
              

City, University of London Institutional Repository

Citation: Easterbrook, S., Finkelstein, A. ORCID: 0000-0003-2167-9844, Kramer, J. and 
Nuseibeh, B. (1994). Coordinating Conflicting ViewPoints by Managing Inconsistency. Paper 
presented at the Workshop on Conflict Management in Design, International Conference on 
Artificial Intelligence in Design,, 15-18 Aug 1994, Lausanne, Switzerland. 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/26492/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 
University of London available to a wider audience. Copyright and Moral 
Rights remain with the author(s) and/or copyright holders. URLs from 
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 
educational, or not-for-profit purposes without prior permission or 
charge. Provided that the authors, title and full bibliographic details are 
credited, a hyperlink and/or URL is given for the original metadata page 
and the content is not changed in any way. 

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/459166699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


To appear in Concurrent Engineering: Research and Applications (Special Issue on Conflict Management), 1994.

- 1 -

Co-ordinating Distributed ViewPoints:
the anatomy of a consistency check

STEVE EASTERBROOK
School of Cognitive & Computing Sciences, University of Sussex, Falmer, Brighton, BN1 9QH

easterbrook@cogs.susx.ac.uk

ANTHONY FINKELSTEIN, JEFF KRAMER & BASHAR NUSEIBEH
Department of Computing, Imperial College, 180 Queen’s Gate, London, SW7 2BZ

{acwf, jk, ban}@doc.ic.ac.uk

Support for Concurrent Engineering must address the “multiple perspectives problem” -
many actors, many representation schemes, diverse domain knowledge and differing
development strategies, all in the context of distributed asynchronous development. Central
to this problem is the issue of managing consistency between the various elements of an
emerging design. In this paper, we argue that striving to maintain complete consistency at
all points in the development process is unnecessary, and an approach based on tolerance
and management of inconsistency can be adopted instead. We present a scenario which
highlights a number of important issues raised by this approach, and we describe how these
issues are addressed in our framework of distributed ViewPoints. The approach allows an
engineering team to develop independent ViewPoints, and to establish relationships
between them incrementally. The framework provides mechanisms for expressing
consistency relationships, checking that individual relationships hold, and resolving
inconsistencies if necessary.

1 . Introduction
Concurrent engineering involves the collaboration and co-ordination of a physically distributed
team with variable opportunities for communication with one another. Traditional approaches to the
problems of distributed working use a central database, or repository, to which all team members
have communication access. Consistency is managed in this database through strict access control
and version management, along with a common data model or schema. Such centralised
approaches do not adequately support the reality of distributed engineering, where communication
with a central database cannot always be guaranteed, and access control rapidly becomes a
bottleneck (Cutkosky, et al., 1993).

The alternative, a fully decentralised environment, is seen to be problematic because of the
difficulties of maintaining consistency between a large collection of agents. However, these
problems can be overcome by recognising that maintaining global consistency at all times is an
unnecessary burden. Indeed, it is often desirable to tolerate and even encourage inconsistency, to
maximise design freedom, and to prevent premature commitment to design decisions. The focus
therefore shifts from maintaining consistency to the management of inconsistencies.

Our interests centre on the problems of requirements definition for large and complex systems.
Although we concentrate especially on specification of software, we are generally concerned with
composite systems, where the software components interact with a variety of different
technologies. The development of such systems necessarily involves many people - each with their
own perspective on the system defined by their skills, responsibilities, knowledge and expertise.
The intersections between these perspectives are far from obvious because the knowledge within
each perspective is represented in different ways.

With concurrent development, different perspectives may be at different stages of elaboration and
may each be subject to different development strategies. The problem of how to guide and organise
development in this setting - many actors, sundry representation schemes, diverse domain
knowledge, differing development strategies - we term “the multiple perspective problem”.

In this paper, we describe our approach to the multiple perspectives problem. We use a distributed
environment to support the development and comparison of different perspectives. Our philosophy
is to avoid the need for any central database, and to tolerate inconsistency.  In particular we focus
on the problems of how co-ordination can be achieved without restricting the freedom to develop



- 2 -

multiple perspectives. The paper presents a scenario to illustrate some of the issues raised by this
approach. We then consider each issue in turn and describe how our approach addresses it.

2 . ViewPoints
The framework upon which we base this work supports distributed software engineering in which
multiple perspectives are maintained separately as distributable objects, called ViewPoints
(Finkelstein, et al., 1992). A ViewPoint can be thought of as a combination of the idea of an
‘actor’, ‘knowledge source’, ‘role’ or ‘agent’ in the development process, and the idea of a ‘view’
or ‘perspective’ which an actor maintains. In software terms, ViewPoints are loosely coupled,
locally managed, coarse-grained objects which encapsulate partial knowledge about the system and
domain, specified in a particular, suitable representation scheme, and partial knowledge of the
process of development.

Each ViewPoint has the following slots:

• a representation style, the scheme and notation by which the ViewPoint expresses what it
can see;

• a domain, which defines the area of concern addressed by the ViewPoint;

• a specification, the statements expressed in the ViewPoint’s style describing the domain;

• a work plan, which comprises the set of actions by which the specification can be built, and
a process model to guide application of these actions;

• a work record, which contains an annotated history of actions performed on the ViewPoint.

The development participant associated with any particular ViewPoint is known as the ViewPoint
‘owner’. The owner is responsible for developing a ViewPoint specification using the notation
defined in the style slot, following the strategy defined by the work plan, for a particular problem
domain. A development history is maintained in the work record.

This framework actively encourages multiple representations, and is a deliberate move away from
attempts to develop monolithic specification languages. It is also independent from any particular
software development method. In general, a method is composed of a number of different
development techniques. Each technique has its own notation and rules about when and how to use
that notation. A software development method can be implemented in the framework by defining a
set of ViewPoint templates, which together describe the set of notations provided by the method,
and the rules by which they are used independently and together.

Most importantly, the framework tolerates inconsistency, with no requirement for changes to one
ViewPoint to be consistent with other ViewPoints (Finkelstein, et al., 1994). Consistency checking
is performed through a set of inter-ViewPoint rules, defined by the method, which express the
relationships that should hold between particular ViewPoints. These rules define partial consistency
relations between the different representation schemes. This allows consistency to be checked
incrementally between ViewPoints at particular stages rather than being enforced as a matter of
course. A protocol is provided for applying consistency checks between ViewPoints, with the
checking process being initiated by either ViewPoints’ owner. A fine-grained process model in
each ViewPoint provides guidance for the resolution of inconsistencies (Nuseibeh, Finkelstein, &
Kramer, 1993).

A prototype computer-based environment and associated tools (the Viewer) have been constructed
to support the framework (Nuseibeh & Finkelstein, 1992). The Viewer has two distinct modes of
use: method design and method use. Method design involves the creation of ViewPoint templates
which are ViewPoints for which only the representation style and work plan slots are filled. In
method use, ViewPoints are instantiated from these templates, to represent the various
perspectives. Each instantiated ViewPoint will inherit the knowledge necessary for building and
manipulating a specification in the chosen notation, and cross checking consistency with other
ViewPoints. Hence, each ViewPoint is a self-contained specification development tool.

The framework we have described offers a coherent approach to the management of multiple
perspectives. The approach supports multi-language specification, without the requirement for a
common data model or language. It therefore facilitates method integration, as well as the obvious
benefits of distributed working. We have demonstrated elsewhere the use of the framework to



- 3 -

implement software engineering methods such as CORE (Nuseibeh, Kramer, & Finkelstein, 1993)
and the CDA (Kramer & Finkelstein, 1991), and have demonstrated how relationships between
different representation schemes may be expressed.

In this paper, we concentrate on how co-ordination between ViewPoints can be supported, without
requiring consistency to be maintained. There are a number of technical problems introduced by
this approach. For example, how can we test an individual consistency relationship between two
ViewPoints which have an arbitrary number of inconsistencies; and how can we support the
resolution of inconsistencies in an incremental fashion, so that resolutions are not lost when the
ViewPoints continue to evolve? We present a scenario to illustrate the problems, and then consider
the issues raised in more detail.

3 . Scenario
To illustrate the problems of co-ordinating ViewPoints, we will present a scenario in which
hierarchically related ViewPoints are delegated to separate members of a team to develop. We use
dataflow diagrams (DFDs) as an example notation, although the scenario could equally well apply
to any of a large range of software engineering notations. In a dataflow diagram, a node in a graph,
representing a process, may be decomposed in a separate diagram. When this happens, the set of
inputs and outputs to that process should be shown on the decomposition. However, the owners of
each diagram may wish to modify them independently.

Consider the following. Anne has created a ViewPoint to contain a top level dataflow diagram of
the system. Each process in the diagram is, by default, labelled as primitive, in that it is not
decomposed further. She then selects process Y and changes its state to non-primitive, to indicate
that it is decomposed. She then delegates the job of decomposing it to Bob.

At this point, there is an inconsistency:

X Y
d1 d2

d3
d4

A (owner=Anne; domain=top)

Figure 1. ViewPoint A contains a non-primitive process (process Y, shaded) for which no
corresponding decomposition exists.

Bob creates a new ViewPoint to represent the decomposition. He gives the new ViewPoint a
suitable label to indicate it is a decomposition of process Y.

X Y
d1 d2

d3
d4

B

A (owner=Anne; domain=top)

(owner=Bob; domain=process Y)

Figure 2. ViewPoint A contains a non-primitive process for which the decomposition does
not have the same inputs and outputs (because the decomposition is empty).

Bob takes the input and output flows connected to process Y in the parent, and adds them to the



- 4 -

decomposition as its context. He then begins to define the processes that comprise the
decomposition.

X Y
d1 d2

d3
d4

B

A

d3 d4d5

d2

Y.1 Y.2

(owner=Anne; domain=top)

(owner=Bob; domain=process Y)

Figure 3. ViewPoint A is consistent with the decomposition.

Anne now does some more work on the parent. In the process of delegating decomposition of
other processes, she realises one of the outputs of process Y is missing, and so she adds it (d7).
Meanwhile, Bob has also noticed the omission, and adds it, using a different label (d6). He also
adds another missing output (d9), and renames a third (d4 becomes d8).

X Y
d1 d2

d3
d4

B

A

d3 d8d5

d2 d6

d7

d9

Y.1 Y.2

(owner=Anne; domain=top)

(owner=Bob; domain=process Y)

Figure 4. ViewPoint A is inconsistent with the decomposition, as the outputs to process Y
in the parent  do not match the contextual outputs in the decomposition ViewPoint.

Eventually, Bob discusses process Y with Chris, who is working on a decomposition for process
X. They discover that the interaction between their processes is a lot more complex than Anne
realised, and needs to be shown by merging their ViewPoints and then decomposing further levels.
They discuss this with Anne, who agrees. They transfer elements of Bob’s ViewPoint to Chris’s
and delete the ViewPoint for process Y.

X Y
d1 d2

d3
d4

A

d7

(owner=Anne; domain=top)

Figure 5. ViewPoint A contains a non-primitive process (process Y, shaded) for which no
corresponding decomposition ViewPoint exists.



- 5 -

And so on. Note that the inconsistencies in figures 1 and 5 involve the same consistency
relationship, as do those in 2 and 4. However, in each case the appropriate repair action is
different. Note also that the inconsistency in figure 4 is vastly complicated by the fact that several
changes have been saved up. In particular, it may not be possible to tell whether the last change
made by Bob (i.e. renaming a flow) should merely be propagated to Anne’s ViewPoint.

3 . 1 . Issues

The scenario raises a number of questions about the provision of support for concurrent
engineering activities:

• Where does the responsibility for creating a ViewPoint lie?

• How are relationships between ViewPoints expressed?

• When should relationships between ViewPoints be checked?

• How are relationships between ViewPoints checked?

• How are inconsistencies resolved?

• What happens if inconsistencies are not resolved?

We will now discuss each of these issues in turn.

4 . Where does the responsibility for creating a ViewPoint lie?
The first step in the scenario was a decision to decompose a process in another ViewPoint. This
decision implies that such a ViewPoint should be created, but it does not imply it should be created
immediately. Nor is it clear where the responsibility for creating it lies. In the scenario, it is Anne’s
action which necessitates the creation of a new ViewPoint, but the development of the new
ViewPoint is to be Bob’s responsibility.

In an environment with strong consistency enforcement, the decomposition process described in
the scenario might be a single action, which creates the new ViewPoint, flags the decomposition in
the parent, and copies relevant information to the new ViewPoint. This would prevent the
inconsistencies in figures 1 and 2 arising. However, it also confuses the division of responsibility
for the two ViewPoints: the action of noting that a process should be decomposed only affects
Anne’s ViewPoint; the action of transferring material only affects Bob’s. Changes that are local to a
ViewPoint would normally be the responsibility of that ViewPoint’s owner.

De-coupling these actions, as we have done in the scenario, permits more flexibility with
development strategies. For example, Bob may have a pre-existing ViewPoint which he wishes to
use as the decomposition. Alternatively, Bob may wish to begin development of the decomposition
without copying Anne’s contextual flows, perhaps because he has different ideas about what the
contextual flows should be. In the scenario, Anne and Bob appear to be using a top down strategy,
in which the system is described at the highest levels first. Later in the scenario they modify their
descriptions in a bottom up manner. Clearly, there are a number of possible strategies they could
adopt, and they may not wish to use the same strategy, nor stick to a particular strategy.

We have also de-coupled the actions of changing a label and propagating that change to other
affected ViewPoints. There are a number of reasons for this: communication between ViewPoints
may not always be possible; Anne may only be experimenting; Bob might not wish to accept the
change yet (if at all); Bob may have simultaneously changed (or deleted) the same label.

De-coupling actions affecting different ViewPoints allows the actions to be combined in different
ways depending on the development strategy (or strategies) chosen. Hence we do not attempt to
define where the responsibilities for various actions lie, but instead we allow the maximum
flexibility for allocating responsibilities. The method designer defines the set of possible
development strategies for each type of ViewPoint, as part of the process model for each
ViewPoint template. The process models will also define the mechanisms for dealing with potential
inconsistencies that may arise as a result of following a particular strategy.



- 6 -

5 . How are relationships between ViewPoints expressed?
In the scenario, the two ViewPoints have a relationship between them that needs to be clearly
defined. This particular relationship arises from applying the software development method: the
method provides dataflow diagrams as a notation, and decomposition of processes within a
dataflow diagram as a development step. Similarly, a method which provides several notations will
also specify how those notations should be used in combination, and how they inter-relate. Hence
the possible relationships between ViewPoints are determined by the method.

The method designer defines the relationships that should hold between pairs of ViewPoints.
Because inconsistency between ViewPoints is tolerated, the relationships are those that should
hold, rather than those that actually do. Each relationship is expressed as a rule for determining
whether that relationship holds. The rules can be applied as consistency checks when necessary.

Development of an individual ViewPoint may proceed unrestrained by relationships with other
ViewPoints. When the relationships become important, the consistency rules provide the means for
checking whether the relationships hold. The consistency checks are part of the ViewPoint, and
hence are invoked by that ViewPoint. Just as there is no central database, there is no third party to
check consistency between ViewPoints.

5 . 1 . Types of Consistency Rule

Conceptually, there are three levels of consistency which might need to be checked: local to a
ViewPoint, between two ViewPoints, and global. The ViewPoints framework supports the first
two, as in-ViewPoint and inter-ViewPoint checks respectively. At the in-ViewPoint level, each rule
defines a property that should hold of a specified ViewPoint. At the inter-ViewPoint level, each
rule defines a relationship that should hold between two specified ViewPoints.

Handling global consistency is problematic in a fully distributed environment, in which there is no
central database. In the ViewPoints framework, global consistency checking is eliminated by
transforming global checks into in- and inter- ViewPoint checks. For example, if a particular
method requires that some consistency condition holds for all ViewPoints, the method designer
might define a ViewPoint to contain a representation of all the other ViewPoints. The global check
then becomes an in-ViewPoint check for this new ViewPoint. However, such ViewPoints are not a
privileged part of the framework, merely another type of ViewPoint that a method designer might
choose to define.

It is also useful to distinguish between rules that check for existence (or absence) of information,
and those that check for agreement of information. Existence and agreement rules are expressed
slightly differently.

Existence Agreement

Level 1:
In-ViewPoint Rules

E.g. check for unconnected
items, etc.

E.g. check for name clashes,
etc.

Level 2:
Inter-ViewPoint Rules

E.g. check for existence of a
related ViewPoint.

E.g. check for consistency with
information in a related
ViewPoint.

It is not necessary to assume at the inter-ViewPoint level that all the rules at the in-ViewPoint level
hold. There may be circumstances under which a user may wish to perform an inter-ViewPoint
check, without resolving local inconsistencies. An example is the consistency relationship between
a parent and a child (decomposition) ViewPoint: we may wish to check and resolve the relationship
with the parent as soon as the child is created, in order to transfer contextual information. The in-
ViewPoint rules for the child (and possibly the parent) have not been applied, but the inter-
ViewPoint check is still sensible.

5 . 2 . Notation for Expressing Consistency Rules

Nuseibeh et. al. (1993; 1994) introduce a notation for inter-ViewPoint consistency rules based on



- 7 -

the expression of a relationship between a source ViewPoint (VPS) and a destination ViewPoint
(VPD). The source ViewPoint is the one that invokes the rule. Relationships take the form:

∀  VPS, ∃  VPD  such that {ps1 ℜ  VP(t, d): ps2}

where VP(t, d) specifies the destination ViewPoint, with template t and domain d, and where ps1
and ps2 are partial specifications. The rule then states that ps1 in the source ViewPoint is related to
ps2 in the destination ViewPoint by the relationship ℜ . Example relationships are equality (=) and
entailment (→). The partial specifications will refer to relations, objects, typed attributes and values
within the relevant notation. A ‘dot’ notation is used to refer to attributes of objects, so that for
instance ‘Arrow.Label.fred’ refers to a value ‘fred’ of the attribute ‘Label’ of an object ‘Arrow’. The
partial specifications given in these rules may be arbitrarily complex, involving various logical
connectives.

The quantifiers apply a relationship over the set of ViewPoints, to give a consistency rule. Given
that the rules are defined as part of the ViewPoint template, they express relationships between
ViewPoints that have not yet been created. Hence, the source ViewPoint is universally quantified,
to indicate that the rule applies for every ViewPoint derived from that template. Once particular
ViewPoints are instantiated from the template, this first quantifier can be dropped – the source
ViewPoint is always the ViewPoint that contains the rule. For the remainder of this paper, we will
present the rules as they would appear in an instantiated ViewPoint, i.e. without the first quantifier.

Here we introduce a few extensions to the notation. Firstly, the indication of the type of destination
ViewPoint for which the relationship should hold is part of the quantification. Operationally,
application of the rule involves determining to which destination ViewPoint the rule applies,
determining whether it exists (invocation), and then checking the relationship holds (application).
The quantifiers and the type definition for VPD are needed for invocation, while the partial
specifications and the relationship ℜ  are needed for application. We will re-arrange the rules to
reflect this:

∃  VPD(t, d) such that {psS ℜ  VPD: psD}

where psS and psD are partial specifications from the source and destination ViewPoints
respectively. Note that we use the prefix ‘VPD’ on the right hand side of the relationship, to remind
the reader that the partial specification on the right applies to the destination ViewPoint.

Secondly, note that this quantification insists that the destination ViewPoint must exist, implying
that if it does not, it ought to be created. This form of rule therefore combines an existence
relationship (“another ViewPoint exists...”) and an agreement relationship (“...which is related in
this way”). In some circumstances it may be necessary to express only one or other of these
relationships, in which case we can decompose the rule:

{psS } → ∃  VPD(t, d) {psD} (an existence relationship)

∀  VPD(t, d) {psS  ℜ  VPD: psD} (an agreement relationship)

However, there may be some consistency rules for which it is not productive to separate the
existence and the agreement relationships. In these cases the original, combined form will be used.

Finally, we shall label each rule so that it can be referred to by the ViewPoint’s local process
model. The process model provides guidance over when certain rules ought to be applied. It also
specifies any relationships between rules, and it associates resolution actions with various rules.
The labels are chosen arbitrarily and are local to the ViewPoint template in which the rule is
defined1.

5 . 3 . Example Inter-ViewPoint Consistency Rules

5.3.1. Existence rules

There are two kinds of existence rules at the inter-ViewPoint level, depending on whether reference
is made to the contents of the source ViewPoint. In some cases, the mere existence of the source

1 Note that in this paper, we have labelled the example rules consecutively for convenience. In practice, the rules
given would not appear in a single ViewPoint template, as they are drawn from several methods and refer to several
different notations.



- 8 -

ViewPoint requires the existence of another related ViewPoint. An example is the rule “Every Z
schema must have a textual description”. This type of rule can be expressed using null partial
specifications, denoted by ∅ . By convention, the partial specification for the destination ViewPoint
can be omitted entirely. Every ViewPoint containing a Z schema would contain a rule of the form:

R1: ∅  → ∃  VPD (TD, Ds)

Where TD is the template for ‘textual description’ and Ds means that the domain of the textual
description ViewPoint should be the same as that of the source ViewPoint.

The second kind of existence relationship covers situations in which elements of the specification in
one ViewPoint require other related ViewPoints to exist. An example is “Every non-primitive
process in a DFD must have a decomposition DFD associated with it”. In this case only the partial
specification of the destination ViewPoint will be null:

R2: {Process.Status.Nonprimitive} → ∃  VPD (DFD, Process.Name)

Where DFD is the template for ‘dataflow diagram’ and Process.Name indicates that the domain of
the decomposition ViewPoint should be the name of the process it represents.

Each of the types of rule described above can also be negated, for instance to specify that an
element of a ViewPoint specification should not have another ViewPoint associated with it, or that
a particular ViewPoint should be unique. Examples are “A primitive process in a DFD should not
be decomposed”:

R3: {Process.Status.Primitive} → ¬ ∃  VPD (DFD, Process.Name)

and, in an agent hierarchy ViewPoint, “There should be only one agent hierarchy diagram”:

R4: ∅→  ¬ ∃  VPD :(AH, Da)

where Da indicates that the domain of the destination ViewPoint can be anything. It is important to
note that consistency rules are always applied from a source ViewPoint, and the source ViewPoint
will never be checked for consistency with itself (i.e. VPD will never be instantiated as VPS). Self-
consistency is checked at the in-ViewPoint level, using a separate set of rules. Without this
arrangement, rules like R4 would always fail.

5.3.2. Agreement Relationships

In general, agreement rules express relationships between the contents of two ViewPoints. An
obvious example is the relationship between the flows connected to a process in a DFD and the
contextual flows in the decomposition of that process. An example consistency rule for the parent
ViewPoint is “Every output from a process in a DFD must appear as a contextual output in every
decomposition of that process”:

R5: ∀  VPD(DFD, From.Name)  { link(From, _).Flow.Name =
VPD: link(_, context).Flow.Name }

Where the underscore is used to denote ‘any’; “link(A, B)” is an object in the DFD notation linking
process A to process B; and the dot notation is used to extract attributes and values from the ‘link’
object.

Note that the destination ViewPoint is now universally quantified, in contrast to the existence rules
defined above. Hence an agreement rule does not require the related ViewPoint to exist: a separate
existence relationship expresses this. It also allows for the possibility that several alternative
ViewPoints exist, for example where two conflicting ViewPoints have been proposed.

As well as expressing equality, the relationship might express exclusion, such as the rule “Process
names must be unique across all DFDs”:

R6: ∀  VPD (DFD, Da)  {Process.Name ≠ VPD: Process.Name}

Note that this rule does not exclude duplicate process names within a single DFD, as the destination
ViewPoint will never be instantiated to be the same as the source ViewPoint.

5.3.3. Handling  ‘Global’ Consistency Rules

Consistency checks can not exist outside of some ViewPoint: if they could it would violate the
requirement for distributability. However, conceptually there are some checks which we wish to



- 9 -

perform without knowing whether any of the ViewPoints being checked actually exist. An example
of such a rule is “there must be an agent hierarchy”. To handle such rules, the method designer
could create a template for a ViewPoint which has as its specification a graph representing other
ViewPoints and the relationships between them. Such a ViewPoint is also useful as a browser for
the current set of ViewPoints.

There might be any number of such ViewPoints to contain different management information. For
instance, there may be one for each template, to keep track of relationships between all ViewPoints
instantiated from that template. Alternatively, there may be just one for the entire collection. The
choice is up to the method designer.

Because of the distributed nature of the ViewPoints framework, there is no guarantee that the
specification in such a ViewPoint accurately represents the current set of ViewPoints: a graph
representing other ViewPoints may get out of date. Inter-ViewPoint rules can be defined to check
whether the graph is up-to-date. In-ViewPoint rules in this type of ViewPoint act as global checks
over the set of ViewPoints represented.

For example, consider a ViewPoint that keeps track of all ViewPoints containing dataflow
diagrams. A simple inter-ViewPoint rule in this ViewPoint might be “Every node in the graph
represents a dataflow ViewPoint”:

R7: {Node} → ∃  VPD(DFD, Node.Name)

This viewpoint might also need the rule “Every dataflow ViewPoint is represented as a node in the
graph”:

R8: ∀  VPD(DFD, Da) {Node.Name = VPD: Da}

Where Da is the domain of the destination ViewPoint.

We can now express global rules using in-ViewPoint checks in this ViewPoint. For example, the
rule “there must be one top-level dataflow diagram” is an in-ViewPoint check to test that there is
only one node that has no parent.

6 . When should relationships between ViewPoints be checked?
During the development of a ViewPoint, the ViewPoint owner will invoke a consistency rule
whenever she needs to establish that the relationship expressed by the rule holds. This may be to
move to a different stage in the development, or to test some property that depends on the
relationship with another ViewPoint. The checking is always performed from the context of one of
the ViewPoints: there is no central control.

Guidance about when particular rules should be applied comes from the local process model
associated with the source ViewPoint. The process model defines the conditions under which the
ViewPoint’s consistency rules can be invoked, and the possible outcomes from invoking them.
Note that applying a consistency rule only determines that a relationship currently holds: it does not
guarantee that it will continue to hold. Hence, a particular rule may need to be applied a number of
times during the development of a ViewPoint.

6 . 1 . The process model

The process model is expressed in terms of preconditions and post-conditions for various actions.
We adopt the following notation:

preconditions ⇒  [agent, action] post-conditions

For the examples here, the action is the application of a consistency rule, and it is always applied
by the source ViewPoint. Pre- and post-conditions will be lists of predicates.

The preconditions to an entry in the process model come from two sources. The first source is
information about the state of the ViewPoint. These are used to restrict the stages of development in
which an action can be performed. For example, it might be necessary to prevent an inter-
ViewPoint rule being applied unless certain in-ViewPoint rules have been applied. The second
source of preconditions is information about relationships with other ViewPoints. These will
normally be generated as post-conditions of other rules.



- 10 -

In general, the post-conditions of applying rule Ri  will be a list of n instantiations of relationship ℜ i,
contained in the rule, expressed as a set of predicates of the form ℜ i(σ, δ), where  σ and δ are the
specification items that matched psS and psD. If no partial specifications in the source and
destination ViewPoints match the rule, then this set of relationships will be empty. We denote the
set by:

{ℜ i (σ1, δ1),...,ℜ i (σn, δn)}.

For example, in the scenario, at diagram 3, the result of applying rule R5 in Anne’s ViewPoint will
be a set of predicates describing the relationships between the output flows d2 and d4:

ℜ 5(d2, VPD(DFD, B):d2) ∧  ℜ 5(d4, VPD(DFD, B):d4)

If a rule fails, we need to record the nature of the failure. An agreement rule fails if the relationship
does not hold for any items that match psS and psD. Note that an agreement rule can succeed for
some items and fail for others. We represent failures using predicates of the form ‘inconsistent(σ,
δ, Ri).’

Hence the result of applying rule Ri  to the partial specifications psS and psD is a set of items for
which the relationship holds and a set of items for which the relationship should hold but does not.
Hence the default entry in the process model for the agreement rule Ri is as follows:

{preconditions} ⇒ [VPS, Ri] {ℜ i (σ1, δ1),..., ℜ i (σn, δn)}  ∪
{inconsistent(σ1, δ1, Ri),..., inconsistent(σm, δm, Ri)}

An existence rule fails when the destination ViewPoint is missing, or when no ViewPoint is found
which contains a specification containing the pattern psD. Hence, existence rules have entries in the
process model of the form:

{preconditions} ⇒ [VPS, Ri] ℜ i (σ, ψ) ∨
missing(σ, VPD<t, d>, Ri) ∨
missing(σ, VPD<t, d>:psD, Ri)

Where σ is the actual item in the source ViewPoint that matched psS and ψ is the destination
ViewPoint that satisfied the existence criteria. The ‘missing’ predicate can be read as “No ViewPoint
of template t and domain d (and containing partial specification psD) was found to meet the
existence criteria associated with partial specification σ as required in rule Ri”.

6 . 2 . Interactions between rules

One important aspect of the guidance provided by the process model is to do with interactions
between consistency rules. In many cases, the applicability of some rule will be affected by some
other rule. Linkages between rules allow the method designer to express complex interactions
between ViewPoints such as “rule B should be invoked only if relationship A holds” and
“relationship A should hold unless rule B is applicable”. Note here the distinction between a
relationship holding and a rule being applicable. Each rule Ri expresses a relationship ℜ i . Hence to
say that ℜ i  holds at a particular instance is to say that the rule has been applied and was satisfied. To
say that a rule is applicable only states that any necessary preconditions are met.

We use the process model to identify such dependencies. Consider a rule for a dataflow diagram,
which relates a decomposition ViewPoint to its parent, such as the inverse of R5 above. Firstly, we
cannot take the existence of the parent for granted, and we cannot assume that only one version of
the parent exists. Hence, we express an existence rule to ensure that there is a parent2, “there must
be a parent DFD containing the process represented by this DFD”:

R9: ∅  → ∃  VPD(DFD, Dd) {Process.Name.Ds}

Where Ds is the domain of the source ViewPoint, which the rule says should appear as one of the
processes in any parent ViewPoint.

We then define separately any rules which express relationships between the decomposition and its
parent, such as “contextual outputs in a DFD must have the same names as the outputs from the

2 Ignoring, for now, the possibility that the source ViewPoint might be the top level, and hence have no parent.



- 11 -

process in the parent DFD”:

R10: ∀  VPD(DFD, Dd)  { link(_, To.Name.‘context’).Flow.Name = VPD: link(Ds, _).Flow.Name }

This second rule should only be applied where the destination ViewPoint is the parent, as
established in R9. Hence, the process model will specify that R10  should only be applied to
destination ViewPoints for which R9 has been successfully applied:

ℜ 9(∅ , ψ) ⇒ [VPS, R10] {ℜ 10(σ1, ψ:δ1),..., ℜ 10(σn, ψ:δn)}  ∪
{inconsistent(σ1, ψ:δ1, R10),..., inconsistent(σm, ψ:δm, R10)}

Note that the precondition, ℜ 9, defines the destination ViewPoint, ψ, to which rule R10  applies.
The post-condition is a set of partial specifications for which ℜ 10 holds and a set of partial
specifications that are inconsistent. Both sets could be empty, if nothing in the ViewPoints’
specifications matched the patterns in the rule.

A more complex example is provided by the rule “Dataflow names must be unique across all DFDs
unless related across a decomposition”. As we have seen above, there are several ways that
dataflow names can be related across a decomposition, including those specified in R5, R9 and R10 ,
and some others to deal with input flows, which we will ignore for now. Hence, we first express
just the uniqueness rule:

R11: ∀  VPD(DFD, Dd)  {link(_, _).Flow.Name ≠  VPD: link(_, _).Flow.Name}

We then link it in the process model to the rules that specify the exceptions. When applying R11, we
are not interested in the set of partial specifications for which the rule holds, as this is just an
exhaustive list of pairs of different dataflow names. However, we are interested in any partial
specifications for which the relationship does not hold. Hence, the entry in the process model will
be:

[VPS, R11] {breaks(σ1, δ1, R11),..., breaks(σm, δm, R11)}

Partial specifications for which the relationship does not hold are not necessarily inconsistent, as
one of the exceptions may apply. Hence, we have introduced a predicate ‘breaks’, to indicate partial
specifications for which the relationship should hold but does not. We then introduce another entry
in the process model, that allows us to detect an inconsistency once we have also checked all the
exceptions:

breaks(σ, δ, R11) ⇒ [ VPS, (R5; R10)]

irrelevant(σ, δ, R5) ∧ irrelevant(σ, δ, R10) → inconsistent(psS, psD, R11)

Where irrelevant(σ, δ, Ri) is true if neither ℜ i(σ, δ) nor inconsistent(σ, δ, Ri) are true.

These entries in the process model state that we cannot conclude there is an inconsistency between
psS and psD just from applying R11. The inconsistency can only be demonstrated if we know that
relationships ℜ 11  does not hold, and we have tested to see that none of the exceptions apply.

7 . How are relationships between ViewPoints checked?
When a consistency rule is applied, both the ViewPoints involved must co-operate to perform the
check, and both ViewPoints need to know the result. Each ViewPoint will record, in its work
record, the fact that the rule was invoked, and the outcome. This information may be used later to
reason about actions that might resolve inconsistencies.

The ViewPoints might be evolving asynchronously, and hence the invocation and application of the
rule need to be performed as a single action. We use a transaction management system to control
the process. An inter-ViewPoint communication protocol specifies the checking process.

7 . 1 . Transaction Management

By applying an inter-ViewPoint rule, we can determine whether a relationship holds, or whether
there is an inconsistency between two ViewPoints. However, applying the rule does not ensure
that any relationship or inconsistency will continue to hold as the two ViewPoints evolve. For
instance, if ViewPoint A discovers there is an inconsistency with ViewPoint B, A has no way of
knowing whether B did something that fixed the inconsistency after the rule was applied. In fact all



- 12 -

A knows is that there was an inconsistency at the time  when the rule was applied.

Because of the asynchronous development of ViewPoints, we often need to ensure that several
inter-ViewPoint actions are carried out as a single transaction. For example, in the previous
section, rule R10  could only be invoked if it is known that relationship ℜ 9 holds. If the source
ViewPoint invokes R9 at some instance, it establishes that ℜ 9 held at that instance. Later, if R10
needs to be checked, it must invoke R9 again to establish that ℜ 9 still holds, and then invoke R10 .
These two invocations must be carried out as a single transaction.

7 . 2 . Communication Protocol

Application of the inter-ViewPoint consistency rules is achieved through a node-to-node interaction
protocol. The protocol provides the set of rules by which all ViewPoint synchronisation and
communication take place.

Application of a rule involves comparing partial specifications from each of the ViewPoints,
possibly after some transformations have been applied. Identifying the relevant partial specification
must be done locally by each ViewPoint, as the style and structure of a ViewPoint’s specification
may not be visible to other ViewPoints.

We will not describe the protocol in detail here. Essentially the sequence of actions is as follows.
The source ViewPoint requests potential destination ViewPoints to identify themselves, and then
transmits the rule, the partial specifications psS, and the pattern psD. The destination ViewPoint
then applies the rule and transmits the results of applying the rule.

The protocol assumes the existence of a reliable communications network, and a distributed name
service which helps locate and identify ViewPoints.

7 . 3 . Example

To illustrate the application of consistency checking rules, we will demonstrate how inconsistency
(4) from the scenario is handled. Firstly, note that the two ViewPoints of interest, A and B, each
contain: a description, perhaps represented internally as shown below; a set of consistency checks;
and a local process model to guide application of those checks.

ViewPoint A ViewPoint B

process(x, primitive)
process(y, non-primitive)
link(y, x).Name.d2
link(x, y).Name.d3
link(y, external).Name.d4
link(y, external).Name.d5

(etc.)

process(y1, primitive)
process(y2, primitive)
link(context, y1).Name.d3
link(y1, context).Name.d2
link(y1, context).Name.d9
link(y2, context).Name.d6
link(y2, context).Name.d8

(etc.)

Relevant inter-ViewPoint rules:

R2 – each non-primitive process should be represented
by another DFD containing the decomposition.

R5 – every output from a process must appear as a
contextual output in the decomposition DFD

(etc.)

Relevant inter-ViewPoint rules:

R9 – there must be a parent DFD containing the process
represented by this DFD

R10 – every contextual output must appear as an output
from the process in the parent DFD

(etc.)

Process Model:

[VPS, R2]  {..., ℜ 2(σi, ψi),... }  ∪
{..., missing(σi, VPD<t, d>, R2),... }

ℜ 2(σ, ψ) ⇒  [VPS, R5]
{..., ℜ 5(σi, ψ:δi),... } ∪
{..., inconsistent(σi, ψ:δi, R5),...}

(etc.)

Process Model:

[VPS, R9]  ℜ 9(∅ , ψ) ∨
missing(∅ , VPD<DFD, Dd>, R9)

ℜ 9(∅ , ψ) ⇒  [VPS, R10]
{..., ℜ 10(σi, ψ:δi),... } ∪
{..., inconsistent(σi, ψ:δi, R10),...}

(etc.)



- 13 -

We have listed two of the consistency rules for each ViewPoint, and the corresponding entries in
the process models. In each case, the process model requires the relationship specified by the first
rule to hold as a precondition for the second rule. For ViewPoint A, this specifies that the
decomposition ViewPoint for a process must exist before the correspondences between output
flows can be checked. For ViewPoint B, the parent ViewPoint must exist before such
correspondences can be checked. Note also that rules R5 and R10  encode the same check, but from
the perspective of each ViewPoint.

Consider first the application by ViewPoint A of rule R5. The process model requires that this rule
only be applied if the relationship specified by R2 holds, i.e. if the decomposition ViewPoint exists.
This precondition also identifies the decomposition ViewPoint, in preparation for application of R5.
Whenever R5 is invoked, R2 is automatically checked first, and both checks are performed as a
single transaction. This ensures that the decomposition ViewPoint still exists, whether or not R2
had been checked previously.

In this example, R2 identifies the destination ViewPoint as ViewPoint B. R5 then identifies the
following relationships and inconsistencies:

ℜ 5(d2, VPD(DFD, B):d2)
∧ inconsistent(d4, VPD(DFD, B):link(_, context), R5)
∧ inconsistent(d5, VPD(DFD, B):link(_, context), R5)

These record that the relationship holds for the dataflow d2, but that for d4 and d5, the rule failed.
Note that the first argument to the inconsistent predicate is the actual item that matched psS, whilst
the second argument names the destination ViewPoint, and gives the partial specification (psD) for
which no match was found.

8 . How are inconsistencies resolved?
The resolution process is concerned with establishing a relationship between two ViewPoints.
Resolution only becomes necessary if a consistency check failed, and the ViewPoint owner wishes
to correct this. In many cases, resolution will not be necessary after the failure of a rule, because
the inconsistency can be tolerated.

The goal of inconsistency resolution is to (re-)establish the relationships contained in the rule or
rules which failed. If a relationship did previously hold, information about subsequent changes can
be used to guide the resolution process. This information is available in the work record of each
ViewPoint, along with a record of the results of previous consistency checks.

During the resolution of an inconsistency, the ViewPoint owners may wish to define new
relationships between the ViewPoints, which are not encoded in any of the consistency rules.
These are specific relationships which only apply to the two ViewPoints involved, or which are not
expected to hold generally. Such relationships are also recorded in the work record, so that future
changes which affect these relationships can be monitored.

Various actions may be taken by the ViewPoint owners during the resolution process. Some
actions will alter one or other of the ViewPoints. Other actions might not alter the ViewPoints, but
may analyse the nature of the inconsistency. The process may entail one ViewPoint owner
requesting the other to take a particular action. When a sequence of actions resolves the
inconsistency, both ViewPoints are notified, for the same reason that both are notified of the results
of any consistency checks.

Our approach to supporting the resolution process is through the provision of a set of potential
resolution actions, which the ViewPoint owners may wish to apply. The actions are defined by the
method designer, as part of the process of defining the consistency relationships. Possible
resolution actions are associated with each consistency rule in the process model. In this way, each
rule will have a number of actions that may be performed in the event that the rule fails. Guidance
for selecting among these actions is derived from information in the process model, along with
information about the history of the ViewPoints in question.

8 . 1 . Conflict and Inconsistency

To understand the resolution process, it is helpful to be clear about what is being resolved. We
distinguish between inconsistency and conflict. An inconsistency occurs if a rule has been broken.



- 14 -

The rules are entered by the method designer, to specify the correct use of the method. Hence,
what constitutes an inconsistency in any particular situation is entirely dependent on the rules
entered during the method design. Rules will cover the correct use of a notation, and the
relationships between different notations.

Conflict is the interference in the goals of one party caused by the actions of another party
(Easterbrook, et al., 1993). For example, if one person makes changes to a specification which
interfere with the developments another person was planning to make, then there is a conflict. This
does not necessarily imply that any consistency rules have been broken. The definition says
nothing about whether the conflict is intended by either party. Finally we define a mistake as an
action that would be acknowledged as an error by the perpetrator of the action; some effort may be
required, however, to persuade the perpetrator to identify and acknowledge a mistake.

Inconsistency is a property of the state of a collection of ViewPoints. Conflicts and mistakes are
properties of the actions that ViewPoint owners take on their ViewPoints. In other words, a given
specification can be inconsistent, while actions on that specification may be mistaken or conflictual.
Hence, we can test a specification for the existence of inconsistency, but we cannot test for
conflicts or mistakes. Each inconsistency is considered to be either the result of a conflict between
the ViewPoint owners3, or the result of a mistake. Note that a mistaken or conflictual action might
not necessarily result in any inconsistency in the set of ViewPoints.

8 . 2 . Supporting Resolution

Consider the inconsistencies that arose in our scenario. The inconsistencies in figures 1 and 5 are
identical, in that the same consistency rule is broken: no ViewPoint exists to represent the non-
primitive process. In figure 1 the appropriate resolution is to create the missing ViewPoint. In
figure 5 the appropriate resolution is either to delete the process or to mark it as non-primitive.
Hence, there are at least three actions that might be offered to the ViewPoint owner when this
particular check fails.

Furthermore, the choice between these three actions can be narrowed by reasoning about the
history of the two ViewPoints. In particular, the key difference between the two cases is that for
the latter one the relationship in question did hold at some point in the past. For this particular
relationship, if it has never held in the past, it is likely that the decomposition ViewPoint has not yet
been created. If it has held, this indicates that the decomposition ViewPoint has since been deleted.
Note that in either case, the result is not conclusive. For example, if the decomposition ViewPoint
was created and deleted without the check ever being applied, there will be no record that the
relationship did hold at one point. Accordingly, this type of reasoning is used only to recommend a
default action, and not to resolve the inconsistency automatically.

8 . 3 . Expressing Resolution Actions

Each resolution action has the following components:

• A short label allows the action to be presented within a menu of possible actions.

• A piece of text explains the rationale for the action. This explanation should assist the method user
in deciding whether the action is appropriate.

• A piece of code which performs the action. In some cases this will perform an edit on the
ViewPoint’s description. In other cases it will merely invoke one of the tools provided to support
conflict resolution, or request the other ViewPoint owner to perform some action.

The process model associates preconditions and postconditions with each action. The preconditions
determine the context under which the action is appropriate. For instance, some preconditions will
associate the action with the failure of one or more consistency checks, whilst other preconditions
may further restrict the applicability of the action. The post-conditions define the results of applying
the action. These indicate whether the action fixes any inconsistencies, or whether it sets up
conditions for other actions to be applied.

3 Where two ViewPoints share the same owner, an inconsistency between them may indicate the owner is in conflict
with herself.



- 15 -

The range of possible actions is large. Possibilities include: a transfer of information from one
ViewPoint to another; a name change to prevent a clash or bring two ViewPoints into agreement; an
analysis of the situation to determine whether conditions hold for more specific actions; invocation
of tools to support negotiation. Ultimately, the user will select from among the actions suggested
whenever an inconsistency is revealed by the checks, and in some cases a sequence of actions will
be necessary. The user is also free to ignore the suggested actions.

In the scenario, if rule R5 fails, there is a dataflow in the source ViewPoint for which no match can
be found in the destination ViewPoint. In this case, some of the possible resolution actions are:
copy the dataflow to the destination ViewPoint; delete the dataflow in the source ViewPoint;
rename a flow in the destination ViewPoint; rename the flow in the source ViewPoint. Note that
either of the first two of these alone remove the inconsistency, while the latter two might not. An
actual resolution process might involve some combination of renaming, transfer, and deletion
actions. Changes to the destination ViewPoint are sent as requests to the destination ViewPoint
owner.

8 . 4 . Designing Resolution Actions

The method designer may need assistance in identifying appropriate actions, and linking them to
consistency rules. One could argue that support for the method designer is a low priority, as
method design is a relatively rare activity, performed by experts. However, the task of defining
actions is open-ended, and effort invested here will reduce the load on the method users. The more
the set of actions are refined, the less effort the method user will have to expend in choosing
between them.

Consistency rules and the resolution actions associated with them will be generated from four main
sources:

Firstly, consideration of the rationale and operation of the method will provide a set of basic checks
and actions. These ensure that the method is being used correctly.

Secondly, consideration of examples and case studies of the use of the method will provide further
evidence of possible inconsistencies. In particular, reference to examples will help to refine the set
of resolution actions and the conditions under which they apply.

Thirdly, further checks and actions can be derived from the experiences of method users. This
exploits the fact that software designers already handle routine conflicts. Where a method designer
is implementing an existing method, current users of the method can be used. If the method is new,
then related methods can be used as a source of expertise. In either case, knowledge elicitation
techniques can be applied to discover heuristics used by these experts. Note that quite apart from
the difficulties of elicitation, the approaches used by these ‘experts’ need to be evaluated carefully,
as there is no guarantee they will be appropriate or sensible. In particular, existing software
practices tend to suppress conflict. Furthermore, this approach will not offer any insight into
conflicts that only emerge as a result of using the ViewPoints framework (see the comments on
negotiation below).

Finally, there are a set of inconsistency exploration tools which can be applied to any
inconsistency. An example is the Computer Supported Negotiation tool described in Easterbrook
(1991), which allows ViewPoint owners to identify correspondences between their disparate
descriptions, and evaluate a number of potential resolutions.

Because the task is open-ended, further consistency checks and potential resolution actions might
be identified as a result of method use. We recognise that method design and method use take place
within a larger cycle of method refinement, in which lessons learned from one software
engineering project are used to improve the method for subsequent projects. Our approach supports
this form of method refinement in the sense that it makes many aspects of a method explicit,
including the relationships between the notations used in the method, the development actions that
apply to each notation, and the preconditions and postconditions of each action.

9 . What happens if inconsistencies are not resolved?
As inconsistencies are tolerated, there is no obligation to repair them immediately. The resolution
process for any particular inconsistency can be delayed indefinitely, especially if the effort of



- 16 -

resolving it may prove unnecessary. For example, the inconsistency might be in a part of the
ViewPoint that is only tentative; it may be the result of a known conflict that the owners are not yet
ready to resolve; or some anticipated future action will resolve it anyway. If the resolution process
is entered, there is no obligation to continue applying resolution actions until the inconsistency is
removed. It may be useful to take some steps towards a resolution and delay the remainder.

An important consideration is that resolving an inconsistency does not ensure it stays resolved.
Successful application of a consistency check confirms a relationship holds between two
ViewPoints. Resolving an inconsistency achieves the same result. It does not entail merging
ViewPoints, nor does it lock the ViewPoints into the relationship. ViewPoint developers have the
freedom to continue to evolve their ViewPoints independently. Hence, establishing a relationship
through inconsistency resolution does not guarantee that future changes will not interfere with that
relationship.

The problem of subsequent changes affecting a relationship is dealt with by recording the
relationships as they are checked. Subsequent changes to the ViewPoint can be analysed for their
effect on the relationship. If a change to the ViewPoint upsets an established relationship with
another ViewPoint, this fact is recorded in the work record. The information is then available for
the owners to implement a stronger locking strategy, if they wish, or as a record to be saved for
some future explicit resolution process.

Tolerance of inconsistencies offers flexibility both in terms of development strategy applied, and of
division of responsibility. However, it also introduces problems in that inconsistencies may
accumulate. Resolution may be fairly straightforward if only one or two rules have been broken.
However, if large numbers of rules have been broken, it may be hard to find appropriate resolution
actions. Our approach to this problem is incremental resolution. ViewPoint owners may choose to
resolve only some of the inconsistencies between their ViewPoints and ignore others. In this way
the relationships gradually become disentangled over a period of time.

9 . 1 . Evolution of relationships

Resolution of inconsistency synchronises divergent ViewPoints, but does not prevent them from
subsequently diverging again. The inter-ViewPoint communication protocols allow ViewPoint
owners to initiate consistency checking and resolution whenever they wish. When a relationship is
established between two ViewPoints, details of this relationship are recorded so that if subsequent
actions affect the relationship, the support tools can detect this. The ViewPoint owners may change
their ViewPoints without worrying about the effects on other ViewPoints. However, the recorded
information ensures that effort spent resolving an inconsistency is not lost as the ViewPoints
continue to evolve.

For example, in the scenario, when rule R10  is applied by ViewPoint B, at the point when the
ViewPoints are consistent (figure 3), the rule detects, among other things, that the dataflows
labelled d4 in each ViewPoint are equivalent. The following relationship is recorded:

ℜ 5(d4, VPD (DFD, A):d4)

Subsequently, Bob renamed the dataflow d4 to d8. This re-labelling affects not just the dataflow in
the description, but also any inter-ViewPoint relationships which depend upon it. Hence, any
occurrence of the label d4 in the list of relationships is replaced with the new label:

ℜ 5(d8, VPD (DFD, A):d4)

In this way, when the rule R10  is next checked, there is already a record that the relationship has
evolved. This in turn indicates that the most likely resolution action should be to propagate the
change to the other ViewPoint. However, this action may not always be the one chosen. The
ViewPoint owners may negotiate a new label to use, or, if the method permits it, define the two
labels as synonyms.

Finally, the propagation of changes to other ViewPoints may sometimes be incorrect. For instance,
the fact that two labels were once the same does not always imply that they should remain the
same. Consider the case where a ViewPoint owner changes the name of a label, then later
discovers she has accidentally chosen a label used in another ViewPoint, and so changes it back
again. A consistency check applied between the changes will discover that there is an equivalence,
but it is a relationship that should not be maintained.



- 17 -

9 . 2 . Dealing with accumulated inconsistencies

Allowing inconsistencies to accumulate can cause problems when it comes to resolution. The
difficulty is that ViewPoints might be arbitrarily different, with no common basis whatsoever. In
the worst case, every single inter-ViewPoint consistency rule between two ViewPoints may fail.
We offer two approaches to this problem. The first is a technique described in Easterbrook (1991)
which allows two ViewPoint owners collaboratively to compare arbitrarily different ViewPoints,
and analyse the differences between them.

An alternative approach is through incremental resolution. If two ViewPoints have a large number
of inconsistencies, the most practical way forward might be to resolve one or two and ignore the
rest. In this way two disparate ViewPoints may gradually converge over a period of time. This
approach is especially useful where actions by several parties might be necessary for a complete
resolution.

As an example of incremental resolution to deal with accumulated inconsistencies, consider again
the inconsistency in figure 4, and imagine Anne is trying to resolve it. Several changes have been
made to both ViewPoints. Merely comparing the ViewPoints does not provide enough information
to derive a resolution: Anne’s ViewPoint has flows labelled d4 and d7 which should match Bob’s
flows labelled d6, d8 and d9.

From the record of past relationships, described in the previous section, it can be determined that
d4 and d8 were once equivalent. Anne can resolve this inconsistency by re-labelling her d4 to
match Bob’s change. She may then decide that the remaining inconsistencies need to be resolved in
a face-to-face meeting. However, in preparation for this she sends a message to Bob’s ViewPoint
suggesting he re-label his d6 as d7, and that they get together to discuss d9. Anne’s actions bring
the ViewPoints closer together, but do not entirely resolve them. They may, however, facilitate
subsequent actions by Bob to bring them closer still.

10 . Related Work
System specification from multiple perspectives using many different specification languages has
become an area of considerable interest. The integration of methods, notations and tools has
generally been addressed by the use of a common data model, usually supported by a common,
centralised database (Alderson, 1991; Wasserman & Pircher, 1987). Recent work by Jackson &
Zave (1993) proposes the composition of partial specifications as a conjunction of their assertions
in a form of classical logic. A set of partial specifications is then consistent if and only if the
conjunction of their assertions is satisfiable.

Other authors have also considered multi-perspective or multi-language specifications. In Wileden
et al. (1991) specification level interoperability between specifications or programs written in
different languages or running on different kinds of processors is described. The interoperability
described relies on remote procedure calls and ways that interoperating programs manipulate shared
typed data. Wile (1991) on the other hand uses a common syntactic framework defined in terms of
grammars and transformations between these grammars. He highlights the difficulties of
consistency checking in a multi-language framework.

Traditionally, multiparadigm languages, which deploy a common multiparadigm base language,
have been used to combine many partial program fragments (Hailpern, 1986), while more recently
the use of a single, common canonical representation for integrating so-called ‘multi-view’ systems
has been proposed (Meyers & Reiss, 1991).

11 . Conclusions
We have presented a framework for concurrent engineering in which there is no requirement for
consistency maintenance, and no central database or common data schema. The framework is fully
distributable, in that local objects (‘ViewPoints’) encapsulate sufficient development knowledge to
act as independent specification development tools. The descriptions contained in different
ViewPoints may be developed concurrently. Multiple notations and a diversity of development
strategies are encouraged.

The current status of the work is that we have implemented a prototype environment to support the
ViewPoints framework, which we are now using as a testbed in which to explore the issues



- 18 -

described in this paper. Several software engineering methods have been implemented, and
experience with the process of method design has been valuable in refining our approach
(Nuseibeh, Finkelstein, & Kramer, 1994). For each of the issues raised by the scenario in this
paper, we have sketched out the approach and tested it on small examples. We have devised further
experiments for each of the issues described, and are currently investigating the applicability of the
approach using larger examples.

1 1 . 1 . Advantages

This approach to computer support for concurrent software engineering provides the flexibility to
support distributed activities without assuming perfect communication links. Inconsistencies are
tolerated, allowing separate designers to pursue their ideas without being constrained because of
conflicts with other members of the team. Inconsistencies are explicitly resolved at appropriate
stages, and guidance is provided for resolution through local process models. Resolution of
inconsistency does not prevent the ViewPoints becoming inconsistent again, but information about
the relationship is retained to assist repairing subsequent inconsistencies.

An important advantage of this approach is that it more accurately reflects actual working practices.
Tolerance of inconsistency allows actions affecting more than one ViewPoint to be de-coupled.
This facilitates distributed working by allowing responsibility to be devolved to individual
ViewPoints. All decisions regarding development of a ViewPoint, including decisions about
resolving inconsistencies with other ViewPoints, are taken locally. The principle of local action and
local responsibility is further reinforced by the provision of a local process model in each
ViewPoint, which guides the development of that ViewPoint.

The approach also permits reasoning in the presence of inconsistency. Local reasoning within a
ViewPoint is always possible, whether or not the ViewPoint is consistent with other ViewPoints.
Furthermore, by explicitly expressing the relationships that should hold between ViewPoints, it is
possible to reason about individual relationships, while ignoring others. For example, possibilities
for resolving a particular inconsistency can be explored, without having to devise a complete
resolution, and without having to worry about whether other consistency relations hold.

1 1 . 2 . Future Work

There are a number of remaining problems with the framework which we are investigating. The
first of these is support for discussion about ViewPoints by the ViewPoint owners. This is
especially needed in the early stages of inter-ViewPoint inconsistency resolution: ViewPoint
owners may need to make suggestions, requests and comparisons between ViewPoints.

An interesting possibility is to view the consistency relations as constraints in the conventional AI
sense and to use constraint satisfaction techniques to maintain and to reason with such relations.
For instance, Galileo3 (Browen & Bahler, 1992) has demonstrated how to use constraint networks
to enforce relationships between design artefacts and to support system-mediated negotiation
between users of different perspectives.

The ViewPoint framework offers a relatively unconstrained model of collaboration. The model is
essentially of a group of peers developing a set of loosely coupled ViewPoint descriptions. This
model is a sufficient basis for some types of conflict resolution approaches. In particular, it is
sufficient for approaches which ignore the nature of the working relationship between ViewPoint
owners, and the physical and temporal properties of their interaction. Stronger models of
collaboration may be needed if more prescriptive support is to be offered. One possible approach is
to model explicitly the relationships between ViewPoint owners.

So far we have treated ViewPoint owners as if they are always peers. This is not always the case,
and it is possible that power relationships between ViewPoint owners will undermine or subvert
the resolution processes supported by the tools. It may be possible, by explicitly modelling the
relationships between ViewPoint owners, to make allowances for these (Gotel & Finkelstein,
1994a; Gotel & Finkelstein, 1994b).

Acknowledgements
The work described in this paper was partly funded by the UK Department of Trade and Industry
(DTI), as part of the Advanced Technology Programme (ATP) of the Eureka Software Factory



- 19 -

(ESF). The authors would like to acknowledge the constructive comments of Martin Feather, Fox
Poon and Amer Al-Rawas on an earlier version of this paper.

References
Alderson, A. (1991). Meta-CASE technology. In Endres & Weber (Ed.), European Symposium

on Software Development Environments and CASE Technology, Königswinter, June 1991,
(vol. LNCS 509, pp. 81-91). Springer-Verlag.

Browen, J., & Bahler, D. (1992). Frames, Quantification, Perspectives, and Negotiation in
Constraint Networks for Life-Cycle Engineering. International Journal of Artificial Intelligence
in Engineering, 7, 199-226.

Cutkosky, M. R., Engelmore, R. S., Fikes, R. E., Genesereth, M. R., Gruber, T. R., Mark, W.
S., Tenenbaum, J. M., & Weber, J. C. (1993). PACT: An Experiment in Integrating
Concurrent Engineering Systems. IEEE Computer, 26(1), 28-37.

Easterbrook, S. M. (1991). Resolving Conflicts Between Domain Descriptions with Computer-
Supported Negotiation. Knowledge Acquisition: An International Journal, 3, 255-289.

Easterbrook, S. M., Beck, E. E., Goodlet, J. S., Plowman, L., Sharples, M., & Wood, C. C.
(1993). A Survey of Empirical Studies of Conflict. In S. M. Easterbrook (Eds.), CSCW: Co-
operation or Conflict?   (pp. 1-68). London: Springer-Verlag.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., & Goedicke, M. (1992). Viewpoints:
a framework for integrating multiple perspectives in system development. International Journal
of Software Engineering and Knowledge Engineering, 2(1), 31-57.

Finkelstein, A. C. W. F., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B. (1994).
Inconsistency Handling in Multi-Perspective Specifications. IEEE Transactions on Software
Engineering (to appear).

Gotel, O. C. Z., & Finkelstein, A. C. W. (1994a). An Analysis of the Requirements Traceability
Problem. In Proceedings of the IEEE International Conference on Requirements Engineering
(ICRE-94), Colorado Springs, April 1994.

Gotel, O. C. Z., & Finkelstein, A. C. W. (1994b). Modelling the Contribution Structure
Underlying Requirements. In Proceedings of the First International Workshop on
Requirements Engineering: Foundations of Software Quality (REFSQ-94), June 1994.

Hailpern, B. (1986). Special issue on multiparadigm languages and environments. IEEE Software,
3(1), 10-77.

Jackson, M., & Zave, P. (1993). Domain Descriptions. In IEEE International Symposium on
Requirements Engineering, San Diego, 4-6 January 1993, pp. 56-64. IEEE Computer Society
Press.

Kramer, J., & Finkelstein, A. C. W. (1991). A Configurable Framework for Method and Tool
Integration. In Proceedings of European Symposium on Software development Environments
and CASE Technology, Königswinter, Germany, June 1991, (vol. LNCS 509, pp. 233-257).
Springer-Verlag.

Meyers, S., & Reiss, S. P. (1991). A System for Multiparadigm Development of Software
Systems. In Proceedings of the Sixth International Workshop on Software Specification and
Design, Como, Italy, 25-26th October 1991, pp. 202-209.

Nuseibeh, B., & Finkelstein, A. C. W. (1992). ViewPoints: A vehicle for Method and Tool
Integration. In Proceedings of the IEEE International Workshop on Computer-Aided Software
Engineering (CASE-92), Montreal, Canada, 6-10th July 1992.

Nuseibeh, B., Finkelstein, A. C. W., & Kramer, J. (1993). Fine-Grain Process Modelling. In
Proceedings of the Seventh International Workshop on Software Specification and Design
(IWSSD-7), Redondo Beach, CA, 6-7 December 1993, pp. 42-46. IEEE Computer Society
Press.



- 20 -

Nuseibeh, B., Finkelstein, A. C. W., & Kramer, J. (1994). Method Engineering for Multi-
Perspective Software Development. Information and Software Technology Journal, (to
appear).

Nuseibeh, B., Kramer, J., & Finkelstein, A. C. W. (1993). Expressing the Relationships Between
Multiple Views in Requirements Specification. In Proceedings of the 15th International
Conference on Software Engineering (ICSE-93), Baltimore, 17-21 May 1993, pp. 187-200.
IEEE Computer Society Press.

Nuseibeh, B., Kramer, J., & Finkelstein, A. C. W. (1994). A Framework for Expressing the
Relationships Between Multiple Views in Requirements Specification. IEEE Transactions on
Software Engineering (to appear).

Wasserman, A. I., & Pircher, P. A. (1987). A Graphical, Extensible Integrated Environment for
Software Development (Proceedings of 2nd Symposium on Practical Software Development
Environments). SIGPlan Notices, 22(1), 131-142.

Wile, D. S. (1991). Integrating Syntaxes and their Associated Semantics (Technical Report No.
RR-92-297). USC/Information Sciences Institute.

Wileden, J. C., Wolf, A. L., Rosenblatt, W. R., & Tarr, P. L. (1991). Specification-level
interoperability. Communications of the ACM, 34(5), 72-87.


