

[pubs.acs.org/acscatalysis](https://pubs.acs.org/acscatalysis?ref=pdf) **Research Article**

1 A Thiadiazole-Based Covalent Organic Framework: A Metal-Free ² Electrocatalyst toward Oxygen Evolution Reaction

3 Sujan Mondal, Bishnupad Mohanty, Maryam Nurhuda, Sasanka Dalapati, [Rajkumar Jana,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rajkumar+Jana"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) ⁴ [Matthew](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sujan+Mondal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[Addi](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sujan+Mondal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[c](#page-6-0)[o](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matthew+Addicoat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[at,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bishnupad+Mohanty"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[Ayan](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bishnupad+Mohanty"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[Dutta,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bishnupad+Mohanty"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[Bikas](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bishnupad+Mohanty"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[h](#page-6-0)[Kumar](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maryam+Nurhuda"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[Jena,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maryam+Nurhuda"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-5-0) [and](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Asim+Bhaumik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Asim](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sasanka+Dalapati"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[Bhaumik](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sasanka+Dalapati"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-5-0)

 ABSTRACT: Covalent organic frameworks (COFs) have attracted surging interest lately due to their wide potential in several frontline application areas like gas storage, sensing, photovoltaics, fuel cells, active catalyst supports, and so on. However, only very few reports are available for the metal-free electrocatalysis over COFs. Herein, we developed a new thiadiazole-based COF, C4- SHz COF, through the reaction between 1,3,5-tris(4-formylphenyl)benzene and 2,5-dihydrazinyl-10 1,3,4-thiadiazole that possesses a very high specific surface area of 1224 m² g⁻¹, unique molecular architecture, high porosity, and abundant active sites. The as-synthesized C4-SHz COF displayed superior electrocatalytic oxygen evolution reaction (OER) activity and excellent long-term

13 durability. The electrocatalytic performance of the C4-SHz COF achieved a current density of 10 mA/cm^{[2](https://pubs.acs.org/page/pdf_proof?ref=pdf)} at an overpotential of 320 ¹⁴ mV. The higher activity of the C4-SHz COF could be attributed to the high Brunauer−Emmett−Teller surface area, porosity, and 15 network structure of the π -conjugated organic building blocks, which allowed fast charge and mass transport processes. This work ¹⁶ validates the promising potential of a metal-free COF electrocatalyst toward the OER and its capability to replace carbon-based ¹⁷ electrocatalysts.

¹⁸ KEYWORDS: covalent organic frameworks (COFs), thiadiazole moiety, metal-free electrocatalyst, oxygen evolution reaction (OER), ¹⁹ water splitting

²⁰ ■ INTRODUCTION

 Rapid decay of fossil fuels combined with environmental crises associated with carbon emissions significantly affected the economy and ecology of the whole world. Thus, the demand for renewable energy is surging over the years, and electro- chemical water splitting can be considered as a green and promising technology^I to overcome this problem. The electrochemical water [sp](#page-6-0)litting plays a crucial role in advanced energy technologies, such as solar fuel production, super-29 capacitor, metal−air batteries, etc.^{2−5} Still, water oxidation (oxygen evolution reaction, OER) r[eq](#page-6-0)uires a higher energy 31 input due to the involvement of the multi-electron transfer reaction pathway and its low efficiency. Hence, the commercialization of water splitting technology requires stable, highly active, and low-cost water oxidation electrocatalysts. Currently, precious transition metal oxide-based electro- catalysts such as $RuO₂$ and IrO₂ are highly active toward the OER from alkaline water. However, high cost, scarcity, and low stability hamper the utilization of clean and sustainable energy technologies^{6,7} in this context. Thus, for the past couple of years, extensive efforts have been devoted for the development of earth-abundant, low-cost, and efficient transition metal- based electrocatalysts such as oxides, chalcogenides, phos-43 phides, nitride, metal-free catalysts, etc., for the OER.^{[8](#page-6-0)-14} However, most of the transition metal-based catalysts s[till](#page-6-0) suffer from lower catalytic activity, inferior conductivity, and poor operational durability.

Simultaneously, over the past few years, intensive research ⁴⁷ has been carried out for developing efficient metal-free ⁴⁸ catalysts. $2,3$ Metal-free electrocatalysts have several unique 49 advanta[ges,](#page-6-0) such as their environment-friendly nature, earth- ⁵⁰ abundant, cost-effective, and resistance to a wide pH range. ⁵¹ For electrochemical OER applications, several metal-free ⁵² catalysts have been developed in recent times.^{15−17} Among 53 different metal-free porous nanomaterials, co[valent](#page-6-0) organic ⁵⁴ frameworks (COFs)^{18,19} are the emerging class of porous 55 organic polymers wi[th](#page-6-0) [pr](#page-6-0)ecisely controllable structural motifs ⁵⁶ linked through covalent bonds. COFs possess extraordinary ⁵⁷ properties like large surface area, high crystallinity, tunable ⁵⁸ pore size, and unique molecular architecture. $20-24$ Due to these 59 u[n](#page-6-0)ique properties, COFs have been used in a [w](#page-6-0)ide range of 60 applications.^{25−27} High surface area, tunable structures with 61 appropriate [build](#page-6-0)ing blocks, and porous nature of the COFs ⁶² made them ideal for electrocatalysis.²⁸ Accordingly, substantial 63 progress has been made for the des[ign](#page-6-0) and synthesis of COFs ⁶⁴ from low-cost monomer precursors. Till now, COFs have been ⁶⁵ explored as a support material of graphene, conductive carbon, ⁶⁶

Received: December 18, 2019
Revised: March 23, 2020 March 23, 2020

Figure 1. Schematic presentation of the COF (a) proposed structure and (b) packing diagram. (c) Comparison of experimental PXRD pattern of the crystalline C4-SHz COF with simulated PXRD patterns of the C4-SHz COF. (d) Graphical representation of switching shortly to long-range periodicity. (e) Solid-state ¹³C MAS NMR spectrum of the COF; the spinning sidebands are represented by asterisks.

 carbon nanotubes (CNTs), etc., for electrocatalytic applica- tions. For example, Kamiya et al. have reported covalent triazine frameworks as support materials for Pt nanoparticle and studied its ORR activity.²⁹ Mullangi et al. used flexible COFs as support materia[ls](#page-6-0) for electrocatalytic OER applications.²⁸ Similarly, Aiyappa et al. designed Co-COF an[d](#page-6-0) stud[i](#page-6-0)ed its OER activity, 30 whereas Fe and Co NPs supported over COFs have bee[n](#page-6-0) employed in electrochemical oxygen reduction reaction (ORR).³¹ Although there are very few reports on the usage of COFs [as](#page-6-0) photocathodes for light- induced hydrogen evolution reaction (HER) via water splitting,³² the use of a crystalline COF as a metal-free OER 79 electroc[ata](#page-6-0)lyst has been rarely explored till date.³³

 80 In this article, we have introduced an unprece[de](#page-7-0)nted imine- $_{81}$ linked thiadiazole-based crystalline COF (C4-SHz COF) and 82 explored its catalytic activity in the electrochemical water 83 oxidation reaction. Through the general solvothermal protocol 84 (Schiff base condensation using acetic acid),^{26,[27](#page-6-0),[30](#page-6-0)} a nitrogen-85 rich thiadiazole moiety has been incorporated in the polymeric 86 backbone of the C4-SHz COF, which exhibited superior 87 activity toward OER. The relevant characterization data 88 suggested that the C4-SHz COF possesses a high specific 89 surface area and crystalline metal-free organic framework ₉₀ structure. The newly developed COF displayed an excellent 91 electrocatalytic activity and durability under alkaline pH 92 conditions, which is comparable to the other metal-free ⁹³ electrocatalysts reported so far.

RESULTS AND DISCUSSION 94

The thiadiazole-based imine-linked COF (C4-SHz COF) was ⁹⁵ synthesized through the general Schiff base condensation 96 polymerization between 1,3,5-tris(4-formylphenyl)benzene ⁹⁷ (C4-CHO) and 2,5-dihydrazinyl-1,3,4-thiadiazole (SHz) ⁹⁸ under the solvothermal condition for 36 h (Figure 1a and 99 ft) Figures S1−S3, Supporting Information). The resultant as- ¹⁰⁰ [synthesized imi](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)ne-linked framework has shown a low sign of ¹⁰¹ crystallinity (Figure 1d), and this could often occur due to the ¹⁰² self-assembly through weak $\pi-\pi$ stacking interaction of 103 individual COF layers. To get the well-defined molecular ¹⁰⁴ stacked framework, the as-synthesized C4-SHz COF material ¹⁰⁵ was activated using supercritical carbon dioxide treatment ¹⁰⁶ following the reported protocol by Medina et al. 34 The more 107 prominent desired peaks in X-ray diffraction f[or](#page-7-0) the post- ¹⁰⁸ activated material is observed (Figure 1d), suggesting the well- ¹⁰⁹ defined structure of pores. Surprisingly, the measured S_{BET} 110 values are also mirroring this trend by narrowing the pore size ¹¹¹ (Figure S4, Supporting Information).

[The crys](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)talline structure of the C4-SHz COF is resolved ¹¹³ through the experimental powder X-ray diffraction measure- ¹¹⁴ ment in combination with theoretical simulations and Pawley ¹¹⁵ refinement (Figure S5 and Tables S1 and S2, Supporting ¹¹⁶ Information). As seen in [Figure 1c, a distinct peak](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) at $2\theta = 3.3^\circ$ 117 is assigned to the 100 crystal plane of the COF. Additionally, ¹¹⁸ relatively weak peaks at $2\theta = 5.8$ and 9.9° correspond to the 119 reflection from 110, and 300 planes are also observed. The ¹²⁰ weak broad peak centered at $2\theta = 20-26^{\circ}$ (002 plane) is 121 possibly due to the interlayer $\pi-\pi$ stacking of the COF, and 122 distances between the individual 002 planes are ca. 3.85 Å ¹²³

B

 (Figure 1b). A probable 2D model structure was constructed [using Mat](#page-1-0)erials Studio 7 in the P1 space group. An asymmetric unit in the crystal structure and graphical representation of the 2D layered COF is shown in Figure S6 (Supporting Information). The simulated PXR[D pattern o](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)f the eclipsed AA stacking model is well fitted with the experimental diffraction data (Figure 1c). In contrast, the PXRD pattern obtained from t[he AB s](#page-1-0)tacking model deviates from the experimentally observed data, especially in terms of peak intensity ratios. The perfect agreement in favor of the experimental X-ray pattern was further confirmed by Pawley 135 refinement $[R_{wp} = 7.23\%$, Rp = 5.32%] (Figure S5). The unit 136 cell parameters were as follows: $a = 31.00$ Å, $b = 31.46$ Å, $c =$ 137 7.70 Å; $\alpha = 99.26^{\circ}$, $\beta = 87.67^{\circ}$, and $\gamma = 120.51^{\circ}$.

¹³⁸ The specific surface area and porous nature of the C4-SHz 139 COF were examined by conducting N_2 adsorption–desorption f2 140 analysis at 77 K. As shown in Figure 2a, the C4-SHz COF

Figure 2. (a) N_2 adsorption–desorption analysis of the C4-SHz COF and (b) NLDFT pore size distribution plots.

 exhibits a combination of type I and IV isotherms. A significant 142 nitrogen uptake at low relative pressures $(P/P_0 < 0.03)$ 143 followed by a gradual increase in adsorption at a higher P/P_0 value suggested the distinctive features for the coexistence of 145 micropores and mesopores along with interparticle pores.³⁵ The corresponding pore size distribution plot (Figure 2b), [as](#page-7-0) determined from the adsorption branch of the isotherm based on nonlocal density functional theory (NLDFT), revealed the presence of micropores and mesopores in our C4-SHz COF material. The calculated BET (Brunauer−Emmett−Teller, S_{BET}) surface area from this isotherm was 1224 m² g⁻¹, and 152 the total pore volume was 1.12 cc g^{-1} . The simulated BET surface area of the AA stacked model of the C4-SHz COF has been computed using the DFTB calculations. The correspond-155 ing simulated specific surface area was found to be 2339 m² g⁻¹ (Figure S7, Supporting Information). The noticeable dis- t[inction in](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) BET surface area from the experimental data is related to the crystallinity of the COF material, and such deviations were also reported for other imine-based 160 COFs.³⁹

 The [struc](#page-7-0)tural growth and imine linkage formation of the COF are confirmed by FTIR and 13 C MAS NMR analyses. In 163 the FTIR spectrum of the C4-SHz COF (Figure 3a), the absorption band at 1693 cm⁻¹ corresponded to C=N absorption, which is also confirmed by the resonance signal $_{166}$ at 160.2 ppm in $^{13}\mathrm{C}$ NMR. The peak at 3416 cm^{-1} could be attributed to N−H stretching vibration. The complete utilization of the aldehyde sources was confirmed by the missing peak at 1698 cm[−]¹ in the IR spectrum and the absence 170 of aldehydic resonance peak at 190 ppm in ¹³C NMR. In the

Figure 3. (a) IR spectrum of the C4-SHz COF along with the spectra of SHz and C4-CHO. (b) C 1s X-ray photoelectron spectroscopy (XPS). Deconvoluted high-resolution (c) N 1s XPS spectra and (d) S 2p XPS spectra of the thiadiazole-based COF.

spectrum in Figure 1e, the resonance signal at 160.2 ppm is ¹⁷¹ ascribed to t[he carbon](#page-1-0) atom adjacent to the S atom of the SHz ¹⁷² moiety. The peak at 140.2 ppm is indicative of substituted ¹⁷³ quaternary carbons of the polymeric network. The resonance ¹⁷⁴ peak at 132.3 ppm is attributed to the carbon atom of the ¹⁷⁵ aldehyde moiety that connected to the imine carbon of the ¹⁷⁶ organic framework. The additional peak at 126.2 ppm ¹⁷⁷ appeared due to the sp^2 -hybridized aromatic carbons. $\overline{\hspace{1cm}}$ 178

To gain further information about the surface chemistry and ¹⁷⁹ chemical composition, we have carried out the XPS analysis of ¹⁸⁰ the C4-SHz COF. As shown in Figure 3c, the N 1s spectrum ¹⁸¹ can be deconvoluted into three component peaks ascribed to ¹⁸² secondary amine (−NH) of the SHz moiety (398.5 eV), 183 imine−N (399.1 eV) of the newly formed COF networks, and ¹⁸⁴ imine−N (401.7 eV) of the SHz moiety.⁴¹ The C nuclei with 185 different environments were investigate[d](#page-7-0) by a deconvoluted ¹⁸⁶ high-resolution C 1s XPS scan (Figure 3b). The major ¹⁸⁷ component at 284.7 eV is attributed to the aromatic $sp²$ C 188 atom. Another component at 285.2 eV can be assigned to the ¹⁸⁹ N atom associated with imine linkage. The peak at a higher ¹⁹⁰ binding energy (287.8 eV) is probably due to thiadiazolic C of ¹⁹¹ the COF. Strong characteristic S 2p doublet peaks (Figure 3d) ¹⁹² were observed at 163.8 (S 2p3/2) and 168.6 eV (S $2p1/2$).⁴³ 193

The thermal stability of the covalent framework w[as](#page-7-0) ¹⁹⁴ estimated by using thermogravimetric analysis (TGA) under ¹⁹⁵ the aerobic environment. As seen from Figure S8 (Supporting ¹⁹⁶ Information), an initial weight loss co[uld be ass](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)igned to the ¹⁹⁷ trapped guest molecule in the porous framework. Then, with ¹⁹⁸ the continuous increase in temperature, the organic framework ¹⁹⁹ is stable up to 350 °C. With a further increase in temperature, a ²⁰⁰ continuous weight loss is associated with the burning of ²⁰¹ organics present in the material. The representative FESEM ²⁰² (Figure 4a) and HRTEM (Figure 4b) images of the as- 203 f4 s[ynthesized](#page-3-0) thiadiazole COF [have clearl](#page-3-0)y shown regularly their ²⁰⁴ spherical morphology with diameters of 0.5−0.8 μm. After the ²⁰⁵ supercritical $CO₂$ activation, it was observed that the smooth 206 spherical surface of the as-synthesized COF material trans- ²⁰⁷ formed to the microflower-shaped structure (Figure 4c−f) ²⁰⁸ with the size distribution of 1.2−1.8 μ m. This is [also re](#page-3-0)flected 209 by the nitrogen sorption isotherm with enhancing the BET ²¹⁰ surface area [\(Figure](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) [S4\)](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf). 211

Figure 4. FESEM micrographs of the (a) as-synthesized and (c, d) crystalline C4-SHz COF. Representative TEM images of the (b) assynthesized and (e, f) crystalline C4-SHz COF material.

 To determine the electrocatalytic OER activity of the as- synthesized catalyst, linear sweep voltammetry (LSV) was recorded. The OER activity of the C4-SHz COF was 215 compared with the state-of-the-art catalyst $IrO₂/C$ and bare GCE under similar conditions. Before the LSV measurement,

the C4-SHz COF catalyst was electrochemically precondi- ²¹⁷ tioned to reach a stable state (Figure S9, Supporting ²¹⁸ Information). All the LSV plots [are presen](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)ted after iR ²¹⁹ compensation. The iR compensation process is explained in ²²⁰ the Supporting Information (Figure S10). Figure 5a presents 221 f5 the iR-compensated LSV pol[arization plo](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)ts. As expected, the ²²² bare glassy carbon electrode (GCE) exhibits a very low anodic ²²³ current density with higher overpotential values, suggesting its ²²⁴ negligible OER activity. The C4-SHz COF-modified GCE ²²⁵ shows a sharp increase in the anodic current density, which ²²⁶ indicates its intrinsic OER activity. For electrocatalytic activity, ²²⁷ the overpotential (η) gives an idea about the extent of 228 polarization upon passage of the faradic current and reflects the ²²⁹ efficiency of the catalysts. The catalyst C4-SHz COF possesses ²³⁰ the higher activity with a lower onset overpotential of 250 mV, ²³¹ which is higher than that of benchmark catalyst $IrO₂/C$. The 232 current density of 10 mA/cm² is the critical value for driving 233 solar fuel conversion and used as a benchmark for comparing ²³⁴ electrocatalytic performance. The as-synthesized C4-SHz COF ²³⁵ achieved a current density of 10 mA/cm² at a lower 236 overpotential of 320 mV, which is lower than benchmark ²³⁷ catalyst IrO₂/C. The overpotential of the C4-SHz COF is 238 comparable with most of the reported metal-free OER ²³⁹ electrocatalysis (Table S3, Supporting Information). This ²⁴⁰ result suggests t[he promisi](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)ng electrocatalytic activity of the ²⁴¹ highly crystalline C4-SHz COF toward the OER. The OER ²⁴² activity is also compared with a moderately crystalline C4-SHz ²⁴³ COF. The highly crystalline C4-SHz COF exhibits a lower ²⁴⁴ overpotential with enhanced current density in comparison to ²⁴⁵ moderately crystalline C4-SHz COF (Figure S11, Supporting ²⁴⁶ Information). Further, the OER [activity of](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) the highly ²⁴⁷ crystalline C4-SHz COF is checked in different conditions, ²⁴⁸ i.e., acidic $(0.5 \text{ M H}_2\text{SO}_4)$ and neutral (1 M PBS) solutions. 249 The C4-SHz COF exhibits the higher OER activity in 1 M ²⁵⁰ KOH (Figure S12, Supporting Information). 251

The [reaction dyn](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)amics and mechanism of the as-synthesized ²⁵² catalysts toward the OER were investigated by measuring the ²⁵³

Figure 5. OER performance of the catalysts in 1 M KOH with a scan rate of 5 mV/s. (a) LSV polarization plots of the C4-SHz COF, IrO₂/C, and GCE. (b) Tafel plots of the C4-SHz COF and IrO₂/C. (c) Faradic efficiency calculation of the C4-SHz COF by using the RRDE technique. (d) LSV polarization plot of the C4-SHz COF before and after the addition of 10 mM KSCN. (e) EIS Nyquist plot for the C4-SHz COF. (f) Chronopotentiometry measurement shows the stability of C4-SHz COF.

 Tafel slope from Tafel plots. The Tafel plots are obtained from the LSV measurements and reflect the relationship between 256 the overpotential (η) and the log of current density. The Tafel slope is derived from the linear part of the Tafel plot, and lower the Tafel slope value indicates the higher electrocatalytic activity. The C4-SHz COF exhibits the lower Tafel slope of 39 260 mV/dec, which is lower than that for $IrO₂/C$ (57 mV/dec) (Figure 5b). The Tafel slope of the C4-SHz COF is lower than t[hat of o](#page-3-0)ther reported metal-free catalysts. The exchange 263 current density (j_0) of the C4-SHz COF is calculated from the Tafel plot by the extrapolation method (Figure S13, 265 Supporting Information). The exchange current density (j_0) 266 of the C4-SHz COF is estimated to be 3.95×10^{-4} mA/cm². The value of j_0 is also proportional to the electrochemically active surface area. The small Tafel slope and large exchange current density indicate that the C4-SHz COF can produce superior metal-free OER performance. The faradic efficiency (FE) of the catalysts is measured by the rotating ring-disk 272 electrode (RRDE) experiment.^{44,[45](#page-7-0)} The RRDE experimental details are discussed in the Supporting Information. The FE is calculated from the ratio of [the ring current to the d](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)isk current 275 (eq S3, Supporting Information). A constant current of 100 μ A 276 i[s appl](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)ied to the disk electrode, and a 19.6 μ A current was generated at the ring electrode (Figure 5c), which corresponds to the promising FE of the [C4-SHz](#page-3-0) COF (98%). The formation of the oxygen bubble during the OER was supported by the polarization curve of the oxygen reduction reaction (ORR) collected from the ring electrode at a constant disk potential of 1.50 V (Figure S14a, Supporting Information). The number of elect[ron transfer](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) during the OER was also calculated from the RRDE measurement. During OER polarization, a very negligible current density was observed in the ring electrode that is assigned to the electro-oxidation of 287 generated H_2O_2 (Figure S14b). This observation validates the four-electron pat[hway for the](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) OER.

 Generally, the precursor used for the synthesis of the COF or the electrolyte used for testing the electrocatalytic activity 291 contains some metal catalysts (i.e., $Fe³⁺$), and it may contribute toward the OER activity of the as-synthesized materials. To 293 rule out the contribution of metal ions (i.e., Fe^{3+}), SCN⁻ tests were carried out. The LSV data of the C4-SHz COF is collected before and after the addition of the SCN[−] ions, and it suggests that SCN[−] ions did not affect the OER activity, i.e., the OER activity is due to the metal-free C4-SHz COF catalyst (Figure 5d). This suggests that both the C4-SHz COF and 299 e[lectrolyte](#page-3-0) (KOH) are free from metal impurities.¹⁴ The enhanced catalytic activity of the C4-SHz COF was [fu](#page-6-0)rther accessed by calculating active sites and the intrinsic catalytic activity. Therefore, we explored the mass activity, specific activity, electrochemically active surface area (ECSA), and 304 roughness factor (R_f) of C4-SHz COF catalysts. At $\eta = 320$ mV, the mass activity and specific activity for the C4-SHz COF 306 catalyst were found to be 286 A g^{-1} and 0.011 mA/cm², respectively. To measure the electrochemically active surface area (ECSA) and roughness factor, electrical double layer capacitance (Cdl) of the C4-SHz COF was evaluated by measuring the CV in the non-faradic region at scan rates of 10−100 mV/s in 1 M KOH at a potential ranging from 0 to 0.1 V (Ag/AgCl) and is shown in Figure S15a, Supporting Information. The value of Cdl is e[stimated from](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) the linear slope and found to be 2.75 mF cm[−]² (Figure S15b, Supporting 315 Information). The ECSA and R_f val[ues of the C4](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)-SHz COF 316 were estimated to be 68.75 cm^2 and 968.30 , respectively. Thus,

the C4-SHz COF shows a high electrochemical catalytic ³¹⁷ surface area that may be due to the exposed excess nitrogen ³¹⁸ atom on the surface, which plays as the active sites for the OER ³¹⁹ activity. The high surface area and the porous structure can ³²⁰ facilitate the diffusion of the electrolyte to access more number ³²¹ of reactant species on the electrode surface that resulted in an ³²² enhanced performance during the OER. The high mass and ³²³ specific activity of the C4-SHz COF may also be associated ³²⁴ with fast charge transfer during the OER process. The ³²⁵ electrochemical impedance spectroscopic (EIS) Nyquist plot ³²⁶ of the C4-SHz COF is also presented in Figure 5e. The smaller ³²⁷ polarization resistance of the C4-SHz C[OF indica](#page-3-0)tes the higher ³²⁸ charge transfer kinetics and faster electron transfer process that ³²⁹ supports the OER activity.⁴⁶ The durability is another key 330 factor to evaluate the cataly[tic](#page-7-0) activity in practical application. ³³¹ The long-term durability of the C4-SHz COF has been studied ³³² by chronopotentiometry measurements. The time-dependent ³³³ chronopotentiometry measurements demonstrate that the C4- ³³⁴ SHz COF is a stable material and can work efficiently for more ³³⁵ than 11 h at a current density of 10 mA/cm² (Figure 5f). 336 Further, the stability of the C4-SHz COF at hig[her curre](#page-3-0)nt ³³⁷ densities (20 and 50 mA/ cm^2) has been checked with time- 338 dependent chronopotentiometry measurement (Figure S16, ³³⁹ Supporting Information). The as-synthesized mat[erial shows a](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) ³⁴⁰ quite stable response at higher current densities as well. The ³⁴¹ above measurements demonstrate the enhanced efficiency and ³⁴² robustness of the C4-SHz COF toward the OER and validate ³⁴³ its promising application in future energy devices. It is quite ³⁴⁴ essential to understand the structure, morphology, and any ³⁴⁵ alternation of the bonding connectivity of the C4-SHz COF ³⁴⁶ after the durability test. The post-OER analysis validates the ³⁴⁷ robust properties of the electrocatalyst for practical application. ³⁴⁸ Therefore, PXRD and FTIR analyses have been carried out ³⁴⁹ after the stability test. In the PXRD patterns, no change in the ³⁵⁰ crystal phase was observed (Figure S17, Supporting ³⁵¹ Information). This result sugge[sted the sta](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)bility of the ³⁵² crystalline COF structure in the electrocatalyst. FTIR spectra ³⁵³ confirm the retention of the bonding connectivity within the ³⁵⁴ organic framework (Figure S18, Supporting Information) after ³⁵⁵ the OER stability te[st, suggestin](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)g the C4-SHz COF as a robust ³⁵⁶ material. And the state of the s

The mechanism of the OER process and the efficiency of the ³⁵⁸ C4-SHz COF material toward the electrochemical OER are ³⁵⁹ rationalized through a density functional theory study based on ³⁶⁰ first-principle calculations using the VASP simulation package. ³⁶¹ We have constructed a periodic monolayer model of C4-SHz o ³⁶² (cell size: 31.09×27.22 Å²) consisting of 123 atoms, as shown 363 in Figure 6a. The efficiency of the OER can be determined by 364 f6 ca[lculating](#page-5-0) the reaction free energies of the individual ³⁶⁵ elementary steps.⁴⁷ Therefore, the free-energy change for the 366 adsorption of th[e i](#page-7-0)ntermediates (i.e., OH*, O*, and OOH*) 367 on the C4-SHz surface has been calculated, and free-energy ³⁶⁸ profiles for OER pathways at $U = 0$ and 1.23 V are given in 369 Figure 6c. For OH^- adsorption on the C4-SHz surface, there 370 [are seven](#page-5-0) possible sites, including the S atom (Figure 6b and ³⁷¹ Figure S19, Supporting Information). However, [adsorpti](#page-5-0)on of ³⁷² OH⁻ [is mo](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)re favorable on the C2 site with the highest OH⁻ 373 adsorption energy of −1.61 eV (Figure 6b and Table S4). ³⁷⁴ However, there are very weak inte[ractions b](#page-5-0)etween OH^- and 375 either the N3 or S site (Figure S19e,f). Therefore, the active ³⁷⁶ site for OH⁻ adsorption [is predomina](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)ntly the C2 site. From 377 the free-energy profile diagram (Figure 6c), it is evident that ³⁷⁸ OOH* adsorption with the highe[st \(most](#page-5-0) positive) free-energy ³⁷⁹

Figure 6. (a) Theoretically optimized structure of the C4-SHz monolayer (different C and N sites are marked) and (b) most stable structure of the OH* adsorbed C4-SHz surface (all other possible OH⁻ adsorption sites are shown in Figure S19, Supporting Information). (c) Free-energy profile for th[e OER pathw](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)ay in alkaline medium on the C2 site at $U = 0$ and 1.23 V for the C4-SHz COF. (d) Free-energy profile at the experimentally determined onset potential, i.e., at an applied bias of $U = 1.48$ V (inset shows the structures of adsorption intermediates OH*, O*, and OOH* on the C2 site of the C4-SHz surface).

³⁸⁰ value is the rate-determining step during the OER process for 381 the C4-SHz $COF⁴$

 The free-energy [va](#page-7-0)lues of OOH* adsorption on the C4-SHz 383 surface are 4.13 and 0.44 eV at $U = 0$ and 1.23 V. This finding is consistent with the earlier reported COF material as the 385 metal-free OER electrocatalyst.³³ To get further insight about the excellent electrocatalytic a[ctiv](#page-7-0)ity of the C4-SHz COF, we have performed density of states (DOS) analysis. Total and projected density of states (TDOS and PDOS) analysis clearly demonstrates that the VBM is mainly composed of the 2p orbital of C atoms, whereas the 2p orbitals of heteroatoms, i.e., N and S atoms, contribute to the CBM (Figure S20, Supporting Information). Among various C site[s, as evident](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) from Figure S20b, the major contribution to the VBM comes from [the C2 sites.](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) Therefore, upon adsorption of energy, holes will be generated mainly on C atoms (especially on the C2 atom), and heteroatom sites will be electron-rich. For the OER 397 process in alkaline medium, OH⁻ is oxidized to O_2 after absorbing holes from the active C2 sites, which is consistent with previously reported COFs and heteroatom-doped graphene systems.[33,48](#page-7-0),[49](#page-7-0) Besides, we have determined the free-energy profile for the OER pathway at an applied bias of 1.48 V (Figure 6d), which is the experimentally determined onset potential. Interestingly, the energy profile diagram exhibits the downhill OER pathway at $U = 1.48$ V, validating the experimental findings of the OER onset overpotential. 406 Moreover, the downhill OER pathway at $U = 1.48$ V also indicates that the lower overpotential (merely 250 mV) arises 408 due to the C2 active site on the surface. 33

Allahove Catalysis
[■](pubs.acs.org/acscatalysis?ref=pdf) CONCLUSIONS 409

In summary, we have fabricated a novel thiadiazole-based ⁴¹⁰ covalent organic framework, C4-SHz COF, through the Schiff ⁴¹¹ base condensation polymerization reaction between 1,3,5- ⁴¹² tris(4-formylphenyl)benzene and 2,5-dihydrazinyl-1,3,4-thia- ⁴¹³ diazole under vacuum in a sealed tube. The resultant material ⁴¹⁴ displayed a unique molecular architecture, high porosity, BET ⁴¹⁵ surface area, and accessible active sites, which could enable this ⁴¹⁶ COF as a superior self-supported metal-free OER electro- ⁴¹⁷ catalyst. In the alkaline system, the material showed a low ⁴¹⁸ onset potential of 270 mV, and the material achieved a current ⁴¹⁹ density of 10 mA/cm² with a lower overpotential of 320 mV. 420 The accomplished OER activity is comparable to other best ⁴²¹ reported metal-free catalysts with excellent durability. There- ⁴²² fore, the catalytic performance exhibited by C4-SHz COF ⁴²³ suggests that it may replace metal-free carbon-based nanoma- ⁴²⁴ terials and could be a promising electrocatalyst for future ⁴²⁵ energy conversion from abundant water resources. 426

■ ASSOCIATED CONTENT 427

\bullet Supporting Information 428

The Supporting Information is available free of charge at ⁴²⁹ https://pubs.acs.org/doi/10.1021/acscatal.9b05470. ⁴³⁰

[Materials,](https://pubs.acs.org/doi/10.1021/acscatal.9b05470?goto=supporting-info) [methods](https://pubs.acs.org/doi/10.1021/acscatal.9b05470?goto=supporting-info) [and](https://pubs.acs.org/doi/10.1021/acscatal.9b05470?goto=supporting-info) [characterization](https://pubs.acs.org/doi/10.1021/acscatal.9b05470?goto=supporting-info) [too](https://pubs.acs.org/doi/10.1021/acscatal.9b05470?goto=supporting-info)ls, exper- ⁴³¹ imental details, Pawley refined powder X-ray profile with ⁴³² other related data, simulated N_2 adsorption isotherm, 433 TGA profile, comparison table with other reported ⁴³⁴ catalysts, CV plot of materials before LSV measurement, ⁴³⁵ iR-corrected LSV curve, exchange current density plot, ⁴³⁶ RRDE measurement plot, ECSA plot, stability at ⁴³⁷ different density plot, PXRD and FTIR of used COF ⁴³⁸ materials, and computational OER mechanism related ⁴³⁹ data ([PDF\)](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf) 440

([PDF](http://pubs.acs.org/doi/suppl/10.1021/acscatal.9b05470/suppl_file/cs9b05470_si_001.pdf)) ⁴⁴¹

■ AUTHOR INFORMATION 442

Corresponding Authors 443 Bikash Kumar Jena − Material Chemistry Department, CSIR- 444 Institute of Minerals and Materials Technology, Bhubaneswar ⁴⁴⁵ 751013, India; Academy of Scientific & Innovative Research ⁴⁴⁶ (AcSIR), Ghaziabad 201002, India; [orcid.org/0000-0003-](http://orcid.org/0000-0003-1794-4430) 447

1794-4430; Email: msab@iacs.res.in ⁴⁴⁸ A[sim Bhaum](http://orcid.org/0000-0003-1794-4430)ik − Sc[hool of Materials](mailto:msab@iacs.res.in) Sciences, Indian 449 Association for the Cultivation of Science, Jadavpur 700032, ⁴⁵⁰ India; orcid.org/0000-0002-4907-7418; Email: [bikash@](mailto:bikash@immt.res.in) 451 [immt.r](mailto:bikash@immt.res.in)[es.in](http://orcid.org/0000-0002-4907-7418) ⁴⁵²

Authors 453

for the Cultivation of Science, Jadavpur 700032, India $\qquad \qquad 465$

⁴⁶⁶ Matthew Addicoat − School of Science and Technology,

⁴⁶⁷ Nottingham Trent University, NG11 8NS Nottingham, U.K.;

- ⁴⁶⁸ orcid.org/0000-0002-5406-7927
- ⁴⁶⁹ Ayan Dutta − [School of Physical Scien](http://orcid.org/0000-0002-5406-7927)ces, Indian Association for
- ⁴⁷⁰ the Cultivation of Science, Jadavpur 700032, India;

⁴⁷¹ orcid.org/0000-0001-6723-087X

⁴⁷² Co[mplete](http://orcid.org/0000-0001-6723-087X) [contact](http://orcid.org/0000-0001-6723-087X) [information](http://orcid.org/0000-0001-6723-087X) [is](http://orcid.org/0000-0001-6723-087X) [availa](http://orcid.org/0000-0001-6723-087X)ble at:

⁴⁷³ [https://pubs.acs.org/10.1021/acscatal.9b05470](https://pubs.acs.org/page/pdf_proof?ref=pdf)

474 Author Contributions

 475 ∇ S.M. and B.M. contributed equally. All authors have given ⁴⁷⁶ approval to the final version of the manuscript.

477 Notes

⁴⁷⁸ The authors declare no competing financial interest.

479 ACKNOWLEDGMENTS

 S.M. acknowledges CSIR, New Delhi, India. A.B. acknowl- edges DST-SERB, New Delhi, for a core research grant. Assistance from CSS, IACS Kolkata is acknowledged. M.A. acknowledges support from EPSRC, EP/S015868/1, and HPC resources on Thomas via the Materials Chemistry Consortium, EP/P020194. B.P.M. is grateful to UGC, New Delhi, for the fellowship, and B.K.J. is grateful to MNRE, New Delhi, BRNS, Mumbai, India, and CSIR, New Delhi, India, for the financial ⁴⁸⁸ support.

489 **REFERENCES**
490 (1) Roger, L: Shin

490 (1) Roger, I.; Shipman, M. A.; Symes, M. D. Earth-Abundant 491 Catalysts for Electrochemical and Photoelectr[ochemical Water](https://dx.doi.org/10.1038/s41570-016-0003) 492 Splitting. [Nat. Rev. Chem.](https://dx.doi.org/10.1038/s41570-016-0003) 2017, 1, 1−13.

493 (2) [Zha](https://dx.doi.org/10.1038/s41570-016-0003)ng, J.; Zhao, Z.; Xia, Z.; Dai, L. A Metal-Free Bifunctional 494 Electrocatalyst for Oxygen Reductio[n and Oxygen Evolution](https://dx.doi.org/10.1038/nnano.2015.48) 495 Reactions. [Nat. Nanotechnol.](https://dx.doi.org/10.1038/nnano.2015.48) 2015, 10, 444−452.

496 (3) [Liu,](https://dx.doi.org/10.1038/nnano.2015.48) X.; Dai, L. Carbon-Based Metal-Free Catalysts. Nat. Rev. 497 Mater. 2016, 1, 16064−[16076.](https://dx.doi.org/10.1038/natrevmats.2016.64)

498 (4) Mohanty, B.; Jena, B. K.; Basu, S. Single Atom on the 2D Matrix: 499 An Emerging Electrocatalyst for En[ergy Applications.](https://dx.doi.org/10.1021/acsomega.9b03515) ACS Omega 500 2020, 5[, 1287](https://dx.doi.org/10.1021/acsomega.9b03515)−1295.

501 (5) Kamila, S.; Mohanty, B.; Samantara, A. K.; Guha, P.; Ghosh, A.;

502 Jena, B.; Satyam, P. V.; Mishra, B. K.; Jena, B. K. Highly Active 2D 503 Layered $MoS₂-rGO$ Hybrids for Energy Conve[rsion and Storage](https://dx.doi.org/10.1038/s41598-017-08677-5) 504 [Applications.](https://dx.doi.org/10.1038/s41598-017-08677-5) Sci. Rep. 2017, 7, 8378−8313.

 (6) [Bhanja,](https://dx.doi.org/10.1038/s41598-017-08677-5) P.; Mohanty, B.; Patra, A. K.; Ghosh, S.; Jena, B. K.; 506 Bhaumik, A. IrO₂ and Pt Doped Mesoporous $SnO₂$ Nanospheres as Efficient Ele[ctrocatalysts for the Facile OER and HER.](https://dx.doi.org/10.1002/cctc.201801312) ChemCatChem 2019, 11[, 583](https://dx.doi.org/10.1002/cctc.201801312)−592.

 (7) Siracusano, S.; Van Dijk, N.; Payne-Johnson, E.; Baglio, V.; 510 Aricò, A. S. Nanosized Ir O_x and IrRu O_x Electrocatalysts for the O_2 Evolution [Reaction in PEM Water Electrolysers.](https://dx.doi.org/10.1016/j.apcatb.2014.09.005) Appl. Catal. B: [Environ.](https://dx.doi.org/10.1016/j.apcatb.2014.09.005) 2015, 164, 488−495.

513 (8) Kayal, U.; Mohanty, B.; Bhanja, P.; Chatterjee, S.; Chandra, D.; 514 Hara, M.; Kumar Jena, B.; Bhaumik, A. Ag Nanoparticle-Decorated,

515 Ordered Mesoporous Silica as an Efficie[nt Electrocatalyst for Alkaline](https://dx.doi.org/10.1039/C8DT04159H)

516 [Water Oxidation Reaction.](https://dx.doi.org/10.1039/C8DT04159H) Dalton Trans. 2019, 48, 2220−2227.

 (9) [Mohanty, B.; Ghorb](https://dx.doi.org/10.1039/C8DT04159H)ani-Asl, M.; Kretschmer, S.; Ghosh, A.; Guha, P.; Panda, S. K.; Jena, B.; Krasheninnikov, A. V.; Jena, B. K. $MoS₂$ Quantum Dots as Efficient Catalyst Materials for the Oxygen [Evolution Reaction.](https://dx.doi.org/10.1021/acscatal.7b03180) ACS Catal. 2018, 8, 1683−1689.

 (10) [Guo, H.-P.; R](https://dx.doi.org/10.1021/acscatal.7b03180)uan, B.-Y.; Luo, W.-B.; Deng, J.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X. Ultrathin and Edge-Enriched Holey Nitride Nanosheets as Bi[functional Electrocatalysts for the Oxygen and](https://dx.doi.org/10.1021/acscatal.8b01821) [Hydrogen Evolution Reactions.](https://dx.doi.org/10.1021/acscatal.8b01821) ACS Catal. 2018, 8, 9686−9696.

 (11) [Dutta, A.; Samantara, A.](https://dx.doi.org/10.1021/acscatal.8b01821) K.; Dutta, S. K.; Jena, B. K.; Pradhan, N. Surface-Oxidized Dico-balt Phosphide Nanoneedles as a Nonpre- ci[ous, Durable, and Efficient OER Catalyst.](https://dx.doi.org/10.1021/acsenergylett.6b00144) ACS Energy Lett. 2016, 1, 528 169−[174.](https://dx.doi.org/10.1021/acsenergylett.6b00144)

(12) Dalai, N.; Mohanty, B.; Mitra, A.; Jena, B. Highly Active 529 Ternary Nickel-Iron Oxide as Bifunctional Catal[yst for Electro-](https://dx.doi.org/10.1002/slct.201901465) 530 [chemical Water Splitting.](https://dx.doi.org/10.1002/slct.201901465) ChemistrySelect 2019, 4, 7791−7796. 531

(13) [Wu, H.; Yang, T.; D](https://dx.doi.org/10.1002/slct.201901465)u, Y.; Shen, L.; Ho, G. W. Identification of 532 Facet-Governing Reactivity in Hematite for Oxyge[n Evolution.](https://dx.doi.org/10.1002/adma.201804341) Adv. 533 Mater. 2018, 30[, 1804341](https://dx.doi.org/10.1002/adma.201804341)−1804349. 534

(14) Hu, Q.; Li, G.; Liu, X.; Zhu, B.; Chai, X.; Zhang, Q.; Liu, J.; He, 535 C. Superhydrophilic Phytic-Acid-Doped Conductive Hydrogels as 536 [Metal-Free and Binder-Free Electrocatalysts for Efficient Water](https://dx.doi.org/10.1002/anie.201900109) 537 Oxidation. [Angew. Chem., Int. Ed.](https://dx.doi.org/10.1002/anie.201900109) 2019, 58, 4318−4322. 538

[\(15\)](https://dx.doi.org/10.1002/anie.201900109) Lai, J.; Li, S.; Wu, F.; Saqib, M.; Luque, R.; Xu, G. 539 Unprecedented Metal-Free 3D Porous Carbonaceous Electrodes for 540 [Full Water Splitting.](https://dx.doi.org/10.1039/C5EE02996A) Energy Environ. Sci. 2016, 9, 1210−1214. 541

(16) [Zhao, Y.; Yan](https://dx.doi.org/10.1039/C5EE02996A)g, N.; Yao, H.; Liu, D.; Song, L.; Zhu, J.; Li, S.; 542 Gu, L.; Lin, K.; Wang, D. Stereodefined Codoping of Sp-N and S 543 Atoms in Few-Layer Grap[hdiyne for Oxygen Evolution Reaction.](https://dx.doi.org/10.1021/jacs.8b13695) J. 544 [Am. Chem. Soc.](https://dx.doi.org/10.1021/jacs.8b13695) 2019, 141, 7240–7244. 545

(17) Li, Q.; Yang, C.; Wu, L.; Wang, H.; Cui, X. Converting 546 Benzene into γ-Graphyne and Its Enhanced Electroche[mical Oxygen](https://dx.doi.org/10.1039/C8TA10317H) 547 [Evolution Performance.](https://dx.doi.org/10.1039/C8TA10317H) J. Mater. Chem. A 2019, 7, 5981−5990. 548

(18) Cô[te, A. P.; Benin](https://dx.doi.org/10.1039/C8TA10317H), A. I.; Ockwig, N. W.; O ́ 'Keeffe, M.; Matzger, 549 A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. 550 Science 2005, 310, 1166−[1170.](https://dx.doi.org/10.1126/science.1120411) 551

(19) Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Opportunities of Covalent 552 Organic Frameworks for Advanced Applications. [Adv. Sci.](https://dx.doi.org/10.1002/advs.201801410) 2019, 6, 553 [1801410.](https://dx.doi.org/10.1002/advs.201801410) 554

(20) Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): 555 from design to applications. [Chem. Soc. Rev.](https://dx.doi.org/10.1039/C2CS35072F) 2013, 42, 548−568. 556

(21) [Zhou, J.; Wang, B. Em](https://dx.doi.org/10.1039/C2CS35072F)erging Crystalline Porous Materials as a 557 Multifunctional Platform [for Electrochemical Energy Storage.](https://dx.doi.org/10.1039/C7CS00283A) Chem. 558 [Soc. Rev.](https://dx.doi.org/10.1039/C7CS00283A) 2017, 46, 6927–6945. 559

(22) Gomes, R.; Bhaumik, A. A New Triazine Functionalized 560 Luminescent Covalent Organic Fr[amework for Nitroaromatic Sensing](https://dx.doi.org/10.1039/C6RA01717G) 561 and CO₂ Storage. [RSC Adv](https://dx.doi.org/10.1039/C6RA01717G) 2016, 6, 28047-28054. 562

(23) [Briega-Mart](https://dx.doi.org/10.1039/C6RA01717G)os, V.; Ferre-Vilaplana, A.; de la Peña, A.; Segura, J. 563 L.; Zamora, F.; Feliu, J. M.; Herrero, E. An Aza-Fused π-Conjugated 564 Microporous Framework Catalyzes t[he Production of Hydrogen](https://dx.doi.org/10.1021/acscatal.6b03043) 565 Peroxide. [ACS Catal.](https://dx.doi.org/10.1021/acscatal.6b03043) 2017, 7, 1015−1024. 566

[\(24\)](https://dx.doi.org/10.1021/acscatal.6b03043) Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, 567 M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Two- 568 dimensional sp²carbon-conjugated covalent organic frame[works.](https://dx.doi.org/10.1126/science.aan0202) 569 [Science](https://dx.doi.org/10.1126/science.aan0202) 2017, 357, 673–676. 570

(25) Wang, H.; Zeng, Z.; Xu, P.; Li, L.; Zeng, G.; Xiao, R.; Tang, Z.; 571 Huang, D.; Tang, L.; Lai, C.; et al. Recent Progress in Covalent 572 Organic Framework Thin Films: [Fabrications, Applications and](https://dx.doi.org/10.1039/C8CS00376A) 573 Perspectives. [Chem. Soc. Rev.](https://dx.doi.org/10.1039/C8CS00376A) 2019, 48, 488−516. 574

(26) [Valent](https://dx.doi.org/10.1039/C8CS00376A)ino, L.; Matsumoto, M.; Dichtel, W. R.; Mariñas, B. J. 575 Environ. Sci. Technol. 2017, 51, 14352−14359. 576

(27) Lohse, M. S.; Bein, T. Covalent Organic Frameworks: 577 Structures, Synthesis, and Applications. [Adv. Funct. Mater.](https://dx.doi.org/10.1002/adfm.201705553) 2018, 28, 578 [1705553.](https://dx.doi.org/10.1002/adfm.201705553) 579

(28) Mullangi, D.; Dhavale, V.; Shalini, S.; Nandi, S.; Collins, S.; 580 Woo, T.; Kurungot, S.; Vaidhyanathan, R. Low-Overpotential 581 Electrocatalytic Water Splitting with Noble-Met[al-Free Nanoparticles](https://dx.doi.org/10.1002/aenm.201600110) 582 Supported in a sp³[N-Rich Flexible COF.](https://dx.doi.org/10.1002/aenm.201600110) Adv. Energy Mater. 2016, 6, 583 [1600110.](https://dx.doi.org/10.1002/aenm.201600110) 584

(29) Kamiya, K.; Kamai, R.; Hashimoto, K.; Nakanishi, S. Platinum- 585 Modified Covalent Triazine Frameworks Hybridized wi[th Carbon](https://dx.doi.org/10.1038/ncomms6040) 586 [Nanoparticles as Methanol-Tolerant Oxygen Reduc-tion Electro-](https://dx.doi.org/10.1038/ncomms6040) 587 catalysts. [Nat. Commun.](https://dx.doi.org/10.1038/ncomms6040) 2014, 5, 5040. 588

[\(30\)](https://dx.doi.org/10.1038/ncomms6040) Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, 589 S. Cobalt-Modified Covalent Organic Framework as a Robust Water 590 [Oxidation Electrocatalyst.](https://dx.doi.org/10.1021/acs.chemmater.6b01370) Chem. Mater. 2016, 28, 4375−4379. 591

(31) [Wu, D.; Xu, Q.; Q](https://dx.doi.org/10.1021/acs.chemmater.6b01370)ian, J.; Li, X.; Sun, Y. Bimetallic Covalent 592 Organic Frameworks for Constructing Multifunc[tional Electrocatalyst.](https://dx.doi.org/10.1002/chem.201805550) 593 Chem. − Eur. J. 2019, 25[, 3105](https://dx.doi.org/10.1002/chem.201805550)−3111. 594

(32) Sick, T.; Hufnagel, A. G.; Kampmann, J.; Kondofersky, I.; Calik, 595 M.; Rotter, J. M.; Evans, A.; Döblinger, M.; Herbert, S.; Peters, K.; 596 Böhm, D.; Knochel, P.; Medina, D. D.; Fattakhova-Rohlfing, D.; Bein, 597

 T. Oriented Films of Conjugated 2D Covalent Organic Frameworks as [Photocathodes for Water Splitting.](https://dx.doi.org/10.1021/jacs.7b06081) J. Am. Chem. Soc. 2017, 140, 2085−[2092.](https://dx.doi.org/10.1021/jacs.7b06081)

 (33) Yang, C.; Yang, Z.-D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F.-M.; Zhang, G. Theory-Driven Design and Targeting Synthesis of a Highly-Co[njugated Basal-Plane 2D Covalent Organic Framework for](https://dx.doi.org/10.1021/acsenergylett.9b01691) [Metal-Free Electrocatalytic OER.](https://dx.doi.org/10.1021/acsenergylett.9b01691) ACS Energy Lett. 2019, 4, 2251− [2258.](https://dx.doi.org/10.1021/acsenergylett.9b01691)

 (34) Sick, T.; Rotter, J. M.; Reuter, S.; Kandambeth, S.; Bach, N. N.; Döblinger, M.; Merz, J.; Clark, T.; Marder, T. B.; Bein, T.; Medina, D. D. Switching on and off Interlayer Correlations and Porosity in 2D C[ovalent Organic Frameworks.](https://dx.doi.org/10.1021/jacs.9b02800) J. Am. Chem. Soc. 2019, 141, 12570− [12581.](https://dx.doi.org/10.1021/jacs.9b02800)

 (35) Mondal, S.; Kundu, S. K.; Bhaumik, A. A Facile Approach for the Synthesis of Hydroxyl-Rich Microporous [Organic Networks for](https://dx.doi.org/10.1039/C6CC09660C) 613 Efficient CO₂ Capture and H₂ Storage. Chem. Commun. 2017, 53, 2752−[2755.](https://dx.doi.org/10.1039/C6CC09660C)

 (36) Bandyopadhyay, S.; Anil, A. G.; James, A.; Patra, A. Multifunctional Porous Organic Polymers: Tuning of Porosity, $CO₂$, and H₂ [Storage and Visible-Light-Driven Photocatalysis.](https://dx.doi.org/10.1021/acsami.6b08331) ACS [Appl. Mater. Interfaces](https://dx.doi.org/10.1021/acsami.6b08331) 2016, 8, 27669−27678.

 (37) Ji, G.; Yang, Z.; Zhang, H.; Zhao, Y.; Yu, B.; Ma, Z.; Liu, Z. Hierarchically Mesoporous O-Hydroxyazobenzene Polymers: Syn-621 thesis and Their Applications in $CO₂$ Capture and Conversion. [Angew. Chem., Int. Ed.](https://dx.doi.org/10.1002/anie.201602667) 2016, 55, 9685−9689.

 (38) Liu, F.; Huang, K.; Yoo, C.-J.; Okonkwo, C.; Tao, D.-J.; Jones, C. W.; Dai, S. Facilely Synthesized Meso-Macroporous Polymer as Support of Po[ly \(Ethyleneimine\) for Highly Efficient and Selective](https://dx.doi.org/10.1016/j.cej.2016.12.004) [Capture of CO2.](https://dx.doi.org/10.1016/j.cej.2016.12.004) Chem. Eng. J. 2017, 314, 466−476.

 (39) [Dalapati, S](https://dx.doi.org/10.1016/j.cej.2016.12.004).; Addicoat, M.; Jin, S.; Sakurai, T.; Gao, J.; Xu, H.; Irle, S.; Seki, S.; Jiang, D. Rational Design of Crystalline Super- microporous Covalent Org[anic Frameworks with Triangular Top-](https://dx.doi.org/10.1038/ncomms8786)ologies. [Nat. Commun.](https://dx.doi.org/10.1038/ncomms8786) 2015, 6, 7786.

 [\(40\)](https://dx.doi.org/10.1038/ncomms8786) Merí-Bofí, L.; Royuela, S.; Zamora, F.; Ruiz-Gonzalez, M. L.; ́ Segura, J. L.; Muñoz-Olivas, R.; Mancheño, M. J. Thiol grafted imine- based covalent organic frameworks for water r[e-mediation through](https://dx.doi.org/10.1039/C7TA05588A) [selective removal of Hg\(II\).](https://dx.doi.org/10.1039/C7TA05588A) J. Mater. Chem. A 2017, 5, 17973−17981. (41) [Gao, Q.; Li, X.; Ning](https://dx.doi.org/10.1039/C7TA05588A), G.-H.; Leng, K.; Tian, B.; Liu, C.; Tang, W.; Xu, H.-S.; Loh, K. P. Highly photoluminescent two-dimensional imine-based covalent org[anic frameworks for chemical sensing.](https://dx.doi.org/10.1039/C7CC09866A) Chem. [Commun.](https://dx.doi.org/10.1039/C7CC09866A) 2018, 54, 2349−2352.

 (42) Waller, P. J.; Gandara, F.; Yaghi, O. M. Chemistry of Covalent ́ Organic Frameworks. Acc. Chem. Res. 2015, 48[, 3053](https://dx.doi.org/10.1021/acs.accounts.5b00369)−3063.

(43) [Mondal, S.; Ch](https://dx.doi.org/10.1021/acs.accounts.5b00369)atterjee, S.; Mondal, S.; Bhaumik, A. Thioether-

 Functionalized Covalent Triazine Nanospheres: A Robus[t Adsorbent](https://dx.doi.org/10.1021/acssuschemeng.9b00567) for Mercury Removal. [ACS Sustainable Chem. Eng.](https://dx.doi.org/10.1021/acssuschemeng.9b00567) 2019, 7, 7353− [7361.](https://dx.doi.org/10.1021/acssuschemeng.9b00567)

 (44) Mohanty, B.; Wei, Y.; Ghorbani-Asl, M.; Krasheninnikov, A. V.; Rajput, P.; Jena, B. K. Revealing the Defect-dominated Oxygen

 Evolution Activity of Hematene. [J. Mater. Chem. A](https://dx.doi.org/10.1039/D0TA00422G) 2020, 8, 6709. (45) [Zhao, S.; Wang, Y.; Dong,](https://dx.doi.org/10.1039/D0TA00422G) J.; He, C.-T.; Yin, H.; An, P.; Zhao,

 K.; Zhang, X.; Gao, C.; Zhang, L.; Lv, J.; Wang, J.; Zhang, J.; Khattak, A. M.; Khan, N. A.; Wei, Z.; Zhang, J.; Liu, S.; Zhao, H.; Tang, Z.

Ultrathin Metal-organic Framework nanosheets for Electrocatalytic

[Oxygen Evolution.](https://dx.doi.org/10.1038/nenergy.2016.184) Nat. Energy 2016, 1, 16184.

 (46) [Wu, X.; Yan](https://dx.doi.org/10.1038/nenergy.2016.184)g, Y.; Zhang, T.; Wang, B.; Xu, H.; Yan, X.; Tang, Y. ACS Appl. Mater. Interfaces 2019, 11, 39841−39847.

 (47) Bothra, P.; Pati, S. K. Activity of Water Oxidation on Pure and [\(Fe,](https://dx.doi.org/10.1021/acsenergylett.6b00369) [Ni,](https://dx.doi.org/10.1021/acsenergylett.6b00369) [and](https://dx.doi.org/10.1021/acsenergylett.6b00369) [Cu\)-Substituted](https://dx.doi.org/10.1021/acsenergylett.6b00369) Co₃O₄. [ACS Energy Lett.](https://dx.doi.org/10.1021/acsenergylett.6b00369) 2016, 1, 858– 862.

(48) Wang, Q.; Ji, Y.; Lei, Y.; Wang, Y.; Wang, Y.; Li, Y.; Wang, S.

 Pyridinic-N-Dominated Doped Defective Graphene as a Superior [Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn-Air Batteries.](https://dx.doi.org/10.1021/acsenergylett.8b00303) [ACS Energy Lett.](https://dx.doi.org/10.1021/acsenergylett.8b00303) 2018, 3, 1183−1191.

 (49) Yang, H. B.; Miao, J.; Hung, S.-F.; Chen, J.; Tao, H. B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. M.; Dai, L.; Liu, B. Identification of Catalytic Sites for Oxygen Reduction and Oxygen [Evolution in N-doped Graphene Materials: Development of Highly](https://dx.doi.org/10.1126/sciadv.1501122) Efficient Metal-free Bifunctional Electrocatalyst. Sci. Adv. 2016, 2, 666 e1501122−[e1501132.](https://dx.doi.org/10.1126/sciadv.1501122) 667