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A B S T R A C T   

Since COVID-19 spread rapidly worldwide, many countries have experienced significant growth in the number of 
confirmed cases and deaths. Earlier studies have examined various factors that may contribute to the contagion 
rate of COVID-19, such as air pollution, smoking, humidity, and temperature. As there is a lack of studies at the 
neighborhood-level detailing the spatial settings of built environment attributes, this study explored the varia-
tions in the size of the COVID-19 confirmed case clusters across the urban district Huangzhou in the city of 
Huanggang. Clusters of infectious cases in the initial outbreak of COVID-19 were identified geographically 
through GIS methods. The hypothetic relationships between built environment attributes and clusters of COVID- 
19 cases have been investigated with the structural equation model. The results show the statistically significant 
direct and indirect influences of commercial vitality and transportation infrastructure on the number of 
confirmed cases in an infectious cluster. The clues ch inducing a high risk of contagions have been evidenced and 
provided for the decision-making practice responding to the initial stage of possible severe epidemics, indicating 
that the local public health authorities should implement sufficient measures and adopt effective interventions in 
the areas and places with a high probability of crowded residents.   

1. Introduction 

Since the initial cases of the ’unknown pneumonia’ reported in 
Wuhan, China, in December 2019 (Guan et al., 2020; Lu, Stratton, & 
Tang, 2020), such an infectious disease has an outbreak and rapidly 
spread all over the world (Wei, Wang, & Kraak, 2020). The novel 
coronavirus was soon identified as the causative agent by the Chinese 
Centre for Disease Control and Prevention (Zhu et al., 2020). Subse-
quently, the pneumonia was named COVID-19 by the World Health 
Organization. So far, the COVID-19 becomes a severe pandemic of in-
ternational concern. The regional haphazard has transformed into an 
international pandemic as an unprecedented global emergency in the 
context of a highly globalized era (Sohrabi et al., 2020). Alongside these 
dark sentiments, images of solidarity have emerged (The Lancet, 2020). 
However, the impact will drive a change in the way we think about cities 

and health (Acuto, 2020). 
Evidenced in many confirmed cases, the clinical symptoms of 

COVID-19 are dry cough, fatigue, fever, dyspnea, and bilateral lung 
infiltrates (Guan et al., 2020; Sohrabi et al., 2020). Some younger 
infected persons have relatively mild symptoms without fever, most of 
which recovered after about one week. The severe cases developed 
rapidly into acute respiratory distress syndrome, septic shock, 
hard-to-correct metabolic acidosis, and coagulation dysfunction. 
Notably, aged patients and patients with chronic disease have worse 
conditions (Deng & Peng, 2020). Thus, it is essential to fend off the 
challenge of COVID-19 spread with the strategies and knowledge from 
the interdisciplinary perspective (Franch-Pardo, Napoletano, 
Rosete-Verges, & Billa, 2020; Megahed & Ghoneim, 2020; Rahman 
et al., 2020). However, few studies define the pathophysiological char-
acteristics of COVID-19, and its mechanism of spread is of considerable 
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uncertainty. 
Against the backdrop, this study investigated the spatial spread of the 

epidemic in the Huangzhou district of Huanggang, Hubei province, 
China. The anonymized data about the residential location of infected 
cases at the initial stage were used to mapping the COVID-19 contagion 
distribution through geographic information systems (GIS). Various 
aspects of the urban built environment are correlated with not only 
organizational level outcomes (Wang & Vermeulen, 2020) but also in-
dividual level outcomes regarding population physical and mental 
health (Saarloos, Kim, & Timmermans, 2009). Using data of the built 
environment around confirmed cases, we investigated the relationships 
between the quantity of assembled COVID-19 confirmed cases and the 
built environment attributes of corresponding neighborhood-level 
urban space. The measurements of urban components and attributes 
on a human-scale that affect the sense of potential risks regarding con-
tact infection can be used to identify features and hot spots of infected 
COVID-19 clustering in certain areas (Shach-Pinsly, 2019). The objec-
tive of this investigation is to provide evidence regarding the potential 
risk of COVID-19 spreading and clustering related to the conceptualized 
constructs regarding urban commercial development, medical service 
capacity, and transportation infrastructure. In light of the density-based 
clustering algorithm, the confirmed cases were spatially categorized into 
clusters of different sizes. The number of cases therein defines the size of 
a cluster. Subsequently, the point-of-interests (POIs) of various types of 
commercial facilities and medical services, road network lengths, 
building density, and average housing price at the community level, 
which is surrounding the clusters (within 1000 m buffer), are incorpo-
rated into the distributions map of COVID-19 infected cases with ArcGIS. 
Finally, we explored the relationships between infected cases clustering 
and fine-scale built environment attributes. 

The remainder of this paper is organized as follows. The short review 
of the spatial transmission of COVID-19 is presented in Section 2, which 
is followed by Section 3 regarding the proposed hypothetical conceptual 
framework. To examine the hypotheses, the methodology in this study is 
addressed in Section 4, which includes the descriptions of COVID-19 
confirmed cases and related neighborhood-level urban attributes in 
Huangzhou as the data sources, and the methods of geo-analysis on 
COVID-19 clustering and structural equation model for estimating the 
hypotheses. Then, the results of the estimation are shown in Section 5. 
Discussions based on the results are elaborated in Section 6. In the last 
section of the conclusion, the study is summarized. 

2. Literature review on the spatial spread of COVID-19 

Most of the initial COVID-19 cases were geographically linked to the 
Huanan seafood wholesale market in Wuhan, which suggests the virus 
was transmitted from animal to human (Li, Guan et al., 2020), whereas 
the intermediate animal that caused the transmission of the virus to 
human is still unknown (Khan et al., 2020). The sequent presence of 
human-to-human transmission has been confirmed based on the reports 
of an infected cluster of family members and healthcare works in 
different geographical regions (Jasper Fuk Woo Chan et al., 2020). 
Nevertheless, genomic evidence has been provided that the virus was 
induced from another unknown location, and the human-to-human 
transmission may have occurred earlier (Shereen, Khan, Kazmi, 
Bashir, & Siddique, 2020; Yu, Bin, Da, Zhang, & Corlett, 2020). Further 
investigation revealed that more than 70 % of the patients at the 
beginning of the outbreak had no exposure to the market (Li, Guan et al., 
2020). For sure, the COVID-19 has tremendous transmissibility (Shereen 
et al., 2020). So far, its reproductive number of COVID-19 has been 
much higher than SARS, so does the number of people infected or died 
(Liu, Gayle, Wilder-Smith, & Rocklöv, 2020; Mahase, 2020). As the viral 
transmission was tending more and more intensively, Wuhan’s area was 
quarantined on 23 January 2020. Subsequent viral spread led to 
movement across Hubei province in 16 cities, affecting 50 million 
people (Sohrabi et al., 2020). Since 26 January 2020, 30 provinces in 

China have initiated a Level-1 serious major public health emergency 
response to control the outbreak. 

Typically, respiratory viruses are most contagious when a patient is 
symptomatic (Li, Guan et al., 2020; Phan et al., 2020). According to the 
clinical evidence of previous respiratory syndromes, respiratory droplets 
and personal contact are primary transmission methods (Zumla, Chan, 
Azhar, Hui, & Yuen, 2016). Close contacts with infected persons, espe-
cially when they cough or sneeze, are thought to be the main risk of 
respiratory virus transmission (Harapan et al., 2020). In the case of 
COVID-19, the source of infection is mainly the infected patients, even 
the asymptomatic ones, as some patients do not have any symptoms and 
abnormalities on the initial presentation, which has complicated the 
diagnosis and preventions (Bai et al., 2020; Guan et al., 2020). As the 
research moves along, a rich body of evidence has indicated the 
human-to-human transmission during the asymptomatic incubation 
period of COVID-19 (Chan et al., 2020; Guan et al., 2020; Li, Guan et al., 
2020; Rothe et al., 2020; Zhou et al., 2020). Thus, at the initial stage, the 
spread rate of epidemics in the city depends on the human mobility in 
urban areas. The compulsory measures should be considered to restrict 
residents’ congregations and ensure the supply of living resources. 

As one of the most important characteristics of an epidemic, the 
spatial spread mainly depends on the transmission mechanism, human 
mobility, and control strategy (Gross et al., 2020; Rahmani & Mirma-
haleh, 2021). Responding to the virus spread, GIS and spatial statistics 
are applicable to track the epidemic through scientific information, such 
as finding the spatial correlation with related variables and identifying 
transmission dynamics (Ellis et al., 2016; Xiong, Wang, Chen, & Zhu, 
2020). The spatiotemporal characteristics of confirmed cases were 
correlated with the profile of symptoms and demographic variables, 
making the information of contagions more precise (Guan et al., 2020). 
Estimating spatial variations through geographical and geospatial ana-
lyses has been conducted, which provides insights into the distribution 
patterns of COVID-19 and effective measures (Franch-Pardo et al., 
2020). The data of identified cases may offer valuable information on 
our understanding of the spread and making targeted policies. Since 
early identification of the high potential risk areas of contagion and 
understanding the spatial spread of the outbreak are significantly crucial 
for the decision making of implementing preventions and control mea-
sures to prevent the COVID-19 infections at the initial stage (Kang, Choi, 
Kim, & Choi, 2020). Currently, either vaccine to prevent infections or 
specific therapeutic medicines curing the patients have yet been pro-
duced (Deng & Peng, 2020; Wang, Horby, Hayden, & Gao, 2020). The 
critical and effective control strategies are to block human-to-human 
transmission and to prevent people being exposed to the virus sources. 
The disruption to the transmission chain is considered a key to stopping 
the contagious diffusions (Chan et al., 2015). Public health intervention 
and transportation restrictions have been evaluated regarding their ef-
fects on COVID-19 transmission (Su et al., 2020; Tang et al., 2020; Zhao 
et al., 2020). 

The identification of significant clusters of infected cases is essential 
to practical and scientific endeavors (Grubesic, Wei, & Murray, 2014; 
Sarwar, Waheed, Sarwar, & Khan, 2020). Multiple dimensions of the 
spatial segmentation of identity and count cases are required for 
revealing the epidemic risk and prevention level. Although the spread of 
COVID-19 is a serious international concern, the responses depend on 
local governance, socioeconomic, and cultural contexts (Shaw, Kim, & 
Hua, 2020). National-level spatial distribution and dependency have 
confirmed the positive relationship between the frequency of flights, 
trains, and buses and the number (daily and cumulative) of COVID-19 
infected cases. The neighborhood-level spatial track of infected pa-
tients provides essential information to detect the risky areas and the 
infection rate, which is also necessary for impeding the transmission 
with quarantine and disinfection methods. The spatial clustering facili-
tates the early detection of the risk of contagion outbreaks at the 
neighborhood-level associated with the human-to-human transmission 
of viruses or a localized infection source. 
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As important as the knowledge of spatial attributes of risk and spread 
rate, the understanding of urban settings related to effective prepared-
ness is the demanded innovative solutions. Residents’ daily behavior 
depends on the environment in which it takes place, while residents also 
influence the environment by their presence and activities (Saarloos 
et al., 2009). Different configurations of urban spaces define user’s 
perceptions, sense of control, social distance, and behavioral patterns 
(Morello & Ratti, 2009), which may provide information about the po-
tential risk of contact air-borne contagions. The heterogeneity in the 
distribution and clustering of confirmed COVID-19 cases at the initial 
stage could be correlated with appropriate urban settings. However, 
there is a lack of the neighborhood-scale research related to the risk and 
rate of the spread of COVID-19. The certainty in existing evidence of 
community-level effects of spatial attributes on COVID-19 infection and 
transmission is yet to be estimated, posing a barrier to decision-making. 
The challenge to systematic analysis of the relationship between built 
environment and epidemic spread is still confronted in this study for the 
lack of detailed and quality data of infected persons and the compre-
hensive built environment data. 

3. Hypothetical conceptual framework 

Epidemical evidence has indicated that the human-to-human trans-
mission caused by confirmed and suspected cases exists even at the 
community level in the incubation period (Chan et al., 2020). At the 
initial stage of epidemic spread, the individual suspected virus carriers 
behave as normal persons in response to urban physical and social set-
tings as a part of the built environment (Moudon & Lee, 2003). Their 
activities and movements are influenced by businesses and organiza-
tions located in the environment of daily life (Saarloos et al., 2009). The 
urban setting features, such as the location of commercial zones and 
public transportation and socioeconomic gradient, contribute and shape 
human exposure (Andrianou et al., 2020; Wild, 2005). The area of 
community commercial activities, where a high possibility of close 
contact between people exists, potentially has a high risk of an uncon-
tained outbreak of COVID-19 infection (Lee et al., 2020). From the 
geographical perspective, the influences may have a spatial dimension, 

which may allow for mapping the potentially predicted distribution and 
clustering of infectious cases and areas with high contagious risk. 

In this study, the conceptual framework presumes that the com-
mercial prosperity, medical service, and transportation infrastructure 
surrounding the cluster of COVID-19 confirmed cases are treated as 
unmeasurable influential factors. These latent theoretic constructs 
regarding commercial prosperity, medical service, and transportation 
infrastructure at the community level are conceptualized by measured 
variables with spatial dimension regarding POIs of the daily life com-
mercial, medical and transportation facilities, and road network lengths 
in the surrounding area of clusters as we set. Also, average housing price 
and average building density are regarded as the exogenous variables 
related to socioeconomic factors and spatial attributes surrounding the 
cluster of COVID-19 confirmed cases, which influence the endogenous 
latent variables and cluster size. The conceptual framework of the hy-
pothetical structure is shown in Fig. 1. 

The hypotheses of theoretic constructs are described in Table 1, and 
relationships between variables are listed in Table 2. Three latent vari-
ables of perceived urban facilities are presumed to be measured by the 
corresponding indicators referring to h1-h10. The number of POIs is 
used to reflect urban vitality and commercial prosperity (Wang, 2020), 
which often includes food services, markets, hair salons, convenience 
stores, public toilets, and ATM in 1000 m radius around each COVID-19 
cluster (Mitchell & Bendixson, 2015). Each commercial POI is the 
possible venue where people are gathering with close exposures and 
contacts in daily life. The medical service indicators are the number of 
POIs regarding clinics and drugstores in 1000 m of each COVID-19 
cluster. Concerning the measurement of transportation infrastructure, 
the indicators comprise the number of bus stop POIs and the road 
network length in a 1000 m radius surrounding each COVID-19 cluster. 
All indicators are taken logarithms before running the structural model. 
As for the structural model part, the hypotheses H1- H6 are specifying 
the relationships among the latent endogenous variables and COVID-19 
cluster size. H7-H9 represents the hypothetical effects of building den-
sity on commercial prosperity, transportation infrastructure, and 
COVID-19 cluster size. Similarly, H10-H12 represents the hypothetical 
effects of housing prices on commercial prosperity, medical service, and 

Fig. 1. Hypothetical relationships in SEM.  
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COVID-19 cluster size. All hypotheses have been estimated through 
covariance-based SEM, and the results are described in Section 5. 

Accordingly, this study aims to bridge the gap by first constructing a 
structure equation model to provide a view to show the relationships 
among the confirmed COVID-19 cluster size (the number of confirmed 

persons in a cluster) and latent variables representing commercial 
prosperity, medical service capacity, and transportation infrastructure 
within 1000 m radius around each COVID-19 confirmed cluster, which 
will explicitly indicate the correlations between neighborhood-level 
urban spatial attributes and the risk of confirmed cases clustering. It is 
meant to give the decision-makers a sense of the potential procedures for 
prevention and control on the quantification of urban spatial influence. 
Based on the data gathered from the Centre for Disease Control and 
Prevention of Huangzhou district in Huanggang, we employed DBSCAN 
to cluster confirmed cases based on their residential locations spatially, 
and SEM to analyze the relationships between the cluster size and the 
exogenous and endogenous factors related to urban settings and spatial 
attributes. The findings arising from this study can potentially inform 
decision-makers on detecting the potential risk correlated with urban 
settings and spatial attributes and how to implement and repeal the 
prevention and protection measurements spatially. 

4. Methodology 

4.1. Data sources 

Huanggang is a major municipality (prefecture) adjacent to Wuhan 
in the easternmost Hubei province. There are two directly administra-
tive divisions, namely Huangzhou and Longganghu. The geographic 
relation of Huanggang city and Huangzhou district is shown in Fig. 2. 
Since the COVID-19 outbreak, the world is concerned about the prospect 
of the pandemic in Wuhan. The epidemic treatment, prevention, and 
control in Wuhan received widespread support throughout the whole 
country. Besides the high growth rate of infection in Wuhan, the virus 
transmission rate in adjacent cities in Hubei province is remarkably 
higher than the other in other provinces. Wuhan was quarantined from 
23 January 2020, which comprises an urban area spanning 1528 km2 

and exceeds 11 million residents. Subsequent imposition of restriction 
regarding movements across 16 cities of Hubei Province affecting 50 
million people. 

The data of COVID-19 confirmed cases in this study were obtained 
from the Huangzhou district. The economic development of Huangzhou 
received the benefits of transportation infrastructure, such as 90 km to 
Tianhe airport of Wuhan, an extensive road network, several new ex-
pressways, and two national main north-south railway lines. However, 
during the initial stage of the COVID-19 outbreak, the inevitable 
frequent flow of population from Wuhan leads to a high possibility of 
rapid infections spreading in Huanggang, especially the Huangzhou 
district. The spatial distribution data of 639 COVID-19 confirmed cases 
in the study area was extracted from “the Report of Epidemic Diseases” 
of Huangzhou District Center for Disease Control and Prevention. 

At the preparation stage of this study, spatial analysis using GIS 
played a crucial role in rapidly collecting and screening related data of 
urban settings and spatial attributes from multiple sources, further 
tracking and clustering the COVID-19 confirmed cases. The amounts of 
POIs regarding commercial and medical facilities and transportation, 
including foods and drinks, markets, ATMs, hair salons, public lava-
tories, bus stops, clinics, and drugstores at the community level in the 
areas of 1000 m radius surrounding the clusters of COVID-19 confirmed 
cases were accessed from the online open-source database of Gaode Map 
Lab (https://maplab.amap.com). Then, the spatial pattern of various 
POIs in the Huangzhou district was incorporated into the layer of the 
map via ArcGIS tools. All data regarding urban settings and spatial at-
tributes were linked with the corresponding clusters in the ArcGIS 
environment. In addition, we calculated the length of the road network, 
mean housing price, and average building density in the 1000 m radius 
based on each location of clusters. Logarithm fetching on the amounts of 
POIs has been exerted to normalize the data for further modeling. 

Table 1 
Nomenclature of components in the conceptual framework of SEM.  

Variable Description 

Dependent COVID-19 cluster size The size of clusters of infected 
COVID-19 persons 

Latent 

Commercial prosperity 

Latent factor measures the 
neighborhood commercial condition 
within 1000 m radius centered in a 
COVID-19 infected cluster 

Medical service 

Latent factor measures the 
neighborhood medical service 
capacity within 1000 m radius 
centered in a COVID-19 infected 
cluster 

Transportation infrastructure 

Latent factor measures the 
neighborhood transportation 
condition within 1000 m radius 
centered in a COVID-19 infected 
cluster 

Manifest 

(1) ATM (2) Market (3) C- 
store (4) Hair salon (5) 
Foodservice 

The logarithmic number of POIs 
regarding (1) automatic teller 
machines, (2) traditional markets 
and supermarkets, (3) convenient 
store, (4) hair salon, (5) restaurants, 
snack and drink services, and (6) 
public toilets within 1000 m radius 
centered in a COVID-19 infected 
cluster 

(6) Public Toilet 

(1) Clinic (2) Drugstore 

The logarithmic number of POIs 
regarding (1) Clinics and (2) 
Drugstores within 1000 m radius 
centered in a COVID-19 infected 
cluster 

(1) Bus stop (2) Road length 

The logarithmic number of POI 
regarding (1) bus stop, and (2) the 
total length of roads within 1000 m 
radius centered in a COVID-19 
infected cluster 

Covariate 

(1) Building density The k-mean values of (1) building 
density and (2) housing price within 
1000 m radius centered in a COVID- 
19 infected cluster 

(2) Housing price  

Table 2 
. Hypothetic links between components in SEM.  

Measurement 
model  

h1-h6: Commercial prosperity is conceptualized by 6 manifest items 
h7-h8: Transporation infrastructure is conceptualized by 2 manifest 

items 
h9-h10: Medical service conceptualized by 2 manifest items 
Structural model  
H1: Transporation infrastructure’s effect on Commercial 

prosperity 
H2: Transportation infrastructure’s effect on Medical service 
H3: Transportation infrastructure’s effect on COVID-19 cluster 

size 
H4: Medical service’s effect on Commercial prosperity 
H5: Commercial prosperity’s effect on COVID-19 cluster size 
H6: Medical service’s effect on COVID-19 cluster size 
H7: Effect of Building density on Commercial prosperity 
H8: Effect of Building density on Transportation infrastructure 
H9: Effect of Building density on COVID-19 cluster size 
H10: Effect of Housing price on Medical service 
H11: Effect of Housing price on Commercial prosperity 
H12: Effect of Housing price on COVID-19 cluster size  

B. Li et al.                                                                                                                                                                                                                                        
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4.2. Density-based clustering algorithm 

The density-based clustering algorithm aims at finding the underly-
ing structure of data, which is an unsupervised learning method to group 
similar data points in a certain way. Based on the idea that a cluster in 
data space is a contiguous region of high point density, separated from 
other such clusters by contiguous regions of low point density, the 
density-based clustering algorithms are efficient to deal with the arbi-
trary shaped clusters and finding the high-density and outliers (Dane, 
Borgers, & Feng, 2019; Daszykowski & Walczak, 2009). DBSCAN algo-
rithm is a well-known data clustering algorithm, which stands for 
Density-Based Spatial Clustering of Applications with Noise. The key 
idea is that for each point of a cluster, the neighborhood of a given radius 
must contain at least a minimum number of points. Unlike k -means, 
DBSCAN is a non-parametric approach that does not require the number 
of clusters as an input parameter. Instead, it infers the number of clusters 
based on the data, and it can discover clusters of arbitrary shape 
comparing the spherical clusters in k -means. Based on DBSCAN, a point 
belongs to a cluster if close to many points from that cluster (see Fig. 3). 
Noise is defined relative to a given set of clusters, which is simply the set 
of points in data space not belonging to any clusters. The cutoff distance 
of the neighborhood is fundamental to DBSCAN to approximate local 
density. Therefore, the algorithm has two parameters determining the 
clustering outcome: (i) Eps (ε): The cutoff distance specifies the neigh-
borhoods. Two points are considered to be neighbors if the distance 
between two points is not more than ε, and (ii) MinPts: Minimal number 
of data points for defining a cluster. 

DBSCAN stands out as a suitable algorithm for clustering the data of 
COVID-19 confirmed cases due to its ability to discover clusters of 
arbitrary shape without the prior knowledge of the existing number of 
clusters. Therefore, by using DBSCAN to discover clusters of COVID-19 
confirmed cases through GIS, we categorize the points of infected 
cases into three classes on the map, (I) core points: a data point of 
COVID-19 confirmed case is a core point if its ε- neighborhood contains 
at least MinPts, (II) border points: a data point of COVID-19 confirmed 
case is a border point if its ε- neighborhood contains less than MinPts, 
(III) outlier: a data point of COVID-19 confirmed case is an outlier if it is 
neither a core point nor a border point. A cluster is defined as a maximal 
set of density-connected points of COVID-19 confirmed cases. The ε is set 
to 30 m, which is the largest distance between two dwelling buildings in 
the same residential community, while MinPts is set to 2. The classifi-
cation starts with an arbitrary point from the data points, satisfying the 
core point condition. Then, it retrieves all points that are density 
reachable from the core points obtaining the cluster containing the 
points until all points have been processed. 

4.3. Structural equation modeling 

The structural equation modeling (SEM) refers to a broad and flex-
ible framework and a family of modeling techniques for data analysis 
regarding relationships between measured variables and latent con-
structs. The intricate causal networks enabled by SEM characterize real- 
world processes better than simple correlation-based models. Therefore, 
SEM has been widely used in economics, sociology, and behavioral 
science, which is particularly appropriate for analyzing complex re-
lationships among various variables. SEM can be generally viewed as a 
combination of factor analysis and regression or path analysis (Hox & 
Bechger, 1999; Li, Feng et al., 2020). Contrary to regression, SEM en-
ables researchers to set up and reliably examine hypothetical relation-
ships among theoretical constructs and those between the constructs and 
their observed indicators (Muthén, 2002). 

SEM comprises two or more equations in the model, which differs 
from the single equation regression model with a single dependent 
variable and multiple independent variables. The two essential compo-
nents of SEM are the measurement model and the structural model. The 
measurement model quantifies the loadings of measured variables 
(measurements) on their expected latent variables (constructs). In 
contrast, the structural model quantifies the assumed causation among a 
set of dependent and independent constructs simultaneously with the 
measurement model’s estimation. SEM is often used to test theories or 
hypotheses that can be represented by a path diagram. The network of 

Fig. 2. Location of Huangzhou district of Huanggang in Hubei province, China.  

Fig. 3. Diagram of the clustering process based on DBSCAN algorithm.  
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directional paths is postulated with direct and indirect effects among 
variables. A direct effect indicates the direct regulation of a response 
variable based on a causal variable, while an indirect effect implies the 
regulation is mediated through other variables. 

Various estimation procedures are available for SEM, but the most 
commonly used estimator is the maximum likelihood (ML). ML leads to 
estimates for the parameters vector θ which maximize the likelihood L 
that the empirical covariance matrix S is drawn from a population for 
which the model-implied covariance matrix 

∑
(θ) is valid (Reinartz, 

Haenlein, & Henseler, 2009; Schermelleh-Engel, Moosbrugger, & 
Müller, 2003). The log-likelihood (logL) function is express as: 

logL = −
1
2
(N − 1)

{
log

⃒
⃒
⃒
∑

(θ)
⃒
⃒
⃒+ tr

[
S
∑

(θ)− 1
]}

+ c (1)  

where N is the sample size (the number of clusters in this study), tr is the 
trace of a matrix, and c is a constant containing terms of the Wishart 
distribution that do not change once the sample is given (Schermelle-
h-Engel et al., 2003). The maximization of logL is equivalent to mini-
mization of the function, which is expressed as 

FML = log
⃒
⃒
⃒
∑

(θ)
⃒
⃒
⃒ − log|S| + tr

[
S
∑

(θ)− 1
]
− (p + q) (2)  

where FML is the fitting function evaluated at the final estimates, and p is 
the number of observed variables, and q is the sample size. The ML 
estimator assumes that the joint distribution of variables in the model is 
a multivariate normal distribution. 

5. Results 

The data of COVID-19 confirmed cases are extracted from the central 
area of Huangzhou, the main district of Huanggang prefecture, with 
396.3 thousand population and 362.37 km2. The anonymized COVID-19 
confirmed cases at the initial stage of the outbreak from 21 January 
2020 to 18 February 2020 were transformed into the spatial point on the 
map of Huangzhou district through ArcGIS. The spatial distribution of 
639 COVID-19 confirmed cases in Huangzhou is heterogeneous in light 
of Fig. 4. Most of the confirmed cases concentrate in the central area, 
where residents engage in many daily activities. Commercial activities 
are one of the most active factors that play a vital role in people’s 
congregating flow. According to the clustering result based on DBSCAN, 

a total of 190 clusters of confirmed COVID-19 cases are identified in the 
Huangzhou district. The distribution of clusters is depicted in Fig. 5. The 
numbers of different POIs are listed in Table 3. The limitation of data 
collection results in the number of housing price points is limited. 
Therefore, based on housing prices, the spatial interpolation was per-
formed to obtain the average housing price in the 1000 m radius of each 
cluster. The statistical surface of housing prices in the Huangzhou dis-
trict is shown in Fig. 6. The average housing price decreases based on the 
change of color from red to yellow until green. 

Three indexes are used to examine the model’s goodness-of-fit, 
including Comparative Fit Index (CFI) (Bentler, 1990), Tucker Lewis 
Index (TLI) (Tucker & Lewis, 1973), and Standardized Root Mean 
Square Residual (SRMR) (Jöreskog & Sörbom, 1981; Bender, 1995). The 
rule of thumb minimum standard of the CFI and TLI is 0.90 (Scher-
melleh-Engel et al., 2003). The CFI and TLI values estimated in this 
study are 0.95 and 0.90, respectively, which means the reasonable cutoff 
for these fit indexes, and the model is acceptable. In addition, the esti-
mated value of SRMR is 0.05, which is less than 0.10 as acceptable or 
0.05 as a good fit. 

The SEM diagram depicts the relationships among variables 
regarding the built environment and the COVID-19 cluster size (see 
Fig. 7). The detailed estimation results of SEM are shown in Table 4. 
With regard to the measurement model of commercial prosperity, the 
hypotheses h2 and h5 have been verified. However, the rest of the hy-
potheses are invalid. Therefore, commercial prosperity is conceptual-
ized by POIs regarding food services and markets. The medical service is 
measured by indicators of the number of POIs regarding clinics and 
drugstores, which indicates that h7 and h8 are verified based on the 
results of estimation. Accordingly, the transportation infrastructure can 
be measured by indicators of the number of POI of bus stops and the road 
network length, proving the hypotheses h9 and h10. The loadings of the 
measurement model are listed in Table 3. Concerning the hypotheses for 
the relationships among COVID-19 cluster size and latent variables, H1- 
H4 are confirmed. However, H5 is rejected. The COVID-19 cluster size is 
significantly influenced by the surrounding commercial prosperity 
directly. Meanwhile, the COVID-19 cluster size is indirectly impacted by 
medical service and transportation infrastructure by mediating com-
mercial development. The covariates regarding housing price and 
building density, H6, H7, H9, and H10 are proved. 

Fig. 4. Distribution of COVID-19 confirmed case in Huangzhou district (21- 
Jan-2020 to 18-Feb-2020). Fig. 5. Distribution of COVID-19 cluster based on DBSCAN.  
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6. Discussion 

The heterogeneous spread of COVID-19 in urban built environments 
was detected through the residential locations of COVID-19 confirmed 
cases in the Huangzhou district of Huanggang. GIS techniques and 
methods were used in analyzing localized infection distributions for 
more effective information on different dimensions of vulnerable loca-
tions. The valid results of the SEM estimate identify the influences of 
built environment attributes on assembling COVID-19 confirmed cases 
in the defined clusters, which extracts the neighborhood level spatial 
information on community contagions’ potential risk. More specifically, 

Table 3 
Amounts of relevant POIs in the study area.  

POIs Number 

ATM 125 
Market 49 
Convenient store 713 
Hair salon 618 
Foodservice 2435 
Public toilet 157 
Clinic 85 
Drugstore 118  

Fig. 6. The interpolated average housing price statistical surface (CNY/m2).  

Fig. 7. Diagram of SEM estimates regarding the effects on COVID-19 cluster size.  

Table 4 
Results of SEM estimation.   

Estimate S.E. p-value 

Commercial prosperity BY     
Foodservice  0.915 *** 0.013 0.000 
Market  0.888 *** 0.017 0.000 
Medical service BY     
Clinic  0.972 *** 0.006 0.000 
Drugstore  0.953 *** 0.008 0.000 
Transportation infrastructure BY     
Bus stop  0.723 *** 0.037 0.000 
Road length  0.919 *** 0.015 0.000 
Medical service ON     
Transportation infrastructure  0.707 *** 0.034 0.000 
Housing price  0.382 *** 0.038 0.000 
Transportation infrastructure ON     
Building density  0.934 *** 0.014 0.000 
Commercial prosperity ON     
Medical service  0.608 *** 0.113 0.000 
Transportation infrastructure  0.635 *** 0.199 0.001 
Housing price  0.151 *** 0.052 0.004 
Building density  − 0.306 ** 0.137 0.025 
COVID-19 cluster size ON     
Medical service  − 0.835  0.583 0.152 
Commercial prosperity  1.251 ** 0.603 0.038 
Housing price  − 0.159  0.121 0.189 
Building density  − 0.264  0.161 0.101 

*0.05≤p ≤ 0.10; **0.01≤p ≤ 0.05; ***p ≤ 0.01. 
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urban disparities in commercial prosperity, medical service, and trans-
portation infrastructure at the community level play an essential role in 
quantities of COVID-19 confirmed cases in clusters. The relationships 
between latent variables and measured factors are expected to the 
benefit of implementing public health detection, interventions, and re-
sponses to disease threats early (Saarloos et al., 2009; Shaw et al., 2020; 
Rehmani & Mirmahaleh, 2021). 

The hypotheses of the measurement models of three latent variables 
in SEM were examined. Three latent variables have been constructed by 
the manifest items. Commercial prosperity is conceptualized by two POI 
indicators, including the number of market and foodservice, with 
loadings of 0.888 and 0.915, respectively. The increase in number of 
market and food service will indirectly increase the COVID-19 cluster 
size in the surrounding neighborhoods through enhanced commercial 
prosperity. The number of bus stops and the length of the road network 
conceptualize the transportation infrastructure around each COVID-19 
cluster location. The well-developed transportation infrastructure may 
result in higher accessibility (Wang & Mu, 2018; Wang, Chen, Mu, & 
Zhang, 2020) and more prosperous commercial conditions, which may, 
in turn, lead to a high possibility of population movement in the sur-
rounding community of clusters of COVID-19 confirmed cases. Although 
the direct relationship between medical service and COVID-19 cluster 
size is not significant, the increments of the POI of clinics and drugstores 
will cause an increased medical service level, in turn, an increase of 
COVID-19 cluster size through the intermediate of commercial 
prosperity. 

The statistically significant associations between the theoretic con-
structs and COVID-19 cluster size underscore the importance of resi-
dents’ behavior in controlling human-to-human transmission risk and 
highlights the need to better understand the high-risk behaviors in 
specific urban spaces. We speculate that the booming commercial at-
mosphere and high transportation infrastructure portend more urban 
mobilities in a specific urban area, which may cause more social contacts 
beyond the other types of places. Due to the disparities in commercial 
prosperity and transportation infrastructure, some urban areas may be 
confronted with more intense stresses from the COVID-19 spreading and 
referring to a higher potential risk of infections (Shach-Pinsly, 2019; 
Wang, 2021). 

In areas of high building density in Huangzhou, residents’ mobility 
may be enhanced with better supporting facilities. However, building 
density inversely correlates with commercial property. Housing price 
positively influences the level of medical service and commercial pros-
perity at the community level, which further influences the COVID-19 
cluster size. The effects of housing prices, to some extent, reflect the 
impacts of socioeconomic characteristics of residents on the possibility 
of infection. The activities and movements of residents living in a resi-
dential community with a relatively high housing price in Huangzhou 
could be affected by the convenient facilities, commercial prosperity, 
and sophisticated medical resources. In Huangzhou, the residential 
districts with relatively high prices are located mainly in the central city, 
where the population density and visitor flow are higher than other 
places. From this perspective, people who live in these areas may 
potentially suffer from the relatively higher risk of infection during the 
COVID-19 epidemic. 

7. Conclusion 

The present COVID-19 pandemic is an international public health 
crisis. This study reveals the relationships between built environment 
attributes and confirmed COVID-19 cluster size in the central district. 
Huangzhou, as the studied district, is a local hub of travel and trade, 
which is closely bound up with the provincial capital city (Wuhan) and 
the rest districts and counties in Huanggang prefecture. It has a 
remarkable high potential to become the sub-epicenter influencing the 
regions around. However, compared with Wuhan, less attention was 
paid to Huangzhou at the early stage of the COVID-19 outbreak. 

The results of this study, for the first time, identify the cluster of 
aggregated infected cases at the community level and reveal the direct 
positive effect of commercial prosperity on the risk of contagion clus-
tering regarding the COVID-19 confirmed cases in cluster. The well- 
supplied medical service is associated with high commercial pros-
perity at the community level, which indirectly and positively affects the 
COVID-19 cluster size. Community transportation infrastructure is the 
key essence of developing convenient commercial and medical facilities 
that in general ensure citizen’s quality of life (Peng, Feng, & Timmer-
mans, 2019; Peng, Feng, & Timmermans, 2019; Gan, Yang, Feng, & 
Timmermans, 2020). However, when it comes to the prevention and 
control of contagion, the well-developed built environment with high 
population density is prone to a high transmission rate of the epidemic. 

The importance of what we know about the influence of urban set-
tings and spatial attributes and how it correlates with the clustering of 
infection has been interpreted in this paper. Due to the significant effects 
of urban commercial prosperity and transportation infrastructure on the 
aggregation of COVID-19 confirmed cases, the ad hoc policies are ex-
pected for prevention and control. To some extent, during the pandemic 
outbreak period, urban settings and the functions that rely on physical 
urban spaces should be taken into account in the responses for effective 
measurements of prevention and containment. 

To date, more than 55 % of the population resides in urban areas all 
over the world, and this proportion is still increasing, which is expected 
to be 68 % by 2050 (United Nations, 2018). Infectious diseases may 
emerge in the urban area again in the future. Since the emergence of 
epidemic originates in urban settings and rapidly propagates in the 
context of urbanization, built environment attributes are crucially 
essential to influence the transmission of emerging infectious diseases 
(Lee et al., 2020; Wang, 2021). Containment measures in some urban 
regions with specific facilities are essential to prevent the transmission 
at the community level. Furthermore, apart from the vaccine that are 
still under development and/or validity testing at the time of this 
research, understanding the spatial characteristics of COVID-19 spread 
is critical to its mitigation, espcailly when considering the development 
of future resilient cities. 
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