chain; there needs to be sufficient time

for the chain-state to be cloned, and several speculative steps performed on this

cloned-state before the original Ms move ends. The chain-state cloning overhead

depends on how the cloning is implemented:

1. Immediate duplication. The primary chain state is duplicated in memory upon

the creation of the speculative chain. Whilst expensive for large or complicated

models, this is the simplest to implement.

2. Deferred duplication. The primary chain state is not immediately duplicated.

Instead the speculative chain reads from the primary chain’s state in the same

way a speculative move would∗. Once the speculative chain decides to accept a

move is the primary chain’s state duplicated. The speculative chain applies its

first accepted move to this copy, and from then on works on the copy rather

than the primary chain’s state. This is cheap if it is likely the speculative

chain will not find an acceptable move before its preceding thread completes

processing of the Ms move, i.e. pr is high and τs
τf

is small. The downside

is the less predictable processing time and the added complexity: whilst the

chain state cloning procedure is underway the speculative chain may receive

an abort request, and/or the primary chain state may be changed due to the

action of an accepted speculative move (applied to the primary chain). If it

is highly probable the speculative chain will accept at least one move, option

(1) will be preferable.

3. Virtual duplication. The primary chain state is not duplicated in memory,
∗Note that the primary chain’s state will not change whilst this is taking place as it is busy

considering its Ms move, and once the move on the primary thread is rejected or accepted the

speculative chain will be stopped.

93



instead a record is kept of each of moves the speculative chain accepts. The

speculative chain’s state is implemented as the primary chain’s state viewed

through a ‘filter’ that takes account of the sequence of accepted statechanges.

For example, a request for information on a particular feature in the spec-

ulative chain’s state would actually interrogate the equivalent feature in the

primary chain’s state, then check through the list of moves accepted by the

speculative chain to see if that feature’s data would have been altered. Instead

of the large upfront processing cost of cloning the primary chain’s state the

overhead is applied to each iteration of the speculative chain, with the over-

head increasing with each move that the speculative chain accepts. Whilst

the hardest to implement, this is potentially the most efficient when dealing

with very large models that are too expensive to copy completely, provided the

chain of accepted moves does not grow so long that the per-iteration overhead

becomes significant.

Whilst immediate duplication is preferred for its simplicity of implementation, de-

ferred duplication will be a good idea if the probability of a chain enacting at least

one proposed move is still small. For large states (i.e. phylogenies that may be

megabytes in size [3]) virtual duplication may be the only viable option, though

that depends on the relative expense of copying the state compared to that of con-

sidering the Ms move.

Whilst the overhead of cloning (or simulating the cloning) of the chain-state

may be substantial and (as with speculative moves) runtime benefits will only be

obtained if the primary move is rejected (if accepted, all the calculations performed

speculatively are discarded), speculative chains can nonetheless yield a significant

performance improvement. In the time it takes the original Ms move to complete

there is the potential for performing up to

τs
τfqf + τs(1− qf )

(4.4)

94



0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

R
un

ti
m

e
as

m
ul

ti
pl

e
of
τ f

1− qf (probability of slow move)

Maxium (theoretical) benefits from speculative chains

sequential
spec. moves (2)
spec. moves (4)
spec. moves (8)
spec. chains (2)
spec. chains (4)
spec. chains (8)

Figure 4.6: The impact of long running moves on speculative chain runtime.

pr = 0.75, τs = 5τf

sequential iterations within the speculative chain. Furthermore, if there are remain-

ing unused processors the speculative chain may itself utilise speculative moves and

chains, further boosting the number of iterations performed whilst the Ms move is

considered. Should the original Ms move be rejected this entire chain of moves will

be accepted. Contrast this with using speculative moves, only a single move would

be considered whilst waiting for the Ms move to complete., should that solitary

move be from Mf then the thread performing that move would be idle for the time

τs − τf .

4.3.1 Theoretical Gains

Although we can use this information to derive a formula for the predicted runtime

using speculative chains methodology, it is simpler (particularly when dealing with

95



0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2

R
un

ti
m

e
as

m
ul

ti
pl

e
of
τ f

1− qf (probability of slow move)

Maxium (theoretical) benefits from speculative chains

sequential
spec. moves (2)
spec. moves (4)
spec. moves (8)
spec. chains (2)
spec. chains (4)
spec. chains (8)

Figure 4.7: The impact of long running moves on speculative chain runtime.

pr = 0.75, τs = 100τf .

the 4, 8, or more threaded versions of the problem) to construct a simulator to

loop through and sum up the expected runtime of each program cycle, accounting

for the presence of speculative moves and threads. This simulator, implemented in

Java and running on a Q6600 machine is capable of simulating 1.5x106 4-threaded

program cycles a second. Some results from this simulator are shown in fig. 4.6

and fig. 4.7. The speculative move lines are the results obtained from eq. (4.2)

whilst the speculative chain results are those from the simulator, the numbers in

brackets is the number of processors/processing cores available. Along the x axis is

the probability/frequency by which Ms moves are proposed. The y axis shows the

normalised runtime, a value of ‘1’ is the time the sequential code would take if there

are no Ms (slow) moves proposed. The same assumptions used in the formulaic

predictions of the previous chapter apply, the multithreading overhead is considered

96



negligible so only move calculations are considered time consuming. Additionally

we assume that

1. long-running moves may be aborted (cease processing) with negligible cost,

when they have been invalidated by the acceptance of a move earlier in the

order by which moves are considered∗

2. a single value for the move rejection probability (pr) holds for both Ms and

Mf moves (in this example pr = 0.75)

As shown by fig. 4.6 the use of speculative chains can provide a substantial per-

formance over speculative moves if there exist moves that (predictably) take only

5 times longer than normal. If the difference between the Ms and Mf moves is

greater (such as by x100 as in fig. 4.7 - note the different scale along the x-axis) it

takes only a small percentage of moves to be in the Ms set for the speculative chains

method to yield substantial results. In both cases the curves for simulated specu-

lative chains are much flatter, retaining most of the benefit of speculative moves

almost irrespective of proportion of Ms moves (though note that as with the spec-

ulative moves chapter, these predictions represent the upper bound on performance

improvements).

4.4 Results

The circle-detecting program used for testing does not normally have sufficient vari-

ation in the processing time of different move types to test the speculative chain

system. To obtain the time-per-move characteristics required for testing speculative

chains, an alternative alter position move† was introduced that disallowed the like-

lihood optimisation from section 2.6, forcing the image likelihood to be recalculated
∗Recall that speculative moves must be considered in a fixed, predetermined order irrespective

of the order in which those moves complete processing.
†a move that changes the (x, y) coordinates of the centre of one of the circles, see section 2.5.1

97



from scratch thus lengthening the move consideration time (to around two or three

times the normal time when dealing with images with 300 features)∗. To simulate a

larger disparity between move-processing times (such as a forty-fold difference be-

tween slow and fast moves) a loop was inserted to force the likelihood calculations

to be repeated multiple times. In the field, such differences in the move consider-

ation time (the difference between Ms and Mf moves) will be down to composite

moves effecting large portions of the model (for instance, remove or modify an en-

tire connected component of features as in ‘delete tree’ moves in [21]), the presence

of more advanced logic in certain moves (for instance, a guided placement of new

features rather than proposed new features being located entirely at random), or

simply complete prior/likelihood recalculation where the calculation of move deltas

for those values is prohibitively complex.

The benefits of speculative chains can be seen in fig. 4.8. This shows the run-

time of the algorithm shown in section 2.5.1 working on autogenerated 1024x1024

images containing 300 circles, where pr = 0.75 and qf = 0.999 (0.1% of moves are

from the Ms set). Despite less than 0.1% of moves being from Ms and τs being

only 3-5 times τf , the speculative moves mechanism is rendered ineffective. Supple-

menting speculative moves with a single speculative chain whenever an Ms move is

considered on the primary thread substantially improves performance across all ar-

chitectures that were tested. When four threads are available, just using speculative

moves yields the same results as speculative moves with two threads (not shown in

fig. 4.8). Speculative chains were tested using four threads in two different ways.

Firstly allowing at most one speculative chain to be active at any one time, secondly

allowing as many speculative chains as will fit (in this case, three). In both cases,

chain states were cloned using immediate duplication (copying the entire state for

each new speculative chain). Results were mixed, whilst the Q6600 yielded results
∗The presence of a move that performs a complete recalculation of the prior and likelihood

terms is actually a sensible precaution to take against the slow drift of the perceived likelihood and

prior from their ‘real’ value as a consequence of accumulated rounding errors.

98



0

10

20

30

40

50

x300
Dual PIII

Xeon Pentium
D

Q6600 SGI Altix
(Italium2)

R
un

ti
m

e
(s

ec
on

ds
)

sequential
spec. moves (1)
spec. chains (2)

predicted spec. chains (2)
spec. chain (4), max 1 chain

spec. chains (4)
predicted spec. chains (4)

Figure 4.8: Comparison of speculative chains across architectures. pr = 0.75,

qf = 0.999, τs = 5τf

close to those predicted, the SGI Altix seems ill-suited to this 4 threaded speculative

chains parallelisation as the results produced were only marginally better than the

sequential program and worse than when using 2 threads. This can be explained

by the architecture of the Altix: 56 processors arranged in pairs, each pair with a

shared memory cache. Memory accesses that cannot be resolved using cache are

disproportionately expensive (in part as main memory must serve requests from all

the processors). In this case on the Altix, the benefit of 4-thread speculative chains

does not counter the overhead involved in cloning the chain’s state.

The degree to which the different architectures achieved their potential run-

time improvement is displayed in table 4.1. Unlike the results for speculative moves

(table 3.3) these results are not grouped by their multithreading capabilities (dual-

processor/dual-core/quad-core). This is because the overhead imposed by multi-

99



2 threads 4 threads
x330 Dual-Processor 98 -

Q6600 (2x dual core) 91 88
Q6600? (2x dual core) 89 70
Altix (56 processor) 87 16

Table 4.1: The percentage of the potential (theoretical) reduction in runtime that

was achieved for a set of experiments where moves are rejected with probability

0.75 and 0.1% of moves are of the ‘slow’ variety. Machines with higher values in

the table are making more efficient use of their multiple processors.

τf τs
τs
τf

x330 Dual-Processor 1.59× 10−3 6.75× 10−3 4.23
Q6600 (2x dual core) 5.62× 10−4 2.53× 10−3 4.5
Q6600? (2x dual core) 4.29× 10−4 2.15× 10−3 5.02
Altix (56 processor) 1.42× 10−3 4.18× 10−3 2.94

Table 4.2: The difference in the ratios of the average time taken to perform fast

and slow moves for a program for finding 300 circles in a 1024x1024 images, where

moves are rejected with probability 0.75 and 0.1% of moves are of the ‘slow’ variety.

threading is small compared to the timeframe concerned (a single chain will last

three to five times longer than an ordinary move in this example), the main factor

is the additional workload involved in cloning the MCMC chain’s state at the start

of each news speculative chain.

The predicted values in fig. 4.8 were obtained using the simulator from sec-

tion 4.3.1 and measurements from the time spent performing each of the different

types of move. Those move-time measurements are listed in table 4.2. The in-

strumentation required to measure the move times was disabled during the timed

program runs used to generate results such as fig. 4.8 (to avoid interference with the

parallelisation mechanism) thus the average time per type of move (and therefore

the full-program runtime predictions that are based upon this figure) may be slight

overestimates. Also note that the simulator assumes that cloning the chain-state

100



takes negligible time whilst the actual application uses immediate duplication.

Table 4.2 shows there is an added complication when comparing architectures

on which to use speculative chains. Not only will the time per (sequential) MCMC

iteration change depending on the hardware, but the ratio τs
τf

will as well. This dif-

ference in scaling between fast and slow moves is caused by the way the additional

workload present in Ms moves is processed on different hardware and software envi-

ronments, specifically differences in compiler optimisations, kernel efficiency∗, mem-

ory/cache latency, and build-in hardware optimisations (such as pipelining within

the processor).

To illustrate some of the problems that can arise, tables 4.1 and 4.2 contain

results for two different Q6600 machines. The data labelled Q6600 is from the ma-

chine mentioned in section 2.7, running Linux 2.6.18-36, and with the test program

compiled using the GNU compiler GCC version 4.1.1. Q6600? is a separate machine

running the Linux 2.6.27-11-server† and using GCC version 4.3.2. Unsurprisingly

the machine with the newer compiler, kernel version, and server-optimised kernel

performs the move computations faster, although from table 4.1 it implemented

speculative moves less efficiently than its ‘slower’ equivalent, implying that there

is a bottleneck whose rate of progress was less effected by the differing software

configuration. A contributing factor to this bottleneck is the higher τs
τf

ratio of the

Q6600?.

Figure 4.9 shows the processing of the same data as fig. 4.8 but for varying

pMs
r (the probability of any one move being a member of Ms) on just the Q6600 ma-
∗Upgrading from an early 2.4 kernel to a modern 2.6 kernel halved the execution time of one of

the test programs used in section 3.5. It is suspected this is mainly down to the improvements to the

efficiency with which the 2.6 kernel handles mutexes (the most basic means of synchronising threads

and handling concurrency). A detailed analysis of the number of and cost of mutex operations across

kernel versions and platforms is a subject for future work.
†Many Linux distributions ship two versions of the linux kernel, a ‘normal’ kernel suitable for

desktop use and ‘server’ variety that prioritises computational efficiency over real-time responsive-

ness.

101



0

5

10

15

20

25

0 0.0001 0.001 0.01 0.05 0.1 0.25

R
un

ti
m

e
(s

ec
on

ds
)

Probability of proposing a Ms move

sequential
observed, 2 threads, spec. moves
observed, 2 threads, spec. chains

simulated, 2 threads, spec. chains
observed, 4 threads, 1 spec. chains
observed, 4 threads, 3 spec. chains

simulated, 4 threads, 3 spec. chains

Figure 4.9: Altering Ms move reaction probability. pr = 0.75, τs = 5τf .

102



0

20

40

60

80

100

120

0 0.0001 0.001 0.01 0.05 0.1 0.25

R
un

ti
m

e
(s

ec
on

ds
)

Probability of proposing a Ms move

sequential
observed, 2 threads, spec. moves
observed, 2 threads, spec. chains

simulated, 2 threads, spec. chains
observed, 4 threads, 1 spec. chains
observed, 4 threads, 3 spec. chains

simulated, 4 threads, 3 spec. chains

Figure 4.10: Altering Ms move reaction probability. pr = 0.75, τs = 40τf .

103



chine, τs ≈ 5τf ≈ 2ms (20 000 MCMC iterations total). If no Ms moves are present

performance improvements from speculative moves are as would be expected from

chapter 3. When Ms moves are proposed the benefit of speculative moves is lost

(in this case when the percentage of Ms moves is somewhere in the range of 0.001%

→ 0.01%) and using speculative moves yields no performance improvement over the

sequential program. Allowing a single speculative chain to be used (instead of a

speculative move) when a Ms move is proposed allows the performance improve-

ment from using speculative moves to be maintained despite the presence of Ms

moves. Under the conditions used in this test the use of a single thread to perform

speculative move/chains results in a reduction of runtime by around 33% from the

sequential (or solely speculative-move-enabled) program, in line with predictions.

When four threads were available to the program using just using speculative

moves yielded comparable results to using two threads with only speculative moves,

the delay caused by the presence of Ms moves being limited to around that of the

sequential implementation due to the ability to cancel such moves (the two thread

and four thread speculative move runtimes exceed the sequential implementation

due to overheads of multithreading and synchronisation, and because Ms cannot

be cancelled ‘immediately’). With the addition of speculative chains runtime was

reduced to, at best, that of the 2-thread speculative move implementation regardless

of how many speculative chains were permitted to operate simultaneously, falling

short of predictions as Ms move become more frequent.

Figure 4.10 show the results for simulations using same parameters and hard-

ware as for fig. 4.9 except τs = 40τf . For large values of qf there is practically no

difference. As qf decreases (thus the proportion of moves from Ms increases) the

slow executing moves force the program runtime to grow more rapidly. The pro-

portion of the runtime reduced by the use of speculative moves compared to the

sequential implementation is not substantially different from when τs = 5τf , though

the larger sequential runtime for higher values of 1 − qf make the performance

104



improvement larger in absolute terms.

4.5 Summary

In this chapter the basic speculative moves method presented in chapter 3 has been

extended to accommodate Markov Chain Monte Carlo iterations of variable (yet

predictable) realtime duration. When there is significant variation in the process-

ing duration between different types of iteration, there may be sufficient time to

speculatively consider an entire chain of iterations whilst a single, long processing

duration move is considered.

Whilst ignoring variations in processing duration between iteration types

may result in a speculative move implementation that is substantially slower than

the original sequential implementation, proper use of speculative chains can produce

reductions in runtime exceeding the most optimistic predictions of plain speculative

moves.

Speculative moves and speculative chains are entirely transparent to the sta-

tistical algorithm in use, although the implementation is different the end result is

indistinguishable from a traditional sequential implementation∗. To achieve more

substantial reductions in runtime the MCMC algorithm must be altered, ideally in

a way that has a minimal impact on the accuracy and rate of convergence of the

simulation. The following chapter explores a number of means of doing so.

∗Excepting the sequence of numbers obtained from any random number generators used by the

algorithm

105



Chapter 5

Parallelisation by Partitioning

Chapter 4 examined the speculative move concept from chapter 3 in applications

where the time spent proposing and considering state changes varies considerably

yet predictably. Naively applying speculative moves in such applications yields

poor results, possibly even prolonging the simulation’s beyond that of a simple

sequential implementation. This was addressed first by refining the speculative

moves implementation so less time is unnecessarily consumed, and then by replacing

speculative moves with a speculative chain when one of the slow-processing state

changes is proposed. Compare this with speculative moves, where should one of

the state change proposals take a long time to process the entire batch would be

delayed, with the end result remaining as at most one state change being applied.

Using speculative chains, should the long-duration state change be rejected then the

end-state of the speculative chain would be used as the new state of the primary

chain.

Having taken the concept of speculative execution of MCMC iterations as

far it can go, we now consider how else a MCMC application may be parallelised.

Implementing speculative moves and/or speculative chains makes no logical change

to the MCMC algorithm, so these methods can be applied to any MCMC simulation

without fear of any disruption in the results. To achieve any additional performance

106



improvements more aggressive tactics must be attempted that may potentially alter

the end results. This chapter explores a number of such methods, all of which are

based upon the basic idea of processing different parts of the input data separately.

As such, these methods are restricted to applications where some state changes have

only a local effect, such as feature identification in images.

The first technique proposed is termed ‘periodic parallelisation’, and involves

making the distinction between local state changes whose impact is limited to a small

area of the image, and global state changes that must be considered as acting on

the entire image. As its name implies, periodic parallelisation alternates between

two modes, a global phase where only global state changes take place, and a local

phase where only local state changes occur. For the local phase the image is split into

multiple subimages using a randomly positioned grid, with local moves permitted to

occur in different subimages simultaneously. By frequently switching between local

and global phases and repositioning the local phase partitioning grid at each swap

the long term impact of the partitioning is limited, ideally to the extent that it is

negligible. This method is suited to many different parallel processing architectures,

as the period between phase changes can be set so as to render the inter-process

communication overhead insignificant (allowing this method to be used on SMP

machines or over a cluster), although to prevent anomalies in the results the phase

changes should occur as frequently as is feasible.

Although the exact consequence that periodic parallelisation has on the re-

sults is difficult to determine or predict, the concept is statistically sound. Somewhat

harder to justify is the decision to split the original image and process the subimages

as entirely separate entities until the very end of MCMC processing, at which point

the results for the subimages are patched together. This is the concept of ‘image

splitting’, covered in the latter half of this chapter. Two flavours of this method are

presented, the first is termed ‘intelligent’, as it uses a pre-processor to divide the

image such that no features of interest intersect any of the subimage dividing lines.

107



Obviously this relies upon such a pre-processor existing and being cheap to execute,

but has the advantage that combining the results from each of the subimages is

trivial. The alternative is blind image splitting, whereby the subimage boundaries

are set irrespective of the image content and some heuristics must be employed to

reconcile features occurring at the subimage boundaries (to facilitate this it is rec-

ommended that the subimages overlap to allow any controversial features spanning

subimage boundaries to be clearly identified in both images). Both intelligent and

blind image splitting require a non-MCMC algorithm to be developed (either for the

pre-MCMC segmentation of the image or post-MCMC combination of subimages),

and both suffer from the problem of allocating suitable prior variables to the subim-

ages, although this is less of an issue if such prior variables are obtained from a

pre-processor analysing the image rather than from the expectation that all images

will have roughly the same properties thus using a single set of prior values for all

images to be processed.

5.1 Parallelisation by Periodic Partitioning

The speculative execution parallelisation methods presented in the preceding chap-

ters have been proven to make no change to the fundamental MCMC algorithm,

only the manner in which it is implemented. Further parallelisation requires a more

aggressive approach, but also requires we narrow our focus to input datasets that can

be meaningfully partitioned, such as images. Since runtime increases significantly

with the complexity and size of the image (more on this in section 5.2) the obvious

parallelisation method is to break a large image up into partitions and consider each

separately. Unfortunately this will cause artifacts along the partition boundaries as

image features are not detected, imperfectly detected, or duplicated (detected in

both partitions). Furthermore, it is not always the case that the prior assumptions

concerning the full image hold when applied to subset of that image. Even though

taken across a set of images, features may still be distributed at random; if we exam-

108



ine only a subset of one particular image it may well be the case that not only does

the distribution no longer seem random, but the density of features (the number

per unit area) may be substantially different to that of the entire image.

Despite these problems, in many cases it is possible to make use of this

parallelisation-by-partitioning without impairing the statistical properties of MCMC.

The basic idea is as follows. First, a number of MCMC moves that cannot be per-

formed in parallel with any others are performed sequentially. The image is then

randomly partitioned and a number of MCMC moves that can be performed in par-

allel are performed in each partition simultaneously, whilst ensuring that changes

that could potentially affect the consideration of features in other partitions are

forbidden. The changes to each partition are then combined back into a single

model and the cycle repeats, with a number of the non-parallelisable moves being

performed on whole image. The non-parallelisable ‘global’ moves will be making

large-scale alterations to the image, whilst the parallelisable ‘local’ moves will be

performing localised ‘fine-tuning’ of specific features. This cycle is repeated with

sufficient frequency that the grouping of moves into a ‘global move’ phase and a

‘local move phase’, and the partitioning that takes place in the local phase, are

statistically insignificant.

First we separate the moves that may be applied to the MCMC chain into

two groups, global (Mg) and local (Ml).

Mg contains all moves that alter the configuration in a manner that impacts pri-

or/likelihood calculations across the entire image/configuration. As such, a

Mg move cannot be performed in parallel with any other move.

Ml moves make limited changes (akin to fine-tuning) whose impact is restricted to

a small area and makes no changes to ‘global’ properties (such as the number

of features in the configuration). Since the decision to accept or reject such

a move is based solely on the image data in close proximity to the changed

feature, multiple Ml may be performed simultaneously without violating the

109



MCMC criteria so long as the features modified by these moves are sufficiently

distant. Such moves cannot overlap with Mg moves.

Under normal circumstances Ml and Mg moves are interleaved, preventing the

parallel processing potential of Ml moves from being utilised. If we arrange matters

so that batches of the potentially parallelisable Ml moves are proposed one after the

other, then parallel processing can take place within each batch that batch of moves.

To achieve this, at the start of each iteration instead of selecting a new proposed

move at random from Mg ∪Ml we alternate between performing zg consecutive

moves from Mg then zl consecutive moves from Ml, zl begin chosen so that we

preserve the long-term move proposal probabilities. If qg is the probability of an

arbitrary move being of a member of Mg, then for some fixed number of iterations

N

zg =qgN (5.1)

zl =(1− qg)N (5.2)

To keep the probabilities of proposing moves from either of these two sets constant,

if zg moves are performed in each Mg phase then each Ml phase must perform

zl =
zg
qg

1− qg (5.3)

moves. So long as the number of moves performed in each phase (of either Mg

or Ml moves) is small compared to the total number of moves performed the fact

that this alternating is taking place will not substantially alter the development of

Markov Chain’s state.

Now we are alternating between performing a batch of Mg moves and a

batch of Ml, the next step is to allow parallel processing within each batch of

Ml moves. By our definition, consecutive Ml moves may be performed in parallel

provided the moves are sufficiently distant from each other so as not to interfere

with each others prior and likelihood terms. To achieve this we partition the image

110



Figure 5.1: By frequently changing the offset of this partitioning grid we can

prevent boundary anomalies caused by the partitioning persisting in the MCMC

chain. The highlighted features intersect the partition boundary, so will be held

immobile until a new offset is set for the partitioning grid.

with a uniform grid of spacing xmax along the x-axis and ymax along the y-axis.

To avoid any potential conflicts between partitions, features whose prior/likelihood

calculations take into consideration an area that intersects with the partition grid

must not be selected for modification, and no feature may be created or moved

such that any part of it (or its prior/likelihood considered area) intersects with or

is outside its assigned partition. For example, with the circle-finding case studies

from section 2.5 the likelihood of a circle is calculated from pixels on the circle’s

circumference and those contained within it, whilst the prior term for a circle only

interacts with neighbouring circles if they overlap with it. Changes to the position

or radius of a circle therefore only alter the prior/likelihood terms of other circles

with which the altered circle intersects. Alter position or radius moves are therefore

in Ml, and may be performed on any circle that does not intersect the partition

boundaries. Note that none of the moves that change the number of circles in the

model (birth, death, merge or split) can take place in the partitioned phase as the

111



total number of features in a model (λ) is a global variable found in the prior (see

section 2.5).

Ml moves may now be performed in each area partitioned by the grid simul-

taneously. To avoid the partition grid imposing a long-term bias on the results (since

features impacting prior/likelihood calculations in an area intersecting the grid are

rendered unchangeable), for each batch of Ml moves performed a new x and y offset

for the grid is chosen at random from the ranges 0..xmax and 0..ymax respectively,

see fig. 5.1. With the offset of the partition grid being randomly reassigned for

each Ml phase, over the long term the features will have an equal opportunity for

modification by Ml moves. Assuming that the switch between Mg and Ml moves

(and the accompanying redrawing of the partitioning boundaries) occurs sufficiently

frequently there will be no persistent partition boundary anomalies, as there will be

no persistent partition boundaries.

It has already been remarked that the number of iterations performed in the

global and local phases must be set such that the overall move proposal probabilities

are unaffected, the relationship between the number of moves in each local phase and

the number of moves in each global phase being expressed in eq. (5.3). Additionally

we need to split the number of iterations to perform during the Ml phase between

each of the partitions. If all dimensionality-modifying moves∗ are in the set Mg,

each partition can be allocated the number of local iterations to perform in the

same proportion as the number of model features contained within the partition’s

boundaries and that may be legitimately modified (not too close or intersecting

with the partition boundary) compared to the number of such (modifiable) features

taken across all partitions. If any dimensionality changing moves are in Ml it may

be worth moving them to Mg anyway, otherwise certain partitions may perform

more than their ‘fair share’ of iterations if features are not added/removed from
∗Dimensionality-modifying moves are those that change the number of dimensions of the states-

pace, i.e. by adding or removing a feature from the model.

112



all partitions at an equal rate (this depends on the actual distribution of features

in the image, and the relative sizes of the partitions, as partitions along the image

boundary will not be of full size).

5.1.1 Predictions

Given that the mean time to perform Mg (global) and Ml (local) moves are τg and

τl respectively, how long will it take to perform N MCMC iterations using periodic

parallelisation with s processors? With the probability that an arbitrary move will

be in the set Mg set as qg, the total number of Mg moves performed over the entire

program run will be Nqg. The total time spent in the global move phase is therefore

Nqgτg (5.4)

Similarly N(1 − qg) moves from Ml will be performed, however the processing of

these will be spread over the s available processors. Assuming that the workload

is evenly split between all the partition and that the parallelisation overhead is

negligible, the actual time taken spent processing all the Ml phases will be

N(1− qg)τl
s

(5.5)

Giving the total runtime as

Nqgτg +
N(1− qg)τl

s
(5.6)

which has been plotted in normalised form as fig. 5.2. The Mg move phase, not

being partition parallelisable, is now the slowest component of the MCMC program.

Although by definition the Mg phase contains moves that cannot be performed

in parallel by partitioning, as a MCMC chain the Mg phase is susceptible to the

application of speculative moves. The runtime of a periodic parallelisation program

that uses speculative moves to accelerate the global move phases can be predicted by

taking eq. (5.6) and replacing the expected number of Mg iterations (Nqg) with the

113



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
un

ti
m

e
(a

s
fr

ac
ti

on
of

st
an

da
rd

,
no

n-
pa

ra
lle

l
ru

nt
im

e)

qg (global move proposal probability)

2 processes
4 processes
8 processes

16 processes

Figure 5.2: Predicted results for periodic parallelisation. τg = τl

expected number of speculative moves steps (eq. (3.8)), when using all the available

processors (s) to perform speculative moves.

Nqgτg
1− pgr
1− psgr

+
N(1− qg)τl

s
(5.7)

where pgr is the probability that a Mg move will be rejected. Plotting eq. (5.7) in

fig. 5.3 shows the predicted consequences of using periodic parallelisation during Ml

phases and speculative moves during the Mg phases.

We can also use speculative moves to further increase the number of Ml

moves that may be performed per unit time. Though it appears preferable to utilise

any spare threads/processors to allow a greater number of partitions to be made and

processed simultaneously, there is a limit as to how small a partition can be before

no useful work can be done inside it. Since we prohibit any changes that may cause

a feature nominally inside a partition to effect the prior or likelihood calculations

114



0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

R
un

ti
m

e
(a

s
fr

ac
ti

on
of

st
an

da
rd

,
no

n-
pa

ra
lle

l
ru

nt
im

e)

qg (global move proposal probability)

2 processes
4 processes
8 processes

16 processes

Figure 5.3: Predicted results for periodic parallelisation supplemented with global

phase speculative moves. τg = τl, pgr = 0.75

for any feature outside that partition, the area in which features may be changed is

somewhat smaller than the area of the partition. For instance, consider the circle-

finding algorithms of section 2.5 with the restriction (for the sake of simplicity) that

there is no variation in circle radius, all circles have radius r. For Ml moves, the

change in likelihood is determined only from those pixels touching or enclosed within

the circle, and the prior term is changed only if another other circle intersects the

changed one. Under these conditions, in a Ml phase only circles completely enclosed

within the partition are subject to modification. Thus in a square partition of area

x2, circles can only be changed or relocated within an area of (x− 2r)2 during Ml

phases. To maximise the potentially modifiable area in each Ml phase (and reduce

the potential disruption caused by using Ml and Mg phases) each partition should

be substantially larger than the features to be found within it, i.e. x >> 2r. This

115



can conflict with the desire to divide the image into as many partitions as possible in

order to maximise the parallelisation performed. Determining the point where one

concern dominates the other is a subject for future, application specific, research.

In the presence of spare processors, the use of speculative moves within each

partition is a good alternative to increasing the number of partitions if we do not wish

to shrink the partition sizes any further (again, the circumstances where one method

is preferred over the other is a candidate for further application specific research).

The use of speculative moves during the Ml phase may also be encouraged by system

architecture. We note that if Ml phases are set to be long enough it becomes feasible

to deploy each partition to a separate physical node (machine) in a cluster. If this

is the case, and each node in the cluster also has true multithreading capabilities, it

is natural to use separate physical nodes for each partition, and multithreading in

each node for speculative moves. Starting with eq. (5.7) we can again apply eq. (3.8)

(as we did to produce eq. (5.7)) to model the use of speculative moves on the chain

of Ml moves performed within each partition. For a cluster with s nodes each with

t threads, the best possible runtime is

Nqgτg
1− pgr
1− ptgr

+
N(1− qg)τl(1− plr)

s(1− ptlr)
(5.8)

Which gives predicted runtimes as shown in fig. 5.4, assuming that inter-node

communication time has been rendered negligible by the number of iterations in

each phase and time per each iteration. Note that we assume that partitions are

still substantially larger than the features being detected.

In practice the frequency with which we alternate between Mg and Ml phases

will also have an impact on the total runtime (recall the above predictions assume

negligible overhead). Statistically we want these phases to be as short as possible to

minimise any potential impact the partitioning may have to the short-term results.

Practically we want each phase to be long enough to overshadow the overhead re-

quired in partitioning, distributing the workload to the parallel threads/machines,

and the subsequent recombining the models. A similar balance must be made be-

116



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

R
un

ti
m

e
(a

s
fr

ac
ti

on
of

se
qu

en
ti

al
ru

nt
im

e)

qg (global move proposal probability)

2 machines, 2 threads each
4 machines, 2 threads each

16 machines, 2 threads each
2 machines, 4 threads each
4 machines, 4 threads each

16 machines, 4 threads each

Figure 5.4: Predicted results for periodic parallelisation over a cluster, supple-

mented with global and local phase speculative moves. Threads are used for

speculative moves, whilst nodes are used for periodic parallelisation. τg = τl,

pgr = plr = 0.75.

117



tween the number of partitions (more=faster) and the corresponding size of the

partitions. More partitions mean each partition is smaller, which means the num-

ber of features that may be modified (and how those features may be modified) is

more limited, thus more likely to delay the convergence of the MCMC algorithm.

Since different partitions will be allocated different numbers of iterations to

perform (depending on the number of model features fully enclosed within each

partition), the time taken to complete the assigned iterations will vary considerably

(even if features are uniformly distributed, partitions along the edge of the image

will inevitably be less than their full size, contain fewer than normal features thus

be allocated fewer iterations to perform per local move phase). The processor dead-

time that results can be reclaimed through the use of a task scheduler, allowing

more partitions than there are available processors to be employed.

Finally, note that we are not limited to the speculative moves method, spec-

ulative chains may also be used to improve the performance of the Mg and Ml

phases, if the selection of available moves within each phases warrants it (different

types of move within a phase have substantially differing predicting runtimes).

5.1.2 Example

Let us first consider processing a 1024x1024 image containing 150 circles of mean

radius 10. The global moves (Mg) are those that add, delete, merge, split, or replace

a circle∗. The local (Ml) moves are those that alter either the position or radius of a

circle. The proposal probabilities are such that 60% of moves are from Ml. The im-

age will be split into four rectangular partitions using a single coordinate where all

partitions meet. Whilst suboptimal in terms of processor utilisation when 4 proces-

sors are available (partitions will rarely be of equal size) this does minimise overhead

from splitting and merging configurations by keeping such operations simple.
∗The ‘replace’ move relocates a circle to a random position in the image, its purpose here is to

provide long distance moves across the image.

118



0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05

R
un

ti
m

e
(s

ec
on

ds
)

Time per global phase (seconds)

periodic parallelisation
sequential

Figure 5.5: Example of periodic parallelisation on 1024x1024 images with only

four partitions, run on a Q6600. The horizontal line represents the runtime of the

sequential implementation.

Using these parameters, fig. 5.5 shows the time taken to perform a fixed

number (500 000) of MCMC iterations for different frequencies of repartitioning,

the horizontal line representing the runtime of the sequential implementation. In

this case each global move phase must last at least 4ms (∼ 23 iterations) for the

periodic parallelisation method to be faster than the sequential implementation, any

less than this and each local move phase does not last long enough for the benefits

of parallelising Ml moves to outweigh the costs. Once each global phase takes 20ms

or more there is no substantial runtime improvement to longer phases, it is at this

point that the costs of parallel processing of Ml moves cease to be a significant

proportion of the runtime. This equates to around 130 iterations, and thus (using

eq. (5.3)) each local phase will perform 194 iterations spread amongst all the parti-

119



0

0.1

0.2

0.3

0.4

0.5

P
er

ce
nt

ag
e

ru
nt

im
e

re
du

ct
io

n

Q6600 (quad core)
Q6600? (quad core)

Xeon (dual processor)
Pentium D (dual core)

Figure 5.6: Runtime reduction (as a percentage of total runtime) from using

periodic parallelisation with four partitions.

tions, taking around 14ms). From this data, spending 20ms per global phase is the

‘sweet spot’. More frequent cycling between phases substantially impairs runtime,

whilst less frequent cycling brings minimal runtime benefits and increases the risk of

the alternative global/local phases distorting the development of the Markov Chain.

With the 20ms global phase, the apparent runtime has been reduced by ∼ 30% of

the sequential implementation. Whilst falling short of the 45% reduction as pre-

dicted by eq. (5.6) when qg = 0.4, τg = τl (as is the case when processing is strictly

sequential) and s = 4, recall that by restricting the number of partitions to 4 but

permitting (requiring) those partitions to be of varying sizes, the size of the largest

partition will always be greater than a quarter of the image, and potentially range

to the size of the image itself. Consequentially the four processors will never be fully

utilised, indeed comparable results can be obtained using only two processors (i.e.

120



one processor will take the largest partition, the remaining three small partitions

performed on the second processor) as demonstrated by fig. 5.6. The differences in

performance between the machines is due to the difference between the time per

iteration and the overhead required to duplicate, arrange for parallel execution, and

merge the partitions. More substantial reductions in runtime can be obtained by

using a finer partitioning grid and load balancing if (as in this case) the number of

partitions would be greater than the number of available processors. The runtime of

the local phase would then tend towards 1/(number of partitions) of the sequential

runtime, if the overhead from communication and configuration split/merge opera-

tions remained negligible. As mentioned earlier, should the size of each cell in the

partition grid become too small then little meaningful work can be done in the Ml

phase as there is no space for features to be moved such that they do not intersect

with the partition boundaries and risk interfering with the actions being performed

in other neighbouring partitions. A compromise will need to be found on a case-by-

case basis, too few partitions underutilise the available hardware whilst too many

partitions restrict the work capable of being performed during each Ml phase.

If implemented using nodes of a cluster instead of pthreads (see page 17) for

the processing of local move phase partitions, more moves would need to be per-

formed per phase to compensate for the greater communication overhead. Though

this will drive down the rate of convergence (thus increase the total number of

MCMC iterations required), the extent to which this occurs will be application

specific, as will be the tolerance for errors. The benefits of the greater degree

of parallelisation possible will overshadow the additional iterations required until

convergence in many applications, particularly in complex images (long iteration

consideration times means fewer iterations are required in each phase to overcome

the communication overhead, thus a smaller effect on the convergence rate) and/or

very large images compared to the average feature size (the more partitions that are

possible, the greater the degree of parallelisation and the greater the reduction in

121



runtime).

Although the periodic parallelisation method has been presented so far using

two dimensional examples, there is nothing preventing the method from applying

to multidimensional spaces. Having partitions of much greater size than the feature

size (including the area around a feature that impacts prior or likelihood calcula-

tions) is even more important in multidimensional applications as the area in which

modifications are permitted becomes a smaller proportion of the total area as the di-

mensionality increases. For example, in two dimensions if features are 1 unit across

and each square in the partition grid is 10× 10 units, the area in which the feature

centerpoints may be located such they do not intersect a partition boundary is 92

units2, 92

102 = 0.81 of the total partition area. If in three dimensions partitions are

cubes 10× 10× 10 and features are still 1 unit across in any dimension the available

area for feature centerpoints is only 93

103 = 0.729 of the total partition area. This is

not a problem provided partitions are kept large compared to the size of individual

feature and alternating between Ml and Mg phases is kept frequent.

5.2 Image Partitioning

Periodic partitioning is a means of allowing moves with local implications to be

performed in parallel by making the random proposal of moves less-random over

short time frames. If we are willing to make more substantial compromises in

exchange for a faster runtime we can partitioning the original image and processing

each partition as an independent image (note that this can be applied to higher

dimensional spaces as well, but for ease of explanation and visualisation we will

consider only two dimensional images for now). For example, consider positioning

circles on an image such as fig. 5.7 using the pixel intensity algorithm detailed in

section 2.5.2, and that for this image our expected number of circles is 55. If we were

to quarter the image and treat each quarter as a entirely independent image with an

expected number of circles of 55
4 = 13.75 (we can correctly assume the features are

122



Figure 5.7: Left: an image of immune cells. Right: the same image partitioned

into four smaller images. Image partitions have a much smaller statespace than the

parent image as both the dimensionality (number of features) and range of values

(image area) are reduced.

evenly distributed) how much faster would the simulation run? The runtime of any

single iteration depends on how the prior and likelihood values are calculated. If the

optimisations detailed in section 2.6 apply (each of the likelihood and/or prior values

used in considering a move proposal are derived by calculating the change of those

values caused by the move, taking constant time rather than time proportional to

the total number of features) then reducing the number of features in the model will

have little effect on the runtime-per-iteration. If those optimisations are not in play

then iterations on the smaller image may proceed substantially faster, depending

on the complexity of the prior/likelihood calculations. For instance a reduction

to 1
4 if the prior/likelihood scale linearly, 1

16

th if the prior/likelihood are of order

O(n2). Additionally, the statespace is much reduced as there are both fewer features

and a smaller area in which each feature may be located in the smaller image. It

will therefore take fewer iterations until the chain for the small image converges to

equilibrium.

Predicting, or even detecting if a chain has converged is unsolved in the

general case [15] and beyond the scope of this thesis (as is the determination of

the optimum model design and parameters for the rapid convergence to that equi-

123



librium). We will therefore measure and compare program performance using the

real-time it takes to propose a state that matches (with some arbitrary degree of ac-

curacy) the target model, this target having been determined by human evaluation

of the image, or in the case of autogenerated images from the source configuration

from which the image was derived in the first place. For all the following experi-

ments, a chain is considered to have ‘converged’ when the comparison between the

chain’s state and the target model meets the following (arbitrary) criteria:

1. 90% of features in the resultant model can be matched to corresponding fea-

tures in the target model with an error in their position and radius of less than

< 10% of their target radii.

2. The number of remaining, unmatched features make up < 10% of the expected

number of features in the image.

3. The number of features in the resultant model is within 10% of the number of

features in the target model.

Performance is be measured by the time taken for these criteria to be met. Since

testing these criteria involves additional computation that may vary depending on

the circumstances of the test (the number of subimages for instance) obtaining

an accurate average runtime is a two stage process. First, the average number

of program cycles (the nature of which change from one parallelisation method

to another) required to satisfy the matching criteria will be obtained by frequently

testing the state of the MCMC chain against the target model. Secondly the MCMC

program run will be repeated for that number of program cycles, but with the

comparisons tests against the target model omitted. It is only the results of this

second stage that will be timed, preventing differences in the number of chain-

target model comparisons performed distorting the results. To avoid unnecessary

complications with testing for the above criteria we will not use images that contain

features that overlap to any significant degree and the relevant parameters in the

124



Relative area 1 4 16
Expected # features 14 55 220
≈ time per iteration 9× 10−6 2.5× 10−5 2.3× 10−4

≈ iterations to converge 5× 103 5× 104 1× 106

Runtime, sequential (seconds) 0.045 1.25 230
Relative runtime 1 28 5111

Table 5.1: Timing values are taken from runs on a Q6600 processor. The image

used for for the relative area = 4 column was figure fig. 5.7(left). The image used

for the relative area = 1 column was one of the smaller images in fig. 5.7(right)

calculation of the prior term will be set to strongly discourage the generation of

models with overlapping features.

In table 5.1 we use this criteria for convergence to compare the use of the

section 2.5.2 algorithm on three images of differing size, each smaller image being a

subset of all the larger images.

Even with all things being equal, the number of iterations required until

‘convergence’ is highly variable, and is further modified by the the setup of the

simulation: the various parameters for the prior, likelihood, and Metropolis-Hastings

calculations and set of model-altering moves and their proposal probabilities. The

iteration count and runtime taken for convergence in table 5.1 should therefore be

viewed as providing an order-of-magnitude rather than a precise result.

For images similar to that in fig. 5.7, processing time scales with both n

(the expected number of features) and A (the area of the image). It is therefore

advantageous to consider four images each of area A
4 rather than a single image of

area A, as each of the smaller images may be processed in parallel. In the above

example it is worth partitioning even if multiple processors are not available, as the

time to process four smaller images works out a lot shorter than the time needed to

process a single larger image (i.e. 4 × 0.045 ≤ 4 × 1.25 ≤ 230). This suggests the

trivial strategy of carving up the initial (large) image into a number of subimages

that are then treated as independent images in their own right. The subimages can

125



then be processed in parallel (or not) and the resultant models combined.

Unfortunately in the general case this method cannot be applied without

losing the statistical properties that make MCMC attractive in the first place. There

are three main issues to consider:

1. Scaling. Assertions that are true on one scale may not hold on smaller scales.

For example, the distribution of features may be considered uniform across the

entire image, but on the scale of subimages may be clustered. Some subimage

may contain many features whilst others contain none. A single expected

feature density value inherited from a complete image in which features are

not uniformly distributed between the partitions will result in features from

different partitions being unevenly matched at best, or many spurious results

at worst.

2. Boundary anomalies. Features intersecting the image boundary are prone to

cause anomalous results as potential features found in one partition will not

interact with potential features from another. A feature may be matched

twice (once each side of the boundary), incorrectly, or not at all. Duplicate

and mismatched features would need to be reconciled outside of the MCMC

method.

3. Model Confidence. One of the key elements to the MCMC method when

compared to similar methods is its capability of providing a confidence esti-

mate in the models it produces. Repeated sampling over a long, converged,

MCMC chain will yield many possible models. The frequency with which sim-

ilar models crop up provides a probability for that interpretation of the image.

Heuristics added to solve the previous two points may impose biases in the

results and invalidate such statistical analysis.

126



5.3 Intelligent Partitioning

So far we have avoided introducing anomalies as a consequence of parallelisation

by parallelising the internals of the MCMC iterations or by overlapped MCMC

iterations whilst remaining in the context of a single complete image. However,

there is a subset of applications with which we can be more direct in our approach

to parallelisation. If the target features are sufficiently disperse and identifiable,

it may be possible to find some completely different algorithm to ‘pre-process’ the

image and segment it into sub-images such that features do not intersect (or even

approach) the subimage boundaries. Note that features must be far enough away

from the subimage boundaries to avoid their presence influencing the results of any

neighbouring subimage. Assuming confidence in the segmentation provided by this

pre-processor, each partition may now be treated as a independent image that can

be processed on a separate thread, processor or machine. Combining the results

from each partition is trivial, a simple union of the located features is sufficient as

there will be no features crossing or approaching the partition boundaries.

A good pre-processor must be both reliable and fast. The validity of this

method hinges on the user having complete confidence that the pre-processor will

not create subimages that whose boundaries intersect with any potential features.

As for speed, the purpose of partitioning the image is to allow MCMC processing

of different parts of the image to take place in parallel. Any improvements in

runtime resulting from this parallel processing must take into account the initial

time required by the pre-processor to generate the partitions to be performed in

parallel, there is no point using intelligent partitioning if the pre-processor uses up

all the time that would be gained from parallel-processing the partitions.

Creation or selection of a pre-processor must be done on a case-by-case basis

as so much is dependant on the characteristics of the datasets to be processed. In

general though, a pre-processor will be a two step process. First some filter will be

applied to the image data to identify ‘whitespace’, areas that are certain to be devoid

127



of interesting features. Next lines (of as simple a form as possible) are drawn through

continuous areas of whitespace such that the image is partitioned, hopefully evenly,

into many pieces each containing some ‘non-whitespace’ pixels. Depending on the

application this may be some trivial algorithm as in section 5.3.1 below, or some

more complex off-the-shelf technology, possibly even a simply MCMC or genetic

algorithm. In these latter cases we assume that finding non-feature areas bisecting

the image is substantially easier and faster than identifying the details of specific

features. Assuming that the image data permits a suitable pre-processor, and that

such a processor has been found/constructed, the major difficulty with intelligent

partitioning is the derivation of suitable prior assumptions for the partitions (issue

item 1). As commented earlier, assumptions that hold on one scale may not apply

when restricted to looking at a subset of the image. If the feature density is assumed

to be constant throughout an image then the partitions will inherit this value thus

assigning potentially inaccurate prior information to some partitions. The degree to

which this matters depends on how the likelihood and prior terms are balanced and

whether enough iterations will be performed on the most feature-dense partition to

allow full convergence.

Ideally the estimate for the properties like the feature density should be

mechanically generated based on the actual image data, in which case the same

mechanism used to obtain the estimate for the complete image should be applied to

the partitions. For example, a good estimate for feature density in certain cell sample

images can be obtained by the use of a threshold filter that reduces a greyscale or

colour image to binary image. For every pixel (x, y) in the image G we calculate

the pixel’s colour intensity (as given by the function I(x, y)) and test if it is greater

than some threshold value ρ i.e.

∀(x, y)εG : I(x, y) > ρ (5.9)

If yes the corresponding pixel in the binary image is coloured black, otherwise it

is coloured white. Assuming only the target cells have a colour intensity exceeding

128



ρ it is now easy to estimate how many circles are in the image, as we count the

number of black pixels to give us the area covered by cells, then divide this by the

expected area of an average cell. Since the average cell radii rµ is already assumed

to be known (it is required as one of the parameters to calculate the prior term, see

section 2.5.1) the expected area of an ‘average’ cell will be

πr2µ (5.10)

thus the estimate for the number of cells in the image can be expressed as

|{∀(x, y)εG : I(x, y) > ρ}|
πr2µ

(5.11)

Note that we may use rµ in this expression as unlike the estimated circle density

(λ) the expected circle radii can be assumed constant throughout all partitions (for

these images at least).

Using a pre-processor such as eq. (5.11) to establish prior values devolves

some of the operations of the original MCMC algorithm to this pre-processor, using

the (presumably) faster algorithm to reduce the statespace the Markov Chain will

need to explore. Complete confidence in the reliability of the pre-processor is re-

quired, thus restricting its use to situations where the presence, or more importantly

the absence of features can be ascertained. Care must also be taken in the struc-

turing of the MCMC problem, for example if a means to mechanically determine

the expected number of features is not available, a pre-processor to crop whitespace

from an image is safe if the expected number of features is expressed directly, but not

if it is in terms of features per unit area. The reverse holds true if the pre-processor

partitions instead of crops, although in either case determining the feature count

mechanically as in eq. (5.11) would be preferred. Assuming that the subimage par-

titioning is correct and that appropriate prior variables can be obtained, the time to

obtain a good match for the image can potentially be substantially reduced, yielding

MCMC results much faster than any of the parallelisation options explored so far.

The degree of parallelisation (and hence performance improvement) of this method

129



is not necessarily under the user’s control. Being able to split the image into subim-

ages requires the features of the complete image to be arranged in a convenient

way, so the number, size and feature-density of subimages may not be predictable.

Consequently the program’s runtime for any given image is also unpredictable.

In summary, intelligent partitioning uses some trusted algorithm (the details

of which will be application specific) to divide an image into partitions that can be

processed independently. Under favourable conditions a large image may be split

into multiple small images, each of which can be processed much faster than the

original yet with results that can be trivially combined to apply to the original,

undivided image. The required conditions are:

1. That the image can be mechanically divided into partitions such that no fea-

ture intersects the partition boundary

2. A fast and efficient algorithm exists to conduct this partitioning

3. The features are spread out in the image, and so will not all occur in the same

partition (the more evenly spread amongst the partitions the features are the

greater the speedup)

Unfavourable images may not offer any parallelisation opportunities at all, and will

incur the unmitigated expense of a pre-processor attempting to split the image.

This method is therefore highly sensitive to the specific application: the expected

distribution of features in the image and the ease by which non-feature areas can

be identified. Note that as with periodic partitioning, this method applies not

just to two dimensional images but multidimensional areas as well, although more

dimension that are present the more challenging the task of partitioning will be.

5.3.1 Example

Figure 5.8 (top-left) shows a number of latex beads in a Petri dish. Due to the

clumping of the beads and the ease by which the beads may be distinguished from

130



Figure 5.8: Intelligent Partitioning in action. Top left: original image of latex

beads in a Petri dish. Top right: threshold filtered image. Bottom left: intelligent

partitioned image, post MCMC processing. Bottom right: Intelligent partitioned

image of white blood cells

their surroundings this makes a good candidate for the application of intelligent

partitioning. We apply a threshold filter as in eq. (5.11) where ρ = 0.5 and pixel

intensity values in the range 0..1 to identify the likely features (fig. 5.8, top-right),

and then partition the image by scanning the filtered image for rows or columns

that are completely empty. The partitions are made on columns/rows equidistant

between the closest columns/rows containing pixels(s) that passed the threshold

criteria (fig. 5.8 bottom-left), the entire partitioning procedure taking negligible

time compared to the subsequent MCMC processing. From applying eq. (5.11) to

this image we know that there are 48 features. Were this figure only provided as part

of the prior knowledge, we might be forced to assume the distribution of features

131



A B C
Area (pixels2) 2.13× 105 3.14× 104 1.33× 105 4.82× 104

Relative area 1 0.147 0.624 0.226
# features (visual) 48 6 38 4

# features (constant den.) – 7.08 29.97 10.86
# features (thresholding) 46 4.9 38 3.1
≈ time per iteration 4× 10−5 1.9× 10−5 4.3× 10−5 2.0× 10−5

≈ iterations to converge 27 000 4 000 22 500 900
Runtime (seconds) 1.08 0.08 0.97 0.02
Relative runtime 1 0.07 0.90 0.02

Table 5.2: Results of intelligent partitioning on fig. 5.8. Timing values are taken

from runs on a Q6600 processor. Number of iterations and runtime required aver-

aged over 20 runs.

was uniform, thus allocating an expected feature count of 7 to partition A, 30 to

partition B and 11 to the partition C. Fortunately this image contains no elements

that can be confused with actual features when using the threshold filter, so we may

calculate an estimate for number of features (λ) based on eq. (5.11). The results

using this information are in table 5.2: If at least 3 processors are available the

intelligent-partitioning program runtime is the longest time taken to process any of

the partitions (in this case 0.97), as combining the results for the three separate

partitions is trivial. With only two processors load balancing should be used, which

for this example gives the same runtime of 0.97 (as 0.07 + 0.02 < 0.97).

An irregular partitioning as in fig. 5.8 (bottom right) imposes little addi-

tional overhead on the MCMC algorithm once the partition lines have been drawn.

The likelihood and prior calculations will be oblivious to the partitioning as the

pixel data for neighbouring partitions will be blanked out (this is safe to do as the

validity of intelligently chosen partitions depends upon the presumption that the

contents of neighbouring partitions are irrelevant to the consideration of the current

partition). Since there will be no pixel data for beyond the partition boundary, fea-

tures will not be placed there by the MCMC algorithm. Should additional checks

132



be necessary to keep all features within the partition bounds, they will take place

when changes to the model are proposed, before the prior and likelihood calculation

(that dominate runtime) take place. The only difficulty will be the creation of such

irregular partition boundaries and the time this takes, though since detecting where

features definitely do not exist is easier than identifying with certainty the position

and properties of features, a range of comparatively fast segmentation algorithms

(some of which may themselves be based upon MCMC) will generally be available.

5.4 Aggressive Partitioning

So far we have avoided posing any substantial threat to the statistical validity of

parallelisation. Speculative moves and chains are purely implementation-based mea-

sures that do not affect the MCMC algorithm, periodic partitioning attempts to

sidestep problems with the statistics, and intelligent partitioning uses some other

algorithm to safely partition the image. There are some applications where MCMC

is a convenient means of structuring a solution to some problem, but the statistical

robustness offered by MCMC is not strictly required - obtaining a ‘reasonable’ an-

swer promptly is more important than waiting for a statistically pure result. In this

section we address methods which do just that. To be clear, unlike the methods

discussed in previous chapters the following methods are not statistically equivalent

to conventional MCMC and so are not guaranteed to eventually converge on the tar-

get solution. Though it depends on the application, these may produce ‘reasonable’

solutions albeit with the potential for anomalies and biases for certain type of con-

figurations. They are not expected to explore multiple interpretations, and should

be considered only if an MCMC-like method is required to obtain an approximate

solution.

133



5.4.1 Blind Partitioning

The intelligent partitioning method described in section 5.3 uses some application

specific algorithm to partition an image then treats each partition as a completely

separate image. Certain criteria (depending on the specifics of the application)

have to be met in order for suitable prior variables for each partition to be derived

from those of the original image. For example, the determination of the number of

cells in an image using eq. (5.11) requires the cells to be of greater intensity than

all other features in the image. Aside from the partition-prior criteria, intelligent

partitioning also relies upon the existence of an efficient partitioning pre-processor,

and for features in the image to be sufficiently dispersed as to allow meaningful

partitioning. To obtain the full benefits of the partitioning, the partitions must be

of approximately equal size and each contain approximately the same number of

features each. These restrictions severely limit where intelligent partitioning may

be employed, for example the features in fig. 5.7 are too densely packed and there is

insufficient differentiation between target and non-target pixels for useful partitions

to be made.

A simple adjustment to this method is to do away with the partitioning

pre-processor and simply partition the image in some arbitrary manner, without

worrying about bisecting potential features (thus either greatly simplifying the re-

quirements of the partitioning pre-processor, or doing away with it altogether).

When the time comes to combine the results for each partition we can employ some

heuristics to attempt to procedurally ‘patch up’ any anomalies resulting from the

partitioning. To do this in a systematic fashion whilst minimising anomalies we pro-

pose there be overlap between each partition such that the largest expected feature

will fit entirely inside, as in fig. 5.9 (top left). In this figure the thick dotted line

represents the conventional partition boundary, whilst the thin dotted line marks

the actually boundary used when the partition does MCMC processing, fig. 5.9 (top

right). When merging the resultant configurations, features with their centerpoint

134



in the non-overlapping regions are automatically accepted, whereas features with

centres in a overlapping region will need comparing with nearby features from the

other partition(s) - fig. 5.9 (top right). If the MCMC algorithm applied to the

partitions yielded good results, such features should appear in both partitions with

minimal differences and so can be merged with little difficulty - fig. 5.9 (bottom

left). Features without a counterpart from the other partitions are disputable, you

may wish to accept or discard them depending on whether it is more important

to avoid false-positives or not missing potential features. Either way, this method

is more consistent, reliable and less context sensitive than intelligent partitioning

(which may fail to partition in useful manner, i.e. if all features are grouped in

one place). It is also competitive in terms of overhead, the merging of the partition

results is a deterministic processes that considers each feature in turn and (at worst)

compares it with all the other features from each of the partitions’ results (a O(n2)

process with the number of features across all the partitions). The time this takes

is negligible compared to the time required to run perform the many thousands of

MCMC iterations to produce the results in each partition.

The trade-off for the speed and simple implementation of blind partitioning

is the reduction in confidence in the final result. Unlike intelligent partitioning and

non-partitioned MCMC the statistical assurances accompanying MCMC cannot be

applied to the final model produced for the image. Anomalies may occur along the

partition boundaries if neighbouring partitions do not agree on results in the overlap

between partitions. Anomalies may also occur in the interiors of the partitions if

the prior values applied to the partitions are not ‘accurate’. Though this method

will work well when the MCMC simulation reliably finds a single interpretation for

each feature in every partition, should multiple interpretations for a feature arise

in an overlap region anomalies (false-positives, unmatched features) are practically

guaranteed as there will not be a simple way of deciding which interpretation is

correct (if indeed it is possible to detect that the features from the multiple partitions

135



Figure 5.9: Blind Partitioning in action. Top left: original image of latex beads in

a Petri dish, with partition boundaries marked. Top right: Image partitions after

MCMC processing. Bottom left: Trimmed partition models overlaid. Bottom

right: Merged model for the image.

refer to the same entity in the original image). Of course, the use of partitioning

and the recombination heuristic make it impossible to obtain the differing model

alternatives along with their relative probabilities, of of the unique benefits of normal

MCMC.

The benefits of blind partitioning thus depend on the specifics of the ap-

plication being processed. Under favourable conditions (features are unambiguous,

prior information is determined procedurally from image data) blind partitioning

may result in dramatic reductions in runtime whilst still producing results free of

136



any obvious anomalies from the partitioning. In unfavourable conditions the run-

time benefits may be less impressive (if workload does not end up split between the

partitions/processors) or with the presence of many anomalies (if prior information

for the partitions was incorrect, or if features were ambiguous and open to multiple

interpretations).

Example

Using the same example as in section 5.3.1, the image is first split into four equal

sized areas as shown by the dotted lines in fig. 5.9, top left. These areas are then

expanded to the solid lines to fully enclose any feature whose centre was in the

original area. In this case we have extended each partition boundary edge by 1.1

times the expected circle radius, easily encompassing such features as there is very

little variation in the radii of the latex beads. After determining the expected

number of circles in each partition using eq. (5.11) the MCMC algorithm was applied

to give the results in top right of fig. 5.9. Circles not completely enclosed in the

partition (features whose centre is not inside the dotted line marking the simple

quartering of the image) are deleted from each partition’s model. The union of the

partition’s models is then taken and any circles centred in the overlap area that

are in close proximity (centerpoints within say 5 pixels of each other) are merged

(replaced with a circle with centerpoint and radii are the average of the original

circles).

A comparison between processing the complete image and the partitions

is given in table 5.3. The runtime of the whole procedure (if four processors are

available) is approximately equal to the longest time taken to process a partition as

the merging of the partition models is takes negligible time compared to thousands

of MCMC iterations. In the example the runtime was reduced to 27% of the original,

with no apparent anomalies present as a result of the partitioning. Note that there

is an uneven distribution of features between partitions, thus workload between the

137



A
B

C
D

A
re

a
(p

ix
el

s2
)

2.
13
×

10
5

6.
42
×

10
4

6.
42
×

10
4

6.
42
×

10
4

6.
42
×

10
4

R
el

at
iv

e
ar

ea
1

0.
3

0.
3

0.
3

0.
3

#
fe

at
ur

es
(v

is
ua

l)
48

18
7

17
14

#
fe

at
ur

es
(c

on
st

an
t

de
n.

)
–

14
14

14
14

#
fe

at
ur

es
(t

hr
es

ho
ld

in
g)

46
18

.0
7.

02
17

.9
15

.3
≈

ti
m

e/
it

er
4
×

10
−5

2.
84

4
×

10
−5

2.
52
×

10
−5

2.
97
×

10
−5

2.
89
×

10
−5

≈
it

er
s

27
00

0
4

60
0

3
40

0
9

60
0

4
10

0
R

un
ti

m
e

(s
ec

on
ds

)
1.

08
0.

13
0.

09
0.

29
0.

12
R

el
at

iv
e

ru
nt

im
e

1
0.

12
0.

08
0.

27
0.

11

T
ab

le
5.

3:
R

es
ul

ts
of

bl
in

d
pa

rt
it

io
ni

ng
as

sh
ow

n
in

fig
.

5.
9.

T
im

in
g

va
lu

es
ar

e
ta

ke
n

fr
om

ru
ns

on
a

Q
66

00
pr

oc
es

so
r.

N
um

be
r

of
it

er
at

io
ns

an
d

ru
nt

im
e

re
qu

ir
ed

av
er

ag
ed

ov
er

20
ru

ns
.

138



processors. Images where features are more evenly distributed may be processed

faster, whereas images where features are heavily clustered may not obtain as much

benefit from blind partitioning.

5.4.2 Approximating the Initial Model

It can be noted that while the MCMC method requires a initial model, in tests so far

we have always set this as a random configuration of features. In principle this model

may be chosen from anywhere in the statespace. The closer the initial model is to

the optimum state (the state with the maximum posterior probability), the faster

the simulation can be said to have converged (though unless the simulation is left to

run for long enough to conduct a more complete examination of the statespace, this

convergence may well be to a local not global optima). If we can quickly generate

a good guess for the initial model we can shave a substantial amount of time off

the runtime. Even an initial model with obvious flaws will probably prove better

than starting from a random configuration. How then, should we obtain such a

guess? One option is to use the blind partitioning method to obtain an initial

model, and then run conventional MCMC on the result to clear out any remaining

anomalies. The difficulty here is that we have no idea how may conventional MCMC

iterations will be required, although a solution to this would need to be found

anyway, even for the conventional application of MCMC (detecting convergence in

the general case, and predicting how long before a MCMC simulation converges are

unsolved problems beyond the scope of this thesis). In practise this will require

experimentation and experience (“it takes X iterations to properly match image A,

B, and C, so it will probably take the X iterations to match the similar image D”).

The more subtle difficulty is that if blind parallelisation imposes a strong bias on how

the configuration is formed, we may not run the final MCMC chain for long enough

for it to escape this biased interpretation. There will certainly be the temptation

to stop the simulation ‘early’ since it will be quickly producing ‘reasonable’ models

139



for the image (just not necessarily the optimum). The use of (MC)3, specifically

intended for aiding the escape of local optima (see section 2.4.3) is recommended.

5.5 Summary

This chapter has explored how the Markov Chain Monte Carlo algorithm can be

adapted to process large images by treating them (temporarily or not) as containing

a collection of smaller images that may be processed more-or-less independently.

The methods examined fall into two categories: 1) those that will (theoretically)

have a negligible effect on the end-result of the simulation and 2) those that will

produce a result that is ‘good enough’ for some applications but lack statistically

backing or guarantees. If there are many features in an image, considering only a

subset of the image at a time results two reductions in statespace complexity: each

individual feature will be restricted to a much smaller area and there will be fewer

features to consider at a time. The time saving is potentially huge, but best results

require effective and reliable pre-processors and/or post-processors specific to the

application.

The partitioning techniques detailed in this chapter have been expressed in

terms of a two-dimensional application, however the methods also apply to applica-

tions of three dimensions and higher. Whilst the overhead costs for partitioning and

merging may differ (e.g. detecting collisions between features in three-dimensional

space is more expensive than in two dimensions), the end result of halving the

statespace and considering each half separately will be the same. The only signif-

icant difference between two and three dimensional implementations is the added

complexity/difficulty in constructing an efficient pre-processor for the intelligent

moves.

140



Chapter 6

Conclusions and Future Work

6.1 Supplementing Existing Parallelisation

Speculative moves, chains, and even periodic partitioning may all be utilised in

conjunction with each other and existing MCMC parallelisation schemes, such as

(MC)3 (see section 2.4.3). For any scheme involving multiple chains, one simply

replaces the single processor machines performing each chain with a multicore/mul-

tiprocessor machine, and implements speculative moves (and optionally speculative

chains) on each chain. In the case of (MC)3 the cold chain will get the most benefit

from the speculative moves, as the ‘hot’ chains are more accepting of move pro-

posals therefore will trigger the use of their speculative move less frequently. The

net effect of combining speculative moves/chains with (MC)3 is hard to predict or

evaluate as it depends on the importance of the hot chains in improving mixing

and the exploration of the statespace, but if speculative moves/chains reduce the

runtime over a sequential implementation, bringing speculative execution to (MC)3

can only improve the rate at which a solution is obtained. Periodic parallelisation

can also be combined with (MC)3, either using multiple machines in the cluster to

process each partition in each chain, or just keeping one machine per chain and

using multithreading to process the work of the various partitions.

141



Speculative moves, chains, and periodic parallelisation also complement the

embarrassingly parallel view of Markov Chain parallelisation (section 2.4.1) as they

function to reduce the time until convergence, traditionally the prohibitive feature

of Markov Chain Monte Carlo. Once convergence has been reached on each of the

chains the remaining runtime for acquiring a set number of samples scales normally

with the number of chains. The more direct forms of image splitting (intelligent and

blind splitting) are best viewed as a means to simplify the problem prior to proper

MCMC processing. Given the substantial benefits of dealing with small subsets

of a large image, such a method should be used if at all possible when dealing

with models involving large number of features, if the loss of statistical certainty of

eventual convergence on the optimal solution is acceptable.

6.2 Guidance for Implementers

When developing an MCMC algorithm, readers are advised to incorporate the par-

allelisation methods described in this document into their planning and designs

from the outset, as some of the parallelisation and optimisation techniques place

constraints on the MCMC implementation. (for example, it must be possible to cal-

culate what the prior and likelihood of a state would be after some proposed move

is applied to it, without actually applying the move or making any other modifica-

tion to the existing state - see page 64). Whilst image-splitting based techniques

may easily be adapted to a MCMC implementation through the addition of pre

and post processing operations, speculative moves and speculative chains have very

specific requirements. For instance, it must be possible to treat potential moves as

discrete objects whose processing and/or application may be deferred or prevented,

and that can be evaluated without any modification (even temporary) of the model

representing the MCMC chain’s state.

To avoid future scientists reinventing the wheel, as the example applica-

tions featured in this document were constructed and tested the parallelisation, core

142



MCMC mechanics, boilerplate, performance measuring and recording functions were

abstracted out into a extensible framework called pMCMC, which is documented in

appendix A. pMCMC automates the implementation of the parallel MCMC meth-

ods described in chapters 3 and 4 and some of those in chapter 5. It also provides

(through static code and autogeneration) most input/output functionality that is

required for a basic MCMC application, including for the handling of all the prior

and likelihood that are needed for determining the posterior probability, the move

proposal probabilities, and any ‘tweak’ values that can be used to fine-tune the ex-

ecution of the parallelisation. This allows developers using the pMCMC framework

to focus on the specifics of the MCMC algorithm relating to the program’s applica-

tion - the specification of the simulation state and the calculation of the prior and

likelihood probabilities. Appendix B shows an example implementation of one of

the section 2.5 circle-finding algorithms and appendix C demonstrates the runtime

usage of this application.

When faced with either implementing a new MCMC application or adapting

an existing one, the first matter to consider is whether some form of image splitting

is applicable to the application and datasets that are expected to be processed,

and whether image splitting is acceptable considering the purpose to which the

resultant models will be put. Depending on the form of image splitting employed

and the information that can be gathered about the input data before employing

MCMC, image splitting may or may not introduce anomalies or result in uneven

matching throughout the dataset. In almost all cases, image splitting will not result

in statistically ‘pure’ results though there is the potential for substantial reductions

in runtime, even with a limited number of processors. In many cases the only way

to determine if the potential loss of reliability and accuracy is worth the reduced

runtime is to try it and see.

When it comes to the actual MCMC code, there will be considerable variation

in the types and behaviours of various MCMC simulations, and different paralleli-

143



sation methods will yield significantly different results depending on the properties

of the simulation and hardware in question. If the MCMC algorithm has been

implemented using the pMCMC framework, determining the appropriate parallel

processing methods to employ is simply a matter of trying each of the paralleli-

sation options in turn and observing the results (the parallel settings to use are

specified either on the command line or in the XML job file defining the simulation

to run). If pMCMC is not being used, a selective approach to which parallelisa-

tion methods are implemented is desirable to avoid unnecessary work. Analyse the

workings of each move type and determine the relative time spend in the prior cal-

culations, likelihood calculations, and move proposal construction/application. If

the bulk of the time is spent in the prior and likelihood calculations and the time

for the prior calculation is ≈ the time for the likelihood calculation, consider per-

forming the calculations for the prior and likelihood in parallel as this can halve the

time spent calculating them. Unless a high proportion of iterations are accepted,

speculative moves will provide a reliable and predictable performance improvement

(see section 3.3 for best-case estimates based upon move rejection rate). Speculative

chains should be implemented only if there are move types whose proposals involve

substantially more processing time than the other move types (see section 4.4 for

an idea of how significant the differences in move processing time should be before

considering speculative chains). Periodic parallelisation will yield good results so

long as there are have large datasets containing relatively small features that can

be modified with localised moves. Unlike image splitting, periodic parallelisation

is statistically sound (given sufficiently frequent phase switching) but in general

slower than the direct image splitting methods. If image splitting has been deemed

acceptable, employing periodic parallelisation as well would be redundant.

144



6.3 Thesis Summary

The work described in this thesis has been concerned with the parallelisation of

a class of algorithms known as Markov Chain Monte Carlo. The statistical basis

for this type of algorithm prevents the simple application of traditional parallelisa-

tion methods, and most existing multiprocessor implementations originate from the

statistics discipline with the intent to improve the rate of chain convergence. This

thesis address the problem from the high performance systems discipline, and seeks

to spread the computational burden across multiple processors and/or machines.

To concisely summarise the contributions of this thesis:

• Two new methods have been presented that allow Markov Chain Monte Carlo

algorithms to take advantage of multi-core and multi-processor machines.

Termed ‘speculative moves’ and ‘speculative chains’, they are described and

evaluated in chapters 3 and 4 respectively. Being purely implementation-based

changes, the end results are unaffected whilst the runtime of typical MCMC

programs can be reduced by ∼ 40% by using just two processes.

• A new modification of Markov Chain Monte Carlo termed ‘periodic paralleli-

sation’ has been proposed, that permits partial parallel processing on a large

scale with a limited (and statistically acceptable) impact on the results. This

method is covered in section 5.1.

• A number of methods have been considered that can reduce the runtime of

MCMC applications concerned with image processing problems by considering

portions of the image (temporarily or permanently) as independent images

in their own right. Whilst lacking the statical certainty accompanying the

other parallelisation methods presented, the potential runtime improvements

are substantially higher whilst giving results that will be reasonable for many

applications. These methods are explored in sections 5.2 to 5.4.

145



• The new methods proposed in this thesis have been fully implemented on a

number of different machine architectures, and the suitability of these archi-

tectures for these new approaches demonstrated and compared. The practical

results and comparisons can be found in the chapters concerning each of the

methods.

• A means of predicting the runtime of MCMC programs using our speculative

moves (section 3.3), speculative chains (section 4.3.1) and periodic partition-

ing methods (section 5.1.1) have been constructed. The remaining methods

presented in this thesis have had practical examples conducted demonstrat-

ing the typical runtime improvements that can be expected (see section 5.2

and sections 5.3.1 and 5.4.1). This provides: (i) increased certainty in real-

world MCMC applications, (ii) a means of comparing alternative supporting

architectures in terms of value for money and/or performance.

• A programming framework that automates much of the construction of MCMC

programs has been developed. The parallelisation methods of speculative

moves, speculative chains and periodic parallelisation can automatically made

available with no extra work necessary from the the implementer. The usage

of this framework is described and demonstrated in the appendices.

After the introductory chapter described the layout of this thesis, its primary

contributions, and introduced the terminology used throughout, chapter 2 presented

the background research relevant to the contributions of this thesis. This included an

explanation of the Markov Chain Monte Carlo method and a discussion of how and

where it may be applied. A summary of the existing methods of improving MCMC

using parallel processing was presented with examples, along with an explanation

of the conventional means of parallelising the MCMC algorithm and how these

methods differ from the novel methods presented in this thesis. The chapter went

on to establish a specific context for the work presented in the rest of the thesis

146



by describing in detail two MCMC applications for the segmentation of circular

formations in a bitmap image, and in doing so further explaining the details of

the most general purpose form of the MCMC algorithm (the Metropolis-Hastings

transition kernel). Some simple non-parallel optimisations were also covered here

for the benefit of readers implementing their own MCMC application. The example

applications shown here also served as the testbed for the parallelisation methods

presented in later chapters.

Having provided background and context to MCMC applications in chap-

ter 2, chapter 3 presented the first contribution of this thesis, the parallelisation

method ‘speculative moves’. Once the rational for this method and the revised

MCMC implementation were explained, a formula for calculating the predicted run-

time whilst using speculative moves was constructed. The speculative moves method

was then tested on the practical example programs presented in chapter 2 using a

number of different hardware platforms, and these results are compared with those

predicted from the mathematical formula.

The logical development of speculative moves, termed ‘speculative chains’,

was covered in chapter 4. Since a mathematical formula describing the benefits of

this method quickly becomes unmanageably complex when attempting to describe

anything but the simplest situations, a simulator was constructed and used to predict

the runtimes that can be obtained using speculative chains. As with speculative

moves, speculative chains was tested on the practical examples from chapter 2 using

a number of hardware platforms.

Periodic parallelisation and a variety of image-splitting methods were pre-

sented in chapter 5. Unlike speculative moves and chains, the methods presented in

chapter 5 modify the basic MCMC algorithm in ways that are not be appropriate for

all applications. However, with suitable applications, careful implementation and

thorough testing these parallelisation methods can produce a substantially larger

reduction in runtime that either speculative moves or chains would be capable of.

147



The software developed for this thesis consists of a framework with which

to construct MCMC applications quickly and efficiently, without the implementer

needing to write repetitive boilerplate code. Applications constructed with this

framework (termed pMCMC) can implement the three major and new parallelisa-

tion methods presented by this thesis with minimal work from the application im-

plementers. An overview of the pMCMC framework and its benefits to any MCMC

implementers occupies appendix A. To demonstrate the ease by which fully-featured

MCMC applications may be developed using this new framework constructed for

this thesis, appendix B contains an example implementation using pMCMC on one

of the circle-finding methods from section 2.5. Finally the usability of the applica-

tions built with pMCMC is shown in appendix C, where an example of how end-users

interact with a pMCMC program at runtime is provided.

6.4 Limitations and Future Work

Although the results from chapters 3 to 5 show clear benefits from the various

methods, the exact improvements obtained will depend on the specific characteristics

of the application to which they are applied. Potential factors that may impact the

final runtime include:

1. The time per iteration

2. The time per phase of each iteration (i.e. time to calculate the prior, time to

calculate the likelihood)

3. The move rejection rate

4. The proportion of different types of move (Ms, Mf , Mg, Ml etc).

5. The performance characteristics of different parts of the program, dependant

on the hardware, operating system, and compiler/compiler settings utilised.

148



6. Caching issues, with SMP parallelisation methods conflicting simultaneous

memory access request could cause problems, potentially memory thrashing.

Further exploration of the consequences of changing these factors on an MCMC

program’s runtime is desirable, particularly with the aim of creating or improving

means of predicting runtimes (either though formulae or fast simulators such as from

section 4.3.1). To date all such factors have been treated as constant over a simu-

lation run, more accurate runtime predictions may be possible if the consequences

of varying these factors at runtime are examined. For example, if starting with a

underpopulated initial state the time per iteration would likely increase as more

features are located and the size of the model (and statespace) increases. The move

rejection rates are also very likely to change as the simulation nears convergence (a

‘near perfect’ state is going to reject more moves than a random initial state), the

benefits of the speculative methods therefore change throughout the simulation.

The simulations used to predict results in chapters 3 and 4 can be refined to

more accurately reflect the implementation. For example, the simulator from sec-

tion 4.3.1 should be updated to account for non-negligible duration state-cloning.

Predictions for specific applications and platforms would also be enhanced by con-

sidering the varying costs of mutex operations over different hardware and software

systems.

Another issue not fully addressed is determining the most appropriate size of

partitions when using periodic partitioning (section 5.1). The smaller the partitions

the greater the benefits from the parallel processing in Ml phases (assuming suffi-

cient processors), however a smaller partition size also means a greater proportion of

the image is unable to be modified during that Ml phase (as features that intersect

with any of the partition boundaries may not be modified, and no modifications

can be proposed that would cause a feature to intersect with a partition boundary),

potentially delaying convergence of the chain. There is also the option of using

speculative moves on the work done in each partition, as an alternative to shrinking

149



the size of each partition. It would therefore be useful to determine the extent to

which these concerns and options conflict in some typical MCMC applications, and

how to arrive at an optimum compromise.

One matter particularly relating to the image splitting methods of chapter 5

is that of load balancing. There is no guarantee that subimages will require equal

amounts of processor time to process, in which case the order in which subimages

are scheduled for processing may greatly effect the final runtime. Load balancing is

also a concern for all methods in heterogeneous multiprocessor environments (such

as in clusters with processors of different capabilities). Task scheduling in such an

environment is an active research area, one which both the implementation and

predictions of all methods from chapter 5 could benefit.

Since the efforts here have been split between constructing the pMCMC

framework, implementing the parallelisation methods and implementing and fine-

tuning the programs for the section 2.5 algorithm, it was not possible to implement

and test a wider range of MCMC algorithms and applications. With the pMCMC

now providing parallelisation and support code it is hoped that implementers with

a specific expertise in MCMC algorithms will construct pMCMC applications of

greater complexity and scope than was possible for this thesis. It would also be

interesting to examine how different the differing memory footprints and access

patterns impact the runtime of the various parallelisation methods. Another area for

exploration is determining the extent to which more traditional MCMC programs

(integral approximation being the classic example) can benefit from speculative

moves and chains.

Finally there are opportunities for expanding the pMCMC framework. Cur-

rently the framework provides Move classes implementing move operations for models

consisting only of an unordered collection of independent features. A set of classes

to facilitate the use of models with inter-feature relationships (features organised in

binary trees, for instance) would be helpful for would-be-developers for applications

150



that exhibit non-independent features. Support for distributed execution across

mediums other than MPI may be useful, and a more functional user interface would

make the end-user simulators more accessible. More important would be in-built

support for additional MCMC variants, (MC)3 for instance. Due to the internal de-

sign of pMCMC adding periodic parallelisation-like variants such as (MC)3 should

be a relatively easy undertaking.

6.5 Concluding Remarks

This work has sought to bring together the disciplines of statistics, image process-

ing and high performance systems. A number of parallelisation strategies have been

devised and tested, most of which will compliment existing methods targeted at im-

proving the rate of simulation convergence. Although the methods that are applica-

ble and the performance improvements that can be obtained will vary depending on

the particulars of the specific application and implementation, the estimates for the

best possible reductions in runtime along with real-world examples obtained (using

a variety of hardware architectures and representing a number of potential MCMC

application characteristics) provide a good indication of whether a particular ap-

plication will benefit. In some cases a fair estimation of the improvements can be

obtained.

It is hoped that the pMCMC lowers the barrier of entry for would-be MCMC

implementers, and facilitates more research into MCMC methods and applications.

It is the intent that the parallelisation options provided with pMCMC will allow the

practical implementation of more end-user MCMC applications by making infeasible

and uneconomical methods feasible, and improve the efficiency of those MCMC

applications already discovered.

151



Appendix A

The pMCMC Framework

Though not the main focus of this thesis, in the process of implementing and evalu-

ating the aforementioned parallelisation methods a framework for the rapid develop-

ment of MCMC applications was developed: pMCMC. An example implementation

using this framework is given in appendix B and the runtime usage shown in ap-

pendix C. The purpose of this framework is to separate the task of constructing and

tuning an MCMC simulation for a specific application from the task of implementing

the parallelisation methods presented in this thesis. As a side-effect, the implemen-

tation of many tedious and/or error-prone aspects of an MCMC application have

also been automated, including but not limited to user interaction (via XML and

a variety of frontends), sanity checking, the Metropolis-Hastings kernel and generic

aspects of the MCMC algorithm.

In section A.1 we briefly describe the MCMC method and its uses. Sec-

tion A.2 gives an overview on how the pMCMC framework is used to create an

MCMC application. Section A.3 describes some of the internal design structure

and decisions that were made. Whilst for the most part users of pMCMC will not

interact with these components, a commentary on them may be of interest to those

considering extending pMCMC or writing their own MCMC program from scratch.

In Section A.4 we show how the applications generated using pMCMC are used, and

152



in section A.5 we look at the overhead involved in the use of this framework.

A.1 Introduction

In its most basic form an MCMC algorithm is simple to implement, as demonstrated

by the following psuedocode:

1 do {

2 ProposedMove p = makeProposal ( ) ;

3 double mh value = metropo l i sHas t ings (p ) ;

4 i f ( random()<mh value )

5 apply (p ) ;

6 else

7 abort (p ) ;

8 while ( ! done ) ;

Transitioning from the seemingly straightforward sequential implementation to one

or more of the parallel implementation described in chapters 3 to 5 can be a daunting

task to those not accustomed to parallel programming. Extensive rewrites may be

necessary if the transition is not planned for from the outset. For instance, specula-

tive moves requires move proposals be created and evaluated without any changes

to chain’s state, prohibiting a mechanism of applying then rolling back proposed

changes should the proposal be rejected (a viable sequential implementation that

has been encountered). Similarly, speculative chains demands the existence of sec-

ondary (speculative) states to exist and be developed by MCMC iterations before

being potentially merged with the primary state, and both speculative chains and

periodic parallelisation require proposed moves to be suggested from a subset of the

possible move types depending on the phase of the simulation (separating Ms and

Mf for instance).

The programming knowledge and experience required for the technical im-

plementation of parallel processing (pthreads [48], MPI [24, 30] and safe parallel

153



programming practises) will not necessarily be found by the initial developers of a

MCMC method (whose experience will be focused on statistical algorithms and im-

age processing). Additionally if one is developing a number of MCMC applications

there is substantial repetition of effort and the writing of tedious and repetitive

boilerplate code (i.e. for selecting between move types with the correct probabilities

and generating the suitable proposed moves for the move type, based on probabil-

ities and other parameters specified by the user is some fashion). The pMCMC

framework was created to address these issues and provide a convenient testbed for

the rapid testing of the parallelisation methods developed for this thesis.

Creation of the the code for performance monitoring, input/output of data

and simulation properties and multithreading instructions serves as a further dis-

traction from the MCMC implementor’s primary focus: the simulation’s model, the

possible model transitions, and the efficient calculation of the posterior probability.

To combat these problems and to make the creation of parallel MCMC applications

more accessible to the theorists the pMCMC has been developed. Through a com-

bination of a library of source files, templating and automatic code generation a

specific MCMC application can be plugged into a generic parallel MCMC kernel in

a manner that allows the programmer to focus purely on the application specific

components of the MCMC application.

Functionality automatically provided by the pMCMC framework includes:

• The implementation of the Metropolis-Hastings transition kernel.

• The speculative moves and speculative chains implemented using pthreads,

and the periodic parallelisation mechanism implemented using MPI.

• Multiple executables for different situations: for testing, for SMP machine

execution, and for MPI execution.

• Use of XML files for configuring all the MCMC simulation variables (‘prior’

values, move proposal probabilities etc).

154



• Automatic generation of much ‘boilerplate’ and housekeeping code (for in-

stance the random selection of a type of move to execute based upon the

proposal proabilities provided via an XML job file, and the tracking of sim-

ulation statistics such as the average acceptance probability for each type of

move).

• Recording of simulation metrics (timing of individual steps and the program

as a whole, actual move acceptance rate).

• Optional XML logs of the MCMC simulation’s setup and statistics gathered

during the simulation’s execution.

• Programmatic interface for integration with your own frontend (an optional

OpenGL display is available).

On a Q6600 the pMCMC framework is capable of performing up to 3.2 million

iterations per second whilst in sequential mode. Parallel processing performance is

highly dependant on the specific characteristics of the application, but in practical

tests using just one of the parallelisation methods available (speculative moves)

allowed for up 40% reduction in runtime just by using a dual-core or dual-processor

system, with no additional coding required compared to that for simple sequential

execution.

A.2 Component Overview

The pMCMC framework greatly simplifies the creation of parallel MCMC appli-

cations by providing an implementation of the generic MCMC code with parallel

processing support already provided. In order to implement this with the minimum

of performance overhead the application specific code must be integrated into the

pMCMC code using a combination of templating, typedefs and automatic code

generation. The application specific code the developer must implement are:

155



• A description of the simulation from which automatic code generation can

take place.

• The Collection describing the simulation model (its ‘state’ at any one time).

• A set of potential move proposal generators, one for each ‘type’ of move that

may be made to the simulation model.

• The means to calculate the prior and likelihood for a given simulation model,

and from a simulation model and move proposal taken together.

An overview of what is involved for the developer using pMCMC follows.

A.2.1 Defining the Simulation

The application-specific characteristics of the simulation must be provided in a suit-

able format to allow autogeneration of boilerplate and integration code. We have

used GNU Autogen∗ as the code generation program, available in most Linux dis-

tributions. Technically autogeneration is not required, but handcoding the required

files is repetitive, tedious and error-prone. Autogeneration is not required at run-

time, and as long as the user-specified definitions are not changed the files do not

need to be regenerated at each compile.

An example of an autogen descriptor file is given in section B.1, this shows

the definition file used for the circle finding algorithm in section 2.5.1. The prior

and likelihood entries list the runtime-specific terms used to calculate the prior

and likelihood terms in the MCMC acceptance test. The runtime values of these

properties will be specified by the user at runtime (typically via an XML file) and

are made available to the developer’s code via autogenerated and manged Settings

objects.

The move entries describe the moves by which the simulation may advance.

If a move type requires additional user-input to define how it should operate (for
∗http://www.gnu.org/software/autogen/

156

http://www.gnu.org/software/autogen/


instance, the proportion by which a property may be modified in a single move) these

are detailed in associated moveproperty elements. In addition to announcing the

presence of each type of move there is also logical information (such as the move type

that may reverse the move, used in sanity checking the move proposal probabilities),

display information (for presenting the end-user with meaningful information), and

optimisation information (if a move does not alter the prior term, there is no point

recalculating the prior term).

A.2.2 The Model

The model class (termed Configuration in the pMCMC framework) describes the

‘state’ of the Markov chain simulation. The construction of a suitable configura-

tion to describe structures in the input image is the purpose of performing the

MCMC simulation. A Configuration class must be a C++ Collection, prefer-

ably a Vector or List. Each object in this collection should represent a feature of

the the simulation model, a feature representing a node or branch in a graph or a

specific discrete structure in the image, such as a circle). Whilst a unordered list

of features has been assumed to date in pMCMC development, composite features

may be created by establishing links/references between feature objects. The model

class must also implement methods to establish the value of the likelihood and prior

terms for any given configuration (an example of the method signatures these classes

should implement is given in sections B.2 and B.3).

If it is appropriate and desirable to see a (2D) visual representation of the

model (useful to confirming the simulation is working correctly and to aid when

using trial-an-error to fine-tune the simulation for a reasonable convergence rate) a

DrawableFeature class should be provided to serve as a ‘buffer’ for the informa-

tion to be drawn. Objects of this drawable class must be capable of storing the

displayable properties of a Feature class, and drawing a representation of those

properties to an OpenGL area on demand (see section A.4 and section A.4.3). The

157



method signatures required for such a class can be seen in section B.4

A.2.3 The Moves

Many of the bookkeeping and boilerplate code associated with the moves will already

have been defined in the autogen definitions file from section A.2.1, all that remains

is the code to generate and apply the changes associated with each move. This is

done by implementing a single method with a set name and signature for each of the

potential move types, the names of these methods being determined by the names

of the moves as set in the autogen definitions file (see section B.5 for an example

of this). These move implementation methods must return a Proposal object that

holds all the information concerning a yet-to-be applied move, can calculate the

effect the application of the proposal would have on the existing simulation state,

and effect that state change if the proposal is accepted. Whilst superfluous to a

sequential implementation, this design is required for the speculative move/chain

methodologies where multiple proposed moves must be considered simultaneously

then selectively applied.

The pMCMC framework has been developed and tested with MCMC models

that consist of an unordered list of independent features. Multiple implementations

of the Proposal interface for the possible types of alterations that can be made to

such a model are available to implementers, all that needs to be done is to provide

the specifics of how the model can be changed. Preimplemented Proposal classes

have been written assuming that the log/prior terms for a configuration are simply

the product of the terms for each of the features in said configuration. The available

types of move supported are BIRTH, DEATH, SPLIT, MERGE and REPLACE.

The ‘replace’ move type encompasses any alteration made to a single feature (as

far as the prior/likelihood terms are concerned, the feature is being removed and a

new feature added with one or more properties different, all in a single iteration).

Moves that may have a knock on effect on the prior probability density must be

158



flagged as such in the definitions file (and thus force complete recalculation of that

value for the entire configuration when a change is made), otherwise the prior and

likelihood values will be determined by the change in value that will be caused by

the application of the move.

If the simulation’s model contains features arranged in some form of order

or heirachy (for instance, each ‘feature’ is considered a branch or node of a tree)

then appropriate model-modifying code must be supplied. Otherwise the provided

Proposal subclasses can be used, all that is required is the calculation of the new

properties for the feature(s) that will be changed.

A.3 Internal Design Considerations

To support both sequential and parallel transition kernels efficiently each aspect of

the MCMC simulation needs to be maintained as distinct components. Potential

changes to the simulation’s state are represented as objects of a Proposal class

that are capable of determining the prior and likelihood of the new state being

proposed without changing (or duplicating, even temporarily) the existing state of

the simulation. Speculative moves are implemented by creating and considering

Proposal objects on different pthreads simultaneously. The maintenance of chain

statistics, and the implementation of the transition kernel (in both speculative and

non-speculative forms) is all held within a Chain object.

The instructions on what work to perform, a combination of the simula-

tion settings, parallelisation options, initial simulation and the image data are all

contained in a Job object, which can be marshalled to/demashalled from an XML

file (termed a Job file). It is the responsibility of a Runner object to take a Job

and perform the required action on a Chain. The Runner also handles interspacing

MCMC iterations with timing, monitoring, and user update actions. The state of

the simulation as reported to the user (either through a progress bar or an OpenGL

display of the simulation’s state) is buffered by the Runner. This is to allow the

159



display of information to the user to be refreshed or redrawn at any time as required

by the frontend, without unnecessarily delaying the execution of the simulation∗.

Partitioning-based parallelisation is implemented by having different imple-

mentations of the Runner class. Whilst the basic version simply ensures the user

is kept informed of the state of the simulation, when partitioning-based parallelisa-

tion is required a MetaRunner is used that partitions the original Job and passes

the subset jobs to either conventional Runner objects or RemoteRunner objects,

RemoteRunners being ‘handles’ to a normal Runner class executing on a separate

machine. The existing implementation only contains a MPIRuner implementation

of the RemoteRunner interface, using a communication channel other than MPI is

simply a matter of implementing an alternative RemoteRunner to handle sending

and receiving the sending of Jobs. Since Job objects can be (un)marshalled to/from

XML, and little additional information need be exchanged between the MetaRunner

and the remove ‘slave’ Runners to implement the partitioning parallelisation mech-

anisms, adding support for additional inter-machine communication channels is a

relatively simple matter.

Other classes of note are MoveSet and MoveType. A MoveType object contains

information about a specific type of move (for instance, alter position). Not only how

such a move should be used but also potentially useful statistics concerning those

moves that were used, such as the number that were ultimately accepted/rejected.

The MoveSet class is responsible for randomly selecting the appropriate MoveType to

use to generate a new Proposal. In the simplest case this is selecting with the move

proposal probabilities defined in the Job file. This task becomes more complicated

when dealing with speculative moves (chapter 3), speculative chains (chapter 4) or

periodic parallelisation (section 5.1) as the selection is then from a subset of the

available moves, such as randomly choosing between only those MoveTypes classified

as having short processing times, or only those considered to have localised effects.
∗Aside from the consumption of resources used by the GUI thread

160



With the configuration, moves, and prior/likelihood calculations implemented

all that remains is to compile and link your code and the pMCMC’s code together.

The default build system used is CMake∗, the build system used for KDE 4. Alter-

native build systems (handwrite Makefile, GNU Automake/Autotools) may easily

be written.

A.4 Using the Simulator

Currently the pMCMC framework produces three different executables, with names

derived from a single root name. If the MCMC simulation was entitled foo these

generated programs will be:

gfoo This program implements a simple graphical frontend (using GLUT†) to dis-

play the state of the simulation as it runs. Real-time control of the simulation

is limited to start, stop and to step through the simulation one move or sim-

ulation cycle at a time (useful for debugging). If a more advanced frontend is

required it can be developed on-top of the existing structure, see section A.4.3.

This program is generally used for testing or demonstration purposes, to con-

firm that the MCMC simulation is constructing a suitable model.

cfoo This variant is command-line only, and intended for running in sequential

mode or on SMP machines. By default it is configured for minimal user

interaction to facilitate the fastest possible execution in scripts or via work

schedulers (such as PBS‡, SGE§ or Condor [56]). Progress information can be

displayed on the command line on request.
∗http://www.cmake.org
†A quick and easy library for displaying OpenGL images, see http://www.opengl.org/

resources/libraries/glut/ and http://freeglut.sourceforge.net/
‡www.openpbs.org
§http://www.sun.com/software/sge

161

http://www.cmake.org
http://www.opengl.org/resources/libraries/glut/
http://www.opengl.org/resources/libraries/glut/
http://freeglut.sourceforge.net/
www.openpbs.org
http://www.sun.com/software/sge


mfoo The MPI version of the program, primarily used for periodic parallelisation.

Again, runtime user-interaction is kept to a minimum.

Statically compiled variants of these programs (e.g. cfoo-static) may also be

created if required libraries will not be available on the machines to which the

program will be deployed. In all program variants the progress of the simulation

can (optionally) be monitored by a progress bar on the command line, ‘progress’

being defined either in terms of the number of iterations performed or by the results

of some compile-time declared fitness function that is evaluated at regular intervals.

Once execution terminates, statistics concerning the simulation will be displayed

(again, optional) and/or written to a log file for further analysis.

In typically usage work the description of the simulation to run is supplied in

a job file, along with command line options instructing what parallelisation options

should be employed. The output will be a file containing the final configuration and

an optional log file describing the simulation and containing statistics concerning

its execution. Optionally the program(s) may be set to provide ‘snapshot’ files of

the simulation’s state at regular intervals, either for debugging purposes or in the

regular usage of MCMC. As described in section 2.2.3, MCMC is often used to

explore multiple potential solutions through the regular sampling of a simulation

that has reached equilibrium.

A.4.1 Jobs and Logs

Work is submitted to these programs via a job file that describes the simulation

variables and how the program should run the simulation. A ‘template’ job file

is created by the program for the user to modify to meet their needs. When run,

each program will (optionally) record all the simulation and program parameters in

a log file, along with the initial and final state of the MCMC model and statistics

concerning how the simulation progressed. To facilitate ease of integration with

existing and future tools, both the job and log files are XML files.

162



An example job file is shown in appendix C. The end user of the MCMC pro-

gram need only understand how to edit such files to customise the MCMC simulation

(all program variants can generate example ‘template’ files for the user to modify).

As for the developer, the bulk of the XML reader/writer code is autogenerated

from the Autogen definition file from section A.2.1). The only XML reader/writer

code the developer need write is that for the model description (used in elements

initial model and final model, and content of these elements need not even be

XML. In keeping with the ethos of accessibility and standardisation, SVG∗, the W3

standard for vector graphics, was used as the model descriptor for the implemen-

tations of the section 2.5 algorithms. Each circle (the features be identified) being

represented as a svg:circle element.

This same XML schema is also used as the wire protocol for communicat-

ing instructions between physically different machines (in the current implemented,

using MPI to setup and communicate between nodes/machines). The speculative

moves and speculative chains methods are implemented only in shared memory en-

vironments, those parallel methods that may be applied to a cluster of machines

consist of MCMC chain(s) running for an arbitrary length of time (or number of

iterations) thus the overhead of interpreting to and from XML will be made to be

negligible. The precise form by which model information is structured (i.e. the

content of the initial model and final model elements) is not specified by the

framework, whilst XML is recommended for consistance and clarity (should the

output files and logs be manually inspected) a more concise format that can be

processed more rapidly can be utilised at the application implementors discresion.

The log files are very similar to job files, but have an additional set of

elements describing the MCMC simulation that was performed. At a minimum,

information such as the number of iterations performed, the number of each type of

move were accepted/rejected, etc. If detailed monitoring was enabled the informa-
∗http://www.w3.org/Graphics/SVG

163

http://www.w3.org/Graphics/SVG


tion gathered will also be recorded in the log file.

A.4.2 Detailed Monitoring

The pMCMC framework is capable of monitoring and recording many statistics con-

cerning simulation runs. For instance, the mean and standard deviation in the time

it takes each type of move to execute, the number of each type of move that are

accepted and rejected, and the time it takes each step in the simulation cycle to exe-

cute∗. Since the collection of this information imposes an overhead that may occupy

a significant proportion of program execution in some circumstances, advanced and

detailed simulation monitoring is disabled by default and must be explicitly enabled

to be used.

In order to facilitate debugging and the like, extensive reports off many

aspects of the program execution may be recorded, either to a standard output

channel or a file†. The amount of logging and debugging level is set along a scale

ranging from NONE, ERROR, WARNING, INFO, DEBUG. Error and Warning log

messages refer to failures to correctly process some aspect of execution, and must

be dealt with by the MCMC developer. INFO level debugging records key events

and echos the modification of internal settings (to double check the correct data

is being used by the simulation). The DEBUG logging level records very detailed

information, including the results of the move acceptance test(s) conducted at each

MCMC iteration. Obviously enabling logging to this level will severely hurt program

performance. For this reason by default only ERROR and WARNING messages are

enabled.
∗The exact definition of ‘step’ here depends on the parallelisation mechanism(s) in use. In

sequential MCMC one simulation step is exactly one MCMC iteration, whereas with speculative

moves enabled one step involves one attempted MCMC iteration on each thread that is available,

potentially equalling multiple MCMC iterations.
†For full logging functional the rlog‡ library is required, if this is unavailable to commandline

and log file is still possible, but may be less efficient.

164



Developers using pMCMC may also make use of this logging mechanism by

the use of simple macros of the form

1 logWarning ( ( ”Warning text , us ing p r i n t f s t y l e arguments , \%s ” ,

2 ”For example , t h i s s t r i n g ” ) ) ;

These instructions may be removed entirely by the setting of a single compile-time

flag if there are any concerns of the logging infrastructure inserting unacceptable

overhead.

A.4.3 Frontend API

When the gfoo frontend is insufficient a more advanced frontend is possible using

the pMCMC programmatic interface. Whilst data and simulation configuration

input must still be provided as XML (either a file or a text block in memory),

the programmatic interface does allow the simulation to be started, stopped, and

stepped through, and for various data to be fed back to the application frontend. The

visual representation of the simulation’s state (its current model) as seen from the

gfoo program variant can be displayed simply by providing an appropriate OpenGL

area, the display will then be configured and written on. To limit the extent the

frontend limits processing speed, requests for information (either statistics, or an

update of the OpenGL display of the simulation) take place only at fixed intervals

that may be set through the programmatic interface or on the command line when

the program is initiated. By setting a low update/refresh rate on the displayed

information the adverse impact of any GUI frontend can be kept to a minimum.

Although not currently implemented, the same code autogeneration mech-

anisms used for creating the backend may be utilised to automatically generate a

suitable frontend editor/view for the job files. That the pMCMC and its API are

written in C++ and use the CMake build system make KDE the obvious choice,

although any frontend capable of calling C++ code will be sufficient.

165



Figure A.1: The Log File Analyser in operation

A.4.4 Results Analysis

To aid in the rapid analysis of data generated when testing the parallelisation meth-

ods described in this document a Java program has been developed to read in large

numbers of log files, group them according to the differences in runtime variables and

average data obtained from repeated runs with identical initial conditions (except

for the initial state). Figure A.1 shows this program in operation. The bottom-left

panel (‘log ordering’) lists those parameters that are not constant throughout the

examined set of log files. The top-left (‘logs’) shows the the results arranged in a

tree, each level of the tree corresponds to an aspect that is different between the

log files whilst each branch represents a distinct value that differs. The ordering

of these differences in the logs panel is determined by the order of the list in log-

166



ordering panel. Differences in those properties listed below the dotted line in the

difference list of the log-ordering panel are ignored in the log panel, the results for

all such tests are collated into a single node. Examining a node reveals the average

properties (such as runtimes) obtained from all log files contained within that node,

information that is displayed in the top-right panel (‘properties’).

The bottom-right (‘chart’) panel shows a graph of the runtime results for a

selected node. If the selected type of graph supports it, the data presented will be

classified into groups as represented by direct children and grandchildren. In this

manner complicated graphs can be generated with just a few mouse clicks.

A.5 Case Studies

All experimental results pertaining to speculative moves, chains, periodic paralleli-

sation and image splitting were generated from applications created by the pMCMC

framework. To determine the maximum potential of applications implemented using

this framework, a baseline application was quickly developed that implements all

methods required for the compilation and execution of a pMCMC application whilst

doing as little actual work as possible (for instance, the ‘model’ was a vector con-

taining only one element that was never changed, only one move was possible and

that did nothing). This baseline application could perform ∼ 3 200 000 sequential

iterations per second on the Q6600. Compare this to the rate of processing for the

test applications (from 2.5): when configured to look for a mere five circles a rate

of only ∼ 175 000 sequential iterations per second could be achieved. The overhead

imposed by the pMCMC itself can therefore be considered negligible for any seri-

ous application, though the overhead imposed by actually multithreading (through

the pMCMC or some handcoded implmenentation) must be considered against the

benefits of that multithreading on a case-by-case basis.

167



A.6 Conclusions

The pMCMC framework is a fast and easy way of developing MCMC simulations.

The developer need only implement the application specific aspects of the MCMC

simulation. Once correctly implemented, a selection of parallelisation methods are

available for free, as is the majority of code for file input/output, user interactions,

monitoring and recording. The resultant applications will automatically record logs

of all simulations performed. A Java base log file analyser is available to aid in

determining the settings and parallelisation methods necessary for the most efficient

rate of processing.

By freeing the MCMC developer from user interaction and parallel processing

code and allowing them to focus on the specifics of their MCMC algorithm we hope

to make efficient MCMC solutions more accessible and promote development of

more ambitious MCMC projects by alleviating their main downside - the slow rate

of execution and the difficulty in combatting this by parallel processing.

168



Appendix B

Example Implementation using

pMCMC

Here we show the definition file and header files used to implement the circle finding

algorithm presented in section 2.5.1. A brief overview of how the definition file and

class and method implementations combine to create a fully functional program is

given in appendix A, but for a complete understanding of how this is performed,

refer to the pMCMC manual. Our intent in providing these listings is to demonstrate

how little work is required to obtain a working set of pMCMC applications.

The definitions file AppSpecificSettings.def, used by the automatic code

generator is provided in full. For brevity we will omit the C++ implementation code

and just list the class and method signatures found in the header files. The Cell

class describes a single feature in the image, whilst CellConfiguration describes

the model for the entire image. DrawableCell contains the instructions needed

to draw a Cell in OpenGL. MoveSetImpl.cpp contains the implementation code

for the available move types, here we only list the method signatures not the full

implementation.

169



B.1 AppSpecificSettings.def

1 AutoGen D e f i n i t i o n s AppSpec i f i cS e t t i ng s . t p l ;
2

3 prog−name = c e l l s ;
4 prog−t i t l e = ” Ce l l I d e n t i f i c a t i o n Program” ;
5 v e r s i on = ” 1 .0 ” ;
6 home−page = ” http :// dcs . warwick . ac . uk/˜ jbyrd /” ;
7

8 s e t t i n g s−name = ” C e l l S e t t i n g s ” ;
9 xml−element−name = ”app−s e t t i n g s ” ;

10 namespace = ” c e l l s ” ;
11 xml−name = ” c e l l s ” ;
12 suppl imentary−i n c l u d e s = ”#inc lude <cmath>” ;
13

14 Feature−Class = ” Ce l l ” ;
15 Conf igurat ion−Class = ” Ce l lCon f i gu ra t i on ” ;
16

17 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18 ∗ Prior , l i k e l i h o o d and der i v ed va l u e s
19 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
20

21 constant = { name = ” s q r t 2 p i ” ;
22 type = ” double ” ;
23 value = ” std : : s q r t (M PI ∗2 . 0 ) ” ;
24 desc = ”The square root o f 2∗PI” ; } ;
25

26 p r i o r = { name = ”radiusMean” ;
27 default = 20 ;
28 min = 1 ;
29 max = 1000 ;
30 di sp lay−p r e c i s i o n = 1 ;
31 readable−name = ”Radius Mean” ;
32 desc = ”The mean rad iu s the c e l l s are ”
33 ” expected to take ” ; } ;
34 p r i o r = { name = ” radiusStdDev ” ;
35 default = 2 ;
36 min = 0 ;
37 max = 1000 ;
38 di sp lay−p r e c i s i o n = 3 ;
39 readable−name = ”Radius std . dev . ” ;
40 desc = ”The expected standard dev i a t i on from ”
41 ” the mean rad iu s ” ; } ;

170



42 p r i o r = { name = ”meanNumFeatures” ;
43 default = 15 ;
44 min = 1 ;
45 max = 100000;
46 di sp lay−p r e c i s i o n = 1 ;
47 readable−name = ”Mean num. f e a t u r e s ” ;
48 desc = ”The mean number o f f e a t u r e s expected ”
49 ” in the image” ; } ;
50 p r i o r = { name = ” over lapDens i tyFactor ” ;
51 default = ”5” ;
52 min = 0 ;
53 max = 200 ;
54 di sp lay−p r e c i s i o n = 2 ;
55 readable−name = ” Ce l l Overlap Density Factor ” ;
56 desc = ”” ; } ;
57

58 l i k e l i h o o d = { name = ”numSamplePoints” ;
59 type = ” unsigned i n t ” ;
60 default = 64 ;
61 min = 4 ;
62 max = ”32768” ;
63 di sp lay−p r e c i s i o n = 0 ;
64 readable−name = ”Num. Sample Points ” ;
65 desc = ”The number o f po in t s around a ”
66 ” proposed c e l l to examine to determine the i t s l i k e l i h o o d . ” ; } ;
67

68 der ived = { name = ” rad iusVar iance ” ;
69 source = ” radiusStdDev ” ;
70 readable−name = ”Radius Variance ” ;
71 s e t t e r = ” radiusVar ianceValue = ”
72 ” radiusStdDevValue∗ radiusStdDevValue ; ” ;
73 desc = ”The expected var iance from the mean ”
74 ” rad iu s ” ; } ;
75 der ived = { name = ”expNMeanNumFeatures” ;
76 source = ”meanNumFeatures” ;
77 readable−name = ”eˆ(−Mean num. f e a t u r e s ) ” ;
78 s e t t e r = ”expNMeanNumFeaturesValue = ”
79 ” std : : exp(−meanNumFeaturesValue ) ; ” ;
80 desc = ”<i>e<i> to the power o f the nege t i v e ”
81 ”mean number o f c e l l s ” ; } ;
82 der ived = { name = ” samplePoints ” ;
83 type = ” double ∗” ;
84 i n i t = ”NULL” ;

171



85 de s t ruc t = ” i f ( samplePointsValue !=NULL) { ”
86 ” d e l e t e samplePointsValue ; samplePointsValue=NULL; }” ;
87 source = ”numSamplePoints” ;
88 readable−name = ”Sample Points ” ;
89 desc = ”Array o f the coo rd ina t e s at which to ”
90 ” sample a un i t c i r c l e . ” ;
91 s e t t e r = <<− STR END
92 i f ( samplePointsValue != NULL) {
93 delete samplePointsValue ;
94 }
95 samplePointsValue = new double [ numSamplePointsValue ∗ 2 ] ;
96

97 double ang l eFrac t i on = 2∗M PI/numSamplePointsValue ;
98 for (unsigned int i =0; i<numSamplePointsValue ; i++) {
99 samplePointsValue [ i ∗2 ] = cos ( i ∗ ang l eFrac t i on ) ; // x coord

100 samplePointsValue [ ( i ∗2)+1] = s i n ( i ∗ ang l eFrac t i on ) ; // y coord
101 }
102 STR END; } ;
103

104 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
105 ∗ Moves
106 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
107 move = { name = ”add” ;
108 r e v e r s e = ” d e l e t e ” ;
109 a l t e r s−p r i o r = ” true ” ;
110 l o c a l i z e d = ” f a l s e ” ;
111 slow−move = ” f a l s e ” ;
112 readable−name = ”Add” ;
113 j a cob ian = ”1” ;
114 desc = ”Add a s i n g l e f e a t u r e to the ”
115 ” c o n f i g u r a t i o n ” ;
116 req−conf−s i z e = ”1” ; } ;
117 move = { name = ” d e l e t e ” ;
118 r e v e r s e = ”add” ;
119 a l t e r s−p r i o r = ” true ” ;
120 l o c a l i z e d = ” f a l s e ” ;
121 slow−move = ” f a l s e ” ;
122 readable−name = ” Delete ” ;
123 j a cob ian = ”1” ;
124 desc = ” Delete a s i n g l e f e a t u r e from the ”
125 ” c o n f i g u r a t i o n ” ;
126 req−conf−s i z e = ”2” ; } ;
127 move = { name = ”merge” ;

172



128 r e v e r s e = ” s p l i t ” ;
129 a l t e r s−p r i o r = ” true ” ;
130 l o c a l i z e d = ” f a l s e ” ;
131 slow−move = ” f a l s e ” ;
132 j a cob ian = ” 0.125 ” ;
133 readable−name = ”Merge” ;
134 desc = ” Replaces two f e a t u r e s in the ”
135 ” c o n f i g u r a t i o n with a s i n g l e f e a t u r e c o n s i s t i n g o f averaged ”
136 ” va lues from the two o r i g i n a l f e a t u r e s ” ;
137 req−conf−s i z e = ”2” ; } ;
138 move = { name = ” s p l i t ” ;
139 r e v e r s e = ”merge” ;
140 a l t e r s−p r i o r = ” true ” ;
141 l o c a l i z e d = ” f a l s e ” ;
142 slow−move = ” f a l s e ” ;
143 j a cob ian = ”8” ;
144 readable−name = ” S p l i t ” ;
145 desc = ” Replaces a f e a t u r e in the ”
146 ” c o n f i g u r a t i o n with two new f e a t u r e s that , i f merged , would ”
147 ” r e s u l t in the o r i g i n a l f e a t u r e ” ;
148 req−conf−s i z e = ”1” ; } ;
149 move = { name = ” alterRad ” ;
150 readable−name = ” Alter Radius” ;
151 a l t e r s−p r i o r = ” true ” ;
152 l o c a l i z e d = ” true ” ;
153 slow−move = ” f a l s e ” ;
154 j a cob ian = ”1” ;
155 desc = ” Modi f i e s the rad iu s o f a s i n g l e ”
156 ” f e a t u r e in the c o n f i g u r a t i o n ” ;
157 req−conf−s i z e = ”1” ; } ;
158 move = { name = ” a l t e rPos ” ;
159 readable−name = ” Alter Pos i t i on ” ;
160 a l t e r s−p r i o r = ” true ” ;
161 l o c a l i z e d = ” true ” ;
162 slow−move = ” f a l s e ” ;
163 j a cob ian = ”1” ;
164 desc = ” Modi f i e s the x and y coo rd ina t e s o f a ”
165 ” s i n g l e f e a t u r e in the c o n f i g u r a t i o n ” ;
166 req−conf−s i z e = ”1” ; } ;
167 move = { name = ” longReplacePos ” ;
168 readable−name = ”Slow Replace Pos i t i on ” ;
169 a l t e r s−p r i o r = ” true ” ;
170 l o c a l i z e d = ” f a l s e ” ;

173



171 slow−move = ” true ” ;
172 j a cob ian = ”1” ;
173 desc = ”Randomly r e p o s i t i o n s a c i r c l e to ”
174 ”anywhere in the image , us ing a time−”
175 ”consuming method” ;
176 req−conf−s i z e = ”1” ; } ;
177

178 moveproperty = { name = ” alterPosStdDev ” ;
179 movename = ” a l t e rPos ” ;
180 default = ”2” ;
181 readable−name = ” Alter Pos i t i on Std . Dev . ” ;
182 desc = ”The standard dev i a t i on by which a ”
183 ” f e a t u r e ’ s p o s i t i o n may be a l t e r e d in a l t e r−p o s i t i o n moves” ; } ;
184 moveproperty = { name = ” alterRadStdDev ” ;
185 movename = ” alterRad ” ;
186 default = ”1” ;
187 readable−name = ” Alter Radius Std . Dev . ” ;
188 desc = ”The standard dev i a t i on by which a ”
189 ” f e a t u r e ’ s rad iu s may be a l t e r e d in a l t e r−rad iu s moves” ; } ;
190

191 moveproperty = { name = ” spl i tRadiusStdDevProport ion ” ;
192 movename = ” s p l i t ” ;
193 default = ” 0.08 ” ;
194 readable−name = ” S p l i t Move Radius Proport ion ” ;
195 desc = ”The proport ion o f the o r i g i n a l c e l l ’ s ”
196 ” rad iu s to be used as the standard dev i a t i on when gene ra t ing ”
197 ” the r a d i i o f the new c e l l s in a <i>s p l i t f e a t u r e move</i>” ; } ;
198

199 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
200 ∗ Suppl imentary f unc t i on s
201 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
202 f unc t i on = {
203 name = ” lo ca t i onDens i t y ” ;
204 returnType = ” double ” ;
205 d e c l a r e = ” l o ca t i onDens i t y ( ) const ” ;
206 code = <<− STR END
207 return uni formLocat ionDens ity ( ) ;
208 STR END; } ;
209

210 f unc t i on = {
211 name = ” s i z e D e n s i t y ” ;
212 returnType = ” double ” ;
213 d e c l a r e = ” s i z e D e n s i t y ( const double rad ) const ” ;

174



214 code = <<− STR END
215 const double rd = radius−radiusMeanValue ;
216 return exp(−( rd∗ rd )/(2∗ rad iusVar ianceValue ) )
217 / ( radiusStdDevValue∗ s q r t 2 p i ) ;
218 STR END; } ;

B.2 Cell.h

1 class Ce l l {
2 private :
3 double rad ; /∗∗< The c e l l ’ s rad ius ∗/
4 double xCoord ; /∗∗< The x−coord ina te o f the c e l l ’ s cen te r ∗/
5 double yCoord ; /∗∗< The y−coord ina te o f the c e l l ’ s cen te r ∗/
6

7 public :
8 Ce l l ( const double x=0, const double y=0, const double rad iu s =0);
9 void operator=(const DrawableCel l& c e l l ) ;

10 bool operator==(const Ce l l& c e l l ) const ;
11 bool operator !=(const Ce l l& c e l l ) const ;
12 friend std : : ostream& operator<<(std : : ostream& s , const Ce l l& c ) ;
13 std : : s t r i n g g e t B r i e f D e s c r i p t i o n ( ) const ;
14 std : : s t r i n g toS t r i ng ( ) const ;
15 void setCoord ( const double x , const double y ) ;
16 void getCoord (double ∗x , double ∗y ) const ;
17 void setRadius (double rad iu s ) ;
18 double x ( ) const ;
19 double y ( ) const ;
20 double rad iu s ( ) const ;
21 double rad iusSqr ( ) const ;
22 bool ove r l ap s ( const Ce l l &c e l l ) const ;
23 bool ove r l ap s ( const int x ,
24 const int y ,
25 const unsigned int width ,
26 const unsigned int he ight ) const ;
27 bool ove r l ap s ( const int x ,
28 const int y ) const ;
29 double areaOverlap ( const Ce l l &c e l l ) const ;
30 double d i s t ( const Ce l l &c e l l ) const ;
31 double d i s tS q r ( const Ce l l &c e l l ) const ;
32 double d i s t ( const double x ,
33 const double y ) const ;
34 double d i s tS q r ( const double x ,
35 const double y ) const ;

175



36 bool matches ( const Ce l l& c , const mcmc : : S e t t i n g s &) const ;
37 } ;

B.3 CellConfiguration.h

1 class Ce l lCon f i gu ra t i on : public std : : vector<Cel l> {
2 public :
3 Ce l lCon f i gu ra t i on ( ) : s td : : vector<Cel l >() {}
4 ˜ Ce l lCon f i gu ra t i on ( ) ;
5

6 void tr im ( const int x ,
7 const int y ,
8 const unsigned int width ,
9 const unsigned int height ,

10 Ce l lCon f i gu ra t i on& dest ) ;
11

12 stat ic Ce l lCon f i gu ra t i on ∗ read ( xmlTextReaderPtr reader ,
13 unsigned int∗ width ,
14 unsigned int∗ he ight ) ;
15 void wr i t e ( xmlTextWriterPtr wr i te r ,
16 const mcmc : : RawImage& rawImage ) const ;
17

18 std : : s t r i n g save ( const std : : s t r i n g f i l ename ,
19 const std : : s t r i n g i n i t i a l M o d e l ,
20 const unsigned int i t e r s ,
21 const mcmc : : RawImage& rawImage ) const ;
22 stat ic Ce l lCon f i gu ra t i on ∗ load ( const std : : s t r i n g f i l ename ,
23 unsigned int∗ width ,
24 unsigned int∗ he ight ) ;
25 void draw ( GLfloat ∗ p i x e l s , const int width , const int he ight ) ;
26 stat ic Ce l lCon f i gu ra t i on makeRandom(
27 const AppSpec i f i cS e t t i ng s& s e t t i n g s ,
28 mcmc : : randoml rng∗ generato r ) ;
29

30 double p r i o r ( const AppSpec i f i cS e t t i ng s& s e t t i n g s ) const ;
31 double l o g P r i o r ( const AppSpec i f i cS e t t i ng s& s e t t i n g s ) const ;
32

33 double l o g L i k e l i h o o d ( const ProcessedImage& pImage ,
34 const AppSpec i f i cS e t t i ng s& s e t t i n g s ) const ;
35 double l i k e l i h o o d ( const ProcessedImage& pImage ,
36 const AppSpec i f i cS e t t i ng s& s e t t i n g s ) const ;
37 stat ic double l i k e l i h o o d ( const Ce l l& c e l l ,
38 const ProcessedImage& pImage ,

176



39 const AppSpec i f i cS e t t i ng s& s e t t i n g s ) ;
40 stat ic double l o g L i k e l i h o o d ( const Ce l l& c e l l ,
41 const ProcessedImage& pImage ,
42 const AppSpec i f i cS e t t i ng s& s e t t i n g s ) ;
43

44 template<class C e l l I t e r a t o r> stat ic double
45 l o g L i k e l i h o o d ( const C e l l I t e r a t o r begin ,
46 const C e l l I t e r a t o r end ,
47 const ProcessedImage& pImage ,
48 const AppSpec i f i cS e t t i ng s& s e t t i n g s ) ;
49 }
50

51 i t e r a t o r pickRandom (mcmc : : randoml rng ∗ ) ;
52

53 template<class C e l l I t e r a t o r> stat ic double
54 p r i o r ( const C e l l I t e r a t o r begin ,
55 const C e l l I t e r a t o r end ,
56 const AppSpec i f i cS e t t i ng s& s e t t i n g s ) ;
57

58 template<class C e l l I t e r a t o r> stat ic double
59 l o g P r i o r ( const C e l l I t e r a t o r begin ,
60 const C e l l I t e r a t o r end ,
61 const AppSpec i f i cS e t t i ng s& s e t t i n g s ) ;
62

63 } ;

B.4 DrawableCell.h

1 class DrawableCel l {
2 private :
3 stat ic unsigned int numLines ; // # l i n e segments in a ’ c i r c l e ’
4 double xCoord ;
5 double yCoord ;
6 double rad ;
7

8 public :
9 DrawableCel l ( const double x=0, const double y=0,

10 const double rad iu s =0);
11 DrawableCel l ( const Ce l l& c e l l ) ;
12

13 void operator=(const Ce l l& c e l l ) {
14 xCoord = c i r c l e . x ( ) ;
15 yCoord = c i r c l e . y ( ) ;

177



16 rad = c i r c l e . r ad iu s ( ) ;
17 }
18 void s e t (double x , double y , double rad iu s ) ;
19

20 double x ( ) const ;
21 double y ( ) const ;
22 double rad iu s ( ) const ;
23

24 void draw (void ) const ;
25 stat ic void draw ( const Ce l l& c ) ;
26 void drawFull (void ) const ;
27 stat ic void drawFull ( const Ce l l& c ) ;
28 stat ic void setNumLines ( const unsigned int num ) ;
29 stat ic unsigned int getNumLines (void ) ;
30 } ;

B.5 MoveSetImpl.cpp

1 mcmc : : ProposedMove∗
2 MoveSet : : create addMove ( Ce l lCon f i gu ra t i on& conf ,
3 const mcmc : : ProcessedImage& pImage ,
4 const mcmc : : S e t t i n g s& s e t t i n g s ,
5 mcmc : : MoveType& moveType ,
6 randoml rng∗ generato r ) { . . . }
7

8 mcmc : : ProposedMove∗
9 MoveSet : : c r ea te de l e t eMove ( Ce l lCon f i gu ra t i on& conf ,

10 const mcmc : : ProcessedImage& pImage ,
11 const mcmc : : S e t t i n g s& s e t t i n g s ,
12 mcmc : : MoveType& moveType ,
13 randoml rng∗ generato r ) { . . . }
14

15 mcmc : : ProposedMove∗
16 MoveSet : : create mergeMove ( Ce l lCon f i gu ra t i on& conf ,
17 const mcmc : : ProcessedImage& pImage ,
18 const mcmc : : S e t t i n g s& s e t t i n g s ,
19 mcmc : : MoveType& moveType ,
20 randoml rng∗ generato r ) { . . . }
21

22 mcmc : : ProposedMove∗
23 MoveSet : : c r e a t e sp l i tMove ( Ce l lCon f i gu ra t i on& conf ,
24 const mcmc : : ProcessedImage& pImage ,
25 const mcmc : : S e t t i n g s& s e t t i n g s ,

178



26 mcmc : : MoveType& moveType ,
27 randoml rng∗ generato r ) { . . . }
28 mcmc : : ProposedMove∗
29 MoveSet : : create a lterRadMove ( Ce l lCon f i gu ra t i on& conf ,
30 const mcmc : : ProcessedImage& pImage ,
31 const mcmc : : S e t t i n g s& s e t t i n g s ,
32 mcmc : : MoveType& moveType ,
33 randoml rng∗ generato r ) { . . . }
34

35 mcmc : : ProposedMove∗
36 MoveSet : : c reate a l te rPosMove ( Ce l lCon f i gu ra t i on& conf ,
37 const mcmc : : ProcessedImage& pImage ,
38 const mcmc : : S e t t i n g s& s e t t i n g s ,
39 mcmc : : MoveType& moveType ,
40 randoml rng∗ generato r ) { . . . }

179



Appendix C

Example runtime use of

pMCMC programs

The following XML file contains all the runtime information required to perform

the image processing shown in fig. C.1 using the MCMC algorithms presented in

section 2.5 and whose pMCMC implementation was outlined in appendix B. To per-

form 10,000 iterations on the image white-cells.jpg using a randomly generated

initial model and whilst using speculative moves the following command would be

used:

1 c c e l l s −−job=c e l l s . job −−image=c e l l s . jpg −o c e l l j o b 0 1 −s4 −n10000

As a consequence of the above command two files will be generated, celljob01.svg

containing the description of the final state of the simulation (in SVG format, see

section A.4.1) and celljob01.log holding information and statistics concerning

the simulation. The simulation will use speculative moves with a maximum of four

moves being considered simultaneously. Section C.2 shows the (optional) command

line output from running the ccells or gcells program.

C.1 cells.job

180



Figure C.1: An image of a collection of white blood cells before (left) and after

100 000 iterations by the program from appendix B using the job file in section C.1

1 <job>
2 <execute i t e r a t i o n s=”100000”/>
3 <chain>
4 <pr io r exponent>1 .0</ pr io r exponent>
5 < l i k e l i h o o d e x p o n e n t>4 .5</ l i k e l i h o o d e x p o n e n t>
6 <pos t e r i o r exponen t>20 .0</ po s t e r i o r exponen t>
7 <u s e c r o s s c o r r e l a t i o n a s l i k e l i h o o d value=” f a l s e ”/>
8 </ chain>
9 <app−s e t t i n g s>

10 < l i k e l i h o o d>
11 <se td name=”numSamplePoints” value=”32”/>
12 </ l i k e l i h o o d>
13 <p r i o r>
14 <se td name=”radiusMean” value=”12”/>
15 <se td name=” radiusStdDev ” value=”2”/>
16 <se td name=”meanNumFeatures” value=”55”/>
17 <se td name=” over lapDens i tyFactor ” value=” 10 .0 ”/>
18 </ p r i o r>
19 <moves>
20 <move name=”add” prob=” 0 .05 ”/>
21 <move name=” d e l e t e ” prob=” 0 .05 ”/>
22 <move name=”merge” prob=” 0 .05 ”/>
23 <move name=” s p l i t ” prob=” 0 .05 ”
24 sp l i tRadiusStdDevProport ion=” 0 .08 ”/>
25 <move name=”longAdd” prob=” 0 .0 ”/>
26 <move name=” longDe l e t e ” prob=” 0 .0 ”/>
27 <move name=” alterRad ” prob=” 0 .3 ” alterRadStdDev=” 2.000000 ”/>

181



28 <move name=” a l t e rPos ” prob=” 0 .4 ” alterPosStdDev=” 3.000000 ”/>
29 <move name=” replaceRad ” prob=” 0 .0 ”/>
30 <move name=” rep lacePos ” prob=” 0 .0 ”/>
31 <move name=” longReplacePos ” prob=” 0 .1 ”/>
32 </moves>
33 </app−s e t t i n g s>
34 </ job>

C.2 Sample Output

======================================================================

Proposal Probabilities

======================================================================

Add : 0.05, jacobian=1, alters-prior=1, slow=0

Delete : 0.05, jacobian=1, alters-prior=1, slow=0

Merge : 0.05, jacobian=0.125, alters-prior=1, slow=0

Split : 0.05, jacobian=8, alters-prior=1, slow=0

Alter Radius : 0.3, jacobian=1, alters-prior=1, slow=0

Alter Position : 0.4, jacobian=1, alters-prior=1, slow=0

Slow Replace Position : 0.1, jacobian=1, alters-prior=1, slow=1

======================================================================

Settings

======================================================================

Prior Exponent : 1

Likelihood Exponent : 4.5

Posterior Exponent : 20

Radius Mean : 12

Radius std. dev. : 2

Mean num. features : 55

Circle Overlap Density : 10

Num. Sample Points : 32

Alter Position Std. Dev. : 3

Alter Radius Std. Dev. : 2

Split Move Radius Proportion : 0.08

======================================================================

Performance Settings

======================================================================

Speculative moves disabled (6 threads available)

Speculative chains disabled

======================================================================

Image : large-white-cells.jpg

182



Initial Model : <random> (55 features)

Target Model : unavailable

Iterations : 100,000

Move Name Proposed Accepted Rejected Invalid % Accepted Av. Time

----------------- -------- -------- -------- ------- ---------- --------

Add 4955 116 4839 0 2.341% 1.657e-05

Delete 4946 34 4912 0 0.6874% 1.339e-05

Merge 5089 121 4968 0 2.378% 1.889e-05

Split 5003 17 4954 32 0.342% 2.301e-05

Alter Radius 30381 4649 25732 0 15.3% 1.719e-05

Alter Position 39874 4693 35069 112 11.8% 1.713e-05

Slow Replace Pos. 9932 36 9860 36 0.3638% 0.001299

Total 100180 9666 90334 180 9.666%

Prior term dominated in 22,902 / 100,000 move proposals (22.9%)

Total number of steps : 100000

Total number of iterations : 100000

Average number of iterations per step : 1 (sd=0)

Move rejection probability : 0.90334

Average time per step (secs) : 0.000144976 (sd=0.000392609)

Minimum step time (secs) : 6e-06

Maximum step time (secs) : 0.00311

33 features found in 15 seconds

Elapsed real-time: 14.5475

183



Bibliography

[1] Tinku Acharya and Ajoy K. Ray. Image Processing, Principlies and Applica-

tions. John Wiley & Sons, 2005.

[2] Fahimah Al-Awadhi, Christopher Jennison, and Merrilee Hurn. Statistical

image analysis for a confocal microscopy two-dimensional section of cartilage

growth. Journal Of The Royal Statistical Society Series C, 53:31–49, 2004.

[3] Gautam Altekar, Sandhya Dwarkadas, John P. Huelsenbeck, and Fredrik Ron-

quist. Parallel Metropolis-Coupled Markov chain Monte Carlo for Bayesian

Phylogenetic Inference. Technical Report 784, Department of Computer Sci-

ence, University of Rochester, July 2002.

[4] David P. Anderson. Boinc: A system for public-resource computing and stor-

age. In 5th IEEE/ACM International Workshop on Grid Computing, November

2004.

[5] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan

Werthimer. Seti@home: an experiment in public-resource computing. Com-

mun. ACM, 45(11):56–61, 2002.

[6] Victor Ayala-Ramirez, Carlos H. Garcia-Capulin, Arturo Perez-Garcia, and

Raul E. Sanchez-Yanez. Circle detection on images using genetic algorithms.

Pattern Recogn. Lett., 27(6):652–657, 2006.

184



[7] Massimiliano Bonamente, Marshall K. Joy, John E. Carlstrom, Erik D. Reese,

and Samuel J. LaRoque. Markov chain Monte Carlo joint analysis of Chandra

X-ray imaging spectroscopy and sunyaevzel’dovich effect data. The Astrophys-

ical Journal, 614(1):56–63, 2004.

[8] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environ-

ment for MPI. In Proceedings of Supercomputing Symposium, pages 379–386,

1994.

[9] J. M. R. Byrd, S. A. Jarvis, and A. H. Bhalerao. Reducing the run-time of

MCMC programs by multithreading on SMP architectures. In 22nd IEEE

International Symposium on Parallel and Distributed Systems (IPDPS), 2008.

[10] J. M. R. Byrd, S. A. Jarvis, and A. H. Bhalerao. Speculative moves: Multi-

threading Markov Chain Monte Carlo programs. In High-Performance Medical

Image Computing and Computer Aided Intervention (HP-MICCAI), 2008.

[11] J. M. R. Byrd, S. A. Jarvis, and A. H. Bhalerao. On the parallelisation of

MCMC-based image processing. In 24th IEEE International Symposium on

Parallel and Distributed Systems (IPDPS), 2010.

[12] J. M. R. Byrd, S. A. Jarvis, and A. H. Bhalerao. On the parallelisation of

MCMC by speculative chain execution. In 24th IEEE International Symposium

on Parallel and Distributed Systems (IPDPS), 2010.

[13] Richard H. Carver and Kuo-Chung Tai. Modern multithreading: implement-

ing, testing, and debugging multithreaded Java and C++/Pthreads/Win32 Pro-

grams. John Wiley & Sons, 2006.

[14] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP:

Portable Shared Memory Parallel Programming. The MIT Press, October 2007.

185



[15] Mary Kathryn Cowles and Bradley P. Carlin. Markov chain Monte Carlo con-

vergence diagnostics: A comparative review. Journal of the American Statistical

Association, 91(434):883–904, 1996.

[16] Circle detection using Fast Finding and Fitting (FFF) algorithm. Circle de-

tection using fast finding and fitting (fff) algorithm. Geo-Spatial Information

Science, 3(1):74–78, March 2000.

[17] Jurgen A Doornik, Neil Shephard, and David F Hendry. Parallel computation in

econometrics: A simplified approach. Open access publications from university

of oxford, University of Oxford, 2006.

[18] Alexei Drummond and Andrew Rambaut. Beast: Bayesian evolutionary anal-

ysis by sampling trees. BMC Evolutionary Biology, 7(1):214, 2007.

[19] Ian Dryden, Rahman Farnoosh, and Charles Taylor. Image segmentation using

Voronoi polygons and MCMC, with application to muscle fibre images. Journal

of Applied Statistics, 33(6), 2006.

[20] Ayres C. Fan, John W. Fisher, William M. Wells, James J. Levitt, and Alan S.

Willsky. MCMC curve sampling for image segmentation. In MICCAI 2007,

2007.

[21] Denis Che Keung Fan. Bayesian inference of vascular structure from retinal

images. PhD thesis, University of Warwick, May 2006.

[22] Xizhou Feng, Duncan A. Buell, John R. Rose, and Peter J. Waddell. Parallel

algorithms for bayesian phylogenetic inference. J. Parallel Distrib. Comput.,

63(7-8):707–718, 2003.

[23] Michael J. Flynn. Computer architecture: pipelined and parallel processor de-

sign. Jones and Bartlett, 1995.

186



[24] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,

Version 2.1. High Performance Computing Center Stuttgart (HLRS), June

2008.

[25] I. Foster. Globus toolkit version 4: Software for service-oriented systems. In

IFIP International Conference on Network and Parallel Computing, pages 2–

13. Springer-Verlag, 2006.

[26] Guang R. Gao, Mitsuhisa Sato, and Eduard Ayguadé, editors. The Interna-

tional Journal of Parallel Programming, volume 36. Springer Netherlands, June

2008.

[27] C. J. Geyer. Markov chain monte carlo maximum likelihood. Interface Pro-

ceedings, 1991.

[28] C. J. Geyer and E. A. Thompson. Annealing markov chain monte carlo with

applications to ancestral inference. Journal of the American Statistical Associ-

ation, 90(431):909–920, 1995.

[29] Walter R. Gilks, Sylvia Richardson, and D. J. Spiegelhalter. Markov chain

Monte Carlo in practice. Chapman and Hall, 1996.

[30] Richard L. Graham, Timothy S. Woodall, and Jeffrey M. Squyres. Open MPI:

A flexible high performance MPI. In Proceedings, 6th Annual International

Conference on Parallel Processing and Applied Mathematics, Poznan, Poland,

September 2005.

[31] Peter J. Green. Practical Markov Chain Monte Carlo. Chapman and Hall,

1994.

[32] Peter J. Green. Reversible jump Markov Chain Monte Carlo computation and

Bayesian model determination. Biometrika, 82:711–732, 1995.

187



[33] Peter J. Green. MCMC in action: a tutorial. given at ISI, Helsinki, August

1999.

[34] Peter J. Green and Antonietta Mira. Delayed rejection in reversible jump

metropolis-hastings. Biometrika, 88(4):1035–1053, December 2001.

[35] Geoffrey Grimmett and David Stirzaker. Probability and random processes.

Oxford University Press, 2001.

[36] M. Harkness and P. Green. Parallel chains, delayed rejection and reversible

jump MCMC for object recognition. In British Machine Vision Conference,

2000.

[37] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

[38] John P. Huelsenbeck and Fredrik Ronquist. MRBAYES: Bayesian inference of

phylogenetic trees. Bioinformatics, 17(8):754–755, 2001.

[39] John P Huelsenbeck and Fredrik Ronquist. MrBayes: A program for the

Bayesian inference of phylogeny. Technical report, Department of Biology, Uni-

versity of Rochester, 2003.

[40] Bernd Jähne. Digital image processing. Springer, 6 edition, 2005.

[41] Michael Johannes and Nicholas Polson. Mcmc methods for financial econo-

metrics. In Handbook of Financial Econometrics. North-Holland. Forthcoming,

2002.

[42] W S Kendall, F Liang, and J-S Wang. Markov Chain Monte Carlo: Innovations

and Applications. World Scientific Publishing Co., 2005.

[43] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220:671–680, 1983.

188



[44] Shuying Li, Dennis K. Pearl, and Hani Doss. Phylogenetic tree construction us-

ing Markov chain Monte Carlo. Journal of the American Statistical Association,

1999.

[45] Colin C. McCulloch. High Level Image Understanding via Bayesian Hierar-

chical Models. PhD thesis, Institute of Statistics and Decision Sciences, Duke

University, 1998.

[46] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-

gusta H. Teller, and Edward Teller. Equation of state calculations by fast

computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[47] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge

University Press, 1995.

[48] Girija J. Narlikar and Guy E. Blelloch. Pthreads for dynamic and irregular

parallelism. In In Proc. of Supercomputing 98, pages 4–1. IEEE, 1998.

[49] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads pro-

gramming. O’Reilly & Associates, 1996.

[50] David A. Patterson and John L. Hennessy. Computer organization and design:

the hardware/software interface. Morgan Kaufmann, 2009.

[51] G Perrin, X Descombes, and J Zerubia. A marked point process model for tree

crown extraction in plantations. In IEEE International Conference on Image

Processing, volume 1, pages 661–4, 2005.

[52] Christian P. Robert and George Casella. Monte Carlo statistical methods.

Springer, 2004.

[53] Jeffrey S. Rosenthal. Parallel computing and Monte Carlo algorithms. Far East

Journal of Theoretical Statistics, 4:207–236, 2000.

189



[54] Kevin Smith. Bayesian methods for visual multi-object tracking with applica-

tions to human activity recognition. PhD thesis, Ecole Polytechnique Fdrale de

Lausanne, Lausanne, 2007.

[55] Jeffrey M. Squyres and Andrew Lumsdaine. A Component Architecture for

LAM/MPI. In Proceedings, 10th European PVM/MPI Users’ Group Meeting,

number 2840 in Lecture Notes in Computer Science, pages 379–387, Venice,

Italy, September / October 2003. Springer-Verlag.

[56] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Condor

– a distributed job scheduler. In Thomas Sterling, editor, Beowulf Cluster

Computing with Linux. MIT Press, October 2001.

[57] E. Thonnes, A. Bhalearo, W. S. Kendall, and R. Wilson. Bayesian analysis

of vascular structure. In R. G. Ackroyd, K. V. Mardia, and M. J. Langdon,

editors, Stochastic Geometry, Biological Structure and Images, pages 115–118,

2003.

[58] E Thonnes, A. H. Bhalerao, W Kendall, and R Wilson. A Bayesian approach to

inferring vascular tree structure from 2D imagery. In International Conference

on Image Processing, volume 2, pages 937–940, 2002.

[59] High Throughput, Monte Carlo, Todd Tannenbaum, Jim Basney, Rajesh Ra-

man, and Miron Livny. High throughput monte carlo, 1999.

[60] L. Tierney and A. Mira. Some adaptive Monte Carlo methods for Bayesian

inference. Statistics in Medicine, 18:2507–2515, 1999.

[61] David A. van Dyk and Hosung Kang. Highly structured models for spectral

analysis in high-energy astrophysics. Statistical Science, 19(2):275–293, 2004.

[62] George Vogiatzis, Philip Torr, and Roberto Cipolla. Bayesian stochastic mesh

optimisation for 3D reconstruction. In Richard Harvey and J. Andrew Bang-

190



ham, editors, British Machine Vision Conference, volume 2, pages 709–718,

2003.

[63] Eric W. Weisstein. Circle-circle intersection. From MathWorld–A Wolfram

Web Resource, 4 2010.

[64] Eric W. Weisstein. Normal distribution. From MathWorld–A Wolfram Web

Resource, 4 2010.

[65] Eric W. Weisstein. Poisson distribution. From MathWorld–A Wolfram Web

Resource, 4 2010.

[66] Dan Werthimer, Jeff Cobb, Matt Lebofsky, David Anderson, and Eric Korpela.

Seti@home—massively distributed computing for seti. Computing in Science

and Engg., 3(1):78–83, 2001.

[67] Darren J. Wilkinson. Bayesian methods in bioinformatics and computational

systems biology. Brief Bioinform, 8(2):109–116, 2007.

[68] HK Yuen, J Princen, J Illingworth, and J Kittler. Comparative study of hough

transform methods for circle finding. Image and Vision Computing, 8(1):71 –

77, 1990.

[69] Tao Zhao and R. Nevatia. Tracking multiple humans in crowded environment.

In Computer Vision and Pattern Recognition, volume 2, pages II–406–II–413

Vol.2, 2004.

[70] Tao Zhao and Ram Nevatia. Stochastic human segmentation from a static

camera. In MOTION ’02: Proceedings of the Workshop on Motion and Video

Computing, page 9, Washington, DC, USA, 2002. IEEE Computer Society.

191


	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Abbreviations
	Nomenclature
	Chapter 1 Introduction and MCMC Theory
	1.1 Thesis Contributions
	1.2 Thesis Outline
	1.3 Terminology
	1.3.1 Parallel Processing
	1.3.2 Hardware
	1.3.3 Image Processing


	Chapter 2 Background and Motivational Research
	2.1 Introduction to Parallel Processing
	2.1.1 Parallel Processing Architectures
	2.1.2 Inter-process communication
	2.1.3 Threads
	2.1.4 Mutual Exclusion
	2.1.5 Pipelining

	2.2 The Markov Chain Monte Carlo Method
	2.2.1 Markov Chains
	2.2.2 Monte Carlo Methods
	2.2.3 Markov Chain Monte Carlo
	2.2.4 Bayesian Inference and the Metropolis-Hastings Method
	2.2.5 Delayed Rejection MCMC

	2.3 Applications of MCMC
	2.4 Existing Parallel MCMC
	2.4.1 Multiple Chains
	2.4.2 Intra-move Parallelisation
	2.4.3 Metropolis Coupled Markov Chain Monte Carlo
	2.4.4 Task Decomposition

	2.5 Motivational Research
	2.5.1 Feature Boundary Recognition
	2.5.2 Circle Intensity Recognition

	2.6 Optimising the Implementation
	2.7 Hardware

	Chapter 3 Parallelisation by Speculative Moves
	3.1 The MCMC Program Cycle
	3.2 Speculative Moves
	3.2.1 Comparison with Speculative Branching
	3.2.2 Implementing Speculative Moves

	3.3 Theoretical Gains
	3.4 Testing
	3.5 Results
	3.6 Speculative Moves vs Intra-move Parallelisation
	3.7 Summary

	Chapter 4 Parallelisation by Speculative Chains
	4.1 Speculative Move Considerations
	4.2 Improving Speculative Moves
	4.3 Speculative Chains
	4.3.1 Theoretical Gains

	4.4 Results
	4.5 Summary

	Chapter 5 Parallelisation by Partitioning
	5.1 Parallelisation by Periodic Partitioning
	5.1.1 Predictions
	5.1.2 Example

	5.2 Image Partitioning
	5.3 Intelligent Partitioning
	5.3.1 Example

	5.4 Aggressive Partitioning
	5.4.1 Blind Partitioning
	5.4.2 Approximating the Initial Model

	5.5 Summary

	Chapter 6 Conclusions and Future Work
	6.1 Supplementing Existing Parallelisation
	6.2 Guidance for Implementers
	6.3 Thesis Summary
	6.4 Limitations and Future Work
	6.5 Concluding Remarks

	Appendix A The pMCMC Framework
	A.1 Introduction
	A.2 Component Overview
	A.2.1 Defining the Simulation
	A.2.2 The Model
	A.2.3 The Moves

	A.3 Internal Design Considerations
	A.4 Using the Simulator
	A.4.1 Jobs and Logs
	A.4.2 Detailed Monitoring
	A.4.3 Frontend API
	A.4.4 Results Analysis

	A.5 Case Studies
	A.6 Conclusions

	Appendix B Example Implementation using pMCMC
	B.1 AppSpecificSettings.def
	B.2 Cell.h
	B.3 CellConfiguration.h
	B.4 DrawableCell.h
	B.5 MoveSetImpl.cpp

	Appendix C Example runtime use of pMCMC programs
	C.1 cells.job
	C.2 Sample Output


